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PREFACE

1. Introduction

1.1. Background: The theory of semi-martingales is a major part of the
general theory of stochastic processes. This theory has undergone massive
growth during the last two decades. Much of the impetus for the rapid advances
in this branch of pure mathematics comes from efforts to solve applied problems.
For example, the theory of stochastic integration relative to semi-martingales is
the right tool for the analysis of stochastic dynamical systems and so for a large
class of studies carried out by theoretical physicists, electronic engineers, system
and control theorists, probabilists and statisticians. A semi-martingale is in fact
a general model of the engineer's ‘‘signal plus noise” and the statistician's ‘‘trend
plus random fluctuations’’.

1.2. History: Following the work of Paul Lévy and Joseph Doob, the epoch
making works in the general theory of stochastic processes are due to Paul Andre
Meyer [1967], all his papers in the 18 or so Strashourg seminars in probability
(especially, No. 10), Kunita and Watanabe [1967], Meyer [1973], Dellacherie
(1972], Dellacherie and Meyer [1975, 1980] and Jacod [1979]. For anyone
interested in reading into the last two decade’s progress in the theory of semi-
martingales, however, it must be understood that the principal original source is
the collection of Strasbourg Séminaires. These seminars are published by
Springer-Verlag in the Lecture Notes in Mathematics Series. The Université de
Strasbourg Séminaire de Probabilités not only contain the modern theory of
semi-martingales, but also retain the false starts, the subsequent alterations to
the ‘‘correct” directions, the seemingly interesting and possibly uninteresting
concepts and the ‘‘ripening” of proofs and techniques that are characteristic of
any developing mathematical theory. For example, see the Université de
Strasbourg Séminaire de Probabilités in 1967, 1970, 1975, and 1980 for successive
accounts of stochastic integration; the first three were given by Meyer. It is a rare
thing to be able to observe the evolution of a new theory and to see it mature in
such a short period of time. Most of the credit for this rapid development
probably belongs to a group of predominately French mathematicians led by
Paul-Andre Meyer and loosely referred to as the ‘‘Strasbourg School".

Métivier [1982] gives a slightly different emphasis to the subject than the works
of those previously mentioned. He starts his work with quasi-martingales and
bases the entire subject from martingales to the stochastic integration of semi-
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30 martingales on the so-called Doleans measure. This is a very elegant ]
R development. The use of the Doleans measure, to some degree, brings stochastic

KX integration within the domain of classical measure theory, a fact that will please

{::t a large number of mathematicians. At the same time, Métivier's approach

j;:';' retains the stopping time flavor of the Strasbourg School. The additional

',.‘: distinctive feature of this excellent work is that most results are formulated for

) Banach valued processes, thus providing a theory applicable to multi-dimensional

h:‘:'_: processes.

-E.': An additional book, in the spirit of Métivier, has recently been published. Kai Li

: Chung [1983], together with Ruth Williams, has written a clear and concise work

. on stochastic integration. Since it is anchored in all of Chung's other works and

‘1,3 those of J. Doob it is worth reading. The only shortcoming from the standpoint

:;: of this note is that it only considers martingales with continuous paths.
' Gopinath Kallianpur’s 1980 work on stochastic filtering theory also skips the

. point process case. But it is worth reading, if only to appreciate the maturity of
. the continuous parameter filtering problem and the clarity of Kallianpur’s style.

-‘;’ The principal study of point processes from the standpoint of martingales is

= ‘Point Processes and Queues’ by P. Brémaud, 1981. This is an excellent treatise

- on the theory of martingales applied to queuing and the filtering problem for
L point processes. Brémaud develops his theory from first principles, relying on
':j: Dellacherie’s Dual Previsible Projection Theorem rather than the Doob-Mever
:f:: Decomposition theorem and the extensive recent developments in stochastic

o integration relative to semi-martingales. It is the best introduction to the subject
- from the standpoint of applications and much of what will follow in this note

"_::: concerning filtering is borrowed, in one way or another, from the ground-breaking

'_Ej: work of Brémaud since 1972.

o

- Outside of some examples illustrating the methodology, a few simple results in

::::: Chapter 1 and a personal viewpoint, all of the mathematics in this note is known.

‘ The opening Chapter introduces a discrete parameter version of the martingale
.{::?_ calculus that will be introduced in the remaining five chapters. The purpose of

A this Chapter, and its threads into the later sections where the continuous
F parameter model is studied, is to provide some intuition and background for the
o study of these technically difficult subjects. Starting from first principles. many
E:\: of the hard to reach concepts of the continuous time model are almost trivial in
e the discrete model; certainly. the proofs and technical details are elementary. The

case of discrete parameter point processes are of particular interest (Section 1.10).
One can only wonder why this material is not written down somewhere. In most

o
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90y instances results about such processes follow from the general theory in a
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relatively straight forward manner (e.g., Section 4.7 of Chapter 4), but that does
not replace the insight obtained from deriving these results directly. Moreover.
having to go to the general theory of marked point processes in order to solve an
applied problem involving discrete parameter point processes seems a bit
excessive and would certainly inhibit applications of the basic concepts of the
theory.

1.2.1. Contents: The six chapters contain foundation material on stopping
times, filtrations, various types of function measurability, martingales, and a brief
description of integration relative to martingales. These chapters are meant to
constitute a brief survey and introduction to this material. Therefore, proofs are
given only when they pass loose criteria based on brevity, insight and simplicity.
Chapter 1 contains a brief introduction to nonlinear filtering.

"here are two excellent surveys on martingales and stochastic integration. One,
by C. Dellacherie [1978], concentrates on stochastic integration. The other, due to
A.N. Shiryayev, is very broad. Both of these papers are true surveys in that they
tell what has been accomplished in these areas and appropriately assume that the
reader has some understanding of the area, especially probability theory and
stochastic processes and is an active mathematician. The present note, on the
other hand, is meant to be both a survey of recent developments in this area and
an introduction to the basic theory. As such, definitions observe the
mathematical traditions of such things, examples and counter examples are
supplied to aid in the understanding of new objects defined, and Theorems,
Corollaries and Lemmas are rigorously stated. But complete proofs. sketchs or
indications of proofs are given only when they are relatively easv and
informative, or when they illustrate the meaning of newly defined concepts.
Chapter 6 is the chapter with the most proofs simply because it is impossible to
have any kind of understanding of the stochastic integral without them. One of
the reasons this is true is that most readers of this note will have a strong
intuition built on classical theories of integration and this knowledge. combined
with the fact that notationally most integrals look alike and have similar
properties, will mislead rather than support their understanding of the stochastic

integral.

1.2.2. Purpose: The primary purpose of the note is twofold: (i) To summarize a

*‘.t: recently evolved theory and indicate how it might be applied to some BRL tasks:
t:: (i1) To form a foundational document, a cominon ground for an interdisciplinary

group within the CSM branch of BRL-SECAD, all of whom are concerned with
o various mathematical aspects of stochastic network problems in Army
e Communication, Command and Control.
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"' . Chapter 1. A Discrete Time Model Of Martingale Calculus

:::::' 1.1. Introduction: This first section is meant to be a discrete time model for
::-_ most of the of the topics in this note. The initial purpose of this section, though.
e was only to guide the reader ( and writer ) through the intricacies of stochastic

integration by first studying martingale transforms ( stochastic integrals for

*: discrete time processes ). This led to introducing the quadratic variation and
3:: variance processes, and the original Doob decomposition of submartingales.
T'::: Before long it was clear that most of the subsequent topics would be much easier
2 to discuss, in the sometimes sketchy manner appropriate to a survey and
R introduction, if one could lean on an intuition built on the sequences of random
! .:»5 variables. Thus the present form of this section became an attempt to provide
-{"5-‘{ such an intuition or background before launching off into the much more
:: sophisticated concepts required by processes indexed by a continuum. '

- This Chapter is not meant to be a summary of the theory of martingale
o sequences. This subject is huge. For an almost flawless treatment of this theory

: one would surely read Neveu's book [1975] or Meyer's [1973] Springer-Verlag
e monograph. For a treatment of martingale sequences that has a large number of
examples and gives a very readable account of the theory, one should see Karlin

W and Taylor (1975). Rather. this Chapter is an attempt to give a brief description
:'.r of a “discrete time martingale calculus™, applicable to the study of discrete
'::: (stochastic) dynamical systems {Section 1.10).

It may also prove useful to see how a few of the concepts introduced here must
be modified when “‘time’’ becomes non-denumerable, most notably the concept of
“previsibility”. It took many years for the role of such processes to be
understood. In Meyer's 1967 book, he talks about “‘natural’” processes instead of
previsitle ones. The connection between the two was made in an elegant paper
by K.M. Rao (1969). but again only the Strasbourg Seminars (Mever (1970}) show
how the importance of the concept emerged. By the time one reads Dellacherie
and Meyer (1980), previsible processes are referred to as the “Borel” functions of

the general theory of stochastic processes.
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oN 1.2. Filtrations and Stopping Times: lLet Z be the set of non-negative

A integers and let ((2.H,P) denote a probability space, where H is a o-algebra of

" subsets of {1 and P is a probability measure on H. A sequence. G = (G, neZ). of

E'f sub o-algebras of H is called a filtration, if (relative to set inclusion) the G, are

:__ nondecreasing functions of n. We will assume that Gg is complete, in the sense

. that it contains all subsets of events (i.e., members of H) which are assigned
§ probability zero by P. G_, will denote the smallest o-algebra containing all the

\ G, G, = o( |J Gi) (G is a sub-o-algebra of H.)

k>0

k-

- Perhaps the single most important concept in martingale theory is the notion of

. stopping time. This is more evident in the continuous case than here. But even

'_".::j here where all we are trying to do is lay a foundation of sorts for things to come.

::;:j this notion plays a fundamental role. Stopping times are defired relative to

T filtrations, so to motivate the definition and at the same time give a concrete

Q' example of a filtration, we first consider the following

-

-.::-' Example: Let X = (X,, n = 0,1,2,...) be a sequence of random variables

::Z executing a symmetric random walk on the real line, starting from the origin {

.- hence, Xo = 0 ). For definiteness, suppose that X represents the value of a

- game at its n** trial and X, =X, + L. and X, =X, - 1. each with

3‘ probability -i— . Let Gy = {00} and G, denote the smallest o-algebra

o generated by the X, 0 < k < n : Gu=0(X,,0<k<n). G, is the family

consisting of the empty set and unions of the partition {w:X|(w)=11}.
‘ { w:X,(w) = -1}; Gois the family consisting of the empty set and unions of the
: partition

{ w:Xj(w) =-1 and Xy(w)=-21},

{ w:X|(w)=-1,and Xy(w) =01},

{w:Xiw) =1 and Xy(w)=01},

{w:X(w) =1 and Ny(w)=21}.
Notice that the union of the first two of these events and then the union of the
second two give the events that make up the partition defining (. Thus. we
have that Gy C G, C Gs. The remaining Gy are defined in a similar fashion and

monotonicity continues to hold. G = (G,) is therefore a filtration. This 1s an
example of a special type of filtration called variously the natural filtration or




xxxxxx

the internal history of the processes X, or the filtration generated by X.

Now, for each we(, let T(w) := min{ k : |X,(w)| = 2 }, if {...} is not empty and

' > T(w)=oc , if { - }=¢. T is the first timr .hat the process, X, takes on the
f‘i value plus or minus 2. T is a mapping of C 'nto the extended, nonnegative, real
;"':: line, R,:=[0,00], with the property that tke event [T<n]:={w:T(w)<n} is a
T member of G,. To see this it is enough to look at a couple of cases; the formal
o induction will be clear. Explicitly, [T<0]=[T<1]=¢, so these two events are
o contained in Gg and G;. Since [T <2|=[X;=-1,Xo=-2|| J[X;=1,X,=2|, we have
.';:: [T<2JeG,. Viewing the family of events, G, , as the history of the process up to
o “time" n, this means that the value of T at time n depends only on history of
_ the process, X, up to and including time n. In this sense, the extended valued
-.:::{ random variable T is said to be a ‘stopping time’ relative to the filtration (
‘;: history } G. Contrast this with the variable, S, defined by setting
{::-. S(w):=max{k:1<k<5, | X (w) | =2}, if such a k exists and oo otherwise.
* Clearly, the values of S depend on the entire history of the paths, n — X (w), of
PR the process X. Therefore, S is not a stopping time relative to the filtration G.
5'.-‘;:: according to the following
.r:'_:'
f: 1.2.1. Definition: A mapping T from Q to Z := Z |J {oo} is said to be a G-
X stopping time (optional time) if
L
o
o {w | T(w=n}eG,
183
N for all n in Z. When T is a G-stopping time, the o-algebra, G, of events that
::: occur prior to T, is defined by setting
w
RS Gr = {BeG, | BO[T = nleG, forallninZ }.
: By definition, [T=n] is in G, for all n in Z, so that [ T = oo |, the complement
VoL of all these events, is also an event in G_. Consequently, the mapping T:(1—Z is
! : ] G_-measurable. Hence, T is a random variable on (2, G) and so on (Q,H).
}: Finally, it is. immediate that T is a G-stopping time iff [T<n|e¢G, for all n in
Ko Z. Just notice that
<
n
- [T<n] = (JI[T=k]| )G,
j.: k=0
s
?4 3
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for all n, since [T = k|eGy is contained in G, for all k<n. Conversely, {T = n]
= [T < n]- [T < n-1} is in G, . More trivial, but of some interest for later
comparison to the situation when the stopping times are R, valued is that

[T<n)eG, iff [T<n]eG,_,

We will return to the topic of stopping times in general after a few more
definitions. In Chapter 2, where the model is more complex, we will give several
more examples.

1.3. Stochastic Processes, Previsibility and Optionality: Let Z be the set
of non-negative integers. A sequence, X = (X, neZ), of mappings of (1 into the
set of real numbers is called a real valued stochastic process if for each n, the
mapping, w — X, (w), of 2 into R is H-measurable. That is, for each n in Z.
{weﬂ : Xn(w)eBicH, for all real Borel sets, B. Of course, this is just the statement
that for each n, X, is a real valued, random variable on the measurable space (2.

H).

Further, X is said to be G-adapted , if X, is G -measurable for each nin Z. If
X is adapted to G, then we also say X is observable relative to those processes
which generate G. It is useful to realize that if X is G-adapted, then measurable
functions of successive finite segments, g(X,, - -, X,), of X define G-adapted
processes.

Convention: Throughout this Chapter, whenever processes are discussed it will
always be assumed that they are adapted relative to the same fixed filtration.
unless stated otherwise. This is no restriction in generality since we have not
excluded the trivial filtration. (G ,neZ), where G, = H for all n.

For the discrete time processes, the important notion of “‘previsibility’” takes on a
very simple and intuitive meaning: V = {V_, n in Z) is said to be G-previsible.
if each random variable V is G, | measurable. This description of previsibility is
intuitive since if a process, (V,), is G-previsible, when G, = o(X;. k==0.1.....n).
for some process, X, then V_ is a Borel function of X, for k=0,1.....n-1. Thus,
the value of the process V at time n is completely determined by the value of X
at the times 0.1,2,....n-1. That is, just before time n ( prior to n ) the value of V'
is known: it is previsible. “Previsible™ is the French term: in English it is usually
translated to “‘predictable”™. We use the former term because the notion of pred-
ictability as a technical term carries too many possible meanings (e.g.. in wide
sense stationary time series analysis) and the English interpretation of the term
“previsible” | viz.. “being visible before”, rather precisely deseribes the intended

TR




technical meaning.

Later in this chapter we will need a reasonably precise understanding of the
statement that a (discrete parameter) process, X, is ‘‘evaluated at a stopping
time", Xg(,)(W). An immediate difficulty that one might notice is that stopping
times take values in Z,, while for any w in 2, n — X (w) is defined only on Z,.
This can be overcome by setting, for example, the value of the process at
“infinity” equal to zero, for all w in (2. This is equivalent to writing Xrg(u)(w)
liT <o in place of Xp(w)w). As it is convenient, we will use one or the other, or
just qualify appropriate statements by saying ““ on [T < oo]”, while writing
either XT(W)(W) or Xt. In any case, we then need to know what conditions must
be imposed on X so that Xt is a random variable. Hence, we must first say what
is meant for a random variable to be defined on a subset of {2. So let (2 be a
subset of {2 of the probability space, (€2, H, P). The trace o-algebra, denoted
HMQ,, is the family { AN, : AeH } of subsets of €2,. Of course, 2, may not
belong to H, but if it does, then the trace o-algebra is just { A : AeH, A a subset
of 2, }. Now we are all set: X is a real valued random variable on a subset,
, of 0 (on (Q, Hﬂﬂo, P) ) iff X' YB) ¢ Hﬂﬂo for all real Borel sets, B.
Further, we can talk about a G-measurable random variable or frnction
defined on a subset, 2, where*G is a sub o-algebra of H, by replacing H by G in
the definition above. Then the following result holds ( Neveu [1975] ).

‘

1.3.1. Lemxma: If X s a G-adapted process and T is a G-stopping time, then the
random variable X, defined on {w: T(w) < oo} by setting Xg(w) := Xq(y(w) s
Gr-measurable.

The random variable of this definition-theorem is obtained as a result of
evaluating the process at the stopping time T. Perhaps the most important
example is that of a stopped process. If T is a stopping time, then
T, (w) := (T ~n)(w):=T(w) ~ n, the minimum of numbers T(w) and n, defines a
stopping time for each neZ,. Let XnT(w) = Xg (w). We define the process X
stopped at time T by setting XT = (XnT' neZ,).

The paths, n — XT(w), of the stopped process are constant to the right of the
interval [0, T(w)]. Stopped processes are fundamental to modern martingale
theory. Later in these notes, the notion of path-wise ‘‘localization™ of a process
is introduced, whereby properties such as ‘‘boundedness’ are attributed to the
process ‘‘locally”’ in the sense that the stopped process is bounded. For example,
from elementary calculus, a path-wise continuous process is locally bounded.
This technique becomes a powerful tool for extending certain results to more and




W more general classes of processes and will be used extensively in Chapter 6.

Another detail that we need throughout is a way to say two processes are
wy “equal”. That is, we need an equivalence relation on a set of processes. Let N\

\ﬁ and Y be two discrete parameter processes defined on the same probability space
', (2. H, P). Since any countable collection of events of P-measure zero is again an
' event of P-measure zero, the statements that
oy P(X, = Y,) = 1, neZ, and P(X, = Y, neZ,) = 1
e
] are equivalent. This is not true in the continuous parameter case considered in
:::" Chapter 2, where processes having the first property are called “modifications™ of
,.'5\ one another and those having the second are called indistinguishable. These
'::: concepts being equivalent for discrete parameter processes, we will only use the
Pk latter for now. Clearly, indistinguishability determines an equivalence relation on
the set of all processes defined on (2. H, P). So any processes or random quanti-
';:'.3 ties which are discussed in this chapter are only specified to within membership
;’_: in a particular equivalence class. On occasion we will emphasize this point by
AN writing “'a.s.P’’, meaning ‘‘almost surely relative to the probability P, or. "with
probability one” next to equalities and inequalities involving random quantities.
z'. With an eye toward later chapters, we also remark at this point that a process
é which is indistinguishable from the process which is identically zero is said to be
‘. evanescent. Subsets of Z, X (2, called random sets, are said to be evanescent
if their indicator functions are evanescent.
ko
o
::X- 1.4. Transforms of Stochastic Processes: Let V = (V neZ) and X =
- (X,:neZ) be two processes. Extend the time domain of processes on Z X by set-
‘~. ting X_; = 0 for all w in Q. Set AX| = X - Xy_;, then in particular, AX; = X
kg Given two processes X and V, define the process V.X on () by setting
!
n
;;E\f (VX) Iw) == Y Viw) A X (w) (1)
N~ °
:‘::
A for all n in Z and each weQ?. V.X is called thc transform of X by V. When we
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want to use the transform of X by V to anticipate results about stochastic
integrals, we will sometimes call this transform a discrete integral of V with
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respect to X. In this case we have in mind that Vi = v, and Xj = x,.
k=1.2....n. where 0=ty<t; < - <t ,=t, for some continuous parameter
processes v and x.

Equation (1) is also written in the forms

(V.X), (W) = Vglw) Xg(w) + i Vi(w) A Xy (w) (2
1

= (V.X)_ (W) + V, (w) X, (w). (2.1)

As a discrete integral it is clear that the transform in (1) is nothing more than a
particular form of a Darboux sum associated with a Riemann Stieltjes integral.
As such, in later chapters of this note, it will become the major building block of
stochastic integrals relative to various types of (continuous time) processes.

1.5. The Quadratic Variation and Variance Processes: We now introduce
two more processes that play an important role in stochastic integration. These
processes also form a link back to classical probability and statistics.

Again let X = (X, neZ) be any process and define the stochastic process, [X,X].
on {1 by setting

XX (W) = X&(w) + S (X (w) - Xy (W) )P =3 (A X (w)?, (3)
1 0
for all n in Z and each weQ). ( Recall that X, := 0. ) The increasing process

[X.X] is called the quadratic variation of X. Some writers ingeniously call it
square brackets X.

If Y is any other process parameterized by Z, we define the cross quadratic
variation, [X,Y], by polarization

[(X.Y] = = ([X+Y,X+Y]-[XX]-[Y.Y]) (1)

l\DIv—

By elementary manipulations. this definition is equivalent to setting
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Now. we assume that E(X) < o for each n in Z: that is, Ne Lo(P). Let G =
{G, neZ,) be the underlying filtration for the processes in this section and define
G_; = Gy. Then set

n
<XX>, = Y E{AXy)® | Gy} (6)
0

for each n > 0. For now, it is appropriate to call <X,X> the variance pro-
cess. Clearly, both <X,X> and [X,X] are increasing processes. It is important
to note, however, that [X,X] always exists, but <X,X>, as it has been defined,
exists only when X has finite second moments. Finally, note that <X X> is a
G-previsible process, whereas {X,X] is only G-adapted, ;.1 X m Gy -adan-

The covariance process, <X,Y> is defined by polarization, as in the case of
the quadratic variation, and leads to a formula analogous to equation (5).

1.5.1. With the notational agreements made at the beginning of the section,
notice that we can write any process in the form

n n
0 0

where the sequence d:=AX| is called the difference process associated with X.

1.5.2. Example: Assume, for this paragraph, that the d, a:e independent of

Gy_p, with dg independent of Gy, and have zero mean value and finite variance.
n

of. Then E{d? | G, } = Ed} = o7 so that <X,X>,=V¢? That is,
0

<X,X> is the variance of the process X. Thus, if X, is a sum of zero mean ran-

dom variables which are independent of the “‘past’ and have finite variance. then
<X,X>, reduces to an increasing, deterministic process which is equal to the
variance of X . For example, if X is the random walk of the previous example,
then the (dy) are independent, symmetric Bernoulli random variables,

Further, if Y is another process whose difference process has the same properties
as those of X in this example, then it is easy to see that <X.Y> is just the
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covariance of X and Y, at time n.

Of course, <X,X> is in general not a deterministic process, but it is always an
increasing stochastic process. As such, it is perhaps more honestly referred to as
a ‘‘stochastic measure’ in that its properties derive more from the fact that, on
each path, its increments define a positive measure of the algebra of all subsets of
Z.

1.6. Martingales:

1.6.1. Definition: Let (2,H,(G,),P) be a filtered probability space. A G-
martingale is a sequence (M, neZ) of random variables on (2 with the following
properties:

(a) M = (M_(w)) is adapted to G

(b) E{|M,]} < oo, for all neZ

(c) EIM,|G,.;} =M, asP,
for all n in Z.
By definition of conditional expectation, condition (c) is equivalent to requiring
that for all AeG,_;

(') M, dP = [M,,dP.
A A

If the equality in (c) or (¢’) is replaced by <, or >, then M is called a G-
supermartingale, or a G-submartingale, respectively. When the underlying
filtration, G, remains fixed in a particular discussion we will often drop the
qualifier G and just write ‘‘martingale’ or ‘‘supermartingale’” or ‘‘submartingale’.

[t follows from the definition that a martingale satisfies
Mk == E(\jn l Gk)'

for every pair, (k,n), of nonnegative integers with k<n, not just neighboring

integers. Similar statements hold for supermartingales and submartingales. To
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see this in the case of supermartingales just use the fact that filtrations are
increasing and conditional expectations are smoothing operators and proceed as
follows: M >E(M_ 4+, | G,). so that if k<n

EM, |G 2 E(EMpy | Ga) | Gy = EMgyq | Gy

Thus, (E(M, | Gy),n>k) is a decreasing sequence. Hence, supermartingales
decrease in conditional mean and so

My = EM|Gy) 2 EM,|Gy).

Similarly, submartingales increase in conditional mean and martingales are con-
stant in conditional mean with the same obviously being true in the case of the
unconditional means.

1.6.2. Remark: There are some immediate results about martingales that are
simple to verify and are used constantly. As usual, a single underlying filtration
is assumed in each statement.

o If M and N are martingales, then M + N is a martingale.

o If ¢ is a real valued convex function defined on R, M is a
martingale and ¢(M,) has finite expectation, then (¢(M,])) is
a submartingale.

o If M is a martingale which is square integrable relative to
P, then M? - [M,M] is a martingale. Also, M®- <MM> is a
martingale.

All but the second statement follows by straightforward computation using the
definition of the quantities involved.

The second statement requires Jensen's inequality. This is based on a result
about real valued convex functions which states that there exist affine maps.
0, = a, X + by, such that ¢ = sup ¢,. Using the monotonicity and linearty
of the conditional expectation operators, we obtain

E(o(X) | G)>E(6,(N) | G)=0,(E(X ] G)).
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Jensen's inequality follows: E{ o(X) | G) > ¢(E( X | G }). By replacing
X and G by M, and Gy_,;, and using the fact that M is a G-martingale, we obtain
the result. Our applications include the important case ¢ (x) = x°.

We have encountered some basic martingales earlier. Let X = (X ) be written as
in equation (7), and give the sequences of differences (d,) the assumptions in the

. paragraph following (7). Then X is a martingale, since
E{X, | Gt} = E{dy | G, } +E{ Xy, | Gy } (8)
and
E{d, | G,.,;} = 0, E{ .Xn*l | Gpot } = X, g, as.P. (9)

The first of these equations is due to the fact that we took the difference sequence
to be independent of the past and have zero expectation (i.e., the difference
sequence is centered at conditional expectations). The second is a result of the
fact that X is adapted to G. Because then, X _, is G,_,-measurable, and it is a
property of conditional expectations that E{{f|K} = fE{1|K} = f, a.s.P, whenever
[ is K-measurable. Putting equations (8) and {9) together verifies the claim that
X is a martingale.

Finally. it should be clear that we didn't need the finite variance assumption on
the difference sequence; this was only assumed in the original example because we
wanted to give an example about the variance process. In fact from equation (&)
it follows that if the d have finite expectations and are centered at expectations
conditioned on Gy _;, then X'is an F-martingale.

1.7. Doob’s Theorems: Another example of a martingale does assume that the
X, has finite variance, but that is all. Then

[X.X]- <X.X> (10)

1s a martingale relative to the filtration G. This follows directly from the explicit
form for the quadratic variation and the variance process for exactly the reasons
that our first example was a martingale. Although this is true in the continuous
case also, it will follow from the Doob-Mever decomposition and will constitute
the definition of the process <X, X>.

11
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It will be bevond the scope of this note to even outline the proof of the continu-
ous time Doob-Meyer decomposition. Therefore, we will give a proof of the
decomposition theorem in the discrete case. This has the added advantage that it
is simple to prove and its proof, along with the statement of the result, will allow
us to introduce a number of concepts which are quite difficult in the continuous
time analogue.

1.7.1. Lemma: (Uniqueness of the Doob-Meyer Decomposition)

If a process X = (X, neZ) can be written in the form X = M + A, where M =
M, ) is @ G-martingale and A = (A, ) is a G-previsible process, with Ay = 0, then
the representation i3 unique (up to sndistinguishability).

Proof: Suppose that two representations exist : X = M + A = m + a, where m
and a have the same properties as M and A. Then M- m = A - a demands that
M - m is a previsible martingale. This implies that M, - m = E{ M, -m_ | G, ,
} =M, ;-m, ;. Hence, M, - m, = M- m, Finally, since the last quantity is
equal to Ag - a9 = 0, M, = m_, a.s.P; hence, M - m is evanescent. This of course
implies the same for A - a.

Notice that we have also proved the interesting and useful fact that previsible
martingales are constant a.s.P. A similar statement is true in continuous
time {Chapter 4), but requires an enormous amount of machinery to prove.

1.7.2. Theorem: (Doob Decomposition)

Let X = (X,) be an L,(P), G-adapted stochastic process. Then there erist
processes M and A, where M 1s a martingale and A s previsible with A, = 0.
such that X = M + A. This representation 1s unique (modulo indistinguishabsl-

ity).

Becruse of the previous Lemma the proof of this statement just consists in
observing that we can write

Xo - Xot = Xo~E(Xp | Go )+ BIX, - Xoy | Gy ) (1)

It follows that X = M + A, where

My = Xo+ 5 (X E(X, | Gp)) (12)
k=1
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and

;\n = S E( Xk _Xk—l | (;k—l ), AO == 0 (13)
k=1

Clearly, M is a martingale and A is previsible. Of course, all these equations hold
with probability one only.

The process, A, of Doob’s decomposition is called the ‘“‘compensator’ of the pro-
cess, X, according to the following. Let X be a P-integrable process. Then the
process, X . defined by setting AX, = E(AX, |G, ) for n>1. X, = 0. is
called the compensator of the process, X. If in addition to P-integrability, X is
G-adapted. then X is obviously characterized by the following three properties:

(a) X - X is a G-martingale:

(b) X is a G-previsible process;
(¢) Xy = O.
Compensators will be examined in some detail in Chapter 1.

The following corollary is immediate and is of the form stated in the sequel,
where the index set is a continuum:

1.7.3. Corollary: (Doob-Meyer Decomposition Theorem)

If X is a GG-submartingale, then there exist processes M and A, where M is a (-
martingale and A is an increasing, G-previsible process with Ay = 0. such that
X = M + A, uniquely (modulo indistinguishability).

The oniy part that now requires proof is the statement that A is an increasing
process. Since X is a submartingale, this follows immediately from the definition
of A in equation (13) written in the form A| = A | + E(X|G,) - X,_,; 2 A,
as.P. (When Ag(w) = 0 and A (w) > A, |(w) for P almost all w in  and
n>1. the process A is said to be an increasing process.)

1.7.t. Remark: Immediately following the definition of martingales we pointed
out that when M is an L, martingale (so that by Jensen's inequality. M? is a sub-
martingale), both M?® - [MM] and M? - <MM> are martingales. Since
<M, M> is previsible, it follows from the uniqueness of the Doob-Mever Decom-
position that M? = m + <MM> is the decomposition specified by the
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Corollary, the Doob-Meyer decomposition of M2 Thus, <M. M> isa previsible
process which “compensates™ for M? not being a martingale. even though M is
one. Indeed, the process <M M> is the compensator of M>. This is becanse

E(QM?) | G, .y) E( (AM )| G, ) = <MM>.

I

1.7.5. Another way of visualizing the DMD Theorem is to recall that on the
average, submartingales rise. That is, n — EX is an increasing function on 7.
The DND Theorem says that A accounts for this proclivity to rise by previsibly
compensating X to produce a martingale. X - A, which of course has constant
expectation.

1.7.6. Remark: Processes of the form X = M + A, where M is a martingale and
A 1s an increasing process, are special cases of a class of processes called semi-
martingales in the sequel. When the decomposition is unique (to within dis-
tinguishability), then X is called a special semi-martingale. Hence, the Doob-
Meyer Theorem states that submartingales are a particular form of special semi-
martingale. This is a very convenient interpretation from the standpoint of
applications since a semi-martingale is just a mathematical model for a dynami-

cal system which consists of a “signal” or “‘trend” term, A, and a ‘‘noise’” term,
M.

It is easily seen that the Doob-Meyer Theorem also holds when X is a supermar-
tingale. We need only write X = M - A in order to maintain the property that A
Is an increasing processes. Again, on the average supermartingales fall and A
previsibly compensates to produce X + A, which has constant averages.

1.7.7. Remark: Since engineers have been using the ‘‘signal plus noise” model for
decades, it is probably worthwhile to take a moment to understand why they
have been so successful (and to acknowledge the generality of their achievement).
The DMD Theorem states that any discrete time process with finite mean that is
observable relative to some filtration (flow of information, Wong [1973]) is a
semi-martingale. In fact, if X = (X neZ) is any finite mean process and (F,) is
any information flow, then the sequence (Y, ), where Y, = E(X,|F,). (i.e.. what
is observable about X relative to available information), can be shown to be a
semi-martingale. It took mathematicians a while to understand all this and then
to do what their discipline demands. namely, explain the reason why “‘signal plus
noise’” models were important, from a viewpoint other than *‘the model seems to
work”™. This note is in some sense shows the lengths to which mathematicians
have gone in the last 30 or so vears to explain the full significance of semi-
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martingales (in continuous time), including their construction of a caleulus to
study these processes in their most general form and at the same time to provide
sclentists with the correct tools to model stochastic dynamical systems. Only
time will tell whether or not the resulting mathematical theory is technically too
ditticult for applications.

1.7.8. We will now return to the initial reason for this chapter: to introduce and
study transforms of martingales, called martingale transforms. in an effort to
set an intuitive foundation for the development of stochastic integrals.

1.7.9. Theorem:

Let X be a martingal- (supermartingale, submartingale). If V' ts a nonnegative,
previstble process and the transform of X by V is P-integrable, then V. X 1s a mar-
tingale (supermartingale, submartingale).

The proof of this very important result is an immediate consequence of the
second representation of a transform in equation (2):

E{ (V) - (VN)oy | Goy b = E{ V(X - Xy ) | Gy )
= .VnE( Xn - Xn—l I Gn—l)

The right side of this equation = 0, < 0 or > 0, depending on whether X is a
martingale, a supermartingale or a submartingale, respectively. The result fol-
lows since (V.X),_; is G,_j-measurable.

1.7.10. Corollary:
If T is a (G-stopping time, and X 13 a martingale (supermartingale, submartingale),
then the stopped process, X1, is a martingale (supermartingale, submartingale).

It is easy to see that XT = V.X, when V, = ln<t To show that Vis G-

previsible just write

n-1
[0 <T] = (Y [T=k} )G,
k=1

Thus. the indicator function of [n<T] is G,_,-measurable, so that V is G-
previsible. It only remains to show that XT is P-integrable. Since T(w)~n<n.
this a consequence of
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n
| Xat(w) | <351 Xfw) |
s 0

1.7.11. Remark: Subsets B of Z,XQ are called random sets. In the sequel
such sets will be called previsible random sets if their indicator processes.

K. (n,w)—1lg(n,w), are previsible processes. Anticipating a concept that will be
\ introduced in Chapter 2, we point out that if T is a stopping time, then random
:"::Z sets of the form { (n.w) : n < T(wj), (n,w)e Z, X 0} are previsible random sets.
:-j: This random set is a particular example of a stochastic interval denoted
::_:: ((0.T]]. In this instance, we would write V = ljjo,T) as a process defined on
Z, X (). Notice that in the proof of the last theorem we wrote V| = <)
oo thereby defining the process V by means of a sequence of random variables on ().
T These two ways of defining the same process leads to nothing new in discrete
': time, but once we enter the continuous time domain we will find that studying
,':': processes as families of random variables will not be adequate. It will turn out
= that stochastic intervals will provide an intuitive way of studying the measurabil-
.j::f ity of such processes as a functions of two variables.
':{-_, 1.7.12. Remark: It is convenient at this point to add the following Corollary.
w This form of Doob’s Optional Sampling (Stopping) Theorem (1953) is not stated
) in its most general form, but it is sufficient for our purposes. The boundedness
':'.’_ condition imposed on the stopping times can be relaxed; such a form of Doob's
-,':'_: theorem (in the continuous parameter case) will be stated in Chapter 2. Page 67
:::_'. in Neveu [1975] contains the discrete parameter version.
- 1.7.13. Theorem (Doob’s Optional Sampling Thecrem):
‘ If X 1s a martingale, and S, T are bounded stopping times with S < T, then Xg
“": and Xt are P-integrable and
- E{Xy | Gs} = Xg. (asP). (14)
e <.
' ( T is a bounded stopping time if there exists a constant, K, such that T(w) <
K for all win (1. )
:,~: L7.14. For the proof, just set V, = ls<n<T) then V, = ln<t) - n<s)r
::: Using the obvious linearity of transforms, and realizing as in the proof of the pre-
oy vious C'orollary that V.X is P-integrable, this Corollary states that Y := V.X is a
_‘ mariingale, which satisfies Y, = XT - X3 and, in this case, satisfies Yo = 0.
yol Because of the boundedness condition, we can choose a positive integer m such
.::i: that 1 > max(5.T) on 2. Then Y = X¢  Xg. Therefore, 0 = EYy = EY_, =
7
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E(Xt - Xg). It is a simple exercise to show that E(Xp) = E(Xg) is equivalent to
equation (14). Let A be any element in Gg. Define the stopping times S" and T'
by setting 8" =S1, + m 1y, and T' = Tly + m I,.. Then S'<T’, and so we
again have 0 = E(Xp -Xg ), which by definition of S' and T" can be written in
the following form: 0 = E( 14( Xt - X5 )). Referring to the definition of condi-
tional expectation, this last equation is exactly the statement in equation (14).

1.7.15. Remark: Recall the random walk example given at the beginning of this
Chapter. The symmetric random walk, X, is a martingale and so
EXy = 0 = EX,. If we define the stopping times T := min(n:X;, = 1) and
S = 0, then ST, but since P(Ng = 1) = 1, we have that

EXr = 1 # EXg = 0.

The problem is that T is not a bounded stopping time. Of course,
P(T<oc) = 1 since the random walk is recurrent.

1.7.16. Recall the decomposition given in the first remark following the Doob
Meyer Decomposition and apply the Optional Sampling Theorem to the mar-
tingale M. Then

E(Xr-Xs | Gs) = E(Ap- Ag | Gg),

where S and T are bounded stopping times with S<T. Aldous [1931] then gives
the following partial converse to the Doob-Meyer Decomposition Theorem:

1.7.17. Corollary:
Let X be a submartingale with X = 0 and A a previsible process. If
‘E Xt = E Aqg, for all bounded stopping times T, then A is the compensator of \.

For the proof, just set M = X - A. Then EMy = 0, so that EMy = 0, for cach
stopping time T. As in the proof of the Optional Sampling Theorem,
E(Mt - Mg) = E(1g (Mg - Mg)). for all F in Gg. Hence. M is a martingale
and. therefore, A is the compensator of X.

1.7.18. Remark: If X is a supermartingale, then the theorem continues to hold
with the equality in equation (14) replaced by <" Similarly, if X is a submar-
tingale, then the equality is replaced by “2>"". To appreciate the importance of
this result, it should be noted that Abraham Wald's theory of sequential testing
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is based on this theorem.

1.7.19. There is an extremely important collection of results on the convergence
of martingale (super and submartingale) sequences together with the fundamental
inequalities of Doob ( the Maximal Inequality) and others, that could be men-
tioned at this point. The interested reader should consult Neveu, 1975. Some of
these results will be mentioned in Chapter 2 and used in the sequel.

1.7.20. We now return to the martingale transform proper, and the quadratic
variation and variance processes.

1.8. Calculus of Martingale Transforms: One of the simplest and most use-
ful relationships involving transforms is integration by parts. Let X = (X))
and V = (V) be processes on (Q,F_). Define the process X_ from X by setting
(X_)g := Xy_1- Then the integration by parts formula is

(VX) (W) + (X_V),(w) = V,(w) X, (w). (15)

The proof of (15) follows immediately from the definition of a transform by by
writing down the formulae for the left side of equation (15) and verifying that the
result is a telescoping sum that reduces to the product on the right side of (15).

Observing that transforms are bilinear and writing V, = V| + AV, we see
that V.X = (V_).X + AV.X. Therefore, we can write the integration by parts
formula in the more symmetric form

a Vo = (Vo X ), +(X_. V), + ¥ AV, AX,.
0

We have already encountered the last term in this equation, namely the cross
covariation process corresponding to V and X. Thus. for future reference we
state the following

1.8.1. Theorem (Integration by Parts):

X, V, = (V_.N), +(N_. V), + VX,

n

This form of integration by parts would coincide exactly with the familiar
Riemann-Stieltjes or Lebesgue-Stieltjes form, if we had defined [X.X] as a

(.( -(-4"(- TR ."..’-’_ —(.‘-1"-"-.."«"‘.'("‘ “m W
PR % S,

L - -
AW



summation from 1 to n instead of 0 to n. Then we would have the usual
X, V, - Xy Vjon the left side of the last equation. We will return to this topic
in Section 3.2.

n

1.8.2. Examples:

n
(1) X, = ¥ dy, where the r.v.’s dy are arbitrary. Then, using integration by
0

parts,
X,? = 2( X_X) + [X,X],,

By substitution, into this equation we obtain the following well-known formula
from linear algebra:

n
(Ld)? =2 Y dd+) d7
0 0<j<k<n 0

a classical formula, but obtained here as the sum of the discrete stochastic
integral of X relative to itself and the quadratic variation of X! When we com-
plete Chapter 6 and have a stochastic integral for continuous parameter
processes, we will realize that this formula in X continues to hold in exactly the
same form. In particular, when X is the Brownian motion process, we will see
that [X,X](t)=t. So the formula will read

t
X4t) = 2 [ X(s) dX(s) + ¢
0

and Ito’s stochastic integral will not follow the “‘usual” rules of calculus. Kiyosi
Ito, the creator of the stochastic integral relative to the Brownian motion process
B, a martingale, designed this integral to have the property that the process

t
t—»fg dB = (g.B)(t) is a martingale, for a useful class of processes g. This had
0

the consequence that a number of the rules of ordinary calculus do not carry over
to the Ito integral. The generalization of Ito's stochastic integral to one with a
martingale integrator (Chapter 6) retains these characteristics.

A Russian mathematician, R. Stratonovich, modified Ito’s definition slightly and
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produced a stochastic integral which followed the usual rules but necessarily lost
the martingale property. This makes the above discrete application all the more
interesting: the “Ito’ integral may have its most natural setting in the discrete

case.

It is an amusing exercise to define a discrete analogue to the Stratonovich sto-
chastic integral: Let X and V be arbitrary discrete parameter processes and set

n +V
(ViX), = 3 ( ——“—‘-) AX,.
0

Then one can immediately find the following relationship between the Ito and
Stratonovich transforms:

(V:X), = (V.X), - —[V,‘ n

The same relationship continues to hold between the Stratonovich and Ito sto-
chastic integrals in the case of continuous parameter processes.

In Chapter 6, after we have formally introduced the Brownian motion process
and stochastic differential equations, we will see that another correction factor
arises when one attempts to approximate an Ito stochastic differential equation
by replacing the Brownian motion term with a member of a sequence of smooth
processes. If this sequence converges to Brownian motion, then (under certain
conditions) the corresponding sequence of differential equations converges in the
mean to a process which satisfies a stochastic differential equation which differs
from the original one by a term called the Wong-Zakai factor (see E. Wong and
M. Zakai [1965]).

We conclude this example by illustrating that the (discrete) Stratonovich integral
obeys the classical rules of calculus in a simple special case. Set V=X in the last
equation and substitute X, = AX, + X, _; into the integrand of our transform
on the right of this equation to obtain

2X:X), = 2AX_X), + XX], = X2

The equality on the right is due to the integration by parts formula derived ear-
lier. So, as in ordinary calculus, the discrete ‘‘Stratonovich integral’ of X with




respect to X 1s just X-squared over 2.

(2) The following process, N, is called a discrete point process and will be the

n

subject of the end of this Chapter. Let N := N"dy . where the di are random
0

variables with values in {0.1}, Bernoulli r.v.’s. Let (F,) be a filtration and )\, =

E( dy | Fy.; ). A moment’s reflection will lead one to conclude that

NN, = N,
So. using the last theorem, we have the interesting, nonclassical formula

N? = 2(N.N)+ N .

Notice that this also gives us an example of a simple process whose variance pro-
cess is not deterministic:

<N,N>n = S)\k
0

1.9. Properties of Martingale Transforms: We now collect some additional !
transform properties which will play an important role in the chapter on stochas- ]
tic integration. :

1.9.1. Theorem:
Let T be a stopping time and H, V, Y and X stochastic processes defined on the
same filtered probability space. Then

AVX) =V AX; (a)
[VXHY] = VH[XY]; (b)
H(V.X) = (HV).X; (c)
V, X previsible — V.X previsible; (d)
- (vX)T = (vXT) = (vT.XT); (e)
VYT = [VIXT) = [VXT); (f) :
(X)T = (XT). (g) '

1.9.2. Remarks: These statements are important for later developments of the
stochastic integral and its attendant calculus. In the discrete case the ease with

..................
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e
3
=
% which they can be proved belies their importance. But before demonstrating this
W fact we will say a few words about their meaning. If we interpret the first state-
. ment in continuous time, anticipating Chapter 6. with AY, = Y, Y, . where
1'@' Y, = lim Y, and
i
M L
. (VX), = [V, dX,
. $ 0
.*_:
e, then A(V.X), = V,AX, means that “jump’’ points of the integral are due
s entirely to the jump points of the integrator, not the integrand. The integrand
0 only affects the magnitude of the jump. The same statements apply to the
.-: discrete parameter processes being considered in this chapter if we say that a
1, transform has a “‘jump’ at time n iff A(V.X), 5 0. The interesting thing to
"N note, here and as we pass through the various types of processes on our way to
the general stochastic integral, is that these and many other properties of
~ transforms continue to hold at each step. This is very important, because after
o the Lebesgue-Stieltjes stochastic integral the definitions of ““integral”™ may at first
" bear little resemblance to the traditional notions of such things.
- As to the proofs of these statements in the context of this chapter, the first
' amounts to noting that A(V.X), is just the n*! term of the sum, V.X .
:f: Part (b) of the theorem follows immediately from (a). For simplicity take VV=H
- and X=Y. Since the general term of [V.X,V.X] is ( A(V.X),)* and this equals
it (V,AX,)> = V2 ( AX,)®>. Then (b) follows by observing that this is the general
K - term of V. [XX].
'.,. Parts (¢) and (d) are immediate consequences of the definition of a transform. In
o particular, Part (d) has the corollary that if T is a stopping time and X is previsi-
-é ble, then XT is previsible.
:-:,
j‘_. Now Part (¢) can be used to prove Part (e). For instance, to verify this claim.

take H, = >, Using Part {c). we obtain
(V.X)T = H(V.N) = (HV).X = (VH).X = V.(HX) = V.XT

The rest of (e) is proved in a similar manner. Part (e) provides a mechanism by
which the stochastic integrals introduced in Chapter 6 are extended to larger
classes of integrators by localization and “pasting’’. It says that the transform of
X by V stopped at T is the transform of X, stopped at T. by V.
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The proof of (f) follows from similar observations. Again set H = Lo
Then

ANTNXT] = AHVHX] = (AHV)(AHX) = HAV AX = AVNT
since by its definition H®> = H.

Finally, the proof of Part (g) uses the characterization of compensators given in
Section 1.7.2, Part (d) and the fact that a stopped martingale is also a mar-
tingale.

1.10. Discrete Parameter Point Processes: We now introduce a discrete
parameter stochastic point process theory which parallels the continuous parame-
ter point process work done, primarily by Brémaud, from 1972 to the present.
The latter material considers mainly the case where the martingale compensator
of the continuous parameter point process is absolutely continuous relative to
Lebesgue measure: most applied works involving martingale techniques treat this
case. The necessary assumptions for the discrete parameter analogues of these
results and the exact form of their conclusions can sometimes be deduced directly
from this continuous parameter case and sometimes they cannot. In either case.
discovering the correct form and supplying a direct proof in the discrete parame-
ter case is usually quite simple (mathematically) and informative. As far as I can
determine, however, such an approach does not appear explicitly in the literature.
The basic mathematical foundation for the discrete case resides in a more general
part of the theory (random measures) than point processes with absolutely con-
tinuous compensators and presents an unreasonable technical and intuitive hurdle
for most applied probabilists, mathematicians and statisticians.

The only paper I am aware of that suggests the importance of working directly
with discrete parameter point processes is by T. C. Brown [1983]. Brown's objec-
tive 1s to approximate continuous parameter point processes by the discrete case.
One of his results says, roughly, that a large class of continuous parameter point
processes can be approximated arbitrarily closely over intervals of random length
by a discrete point process. In a later BRL report, it is our intent to use some of

- Brown’s results together with the discrete point process calculus suggested here
and the limit theory developed in Aldous [1981] to approximate stochastic net-
work models.

1.10.1. Deflnition: An F-adapted process, X = (X,.(F,)), where X : 2—{1.0}
and X¢=0. is called a F-Discrete Point Process (DPP). \, = E(X,|F, )
is called the F-intensity of the DPP.
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1.10.2. Remarks: (1) Define Ty = 0, and for k > 1, keZ, set
T, = inf{neZ, : X, =1, n> T, }.

if { -} 7 0, and +2¢ otherwise.
n . v
Define N, := Y X, Thea Ny = ¥ lip <, It is immediate that (N;) and
k=0 k>1
(T,) are equivalent representations of a DPP, (X,). Note that (T}) is a sequence )
of F-stopping times, since [T, <n] = [N >k]eF for all k> 1.

n

(2) Set A, = S\, Then M = N - A is an F-martingale. The F-predictable
0

process, A, is the martingale compensator of N. The concept of martingale

compensator has been introduced earlier in Section 1.7.2.

The proofs of the following statements and additional results will appear in later
BRL Reports, Andersen(lII,1986].

Discrete parameter PP’s are of interest here for at least three reasons: first. they
present an insight into the continuous parameter version of DPP, second. they
are applicable to time slotted, single channel communication networks (for exam-
ple, packet radio networks) and third, as noted in the reference to T.C. Brown
above, they can be used to approximate continuous parameter point processes.

1.10.3. Theorem: (An Exponential Martingale of a Point Process)
Let N = (N,, F,) be an F adapted DPP with F-intensity X, and define the pro-
cess. Y = (Y ). by setting

alN,
Y, = = - (16)
[T(1+N(e-1))

0

for all real a andneZ, . Then Y 13 an F-martingale.

1.10.4. Remark: Assume A\ is Fg-measurable for all k. Then

Bl e N Ned P ) = [N 1)), (17)

m+1

1" <.
“xum ¢;51¢JL1J



We will call a process satisfying (17) a Doubly Stochastic Bernoulli Process.
Notice that in this case \, = E(X, | Fo ), for all k. E.g..if Fy = o(A), where A is
some r.v., then N\, = g,(A), where g, is an Fy-measureable function for each k. As
in the Poisson case (Brémaud [1981]), the intensity will be said to be driven by
A

1.10.5. Remark: With Y as in the statement of the Theorem, Y satisfies

AY, = Y, ,AB, (18)
here B, = N (b, - 1) is an F-martingale and b explaty)
where = - is an F-martingale an = )
" ry k € k 1 + M (exp(a) - 1)
Equation (18) is an analogue of the continuous parameter differential equation dY

= YdB.

1.10.6. Remark: The proof of the Theorem is almost trivial once one writes
Y, = Y, by and notices that E(b, | F,_|) = L

n

1.10.7. Remark: Using the fact that X = Xe® + 1 - X when X takes only the
values 0 and 1, it is easy to check that

b -1 = — =D v -3, = g Am,
1+ Mf(e*-1)
n
where m is the compensated martingale, m = N - A, with A, = Y\ . It then

1
follows immediately from equation (18) that Y satisfies the following stochastic

“integral’’ equation :

Y, = 1 +((gY._)m),

e® — 1 : o .
where g, = ( ) . This observation is a special case of a result due
1+ A(e* - 1)
to Kabanov, Liptser. and Shiryayev [1983] for continuous parameter processes. In
this sense it is also a special case of the results of C. Doleans-Dade [1970] and

occurs in a similar form in P. Bremaud [19%1] for continuous parameter point

processes with absolutely continuous { relative to Lebesgue measure ) compensa-

tors.




1.11. Introduction to Non-linear Filtering of Discrete Point Processes:
Earlier we showed (Doob’s Decomposition) that an integrable (P), F-adapted
sequence possessed a unique representation as the sum of an F-martingale and a
predictable process. If (F) is an observable history, and X is F-adapted, the time
evolution of X is observable. Therefore, Doob’s result says that observable
processes with finite mean values all behave as semi-martingales. As noted
earlier this is a very general and far reaching theoretical result which becomes an
important result for applications when it is noticed that a semi-martingale that is
not adapted to an observable history can be projected onto an history of observa-
tion in such a way that its image is a semi-martingale, with signal and martingale
parts adapted to the history of observation. This is the content of the Projection
Theorem below.

I[f the observed history is generated by a discrete point process, then the mar-
tingale portion of this projected semi-martingale has an integral (transform)
representatioa in terms of the observed point process. This result combined with
the Projection Theorem leads directly to nonlinear filtering: the estimation of
functionals of an unobservable process in terms of their projections onto an
observable point process history.

1.12. Integral Representation, Projection and Innovation:

By a discrete point process martingale we mean a martingale which is
adapted to the internal history of a discrete point process. An integral represen-
tation of such a martingale plays a crucial role in nonlinear filtering since it
guarantees the existence of the “innovations gain'', whose computation resuits in
the construction of “filters”.

The following theorem is proved in Brémaud [1981]: it is the only reference he
makes to discrete PP’'s. However, there is a huge literature regarding the
representation of continuous parameter point processes. We mention only Boel,
Varaiya and Wong [1975], Davis [1976] and Chou, Meyer [1975).

1.12 1. Theorem: Integral Representation of DPP Martingales:

Let N = (N, F,) be a DPP uith ¥, = o( X\. k < n ) and F-intensity \. Then,
tf m = (m,.F ) ts an F-martingale, there erists an F-predictable process H. with
E((|H].<MM>),) < x, for all neZ,. such that m = HM | where M{=N A,

n\
.‘\n = ka
0

Beeause nonlinear filtering has its origins in engineering, we will follow the cus-
tomary terminology of that field and refer to the value of a process at any time n

26
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as the “'state” of the dynamical system represented by that process at time n.
We have the following

1.12.2. Theorem: (Projection of State):
Let Z be a semi-martingale adapted to a filtration F:

n
Zn = 20+ka+nln,
0
where ElZy| < oo and
(1)m = (m,) is a zero mean, F-martingale
(2)f = (f,) ts an F-adapted process with finite mean
(31) O = (0,), a filtration with O contained in

F, foraln and Oy = {0. 1}

Then there erists a zero mean, O-martingale, m such that

2, = E(Z, | 0,) = EZy+ V[ + m,,
0

with f, = E(f | O )

1.12.3. Remark: In the continuous parameter case f must be taken to ‘“‘progres-
sively measurable” (Brémaud [1981}).

1.12.4. We now consider the important concept of innovations. Innovations
were introduced by Kailath for Brownian motion processes and by
Brémaud[1976, 1981] for the continuous parameter point processes. In our
discrete parameter case, the following simple description of “innovations™ Is
rigorous. This type of argument, not the concept itself, is only formal in continu-

ous time.

Using the notation Theorem 1.12.2, suppose

(1) Let O, = a(Xy.X,. .. .. X,), then O is contained in




F,.,forall n > 1

n

(2) Set A\, = E{\, | O, _,}, where X, is the F intensity
A

N n N N
of X, and A, = Y Then M = N-A is a zero
0

mean O-martingale.

(3) AM, = AN, - AA,
= AN, - E(X | Oy )
= ANy - E(AN | O¢ )
= Observed - Expected

Innovative Information.

Il

Therefore, the O-martingale, M, is called the innovation
process associated with the DPP N.

(4) Using the DPP representation, the state projection of
Theorem 1.12.2 takes the form

. n o, R
2, = EZy+ Yh + (KM), .
0

The O-previsible process, K, is called the innovations gain.

After the following statement of the filtering problem we will show how to exph-

citly determine K.

1.13. The Non-Linear Filtering Problem for Discrete Point Processes:

We can now summarize the state equations and their projections by the following
two systems of stochastic equations:




n
Zo+ VM I+ m, : misan F-martingale.
k=0

2. =

n
N, = A, + M, o A) = VX Mis an F-martingale.
0

i n_. .
lZn = EZy+ Vi +m, ; m = K.Misan O-martingale.

0
an = ‘:\n + Mn : Nln is an O-martingale . *

The Problem: On the basis of observations on N, construct a recursive estima-

Z, = E(z, | 0,).

I
|
|
|
tor for 1
|
!
n w

|

|

i

All that remains is to determine K from the fact that the filtering error is orthog-
onal to the flow of information described by (O,) :

E{(Z, - Z)H.M),} = 0, (19)

for all O-predictable processes, H.

1.13.1. An Application of Discrete Martingale Calculus: We will illustrate
the use of the martingale calculus given in the beginning of this chapter tn deter-
mine the innovations gain.

Seto = H.M. F, = N, .andF, = Vf, . Assume that (Z,) is bounded,
0 0

n

Then, using integration by parts, i
2o, = (Z_.0),+(6_.2),+[2.9],

= ((HZ.).M), +{o_ (F~m), +[F+m, ¢,

Il

(HZ)) M), + ((H.Z) (A-A), + (6. F), + (¢ .m), +

+(f.6)+H. [m, M
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Y Making a similai caleulation for Z,¢,, obtain

NN

. Zooo = (2 .0+ 6.2+ 2.9,

N

n‘:’.: ) ) ) )

ey = ((HZ.). M), + (6_. (F + ), + [F + i, ¢],

T
L

= ((HZ.) . M), + (¢_ . F), + (¢_. ), +

f::l
O . N . .
::.r +(f.¢) + KH.[M, M|
B
99 Now, taking expectations of both of these equations, using the fact that the

- expectations of the martingale transforms vanish, and using equation (19). we
i btai

f-',?) obtain . .
o7 0 = E{((HZ) . (A~ A)), + (H(X - X).(m + F),}
gt ..

- - E{((KH) . <MM>)_}.

'_‘:.4::: It follows that K,(L-X,) = ¥, , - VYo, + ¥, ¥y, where the processes
T ¥, (j=1.2,3,4)are O-predictable and satisfy
AN

n n B

oy ESCUZU - I>‘u = ESCuwlqu
.‘Cif:
':::: n . - n .
"<:-": ESC‘uZu-l_)‘u = EECU\I’QI)‘V!

-

NN N n .
::,:‘:. EL(‘V‘\VAZV - ESCV‘P3V>\V’
7
‘u“- . . . A

- ESCI)‘UAZV = ESCU‘I’M)‘w
:E:{: for all nonnegative, O-predictable processes, C, and AZ, = [, + Am,,.
N 1.13.2. These calculations follow most of the work in this area (Brémaud [1976.
o 1981]. Davis [1978], and others; also see Yor [1977] and Van Schuppen [1977]).
‘}‘.,._‘4 The formula for the gain given here, however, is slightly different from those of
N 1 the listed sources because in the analogous continuous parameter, absolutely con-
‘-’: tinuous compensator set-up AZ;, = Am_




Chapter 2. Continuous Parameter Stochastic Processes

2.1. Introduction: Stopping times {Optional times) are fundamental to the
modern theory of martingales. They bring the spirit of (plane) geometry. with its
attendant intuitions, to the study of these processes and they give the probabilist
a way to replace the continuum with the countable. The development that we
outline here is pure Claude Dellacherie {Capacites et processus stochastiques,
1972]. After J. Doob's original work, this is the next monumental work on stop-
ping times and associated delineations of measurability. The introduction of
graphs of stopping times and the notions of “‘previsible’’, “‘totally inaccessible",
and ‘‘accessible’’ stopping times allow a classification of stochastic processes that
is both natural and necessary for the productive development of the modern
theory of semi-martingales, their applications and the general theory of stochastic
processes.

For instance, a ‘‘previsible” time is one which is anticipated by the previous
occurrence of a sequence of observable events. Accessible times are those whose
graphs consist of pieces of the graphs of previsible times. Totally inaccessible
times are therefore those times whose graphs are disjoint from the graphs of all
previsible times. It then follows that the graph of every stopping time is the
union of the graphs of accessible and totally inaccessible times.

Optional, accessible, and previsible times are used to construct ‘‘stochastic inter-
vals™, which in the manner of Borel are used to generate algebras of events with
properties similar to those of the generators. Measurability relative to these alge-
bras i1s then used to single out various classes of stochastic processes that form
the building blocks of a stochastic calculus for semi-martingales which at the
same time extends the classical Ito integral from Brownian motion to semi-
martingale integrators and is maximal (cannot be extended further) in an intui-
tive, Cauchy sense.

These algebras also lead to a projection theory which yields a generalization of
the conditional expectation operator for processes, and of the “infinitesimal gen-
erator’ for measures.

The material in the following chapters is based primarily on Dellacherie [1972].
Meyer (1973, Dellacherie and Meyer [1980]. Meyer [1976]. Doleans-Dade and
Meyer [1970]. Kunita and Watanabe [1967], Métivier [1982], Liptser and Shir-
vayev [1977.1978], Brémaud [1981], and most importantly, the Strashourg
Séminaires in Probability, published in the Springer-Verlag "'Lecture Notes in
Mathematies™ from 1967 to the present.
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Definitions that have been covered in the discrete parameter case and carry over
with little change will be treated formally here. An attempt will be made to give
some insight into others and compare some with the discrete case in the hopes of
understanding each a little better.

2.2. Filtrations: Let (Q,H,P) be a probability space. A family of sub-sigma
algebras, F := (F(t),t >0), of H is said to be a filtration on ((1,H), iff

(i) F(s) C F(t), when s<t.
If, in addition,

(i1) F(0) contains all P-null sets, and

(i) F(t+) (z= () Fit+h) ) = F(t), for all t>0,
h>0

then the filtration, F, is said to satisfy the usual conditions (Dellacherie, 1972).

In this case, and with H = o({J F(t)) := F(c0), the structure (2,H,F,P) is called
>0

a filtered probability space satisfying the usual conditions. Finally, we note

that if F satisfies (iil), F is said to be right continuous. The first and second

conditions guarantee that each F(s) is complete. {As a reminder, a subset B of

Q2 is a P-null set if there exists an event A in H such that B C A and P(A)=0.)

In addition to the o-algebra, F(t+), we define F(t-) := O’(U F(s)). In general,
s<t
theses algebras of events satisfy F(t-) C F{t) C F(t+), for all te[0,o0c]. F(t-)

can be thought of as representing the history of observation ‘“prior” to time t.

2.3. Stochastic Processes: A stochastic process is a mapping X:[0.oc)X )
—R such that, for each t > 0, the mapping w—X(t,w) is H-measurable. (H-
measurable means that the inverse image, X, '(B) = { w : X(t,w)¢B }, under \(t)
of real Borel set B, is contained in H.) More directly, in terms of familiar con-
cepts, a stochastic process is a family of random variables, r.v.'s, indexed by t >0.

2.3.1. The trajectories { paths ) of a stochastic process, X, are the mappings
t—X(t.w), indexed by w in 2. Regularity properties attributed to a process. X,
such as continuity or right continuity or left limits refer to the trajectories.
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and will be said to hold almost surely, relative to P (a.s.P), if the set of all
w ¢ () for which the property holds has P-measure equal to one. For example, X is
continuous (a.s.P), if P({wel: (teR,)—X(t,w) is continuous}) = 1; that is. if,
relative to P, almost all trajectories are continuous functions on R, . After a
while the qualifier, (a.s.P>.j, will be taken to be understood and will only be men-
tioned occasionally.

However, even with all this explanation, statements about such things can be a
little obscure; for example, a process which is a.s.P continuous at each t is not
necessarily a.s.P continuous! Such an example is given below after Lemma 1.

2.3.2. Two processes, X and Y, are said to be modifications of each other if
P{ weQ2: X(t,w) = Y(t,w) ) =1,
for each t>0. More strongly, if
P( weQ): X(t,w) = Y(t,w), for all t>0) =1,
the two processes are called indistinguishable.

Thus, two processes are indistinguishable if their paths coincide a.s.P. As in the
discrete case, indistinguishability establishes an equivalence relation on the set of
processes on the common probability space (2, H, P) indexed by R,. In this
sense we identify all indistinguishable processes. A process which is indistinguish-
able from the process that is identically zero is said to be evanescent. A subset
B of {0.00)X 2 is called a random set. Random sets are said to be evanescent if
their indicator functions are evanescent processes. Equivalently, a random set, B,
is evanescent if its projection into {0 is a P-null set. In the language of random
sets two processes X and Y are indistinguishable iff the random set
{X#ZY }:={(t,w):X(t.w)# Y(t,w). t >0 we}is evanescent.

Clearly, if X and Y are indistinguishable and X has continuous (a.s.P) paths, then
Y also has continuous paths. If X and Y are modifications, unlike the discrete
case, one cannot claim indistinguishability. However, we have the following (Del-
lacherie, 1972)

2.3.3. Lemma: If X i3 a modificalion of Y and these processes are right continu-
ous, then they are indistinguishable.
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2.3.4. Remark: Just use the modification property on the rationals, a countable
set. whose union is P-null and, by right continuity, contains (X(t)#Y(t)) for all
t>0.

This Lemma is the first hint that path regularity in the form of right continuous
paths will be an important assumption in this note.

2.3.5. Remark: We now give an example of two processes that are modifications
of one another, but are not indistinguishable, one of them not being right con-
tinuous. Let @ = R,, H be the real Borel sets of R,, and P the probability
measure induced on H by the standard exponential distribution. Let X be the
diagonal process, X(t,w) equal to 1 on the diagonal of R, X and equal to 0 else-
where. Set Y equal to 0 on R_X({l. Then X is a modification of Y. since
P(X(t) 32 Y(t)]) P({t}) 0 for each t in R,. To see that X is not right
continuous, just note that the set of X trajectories which are not right (or left)
continuous has P-measure 1: P({w:w=1t, forallt >0}) = P(R,) = 1.
Since this is the same as P{{w:X(t.w) ## 0 forallt > 0}) = 1 the two
processes X and Y are certainly not indistinguisable.

What if we replace X by Z, where Z is one on the diagonal of R, X {1 only when
the coordinates are rational numbers, and otherwise Z is zero? With the same P.
Z is again a modification of Y, but this time Z is a.s.P right continuous and so
indistinguishable from Y.

2.3.6. We should point out that even though we have assumed that our processes
are real valued, we could have been more abstract and taken the state space of
the processes to be some measurable space (E,B(E)), where B(E) is the Borel
sigma-algebra generated by the open sets in E. Much of what we will talk about
here still holds in this more general case with a few qualifiers. For example, in the
previous Lemma we would have had to assume that E is separable.

2.3.7. A stochastic process, X, is said to be adapted to the filtration F, or F(t)-
adapted, if the mapping, w—X(t,w), is F(t)-measurable for each t>0. Histon-
cally, adapted processes were said to be nonanticipating. A process X is always
adapted to F\{t) , the filtration generated by X, Fx(t) := o X(s). 0<s<t ).

Clearly, under the “usual conditions’’, modifications of adapted processes
are adapted.

In applications, when F(t) is interpreted as a history of the evolution of a collec-
tion of processes, an F-adapted process will be said to be observable relative to
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these processes.

2.3.8 It is important to realize that classical theories of martingales, Markov
processes and stopping times were only concerned with internal histories. The
modern theory on the other hand just assumes that there is a single filtration.
a reference family, relative to which all processes are adapted. Stopping times
are defined relative to this filtration and used to characterize several g-algebras of
random events. In the modern setting of a single filtration, applications generally
involve several partially ordered families of filtrations. For example, in the non-
linear filtering encountered in Chapter 1, we have the filtrations corresponding to
the state and observation processes with the *‘state filtration containing the
observation filtration.

2.3.9. There are several additional types of measurability that are necessary for
the calculus of martingales with a continuous parameter (time) set that cannot be
discerned in the discrete parameter case. For the moment, we only introduce
measurability relative to the product spaces B([0,00)) X F(o0) and B([0,t]) X F{(t):

A process is said to be measurable, if the mapping X:[0.0c)X? —R is
B([0.0¢)) X H-measurable (i.e., measurable as a function of two variables). In
most cases we will consider processes which are both measurable and adapted.
That is, a measurable mapping of ([0,00)X (2, B(|0,00)XH) into (R, B(R)) such
that for each fixed t, w—X(t,w) is F(t)-measurable.

Notice that when [0, oo is replaced by Z,, as in the discrete parameter case,
every process is measurable; in the first chapter adapted processes corresponded
to adapted and measurable processes.

2.3.10. By restricting the notion of measurability to the time interval [0,t], we
obtain measurability relative to the filtration, or progressive measurabil-
ity relative to (F(t),t>0) : X is said to be F-progressive if the mapping
(s.w)— X(s,w), restricted to [0,t] X, is (B[0,t] X F(t))-measurable, where B[0.t] is
the Borel o-algebra of [0,t]. Random sets are called progressive if their indicator
processes are progressive.

Clearly, if X is progressive then it is adapted and measurable. The example
given after the following Lemma shows that X can be adapted without being pro-
gressive. Dellacherie and Meyer[1975, [V T15] show

2.3.11. Lemma: If X ts adapled and right continuous (left continuous). then \ 1s
progressive.
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2.3.12. Remark: Let X, Y be the processes given in the example after Lemma
23.3. Take the same probability space as in that example and define the filtra-
tion. I = (I'(t)). by letting F(t) be the o-algebra generated by the family, { s} :
s<t L Then  the diagonal process, X, is F-adapted. since
[N(t) = 1] = {t}eF(t). but X is not F-progressive since {X = 1} equals the rec-

tangle [0.t] X[0.t] and this does not belong to B([0,t]) X F(t) because {0.t] does not
belong to F(t), which contains only countable sets. We have already noted that
X is not right continuous.

One of the consequences of the ‘‘usual conditions” is that every martingale has a
modification that is right continuous and has left limits ( at each point of a
path, a.s.P ). Processes which are right continuous and have left limits. are
sometimes called cadlag, or rell ; the French abbreviation, “‘cadlag’ stands for
“continu a' droite, limites a' gauche’”. Recently, some authors have begun refer-
ring to such processes as Skorokhod processes, after Russian mathematician
A.N. Skorokhod [1956]. We will use the last descriptor. The full importance of
the Skorokhod assumption will begin to emerge in Section 2.8. Essentially. all
the processes considered in Chapters 5 and 6 will be taken to be Skorokhod.

2.14. Stopping Times: Often in probability we are interested in the time, T, at
which a certain random phenomenon associated with a stochastic process, X,
occurs. E.g., the first time, T(w), that the path, t — X(t,w), hits a particular
level. In fact, if F(t), of the filtration F=(F(t)), is interpreted as the collection of
all events associated with the evolution of a process, X, during the time interval
[0,t], we can make precise the statement that this phenomenon occurred before
time t by requiring that [T<t] := {w|T(w)<t} belong to F(t), for every t>0.

2.4.1. Deflnition: A positive r.v. T, finite or not, is called a stopping time (or
optional time) relative to the filtration F=(F(t),t>0), if the event [T < t| ¢
F(t), for each t>0. (Note: “‘positive’ is meant in the sense of nonnegative.)

In Chapter 1 we saw that for non-negative. integer valued G-stopping times,

[T =n}e G, iff [T<n]eG, iff [T <n]eG, . Here the situation is a little
different. To appreciate the difference, let T be an F-stopping time. Then

T<t = (Y [T<t-¢)eF(t),
«e>0

since [T < t - e]eF(t - ¢)CF(t). for t>0, by monotonicity of filtrations. There-
fore, if T is an F-stopping time, [T < tJeF(t) and then so does [T>t], for all
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t>0. But if all that we know about a mapping T:Q—R, is that [T < t]eF(t) for
all ¢>0. then all we can conclude is that

[V < eF(t+) = M [T < t+h]
h>0

so T just an F(t+) stopping time. Therefore, if the filtration is right continuous
then [T<t]eF(t) for all t>0. implies that T is an F-stopping time. Thus, under
the “‘usual conditions” the two conditions are equivalent. As noted already we
will generally assume that our filtrations are right continuous.

Any nonnegative constant is a stopping time relative to any filtration. For exam-
ple. if T(w) = ¢, for all weQQ, then [T < t] = @ when ¢<t and = ¢, otherwise.
If T is a stopping time and c is a nonnegative real number, then ¢ + T, is also a
stopping time: [T + ¢ < t] = [T < t- c]eF(t-¢) C F(t), for all t>0.

There are numerous interesting simple results concerning stopping times that are
needed to develop an intuition about them, but covering them is beyond the
scope of this short note. Probably the best treatments are given by Del-
lacherie(1972) and Métivier(1982). We will try to introduce only what will be
needed to provide a reasonable understanding of “previsibility’’ and its role in
the theory of martingales and stochastic integration.

2.4.2. We observe in passing then that the minimum and maximum of two F-
stopping times are again F-stopping times. Also, the supremnum of a sequence of
F-stopping times is an F-stopping time:

[sup{T,:0>0} <t] = ([T, < t])eF(t).
n=1
The infimum, S, of a sequence of F-stopping times is, however, an F(t+)-stopping
time. That is, we can only claim [S<t|eF(t+), for all t>0:

[S<t] = H(G[Tn<t+%])e_ﬁF(t+%) — F(t+)

But again, since we assume the ‘‘usual conditions’’, S is also an F-stopping time.
Hence, the limsup and liminf of a sequence of F-stopping times are F-stopping
times. Therefore, whenever the limit of a sequence of stopping times exists, the
limit is a stopping time. Another simple fact is that the sum of any two F-
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stopping times is again an F-stopping time.

2.43. In the realm of sophisticated stopping times we mention the “hitting”
time or debut of a random <et. A, defined as Dy (w) ;= inf{ teR, : (t.w)eA }. or
as Dy (w) := +oc, if the section A(w) = { t . (t,w)eA } is empty. Dellacherie
(1972} used capacity theouy to show that when the filtration satisfies the usual
conditions and A s an F-progressive random set then the debut of A is an F-
stopping time. We will return to this example later in the chapter where we will
introduce “‘k-debuts’”. For this purpose, notice that we can write

Day(w) = inf{te R} : [0,t]A(w) contains at least one element }.

2.4.4. Definition: Given an F-stopping time, the family of events which occur
prior to T, denoted F(T), is defined as the set of all events AcF(oc):=

ol |JF(t)), for which AN[T < t] €F(t), for each t>0.
t>0

2.45. If T is a.s.P equal to a constant time, t, then F(T) = F(t). This justifies
the notation F(T) when T is a stopping time. Further, it is easy to verify that
F(T) is a sigma-algebra and T is F(T)-measurable. (For the latter, just observe
[T<t]=AMNI[T < t]eF(t), for all t>0, where A = [T<t], so A¢F(T), and
consequently, T is F{T)-measurable.)

These o-algebras are monotone at stopping times, in the sense of the next
theorem.

2.4.6. Theorem:
Let S and T be F-stopping times. If ST, a.s.P, then F(S)CF(T).

Remark: S<T implies [T<t]C[S<t], so that for any AeF(S)
ANIT<Lt = ANQ<NIT<SteF(t).
Therefore, AeF(T).

Remark: The following are just as easy to prove:
o AeF(S) implies AM(S<T]eF(T)
o F(min(S,T)) = F(S)OF(T)

o [S<T]I[S>T]and[S = T] are in F(S) and F(T)

3R




If S is a positive r.v. which is measurable relative to F(T), then S is not neces-
sarily an F-stopping time. A sufficient condition is that S>T. Since this is sim-
ple and important, it is worth a proof. Just use [T<t] to partition the sample
space, 1. Then since S>T. [S < t] =[S <t} M [T < t] and, because S is F(T)-
measurable, the right side of this equation is in F(t) for all t>0. Hence,
[S<t]eF(t) for all t>0, so that S is a stopping time.

This has the consequence that every F-stopping time, T, can be written as the
limit of a decreasing sequence of F-stopping times, each taking a countable
number of values: Just define T(n) by setting N = N(n) = 2" and

k
T(n) = kgo N(m) Lik_1 < N(n)T<k]

when T is finite, and oo, otherwise. Then T(n)>T and the previous result
applies, making T(n) a stopping time. Also, on {w:T(w)<oo} = [T <oc], we have
0<(T(n.w) - T(w)) < 1/N(n); hence T(n,w) — T(w), as n — oo, for every w in
Q. Finally, if T{(n,w)=k/N(n), then we must either have
T(n+1,w) = (2k-1)/N(n+1) < k/N(n), or T(n+1,w) = k/N(n). So,
T(n,w) > T(n+1,w), for all w e Q2.

Notice that without the ‘‘countable valued” requirement, it is obvious that the

sequence S, = T + Tlx- decreases to T a.s.P on [T <o0].

Observe carefully that one cannot make a symmetric statement relative to
increasing sequences of stopping times. In the next section we will see that
requiring this symmetry leads to the notion of ‘‘previsible stopping times".

2.5. Stochastic Intervals: Let S and T, with S < T, be two F-stopping times
and set

([S.T)) := { (t.w) | S(W)<t<T(w), 0<t < o0, weld }.

[[S.T)) is called a stochastic interval; if we want to emphasize the underlying
filtration, we will write F-stochastic interval. Stochastic intervals [[S.T]].
((S.T)). and so on. are defined in the same manner. If S=T. then [[T]] := [[T.T]]
is called the graph of T.

2.5.1. F-stochastic intervals are F-progressive random sets. That is. the indica-

Al

tor function of an F-stochastic interval is an F-progressive process on R X1
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First note that (s.w) — l“S_T))(s.w) is F-adapted since 1[[S,T)) (s.w) = L. if

S(w) <s<T(w), 0 otherwise, and [S<s|M[T>sleF(s). Since ljs 1), has right con-

tinuous paths by inspection, Lemma 2.3.11 applies. Similarly. ((S.T]] has an F-
progressive indicator function. The other types of stochastic intervais are han-
dled in the same way or as combinations of stochastic intervals whose regularity

properties are known. E.g.. ((S.T)) = ((S,T]]ﬂ[[S,T)).

2.5.2. We can now show the converse of the result guaranteeing that a debut is a
stopping time. That is, every stopping time, T, is the debut of a progressive ran-
dom set: Just set A = [[T.oc}). Then A is progressive and the statement follows
by noting that [Dy < t] = [T < t|. Also note that if A = [[S.T)). then
D, = Son[S< T]and = oc,on [S=T)]

When A is of the form A = {(t,w): X(t.w)eB}, where X is some stochastic pro-
cess, the debut of A is called the hitting time or the first entrance time of X
into B. By what has been said. if X is progressively measurable and B is a real
Borel set. then the debut of A is a stopping time. The best discussion of this is
given in Williams [1979].

2.5.3. The following example will be used later on as an example of a stopping
time which is not a previsible time. (It is an exercise in Métivier [1982]). We
will specialize it somewhat in order to have a simple example to illustrate the
graph of a stopping time. Let A be a nonempty. proper subset of the interval
[0.1] := Q. Set F(0) = {o. U} and F(1) = {A. A", o, }. Define the filtration
F(t) := F(0), if te[0, 1) and := F(1), if t>1. Then (F(t). t>0) is a right continu-
ous filtration. Set T := 1 4+ 1. Then T is an F-stopping time:

o ifo<tcl
T <t = 1A 1<t<2
n 2<t

so that [T < t]eF(t), for all t > 0. If we take the usual two dimensional coordi-
nate system with time (the range of T) as the horizontal axis and  as the inter-
val [0.1] on the vertical axis. then with A = [0,.5] the graph, [[T]]. is the follow-
ing union of straight line segments:

(T = {(l,W):wc(.5,1]}U{(‘Z.w):we[O,.S]}.




2.5.4. Definition: The family of events which oceur strictly prior to the
stopping time, T. is denoted by F(T-) and is defined as the sigma-algebra gen-

erated by F(0) and events of the form Aﬂ[T > t] for all A¢F(t) and all t>0.

As with F(T), T is F(T-)-measurable. Also, since the generators of F(T-) belong
to F(T), F(T-) C F(T). Also, if S is a stopping time with S<T then F(S-) C
F(T-).

2.5.5. Remark: It is important to note that left continuity of F does not imply
that F(T) = F(T-). For example, let  := [0, o), and B([a,b)) be the Borel o-
algebra of subsets of the interval [a, b). Set F(t) := (B([O,t]))U{(t,oc), R} for
all t2>0 and note that F(t-) = F(t) = F(t+) for all non-negative t. Setting T(w)
= w on () defines T to be an F-stopping time with F(T) 52 F(T-). This is an
exercise in Métivier [1982]. However, this is not meant to imply that the
mathematical setup is simple. This setup, or a slight variation. is at the heart of
numerous papers (e.g. Dellacherie [1970]. Chou and Meyer [1975] and finally. with
corrections, in Chapter 4 of Dellacherie and Mever [1975]).

For example, in the last reference. a filtration, G. is taken to be
G(t) = o B{ (0.t) }. [t, o0) )

for all te[0, >]. Then G(t+) contains {t } and (t, o), and these sets are not in
G(t). Therefore, in this case G(t) 7% G(t+) and G is not right continuous. It
follows that T, the identity mapping as defined at the beginning of this remark.
is a G(t+), but not a G(t), stopping time. We will return to this example at the
end of the next section to illustrate the special classes of stopping times intro-
duced there.

2.6. Previsible, Accessible, Optional Times: Recall again that, unless stated
otherwise, we assume that the ‘‘usual conditions” hold on the underlying filtra-
tions.

Earlier when we were approximating stopping times from above. we pointed out
that they cannot in general be approximated from below by increasing sequences
of stopping times. However. from the standpoint of the calculus of martingales.
those stopping times that do have this property can be used to characterize the
most important class of measurable processes. Dellacherie and Meyer(1980) point
out that processes with this type of measurability (previsibility) play the same
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role in stochastic integration as Borel functions play in the classical theories of
measure and integration. The construction of this class begins with the following
definition.

2.6.1. Definition: An F-stopping time, T. is said to be F-previsible (predict-
able) if there exists a sequence (T(n)) of F-stopping times with the following pro-
perties:

(i) T(n.w) < T(w), a.s.P.on [T>0]. n>0:
(i1) {T(n)) is increasing (a.s.P) and converges (a.s.P) to T.

Note: Generally, when there is no possibility of confusion, we will drop reference
to the underlying filtration, F.

The sequence of stopping times, (T(n)), is said to announce T. and is called an
announcing sequence for T. Clearly, if T is a stopping time and ¢ is a posi-
tive real number, then T+c is previsible. Just take T(n) := T + ¢(1 - (1/n)).
n>0.

Intuitively, if T is the first time an event can happen, then T is previsible if we
are aware that the event is about to happen; a sequence of events takes place
that foretell the occurrence of T. As a matter of fact, the announcing sequence is
also called a foretelling sequence.

The traditional example of a previsible stopping time is first time that an
adapted, continuous ( hence progressive ) process, X, ( X{0,w) = 0 ) hits a single-
ton set: For example,

T(w) = inf{ t: X(t,w) =11}

and = oc, when {...} = ¢. For definiteness, take X to be standard Brownian

motion. To see that T is previsible, just take T, an announcing sequence of T.

to be T (w) = inf{ t : X(tw)=1- 1 }.
n

A famous non-previsible stopping time, T. is the “time to the k' event™ of a
Poisson process. The standard proof of this fact can be found in Liptser and Shir-
vayev [Vol Il]. We will give a simpler but more sophisticated demonstration by
Aldos [1981] that also yields a result useful later in this chapter. Let N =(\(t).
t>0) be a Poisson process with parameter gt at time t. Then s—N(s+t) N(t)
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defines a Poisson process with parameter gs and so by the Strong Markov Pro-
perty. N{s+T) - N(T) is again Poisson, gs. Now, if we assume that T is previsi-
ble. then T+s is previsible and announcing sequences exist for both. Evaluating
the Poisson increments at these announcing sequences and passing to the limit.
we have that N((s+T)-) - N(T-) is Poisson, us. Remembering that N has right
continuous paths and letting s — 0+, we obtain N(T) - N(T-) = 0. a.s.P. This
states that T is not a jump time of the process as originally supposed. Therefore.
T cannot be previsible.

2.6.2. We now introduce a stopping time which is (a.s.P) never equal to any
previsible time, appropriately, it will be called a totally inaccessible time. The
time to the first jump (event) of a Poisson process is such a time. The “‘comple-
ment’’ of a totally inaccessible time will be said to be accessible. More formally.
we give the following:

2.6.3. Definition: Let T be an F-stopping time. Then

(1) T is said to be accessible if there rxists a sequence of
previsible times, (T(n)), with the property

U UT(m)]] D [[T]], up to an evanescent event.
n>0

(i1)) T is said to be totally inaccessible. if the intersection.

(TSI}, is empty. up to an evanescent event. for each

previsible stopping time, S.

That is, the graph of an accessible time, T, is made-up of sections of graphs of
previsible times, and the graph of a totally inaccessible time is disjoint with the
graph of every previsible time. Parts (i) and (ii) of the definit” can be written
PIYU[T, = T|[T<a]) = 1 and P{IT = S}[T<oc]) = 0, respectively.

n

Remark: It is clear from the definition that if T is previsible then it is accessible
and optional. The example of Dellacherie and Mever at the end of the last section
provides a case where a stopping time is nonprevisible and accessible. We <tate
of some of their observations on this example:

We noted that T, the identity mapping as defined there. 1x a Git+) but not o
G(t) stopping time. Dellacherie and Mever show further that every (i)
stopping time is G-predictable. Continuing with this example. a probatahin
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measure P is introduced and G is completed relative to P. Call the completed
- filtration G . Dellacherie and Mever show the following:
. (a) If P is nonatomic. then G  satisfies G (S) = G (S-) for
& all previsible times, S. Also, the identity mapping, T, is
k. totally inaccessible.
2 {b) If P is purely atomic and nondegenerate, then the iden-
2 tity mapping, T. is a nonpredictable, accessible time.
' 2.6.4. Definition: If T is a stopping time and A is an event (AeH), set T {w) =
. T{w). if weA, and = oo, otherwise. Then Ty is called the restriction of the
» stopping time, T, to the event A.
Y
& It follows immediately from the definition that [T,<t] = AM[T<t]. Then, from
the definition of F(T), T4 is a stopping time iff AeF(T).
. Remark: As can be guessed, the graph of any stopping time can be written
~ (uniquely, a.s.P) as the union of the graphs of accessible and totally inaccessible
-] times.
N- 2.6.5. Theorem (Dellacherie):
N Let T be a stopping time. Then there exist events A and B in F(T-) which consti-
& tute a unique, up to P-measure zero, partition of [T<oo|, such that T, is accessi-
) ble and Tg 13 totally inaccessible.
‘_: We now mention a sequence of stopping time results that are useful in the study
- of stochastic processes. Our principal use will be in the last of these results
which gives a characterization of previsibility of restrictions of stopping times.
o o Let S and T be previsible (accessible, totally inaccessible) times. Then the
- minumun and the maximum of S and T are previsible ( accessible, totally inac-
. cessible).
o Let T be a stopping time and Ae¢F(t). If T is accessible (totally inaccessible) |
then T, is accessible (totally inaccessible). ‘
T {This is immediate from [[TA]]C[[T]].)
|
2 o Let T = limT,. |
N n—a"0 \
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’:.' (a) If (T,) is an increasing sequence and each T, is previsi-
::,,f 7 ble, then T is also previsible.
“‘::: (b) If (T,) is a decreasing sequence and for each we{) there
».\ exists a natural number n = n(w) such that
,, Tpw) = T(w), then T is previsible (accessible) whenever

' the T, are previsible (accessible).

23 . .

-‘._j From this result it can be shown that
F)
\: o If T is a stopping time then the collection of all AeF(T) such that T, is prev-
- isible is closed under countable unions and countable intersections.

“w
E This result can then be used to show the following important result that will be
~’ used several times in the sequel:

b
2 o Let T be a stopping time and AeF(T). Then if T, is previsible, AeF(T-).
: Conversely, if AeF(T-) and T is previsible, then T, is previsible.

3%

2.7. Previsible, Accessible, Optional Processes: Let X be a stochastic pro-

'_:_.‘_ cess on ({2,H) and recall that H has been taken to be the smallest sigma algebra
:n;:: containing the union of all members of the filtration, F, and then denoted F(oc).
50!
B If T is a positive r.v. on (2,H), then by X(T) we mean the mapping w —
s X(T(w),w) of 2 into R. If X is B{0,00) X H-measurable, then this mapping defines
«.:: a r.v. since it is the composition of the measurable mappings w — (T(w),w) and
k- (t,w)—X(t,w).
o

! When X is a Skorokhod process, Meyer [1973| gives a simple method for approxi-
:: mating X(T), by X(T,), where for each n, T, is a countable valued random vari-
3 able and the sequence (T decreases point-wise to T: Let D, = {k/2":keZ,}.
S and set T (w) equal to the infimum of D, M (T(w),00). Then the right con-
s tinuity of X gives X(T,) — X(T), a.s.P.
i-i X(T) is called the process evaluated at time T. In general, we will allow T to
' be an arbitrary stopping time. This means that T will be allowed to take the
"': (nonreal) value oo of the extended set of positive real numbers, ﬁ+. Since we

“ define processes X on R, X0 and not R, X . we write Xg lir <~ to denote Ny
::: on the event [T<oo] and zero on the event [T=oc|. We give the following

sufficient condition for the F(T) measurability of X(T).

O .”{'1‘ -'(A-(A e d -,'C-'I".'-,('\’ * " .'}:'4",1‘ ’\
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2.7.1. Theorem:
If X'is F-progressively measurable and T is an F-stopping time, then ;x| X(T)
i1s F(T)-measurable.

2.7.2. Remark: We will give a sketch of Dellacherie’s proof of this result. Let A
be any Borel set of the real line. We must show that [X(T)eA][T<t]eF(t). for
all nonnegative t. But the event formed by this intersection is equal to
[X(S(t)eA]M[T<t] where S(t) = min(T.t) is easily seen to be F(t)-measurable.
But the process XoS is measurable relative to F(t), since it is obtained as the
composition of the mappings w—(S(w),w) of (,F(t)) into ([0,t] X Q,B[0.t] X F(t))
and (s,t)—=X(s,w) of ([0,t]xQ,B[0,t]XF(t)) into (R,B), and because of the
definition of a progressive process.

2.7.3. Remark: As in Chapter 1, an important example is obtained when the
process, X, is evaluated at the random time S := T~t, where T(w)~t =
min(T(w).t) for t>0. Then X(S) is called the process stopped at time T and
denoted XT. Thus, XT(t,w) = X(T(w)~t,w), and T~t is sometimes called a
truncation of T. The use of stopped processes is fundamental to the modern
theory of martingales. As noted in Chapter 1, one reason for this is the Doob
Optional Sampling (Stopping) Theorem and another is based on the concept of
localization to be discussed at some length in Chapter 6.

Another important stopping time that can be constructed from T is the transla-
tion of T: T, =T + t, teR,. Then X(T,) is called a random shift of X. (For

more information see Chung, Doob [1965].)

2.7.4. Remark: For future use, we point out that the filtration F=(F(t)) is said
to be quasi-left continuous ifl F(T)=F(T-) for each previsible time, T. It can
then be shown that quasi-left continuity is equivalent to accessible times being
previsible.

2.7.5. In what follows we will often use the term ‘“‘optional” time in place of
“stopping’’ time.

2.7.6. Definition : PT(F) := ‘“family of F-previsible times™"; AT(F) := “family
of F-accessible times'”; OT(F) := “‘family of F-optional times™. where I is the
filtration (F(t)).

F will usually not be mentioned and in these cases we will just write PT. AT.
and OT. We now define three sigma algebras of events generated by stochastic
intervals from each of these families. Let IX represent any one of the family of




I\

stopping times PT, AT, or OT and set

T
S

)

" G(K) := o [[S.T)) : SeK, TeK }

bt

f Remark: Since previsible times are accessible, G(PT) C G(AT) and accessible
: times are, in particular stopping times, G(AT) C G(OT). If we let G(Prog)

. denote the o-algebra generated by progressive random sets, we have that G(OT)
C G(Prog) by applying Lemma 2.3.11 to 1is,1))- Hence,

o
:‘.-; ~ G(PT) C G(AT) C G(OT) C G(Prog)

i

2.7.7. Theorem

.' G(K) = o{[[S,T]]: SeK, TeOT },

-

N where K is PT, AT, or OT.

N

- To see this, let SeK and TeOT. Then notice that

¥ (ST = M [S.T+(1/n)

+ n>0
;:f and T + (1/n) is previsible, hence accessible and optional. Therefore the genera-
N tors, [[S,T]], can be obtained from the defined generators of G(K).
& K=PT,AT,OT. Since
| (T = NIT.T+(1/n)]]

’ and {[S.T})) = [[S,T]] - [[T]], the reverse is true and the proof is complete.

o Remark: This demonstration also proves that ([T]]eG(K), if TeKk, K = PT. AT.
OT. So, for example, previsible times have previsible graphs. Not surprising. but
N ) certainly comforting. Notice that although it is true, we have not proved the con-

verse. The only proof that | am aware of requires the so-called *‘(Cross) Section

'5‘ Theorem’ from Capacity theory. This will be mentioned in the Chapter on Prev-
‘. isible Projections (Section 4.4).

! Now that we know that optional and previsible random sets are progressive, the
' next Theorem follows from Dellacherie’s result. stated earlier, saying that progres-
AN sive random sets have optional debuts.
X :
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2.7.8. Theorem:
If the random set A¢G[OT) or G(PT), then the debut of A is a stopping time.

2.7.9. Definition : The process, X, on ({2,H) is said to be an optional, accessi-
ble, or, previsible process according to whether X is, respectively, G(OT)-
measurable, G(AT)-measurable, or G(PT})-measurable.

We have already used the following

2.7.10. Corollary:
If X is an optional process and B ts a real Borel set then the hitting time of B is a
stopping time.

2.7.11. Remark: Let O(w) = O for all we2; O is called the zero stopping time.
As with all boundary cases, it is instructive to satisfy oneself that 0 is a previsible
stopping time. Further, 04 is previsible, if AeF'(0). This is easy to show by con-
structing an announcing sequence. For example, let T(n,w) := n 1g(t,w), where B
is the complement of A. Then T(n,w) = n on {04 > 0] = [04 = o] = B, and
T(n,w) = 0 on [04 = 0] = A. Hence, (T(n)) is strictly increasing on [04 > 0],
approaches oo where 04 is infinite, and is identically zero where 0, vanishes.
Finally, each T(n) is a stopping time, since [T(n) < t] = AeF(0) C F(t) for all t.
0<t<n, and for t>n, [T(n) < t] = A [ J B =0, which is in every F(t).

The o-algebras G(K), Ke{PT,AT,OT}, were defined by varying the type of stop-
ping time in intervals of the form |[S,T)). This was reduced to just closed sto-
chastic intervals with only the left end-point determining the type of measurabil-
ity. The next result shows that intervals of the form ((S,T]], with S and T both
optional, are sufficient to generate the previsible g-algebra, G(PT), provided that
we account for zero stopping times,

2.7.12. Theorem: (Dellacherie (1972, p.67 ff))
G(PT) is generated by [[ 04 ]], where AeF(0), and by ((S,T]], where S and T are
optional.

It follows immediately that G(PT) is also generated by the random sets, B X
(s,t], where BeF(s) and s<t are any real numbers, together with {0} X B, where
BeF(0). ( We will call the indicator process of these sets the kernel process of
G(PT). )

On the other hand, the indicator processes corresponding to B X (s,t] are left
continuous. Hence, G(PT) is contained in the o-algebra generated by left

RS DA ‘\*(,"-._:-.".. . B R ) \,‘u
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continuous processes. The converse statement and, consequently, part (i) of the
next theorem follow from the fact that left continuous processes can be obtained
as limits of linear combinations of the kernel processes of G(PT):

2.7.13. Theorem:
(1) G(PT) is generated by left continuous, adapted processes.

(ii) G(OT) is generated by Skorokhod. adapted processes.

2.7.14. The following example is standard. Set
X(t.w) := Z(w) Lis,m) (t,w).

Then
(a) Xis optional if ZeF(S, where S, T are optional;
(b) X is accessible if Z¢F(S), where S,T are accessible;
{c) X is previsible if ZeF(S-), where ST are previsible;

(d) Y(t,w) = Z(w) Lsty is previsible if S and T are
optional and ZeF(S).

For (a). first let Z = 14, A€¢F(S). Then Z is F(S)-measurable and Z sy =
l[[SATA.))' which is optional. Thus, the statement holds for indicators, hence for

simple functions, hence for limits of sequences of non-negative simple functions,
etc.

2.7.15. Remark: Part (i) of the last theorem might be stated more explicitly as
follows: G(PT) is generated by mappings f from [0,00) X2 into R such that each
function t — f(t,w) is left continuous and each function w — f(t,w) is F(t)-
measurable.

2.7.16. Remark: Part (i) of the last theorem guarantees that every left continu-
ous processes is previsible ( hence also, every continuous process). However, not
every previsible process is left continuous. For example, if T is a stopping time.
then T+1 is previsible so that T4y is 2 previsible process. But this process is

not left continuous.
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2.7.17. Remark: The “modern” (post Dellacherie [1972]) way of defining G(PT)
is to use part (i) of the last Theorem as a definition, while not assuming that the
filtration, F, is right continuous. Then, having defined previsible events, a stop-
ping time is called previsible if and only if its graph, {[T}], is a previsible subset of
[0,0)X 2. Our definition, in these notes, then holds as a theorem with (F{t))
replaced by (F(t+)). For such a development see Métivier(1982). Under the
““‘usual conditions’’ these two approaches are equivalent.

2.7.18. Remark: We have not said nearly enough about stopping times, neither
their properties nor use in studying processes. So we will look with a little more
detail at one small sequence of results that are important in the sequel.

First, letting A be a random set, we extend the last definition of debut (Section
2.4.8) by setting DA” := D, and defining, for each neZ,,

D" = inf{teR+:[0,t]ﬂA(w) contains at least n elements},

where A(w) is the section of A at w. D", is called the n-debut of A. We have
stated earlier that if A is progressive, then D,, and so D,L”, iIs a stopping time.
Using this fact, we can show by induction on neZ, that when A is progressive
then each n-debut is a stopping time. To see this, just observe that we can
write

) —
DA'H.) = DAﬁ((DA"),OO))'

Given that A is progressive, this equation exhibits D,{“*’” as the debut of a pro-
gressive set, if D{" is a stopping time. Observing that the 1-debut is a stopping
time, and making an induction assumption that the n-debut is a stopping time, it
follows then that the (n+1)-debut is a stopping time. Therefore, by induction
(DAk),keZ,,) is a sequence of stopping times.

The following definition and Theorem are included here, not only because they
will allow us to “‘prove’ some results in Chapter 3 and beyond, but also because
they give an indication of the spirit in which the use of stopping times give intui-
tive meaning to what could otherwise be a tedious litany of analytic conditions.

2.7.19. Definition: Let X be a Shorokhod, F-adapted process. Then X is said
to charge a stopping time, T, if P(T < oo, X(T) # X(T-)) > 0 and to have a

NS jump at a stopping time, T, if P(T < oo, X(T) # X(T-)) = 1. Further, a

*:j sequence, (T,), of stopping times is said to exhaust the jumps of X if
e (i) X has a jump at each T, neZ ,
i::::':::
R

Y
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(ii1) X does not charge any other stopping times.

|
| 2.7.20. Remark: Let X be an adapted, Skorokhod process, then X_ is a previsible
process. Set A = {X # X_}. For each neZ,, let A, = {|X-X_| > %}.

) Then A ¢G(OT) for all n and

= UAn
Now, since X is Skorokhod the sections, A (w), have no cluster points in R, for
each n and all we()y, where P({}g) = L. It follows that each A is the union of
the graphs of its k-debuts and so A is contained in the union of a countable
number of graphs of stopping times. We need the following:

| 2.7.21. Lemma (Dellacherie, 1972, IV T17): If AcG(K), where K is either

| the class of previsible or accessible or optional times, and AC|J[[S,)] for any
sequence of stopping times, then there erists a sequence, (T,), with T, eG(k) for
each n and

= YT,

and the graphs of the T, are pairwise disjoint.
Combining this Lemma and the previous remarks we have

2.7.22. Theorem: (Dellacherie, 1972, IV T30)
(1) If X i3 any adapted, Skorokhod process, then there exists
a sequence of stopping times, (T,), which erhaust the jumps

of X

(1i) If X is previsible (accessible), then the (T,) in part (i)
are previsible (accessible).

Again, let X be an adapted, Skorokhod process, then from part (ii) of this
Theorem we see that if X is accessible, X cannot charge any totally accessible
time. The converse of this statement is also true and is a result of the following
observations. Let X be adapted and Skorokhod. Then since X does not charge
any totally inaccessible time, we know from part (i) of the Theorem that the
sequence (T,) which exhausts the jumps of X must be accessible. Then

= |YI[T,)] is accessible and its complement B := {X = X} is accessible.
Since X == 1X_+ 1,X, and X_ is previsible, it follows that X is accessible.
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Therefore, the following Corollary holds.

2.7.23. Corollary:
Let X be an adapted. Skorokhod process.

Then X 1s accessible iff X does not charge any totally inac-
cesstble time.

Remark: Earlier we introduced quasi-left continuous filtrations. The following
result leads to an analogous class of processes:

o

2.7.24. Theorem:
Suppose that X s adapted and Skorokhod. Then the following statements are
equivalent

(i) The jump times of X are totally inaccessible;
(i1) X does not charge previsible times;

(is1) If the stopping times T, 1 T then f
imX(T,) = X(T) on [T<o0), a.s.P.
n

Remark: A process X satisfying any one of these conditions is said to be a
quasi-left continuous process. Later in this chapter we will point out that
each Shorokhod martingale is quasi-left continuous when the underlying filtration
1s quasi-left continuous.

From the previous theorem on the jumps of Skorokhod processes, we can see that
if the Skorokhod process X is previsible, then X is quasi-left continuous iff X is
(a.s.P) continuous. A more important result concerning Skorokhod previsible
processes is given by

2.7.25. Theorem: (Dellacherie, Meyer (1980])
Let X be a Skorokhod process. Then X i3 previsible iff the following two condi-
tions hold:

(a) AXt = 0, a.s.P, for all totally inaccessible stopping
times T,

(b) For every predictable stopping time T. Xp is F(T-)-




measurable on [T <]

Remark: Part (a) confirms the intuitive fact that previsible processes cannot
jump at totally inaccessible times. Part (b) of this theorem can be strengthened
as follows:

If X is previsible, then the random variable 1i ¢ X1 i F(T-) measurable for all
stopping times T. This exactly expresses the meaning of previsibility.

Since we are not going to prove the Theorem, it would be helpful to prove the
last remark. Perhaps more importantly this can be accomplished by a relatively
standard argument based on the Monotone Class Theorem (Appendix A). There
are numerous places in this note where this device should be used, but isn’'t. So
we will take a moment and at least show the setup. Since, in this case, X is
previsible, we first look at the kernel processes Xy(w) = 15(w)lj, .(t), where
AeF(u) and 0<u. Then Xy = Ial<t)- Since T is F(T-) measurable and
AeF(u) 15l ¢lir<co) is F(T-) measurable. But AM[u<T] is a generator of
F(T-). Therefore, when X has this simple form 1jp ¢\ Xt is F(T-) measurable.

Now let H* be the set of all such processes X such that l[T<oo]XT is F(T-)
measurable for all stopping times T. Also, let L be the collection of all subsets of
(0.50) X2 of the form (u,00)X A, u>0, AeF(u). Then 1¢H* and 1geH* when B is
in L. Next, it would have to be shown that if (X)) is an increasing sequence of
nonnegative functions in II* such that sup X, is finite, then sup X, is in H*.

The Monotone Class Theorem then states that H* contains all processes measur-
able with respect to o(L) = G(PT), as desired.

As a final remark about the meaning of the result itself, recall that if X is previsi-
ble, then it is progressive. Since it is progressive, we know that X(T) is F(T)
measurable. Thus, we see that the more restrictive assumption of previsibility.
produces the sharper result that X(T) is F(T-) measurable (as we would expect
from the intuitive meaning of previsibility).

2.8 Martingales: This small section contains a list of some basic results on
martingales that will be needed in the remaining parts of this note.

As in previous sections, all processes will be considered relative to a probability
space ({2.H.P) equipped with a filtration, F=(F(t).t >0). Unless stated otherwise.
we assume that F satisfies the “‘usual conditions™.




We have already discussed the martingale concept in Chapter 1. and will only
note that if X is some stochastic process, h > 0, and we want to estimate the
increment process, t—X(t+h) - X(t) on the basis of information that has accrued
up to and including time t, then a reasonable estimator s
v(t) = E(X(t + h) -X(t) | F(t)). If ¥y =0 (¢ > 0, v < 0) then according to
the following definitions, X is a martingale (submartingale, supermartingale).

2.8.1. Definition: A F-martingale, m, is a P-integrable process satisfying
E(m(t) | F(s)) = m(s), (a.s.P),

for all t>s2>0.

From the properties of conditional expectation, martingales are F-adapted by
their definition. Supermartingales are P-integrable, F-adapted processes, Y.
such that Y(s) > E(Y(t)|F(s)), as.P, for all t>s>0. Finally, X is an F-
submartingale, if -X is a supermartingale. Clearly, a martingale is both a
supermartingale and a submartingale.

2.8.2. It is proved in Meyer [1967] that

223 Lemma: If the filtration F satisfies the ‘‘usual conditions’, then an F-
submartingale Y has a Skorokhod (right continuous with left limits) modification
iff the mapping t—EY(t) 1s right continuous.

2.%.1. Since we assume the “‘usual conditions” such modifications always exist for
martingales. (This follows directly from the definition of martingale since Em(t)
= Em(0). t>0. That is, martingales have constant mean value functions.} Com-
bining Lemmas 2.3.3 and 2.8.3, we can and will always identify a martingale
with its Skorokhod modification. Actually, Meyer proves that if a submar-
tingale is right continuous then it has finite left limits a.s.P. and states Lemma
2.8.3 for right continuous submartingales.

However, if X is an F-submartingale which is not right continuous. all that can
be said for it is that for each t > 0 and a.s.P all paths, right and left limits exist
at t for the restriction of X to any countable dense subset of {0.oc). That is, let-
ting QQ be the set of nonnegative rationals,

P({w: lim X(s), lim X(s) exist}) = 1,
Q Q

s~—t+,s¢ S—{-,5¢

54

e N e N e T o



for each t >0.

Therefore, we can define the process, Y, by setting Y(t) := lim Xis). for
s—t+.5¢Q
each nonnegative t on a subset C of 7 where P(C) = 1 and arbitrarily on

2 - C. so that Y is right continuous. Further, Y is F-acapted by right con-
tinuity of our filtrations: F(t+) = F(t). To see that Y is also an F-
submartingale, let (h,) be a sequence of nonnegative real numbers decreasing to
zero. Then the sequence (Y., ) is a ‘‘reversed submartingale”, due to the fact
that the original process X is a submartingale, which can be shown to be uni-
formly integrable. We will spend some time in a few paragraphs discussing the
uniform integrability condition, but for now it is enough to know that it is
sufficient for a.s.P convergence to imply convergence in L;(P). Letting AeF(s)
and s<t. and applying this result to

EY(s)ly = limEX(s+h)14 < lim EX(t+h,)l, = EY(t)1,.

n—2>x n—2xo

ve obtain Y(s) < E(Y(t) | F(s)); Y is an F-submartingale. Y is called the right
continuous modification of X. Thus, under the “‘usual conditions™ a right con-
tinuous modification of X always exists.

In the same manner, one shows that EX(t)1, < EY(t)1,, for all A¢F(t), so that
X(t}) < Y(t) as.P for all t. It follows from this last statement, that
X(t) = Y(t) as.P. for each t iff EX(t) = EY(t) for each t. This is basically
the content of Lemma 3.

2.8.5. Remark: There are a number of results from classical martingale theory
that will be needed in the following chapters. One, Doob's Optional Sampling
(Stopping) Theorem, has already been stated and proved in the discrete parame-
ter case. The continuous parameter version of this theorem, and others to be
stated later, follows in a relatively simple manner from the discrete version when
the ‘usual conditions™ obtain and the processes are Skorokhod. For brief, self-
contained proofs see N. Ikeda and S. Watanabe [1981]. K. Chung [1974, 1983] is
also an excellent source.

To state these theorems in a form convenient for application in Chapter 6, we
first introduce some terminology for martingales which have finite moments of
order p: M is said to be an L, martingale iff M is a martingale and MeL,, where
p belongs to [1, o0). A related classification, that we won't use very often until
the last chapter, is Lp—bounded. A martingale M is said to be Lp—bounded if
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sup >oE( [ M{t) [P) < . Ly bounded muartingales are also called square

integrable martingales.
Theorem: (Doob’s Inequality)

Let M be an L, -martingale and p e [l. o0 ]. Set M = sup{ |M,| : 0<s<ty
Then

ANPPIM>N) < [ M |PdP (1)
(M> )]

and. if p> 1 then M," ¢ L. for allt > 0. and

E{(.\r;)f’}s<p‘jl)PE{n.\uP}. (2)

2.8.6. Remark: Clearly, E|M,|{P < E(M;"?). So in terms of the L, (Q.H.P)
norm, inequality (2) says that

s p
I, < I, < =B I,

Therefore, when p > 1, the mappings m—|IMJ, and m—|M/l, . define
equivalent norms. This remark will be extremely important in Chapter 6.
where the initial analysis will take place with L,-bounded (square integrable)

processes.

2.8.7. Remark: The inequality (2) is usually called Doob’s inequality. Since this
inequality is of great importance to us we will show how it can be deduced from
(1): An application of integration by parts gives

E((M)P) = p[ AP IP(M>N)dx
0

< pfAT [ M| dP dX
0 M
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= pfxp"-’ fl[M“>X] | M, | dP dX
0 g

o0 o0

= pfAP2 [PM>N M| >p]dp dx
0 0
[a ] (e v]
= Lo fUpNE M M > 0] s
0 0
[o.0]
= Llf (1 My >u (MSP) du
0

= £ B(MSP! M, ] )
p-1

Pl 1
< ﬁ NEMP) P (E(MP)P

This last inequality is a consequence of Holder's inequality. The result follows by
dividing both sides of the last inequality by the first term on the right; if it were
zero, there would be nothing to prove.

2.8.8. Remark: Uniform integrability of a family of functions is a classical con-
cept. (E.g., Meyer [1967], Loeve [1960].) Since it plays a somewhat remarkable
role in the theory of martingales, we are obliged to spend some time discussing
the concept and its application to martingales. The principal use of this material
will be to construct the Stochastic Integral in Chapter 6.

A family, ¥, of P-integrable random variables on (},H) is said to uniformly

integrable iff

limsup ([ | X(w)|P(dw): XeW¥ )=0.
ame [ 1X]>a]
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Let m = (m(t), t>0) be a martingale. We will see that for ¥ = {m(t). teR_}.
uniform integrability can be characterized by the requirement that there exists a
P-integrable r.v. Z which closes the martingale in the sense m(t) = E{Z | F(t)}.
for all t2>0. In this case it can be shown that Em(t) = EZ for all t>0.

imm(t) =2, a.s.P,

t—o0

and also in L;. Z is usually denoted by Z(oc), and is called the terminal ran-
dom variable of the process m.

We will now indicate how this result and some others are derived with the aid of
uniform integrability. More exactly, we will discuss uniform integrability and its
impact on supermartingale and martingale sequences. The transfer of these
results to the “continuous’ parameter case is simple for the processes under con-
sideration in this note (they are Skorokhod processes).

We will quote two principal sources as we proceed and the interested reader can
refer to these for complete details. However, an attempt will be made to supply
the basic mathematical ideas that yield the results. First of all, Meyer[1967.
p.17] points out that every finite family of processes is uniformly integrable and
every family majorized by a P-integrable process is uniformly integrable. To
understand his remark about finite families, consider ¥ = {h}, a family with
only a single L;(P) random variable. Then

[ | h(w)] dP{w) — 0, asa — o0 ,
[Ih] > a

since heL((P), P([lh] > a]) — 0 as a — oo, and the measure determined by the
map B—of | h | dP of H into R, is absolutely continuous relative to P.
B

The case for finite ® follows immediately, as does the case where a family is
dominated by a single P-integrable function. These observations are essentially
contained in a characterization given by Meyer{1967, IIT19] which states that
uniform integrability is equivalent to the uniform boundedness of E|f| for all feW¥
(te.. supp E[f| < oo} and the “uniform™ absolute continuity of the measures

B—/|h|dP,BinH, fin V.
B

The uniform boundedness condition, sup E

f, | < oo, implies that

A
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supEf; < oo and supE f}f < oo . (1)

Because of the monotonicity of their expectations, supermartingales with the first
part of condition (1) are uniformly bounded: the same is true for submartingales
with the second part of condition (1).

It is well known that condition (1) is a sufficient condition for a supermartingale
(submartingale) ( f,, F ,neZ, ) to converge a.s.P to a terminal random variable.
denoted f_,, with the property that E( f) < lim E f.

n

Another consequence of uniform integrability (Meyer[1976, II T21]) is that it
extends Lebesgue’s Theorem and tells us that the a.s.P convergence of f to [
also takes place in L,(P). Therefore, Ef, = lim Ef,.

n—oo

Thus, if (f,, F,) is a uniformly integrable supermartingale, then this supermar-
tingale converges a.s.P and in L; to a terminal random variable. Consequently,
(f,, F,, nez+), where Z+ = 2,y is also a supermartingale. That is,
under uniform integrability, the time domain of a. supermartingale can be
extended to Z+ in an obvious manner and the resulting process continues to be a
supermartingale.

In terms of martingales, this says that for every n, we can write
f, = E(f, | F, ). Moreover, the converse of this result is true in the follow-
ing sense: If there exists an L; random variable, U, such that
. = E(U | F_), then (f,, F,) is a uniformly integrable martingale. That
(E(U | F, ))is a martingale is obvious. That it is uniformly integrable follows
from the following Lemma, which is of general interest.

2.8.9. Lemma

Let U be an L, (P) random variable and C be a collection of sub-o-algebras of the
o-algebra H. Then the family { E( U| G ) : G belongs to C } is uniformly integr-
able.

2.8.10. Remark: This is quite easy to prove. Just use the Chebyshev inequality
for positive random variables and Jensen's inequality to show that

. . 1 .
supgcP( | E(U | G)| Za) < =E[U].
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Q We now state three Theorems that are basic to the development carried out in

- Chapter 6.

it.

% 2.3.11. Theorem: (Martingale Convergence)

:Q Let M be an F, L,-martingale, pe[l.oo] and  suppose  that

R sup{ E| M, |P:0<t<oc} < oo. Then there exists a random variable ‘
. M, € LP such that -
) |

1 lim M, = M, as.P. -
i\ t—00

Dy

o Further, if p = 1, and M is uniformly integrable, or simply, if p> 1, then (M,) s

K an F. L,-martingale, where now te[0,00], the extended, posstive real line, with

i F(oo) = a( (JF(s) ), and M, converges to M, in L, as t—ooc.

"4 520

- Remark: See Chung-Williams [1983], or Meyer [1967].

1:

1 2.8.12. Theorem: _

& If m = (m,t>0) is a Skorokhod supermartingale (submartingale) and

ry sup,< Em; <oo  (sup,<,Em<inf}, then m, > myast— oo, asP, and

i- m_eL,(P).

"

: 2.8.13. Remark: Recalling condition (1) and remarks, it follows that any uni-

' formly integrable martingale, m, has a terminal r.v. mg: m; — mg, as.P, i

e L,(P), and m, = E(m, | F(t)). Conversely, if ZeL,(P), there exists a umforml\

2 integrable martingale, m, such that m;, = E(Z | F(t)).

~

’_a

2.8.14. Theorem (Doob’s Optional Sampling Theorem):

Let X be a Skorokhod supermartingale and suppose that there exists a r.v. YeL,(P)
such that X, > E(Y|F(t)),t > 0. Let S and T be F-stopping times with
S < T, then Xg and X1 are P-integrable, and Xg > E(Xp | F(T)).

3 WS 23
'.'J’l.'fﬂ’&{k{'.- G

SRR

2%

A7

- -
-
o’

--------

'A’l .n'kl \ % (‘ ’*

LRSS

P DYl YA

N .( ‘L;‘.ﬁm r‘.l'{)":lﬂi: ..\.‘..-....n;f \k\ \\x%\ \.‘l &‘M‘Cﬁb‘ 4




Chapter 3. Increasing Processes

3.1. Point Processes: The reader should recall the discussion on discrete point
processes in Chapter 1. Let (T(n),n>0) be a sequence of positive random vari-
ables defined on some filtered probability space, (2,H,F,P). This sequence is
called a point process (PP) if (T(n)) is an increasing sequence on {2 with values
in (0,00] which satisfies T(n,w) < T(n+1,w) for each natural number n and each
w in , if T(n,w) < co. We immediately extend the definition by setting T(0.w)
= 0 and T(oo,w) equal to the limit of the T(n,w) as n approaches infinity, for
each w in . Only on one or two occasions in this note will each T(n) not be a
stopping time relative to some non-trivial filtration. (As random variables, the
T(n) are always stopping times relative to the trivial filtration, which is defined
as H for every “‘time’ t.)

3.1.1. The "‘counting process’’, N = (IN(t),t >0), associated with a point process
(T(n), n2>0), is the stochastic process defined by setting N(t,w) := n, if T(n,w) <
t < T{n+1.w), and := o0, if T(0c0)<t. It follows that for t >0 and we(,

—d
n>

1
Since N and {T(n)) both contain the same information it is usual refer to each as

a point process. We will adopt this custom and reserve the name counting pro-
cess for those point processes which are non-explosive, in the sense that

N(t) < oo, for all real t, t>0.
This condition is equivalent to

lim T(n) = oo
n—mn"o

Notice that the non-explosive condition does not preclude either N(oc) = o or
N(x)<x. In both cases lim T(n) = oc. If, for example, N only has a single
jump. then T(n) is equal to oo for n 2> 2, by definition of the sequence as a point
process. The jump times of nonexplosive point processes, our counting processes,
do not have finite limit points.

Finally, in the Chapter on Dual Previsible Projections, it will be shown that
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},:' corresponding to every point process, N, there is a unique (a.s.P), previsible,
s increasing process denoted N, called the previsible compensator or the dual

o previsible projection, such that

: N(t) - N(t) is an F-martingale, (1)

o and

why!

oy _ R

‘::!" [T(*{) o Ae =4 .

i -

and Jacod(1975) shows that there is a version of N satisfying (2) and having the pro-

{r_‘ perty that AN< 1, for each t > 0.

0

"" We note that the point process, N, is also called a simple point process by vir-

tue of the fact that its jumps are always equal to 1.

;. :

‘-':;.: When we want to remind the reader of the underlying filtered probability <pace.

’\\j: we will write (N,P) or (N,F) for the point process and often refer to the (P.I)-

i point process.

'::, S Although we will deal almost exclusively with counting processes, most of the
::. j important results holding for such processes carry over to point processes and the
::,o'.' more general class of marked point processes. In order to take marked point
A .

processes into account and also to use these more general processes to understand
A0y the meaning (limitations) of the assumptions characterizing counting processes,
1 e, we will introduce marked point processes here and give a few examples. These
;:ﬁ processes will be studied in more detail in Chapter 4 and again at the end
e Chapter 6.
KK
i::'l:‘ We let Z = (Z(n),n>0) be an arbitrary sequence of random variables defined on
) . . .
:: ) and taking values in a space E; let (E,£) be a measurable space. Then. with
o (T(n)) as above, the double sequence (T(n),Z(n)) is called a marked point pro-
L
P, cess and E is called the mark space.
;' 4 A
ot If we define the process N = (NA(t),t>0) by
K
B
B e Y
\%e A )

’ NYw,t) = ¥ lir(n)<uzin)ea

's,."-’ n>1
oo
[ e
gy
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for A in €& Then N(t,w) := NE(w,t) is the point process introduced earlier.

The mapping
A — p(w,[0,t]XA) = NAw,t)

defines a random measure on [0,00) XE.

This random measure is the primary object of study in the classical {sans mar-
tingales) approach to point processes. This is exemplified in the works of Kallen-
berg[1976,1982] and Matthes, et al. Recently, work has started to appear (Hoe-
ven) combining martingale and random measure approaches. The first significant
modern work on random measures by the martingale community is Jacod [1975];
we will return to this paper and random measures in Chapter 4.

We will end this little digression with some examples of marked point processes:
(a) E = {1}. Then n(t,E) is just our original point process.

(b) E = {1,2,3,... .k}, then Z might be the number of messages arriving at a com-
puter at some random time, T(n).

(c) Use E as in (b). Brémaud defines the multivariate counting process, N =
(N(t),t >0) by setting

N(t,wi) = 3 Lj1(m)oolf(tsWIL[ z(n)mi (W)
n>0

and then defining N(t) by N(t) = (N(t,1),...,N(t,k)).

Naturally, most univariate counting process results carry over to this multivari-
ate process, including results on nonlinear filtering. We will not utilize this
. below. In applications to stochastic networks of queues it plays a significant role.

(d) This example is really about counting processes. Just note that when E={1},

the study of (T(n),n>0) includes the study of renewal processes as a special case,
where the interoccurrence times

Soe1 = T(n+1)-T(n)
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are assumed to be independent and identically distributed. Hence, it includes the
model for life testing, for example. Note that the counting process makes no
assumptions of interoccurrence time independence, and certainly no distributional
assumptions.

(e) It is probably clear that with the proper assumptions the marked point pro-

cess (T(n),Z(n)) is also a model for countable state Markov processes! A charac- -
terization of such processes can be given using the notion of ‘‘dual previsible pro- !
jection”.

Though by no means exhaustive, these examples should convince the reader that
point processes can be used in a wide variety of applications. We will look more
carefully at one particular application in the sequel.

3.2. Increasing Processes and Lebesgue-Stieltjes Stochastic Integrals: In
Chapter 6, where the major properties of stochastic integrals with respect to mar-
tingales are developed, we require some elementary facts about one of the sim-
plest of stochastic integrals, namely those involving integration with respect to
processes whose paths are of bounded variation. This theory alone would be
sufficient for the nonlinear filtering problem if we were able to restrict our prob-
lems to those dynamical systems where the state process was of bounded varia-
tion.

We will assume that the reader recalls the definition of a real valued function of
bounded variation defined on R. It is sufficient to recall that every such function
can be characterized as the difference of two non-decreasing functions (Also see
the Odds and Ends Appendix).

3.2.1. Definition: An F-adapted, P-integrable, nonnegative process A =
(A(t),t >0) is said to be increasing if the paths, t—A(t,w), are increasing and
right continuous, a.s.P (satisfying A(t) < oc, as.P, for all teR,). Note that
“increasing’’ does not mean ‘‘strictly’ increasing.

Additionally. A is said to be integrable if A(oc) = lim A(t), which always exists,
t—0

is P-integrable, that is, if EA(oc) < +oc. Then EA(t) < +o0, for all t>0.

3.2.2. Remark: Numerous authors talk about increasing processes on the
extended real line, [0,0c]. and not wanting to exclude ‘‘jumps’ at oo, write the
limit of A(t) as t — oo as A(oo-). The jump at infinity is then just

o ]
A Alac) - Aloc-). In this case, when A is defined on [0,o¢], it is said to be integrable
£
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il E{A{oc-)} < 0.

3.2.3. Remark: By definition, an increasing process, A, has increasing, right con-
tinuous paths, a.s.P. In particular then, A 1s Skorokhod. Further, A is adapted.
so every increasing process is optional relative to (F(t)). When A is an increasing
process relative to the trivial filtration, F(t) = H for all t>0, A is said to be a
raw increasing process. When a given discussion involves a nontrivial filtra-
tion, and we want to talk about a raw increasing process, we will often just say A
is an increasing, not necessarily adapted, process. These distinctions become
important in applications as well as in the theory, since the state of a process is
“‘observable”” if the process is adapted to the filtration representing the observ-
able history.

3.2.4. Remark: Denote by V¥ = V*F,P) the family of equivalence classes
(under indistinguishability) of increasing processes. Set BV := V* - V*. Then
BV is called the space of processes of bounded variation, or finite variation.
In particular, elements of BV have the property that almost every sample path of
each process is of bounded variation on compact subsets of R .

Let IV* be that subset of V* consisting of increasing, integrable processes and IV

be the set of differences of members of IVt . IV is then called the space of
oo

processes of integrable variation. AelV implies E [ | dA(s) | < oc.
0

3.2.,5. Let X = (X(t),t>0) be a measurable process, and AeV*. Then with each
path, t — A(t,w), we can associate a Lebesgue-Stieltjes integral

[ X(s,w) dA(s,w) := [ X(s,w) dA(s,w)
0 (0,¢]

where, as is the custom, dA(s,w) represents the measure associated with A, for
each w:

dA((a,b |,w):=A (b,w)-A (a,w)

0o

Now let X be a measurable process such that E( f | X(s) ] | dA(s)| ) is finite.
0

Denote the family of such processes, X, by L,(A). Then for X¢L,(A) the pro-
cess
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t

I{t,w) = fX(s,w)dA(s,w)
0

is well defined up to a set of P-measure zero. This is because Fubini's theorem
guarantees that

t

w-—»fX(s,w)dA(s,w)
0

is H-measurable (See Appendix A for details). Hence, I(t) is a random variable
for each t>0. Indistinguishable versions of the process I = (I(t), t>0) are
identified and the resulting equivalence classes are denoted by XA =
((X.A)(t).t>0) and called the (Lebesgue-Stieltjes) stochastic integral of X rela-
tive to A. As usual we have suppressed wefl.

3.2.6. Let XeL,(A), with AeV* . Then, the process ((X.A)(t), t>>0) is continuous
on the right (continuous, if A is continuous), and therefore by Lemma 2 of
Chapter 2, it is a progressive process. Hence, by an earlier remark, (X.A)(T) is
F{T)-measurable for each stopping time, T.

Also, since we can write,
XA =(X"A-(X)A,

X.A is the difference of two increasing functions, and hence, is a function of
bounded variation.

Further, if X is assumed to be F-progressive, then since A is F-adapted, Fubini's
theorem tells us that the process (X.A)(t) is F(t)-measurable (F-adapted) for each
t>0. Hence, in this case X.A is an optional process ( since we have already noted
that X.A is a right continuous process ). :

3.2.7. Remark: From Chapter 2, section 2.7, we know that if A is an increasing
process, and therefore Skorokhod and adapted, there exists a sequence of stop-
ping times (T(n)) which exhaust the jumps of A and have the same measurability
as A. Set AYt) = Y(A(T(n)) - A(T(n)-)) Ljin)cpit). Then A% is increasing

n

and A" := A - A? is continuous and increasing. Therefore, A® is previsible and
so if A is previsible, then A% is also. Finally. the decomposition A = A" + A% is
66
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unique, in the usual sense.

- L]

It is shown in Dellacherie [1972}] that A can be written in the form

A=A+ Y a(n) Lygm)co)
n>0

where a(n) > 0 for all n. A°is the continuous part of A, and the process AY is
called the purely discontinuous part of A.

It follows that

XA = X(A°) + ¥ a(n) X(T(n)) L{r(n),c0))
n>0

and so X.A is previsible, if A and X are previsible or A is continuous (since, in
the latter case, X.A is continuous).

This equation has the obvious consequence that when A is a counting process, N
= (N(t), t>0), where AN(t) = 1 or 0 for all t,

XN = ¥ X(T(n)) zn),c0)
n>0

3.2.8. The following Theorem is well known and easily proved. It was stated in
Chapter 1 for discrete parameter processes and will be extended, in Chapter 6, to
stochastic integrals with local martingale integrators.

3.2.9. Theorem:
Let A and B be two Skorokhod processes in BV. Then ABeBV and

A(t)B(t) - A(0)B(0) = {t(A(S) dB(s) + B(s-) dA(s)) . (3)
and
A()B(t) = loftl (A(s) dB(s) + B(s-) dA(s)) , (4)
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N
[ for £20. That is, in (3)
& A(t)B(t) - A(0)B(0) = (A . B)(t) + (B_.A)t),

\ where B_(t) := B(t-) := lim B(s) .

s—t-
, 3.2.10. Remark: Equation (4) is the correct analogue to the Chapter 1 integra-
tion by parts formula.

3.2.11. Remark: The last equation is often written in the ‘‘differential’” form
ey d(AB) = AdB + B_dA. Of course, this has meaning only through the Theorem.

‘Cj As in discrete case, the integration by parts equation can be rewritten in a more
T symmetric form,

N 3.2.12. Corollary:
oy
o d(AB) = A_dB + B_dA + d[A,D], (5)

0 \ . . . . .
»ft:»' where, the square brackets, or cross quadratic variation process is given by

[AB]it):= ¥ AA(t)AB(t).

—

N, 0<s<t

A where the summation is taken over the countable number of common discontinui-
o ties of the bounded variation processes, A and B, and A A(t) := A(t) - A(t-)

y '*":: Clearly. the equation for d{AB) is obtained from the Theorem by noticing that
e the Lebesgue Stieltjes integral, (A - A_).B, is just [AB].

The importance of the representation for d(AB) above will be recognized when it
T is demonstrated that the natural integrands for the stochastic integrals defined
. . below are previsible processes { and for instance A_is previsible).

PL 3.2.13. Remark: Recall that any martingale can be taken to be Skorokhod. If

our filtration F=(F(t),t>0) is quasi-left continuous, then any F-martingale. of
Noteg BV, is continuous at previsible times:

68

A x"&‘ . -—

R«
.....

I T I

T T A G A v S R R A T S G T NI PRI
DL, A 04 ..‘ ) e 2 Vo ﬂ & )t}.r "W APty -'\-‘_‘J'x-'_ i ‘.'_\.r.‘r_‘.-_‘.-_'.-.'.-"-- OABAT A ‘..-"J:I
- o b S 1% 0% A UR IS T T TN R R VG AR SRS A AL R AR R TR RS PR




PR

-

B

o

A0 M(T) = E(M(T) | F(T))=E(M(T) | F(T-)) = M(T-).

i

et Since under quasi left continuity, accessible times are previsible, we have that

N (BVY) martingales can jump only at totally inaccessible times. Therefore, under

% this condition on the filtration, integration with respect to martingales of

i:.t bounded variation is even permissible in the Riemann-Stieltjes sense when the
. integrands are continuous at totally inaccessible times. For example, when the

S integrand only jumps at previsible times, as in the case of Skorokhod previsible

; processes (Jacod,1979).

K

N 3.2.14. Remark: Liptser and Shiryayev([1978,Vol 2, p261] give a very informative

. example. Considering the LS integral of a Poisson process relative to the centered

',‘

et Poisson process, they demonstrate that (N.M)(t) is not a martingale, but that
" (N_.M)(t) is one, where N_(t)=N(t-) and M(t) = N(t) - ct, t>0, ¢ the Poisson
parameter of N. Notice that N_{t) is previsible, because it is left continuous.

. this out and observes that this is just one of the many reasons why previsible
ke processes play a central role in the theory of stochastic integration. As we
"y proceed we will meet numerous other instances to support this position.

¥

- 3.2.15. Remark: The following result is proved by Doleans and Meyer(1970.p.R9).

k',;'_‘ 3.2.16. Theorem:

P If X is an F-previsible process, M is an F-adapted martingale which belongs to [V
and X € L (M), then (X M){(t}, {20, is an F-martingale.

N

(L

’e:' We have seen the analogous result for martingale transforms in Chapter 1. More

o such results will be seen in Chapter 6 as stochastic integrals are extended to

o wider and wider classes of integrators. Moreover, these stochastic integrals will

K agree with the Lebesgue Stieltjes stochastic integral when the “integrator” mar-

;' tingale is taken to be a member of IV,

' 3.2.17. Remark: It is easy to show that M is a F-martingale iff E(X.M)(t) = 0,

N for all F-previsible kernels, X = gy, t>s and BeF(s). Brémaud [1981] points
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Chapter 4. Dual Previsible and Previsible Projections

4.1. Introduction: As observed earlier in these notes, measurable processes are
not necessarily adapted. If X is such a process (i.e.. measurable. not adapted )
and the filtration F=(F(t)) is interpreted as the history of observation connected
with some experiment, then path segments of X, X[O,t.] = (X(s). 0<s<t ), are
not observable outcomes of this experiment for every time t. Therefore. if it is
appropriate to derive information about the evolution of X=(X(t}) over a time
interval {0,t] from this experiment, this information must be estimated with the
aid of the history of outcomes of the experiment. One such estimate is N(tw) =
E(X(t) | F(t)){w), a.s.P. If one intends to use X to estimate the path segments,
X{o.) - however, then one is faced with the seemingly impossible task of pasting
together an uncountable number of the versions of X( (s) to obtain X(s.w) for all i
s<t and all w in some set K with the property that P(K) = 1. The results of
this section show that this can be accomplished uniquely, provided that the
estimating process is carried out at optional or previsible times.

In order to look at the results of this section from another direction. suppose that
the process X is adapted to (F(t)). Then it is well known that X is determined by
(F(t)) through E{ X(t) | F(t) ) = X(t), a.s.P (X(t) = X(t) a.s.P). That is, when X
is F(tj-adapted, X(t) is determined by the integrals E{ X(t} 1, }, for all AeF(t}.
Results of the first part of this section show that previsible processes X are
uniquely determined by the P - integrals of Xt on [T < oo], where T is previsi-
ble.

These two observations concern ‘‘previsible (optional) projections™ of a stochastic
The majority of results of this section concern the ‘‘dual previsible pro-
This projection concerns increasing processes and it plays a
The dual previsible projection

process.
jection” of a process.
fundamental role in the calculus of martingales.
will be defined in terms of previsible projections and ‘‘acmissible” measures, the
latter coming up next.

We will assume throughout this section that the underlying filtration
F = (F(t),t >0) satisfies the “usual conditions”.

4.2. Measures Generated by Increasing Processes: Let u be a measure on
a sub o algebra G of B({0,00)) XH, where ((Q,H,F P) is the underlying filtered pro-

bability space with H = o( | JF(t)) := F(o0).
t>0

We will follow Métivier and call g admissible, if for BeG and B evanescent.

A S S Y,
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#(B) = 0. This is similar to absolute continuity of measures: Let II(B) be the
projection of B onto 2. Then g is admissible if P{II(B)) = 0 implies y(B) = 0.

As an example of such a measure, let A be an increasing, integrable (A{ac )l (P))

process and set

p(C) =E{ [ lcls,w)dA(s,w)}, (1)
[0,00)

where CeG = B(R,)XH. This measure, , is admissible and bounded on
B([0,00)) X H.

With A as above, define p,, by setting

palX) =E{ [ X(s)dA(s)} (2)
[0,00)

on the space of bounded measurable processes X. Then g, is a linear functional
on this space. Observe that up(lc) = p(C).

It is easy to show ( e.g., first use simple processes, then pass to the limit) that

pa(X) = [ Xdp (3)
R.x Q1 .

for X measurable and bounded (or X positive) and g as in (1). In a common
abuse of the language, both pu and g, are often referred to as measures, u, as the
measure generated by A.

4.2.1. Remark: Later in this Chapter, measures generated by increasing
processes will be characterized and used to introduce and study the notion of
‘““dual previsible projection’”. Prior to this development, such measures together
with previsible projections will be used to state a criterion for the previsibility of
raw increasing processes.

4.2.2. Now take u to be as defined in (1) and let T be an F-Optional time. Set
(s.w) — Afs,w) := 1t )(s.w). Then A jumps at [[T]], the graph of T. and is
equal to 1 to the “right” of [[T]], that is, on [[T,o0)).
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Therefore,

J e (sw)dA(s,w) = 1 (T(w),w) Lircoo (W),
(0.

It follows that

#(C) = [1¢ (T(W),W) LiT<oo)(W) P(dW) = E{ 1c(T) Ljrco J- ]
0

and so, for any bounded measurable process X,

R.,x 0

where we have written Xt in place of X(T). This is most easily seen by first tak-
ing X to be a simple process and then passing to the limit. For example,

X = Yoy 1¢, , where X(s,w) = a; on C, (Cy) a finite partition of B(R+)X (1.

Then

fXdp = [Say 1g, dp=Y 0y #(Cy) = E{S ek 1¢(T) Yr<oo) }=E{ X1 L7<o] 1

With A = 17,0 as in the beginning of this paragraph, denote the admissible
measure g by pr.

The following Theorem establishes a mapping of bounded measurable processes
into previsible processes. This mapping behaves much as a conditional expecta-
tion operator.




4.2.3. Theorem:(Métivier, 1982)
For every bounded measurable process, X, there erists a unique, previsible pro-
cess, PX. such that

[X dpp = [ PX dpr, (5)
U U

where U = R, XQ, for every previsible lime, T.
4.3. Previsible Projections: The process, PX, is called the previsible pro-

jection of X onto G(PT), the F-o-algebra of previsible events. By equation (4).
this defining equation is equivalent to the requirement that

E{ X1l{r<o)} = E{ PXrlircon)) (6)
for every previsible stopping time, T. This equation in turn is equivalent to
E{ X1 lircoe) | F(T-) } = PX7 lrcoo)r (7)

a.s.P.

4.3.1. Remark: The proof of this last statement is quite easy. The trick is to take
the previsible time, T, to be the restriction, T, to any set C in F(T-). By the last
result in Section 2.6.5 T is previsible and the previous equation for the previsi-
ble projection applies. Since T takes the value co off the set C, a moment’s
thought gives this equation in the form

E{ X1lit<cnjlc } = E{ PX7lrenlc }-

Then using the fact that PXplip<y) is F(T-)-measurable, the result follows from
the definition of conditional expectavion and the arbitrariness of C in F(T-).

4.4. Section Theorems: The proof of the Métivier Theorem itself, however,
relies on one of the deeper parts of the general theory of stochastic processes,
namely, the so-called Section Theorems. These are the result of applying the
Theory of Choguet Capacity and Analytic Sets to measure theory. Of course this
theory will not be discussed here, but to establish some frame of reference for the
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projection theory of this section, we will state one of the Section Theorems and
two results that follow from this theorem. To some extent, this will further jus-
tify some of the grandiose claims about stopping times made in the introduction
to Chapter 2.

B2

-
-»
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e
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1.4.1. Theorem (Section Theorem):

TN

. If (O H,(F(t),t>0),P) is a filtered probability space and the random set A 1is
-c optional, then given any ¢ > 0, there ezists a optional time, T, such that

W

':' . . .

;'s x: {a) [[T]] is contained in A, and

L

. () €+P{w:T(w) <o} > P{IIA)},

>

::' where A — [I(A) 1s the projection map of R, X onto Q. Further, if A s previsi-
'.j ble, then T can be taken to be prcvisible.

AR The following is immediate

'v:‘_\

SO

r 1.4.2. Corollary (Dellacherie, 1972):

b Let X and Y be optional (previsible) processes. Then X and Y are indistinguish-

able :ff X{T) = Y{(T), a.s.P, for any optional [(previsible) time.

o

Y

’ x y . . . - -

Mot The proof given by Dellacherie will be paraphrased here because it is simple and
S;'f. indicates why the Section Theorems are important: Let A = { (t,w) : X(t,w) 5%~

A_ Y(t,w) }. Assume that optional X and Y are not indistinguishable, then A is not
racts evanescent. Then there exists an optional time T, whose graph is contained in A
:;‘v ! and which is not evanescent (by (a) and (b) of the theorem). Hence, X(T(w),w) 7%
;:::c,t' Y(T(w),w) on an event with positive probability. That is, X(T) = Y(T), as.P.
.:::;’ implies that X and Y are indistinguishable. Conversely, if X and Y are indistin-
e guishable, then P(II(A)) = 0 so that X(T) = Y(T), a.s.P, for all optional times
\-"Q-‘ T.
'ﬁ":j-: A second application proves the uniqueness statement in Métivier's theorem on
i “\3 the existence of previsible projections:
£
""p':
O
BN
Eh "
[’ ‘J

V), ‘"J
:'o,
ety
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1.4.3. Corollary:
Let X and Y be previsible bounded (or positive) processes. If for each previsible
time T one has

E{ Xrlir<o)} = E{ Yrljrcoop}s (8)

then the processes X and Y are indistinguishable.

The proof of is similar to that of the last Corollary.

Once the uniqueness of the previsible projection is shown, a monotone class argu-
ment centering on processes of the form: X := 1py (), with F in F(s) for s<t, is
used to show the existence of previsible projections. Previsible projections for

such processes will be given below in the Examples subsection.

On the way to proving the existence of previsible projections, Métivier proves
that

P(ZX) = Z°X

for all bounded previsible processes Z. This gives another important property of
previsible projections and one which again suggests that they behave like condi-
tional expectations.

Letting X be a bounded measurable process, we briefly note several properties
of previsible projections:

(a) If X is a previsible process, then PX = X

(b) The mapping X — PX is linear;

{c) If (X,) is an increasing sequence of bounded measurable processes, then the
previsible projection of the supremum of the sequence is the supremum of the

projections;

(d) If X is left continuous, then its previsible projection is left continuous.

4.5. Optional Projections: The optional projection, °X. of a bounded

w '\-.i >, -r‘; E\S - g’ :; a'
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measurable process X also exist, are unique, and satisfy (see equation (7))
E{ XT 1[T<oo] | F(T) } = OXT l[T<co]* (9)

a.s.P. (See Dellacherie, 1972 and Dellacherie and Meyer, 1981.) Thus, as with the
previsible projection, the optional projection can be written as a conditional
expectation, but with the conditioning algebra equal to F(T), rather than F(T-).

The properties listed above for the previsible projections have obvious counter-
parts in the optional case. The following properties also hold:

fe) PX = P(°X).
(f) X<Y, as.P, implies °X < °Y, PX < PY.

The last property says that optional and previsible projections are order preserv-
ing. The next property says that optional and previsible projections are not very
different.

(g) Q sections, B, of the random set, B = { °X 3£ PX }, are countable for all «
¢ 1. This means that on any path of a process X, its optional and previsible pro-
jections differ at only a countable number of time points. In general, random
sets, C, subsets of R, X 1, whose sections, C, = { t>0: (t,w)eC }, are count-
able for each w are said to be thin or “‘mince” in French literature. Therefore,
B = { °X # PX } is a thin random set. In the case of the Poisson process see
example (3) immediately following.

(h) An earlier remark, characterizing the previsibility of increasing processes, has
the following analogue under optionality: A is an optional increasing process iff
for all bounded measurable processes X, pa(X) = pu( °X).

4.5.1. Examples:

(1) X of the form X=12 1((,‘5” , where r<s are positive real numbers and Z is a
bounded measurable function.

Optional case: Set Y(t) = E{ Z | F(t) }. Y can be and is chosen to be a right
continuous modiScation having left limits. Since Y is adapted it is then optional.
Therefore,

sy ?
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E{ X1 lrcw) | FIT)} = EX LTV Z | F(T) } = L g(T) Y(T).

for any optional time T, where Y(T) = E(Z|F(T)) by Doob’s Optional Stopping |
Theorem. Hence, ° X = 1, Y- |

Previsible case: Take Y as before and let T be a previsible time. Let {(T(n)) be i
a sequence of optional times announcing T. Then Y(T(n)) = E{ Z | F(T(n)) } |
and Y(T-) = lim Y(T(n)) = E{ Z | o( | J F(T(n)) ) } a.s.P, (V.T8 Dellacherie.

n—oo

1972). But F(T-) = o( | F(T(n)) ), (III, T39.b Ibid). Therefore, Y(T-) = E{ Z |

F(T-) ), for previsible T. Finally, since T and Y(T-) are F(T-)-measurable, it fol-
lows as in the last case that PX = 1., gY_.

(2) Let S be a totally inaccessible time and set X = Lis): Then X{(T(w),w) =
lusn(T(w),w) = 1[T=S](W) a.s.P, for any previsible time, T. Therefore, E{ Xt
lir<~] ) = E ljr=s<o- The latter quantity equals zero as.P, by definition of
total inaccessibility. Hence, by the first Corollary to the Section Theorem, we
then have that PX is evanescent. Setting all the details aside, this should be
intuitively clear from the definition of total inaccessibility and any reasonable
interpretation of projection.

(3) Let X be a Poisson process with parameter ¢>0, so that X is optional (it is
right continuous) and, consequently, °X = X. Then PX=X_ , where X_(t) =
X(t-), t>0. This example can be used to illustrate the idea of thin random sets
defined in the previous section. Notice that the sections B, of
B = { X5 PX} are just B, = { T, (w) : n 2> 0}, where ( T, ) is the
sequence of jump times of the process X.

4.6. Dual Previsible Projections: Consider the measure, s, defined earlier in
this Chapter by setting pu,(X) = E{(X.A)(c0)} for all bounded (or positive)
measurable functions X, where A was an increasing pirocess. As noted, u, is
called the measure ‘‘generated’” by the process A. Let X be any positive measur-
able process, define another measure m(X) := E{( PX.A)(oc0) } and ask if there is
a nondecreasing processes A with the property that m(X) = p,(X). This ques-
tion is the same as interpreting pu,(X) as an ordered scalar product <X,A> and
asking about the dual, A, of PX, in the sense that < PX,A> = <X A>.

We will drop the subscript A on u, for a while, but retain the above definition.
Dellacherie shows that if uP is defined by setting uP(X) := u (P X) for every
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positive measurable process X, then uP is a o-finite measure on B(R,) X F(x).
The corresponding unique ( up to indistinguishability ) increasing process gen-
erating this measure is denoted by AP and called the dual previsible projec-
tion of the process A. The measure p®, is referred to as the dual previsible f
projection of the measure p. (E.g., Métivier, and Hoeven.) !

4.6.1. Remark: Assume the usual conditions on the underlying filtered probabil-
ity space (0,H,(F(t)),P). Dellacherie[1972, IV T41, T42] gives the following char-
acterization of measures generated by increasing processes:

4.6.2. Theorem:
A o-finite measure p on (R, XQ,B(R,)XH is generated by an integrable,
increasing (not necessarily adapted) process, A, iff

(a) p((0]]) = 0 andy(([0,t]) < oo, teRy,
(b) u is P-admissible.

Then A is unique up to P-indistinguishability.

Further, A 13 adapted sff
(c) n(0t]xB) = p(E(lp | Fy) Lo )

Jor all tcR and BeH.

4.6.3. Remarks: Recall that to avoid some complications in exposition we have
assumed as part of the definition of increasing process in Chapter 3 that A(0)=0.
This is Dellacherie's assumption also, but Jacod [1979] does not make this
assumption here, nor do Dellacherie and Meyer [1980]. These latter works also
do not assume that p([[0]]) = O, but that the measure has finite mass. As
defined in the beginning of this Chapter, condition (b) just says that u assigns
zero measure to evanescent random sets.

4.6.1. Remarks: The reader will notice that as we come to the end of this note,
more proofs will be given. This is especially true in Chapter 6. For a number of
reasons, we choose to prove the present Theorem:

Suppose then that u is generated by an increasing process as specified in the
statement of the theorem. We first note that the finiteness of g in (a) follows
from the integrability of A. The admissibility of u is obvious, since P(B)=0

R R oo ool
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implies that IXB, where I is an interval, is evanescent. Therefore, all that
remains of the necessity portion of the proof is condition (¢). We observe first
that A is F-adapted iff for all BeH

ElgA, = E(E(1pA,|F.)) = E(E(1g]|F})A,)

for all teR,. This is, iff A is orthogonal to all r.v.s of the form 15 - E(1g | F).
But the last equation is just condition (c), since when g = pu, is generated by A
and A is a adapted

ﬂA([O,t]XB) = E(_!-].”(,,t]](s,.)lB(S)d.A,3
0

= E(1gA,) = E(E(1g|F)A)
= E({ E(1g | F,) 1o,y dA,)

= pa(E(1g | F) Ly

Conversely, if the three conditions are satisfied, then for all BeH define

QyB) := pu([0,t]XB).

Then Qy(B) = O for all B and Q, is a bounded measure for all t>0. Admissibil-
ity of p shows that Q is absolutely continuous with respect to P on (2,H). Let
, ) d
A be defined by setting A, = %
Q, relative to P. Then Ag = 0, as.P, and A, is P-integrable. Since p is a

positive measure, As' < A,' , if s<t.

, a.5.P, the Radon-Nikodym derivative of

By Lebesgue’s Monotone Convergence Theorem, At' = lim At,,, in L(P), where
* n—oo

(t,) is any seqence decreasing to t. It follows that the convergence is also almost
sure (P). Hence, we can define the process A as a right continuous, increasing,
modification of the process A by setting A, = inf{A,’ : r rational and > t }

With this A, the measure generated by A satisfies
t
pa({0t] XB) = Ef1gdA, = ElgA,.
0

But since A is a modification of A’ , A, is, a.s.P, the Radon-Nikodym derivative
of Q, relative to P. Hence,
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ElgA, = [15dQ, = p([0,t]xB).
0

Therefore,
#al[0,t] XB) = u([0,t]XB)

for all teR, and BeH. It follows that u, = p, since the sets of the form
[0.t] X B are generators for the product o-algebra, B(R, ) XH.

Finally, we have already verified that A is adapted by condition (¢). Uniqueness
follows by noting that if G is another increasing process generating u, then
G, = A,, as.P, for each t, and G is a modification of A. Since G and A are
right continuous, Lemma 2.3.3 guarantees that they are indistinguishable.

4.6.5. Remark: Let X be any positive, measurable process and set
u(X) = E(PX.A,),

where A is a, not necessarily adapted, integrable, increasing process. Because of
the properties of linearity, monotonicity and continuity of previsible projections,
p is a o-finite measure on B(R,)XH. Therefore, by the last theorem, there exists
a unique increasing process, denoted AP, which generates 4. Hence, from the last
equation

EXA2 = E(PXA,).

We need the following lemma to conclude that the process AP is previsible:

4.6.6. Lemma: (Dellacherie[1972, V T28]) An integrable, increasing process,
A, 18 previsible iff for any two positive, measurable processes X and Y with the
same previsible projection u,(X) = pA(Y)

But if X and Y have the same previsible projections then from the preceding con-
struction

EXAP? = E(PXA.) = E(PY.A_) = EY.AR.

Hence, the Lemma shows that A¥ is a previsible process. Therefore, we have the
following

4.6.7. Theorem:(Dellacherie 1972.p107)
Let A be an integrable, increasing. not necessarily adapted, process with
A(0) = 0. For each positive measurable process, X, there erists a unique
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previsible, increasing process, AP, called the dual previsible projection of A.
such that

Q)

E{ [PX,dA,} = E{ [X,dAP } (10)
0

0

4.6.8. Remark: Brémaud (1981) and Meyer (1973) state this result in a slightly
different form which will be useful later on:

Let A be an integrable, increasing process with A(0) = 0. Then there exists a

unique (to indistinguishabslity) an integrable, previsible, increasing process, AP,
such that AP(0) = 0 a.s.P and

E{ [C(s)d AP(s) } = E{ [C(s)dA(s) }
0 0

for all non-negative, previsible processes, (C(s)s>0).

As indicated in this result (with C = 1), the duals of integrable processes are
themselves integrable. However, it may be shown that the dual projections of
increasing bounded processes are not necessarily bounded.

The following strengthens the definition of the dual previsible projection:
4.6.9. Theorem:
Let S,T be F-stopping times, with ST, and A an integrable, increasing process.
Then
T T
E{ [ PX(t)dA(t) | F(S)} = E{ [ X(t) dAP(t) | F(S)} (11)
S S
for any bounded (or posstive), measurable process X.
4.6.10. Remark: The proof follows from the definition of conditional expectation
and the definition of dual previsible projection. Let CeF(S), and set S and T¢

equal to the restrictions of S and T to the event C. Then we know that the sto-
chastic interval, ((S¢,T¢l]. is previsible. Hence, from the properties of previsible
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projections, we have
Isord) "X = Pllserg X ).
and from the definition of AP, the dual previsible projection of A, we have
PAl P(Yse1d) X)) = bBar( LiseTy X)- ‘
Therefore, i
pal Ysord) PX) = Bar(I(sorq) X))

This last equation is the same as

T T
E{ 1o [ PXdA} = E{1c [ X dAP}.
S S

Since CeF(S) is arbitrary, the last equation is equivalent to the statement of the
theoremi.

4.6.11. Definition: Two raw increasing processes, A and B, having the same
dual previsible projection are said to be associated. If A and B are associated.

then we write A p B.

4.6.12. Remark: Dellacherie shows that each equivalence class determined by the
relation p contains one and only one previsible increasing process.

4.6.13. Remark: We now set down some results whose main object is to charac-
terize adapted associated processes. This characterization will be extended by

“localization” in Chapter 6.

4.6.14. Theorem:
Let AelVy. Then the following statements are equivalent:

(a) A i3 a martingale;
(b) AP i3 evanescent;
(c) pa vanishes on previsible random sets.
Remark: There is very little to prove. First consider the equivalence of (a) and

(c): Let s<t and BeF, Then it is easy to see that
pal ((sp.tp]] ) = E(lg(A, - A,)). Recalling the generators of G(PT), it is clear

R R s i
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that this equation entails the equivalence of (a) and (¢). Let S and T be stopping
times, S<T; then ((S,T]] is previsible. The equivalence of (b) and (c) follows in a
manner similar to the last case by noting that u,( ((S,T]]) = wuadl ((S,T]] ).
(We have left off some details in the two pairs of equivalences concerning the gen-
erators {0} X B and [[0g]], BeF, respectively, but these are easy.)

The following Corollary is the desired characterization:

14.6.15. Corollary:
Increasing, integrable processes A and B are associated iff the process M = A - B
1 @ martingale.

Although the implication (b) implies (a) gives the necessity of this Corollary, it is
instructive to use the previous Theorem 4.6.9. The necessity of the Corollary fol-
lows from the previous Theorem by setting X equal to 1 and using the fact that
A and B have the same dual previsible projections. This yields

E(A(t)- A(s) | F(s)) = E(B(t)-B(s) | F(s))

for all real numbers s and t, with s < t. Since A and B are adapted (part of the
definition of increasing process), it follows that A - B is a martingale.

Conversely, A - BelVy and A - B is a martingale. The last Theorem tells us
that 0 = (A - B)P, so that linearity gives AP = BP. Therefore, ApB.

4.6.16. Deflnition: Let A be an integrable, increasing process. (Hence A is
adapted.) The dual previsible projection of A is called the (previsible) compen-
sator cf A, and is denoted by A.

4.6.17. Remark: The previsible compensator of A is that previsible process that
must be subtracted from A to obtain a martingale.

4.6.18. Remark: In the Chapter on martingale transforms, we noticed that in
discrete time, if an increasing previsible process was a martingale, then it was
a.s.P constant ( and equal to zero if it took the value zero at the origin ). A simi-
lar remark can be made for the continuous time analogue. Again this follows
immediately from the last Theorem.

A direct proof repeats part of the proof of Theorem 4.6.14, perhaps more care-
fully. The argument goes as follows: If A is an integrable, increasing process
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; which is also a martingale, then E{ 1p{A(t) - A(s)) | F(s) ) = 0. for all D in F(x).
» But this says that the measure generated by A vanishes on events of the form
‘ Loyxpe St and D in F(s). It is also obvious that this measure vanishes on
) {0} X D. where DeF(0). Since these events are generators of the g-algebra of F-
% previsible events, the measure generated by A vanishes on the entire F-previsible
) algebra. Therefore, p,dX) = pu( PX) = 0, for all bounded. measurable X. It

follows that AP is evanescent. But if A is previsible, then A = AP, and so A is
evanescent. Therefore,

1.6.19. Theorem: Integrable, increasing, previsible martingales are evanescent.

1.6.20. Remark: This will be extended to local martingales in Chapter 6.

K 1.6.21. In the section on Lebesgue-Stieltjes stochastic integrals we have noted
K that if XeL,(A) is positive, then X.A is an increasing process. It is natural to con-

sider the dual previsible projection of X.A when either X or A is previsible. Del-
lacherie, V T31, 1972, shows that

¥
o
3 (1) If A is an increasing previsible process, then (X.A)P = PX . A;

(2) If X is a posstive, previsible, L,(A) process, then (X.A)P = X.AP.
“
N 4.6.22. Remark: We will prove the second proposition using the ordered scalar
N product notation introduced above: Let Y be a positive, measurable process, then
\
t.
: <Y, (XAP> = <Y (XA)> = <VPXA> =
B <YXPA> = <YXAP> = <Y XAP>.
)

4.6.23. Remark: Dellacherie, 1972, discusses the notion of absolute continuity of
‘; increasing processes. This is of some importance in the analysis of counting
K processes. Let A and B be (raw) increasing processes. A is said to be absolutely
‘S continuous relative to B if Y.B = 0 implies Y.A = 0 for all positive measurable

processes, Y. If g and X\ are the measures generated by B and A, respectively,
then this is the same as saying that X\ is absolutely continuous relative to pu.
Thus, if f is the Radon-Nikodym density of X relative to g, then, using the nota-
tion from the beginning of this Chapter,

[Xtdp = [Xdx
U U
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or, equivalently,

E(NXI.B) = E(X(.B)) = E(X.A)

for all bounded measurable processes X. The unicity {up to indistinguishability)
of the generating processes then implies that A = {.B, where by definition, f is a
positive measurable process in L;(B). When A and B are both previsible,
A = AP = ({.B)? = P{.B. Therefore, if all the assumptions of this paragraph
hold and A and B are previsible, then there exists a previsible process geL(13)
such that A = g.B. That is, f is previsible.

4.6.24. Remark: In nonlinear filtering of point processes, N, an important class :
of problems is covered by the case where A, the dual previsible projection of N, is ;
absolutely continuous relative to the deterministic process, B(t,w) = t, a.s.P. In
this case, f is called the intensity of the point process N. More precisely, recal-
ling that we have suppressed the underlying filtration, (F(t),t>0), and recogniz- ‘
ing that the dual previsible projection depends strongly on its filtration, and the

underlying probability, P, f is cailed the F-intensity, or the (P,F)-intensity of !
N. The intensity is, in general, a previsible stochastic process. '

1.6.25. Remark: Now let's cover the last paragraph again from a different start-
ing point. We return to Theorem 4.6.9., with X = 1, and take B to be the dual A
previsible projection of A. If it is further assumed that B is absolutely continuous |
relative to Lebesgue measure, with density X\, then as defined earlier, \ is the F-
intensity of A and satisfies

E(A(t)- Als)) | F(s}) = E( fXy)dy | F(s)).

This equation becomes extremely important when A is a counting process.
Brémaud, 1981, is concerned almost exclusively with this case and the sections
below on nonlinear filtering will deal mostly with this case, following Brémaud.
[1978,79.80,81]. For now we just consider the simple example when A is a one
jump counting process: A(t) = lir<y with T an F-stopping time. With this
definition of A the last equation becomes

J P(s<T<t]|F(s)) =E([X(y)dy | F(s))
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Using the “little o'’ notation, this statement has historically been written some-
what less exactly as

P(s<T<t|F(s)) = Ns)(t-s) + o({t-s), (t—s+)

To justify this statement in a simple case, assume that X is right continuous and
use the identity

t t
I ) dy = M) E-s) + (-5 i gy [N - () dy )

17. Random Measures and Jacod’s Formula: In this section we will intro-
duce a useful formula for calculating the dual previsible projection of a point pro-
cess. The derivation of this formula in its most general form is due to Jacod in
his 1975 paper on multivariate (marked) point process. (The origin of the for-
mula is contained in the paper of Delacherie {1970} which considers a point pro-
cess with a single jump. Also see Brown [1978] for a short proof of the formula in
the case of simple point processes.) Although the results of Jacod's paper are
extremely important and go far beyond just the formula and, as pointed out by
Jacod, reading the paper does not require an enormous technical background we
will not attempt to give a digest of its contents. Our goal is just to irtroduce
Jacod’s “‘hazard” function formula for the compensator of a marked point pro-
cess, to do this without proofs, but with enough preliminary explanation to allow
one to understand why the formula holds. To accomplish this we will first show
how to develop a discrete parameter version of the Jacod formula in the case of a
simple (unmarked) point processes. Then we will suggest its continuous time
analogue, recall (and extend) the concept of a random measure from Chapter 3

o and state the general Jacod formula together with some useful special cases.

:: Examples of the use of the formula are given in Chap'er 5.

M

o . . :

ES.' Recall the discussion and notation of Section 1.10 on discrete point processes,
n

n (Np, FoneZ,). So N, = Y X, with the X, being 0-1 Bernoulli random vari- J

& k=0

A ables. As in Chapter 1, let X\ = (X\;) be the F-intensity of the point process

e, 4

k'u\i (Xk) ThUS,

; Xk == E(XkIFk—l) == P(Xk =1 I Fk—l)‘




Lo
&
ass
W fork>1.Xy = N\ = 0.
5
'.x _ Paralleling the assumptions of Jacod we take the filter F to be the internal his-
-‘,.'_' tory of the discrete point process X. Recall the definition of the “jump’ times
:,: (T,) of the counting process N. Then
'n Nm = El[TnSm]'
. nZl
"
;’:' It is clear that this is a finite sum since the stopping times (T,) are integer
. valued. But we will continue the practice of writing it as an infinite sum.
(L%
A We prove the following formula for the intensity of the discrete point process.
- (Convention: If a and 3 are two functions and B(w) = 0 implies that a(w) = 0,
;‘ then it is natural to define the quotient _c/;_ as zero whenever 3 vanishes.)
i
- 4.7.1. Theorem:
" Under the assumptions stated above
k.- P(T,=k | Fr_)
o M = E : YT, T (12)
. &1 P(Ta 2 k | Fr,)
" where FT- - O'(Tl, et 7T])
8 )
i
o .
N4 First note that
-3
" Xk == ANk = E l[Tn-k]’
n2>1
i‘ so that
n M = EX|Fy) = YDP(T, =k | F,)
": n>1
The following relation holds for the trace o-algebra on [T, ; < k-1 < T]:
EE Fk—ln[Tn—l S k-1 < Tn] = FT,Nn[Tn—l S k-1< Tn] (13)
g
‘. Observe that [T, < k-1 < T JeFy_, since the T's are F-stopping times and
» [Toy S k-1 < Tyl = [Toy S k-1 <k < Ty,
,‘;’: since the stopping times are integer valued.
S,
- It follows from the last equality that
5: T, = k] = X4 = ATy < k-1 <k < T, (14)
:
37
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We need the following variation of Bayes Theorem:

1.7.2. Lemma (Brown [1978)):
Let (QH.P) be a probability space. If G and K are sub o-algebras of H, BeH,
CeG and
GNC =KNC

Then
P(BNC | K)

P(C | K)
on C and = 0. on the complement of C, where P(C|K) s a version with
P(C|K)# 0 on C.

I

P(BNC | G)

Remark: Brown does not give a proof of this Lemma, but it follows easily from
the ‘quotient rule” for Radon-Nykodym derivatives by paying careful attention
to the use of the restrictions of P to the various sub o-algebras involved in the
hypotheses.

Using this Lemma, which applies due to (13) through (14), we have

P(T, = k|Fq,)

P(T P(T, > k | Fr_) Lyr, o)

= k|F.) =

n

and consequently formula (12).

Having obtained formula (12) for the ‘‘first difference’” of the compensator of a
discrete point process, it is natural of conjecture that the compensator A of a

point process N == (N F,,t>0), where F, = o(N;s<t) and N(t) = } Lir, <y
n>1

Z PT edt l FT
M = LT, STy, (T )

This equation does indeed hold and occurs in various forms (e.g.. Brown [1978].
Liptser-Shiryayev [1978]) and in numerous applications (e.g., Jacobson [1982]. Gill
[1980]). We will come back to this case at the end of the present Section where it
will occur as a consequence of the general Jacod formula. For this purpose we
need to recall the concept of marked point processes and random measures which
were mentioned briefly in Chapter 3.

satisfies
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4.7.3. Remark: Let (T, ,neZ,) be a point process relative to the probability space
(,H,P): (T,) is an increasing sequence of random variables on 1 with values in
R, and such that T, < T,4y on [T, < o0]. Set N, = Ty <y

n>

Let (E,£) be a measurable space and (Z_,neZ,) a sequence of random variables on
1 with values in a space E. Hence, the Z, are H-measurable relative to §. (Z,) is
called the sequence of marks and E the mark space. E is assumed to have the
structure of a Borel subset of a complete netric space. (This assumption is
sufficient for the existence of regular conditional distributions of random variables
with values in E. (Shiryayev [1984].) The usual applications will have E = R",
for some natural number n, or E = RZ*.)

The definition of the range of the sequence of marks is extended in the following
way: Let ¢ be some point exterior to E and define Z (w) = ¢ iff T (w) = oc
(the nth event ‘“‘never occurs’’). To understand why this extension is made see
Jacod[1979, p.74]. Finally. let Zgle) = 6 for all e in E and T, = 0.
Spe1 = To41 - Ty, for n2>0. The sequence (T,Z,) is called a marked point
process.

Let

NLA = S l[T,,Sn] l[Z,,cA]-
n>1

Then N” counts the number of times jumps of N have marks in A.

Set E, = E| J{s}, E = (0.00)XE, E§=Eu{oo,g} and @ = OXx[0.0c)XE.
With an analogous meaning, let &, £ Ec be the usual o-algebras on E, i E
respectively. (E.g., € = B((0.00))X¢.)

¢

Let (Q.HF,P) be a filtered probability space with the filtration F = (F,.t>0).
Then if IT = TI(F) denotes the o-algebra of F-previsible subsets of (1X[0.oc).
set Il := I(F) = TIX¢& where F = (F.t>0).

With this structure, we call the family g = {u(w..):weQ?} of nonnegative func-
tions a random measure on (E.€) if jt 1s a positive transition measure (Appen-
dix A). That is, if

(a) w—p(w,A) is H-measurable for each Ac€, and

(b) A—p(w.A)is a positive o finite measure for cach we(2.

g9
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:5"' Further, a random measure g is said to be an integer valued measure if
GG
oy (¢) the mapping w—»y(w,A)ez+, for each Ac€, and
‘:-f:\:
fé: (d) p(w,{t} XE)<I, for all we? and t>0.
AN
“" Let u be a random measure on (Ef). W= (W(w,t,z),weQ),t >0,2¢E) is a non-
" 2 negative H X B((0,00)) X £ measurable function on {, set
i
iy Wrp(w) = [ W(wsz)p(w,ds,dz).
. ;‘3 {0,t|]xXE
., By denoting the Radon-Nykodym derivative of W{w, . ) relative to the measure
.i;:' p(w..) by Wop, we can write the last definition in the form
N
!,.x-:‘f Wikp (w) = (Wop)(w,(0,t] XE).
"..:::
B Ay ) -
A random measure 7 is said to be F-previsible if for each positive [I-measurable
_}.:—'. process X, the process Xx», is F-previsible.
!‘::::)-
! E" The marked point process (T,Z,,neZ,) is completely determinded by the random
! measure g defined on (E,€) by setting
\‘: mwB) = IB(Tn(‘V)vZn(W))llT,,<oo] (16)
oAy n>1
[~ -—
: “"i for all Be£. We will often refer to such a measure as a point process measure
N or the random measure of a point process.
o
2,2\: It will be convenient to also write g in the form
)
N -
g pwdtdz) = €rr w2y 46:42) Uz, <o (17)
i '(-“ nZl
where ¢, is the Dirac measure ( unit mass concentrated ) at the point a.
o4
:'é:: Following Jacod [1975], to each probability measure P on (£2,H) and point process
b‘;:: random measure u we associate a nonnegative measure M, on (€1,IT) defined by
RN setting
R M, (W) = E(Wsp)y)
;:::'::: for any nonnegative [I-measurable function W on {I. Jacod then proves
\":"
R
T 4.7.4. Lemma:
b If n 1s a random measure such that M, is o-finite, then there erxists a unique ( up
S to a P-null set ) F-previsible random measure n such that for each positive Xell.
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M(X) = M, (X).

n

Remark: Comparing this result to Theorem 4.6.7., it is clearly appropriate to call
the random measure 5 of this Lemma the dual previsible projection of the
measure 7. In a moment, we will point out the more compelling reason that
n- r)' is, in a natural sense, a martingale.

PR XA XX ) -

In order to apply this Lemma to the random measure g of a marked point pro-
cess (refer of equation (16)), Jacod shows that M, is o-finite on (Q.IT). Then he
obtains

S e g - -

4.7.5. Theorem:

If (T,.Z,) ts a marked potnt process and p 13 given by (17), then there exists a

b unique (up to modification on P-null events) F-previsible random measure v such
that for each positive previsible process X (Xell),

E [ X{tz)p(dtdz) = E [ X(tz)v(dt,dz). (18)
(0,00} XE (0,00)xXE

Jacod then uses (18) and one of the Section Theorems to show that the dual
previsible projection v of u in (18) can be chosen so that

« v{t}XE) < 1 (19)
and

A[T 4, 00)XE) = 0. (20)

X Remark: Set AC(w) := y(w,(0,t]XC) and A, := AF. Then A is the compen-
sator of NE =N, = 3 lit,<y and inequality (19) says that the jumps of A
n>1 -

have magnitude not exc::eding one: 0<AA,<1. Equation (20) says that A does
not charge the random set [T_,00).

In order to emphasize the connection between this and earlier results of the
Chapter (when E is a singleton set), we note that the dual previsible projection of
the marked point process measure g is characterized by (19), and (20) together
with the requirements that

(i) the process (/((0,t] X B),t>0) is previsible for each Be¢,
and

(i) m™ = p((0.tAT]XB) - A(0tAT,|XB), defines a
n
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uniformly integrable process m!?) = (m,™,t>0), for each n
> 0 and Beé.

4.7.6. Remark: Set G, = o(N s<t,Ae§). It can be shown (e.g.. Itim [1920],
Brémaud [1981]) that The filtration G is continuous on the right and
Gg = 0o(Ng\,, t>0, Ac), where S is a G-stopping time and from this that for
n>1,

GT,, = a’(Tk,Zk,lSkSn) (21)
and
G'rn_ = U(Tk,zk,Tn,lSkgﬂ—l).

Now if we take into account the probability measure P, and define F,, t>0. to be
the smallest o-algebra generated by the union of the family, I, of all P-null sets
in H and G, then the family F retains the right continuity of G. Therefore, since

F, = o(TJG,) (22)
1s complete, it is a filtration satisfying the ‘“‘usual conditions’.
For each neZ,, let K (w,dt,dz) be a version of the regular conditional distribution

of (Sp,Z,) given Fp_ and H(w,dt) = K (w,dt,E), the conditional distribution
of S,. K(w,.) is a probability on E; while H (w,.) is a probability on (0,00].

We can now state the Jacod formula:

4.7.7. Theorem:

With the filtration F = (F,t >0) given by equation (22), the dual previsible pro-
jection v of the random measure u of (17) salisfies

Adt.dz) Z K, (dt-T, . dz) \ o
,dz) = ' y
£ H,([t-Tq_y,00]) [Ta1<t<Td

4.7.8. Remark: Several examples of marked point processes were given in
Chapter 3. But for the purposes of this section an informative example to keep
in mind is that of a jump process. A jump process, X = (X,.t>0), is a
Skorokhod process all of whose paths are step functions (with only a finite
number of jumps in any bounded interval of time. Appendix A). If we let the
sequence (T, ,n>1) denote the sequence of jump times of such a processes X and
(Z,,n>1) the sequence of jump sizes of X at these jump times. Z, := AX,, then
with the proper conventions at time 0, (T,,Z,) is a marked point process and
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Xyw) = Xo(W) + ¥ Z,(wW) Ljp, oop(W,t): (24)
n>1

In this case the random measure g in (17) is called the saltus measure or jump
measure of the process X.

In this case, with the filtration as in (22), the Theorem of Jacod shows us that
the dual previsible projection v of the saltus measure of X can be written in the

form
Z P(Tpedt,Z edz | Fr_ )
V(dt,dZ) - P(Tn zt | FTn_‘) 1((Tn_1,Tn]]' ( ))

We have expressed the conditional laws of (23) in terms of the process (T,)
instead of the inter-occurrence times (S,) so that we could make a direct com-
parison with the discrete point process case given in (12). As one can see, (25)
could have be conjectured from (12).

14.7.9. Remark: From the standpoint of the creators of the General Theory of
Stochastic Processes and existing literature, one would deduce (12} (similar
remarks would hold for its marked analogue) from (23). To see how this can be
accomplished, we will use the notation for discrete point processes given at the
beginning of this Section and let { ] denote the ‘‘greatest integer’ function. Since
it does not make the problem more difficult, we will assume in our discrete
parameter case that there is a sequence of marks, (Z,). Thus, we start with the
integer valued times (T,), the sequence of marks (Z,) and the filtration
F = (F,,n2>0). The filtration will be the one defined by

FT,, = U(Tk,Zk,lSkSn,F) (26)
and
Fr_. = o(TyZ, T, 1<k<n-1T).

Once we define the continuous time filtration, this is enough information to con-
struct the random measure g and its dual previsible projection v, as well as the
continuous parameter point processes, NB = (NBt>0) and N:= NE. The
continuous parameter filtration F can be defined .})y setting F, := F[!l' Since
the times are integers, this gives in particular that Fp = Fy .

Thus all the main features of an induced continuous parameter marked point
process have been defined. For example, the dual previsible projection of N is
A, = (0t} XE). To recover (12) from (23), just define the F-intensity by
Ay = v{{[t]} XE) and the result follows. By Jacod's Theorem then, 0<\ <1.
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Certainly this is the proper route to (12). But from the standpoint of building an
intuition and gaining the interest of practitioners from other fields the discrete
parameter approach has some worth.

4.7.10. Remark: We will close this Section and the Chapter by stating oft used

forms of Jacod's formula for unmarked point processes. Assume that the filtra-

tion is given by (22) with E = {1}, so that G (in {22)) takes the obvious form. If .

the point process N, = 3 Iir <y has dual previsible projection A (with
n>1

Ag =0), then using the notation of Jacod’s Theorem (23) we have

A, = 1{(0,t]), so that equation {15) holds.

Also, in the unmarked case, H, = K_, so that (assuming the point process is
non-explosive) we can write the compensator in terms of the conditional inter-
occurrence time distributions by integrating equation (23) over (T,_,(w).t]. for
T, <t<T,w) and then making a change of variable to obtain:
t -Tha(w)
Afw) = Ar_(w) + { dK, (w,s)/(1-K {w,s-)), (27)
when T _(w)<t<T (w), n2>1.

Here is a particular example of (27): Let K, (y) = 1- e_x"y, fory > 0, zero oth-
erwise; let E = {1}. Then, from (27),

At = AT,,_l + kn(t' - Tn—l)v
when (t,w)e((T,_;,T,]]. This yields the interesting relationship
AT" = AATrH = >‘n(Tn - Tn—l)!

for Markovian systems.

Formula (27) can be rewritten in terms of the conditional distribution functions
of the (T,). (So «can (23), of course.) For this purpose, let
L.(ws) = K (w,s-T, (w)), then L is the conditional distribution function of
T, given FTH and
t AT,
Ay =Ap_ + [ dLy(s)/(1-Ly(s-)), (2R)
To
on [T, <t<T,], n>1. Simple direct proofs of equation {28) without the aid of
(23) can be found in T. C. Brown [1978] and Liptser, Shiryayev [1978].

Finally, we point out that if the point process N has an F-intensity
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A = (N\.5>0) (i.e.,, if A is absolutely continuous with respect to Lebesgue meas-
ure, with X as the Radon-Nikodym derivative), then
kintD(wt - T (w))

A(w) = E z L(( T, Tyt [J(Wot) (29)

SJ(n+1
n>0 I\( + )(W,[t - Tn(W),OO))

where k(™! is the conditional density of S_,, give Fr. Hence, we have an

interpretation of the intensity as a conditional hazard function.




. Chapter 5. Local Martingales and Semi-Martingales

5.1. Local Martingales: The important concept of local martingales was intro-
: duced by K. Ito and S. Watanabe in an article titled Transformation of Markov

‘ :" Processes by Multiplicative Functionals, published in the Annals of Institute of
«. Fourier in 1965. This concept provides a generalization of martingales which will
5 be used to extend the stochastic integral developed in Chapter 6 beyond the class
N of square integrable martingales.
':S 5.1.1. Definition: An adapted, Skorokhod process M is said to be an F-local
b~ martingale iff there exists a sequence of F-stopping times, (T(n).n>1), increas-
ing to oo as n— oo, such that for each n, m, = (M, T} £ >0) is a uniformly
7 integrable F-martingale.
.:, We also introduce the term F-local L -martingale as a process. M, for which
=N there exists a sequence of F-stopping times, S, 1 oo, such that for each n.
m,(t) = MO (t), t>0, defines an L -martingale.
5.1.2. Remark: The notation is attempting to say that for each n, the process
defined by t — m_(t) = M(T(n)~t) is a uniformly integrable martingale.
_:: The sequence (T(n)) is called the localizing sequence of the local martingale. or
::‘i: of the local L-martingale. This device of only requiring desirable properties such
.f_: as boundedness and integrability locally ( on stochastic intervals [[0.T(n))) ).
occurs frequently in the theory of martingales and will be discussed at some
, length in Chapter 6. Relative to paths, this particular form of localization is in
:::'. the same spirit as truncation of functions in classical analysis and probability
:ﬁ theory. with the further qualification that it is intended for use on processes that
o will occur as integrators in (stochastic) integrals. Another type of localization by
b stopping times for integrands will occur in Chapter 6. In the study of mar-
Ay tingales. localization is a type of path-wise truncation that is mathematically
,;‘_ tractable because of the Doob Optional Sampling (Stopping) Theorem.
I
S 5.1.3. Remark: The definition states that {m,(t), F(t), t>0) is a uniformly integr-
_ able martingale for each n>0. This can be proved equivalent to the same require-
._':-:_': ment on (m,(t), F(T(n)~t). t>0), Kalianpur [1980].
:::::: 51.4. Remark: Actually, the definition of a local martingale does not have to
include uniform integrability. This can always be achieved by replacing T{(n) with
e T(n)~k, for some fixed k>0. This remark i1s made to highlight what is really
'.;: being assumed. In this spirit, we remark that if X is a bounded local F-
e
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martingale. then X 1s an F-martingale.

Just notice that X{y~T(n)) — X(y), asP. y > 0, as n — o, and since
E{X(t~T(n)) | F(s)) == X(s~T(n)), for s<t, the boundedness allows us to pass
to the limit under the »xpectation as n — oo to obtain E{ X(t) | F(s) ) = X(s).
as.P.

Similarly, using Fatou's Lemma (the liminf part), it is easy to show that a
positive local martingale is a posttive supermartingale.

5.1.5. Remark: Every martingale 1s a local martingale. To see this, take T{n)=n
and let M be a martingale. Then

MiT(n)~t) = M(n~t) = E{M(n) | F(t~n)} = E{M(T(n)) | F(t~T(n))}.

It follows, from the characterization of uniform integrability given in Chapter 2.
with M(T(n})) = Z(>) =Z(>c.n). that t—=M(T(n)~t) is a uniformly integrable
martingale.

5.1.6. Finally, Chung and Williams give the following converse of sorts to the
previous observations.

5.1.7. Theorem:

If M s a local L,-martingale and if for each t>0, {| ML-T(k) | } #s uniformly
integrable, where (T(k)) 1s the localizing sequence of M, then M is an Lp-
martingale.

5.1.8. Remark: We observe the following fact, which will explain to some extent,
the Ito-Kunita-Watanabe approach to stochastic integration, which builds on the
class of square integrable martingales. Consider an almost surely continuous mar-
tingale, m. Define the sequence (T(n)), by T(n) := inf{ t : [m(t)] > n }, and =
oc . if {...} = empty, for each positive integer n. Each T{n) is a stopping time by
results in Chapter 2 concerning debuts. By Doob’s Optional Sampling Theorem,
m{t~T(n)) is a martingale, for each n, and | m(t~T(n))| <n. for all t>0. It fol-
lows that the stopped continuous martingale is bounded on the interval [[0.T(n)]].
and so ‘‘square integrable’, in a sense to be made precise in Chapter 6. There-
fore, once the stochastic integral has been defined for square integrable mar-
tingales, it is available for all continuous martingales by localization.

[t should be noted that if the trajectories of m are not continuous then
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\2‘: m(t~T(n)) is bounded only on [[0, T(n))). We have no idea of the magnitude of
L any possible jump at T(n). Providing for this, in extensions of the integral, is one
- of the difficult issues in the construction of a stochastic integration theory for
}_3 arbitrary local martingales, rather than just for continuous local martingales.
: \N 5.1.9. Having hinted at one use of localization we will now formally state and
" prove a result (Chung-Williams[1983, p.21]} that is required for the work in
Chapter 6:
o
';,;;' 5.1.10. Lemma:
:l»
—_ Any continuous local martingale 1s a local L-martingale for any pe[l.oc]
R
f}::: The proof of this technical result depends strongly on the previously stated “con-
'Q'-x‘,_ verse'' of Chung and Williams, so the idea of the proof is to figure out how to
e stop the local martingale in such a way that it defines a sequence of uniform's
integrable local martingales. Let m be the continuous local martingale with local
\ izing sequence (T,) and set S, = inf{ t > 0: |m(t)| >k }, a sequence of
o stopping times (Chapter 2).
L
Then R} := min(S;,T,) defines a double sequence of stopping times. So
T Doob’s Optional Stopping Theorem tells us that (m(t ~ R )) is a double sequence
’:f;j: of martingales. Further, by definition of (S, ), for each k, this sequence of mar-
"::f' tingales is bounded by k for all n. Therefore, m* (t) := m(t ~ S, ) defines a
‘ martingale for each fixed k. Hence, (S;) is a localizing sequence for m such that
.‘-: for each k, m* is bounded and so in L, for any p>1.
<
~._, 5.1.11. Remark: There is also a close relationship between martingale transforms
:.i and local martingales. Let X be adapted. It can be shown that X is a (discrete
timej local martingale iff X is the transform »f a martingale( Meyer [1973] ) It
ey follows that if X is a P-integrable, local martingale then it is a martingale. (This
'.-j: is not true in continuous time.) So a local martingale, in discrete time, is not
":::"". much of a generalization of a martingale.
- 5.2. Semi-Martingales: We have encountered the concept of semi-martingale
several times in this note. We can now give a general definition of this concept.
:;: v 52.1. Definition: A Skorokhod process, X = (X(t),t>0), is called a semi-
j martingale if it allows the following decomposition:
P
? 4:::.
'
-
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« X(t) = X(0) + m(t) -+ A(t),

' where m is an F-local martingale, null at time zero and A is a process of bounded
. variation (BV(F})).

-
~ 5.2.2. Remark: In the last section of this chapter we will give a number of
. : examples to illustrate how a wide variety of particular processes can easily be put
£, into the form of a semi-martingale.
' Recall the Doob Meyer Decomposition in Chapter 1. There are numerous varieties
R of this decomposition theorem. This particular form will be deduced from a much
. more restrictive and easily proved form in Chapter 6. Indeed. in our attempt to
}:' construct a stochastic integral relative to semi-martingales, we will spend a rela-
:‘i tively large amount effort studying semi-martingales in Chapter 6.
K
\ -
" 5.2.3. Theorem: (Doob-Meyer Decomposition)
j' If X 13 a submartingale, then there exists a unique previsible increasing process A,
N4 A(0)=0 and a local martingale M, M(0)=0, such that
R
X(t) = X(0) + M(t) + A(t).
B
e This decomposition 13 unique (a.s.P).
"~
.
e 5.2.4. Remark: A is the previsible compensator of X, as defined in the Chapter
s on dual previsible projections. We will illustrate the Doob-Meyer Decomposition
: with counting processes.
N
e We first note that since a counting process, N, always has nondecreasing sample
paths, it is a submartingale. It follows from the Decomposition theorem that
}: there exists an increasing, F-previsible, P-integrable, process, A, with A(0)=0,
< and an F-local martingale, m with m(0) = 0, such that N = m + A.
= 5.2.5. Theorem:
o Let N be a point process adapted to the filtration F = (F(t), t > 0). Then there
tj erists a unique, F-previsible, tncreassng process, A, with A(0) = 0. such that
o N(t) = M(t) + A(t), where M is an F-local martingale, M(0) = 0. The localiza-
s tion  sequence, (T,n>1), for M may be defined by selting
5 T, = inf{t | N(t) > n}, f "{"...7}" 7# ¢, and = >0, olheruise.
-,
%
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"' It can be shown [e.g. Liptser and Shiryayev vol Il that A is continuous iff the
¥ counting process, N, only jumps at totally inaccessible times. Since applications
- in this note will concentrate primarily on counting processes with absolutely con-
‘ tinuous compensators, it follows that in these cases the counting process jump
-;: times are always totally inaccessible. As noted earlier, the Poisson process is such
3 :: a process. Its compensator is, of course, given by A(t) = At, where A>0.
L0 A
: 5.2.6. We now give some examples to illustrate the dependence of A on the
=‘:'.:‘ filtration, F. We need to recall the Jacod [1975] formula discussed in the section
é‘\“ on dual previsible projections.
) Assume that the filtration is the internal history, the o-algebra generated by
> the counting process, N.
{1
) -z:.:j
,;‘_\ 5.2.7. Example(l): Except for some simple modifications, this example is given
Gy in Liptser and Shiryayev [1978]. Suppose that X=(X(t),K(t),t >0) is an adapted
process with continuous paths and (K(t)) satisfies the “'usual conditions™. Define
o T(n):=inf{t: X(t) > 1-{1/n) }, with T{n,w) := oo if {...} is empty. Then we
T know from Chapter 2 that each T(n) is an K-optional time. Define the counting
o process, N=(N(t),K(t)), by setting N(t) := 1{(c)<y)- Then, since (T(n)) increases
to T{oo) and the sequence is optional, we see that T(co) is a previsible time. By
N definition then, N is also previsible. Hence, in the Doob-Meyer decomposition,
J:‘é the previsibility of A (and so, the uniqueness of the decomposition) implies that
3 N=A. (Any process which is indistinguishable from zero is certainly a mar-
"”wh tingale.)
o
N Now, changing histories, let N be defined as before, except that N=(N{t),O(t}).
! .':: where O(t) is the sigma algebra generated by N. Let F be the distribution func-
tw: tion of T(oo) := T, and suppose that 1 - F(s-) > 0 on [0,00].
.o Then, using the Jacod result (see the section on Dual Previsible Projections),
NS
N
A0 ¢~ T(co)
R Ait) = [ dF(s)/(1-F(s-)).
0
b2
s
N Clearly, A(t) = -In{ 1 - F(t~T) ), t>0.
e
* Thus, when A is K-previsible, A is the two valued counting process, N, but in the
O second example when A is O-previsible, 1 - exp(-A(t,w)} = F(t~T(w)) .
SRS
.
R
.
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' 5.2.8. Example(2): When A is absolutely continuous relative to Lebesgue meas-
.’,.: ure and F(t) contains O(t), as defined in the last example, then,
g«. with history (F(t)) we have
:
. A(t) = [r(s)ds.

; ’
B
;:" ' with history (O(t)) we have
R

t
5 A(t) = [i(s)ds,
: 0
¢

where t(s) := E{ r(s) | O(t) }.
S
2 5.3. Examples of Semi-Martingales: In this section we will give several
N examples of semi-martingales. The last of these examples will demonstrate a pro-
. cedure for writing a function of a point process as a semi-martingale.
% 5.3.1. Example(1): Let N be a counting process adapted to the filtration F. By
"_' definition, N is finite for every t>0. Assume that its previsible compensator is
: absolutely continuous relative to Lebesgue measure, with Radon-Nikodym den-
b sity, N, the F-intensity of N. (See the section on previsible projections for these
_ definitions.) Then, |
:
t
-. N(t) = [ X(s)ds + M(t), (%)
0

: where M is an F-local martingale and X is a non-negative, measurable process.
_. For example, when X is a constant, then (N,P) is the Poisson process with param-
y ) eter \. As the Poisson process is the baseline counting process, both historically
E and usefully, it is important to note that property (*) characterizes this process.
2 That is, Watanabe [1964] proved that if N(t) - t\ is a martingale, then (N,P) is
d Poisson. P. Brémaud [1975] subsequently showed that if A is any deterministic,
b right continuous increasing mapping of (0,o¢) into itself, with A(0) == 0, and N -

A is a (P,N)-local martingale then (N,P) is a generalized Poisson process in the
sense that the characteristic function of (P,N) is given by

101

LB A NS | LIRS T 3 r 1 / h
NEND) O Lo D RO s AL n S

\ Sy A
AR N W .oh'i..i ‘a ! Yo AL Y



A R “ v v v b - ) " &y N - ¥ Y '~ *, L e bt ot prs b - et atlaid iutdh Shah N AavdTTETTNY

i:;"
f
g E( exp(iu(N(t)}-N(s) ) =
= T {e™AA(V) + (1 - AA(v)} exple™ - 1} [ A%(t) - A(s) ).

\::: s<v<t
Sos

4
:'J’, where A° is the continuous part of A. Compare this and equation (*) with the
' Doubly Stochastic Bernoulli process of Section 1.10.4.
.
[,

- 5.3.2. Example(2}: A sequence of sums of independently distributed random

o

variables, (Y,), with finite expectation, can be used to construct a sequence of

2

oy semi-martingales. Let a, = EY| and for each n>1, define X, (t) for t >0, by set-
N ting
o

."'~: nt nt
o X, {t) = [S,(Yk-ak) + 5 a, = M(n,t)+B(n,t).

."_-‘: k=1 k=1
-

RYt Then X, = (X,(t),t>0) is a sequence of semi-martingales .

2

N . .

:_-\C: It is worth noting that in this example the term, B, is purely deterministic and.
b under very general conditions, for large n, M has the characteristic properties of
e integrated noise.
o
e
K-> 5.3.3. Example(3): Let

;‘\‘

"' t

Ny X(t) := [ f(s)ds + M(t) = B(t) + M(t),

AL 0

no

LR
B,

H where (M(t),F(t)) is a Wiener Process (Doob, [1953]), and f(t) is an F(t)-
‘ t
:'.')-' measurable process such that E( [ [f(s)| ds )} < oo, for each t>0. This is the
" 0
o< classical model for integrated signal plus noise.

In this case, X(t) is a Wiener process with drift process B(t) (drift rate f).

:::t Further, if W denotes the standard Wiener process, and, if M(t) is the Ito-integral
_‘::?t of g relative to W (see the section on Stochastic Integration), with the Lebesgue
t‘\ integral of g> having finite expectation, then X(t) is a Wiener process with drift
e rate. {. and diffusion coefficient, g.

::?-: 5.3.4+. Remark: The remaining examples in this section illustrate a technique for
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writing functions of point process as semi-martingales. This type of procedure
will be extremely useful in any application of the theory to nonlinear filtering of
point process.

5.3.5. Example(4): Let (N,P) be a Poisson process with parameter ¢ and define
the stochastic processes X by setting X(t) := exp(qN(t)), for every t>0, where q

. is a fixed positive number. Although it won’t play a distinctive role in this exam-
ple, we will let F=(F(t)) denote a history of the process N = (N(t)). This exam-
ple, like others, will be used again in this note as we illustrate the various stages
of the filtering problem, and notation will be carried forward.

Clearly,

X(t) = X(0) + ¥ AX(s)
0<s<t

Since, X jumps at a point s only when N jumps at s, and then N(s) = N{s-) + 1.
we can write

AX(s) = 2 X(s-) e? sinh()
at jump points. So, since X(0) = 1, we have
a
X(t) = 1+ e?sinh() & X(s-)AN(s)
“ 0<s<t

Then we can write X in the form

t

X(t) = 1+ [ cXsids + M(t) = X(0) + B(t) + M(t),
0
where M(s) := 2(exp(q/2))sinh(q/2)X(s-), and

t

M(t) = f A(s) d(N(s) - e¢s)).
0
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Since the compensated point process, N(t) - ct, is a martingale, and X is previsi-
B, ble, it follows from the theory of Lebesgue-Stieltjes stochastic integration that
- M(t) is a martingale. Thus, as B is a process of integrable variation, X is a semi-

martingale.
:,“_:;‘.jw; 5.3.6. Example(5): (Brémaud [1977], {1981]) Consider a queue with the number
; of messages (customers) arriving during the interval [0,t] denoted by a(t) and the
,"" number of departures during this time period denoted by d(t). Let g(t) be the
dods number of messages waiting for service (processing) or being served at time t.
. g g
ey Assume that q(0) is a positive random variable. Set q(t) = q(0) + a(t) - d(t) for
::f'_. all t > 0. Assume that Aa(t)Ad(t) = 0 for all t>0 (i.e.. 2 and b have no jumps
in common). By definition q{t) > 0. for all t2>0. Let z{t.w.n) = I w)=qp later
,‘S we will use this example to determine the conditional distribution of q given
"'-:::-: observations on the number of arrivals. This 1s because
30
l‘d‘\‘
b
>
E(z(t) | F(t) ) = P(qt) =n | F())
,. As in the previous example, we begin by writing
2(t) = 2(0)+ N Qdzfs) = z{0)+ N Az{s)dafs) + N Azfs)Adls)
e 0<s<t 0<s<t 0<:<t
i
v... . . . . . . .
l‘::.;- Fix n>1; then if s 1s a point of increase of a, (that is. if Aa(s)=1). then
. q(s) = q(s-) + 1. Hence,
"__\'
e N
.:-': Z(S‘n) = l[q(s]anl = l[q(;—]+l==n] = Z(S“vnfl)‘
o
TN so that Az(s.n} = z(s-,n-1) l[nzll - z{s-,n) .
Wyl
.:;;i; Similarly, if Ad=1, then Az(s,n) = z(s-.n+1) - z(s-,n).
::t:;:
N Assuming that the counting processes a and b have F-intensities, t—I(t,w) and
53 t—u(t,w), we can accumulate the previous equations to write
v
,:::“’ t
Pl
j:?,-:. z(t,n) - z(0,n) = [ A z(s.n) (d afs) + d d(s)).
T 0
L
:,'E." . Then, as in the last example, by adding and subtracting Lebesgue integrals of the
l'.:
b
PASA
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Intensities, we obtain
t
z(t.,n) - z(O,n) = f.\ z(s.n) (K(s)ds + u(s)ds + d m(s) + d v(s))
0

t

= [ (z(s,n-DHn>1) - z(s,n)) Us) ds)+
0

t

+ f (z(s.n+1)-2z(s,n)1{n>0)u(s)ds)+M(t)+V(t).
0

Thus, using the linearity of the Lebesgue integral and the fact that the sum of
two martingales, in this case M and V, is again a martingale, we have

t

2(t,n) - 2(0,n) = [ f(s)ds + m(t) = B(t) + m(t),
0

as the semi-martingale representation of z, where

fis) = (z(s,n-1) {n2>1) - z(s,n) ) Ks) + ( z(s,n+1) - z(s,n) I(n>0})u(s)

and
t
m(t) = M(t) + V(t) = f (z(s—,n-1)1(n>1)-z(s-,n))(da(s)-1(s)ds)

0

t

+ [ (z(s-,n+1) - z(s-,n)1(n>0))(dd(t)-u(s)ds)).
0
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i‘. 3 Chapter 6. Stochastic Integrals
“ A
" 6.1. Introduction: N. Wiener ([1923] defined a stochastic integral with
0 . . . . .
‘N Brownian motion integrators and deterministic integrands. K. Ito [1944.1951]
‘.-":_' developed a stochastic integral for a class of processes which are optional (non-
& : anticipating) relative to Brownian motion.
X In his construction, aside from the properties of any continuous martingale, Ito
) . . .
\:’: only used two properties of Brownian motion. Namely, that
b
g
Bk (W(t), t>0) (1)
L
L
“.:::-. and
§ 1
e
L (W3(t) - t, t>0) (2)
. >
-2 :
-1 are martingales, where W is standard Brownian motion.
:‘;
' 6.1.1. J. Doob [1953] extended stochastic integration of Ito to the class of square
integrable martingales. In their important paper, ‘On Square Integrable Mar-
X tingales”, Kunita and Watanabe used the following result analogous to equation
::-{: (2) for square integrable martingales: Since m is a square integrable martingale.
'.';'1 m® is a submartingale, so by the Doob-Meyer Theorem, there is an increasing
, process, denoted <m,m>, such that
R,
on )
Ao (m(t) - <m,m>(t), t>0) (3)
LY L)

2
» 2

is a martingale. We will formally introduce <m,m> below, but equation (3) has

«

,:::’. already occurred in Chapter 1 for discrete processes so the reader should not have
3_':: difficulty with it. For continuous process, we will only point out that in the case
‘ of Brownian motion, <m,m>(t) = t, in which case equations (2) and (3) agree
D, and, also, that the Kunita Watanabe stochastic integral reduces to the Ito
R integral when the martingale integrator is Brownian motion.

Y

-:':;: Stochastic calculus is still young enough, in terms of the length of time it takes
:‘_ for significant mathematical theories to develop, that it is almost always
) presented as it was developed historically. We will call this the traditional
:‘_1 approach. Dellacherie’s 1978 talk at Helsinki is an exception, and in some ways
g Jacod (1979] is also. We will follow Jacod.
3
o
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In the traditional approach the stochastic integral is developed as outlined in the
next Section. As described there, it is defined first for a particular class of inter-
grands consisting of linear combinations of (previsible) indicator processes relative
to a square integrable martingale, m. The actual definition of this “"elementary
stochastic integral’” is given in terms of the transforms of Chapter 1. The first
extension, to the space of square integrable martingales, is accomplished using the r

- path-wise stochastic Lebesgue Stieltjes integral relative to the increasing, previsi-
ble process, <m,m>. However, as we have pointed out earlier, this process does
not exist when the underlying martingale does not have moments of the second
order. To remedy this situation a second increasing process is created that does
not require the existence of second order moments. It is the continuous parame-
ter analogue of the optional quadratic variation process of Chapter 1 and is also
denoted by [m,m]. As in Chapter 1, if the process m has second order moments,
so that <m,m> exists, [m.m] - <m.m>> is a martingale. Hence, when m is not
in L., the <, > process is defined as the dual previsible projection of the pro-
cess [m,m|. Formally then, the development of the stochastic integral for the
larger class of integrators proceeds as before in terms of a Lebesgue-Stieltjes
integral relative to [m,m].

This then becomes the procedure for extending the integral to an ever widening
circle of families of processes, culminating with its final extension to semi-
martingale integrators and locally bounded previsible integrands. At each step,
preparation for the next extension is made by first extending the increasing pro-
cess, (m,m|, and then repeating the definition of the next more general stochastic
integral in terms of, notationally, the same defining equation as utilized at the
previous step.

6.1.2. Embedded in the procedure just sketched is a method of extending the
{integrator) processes themselves. We have already encountered one example in
going from martingales to local martingales. This is the method of localiza-
tion. It is one of the most important applications of stopping times in the theory
of martingales. It goes as follows.

Let (2, H, (F(t), teR_), P) be a filtered probability space satisfying the
““usual conditions”’. Let C be a family of processes ( equivalence classes of indis-
tinguishable processes ) defined on this probability space. Denote by
Cloe = Cioc (F,P) the family of processes, X, defined on the same probability
space for which there exists an increasing sequence, ( T,, ne Z, ), of stopping
times, T 1 oo a.s.P., such that each stopped process X™¢C. For example, let-
ting M, be the set of uniformly integrable martingales, its localization. is (M),

the family of local martingales. We have seen that M, C (M,),,. in Chapter 5.
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;‘: Coc is called a localized class. Jacod [1979] proves a number of interesting
A results on the algebra of localized classes. For instance, he shows that if a class.
" C'. a vector space of processes. is closed under the operation of stopping (called
: stable under optional stopping), then (C,. ). = Cj.. The reader should
" ponder this result in relation to the family M,.

Y,

On our way to extending stochastic integrals, we will apply localization to a
! number of classes of processes. This will be carried out a little differently for

'"' integrands than for integrators, for obvious reasons. In any case, the class of
LY bounded, previsible processes becomes the class of locally bounded. previsible
L processes, and the class of processes of integrable variation becomes the class of
» processes of locally integrable variation. We will prove that the class, S, of semi-
2 martingales cannot be extended by localization: § = S, . (Jacod [1979)).

"5 The stochastic integral will not be extended bevond the class S of integrators.
! The reason for this is simple. It cannot be done. That is, it can't be done if we
.. want sequences of stochastic integrals to have the following natural Cauchy pro-
e perty:

L4

4

@ Let (h/™) be a uniformly bounded sequence of previsible

processes. Then the point-wise convergence of this sequence

- to 0 with n—oo, implies that

v,

X [ h{™dX, — 0, in pr-hability, asn — oo

. [0.4]

-

+

N for all t, where X is in S.

d Bichtler [1981] proved that if an integrator is Skorokhod, adapted and the
: corresponding stochastic integral possessed this Cauchy property, then the
::l integrator is necessarily a semi-martingale. .
The material in this chapter is based primarily on Jacod [1979], Kunita and
- Watanabe [1967], Doleans-Dade and Meyer [1970], Meyer [1976], Rogers [1981]. )
o and Dellacherie and Meyer {1978]. Dellacherie [1978]. Chung and Williams [1983],
::'\' and [keda and Watanabe [1981] were also used.

A

" 6.2. An Outline of the Construction of Stochastic Integrals:
.

£ 6.2.1. Introduction: In this Section, we will attempt to outline the traditional
A
s
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approach to constructing the stochastic integral. In succeeding Sections, we will
mostly follow the development of Jacod [1979]. Although Jacod's development
does not begin with elementary processes and simple integrals, there is much in
commeon with the outline given here. The principal reason for following Jacod is
that it leans more heavily on martingale methods ( the Strasbourg variety ), than
on the methods of classical functional analysis. It therefore appears to be more
succincet and self-contained than the traditional approach.

What we are referring to as the traditional approach begins the way most of us
would expect. However, as observed by Rogers [1981], some very clever new
ideas were required to successfully carry out the original development of the sto-
chastic integral. As noted earlier, this was done by Kiyosi Ito in the 1950's for
Brownian Motion and extended to square integrable martingales in the 1960's by
Kunita and Watanabe. P-A. Meyer and the Strasbourg School of probabilists are
mostly responsible for the final extension to semi-martingales in the late 1960-70
time frame.

6.2.2. Outline: The first integral to be introduced in this Section is called the
elementary stochastic integral. In French literature, it is called the triviale
stochastic integral, translated as the “obvious stochastic integral”. As demon-
strated in an example by Rogers, aside from starting with processes whose sample
paths are simple step functions and defining their integral as a finite sum, the
definition of the elementary stochastic integral is neither trivial nor obvious.

Let (Q2. H, (F(t)), P) be a filtered probability space with F(oc) = of UF(S))
s2>0
contained in H and assume the ‘“‘usual conditions'.

6.2.3. Let the family = designate the vector space of linear combinations of indi-
cator functions of rectangular subsets of (s, t]X{? of the form (s.t]XA. with
AeF(s), and s<t, s,t in R,: in other words, = consists of linear combinations of
the kernel processes which generate the F-previsible o-algebra. More precisely.
let = be the family of processes H=(H(t),t >0) such that H is adapted, left con-
tinuous, bounded and for which there exists a finite set {t, : k = 0.1.2....n.n+1}
which partitions [0,¢],

to = 0<tl<"'<tn<tn+l = o,
and such that t — H(t.w) i1s constant on each subinterval of the partition.

Further. assume that each rv. H; = H(t;) is F(t;) measurable.
1=0.1.....n.n+1.
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::' 6.2.4. Definition: Let M be a bounded martingale and H ¢ =. Then the elemen-
R tary stochastic integral. H.M, is
ape
Ty
1}):_': (HM)(t) := ¥ H AM¢ (1)
o, k>0
i,”‘ n
"' 'ﬂ = H(O)M(0) + ST H(ty) (M{ty,; ~ t) - M{t, ~ t)).
‘ N, k=1
5 - . .
s 6.2.5. Remark: Based on Chapter 1, this is nothing more than the martingale
ey transform of an integrable, stopped, bounded martingale M by the bounded prev-
it isible process H, hence we have immediately that HM is a martingale.
e
_'\j To ease the notational burden for the reader, we will often write
’-4 1
N . . . :
e, fll(s) dM(s) := (H.M}(t). Notice that with the definition as in (4). there should
0
"' be no ambiguity in meaning if we set the upper limit in the last expression equal
\;“ to the symbol oo.
“-JQ
i In general, here and in the sequel, when the notation H(s) becomes too cumber-
- some because of superscripts and such we will write H, for H(s). Though perhaps
'-::j:: ambiguous here, this should not be the case in actual usage.
AN Now, since M is a square integrable martingale, M?> = (MS t>0) is an F-
) submartingale and so the Doob-Mever decomposition theorem of Chapter 5
e guarantees the existence of an increasing, previsible process, A. with the property
QY p proj
.-:‘-. that M2 - A is an F-martingale. (We have already used the notation
: ':-.; <MM> = A))
oy
— Then it is easy to see that for a simple process H,
S
W Pl
p o o
YO E(fHdM, ) = E( ¥ H7? (AM,)?)
' 0 k>0

E( S HZ E((AM,)? | Fy )
k>0

la Nl

E( (H2<MM>)®) = EfHZd<MM>_.
0
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where we have used the previsibility of H and the adaptiveness of M to obtan
E(HHAMAM, ) = EHHAME(AM [ F )] =0

for 0<j<k , and so the first equation. To go from the first equation to the
second use either the definition of <M ,M> from Chapter 1, or a simple relation-
ship between M and <M,M> (in fact, the reason for the name “quadratic varia-
tion”’) that will be derived later in this Chapter.

Since the F-previsible o-algebra is generated by the kernel processes, any previsi-
ble process is the limit of a sequence of simple processes. Let

Lo(M) := {H:H previsible, EfH?d<MM>, <  }.
0

where the last integral is a Stochastic Lebesgue-Stieltjes integral (Chapter 3) rela-
tive to the nondecreasing process <M,M>. the dual previsible projection of M.

Let m be a square integrable martingale and set
1

IHlp ) = E(fH52d<m,m>)5. Then [Hl| ;) is a norm on Ly(m). Notice that
0

since H is previsible, Lo{m) is independent of the choice of martingale compensa-
tor of m®. (Just recall the results in Chapter 4 on dual previsible projection.)

Define K* to be the space of square integrable martingales, m.
(sup,g Em® <oc). The phrase “square integrable” is a result of the fact that
as a submartingale, m® has an increasing mean-value so that when the
supremum is taken over compact intervals, [0,T], rather than over R, “'square
integrability” indeed just means Emf < oc, or existence of second order
moments.

From Chapter 2, we know that if m is square integrable, then it has a terminal
1

rv., my. Let Iml, := (Em2)?® be the norm on K.

The following Theorem is then proved in almost every presentation of the sto-
chastic integral. It establishes an isometry between L,(m) and K2

6.2.6. Theorem:
The mapping H—H.m, from E to bounded martingales, can be extended uniquely

as a norm preserving operator from Lo(m) onto K2 and will continue to be
denoted by H—H.m.
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:::{ 6.2.7. Next, it may be verified { as in Chapter 1) that

A
N o XT = Loty N for all optional T.

X

o

:‘:\ o A(H.X}, = HAX, asP. t>0.

)

Seemingly, in all integration theories the difficult work begins with K=, the space

o of square integrable martingales. Much more will be said about this space in the
o next Sections. Kunita and Watanabe [1967] give fundamental results on the
“‘" . = .
f;' decomposition of the space K*. To prepare for this we need to know that a
N “stable” subspace, Q, of K* is essentially just a closed subspace of K= that is
. closed under stopping. We need the following
wf"\"j

AN 6.2.8. Definition:: Processes mneK*® are said to be orthogonal if the process
t ™ . .

'__': mn == (mgn,.t>0)is a martingale.
Aa

Remark: It will be shown later in this Chapter that if m and n are square integr-
able and vanish at the origin. my = 0 = ng, then m and n are orthogonal if
Empny = 0, for every stopping time T.

Kunita and Watanabe [1967] prove: If Q is a stable subspace of K*, then every
martingale, m, in K* can be uniquely decomposed into a sum, m = x + vy,
. where x belongs to Q and y is orthogonal to every element of Q.

If one recalls (Chapter 2) that the norm in K? is equivalent to the Lo(P) norm of

s::", the supremum process, m’ = sup,cym,, it is easy to show that the space of
o continuous, square integrable processes is stable. If we call this space Q. and
E}i::‘_ observe the convention that mg. = 0, we have Q CKOQ, the latter being the set
o of square integrable martingales that vanish at the origin.

.'fj’,‘ Applying the decomposition theorem of Kunita and Watanabe, this Q yields a
. unique decomposition of any square integrable martingale, m, into a continuous.
square integrable martingale, m, and a “‘purely discontinuous’ square integrable
martingale. m3, which is orthogonal to every element of Q.

The space of purely discontinuous martingales will be described in a later Sec-
tion. For now it is sufficient to know that this space is the closure in K* of a
relatively simple class of martingales whose paths are of bounded variation, a.s.P.
But not every purely discontinuous martingale is of bounded variation. In con-
trast to this. every nonconstant, continuous {nonzero, by the convention
my = 0), martingale has (a.s.P) paths of unbounded variation. This follows
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easily from the Doob Meyver decomposition theorem by assuming that such a
(necessarily previsible) martingale is of bounded variation.

For these reasons the construction of a stochastic integral, even within the space
of square integrable martingales, is a formudable affair.

Kunita and Watanabe also define a process, <m,n>, for square integrable mar-
tingales (recall Chapter 1 for the discrete analogue), as the unique, previsible pro-
cess with the property that mn - <m,n> is a martingale. Note that <mn> =
0 then becomes a sufficient condition for orthogonality of m and n. This new
process, which is of bounded variation, is used by Kunita and Watanabe to
characterize the process, H.m, as opposed to the operator H—H.m. But it is clear
that existence problems arise when m and n are not square integrable. To cope
with this difficulty, Meyer introduced a process denoted by [m,n] which exists
even when m and n are not square integrable and, like the process <m,n>. is a
process of bounded variation.

Finally, Kunita and Watanabe created a type of Schwarz inequality in terms of
the process <m,n>, ( given later in this chapter in terms of the process [m.n])
and used Stochastic Lebesgue-Stieltjes integrals (introduced in Chapter 3) with
previsible integrands to establish the following characterization of the stochastic

process, H.m:

6.2.9. Theorem:
If m,neK?® and Helo(m), then

E( [|H,| |d<mp>|) < o
0

and the stochastic integral, H.m, is the unique element of K* (up to indistinguisha-
bility) which satisfies the equation

[Hm, n] = H.[m,n]

. -9
for every n in K-.

This rest of the development, as noted in the introduction to this Chapter. con-
sists of a succession of extensions of the quadratic variation processes and of the
stochastic integral which culminate in the stochastic integral of locally bounded,

113

. I ~Wl LIPS, Ut ""
e e e M

el il 30N ke o)



0

2
35
A
o

N previsible processes relative to local martingales and thence to semi-martingaie
v integrators.

'~:§“_‘ The Jacod development starts with the definition of the stochastic integral of a

e local martingale, albeit a continuous one. The attractive feature of his approach
f“j-: is that it focuses on semi-martingales from the beginning. With some minor

exceptions (occurring with the treatment of purely discontinuous processes and in

e the preparation for the definition of quadratic variation) Jacod's approach is fol-

::::f lowed in the remainder of this chapter.

w-\::

A 6.3. Some Extensions to Chapters 3-5: In this Section we will bring together
. and extend some of the material in Chapters 3, 4 and 5. As usual. let
" (2, F(o0), (F(t),t >0), P), where F(oo) =0 ( |JF(t)), be the underlying
Yy t>0
:::::f: filtered probability space. Recall (Section 3.2) the definitions of increasing
e processes and the notation for the classes of increasing processes, V*, of processes
. of bounded (finite) variation, BV = V* - V* and of processes of integrable vari-
-:: ation, IV = IVt _-IVv*H (Of course, we mean V' = V*+(FP)
o BV = BV{(F,P), and so on.) Let C be a class of processes. We write Cy for the
o set of all AeC with A(0) = 0.

ST If Ae¢BV, then B(t) = f | dA(s)| denotes the variation of the process A.
PN 0.t

':-s'_s It is the unique (to indis[tirllguishability) process of V* such that the measure
) (0.t] — dB(t,w) on R, is the total variation of the signed measure

I (0.t] — dA(t,w).

b

~:::~:: 6.3.1. Using the notation introduced in Section 6.1.2, an increasing process, A.
5:.\_::: ( AeV*), with A(0) = 0 is said to be locally integrable if Ac(IV;' ). That is,
TN if there exists an increasing sequence, T, 1 oo, a.s.P, of stopping times such that
EAT" < oo, Since A(t~T,) < A(T,) we can and will write the condition as

‘::::E: EAr <o If A(0) # 0, then the definition applies to the process
'5':.;-: t — A(t) - A(0) and E(A(0) | F(0)) < oo is required. In this case we write
4-‘3‘; Ae(TV),F.

'; A is said to be of local integrable variation if A ¢ BV and the process
t — [ | dA(s)] :=Bft) is locally integrable. In this case we write A¢(IV),,.
[~ 0.t
> More[su]ccinctly, A€(IV)y,, iff Be(IV), 2.
:Z:f:l; When the local integrability of the variation process, B, is at issue we can use the
::::-\.: fact that if EB(T) < oo and EB(S) < oo for two stopping times, then
A%
\”r
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o
W
: EB(max(S,T)) < o. Therefore, for local integrable variation, we don’t have to
: require that T 1 oo; sup , T, = o0 is good enough.
; 6.3.2. The first two results in this Section concern local variation. Simply stated.
::. increasing previsible processes are locally integrable, and optional processes of BV
i, are of local integrable variation iff they differ from local martingales by a previsi-
e . ble process of bounded variation. The proofs may be found in Dellacherie and
: Mever[1982, VI 80] or Jacod[1979, p.17].
o
N 6.3.3. Theorem:
g Let A be a process of bounded variation.
(1) If A is previsible then A is of local integrable variation.
\ (2) A s of locally integrable variation iff there erxists a
N unique, previsible process B ¢ BV such that A - B is a local
’ martingale.
‘:‘ B 13 unique, modulo sndistinguishabslity, and is called the
dual previsible projection, or the previsible compensa-
. tor of the A.
o This extends the Chapter 4 notion of the dual previsible projection of increasing,
5 integrable processes to bounded variation processes of local integrable variation.
-
" 6.3.4. Remark: We will sketch the proof the first part of this Theorem with the
aim of giving the reader a feeling for the use and force of these new definitions.
- In part (1), since A is of bounded variation and previsible, the total variation pro-
;- cess of A is previsible. Therefore, without loss of generality, take A to be increas-
:: ing and A(0) = 0. Set S, = inf( t: A(t)e [n,00)), where 1 <neZ,. Then
e by the results concerning the debut of random sets in Chapter 2, S is a previsi-
4 ble stopping time. It is strictly positive since A(0) = 0, and it can be shown to
. be previsible since A is previsible. Therefore, for each n, S, has an announcing
3 sequence, ( SX, keZ, ) and since S¥ < S, for all k (since S, is strictly positive).
E we have by the definition of S, that A(S¥) < n for all k. Therefore,
EA(SK) < oo. Since sup{S* : nk} = oc. A is locally integrable.
The following Corollary is useful and obvious. It is a generalization of the result
in Chapter 4 which said that [V, martingales have evanescent dual previsible
0 projections.
'
>
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it ::j
"oy 6.3.5. Corollary:
\
A
=" If A is of bounded variation, then A 1s a local martingale iff A is of local intogr-
‘:.; able variation and the previsible compensator of A 13 evanescent.
g “i'_f 6.4. Some Spaces of Martingales: Let ({1, F(oo), F, P}, where

F(oc) = o((J F(t)) and F = (F(t), teR,), be a filtered probability space. Let
o t>0

v}-\., M, = M(F.P) be the space of uniformly integrable F-martingales. Of course M,
"Hij is a set of equivalence classes of processes under indistinguishability.
Al

As noted in Chapter 2, if X belongs to M, then (X(t)) converges a.s.P, and in L,.
as t—oo, to a terminal random variable X{oco) and we can write

5.
X(t) = E(X(oo) | F(t)). The converse was also discussed, so we know that if
ko ZeL,(Q,H,P) there exists a unique X in M, such that X(t) = E(Z | F(t)) and
p X(sc) = E(Z | F(oo)). It follows that M, is mapped bijectively onto
. L (Q,F(c0),P).

\j.-:

:-;.. 6.4.1. Deflnition: A (right continuous) supermartingale, X = (X(t}, F(t}). is
o said to belong to the class D iff the family of random variables.
- {X(T) : T any finite F-stopping time }, is uniformly integrable.

E'j:\ 6.4.2. We now characterize M, as a subset of (M),,.. For convenience we will
] SS* write M, . := (M), throughout this chapter.

» '\

. 6.4.3. Lemma: Let XeM .. Then XeM, iff X belongs to the class D.

A

‘_ Remark: We will indicate the proof. Let X belong to M. Then by our previous
j- remarks, there exists X(oc)eL, such that X(T) = E(X(oc) | F(T)). for each

optional T. As noted in Chapter 2 (Doob's Optional Stopping Theorem), if we
let T range over the set of finite (i.e. real) valued optional times, then the family
{X(T)} is uniformly integrable and X belongs to the class D.

Conversely, let X be a local martingale in the class D. Then, in particular the
family {X(t),teR,} is uniformly integrable. Thus, it remains to show that

1 ._‘::: (X(t).teR,) is a martingale. Let (T,) be a localizing sequence for the local mar-
._'::{ tingale X. Then for s and t real numbers, s<t. the families { X{t~ T.}. neZ, }
fr v and | N(s~ T,). neZ, } are uniformly integrable and the corresponding
Eo sequences {s and t are fixed) converge as.P. and in L; to the random variables
: X(t) and X(s). respectively. By definition of X as a local martingale.
' '~" XT"(S) = E(XT"(t) | F(s})) for each n. It follows (using Jensen's inequality) that
3
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2 | E(X™(t)-X(t) | F,) | < E{|X™t)-X{t)| | F,). Taking expectations of
o both sides, we obtain E( | EX™t)|F,) - E(X(t)[F) |)
" < E| XT“(t) - X(t) | . Having noted that (XT"(t), n>1) converges to X(t) in L,.
- and similarly (XT"(s), n>1) to X(s), we have X(s)=E(X(t) | F,), hence XeM .

O

[\

:' 6.4.4. Remarks: Now let m'(t) =sup,c, [ m(s) [ for any process

. m = (m(s),seR, ). Let pe[1,00] and | YIP = E(|Y|P), the
b Lp = Lp(ﬂ, F, P) norm of Y of order p. Recall that if p=oc, L, denotes the
S family of F-measurable, bounded functions. Set
= { meM,,, : | m*(c0) Ilp < o0 }.

33

‘o Then KP C M,, for p>1. This is because KP C KPP for all p' < p. by
N Holder’s inequality, and so in particular KP € K! But if meK!, then m*(cc) is

P-integrable and so {m} is in the class D. Therefore, by the last Lemma, meM,.
p That is, K! = M,.

X,

N

. 6.4.5. As noted in Chapter 2, if p > 1 then the norms I]m(oo)"p and ||m'(c>c)||p are
. equivalent. Therefore if pe(1,00], then KP can be equipped with the norm defined
y by the mapping m — [m(co)l,. In this manner, K? is identified with the space
i L, (Q, F(oo), P) through the bijection (meKP) ——— mfoc)eL,, for p > 1. (Recall
a also that there exists a bijection between M, and L,.)

The space K? is called the space of square integrable martingales or the
" space of L, - bounded martingales. (These were also defined in Chapter 2.) By
:: remarks in the previous paragraph, the space K2 is identified with the Hilbert
'j space Lo, having norm m—»”m(oo)“z and scalar product (m,n)—E(m(oc)n(oc)).

k)

1 Set M, equal to the space of martingales such that meM, and m(0) = 0. We will
:: write (Mg),. as Mg ..
R 6.4.6. Following Jacod [1979] we state the following.

5 Definition: Let m and n be local martingales. Then m and n are said to be
- (strongly}) orthogonal if the product mn is a local martingale which vanishes at
. the origin.

v

} Remark: In the traditional source, Meyer (1975], first defines orthogonality for
" square integrable martingales; he then extends this to local martingales as above.
v

v
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; {: For square integrable martingales he defines m to be orthogonal to n if
" m(0) = 0 and Em(T)n(T) = O for all stopping times, T. He then proves that
. m.nek* are orthogonal iff the product mneK! and m(0) = 0. Jacod's definition
T restricted to the space K*. To show this characterization of orthogonality, one
},‘ needs the following interesting characterization of M. One should refer back to
f.:‘ the proof of Doob’s Optional Sampling Theorem ( in Chapter 1 ) for the genesis
o of this theorem. Actually, that the equality of expectations of an integrable pro-
£ > cess at different finite stopping times is equivalent to the Chapter 1 form of
AN Doob’s Theorem for martingales is sometimes called Komatsu's Lemma. This
BN . . .. .
\3.: Lemma will also be used in the proof of the Theorem characterizing stochastic
s_._ integrals relative to a continuous local martingale.
'.;{ 6.4.7. Lemma:
f.:, Let L. be an adapted Skorokhod process for which limL(t) (=: L{oc) ) erists.
A =20
I:'«( Then L 1s in M 1ff L(O) i3 P-integrable and E(L(T)) = E(L(0)) for all stopping
.. times, T.
- Remark: If L is in M, this follows from Doob’s Optional Stopping Theorem. For
a the converse take T = t,. the restriction of the constant stopping time t to
i some A in F(t). Then E(L(T)) = E(L(0}}. Since E{(L(o¢c)) = E(L{0)} (S = x
is an optional timej, decomposing both expectations over A and AS it follows
that E(L(t)14) = E(L(oc)14). That is, the last equation holds because
EL(0) = EL(T) = [L{t)dP + [L(co)dP
j A A
.‘_'J_'
o
:;'.'_-:: and
o EL(0) = EL(x) = [L{cx)dP + fL(oo) dP.
- - A A
' “‘l . . . .
:-_’_x_: Since A is an arbitrary event in F(t), we have L(t) = E(L(oc) | F(t)) and so L
::f belongs to M.
WA
5 Remark: [t follows easily then that this martingale definition of orthogonality is
oo stronger than the natural orthogonality in the Hilbert space Ly «—-— K2 under
‘:'f.:: the inner product condition Em{ocin(x) = 0:
e
7
W
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o
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6..4.8 Theorem:
If the square integrable martingales m and n are strongly orthogonal. then
Em{oc)n(oc) = 0 and the product mn is a martingale in K.

Remark: We could equally well claim that for all stopping times T. mp and ng
are orthogonal in L,. This follows since m2 and n_ in Ls, implies that the pro-

duct mg nl €L,. But then (mn): < m!nl so that mneKy. It follows that
Emtny = Emgng = 0, by the Lemma.

A converse also holds: If mgng = 0 and mp, ny are orthogonal in L.. for all stop-
ping times T, then m and n are orthogonal in the sense of the definition of strong
orthogonality. This is also a consequence of the Lemma.

6.4.9. A continuous local martingale (CLM) is 2 local martingale whose paths
are continuous (for P-almost all paths). Let M,S. be the family of continuous
local martingales. On occasion, we will also (following Jacod) use the notations
KP€, Mg, and so on, with the same meaning being carried by the superscript c:
namely, ‘o denote various subfamilies of M|, satisfying the additional require-
ment of path continuity.

6.4.10. If the local martingale m is (strongly) orthogonal to each neMy,., then m
is said to be a (purely) discontinuous, or a compensated jump martingale.
The first name is widely used, but is misleading since, for example, the compen-
sated Poisson process (N(t) - X\ (t), t>0), is such a martingale and its paths are
continuous between jumps.

Let M. be the subset of M, consisting of compensated jump martingales. M3
is called the space of compensated jump martingales.

Lemma:
Let pe[l,oc]. Then K@, KP and KP4 are closed subspaces of KP.

Remark: The proof uses the equivalence of Ilm'(oo)"p and ﬂm(oo)ﬂp = |mll».
Since then if jm(™ - mlp, converges to 0, as n—oo, there exists a subsequence (ny)

such that sup,g_| mt(n") -m,| — 0asP. That is, mt(n“(w) — my(w), uniformly

on {0,5¢], for all w in some set of P-measure 1. Therefore, sequences of continu-
ous processes converge to continuous processes, so KP¢ is closed.

If m*eKPd, for each k and n is any bounded continuous process with n(0) = 0.
then Enym{ = 0 for each k. Again, if m* converges to m, then Enymy = 0
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and so m is in KP4,
We will return to discuss the structure of K=9 at the end of Section 6.5.

6.5. Semi-Martingales Revisited: We now return to the definition of a semi-
martingale, introduce some convenient notation and state some results that are
crucial to the development of stochastic integrals. This Section and the
remainder of the chapter follow Jacod [1979] very closely. In order to remind the
reader that the notation should not obscure the simplicity of the semi-martingale
concept, we state its definition as follows:

6.5.1. Definition: A Skorokhod process, X, is a semi-martingale relative to a
filtered probability space. (2, H, F, P), if there exists a sequence of F-stopping
times, T, toc, such that for each n, there exists a sequence of F-martingales M(™
with M(®0) = 0 and an F-adapted process of bounded variation. A", such
that X(t,w) = M!™(tw) + AlV(t,w) for all (t,w)e[[0, T,)).

6.5.2. Remark: Of course, this is equivalent to the requirement that there exist
processes meMg . and A¢(BV),. such that X = m + A. Notice that the condi-
tion m(0) = 0 is no restriction, since if m(0) 3£ 0 then we can write X = (m -
m(0)) + (A + m(0)) obtaining a representation of X that satisfies the require-
ment. Notice also that the requirement that X be Skorokhod is redundant since
both M(™ and A™ in the definition are Skorokhod.

6.5.3. Remark: Let S = S(F) = S(F,P) denote the collection of equivalence
classes of semi-martingales on (2. F(o0), F, P).

If XeS, the representation X = m + A is in general not unique. For a simple,
but artificial, example let A{t) = t and m be any local martingale of bounded
variation. Then another representation of this X is X = 0 + A', where A" = m
+ Al

A semi-martingale for which the decomposition X = m + A is unique is called a
special semi-martingale. The subfamily of S consisting of all special semi-
martingales will be denoted by S,.

M. Yor is credited by Dellacherie and Meyer with the following example of a
semi-martingale which is not special. Start with the probability space.
([0,1].H,L), where L denotes a complete Lebesgue measure and A is a positive ran-
dom variable. Define the filtration (F(t)) on H by setting F(t) = {¢.[0.1]}. for
0<t<1, and F(t) = H, for t>1. Set X(t) := Aljp~)(t). Then X is an
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N increasing process and so is a semi-martingale. This process X is a special semi-
K martingale iffl AeL,, according to the next Theorem.

The Doob-Meyer Decomposition shows that submartingales are contained in S,.
The following theorem sheds further light on the structure of S,

. 6.5.4. Theorem:(Characterization of Special Semi-martingales)
Let XeS and

3 X = m+A (8)
Y, The following statements are equivalent:

(1) If there ezists a decomposition (8) with A previsible and

in (IV))o., then XeS,.
p (2) There exists a decomposition (8) with A in (IV),,..
)
| (8) Each decomposition (8) satisfies A in (IV),,..
[
. (4) The increasing process X'(t) = sup,>,|X(s)| belongs
) to (w+)loc'

Remark: The decomposition specified in (1) is called the canonical decomposi-

. tion of an element of S ..
L}
3 The following Lemma is needed in the proof of this Theorem:
D
' 6.5.5. Lemma:
¥ (1) X s both a local martingale and a process of bounded
y variation iff X 13 a local martingale of local integrable varia-
' tion.

(2) If XeMy),. and s a previsible process of bounded varia-

tion, then X 1s evanescent.

Remark: Jacod's sensible way of expressing (1) of the Lemma is to just write
I“Ioc m BV = Nilocrw(l\'r)loc'
121
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‘~; Part (2) has the obvious consequence that the only continuous local martingales
N4 of bounded variation are constant processes. In plain language, non-constant.
- continuous local martingales are of unbounded variation { have paths that are of
':_::: unbounded variation ).
::3::
:.’r To obtain some exercise with the definitions, we indicate the proof of (1). We
only need to show the inclusion in one direction. Let X belong to the left side of
"; the last equation and (T,) be the localizing sequence for X as a local martingale.
’ :\ Set
2
h S, = inf(t: [ |dX(s)| > n).
[0,t}
e
P -,
:'E We will use the notation X(s) and X interchangeably. In any case, XT is still the
N" process stopped at T.  Then [ 1dX(s)| <n+ IAXS'I"‘"l. Since
; o, 4
o IAXST""I <n+ |XS1;“| and min(S,, T,) t oo, as n—oo, we have that X
::'* belongs to (I'V),..
v
) The second statement of the Lemma is an extension of the same result in
Chapter 4, where the process was a previsible, increasing martingale vanishing at
;_. the origin. The result here follows from the first Theorem of the third Section of
:j;‘ this Chapter and its Corollary.
. Remark: (Proof of the Theorem 6.5.4 characterizing S,) : Following
" Jacod[1979,p.29], assume that statement (2) of the theorem holds and so X = m
( + A, with A of local integrable variation (Ae(IV),,.). We show that (1) holds.
',;f.'_ Write X = m+ A = m+ A- AP + AP. Since A¢(IV),., we know by
~ Theorem 6.3.3 that A - AP is a local martingale. Therefore, X = m' + AP,
o, where m’ €M, and AP is a previsible process of bounded variation. But again by
‘j:, Theorem 6.3.3, it follows then that AP is in (IV)o. This takes care of statement
L (1), except for uniqueness. But this follows easily from part (2} of the last
o Lemma. That is, just assume that X = m' + AP has a second representation
=y X =n + B. Then the process n - m' = AP - B satisfies the conditions of part
;‘.;\:' {2) of the Lemma and so is evanescent. Therefore the representation is unique up
\ ;‘;:, to indistinguishability, and (1) holds.
\

The next step is to show that statement (4) follows from (1). Let X = m + A be
the “canonical decomposition™ of (1) and A’(t) = sup.>,| Als)|. for all t>0.
Then A’eIViY, since AelV| .. Let (T,) be the localizing sequence for m and
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S, := inf{t:m*(t)>n), where the * again indicates the supremum process. Then
we can assume that S foc. so that min(S,, T )toc. Therefore. m(ST,} is P-
integrable ( just recall that me belongs to M, ). Hence, m*(ST,) is bounded
above by n + | m(S;T,) | . so that m* is of local integrable variation. Since A" is
also in this family of processes we have that X* is of local integrable variation

and (4) holds.

The remaining parts, showing that (4) implies (3) and (3) implies (2), are, respec-
tively, straightforward and trivial.

6.5.6. The following Corollary shows that any semi-martingale can be
transformed into a special semi-martingale with uniformly bounded jumps:

6.5.7. Corollary:
Let X be any semi-martingale, a>0 and X® the process defined by setting

Xa(t) = S AX(S) ll | AXs) | >3].
s<t

Then X3*BYV and X - X® ts a spectal semi-martingale whose canonical decomposi-
tion, X-X* = m + A, satisfies | Am| < 2a and | AA| < a.

Remark: Since this result will allow a second Corollary that is central to the con-
struction of the stochastic integral, we will give its proof: By definition of semi-
martingale, X is Skorokhod, so that the paths t—X?(t,w) have only a finite
number of jumps in any finite interval (Section A 1.1.2). Consequently, X® is of
bounded variation. Since adding a process of bounded variation to a semi-
martingale returns a semi-martingale, Y := X - X®S. By construction
| AY | <a. We use this fact to show that the supremum process corresponding
to Y is an increasing process of local integrable variation, which by the Theorem
demonstrates that Y is a special semi-martingale. Set T, = inf(t:Y*(t)>n).
Then we can choose T, too, for if not then 0<Y*(t)<n, for some ny and all t>0.
and then the process is of increasing, integrable variation, so certainly of local
integrable variation. On the other hand when T, too, then 0<Y" (T, )<n+a, so
that Y* is an increasing process which is locally of integrable variation. Y is
therefore a special semi-martingale (6.5.4).

Let Y = m 4+ A be the canonical decomposition of Y. We have
AY = Am + AA. The idea of the proof is as follows: We know from Chapter
1. on previsible projections, that PAY = PAm + PAA. Since A is previsible,
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}:‘ PAA = AA. It will be shown below that PAm = 0. Consequentiy.
-\“' PAY = AA. Boundedness of the jumps of A follows from the Chapter 4 result

" that previsible projections preserve order: | AY | <a implies P| AY | < Pa = a.
t'jz.\‘: This gives the result that | AA | <a. Immediately then

_':::f;: fAm| < 1AY] + | AA|.sothat | Am| < 2a, and the proof is complete
.'j::;‘_: except for justifying PAm = 0.

To see that the previsible projection of the jump process of m (i.e., (Am,,t>0) )

N is evanescent, let T be a previsible time with announcing sequence (T,}. Then
L T, 1T, and T, < T on [T > 0]. Doob’s Optional Stopping Theorem supplies
‘ the fact that E({m(T)- m(T,)) | F(T,)) = 0 so that (heuristically) letting

] n—o>0, we obtain E({(m(T)- m(T-)) | F(T-)) = 0 on [0 < T < o], which

«.J savs that the jump process has an evanescent previsible projection.

e

.E:j:.: Now the much anticipated and important result.

R o
S 6.5.8. Corollary:

:i If M 1is a local martingale, then it has a decomposition, M = m' + m' ' .
'\-::":: where m' 13 a local martingale vanishing at the origin, with uniformly bounded
“::',: jumps. | Am' | < landm' ' 1is alocal martingale of local integrable variation.
‘_\ 6.5.9. Remark: This decomposition is not unique. Since local martingales are. of
- course, semi-martingales, we can apply the last corollary to MeM,,. with a = 1/2.
::::'-f: The result is M = M* + m + A. where m and A are as in the definition of a
2 special semi-martingale, | Am| < 2a = 1 and A is previsible and locally of
__, integrable variation. Setm =m' andm' ' =M+ A = M-m' . Since M?*
oY is of bounded variation. m - m' = m' ' is of bounded variation. Since m' ' is

‘ ___.\ also a local martingale, Lemma 6.5.5 guarantees us that m' ' is of local integr-
f:__‘q able variation.

:_‘:. Remark: We now discuss the structure of the class K>9 and obtain. as a conse-
fj-:. quence, information about the sums of jumps of any local martingale. Such
T;'j' results are needed in order to define the quadratic variation of local martingales
s and thence semi-martingales in the next Section.

"::E:: Finally, we reformulate the previous decomposition theorem for local martingales

4 _"" into one whose summands are continuous and purely discontinuous local mar-
':::::: tingales. For us this will complete the geometrical picture of local martingales as
sums of orthogonal processes. The main purpose for including it here. however.
S is that it can be used to obtain a corollary which gives us the important fact that
:‘f\ the continuous part of any semi-martingale is unique.

o
A
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- 6.5.10. Remarks: A rigorous discussion on the structure of the space of purely

discontinuous square integrable martingales would require more space than is
appropriate in this note. But certain facts can be explained. We start with mar-
tingales which are of bounded variation. Let m be such a martingale. Then we
can show that

S: ‘Ank - ( E: .Aﬂk)p
0<s<t 0<s<t

where the symbol p indicates that the last term on the right is the dual previsible
compensator of the sum of the jump process t—Am, over the interval (0.t].
Thus, m is represented as a sum of compensated jump martingales.

The proof of this statement is quite easy and it also shows that the compensator

( the dual previsible projection ) is continuous: Just set X = m - my - J. where

J := ¥ Am, Then it is clear that X is continuous and so previsible. So
0<s<t

XP = X. Also, since m - my is an IV martingale, its dual previsible projection

15 evanescent (Theorem 1.6.14). Therefore. using the linearity of the dual previsi-

ble projection operator, we have that X = XP = -JP_ which says that JP is

continuous and m = my + J - JP, which is the stated result.

It turns out that such martingales are dense in K>, The usual way to establish
this fact (Meyer [1976]) is to let T be a stopping time and define the subspace
M[T] of K*¢ to be those martingales which are continuous outside of the graph of
T. In order to state the basic results, first consider the case where T = 0. a.s.P
(remember that we are still under the ‘‘usual conditions™, so T is indistinguish-
able from the zero stopping time). If meM[0], then m - mg is a square integrable.
purely discontinuous martingale which is also continuous. Therefore, m-my must
be the zero martingale, and so m, is the constant martingale equal to the random
variable mg for all t >0. (Remember the convention stated in the Outline, which
set mg_ = 0, so that all members of the space of continuous martingales must
satisfy the condition my=0.)

Therefore, suppose from now on that T > 0, a.s.P. So if meM[T], we must have
my = my. = 0 and so M[T]C ¢, when T > 0, as.P.

Now, let m := A - AP, where A := gl ). where g is a random variable
with finite second moment, so that A is in IV and m is a martingale (Chapter 1),
a compensated jump martingale.
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3::: A There are two cases to treat: (i) T totally inaccessible and (i1) T previsible.
\ Consider case {i):  Since AP is previsible, its discontinuities, if any. are exhausted
‘_:; by a sequence of previsible times and by definition ( of the term “exhaust™.
- Chapter 2 ) it cannot charge any other stopping times; in particular, it cannot
:::-j;' charge T, since T is totally inaccessible. Further, we now show that AP cannot
) even charge any previsible time.
:‘-::::: To see this, recall the language of Chapter 4. and the fact that the measures gen-
:'.:::: erated by A and AP agree on G(PT)}, the o-algebra of previsible events. Then
notice that here, the support of the measure g, is {[T]]. So if AP charges a prev-
isible time, U, then the random set [[U]]M[[T]] is not evanescent and so T is not
o totally inaccessible. This contradiction therefore tells us that AP does not charge
‘fﬂ:: any previsible time. Hence, AP must be continuous and so m is continuous out-
side of the graph of T.
O Finally in case (i), with more effort than we want to expend here, it can be shown
3O that APel,. so that this compensated sum of jumps martingale is square integr-
.,*- able. Therefore, meM[T)CK¢P.
o
) Now in case (ii), with T previsible and a.s.P. positive, and with the additional
j? assumption on g that E(g| F(T)) = 0, it can be shown that (g ljir))? = 0.
T Hence the compensated jump martingale, m, has the form m = g Iyt ) and
o belongs to M[T}.
.} ! Therefore, with either of the assumptions on T and the corresponding assump-
‘::::: tions on g, m = gljp~) - (81| «))° (called a compensated jump mar-
e tingale ) is a martingale in M[T].
S
il Further, it can be shown that for every n, nek?, the process
v
L = mn- AmpAnrljr o)
=
— is a uniformly integrable martingale which vanishes at the origin ( belongs to
o My).
&
"J::. When n is continuous at T. this shows that mneM,, so that m is orthogonal to
: every n which is continuous at T. Since our compensated jump martingale is in
00s K*. we also have m® - (Amq)? l“T'ﬂ)eMo. From this and the properties of uni-
vl formly integrable martingales,
i
W
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Em: = ElAmg) (9)

We now apply these observations to an arbitrary n in K° = Set
m = Ang Lyt o) - (g Ijr )P Then m is a compensated jump martingale
with the property that n - m is continuous at T, and consequently. orthogonal to
M(T]. m is therefore the projection of n onto m{T].

We can now state the principal result concerning the structure of purely discon-
tinuous, square integrable martingales.

6.5.11. Theorem:

If meK@4, then m is the sum of a series of compensated jump martingales and m
18 orthogonal to every martingale neK* which does not charge a jump of m ( so m
is orthogonal to every member of K*°).

Remarks: By a Theorem in Chapter 2 there is a sequence of stopping times, (T,)
that exhaust the jumps of m. (Recall that the definition of exhaust includes the
fact that the graphs of these stopping times are pairwise disjoint.) Further, since
each stopping time can be decomposed into the sum of a totally inaccessible and
an accessible stopping time (whose graphs are disjoint), and by definition each
accessible time is included in the union of a sequence of previsible times, we can
assume that each T is either totally inaccessible or previsible.

For each k, let m*) be the compensated jump martingale associated with the
stopping time T,. Since the graphs, [[T,]], are pairwise disjoint, the m(*) are
pairwise orthogonal (in Lo(P), if you like).

k .

Letting Uk} .= b ml) we have that m - U¥) is continuous at the stopping
1

times T;, - - - T, and, therefore, orthogonal to mV -« mk. It follows that

m - U¥) is orthogonal to UK.

Therefore, if we write m = UK + (m - U(k’), square both sides and then take
expectations of the result we have

k .
Eml = 3 E(mY)* + E(m, - UL)®
I

k
=¥ E(Aan)'“’ + E(m, - UCQ‘))?.
1

(We have used equation (9).) It follows that U,, converges to an element U of
(k)
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, f_-‘.f K>4. (Recall a previous Lemma stating that K*9 is closed.) It is a simple matter
e - . \ .
BA" to conclude therefore that m - Uek>, and m - U is orthogonal to U. But since m
- is purely discontinuous, it follows that m - U is orthogonal to itself. Hence,
< m = U and so
3 . :
::.,‘ Em;o = S E(Am'r )=
T 1
W This completes the ‘““proof’’ of the Theorem.
MY
N
ik .- . .
WA Now if we take any element in K2 not necessarily continuous or purely discon-
:::,:.. tinuous, then we can carry out the same construction and write
.90 . « e . .
m = U+ (m - U). Therefore, we have a unique decomposition of m into its
A “continuous’ and ‘* purely discontinuous™ parts. This decomposition also vields,
s as before,
MR
AR 0
LIRS LY
e, Em2 = ¥ E(Amg)* + E(m,, - Uy)%.
- 1
"A"j But now m is not necessarily equal to U, so
P
oL
[ DL ! (8 0]
Em? > Y E(Amg ), (10)
O, !
:?': . . . . -9 4
with equality holding iff meK=2.
. Returning to the decomposition of meK® and writing m® = m- U and
'_';.:,‘: m? = U, we can say that there exist m%K?>¢, m9¢K>9 such that m is uniquely
Ay decomposed into the sum m = m? 4+ m¢
>
}-'.\::
R This is a essentially a special case of a more general result about local mar-
tingales. To prove the more general statement directly, without the last version,
e Jacod first notes that any local martingale of bounded variation is in the family
-‘4 . . . . .
-&-:‘ M4, and, using the decomposition given in Corollary 6.5.8 above, reduces the
‘-,‘ proof of the decomposition of local martingales into their continuous and purely
discontinous parts to a proof of this statement for members of K.
Ol
LN
- N We state this result:
o
e
o
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6.5.12. Theorem:

Let m be a local martingale. Then there erist martingales m® and m% in M\, and
M., respectively, such that m = m° + m? . This decomposition of m into its
continuous and discontinuous parts 1s unique.

Remark: We have already mentioned the first of the following two results. The
second will be needed in the construction of the stochastic integral for local mar-
tingales.

(1) Any local martingale of bounded variation i3 in the family
M.

2) Any two members of M3, which have indistinguishable
jumps processes are indistinguishable. The latter means sim-
ply that Am = An impliesm = n for m,neM3,.

Remark: For the second statement, let X = m - n. Then the hypothesis of (2)
says that the jump process of X is the zero process. By unicity of the decomposi-
tion theorem, X is then a continuous process which takes the value zero at the
origin. Since X is purely discontinuous, this means that X is the zero process, or
what is the same, m = n.

6.5.13. Corollary
Let any semi-martingale, X, have the representations

X=m+A and X =1n+B
where mn € My, and A B € BV. Then m® = n“.
Remark: Just notethat m-n = B-A C Mo‘f,oc.
Therefore, 0 = (m -n)* = m°® - n".
If the semi-martingale X decomposes as X = m + A , then we write X = m°
and call X° the continuous part of the semi-martingale. By the Corollary, X is
independent of the decomposition. If XeM,,., we set X° = m® where m® is given

by the decomposition m = m® + m¢ of the theorem itself.

Now, return to the inequality (10). This immediately yields the following.
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*b\ 6.5.14. Theorem

“i If meK?, then ¥ Am? < oo, a.8.P, for all t>0.
) s<t

“ -

_}: Remark: Following custom, we have used the following abbreviation:
% JaliS

SN Am? = (Am,y)*

A&

The extension of this result to local martingales is an immediate consequence of
% applying this theorem to the decomposition given in Corollary 6.5.8 and using an

Aigd obvious property (explicitly stated below) of processes of integrable variation.
ﬁ‘;;-',
e The following Corollary is necessary to prove the existence of the quadratic varia-
KR tion of a semi-martingale:
".‘\"‘E
) 6.5.15. Corollary:
::,‘ X If meM,., then ;ﬁAmf < o0, a.8.P, for all t>0.
s—-
' i:‘_: 6.5.16. Corollary:
‘:{ XS, X = m+ A, then Y, AX? < o0, a.s.P, for all t >0.
';'.. s<t
e Remark: Since A is in BV,
_-'(.::‘
o TAAY < CTAJA] <
W s<t s<t
L a.s.P, for some positive constant C, for all t>0. The result follows from the pre-
o vious Corollary by noting that
Lol
"Sf AX?2 < 2(Am? + AA2).
R
"
el We will now give a result of Jacod which says that localization does not extend
\::,: semi-martingales.
2 f:-j 6.5.17. Theorem:
f_ (1) S, is not extended by localization: S, = (S),.
"‘-.3’, (2) S 13 not extended by localization: S = S .
‘\"
N4
ﬁ-:j Remark: We will only prove (1). The main purpose is to illustrate what Del-
lacherie and Meyer [1981] call “‘pasting’: a procedure for constructing a single
R process from segments of a sequence of processes.
B2 {
N
B N,
N
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As always, S, C (Sp)ie- So let Xe(S,)y,. and (T,) be a localizing sequence of X
which reduces X to Sp, that is, such that XT"eSp for each n. Let the canonical
decomposition be X™ = m(™ + Al™ for each n. Since the T, are nondecreas-
ing, T ,1~T, = T, , so that (XT"")T" = X™. The uniqueness of the canoni-
cal decomposition allows the summands of the decomposition to inherit this pro-
perty:

(m(n+l))Tn — m(n)‘

(A(n+l))Tn — A(n).

The required local martingale, m, and previsible process of bounded variation. A,
are obtained by pasting these path segments together, path by path. over all
paths. Geometrically, it might help the reader to realize that equation (9), for
instance, means that on [0, T (w)], m(™(w) = m{®*"(w). Thus, m and A with
the required properties exist such m™ = m™ and AT = AW and
X = m + A. Therefore, XeS,, and so S; = (S)j,,.

Remark: Thus, we have reached the end of the line in extending our processes by
localization. That this is exactly the right place to stop in order to develop the
stochastic integral will only be apparent after we complete the construction of
the stochastic integral.

6.5.18. Remark: In Chapter 5 we gave a very general form of the Doob-Meyer
Decomposition Theorem. We will now state this important result in a more res-
trictive and more easily proved form (see for example lkeda and Watanabe).
Then, using this and the results developed so far in this Section. we prove the
Theorem as stated in Chapter 5. This will to some extent explain the central role
this result plays in the modern theory of semi-martingales.

6.5.19. Lemma (Doob-Meyer Decomposition for Class D submar-
tingales):

Let X be a supermartingale of the class D. Then there ezists a unique, previsible,
integrable increasing process, A, such that X + A eMy ( 13 a untformly integrable
martingale which vanishes at the origin ). Further, A 13 continuous iff \' is
quasi-left continuous.

6.5.20. Remark: Note that the Lemma does not involve localization. With
Theorem 6.5.10 and Lemma 6.5.12, we can now state and prove the DMD
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Theorem in a form equivalent to that of Chapter 5:

6.5.21. Theorem (Doob-Meyer Decomposition):
Every supermartingale (submartingale) 1s a special semi-martingale.

Remark: Because the proof (Jacod) is very elegant and gives application of some
basic martingale results, we will give its outline. Set T, := inf{t: | X(t) > n }
and S, := min(n,T,). Let F = (F(t)) be the underlying filtration. For each n.
consider the stopped process. X", and notice that since X is an F-supermartingale,
when t>n, X; = E(X, | F,). and when n>t, then X, > E(X, | F,). These
two statements can be combined by writing X,» > Y,/® := E(X, | F,): thus.
for each n, the uniformly integrable martingale, Y™ is a minorant for the
stopped process X". Therefore, Doob’s Optional Sampling Theorem applies to the
stopped process, X5, That is. the process X = (X“)T" is an F-
supermartingale. Further, since this process is majorized. for each n. by the ran-
dom variable n + (XJ)*. it is a class D supermartingale. The previously stated

class D form of the Doob-Meyer decomposition theorem then applies and X s a
special semil-martingale. Since we know that the class of special semi-martingales
is closed under localization, we have that X is a special semi-martingale.

The following also holds:

6.5.22. Theorem:
Every special semi-martingale 1s the difference of two local supermartingales (sub-
martingales).

Doob’s class D Lemma also applies to submartingales. The only change would be
that we would have X = m + A with A increasing.

6.6. The Quadratic Variation Processes of a Semi-Martingale: In various
forms, we have mentioned that if m is a square integrable martingale, then m? is
in the class D and, hence by Doob's Theorem, a previsible, increasing process of
integrable variation exists which compensates m? into a martingale. In Chapter 1
we denoted this increasing process by <m,m>.

It may have escaped notice, but we have also proved this for the family of mar-
tingales, m, that are only locally square integrable. If m ¢ K., then m® is a spe-
cial semi-martingale. This is because mek,?, — m"ze(Sp)k,c = S,. by Theorem
6.5.10 Letting the associated previsible process, A, of the canonical decomposition
be denoted by <m,m> and observing that it is an increasing process since m? is
a local submartingale, we have
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6.6.1. Lemma:
If m is a locally square integrable martingale. then there erists a locally integr-
able. increasing, previsible process. <m.m>. such that m® - <m.m> € Mg,

As in Chapter 1, we call process <mm> = (<m.m>(t). t ¢ R ) the previsi-
ble quadratic variation of m. In our notation, <m,m>¢(IVF), .

When m and n belong to K2, the process <m,n> is defined by polarization. as
in Chapter 1. It is immediate that the mappings m - <mn> and
n — <m,n> are linear. Indeed, for m,n 1k in K2, and a,b,c.d real numbers,

<am+bn,cl+dk> = ac<m I> + ad<m k> + be<n,I> + bd<n.k>.

6.6.2. Theorem:
If mneK2,, then <m,n> s the unique previsible process in (IV), . such that
mn-<m,n> belongs to My,

6.6.3. Remark: It might be worthwhile to first consider the case where m and n
are square integrable martingales (m,neK?). The Theorem then follows by noting

that (m+n)? - <m+n,m+n> is a martingale and equals the sum of the following
three martingales:

m®- <m,m>, n?- <n,n>, 2{mn - (<m+n,m+0> - <m,m> - <n,n>)/2}.
so that the last term in the braces must a martingale. The conclusion that
mn - <m,n> is a martingale follows from the uniqueness of the Doob-Meyer

decomposition.

The reader should note that the conclusion of the remark says that if you start
with martingales you end up with a martingale, not just a local martingale.

A proof (Jacod [1979]) that gives the generality of the Theorem follows by recog-
nizing the product mn as a special semi-martingale. This is because writing

mn = —(m+a)? - (m-n)?)

expresses the product mn as the difference of two submartingales. Hence, mn is
in S;, by Theorem 6.5.15.

As in Chapter 1, the process, <m,n>, is called the covariance process of m
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X 6.6.4. Remark: Again take m and n to be square integrable martingales. An
' ": easy computation, based on the last Remark. yields
~‘
LS
EY: E{m(t)n(t) | F(s)} - m(s)n(s) = E{<m,n>(t) -<m,n>(s) | F(s)}.
oY This equation states that the product mn is @ martingale sff <m.n>(t) = 0 for
{"_ all t2>0. Recall the earlier discussion on orthogonality of martingales and store
%: for later purposes the fact that <m,n> = 0 if m is continuous and n is a com-
pensated jump martingale.
'. 6.6.5. We now define the {optional) quadratic variation and the (optional)
j :; cross quadratic variation of semi-martingales, X and Y.
XX, == <X°, X°>,+ ¥ (AX(s))? (11)
:.",’_. 0<s<t
L
N
<
M .
AN XY, = <X°, Y'>, + ¥} AX(s) AY(s) (11.1)
0<s<t
e for all t in R,.
8
L .
}_:{ 6.6.6. Remark: From the definition of < , > on K%, <m,n> is well-defined
" for m and n in M, since M}, C K;2,. Section 5.1.11 gives a proof of the fact
(- that any continuous local martingale is an L, local martingale, for any p > 1.
').j Hence, the first terms on the right side of equations (11) and (11.1) are well-
‘;:}j; defined. Corollary 6.5.16 of the last Section then shows that [X,X] is well-defined.
iyl It follows easily that [X,Y] makes sense.
;.: Having observed that M|S, C K2, the following example due to C. Stricker (Del-
s:.'; lacherie and Meyer [1980]) of a local martingale that is not locally square integr-
;-._'. able is probably worth the interruption. Define the filtration (F(t)) on the proba-
al bility space, (Q,H,P), as F(t) = {¢,Q}, for 0<t<1, and F(t) = H. for t>1.
i Then X(t) = E(h|F(t)), where he(L; - Lq ), is such an example.
ANy
':".f 6.6.7. It can be shown that <X°X®> is always continuous. ( Actually, the prev-
e isible compensator of the submartingale in the DMD Theorem is continuous iff
i the process is quasi-left continuous, which is true if the process is continuous.)
o Therefore, [X,X] will be a continuous process iff the sum vanishes, that is, iff X is
Aos

b o continuous.
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Of course, in the cross quadratic variation, the sum is the zero process if X and Y
have no common jumps and clearly [X,Y] = 0 if one of the factors is continuous
and the other is purely discontinuous, since then <X°Y*> = 0.

We will not take time to prove the following important Theorem.

6.6.8. Theorem: Let m and n be local martingales. Then
(1)  [m,n] s a process of bounded variation and

(2) mn - [mn] eMg,,

6.6.9. Remark: We see from this Theorem that m and n are (strongly) orthogo-
nal iff {m,n] is a member of Mg .., for then mneMg .

Our main purpose, however, in stating this Theorem is that it is but a short step
to the result that [X,X] is a member of Vt. For let X = m + A, with m in

Mo oc 2and A in BV. Then, as shown in the proof of Corollary 6.5.16, the series P
with terms (AA)? converges, so that the process defined by S (AA(s))®

—
0<s<t

belongs to V*. By (1) of the previous Theo;‘em, [m,m] is in V*. Hence,
[X,X] € V*, and we have the following Theorem.

6.6.10. Theorem:
If X is a semi-martingale, then [X,X] fs an increasing process.

6.6.11. Remark: We will list a few of the consequences stemming from this
result. Let X and Y be semi-martingales. Then

(1) [X)Y]e(BV);
(2) (X)Y) — [X)Y]is bilinear;

(3) If T is a stopping time, then

XYT = KRYT) = XTY] = XY

6.6.12. Remark: If mneK;, then we have seen that mn - <m,n> and
mn - [m,n] both belong to My,.. Therefore, [m,n] - <m,n>eM;,. also. Since
[m.n]e(IV),,., we have <m,n> = [m,n]’. That is, <m,n> is the previsible
projection of {m,n]. For X,YeS, we therefore can extend the definition of < . >
by setting <X, Y> := [X,Y]P, whenever [X.Y]e(IV),,.
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:’ i: 6.6.13. As might be expected. to complete the construction of the stochastic
o integral we require inequalities analogous to the Cauchy-Schwartz inequality. The
form of the factors on the right side of the second of these inequalities should be
N noted in order to understand the selection of a norm for L (m)j, defined below.
B "
',::: The following is due to Kunita and Watanabe [1967]:
’ 6.6.14. Theorem (Kunita-Watanabe Inequality):
&N IfH and K are optional processes and m,neK>, then
Ihe
o
i: x o 1l o 1
W . o o -0 B
e S IH(s) | [K(s)| |d[mn],| < (fH?(s) d[mm])* (fK*(s) d[n,n]y)>.
0 0 0
li'._¢ X X
155 If p>1 and q is the conjugate of p, then
)
|
B i 1 Y 1
E(f [HE) | 1K) |dma), ) < IE fmm]) 20, K2 o)), 50,.
s::: 0
Remark: If n and m are continuous, then we can replace [ ,] with <, >. In
,_ fact, the inequality was originally proved in terms of < , >.
"\ The following remarkable Theorem shows that with p>1 the norm | m*(cc) |,
1
and the norm | [m,m]?(o0) Ilp are equivalent. In particular, this means that we
"" can define the space K® of square integrable processes in terms of the L, norm of
- v{m.m].
Z:Z;:
' 6.6.15. Theorem (Davis, Burkholder, Grundy):
A Let pe[l,00). Then there exist positive constants c, and c; such that for each
v meM,.
.'3.:‘
hYs
" . ! .
N » cp “mOO"p S “ [mym]og np S cp " moo "p
|“'.‘

6.7. Stochastic Integrals Relative to Continuous Local Martingales: Let
- m be a local martingale and pe[l,c0]. As usual || denotes the L, norm:
[E1Pp == E(|]P). Set
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and L, (m) := {H previsible: | H ﬂp‘m < o0 }. The Kunita and
Watanabe Inequality shows that L, (m) C L, (m) if q < p.

6.7.1. After our discussion on localization of integrators in the introduction to
this Chapter, we noted that localization for integrands would be carried out
differently than for integrators. Let pe[l,00), and L, 10c{m) denote the set of all
previsible processes for which there exists an increasing sequence, T 1oo, of
optional times such that H Lot € L, (m). Notice that this type of localization
is a natural choice for integrands. Attempting to integrate constants other than
zero over unbounded sets relative to o-finite measures tends to produce undesir-
able results.

6.7.2. Suppose that meMg),.. Then the Lebesgue-Stieltjes stochastic integral
H?.[m,m] is continuous, and the increasing processes t—\/H%.[m,m|(t) is continu-
ous and vanishes at the origin. Therefore, this process is of bounded variation iff
it is locally bounded. Therefore, under the assumption that meMg,., it can be

shown that L, ,.(m) = L .(m) for all p>1.

To define the stochastic integral for H in L, ,(m) relative to meMg), it is there-
fore sufficient to define it for L, (m).

6.7.3. Let HeL, (m). Consider the linear transformation on K* defined by
n — C(n) = E({H.[m,n])(c0)). (12)
Set
ol = I n(oo) s,

the norm on the Hilbert space, K2 equipped with the inner product
(m.n)—Em(oc)n(oc). Then according to the Kunita-Watanabe Inequality with K
= 1 and using equivalence of norms, we have that [ C(n)| is bounded above by
| H ||3_m l nll. This shows that C is continuous on K>2.

But as a continuous. linear functional on a Ililbert space, there exists a unique
process YeK*® with the property that E(Y(oc)n(oc)) = C(n) for all K*. Recalling
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equation (12), this remark justifies the following

6.7.4. Definition: If HeL>(m). we call the stochastic integral of H relative to
meMg,... denoted by H.m, the unique element of K? such that

E(Hm),)n,) = E(H.[m,a]),, (13)

for all n in K2,

Having justified the definition of the stochastic integral, we now give a result
which characterizes it.

6.7.5. Theorem (Characterization of H.m on Mg, ):
If HeL? (m) and meMg),., then H.meK@© and H.m s the unique element of K*
such that

(Hm, n] = H.[m, n], (14)

for all neK?2.

6.7.6. Remark: Thus, if Y is a solution of [Y,n)=H.[m,n], an equation equating a

process of bounded variation and a Lebesgue-Stieltjes integral, then ¥ = H.m .
t

If we define f H(s) dm(s) = (H.m)(t), for all t>0, the equation (14) takes on the
0

following form:

t

[f H(s) dm(s), n](t) = [ H(s) d{m.n](s). (14.1)
0 0

6.7.7. Remark: This Theorem is due to Kunita and Watanabe. The proof given
here is from Jacod. From earlier remarks, we know that Y = H.meK® Letting
(' be as defined above, C(YY) = E(Y(oo)Yd(oo)) and, since the discrete and
continuous parts of Y are orthogonal, we have

CYY) = E((Y" (0) + Y (o)) Yo (oe)) = E((Y?! ().
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But since m is continuous, we have [m, Y¢] = 0, the zero process. Therefore,
by definition of stochastic integral C(Y?) = E( H.[m,Yd]) = 0 and conse-
quently E((YYc))®) = 0. Therefore, Y4 = 0, the zero process (it is clear that
we are working with equivalence classes), and so Y is continuous and Y, = 0
(the latter with the convention Y. = 0). That is, YeKg*.

Next, for each optional time, T, and each neK® we know that
Yol - [Y.nT] K¢ and [Y.nT] = [Y.n|T: hence,

E((Y.n](T)) = EY(T)n(T) = E(E(Y(oc) | Fr))n(T))
E(Y(>)nT(x)) = C(nT(x)) = E(H.[manT](x)
= E(H.[m.n]T (0c)) = E(H.[m,n} (T)).

That is,
E[Y.n)(T) = EH.[m.n)(T)

for any nek* and optional time T.
) p

It follows from Theorem 6.6.8 that [Y.n] - H.m.njeM;. But [Y.n} - H.[m.n]
is a process of bounded variation which is previsible (the latter since Y and m
are continuous), so that [Y,n] - H.m,n] = 0, the zero process. This proves
the theorem in one direction.

Conversely, let YeK® and satisfy [Y.n] = Hm,] for all neK®  Then
E[Ynl(x) = E(H[mpn](oc)) = C(n) = E(Y(oc)n(x). Therefore,
E[Y.n](oc) = E(Y(o0)n(oc)) for all neK® Then, by definition. Y = H.m, com-
pleting the proof.

Remark: We have observed that when m is continuous, H.m is continuous.
Hence, [H.m,a] = <H.m,n> and we remarked earlier that m continuous gave
us (m.n] = <m,n> so under the assumptior: of the theorem, equation (14) can
be expressed as

<Hmnp>=H.<m,n>. {14.2)

Further, from the properties of [, ], we can show

6.7.8 Corollary:
(Hm)T = HmT = H Ljjo,x)j-m for all optional times T.
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'-‘- 6.7.9. Remark: Let HeL, ..{m) and T Toc. a localization of H relative to L.(m).
f,' ( No, the 2 is not a mistake: recall that Ly o = Loy,..) That is. H o 1 jeloa(m).
. The previous Corollary provides us with a way of extending the definition of H.m
::fj::_ to H in L;,,. by setting (Hm)™ = (H Ljo.r,)-m. for each n. The result is
:E.:: called the stochastic integral of H relative to m . Thus. the stochastic
o integral has been defined for HeL, . and meMg),.. It satisfies a characterization
\ ' analogous to that stated in the last Theorem and the same equations as given in
:I':-‘:'.: the Corollary.
-
:I::El 6.2. Stochastic Integrals Relative to Local Martingales:
o 6.2.1. Definition: If HeL, ,.(m) and meM .. then the stochastic integral H1.m
::-:j:' of H relative to m is the unique element of M. which satisfies
e (Hm)” = Hm‘ A(Hm) = Him.
b
. 6.2.2. Remark: Recall that if m is a continuous local martingale then the paths
. of m are of unbounded variation. So. in this case, H.m should never be mistaken
""-'_'_'_: for the Lebesgue-Stieltjes (pathwise) integral of H relative to m. We know that
";:j:'_' such objects do not exist.
—_ Hence, until this Section, either meM5. or meM,, BV and so the stochastic
integral H.m was either that of the last Section or the Lebesgue-Stieltjes stochas-
- : tic integral, respectively. The last definition considers meM,,. so now the possi-
-:::.:: bility of an inconsistency in our definition of H.m arises. Jacod shows that Y =
) ) H.m as just defined cannot have two distinct meanings. He argues as follows: If
»QYEH t
:j::: meMlmﬂB\', HeL,(m), and n{t) = fH(s) dm(s) exists as a Lebesgue-Stieltjes
0
N‘_ integral. then ne(IV),.. This can be shown to imply that neM. But
e meM, BCMZ  so  that m° = 0.  But then, by definition,
T Y= 0 (Y = Hm®. So YeM,gc also. Now recall the “you know them by
::'_':- their jumps’ description of M, given earlier. Using the facts that An = HAm
l: and, by definition, AY = HAm, we conclude that Y = n.
Nod
.7- Remark: We have just noted that the stochastic integral of this Section reduces
."f ] to the Lebesgue-Stieltjes stochastic integral when melV, . so that it is important
s to realize that contrary to the case of the Lebesgue Stieltjes integral, H.m is not
4_:-: defined pathwise: its definition depends on the underlying probability and filtra-
S tion.
o
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6.2.3. Theorem (Characterization of H.m on M, ):

(1) Let meM, . and HeLy ) (m). Then H.om s the unique ele-
ment of M,,. which satisfies [H.mn] = H.[mn| for all
neM...

(2) In order that H.meKP (respectively K5 ) st 1s necessary
and sufficient that Hel (m) (respectively L, )

6.8.4. Remark: Part 1 echoes the characterizations of stochastic integrals on
M;.. Thus, the definition of Hm on M, is consistent with the definition on
MS,. Part 2 says that the “‘size” of the integral is directly related to the “size” of
the integrand. This result is not surprising when the definition of L (m) is
recalled.

6.8.5. Remark: A sketch of the proof that [H.m,n] = H.[m,n] is as follows. By
definition of [,], [Hman] = <(Hm)*n°> + Y (AH.m)An. By definition of
H.m, (Hm)® = H.m¢ so that <(H.m)*,n°> = <H.m"n°>. The latter equals
[H.m¢n°, which by the last characterization for continuous local martingales
equals H.[m‘n‘ = H.<m®n°>. Finally, since AH.m = HAm, we have
[Hmpn] = H.<m%> + YHAmAn = H(<m‘n*> + Y Aman) =
H.[m,n]. For the converse we must show that if YeM,,. and [Y.n}=H.[m,n] for all
neM;,,, then Y© = (H.m)° = H.m® and AY = HAm. The interested reader
should just write Y = Y°+Y9 and m = m°+m? and proceed, or see Jacod.

6.9. Stochastic Integrals Relative to Semi-Martingales

6.9.1. For simplicity, let H be a bounded previsible process. Let XeS and have
the decompositions X = m + A = n + B with the usual meanings. By the pre-
vious two Sections, the stochastic integrals H.m, H.n and the Lebesgue Stieltjes
integrals H.A, H.B are well-defined. Since, m - n = B - A is a local martingale of
bounded variation, we know by the consistency of the stochastic and Lebesgue
Stieltjes stochastic integrals that H.(m - n) = H.(B - A). Therefore, the formula
HX = H.m + H.A defines the stochastic integral of a semi-martingale and this
definition is independent of the choice of the decomposition. The resulting
expression H.X is called the stochastic integral of H relative to X.

6.9.2. Remark: Properties specifically derived or implied in these Sections are
summarized {with a minimum of special notation) in the following Portmanteau
Theorem. The first part of the Theorem contains a result referred to in the
introduction concerning the extension of the stochastic integral bevond the class
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& of semi-martingales. It also includes a stochastic integral version of Lebesgue’s
R Dominated Convergence Theorem and relates the elementary stochastic integral
. discussed in the Outline in Section 6.2.2 to the integral developed in this
::' Chapter.

& For additional details on the construction of the stochastic integral the reader

should consult Dellacherie-Meyer [1982,313], Jacod [1979], and Dellacherie [1978).

::{: Let the space = of elementary procusses introduce in 6.2.3. and equip £ with the

b~ topology of uniform convergence. Denote by Ly = Ly(F,P) the space of finite

1 measurable functions equipped with the topology of convergence in probability,

P.
g
! 6.9.3. Theorem (Portmanteau)

n (1) Let X be fired Skorokhod process and H.X denote the elementary stochastic

o integral of H relative to X. Then the mapping H-H.X, from Z to Ly, defined by

::J t

H(t) — [ H(s) dX(s) := H.X(t) (%)
0

Jor each non-negative t, 1s continuous iff X ts a semi-martingale.

€ v a
a

:E 2) Let X be a semi-martingale. The mapping from E into Ly defined by (*) can

- be extended uniquely to the space of all bounded, previsible processes in such a

v way that ( retasning the notation HX ), the mapping H-H.X 1s linear, the process

':" H.X is Skorokhod and the following properties hold:

o
(¢
- (a) (Lebesgue): If the sequence (Y,) of bounded measurable
- . .

processes converges pointwise to a process, Y, and the Y are

o dominated in absolute value by a bounded previsible process,

- then Y is a bounded previsible process and the sequence ;
.’-:; Y, . X converges in probability to Y.X .
= () For every bounded, previsible H, HX s a semi- 1
[ ::j martingale. Also, if X 13 a special semi-martingale, then H.X
e i3 a special semi-martingale. ]
i

: (c) For every H in Z, the (extended) stochastic integral, H.X, {
R i3 an elementary integral. :
N




(d) If X is of bounded variation and H is bounded and prev-
13tble then the (extended) stochastic sntegral, HX, s indistin-
gutshable from the stochastic integral, HX, defined pathwise

by HX(t.w) = [ H(s,w) dX(s,w). for each weQ?, as a
(0.4
Lebesgue-Stieltjes integral.

(e} If H and K are bounded previsible processes, then
K.(HX) = (KH)X, and A(HX) = H AX.

(f) If T is a stopping time,
(HX)T = (H Lo, X) = (H'“[[O,T”'X)) = HXT

(h) If H is a bounded, previsible process, then HX s a mar-
tingale, local martingale or process of bounded variation, if X
13 one of these processes.

6.10. Local Characteristics of Semi-Martingales: In this Section we will
only add a few remarks to what has already been written with the aim of show-
ing some relationships between several of these concepts and with a portion of
the classical theory stochastic processes (processes with independent increments).
Recall Corollaries 6.5.7 and 6.5.8. If XS and we define

Y, = Xo+ ), AX]| ax,| 1) (15)

s<t

then X-Y is a semi-martingale with bounded jumps and hence a special semi-
martingale. Therefore,

X-Y = m+ aq,

where m is a local martingale with uniformly bounded jumps and a is a previsi-
ble process of integrable variation. Both m and a vanish identically at time zero.
Decompose m into its continuous and purely discontinuous parts,
m = m°+ md, and recall that X° := m°. It follows that

6.10.1. Lemma:
If X¢S, then X can be written tn the form

X, = Xo+o0,+ X+ Y, +m! (16)

and this representation is unique.
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Remark: Let g be the saltus measure of X (Chapter 4):
pwdtdz) = Y lax ko e.axy(dt.dz). (17)

and v be the dual previsible projection of the random measure. pu. Setting
3 = <X°X°>, the triple (a.d.v) is called the triple of P-local characteristics
of the semi-martingale X. This triple is uniquely determined by the semi-
martingale X, to within a P-null set. But while 3 and v are intrinsic characteris-
tics of X, the component a depends on the “‘truncation point™ in the definition of
Y in (15). Therefore, the triple does not characterize the semi-martingale X.

In Chapter 4 integration relative to a random measure was taken in the sense of
a  Lebesgue-Stieltjes integral. But we also noticed there that,
2((0,t) X B) ~ ({0,t] X B) is a local martingale, for each Be&, t>0. In fact, it is a
purely discontinuous local martingale. So, if we want to integrate relative to
p-v. we need to at least recognize the fact that yet another stochastic integral is
required. We will not go into the construction of this type of stochastic integral,
but recommend Part I of the 1978 paper by Kabanov, Liptser and Shiryayev in
the Sbornik or Jacod|1979,p.96].

With the aid of this stochastic integral which we will denote by f - - d(p-v) and
with m? as in (16), Kabanov et al show that
t

md = f f xd(p-v). (1%)
0{x:jx| <1}
We can also write the process Y in (15) (as a path integral) in terms of the saltus
measure g of X:

t
Y, - Xo = [ [ xpldsdx) (19)
0{x:|x]|>1}

Thus, we can state the following

6.10.2. Theorem:
If XeS, with saltus measure u and local characteristics (a,3,v), then

t

t
Xy = Xo+a, + 3, + f f xp(ds,dx) + f f xd(p-v). (20)
0{x:|x|>1} 0{x:|x] <t}

and this representation 13 a.s. P unique.

This representation of a semi-martingale allows one to relate semi-martingales to
P. Levy's remarkable theory of processes with independent increments
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(Lévy[1937) and Lokve[1960]).

6.10.3. Definition: A process with independent increments (II) on a filtered
probability space (Q0,H,F,P) is a Skorokhod process X adapted to F such that for
each pair (s,t) with 0<s<t<oo the random variable X, - X is probabilistically
independent of F,. Further, a process X with II is said to be a process with sta-
tionary independent increments (SII) if X, = 0 and X, - X has the same
distribution as X,_, 0<s<t<o0.

Remark: The most famous examples of processes with stationary independent
increments are Brownian motion and the Poisson process. Standard Brownian
motion, also called the standard Wiener process, is a process B with the pro-
perties that B is F adapted and for each pair of numbers (s,t), 0<s<t<oc, the
random variable B, - B, has a normal distribution with zero expectation, variance
t - s and is independent of F.

Since
E(Bt2 - Bsg) I Fs) = E(B, - Bs)2 | F,) = E(B, - BS)2 = t-s,

it follows that <B,B>, = t, t>0. Notice that this also shows that
(B2 - t,t>0) is an F-martingale. B is obviously an F-martingale also and it can
be shown that P-almost all of its paths are continuous. So the paths of Brownian
motion are of unbounded variation with probability one.

Any reference to a Brownian motion process will mean a process X such that
X, = mt + oB,, where m is any real number, >0, and B is standard Brownian
motion.

Not only is B a process with stationary independent increments, but if X is any
SII process which is a.s.P continuous then X is Brownian motion ( X = mt+oB ).
That is, every a.s.P continuous process with stationary independent increments is
a Brownian motion process.

Since standard Brownian motion is a martingale it follows that every Brownian
motion process is a semi-martingale. Poisson processes are submartingales. so
they are also semi-martingales by the Doob-Meyer Decomposition Theorem. But
not every process with independent increments is a semi-martingale. Jacod[1979]
shows that a process with independent increments is a semi-martingale iff the

X,

function t—Ee ™, u, t real, has finite variation on compact sets.

Remark: At this point it might be of some interest to readers of this note to

-, - .
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f ) glance back at Loeve's 1960 book on probability. Specifically, refer to Section 22
R where the classical Central Limit Problem is defined and recall the role played by
. “infinitely divisible” random variables in the solution of this problem. Then turn
,_‘_ to Section 37 and look at the definition of a *‘decomposable” random function
"i (stochastic process); this is a process with independent increments. Some of the
:j’_ principal results there indicate the beginnings of the modern theory of semi-
e martingales and random measures.
o
:',; Remark: Jacod (Jacod{1979, 90-95]) shows that semi-martingales which are
-\.:: processes with independent increments have deterministic local characteristics
: (i.e.. there exists a version of the triple (a.3,v) that does not depend on we(2) and
conversely only semi-martingales with II have this property. When the local
;_:_: characteristics have the additional property that a and 3 are linear in t and v is
et a particular product measure on (0,00) X R, then these processes are also station-
;}' ary. This provides a useful link between the classical and modern theories of sto-
- chastic processes.
:';:_': 6.11. Ito’s Formula and Applications to Brownian Motion: We will limit
-.::f-". our discussion of Ito's formula to processes with continuous paths. Stochastic
".;; integrals relative to this type of process are the most studied because of their
close connection to Brownian motion and stochastic differential equations.
o
'_‘('.:E::j 6.11.1. Remark: Let the function K:R—R have continuous second order deriva-
%‘»’h tives. Let m be a continuous function on R,. Then using a finite Taylor series
N expansion applied to the increments of K, we have
SNy n-1
e K(m,) - K(mg) = 3 (K(m,,) - K(m,_,)
%,.: k=0
Tl Ny n-1 , 1ol o, o o
i = VK (my )Am, + =YK (m, )(Am, )" + ac
i 2
Pl (Eg.t, = t/ = tk/n,sothat 0 =ty < t; < ..< t, = t.)
) -,,:._
whet
S9N If m is of finite variation (in addition to being continuous), the remainder r/* and

n-1

V(Am, )* converge to zero and we have the usual change of variable formula for
A, k=0 k

::2 Stieltjes integrals:

‘ -

Y t

iete K(m,) - K(mg) = [K (m,)dm,
0

e or symbolically dK(m,) = K’ (m,)dm,.
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Now, if we replace the function m, by a standard Brownian motion, B. a continu-
ous process of unbounded variation, it can be shown that

n-1
) (-\Btk)", — <BB>, = t, as.P, (=)
k=0
n-1
and r/? — 0 as n — oc. Further, both the sequence of sums ¥ (AB)” and the

remainders r” converge to zero for each v>3. Therefore we would expect the
change of variable formula for stochastic integrals with Brownian integrators to
be of the form

t

t
K(B,) - K(By) = [K (B,)dB, + -%—fl\" " (B,)ds.
0 0

This is Ito’s original formula for Brownian motion. When B is replaced by con-
tinuous local martingale M, equation (*) continues to hold but the limit is the
process <M ,M>, the compensator of the submartingale M>. We will show below
that the process <M,M> is distinguishable from <B,B> unless M=B. So for
any continuous local martingale one would expect that the change of variables
formula for stochastic integrals would become

t t
KM, - KM = [K (My)dM, + % K" (M)d<MM>_.
0 0

This is the claim of the next Theorem.

Let (Q,H,F,P) be a filtered probability space. Take m to be a continuous local
martingale and recall that MS. C K2, so that <m,m> exists. We will say that
X is a continuous semi-martingale if X = m + A, with m as specified above
and A a continuous process of bounded variation on finite intervals. Then the
following form of Ito‘'s change of variables formula holds (Kunita,
Watanabe[1967]; Meyer(1976]):

6.11.2. Theorem:
Let X be a continuous semi-martingale and K be a function mapping R—R and

having continuous second derivatives on R. Then the process Y=K(X) 3 a
semi-martingale and (up to indistinguishability)

t t
K(X) - K(Xp) = [K () dX, + o K/ (X)d<XX>.  (21)
0 0

This change of variables formula is often written in the purely symbolic form of
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“differentials’: dK(X) = K (X)dX + %K' "d<X>, but this only has meaning

e

; in terms of the integral equation in (21).

::f:;:;f Remark: Although we will consider only continuous processes in this Section, it
\ 5 is informative to see how theorem changes in the case of an arbitrary semi-
i martingale:

4, '.‘

S9N t lt

3 K(X) - K(Xg) = [K (X)X + 5[ K' ' (X)d<XX>,  (21%)

0 0
L
A'Lo
+ T (KX -KX,) - K (X, )AX,).

KN 0<s<t

.,3

:;."- Remark: When the semi-martingale is purely discontinuous and of bounded vari-
iy ation, it is clear from the application of Taylor's Theorem above that a change of

» variable formula should only involve the first derivative of K. Ito’s formula, as
N given in the last equation, verifies and extends this to show that in the case of an
:::}_ arbitrary purely discontinuous semi-martingale, the formula also involves only
NN the first order derivative of K.

0

PR 6.11.3. Remark: The Theorem immediately extends to vector valued continuous,
‘il semi-martingales (a finite dimensional vector whose components are continuous
NN : continuous semi-martingales): X = (X1, X2, --- X"). Let K be a function from
"y R, to R having continuous second order partial derivatives. Let D'K denote the
o first order derivative of K relative to its i*" component with the obvious meaning
,,.‘-j for DVK, the formula takes the form

N

E} nt pont

LI K(X,) - K(Xp) = L [(D'K)X,)dX, + ggf(D"K)(Xs) d<XX! >, (22)
. i 0 ij0
:;E::: 6.11.4. Remark: When K(u)=u? in (21), and meM;S,, Ito’s formula gives
b

_ t
b2, m?-mf = 2fm,dm, + <m,m>,.

(%? 0

I$J

v When K(u,v) = uv and we use (22) with m,neM;S., we obtain

: t t
e myn, - mgng = [mgdn, + [ndm, + <m,n>,. (23)
\"‘ '.\: 0 0
e
‘e.:.o
f:u.:.t
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This integration by parts formula is of course the continuous parameter (continu-
ous process) analogue of the one in Chapter 1. It can be extended to general
semi-martingales.

) Remark: It is useful to allow the map K in Ito's Theorem to be a complex-valued
function. For this purpose, the expectation, conditional expectation, and so on,
of complex valued processes are defined in terms of their real counterparts via the
real and imaginary parts of the process. For instance, a complex valued mar-
tingale is one whose real and imaginary parts are martingales.

. Remark: The following is the canonical first application of Ito's Theorem. It is
due to P. Lévy. As proved in Doob[1953], it assumes that X is a continuous mar-
tingale with the property that (X,® - t) is a martingale. The statement and proof
given here is due to Kunita and Watanabe[1967]. It uses their extension of Ito's
formula and assumes for the proof of Lévy's Theorem only that X is a continuous
local martingale satisfying the condition that <X, X>, = t. When X is a mar-
tingale, this latter condition is equivalent to the requirement that (X2 -t) is a
martingale as in Doob's statement of Lévy’s Theorem. Our presentation of the
Kunita-Watanabe proof is due in part to Chung and Williams{1983].

‘ 6.11.5. Theorem:
X s standard Brownian motion relative to the filtration F if, and only if,
XeMg oo(F) and <X, X>, = t, t2>0.

Remark: The condition is necessary by a remark in the last Section. In order to
prove that the condition is sufficient, define K, on R by K (x) = "*, for each u
in R and apply the Ito formula. From (21), since Xy = 0, we obtain

t

KX) -1 = K, (X)X, - 2K, (X)ds
0

0
That is,

, v 2t
o1 = jufe¥dX, - 2 [e'Xeds. (24)
0 2%
The second integral on the right of (24) results from (21) and <X, X>, = s. The
' first integral on the right of (24) is a martingale, because its integrand is a

bounded, previsible process and the stopped process X' is a martingale for any t.
t+s

Therefore, E( [ ei“x'dXv | F,) = 0, for s,t >0. Then, from the definition of condi-
]

t+s
tional expectation, if BeF,, E(1p [ e"XdX,) = 0. It follows that

8
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o
:Z:f . . w2 vts
o E(1g(e"®~ - &%) = - Elg [ "% dv

- s

. n t+s

W 2 .

P = -5 J Bl v, (25)
o “ s

o . .. iuX

P with an application of Fubini's Theorem. If we define g(t) := E( l1ge' ") equa-

. tion (25) becomes
‘-, w2
“:f gs(t) - gs(o) = —ngs(v)dv'

“d‘ 0
(W™
, It can be shown from this equation that g, must satisfy g(t) = g.(0)e 2
o
-s.j Therefore, again using the definition of c.exp. and the fact that g0} is F.-
ey measurable, we obtain
Ly u?
. —_—1
E(e'X-X) | F)=¢ 2 (26)
\"',: and so if Y is an arbitrary bounded F -measurable random variable,
: ' u'zt
E(Y XX F)y=Ye 2. (27)
» R

:j: Hence,

0 o,

v E(Y X=Xy = (EY)e 2|

But from (26), this is the same as
&

', . ) ) )
~ E(Y elt(Xens X.)) = (EY) E(e'u(x‘” X.))_

A rs .

“r It follows that the random variables e™X* %) and Y are independent. Hence,
O . —T‘L

(X,4s - X;) is independent of F,. Again, by (26), E(e"Xer-X))y —¢ 2 the
) "j_ characteristic function of a Normal zero mean random variable with variance t.

-4_:'_: Therefore, X is standard Brownian motion.

X 6.11.6. Remark: We have already noticed in the previous section that Brownian
A motion is the only continuous process with stationary independent increments.
j::?_ The following observation is a much stronger indication of the importance of
,-. Brownian motion in the General Theory of Stochastic Processes. It says that a
f':: large class of continuous local martingales are but “‘a time change away from

being Brownian motion"".

o | |
Ty Let M be a continuous local martingale and suppose that <MNM>_ = x.
(o
SN
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> Then, if we define
e mo = inf{si<MM>, > t}.

N the process 7 defined by setting (3, := M, s2>0} can be shown to be an (I, )-
[ Brownian motion process and M, = 3y, t20. (Dubins, Schwartz(1965].)
b

£ . Remark: We now give a very simple application of Ito’s formula that will be
g: extended to vector valued processes later. Let K:R—R have two continuous
;;:l derivatives and introduce the differential operator, L, by setting

; :

R - N _]__ ot !

::.! LK = mK +20}\ .

| g Let X be a Brownian motion process:

‘}‘ X, = mt + 0B,

s,'.

» where meR, t >0, 0>0 and B is standard Brownian motion. Then, in differential

form, Ito’s formula gives

b dK(X) = K (X)dX + -;-K' L (X)d<XX>
X -7

> = K (X)(mdt + 0dB) + —;-I\ " (X)odt

~ ,
& — oK (X)dB + (mK' (X) + %a%{ (X))dt

L
™
Therefore,

- dK(X) = oK' (X)dB + (LK)(X)dt.

:: Since K' is continuous, and so previsible, and B is a martingale, it follows that

‘ t t

e K(X,) - K(Xo) - [(LK)(X,)ds = [oK' (X{)dB,.

ve 0 0

s . .

A is a martingale.

Y

G 6.11.7. Remark: We conclude this Section and the Chapter with a brief look at
( stochastic differential equations. To be consistent with the generality of the
& stochastic integral introduced in this Chapter, we will start with the development
3 of C. Doleans-Dade [1976]. However, our main intent is to introduce stochastic
' differential equations “‘driven” by Brownian motion processes. Ito diffusions, and
.. relate these to A.N. Kolmogorov's original description of a diffusion. We will use
o the Ito formula and a generalization of the operator L defined in the last Remark
%
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- :L': to very briefly describe the connection with the Stroock-Varahdan theory [1979].
1! .
b.733 Let ((U.H.F.P) be a filtered probability space with the filtration F satisfving the

o

N usual conditions’". Suppose that o and b are two functions mapping R, X QxR
"-’\ into R. which are left continuous with right limits in the first factor, F-adapted
. - relative to the second and satisfy the following uniform Lipschitz condition:

Yasa [ b(s,w,x)-bis,w,y) | + |o(s,wx)-a(s,w,y)| < K|x-y| (L)
::‘;_f.:j for some constant K and all {s,w,x), (s.w,y) in the domains of ¢ and b. C.
fi::l:f Doleans-Dade [1976] proves the following:

. Theorem:

‘:'-f:_\‘j If M 13 an F-local martingale and A is a process in BV and o and b satisfy the
. conditions stated above, then there erists one and only one adapted Skorokhod
t:-":}:- process X satisfying the stochastic integral equation

t t

RN X, = Xo+ [o(s.Xo)dM, + [b(s, X, )dA,.

},-.::-. 0 0

TodA

559

] Remark: As pointed out by Doleans-Dade, the uniform Lipschitz condition in x
SR implies that the mappings (w,x)—o{t,wx) and (w,x)—b(t.wx) are F,XB(R)-
o measurable. Consequently, the functions w—of{t,w X, ) and w—b(t.w.X_) are
_f F-adapted, if we assume that the process X is Skorokhod and adapted. By the

A assumed left continuity and existence of right limits for o and b. we have there-
‘__’_ fore that the processes (o(t,X, ),t>0) and (b(t,X, ).t>0) are adapted. left con-
4;:'_-:: tinuous and have right limits. Hence, these processes are F-previsible and locally
.r::::: bounded. Therefore, if X is any adapted Skorokhod process the integrals on the
}“ right side of the equation in the Theorem exist by earlier results in this Chapter.
Xﬁ: This Theorem can be extended in several ways. One is that it can be restated for
‘:" M as a d-dimensional vector valued process, with & a matrix valued function of
:_l::‘j:‘ order (n,d) and b a vector valued process with values in R". The condition (L)
o can be modified in an obvious way and if we agree that vector valued processes
" are adapted, Skorokhod, etc when their components have these properties, an
{(:_‘-f existence and uniqueness Theorem analogous to the one above continues to apply.
(=37 We will consider this type of structure in paragraph 6.11.8 below, with the com-
~a
:::;: ponents of M being independent Brownian motion processes.
}.:-__: A very interesting paper that we mentioned in the first Chapter (Doleans-Dade
::E‘ [1970]) treats a special case of the stochastic integral given above. Suppose that
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o(t.w.x) = b(t,w,x) = x. then this stochastic integral takes the form

t
X, = Xp+ [X.dZ,
0

where Z is a semi-martingale. In her 1970 paper, C. Doleans-Dade finds the expli-
cit solution to this equation. It is called the exponential of Z when Xy = 1 and
1s given by

. 1 -
X, = exp(Z, - = <ZZ>)[T(1 + AZ)e 3%,
< s<t
The proof that this process satisfies the previous stochastic integral equation is a
simple application of the general Ito formula. If we set e(Z) = X in the last
equation, a two line application of integration by parts to evaluate the product

e(Y)e{Z) for Y.ZeS yields
e(Y)e(Z) = elY +Z + [Y,Z))

and not the expected e(Y+Z). The expected happens, of course, when [Y,Z] = 0.
For example, this occurs when Y and Z are counting processes representing the
number of arrivals and departures (respectively) at a particular queueing station

when arrivals and departures from the queue never occur at the same time.

6.11.8. Remark: Now, we will specialize the local martingale in the previous
Theorem to Brownian motion, the integral relative to the process A to an integral
relative to Lebesgue measure, allow the processes & and b to depend on t only
through X, and. in the other direction, consider multi-dimensional processes.
Thus. let B = (B,) be a d-dimensional F-Brownian motion process. That is,
B, = (B}, - - ,BY), where the B' are P-independent F-Brownian motion
processes; so in particular the distribution of B,-B, (t>s) is normal (0;(t-s)I),
H where [ = d X d is the identity matrix.

Thus, o:R® — R*XRY, b:R" — R" and X satisfies the equation

t t
X, = Xo+ [a(X)dB, + [b(X,)ds. (28)
0 0
’ With X4y = x. the process X is called an Ito diffusion, and is said to satisfy the
4 stochastic differential equation

dX, = o(X,)dB, + b(X,)dt.

for t>0. and Xy = x. X = (X,) is then a strong Markov process with a.s.P con-
tinuous paths. (For an easy to read account on stochastic differential equations
see Oksendal [1986], in particular, his Theorem 5.5 for an existence and unique-
ness result that covers this case.)
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‘-ﬁ: The k' component, X¥, of equation (28) is given in differential form by
ST d ,
- dXk = VodB + bdt
o =
’_"f' An application of (22) to (28) vields
T i n . .
Wl dK(X) = ¥ ©(DIK)(X)o;;dB! + (29)
. i=1j=1
\'o'.::"' o 1 & ik o
,_' i “ ik
"y where a = 00", ¢° the transpose of o.
54N The extension of the previously defined operator L to functions K on R" is
-
"'"\'l n
K ] - v~ l n Y-
oo, (LK)(x) = Y(D'K)x)b; + — Y (DUK)(x)a;;.
N i “ i)
- Then from (29) we see that
%":.‘ 4
N CMX) = K(X,) - K(x) - [(LE)(X,)ds (30)
0
» y,"l
) is a martingale, as in the one dimensional case treated earlier.
: ;{:f?j Thus, starting with Brownian motion on a given filtered probability space, and
o an Ito process X satisfying (28), we associated the operator L with the property
b that CK¥(X) was a martingale for a large class of functions, K, defined on R™.
’_::;:: There is a “‘converse’ to this result due to Stroock and Varahdan [1979] which is
;'L extremely important in the study of vector valued diffusions and, further, can be
»::?-,- used to define diffusions on more general manifolds than R". We can not say
P, much about the Stroock-Varahdan approach in this note, but highly recommend
P the paper by D. Williams [1981] for an introduction to this subject and its rela-
:3;: tionship to the Ito method.
150
- Roughly speaking, view a process, X, as a member of the space, W, of continuous
: '_ functions from R, to R". Take A to be the o-algebra of subsets of W generated
;1::-: by {X,,s<t} and set A* = A}. Let x¢R" and L be an operator of the form
o o noo
W (LK)(x) = V(DEK)xb; + =3 (DIK)(x)ay;
i 2%
e’
where the matrix valued function “a” and the vector valued function b are
9:: defined on R".
g
e
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Suppose that P, is a probability measure on (W, A%), with the property that
P(Xy=1x)=1 and CK, defined by (30), is an (W.A(A).P*)-martingale. for all
twice differentiable functions K on R” having compact support. (Then P is said
to solve the martingale problem for L starting from x.)

Finally, if ““a” can be written in the form a; = (aa')ij, then X is continuous

and there exists a Brownian motion process B such that X| is independent of
B, - B, and

X, = x + [b(X)ds + [o(X,)dB,.
0 0
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44 LIST OF SYMBOLS
o
o X = (X(t), teR,): Stochastic process

o
". X(t,w) := Xi(w): Process evaluated at (t,w)
e

W XieA] = {w: X (w)eA}

,* {XeA} = {(t,w): X (W)eAt>0,wed}

9
;, XT: Process X stopped at time T.

L)

e V.X: Stochastic integral of V relative to X.
E:' [X,X]: (Optional) quadratic variation of X.

L)

1:\

<X, X>: (Previsible) quadratic variation of X.

b

3 X, = limX; (X), '= X,_, t>0.
b S—t—

“ aX, = X, -X,, teR,.

N (X)a == X, neZ,; AX, = X, -X,,, neZ,.
3

2

N

o(G): Sigma-algebra generated by the collection of sets, G.

Ta: Restriction of the stopping time T to the set A.

15: Indicator function of the set A.

& [[T]): Graph of the stopping time T.
3!
) [[S,T]]: A stochastic interval, S and T stopping times.
) PX ( °X): Previsible {Optional) projection of X.
L)
e
. XP: Dual previsible projection of X.
E X*(t) := sup,<,|X(s)|: Supremum process.
iy
,.
..
!
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G(PT): o-algebra of previsible sets.

G(OT): o-algebra of optional sets.

G(AT): o-algebra of accessible sets.

§+ : Extended non-negative real line, {0,00].
Z, : Extended non-negative integers.

a~b: Minimum of the numbers a and b.
X - Compensator of the process X.

Spaces of stochastic processes:

M,

of Uniformly integrable martiugales.

My = (M,)p: Members of M, with m(0) = 0.

M. = (M)o: Local martingales.

Motoe = (Moo

K% Square integrable martingales.

K> Continuous square integrable martingales.

K29: Purely discontinuous square integrable martingales.

M|T]: Square integrable martingales, continuous outside of [[T]].
V*: Increasing processes.

BV: Processes of bounded variation.

[V*: Integrable increasing processes.

IV: Processes of integrable variation.
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‘A INDEX OF DEFINITIONS
y absolutely continuous, 4.6.23.

l accessible, 2.6.3.

. adapted. 1.3., 2.3.7.

X admissible, 4.2.

i ) almost surely, relative to P, 2.3.1.
3 announce, 2.6.1.

* announcing sequence for T, 2.6.1.
? associated, 4.6.11.

¢ bounded stopping time, 1.7.13.

bounded variation, 3.2.4.
Brownian motion, 6.10.3.

cadlag, 2.3.12.
charge a stopping time, 2.7.19.
‘ class D, 6.4.1.
closes the martingale, 2.8.8.
compensated jump martingale, 6.4.10., 6.5.10.
compensator, 1.7.2., 1.7.4., 1.10.2., 4.6.16.
) complete, 2.2.
» conditional expectation, A.1.1.1.
‘ continuity, 2.3.1.
continuous local martingale, 6.4.9.
L continuous part, 3.2.7., 6.5.13.
continuous semi-martingale, 6.11.1.
counting process, 3.1.1.
covariance process, 1.5.
covariance process, 6.6.3.
cross quadratic variation, 1.5., 3.2.12., 6.6.5.

PR X XN

debut, 2.4.3.

- difference process, 1.5.1.
diffusion coefficient, 5.3.3.
discrete integral of V with respect to X, 1.4.
discrete point process, 1.8.2., 1.10.1.
doubly stochastic Bernoulli process, 1.10.4.
drift process B(t) (drift rate f), 5.3.3.
driven, 1.10.4.

- oy




dual previsible projection. 3.1.1., 4.6., 4.6.7, 4.7.4, 6.3.3.
dynamical system, 1.12.1.

elementary stochastic integral, 6.2.2., 6.2.4.

equivalent norms, 2.8.6.

evaluating the process at the stopping time T, 1.3.1., 2.7.
evanescent, 1.3.1., 2.3.2.

exhaust the jumps. 2.7.19.

exponential of a semi-martingale, 10.11.7.

filtered probability space, 2.2.
filtration, 1.2., 2.2.

filtration generated by X, 1.2, 2.3.7.
finite variation, 3.2.4.

first entrance time of X, 2.5.2.

flow of information. 1.7.7.
foretelling sequence, 2.6.1.

graph of a stopping time, 2.5.
hitting time, 2.5.2.

increasing process, 1.7.3, 3.2.1.
independent increments, 6.10.3.
indistinguishable, 1.3.1., 2.3.2.
innovation process, 1.12.2.
innovations gain, 1.12.2.

integer valued random measure, 4.7.3.
integrable, 3.2.1.

integrable variation, 3.2.4.
integrals, 3.2.

integrated signal plus noise., 5.3.3.
integration by parts, 1.8.
intensity, 1.10.1., 4.6.24.

internal history, 1.2.

Ito diffusion, 10.11.8.

jump at a stopping time, 2.7.19.
jump measure, 4.7.8.

jump process, 4.7.8.
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kernel, 2.7.12.

Lp - bounded, 2.8.5.

Lp martingale, 2.8.5.

local characteristics, 6.10.1.
local integrable variation, 6.3.1.
local martingale, 5.1.1.
localization, 5.1.8.

localized class, 6.1.2.

localizing sequence, 5.1.2.
locally integrable, 6.3.1.

local Lp -martingale, 5.1.1.

mark space, 3.1.1.

marked point process, 3.1.1., 4.7.3.
martingale, 1.6.1., 2.8., 6.7

martingale problem, 10.11.8.

martingale compensator, 1.10.2.

martingale transforms, 1.7.8.

martingales, 2.8., 6.7

measurability relative to the filtration, 2.3.10.
measurable. 2.3., 2.3.9.

measurable random variable or function, 1.3.
measures generated by increasing processes, 4.2.
method of localization, 6.1.2.

modifications, 2.3.2.

n-debut, 2.7.18.
natural filtration, 1.2.
non-explosive, 3.1.1.
nonanticipating, 2.3.7.

observable, 1.3., 1.11., 2.3.7.
optional, 2.7.9.

optional projections, 4.5.
orthogonal, 6.4.6.

P-null set, 2.2.

packet radio networks, 1.10.2.
path segments, 4.1.

point process, 3.1.

167




A . y A A iAol A Sk Ak oAl die Sa A d Gur b a oy |

e
%
e
.-*-
\:“'5 predictable, 2.6.1.
305 previsible, 1.3., 2.6.1
e prev%s?ble com.pen.sator, 1.7.4..3.1.1.. 16.16.
O previsible projection, 4.3.
; ":" previsible quadratic variation, 6.6.1.
R prior to T, denoted F(T), 2.4.4.
i probability space, 1.2.
w“" process stopped at time T, 2.7.3.
:i” progressive, 2.3.10.
v progressive measurability, 2.3.10.
ey purely discontinuous, 3.2.7., 6.4.10.
e
'-‘_ quadratic variation, 1.5., 6.6.5.
22:}‘: quasi-left continuous filtration, 2.7.4.
e quasi-left continuous process, 2.7.24.
1 queue, 5.3.6.
vy
y _.-:'_J. random measure, 4.7.3.
:‘;} random measure of a point process, 4.7.3.
-y random set, 1.3.1, 2.3.2,, 4.5
» random shift, 2.7.3.
‘.!',*-':' random variable, 1.3.
e raw increasing process, 3.2.3.
}a; reduces, 6.5.17.
MM reference family, 2.3.8.
’ restriction, 2.6.4.
i;:;‘. Riemann-Stieltjes, 3.2.13.
cane, right continuity, 2.3.1.
o right continuous, 2.2.
»‘.J A . . . .
right continuous modification, 2.3.4.
:,%_. saltus measure, 4.7 8.
-;:‘._{: semi-martingales, 1.11, 1.7.6, 5.2.1. 6.5.1
-y simple point process, 3.1.1.
- single filtration, 2.3.8.
::* Skorokhod processes, 2.3.12.
.-;'.rj solution, 6.11.7.
' ::., special semi-martingale, 1.7.6., 6.5.3.
S square brackets, 1.5., 3.2.12.
1 vj-. square integrable, 28‘5
A:.,-:: square integrable martingales, 6.-4.5.
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< stable, 6.1.2.
O
S state space, 2.3.6.

stationary independent increments, 6.10.3.
:\' stochastic differential equation, 6.11.7.
K stochastic integral, 3.2.5., 6.7.4., 6.7.9., 6.8.1., 6.9.1.

)
‘ . -
N stochastic interval, 1.7.11., 2.5
V. stochastic process, 1.3., 2.3.
stopped at time T, 1.3.1.
:f: stopping time (optional time), 1.2.1., 2.4.1.
by submartingale, 2.8.1.
R supermartingale, 1.6.1., 2.8.1.
5 terminal random variable, 2.8 8.
- thin, 4.5.
L. . .
L2, totally inaccessible, 2.6.3.
v trace o-algebra, 1.3.
trajectories, 2.3.1.
g transform, 1.4.
o transition probability, A.1.2.1.
. o
S transition measure, A.1.2.4
’ translation, 2.7.3.
trivial filtration, 1.3., 3.1,
::~ triviale stochastic integral, 6.2.2.
- truncation, 2.7.3.
: uniformly integrable, 2.8.%.
. usual conditions, 2.2.
o)
e variance process. 1.5.
variation, 6.3.
versions, 4.1.
L
- ..
‘o Wiener process, 6.10.3.
zero stopping time, 2.7.11.
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Appendix A
A 1. Odds and Ends, including Fubini’s Theorem.

A 1.1. Some Useful Definitions and Results:

All.l Conditidnal Expectation:
Let (2,H,P) be a probability space and G be a sub o-algebra of H. Let X be a P-
integrable random variable and define the measure g on G by setting

HA) = fX(w)P(dw) = fXdP,
A A
for all A in G.
Then p is a finite measure on G which is absolutely continuous relative to the
restriction of P to G. The Radon-Nikodym derivative of g with respect to this
restriction is called the conditional expectation of X given G. Therefore,

E(X|G) is an a.s.P unique G-measurable integrable random variable Z which is
characterized by ‘

fZdP = [X dP, (1)
A A
for all A in G, since P and its restriction agree on G.
The following is a list of some of the more important properties of conditional
expectation. These properties together with equation (1) are constantly ( and
silently ) used in Chapters 1 through 6.
Let X and Y be P-integrable random variable and a,b real numbers. Then

(i) E(aX +bY | G) = aE(X | G) + bE(Y | G), as.P.

(i) If Y is G-measurable and XY is P-integrable, then
E(XY|G) = YEX|G), as.P.

(i) If J is a sub o-algebra of G, then
E(X|J) = EEX|G)|]J), as.P.

(iv) E(1]G) = L
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(v) If X>0 as.P, then E(X|G) > 0.

(vi) If X eL(P), for all neZ,, and X, = X, in Li(P), then
E(X, | G) = E(X | G), in Ly(P).

RN R Y YT

: (vii) If X €eL,(P), for all neZ,, X 1X., a.s.P, and XeL(P), then
E(X, | G) = E(X| G), a.s.P. .

, (viii) If h:Ry, — R, is convex, and h(X)eL,(P), then
; hME(X | G)) < E(h(X) | G), as.P.

A Remark: Properties (ii) and (iv) combine to yield Y = E(Y | G), a.s.P, when Y is
! G-measurable and P-integrable.

: A 1.1.2. Skorokhod Processes

A function is called Skorokhod if it is right continuous with left limits at each
point in its domain. Some basic results on such functions can be found in Bil-
lingsley [1968]. Billingsley considers real-valued Skorokhod functions defined on
compact intervals. In Chapters 2 to 6 in the body of the present note, the usual
domain for functions ( as paths of stochastic processes ) is the interval [0,00).
The results from Billingsley that we quote here carry over in an obvious way to
' this domain. For this purpose, let f be a Skorokhod function defined on [0,00).
1 Then

: (i) f has at most a countable number of discontinuities;

(ii) On any compact interval, f has at most a finite number

) of discontinuities where the magnitude of the corresponding

jumps exceed a specified fixed positive number;

(ii1) f is bounded on compact intervals.

A 1.2. Fubini’s Theorem:

A 1.2.1. Definition (Transition Probability): Let (v,, weQ) be a family of pro-

\ bability measures on the measure space (E,G). Let ({2,H) be a measure space If
the mapping w — v,(B) is H-measurable, for each B in G, then the family
(vy, wefl) is called a transition probability from ((},H) to (E,G).

i 8 s

174

OO0 SO 20k o e AT o e T e D L e L T e e o o S LT
o Ky b (") " 4 ~ ’ MERATI ) LI N R ¢ a . WS R Y O\ K X N N
tsT e Y m‘éa ’:‘0“.' ‘h.f"\!l.; “.w“‘,.q'l,o't; ‘,1.5 1’ MR s Ny VAN . PP > N, 5 (o * Y BN \.o. LA



R
- P,

>

Y

A 1.2.2. Theorem ( Fubini }): :
Let U=EXN., V= GXxH, and [ be a real valued, V-measurable function ( a

A}
- random variable on (U,V)).
i
p (i) Then, for each we(?,
)
)
(34
. (x — f(x,w)) is G-measurable
,. and, for each x¢E,
:: (w — f{x,w)) is H-measurable.
.
. (i1) Further, let P be a probability measure on (Q?,H) and
;" (vy, weQ) a transition probability from (Q,H) into (E,G).
o Then there exists a unique probability measure, g, on (U,V)
N such that
9
4 #CxD) = [ v (C)P(dw)
D
» for all CeG and DeH.
3 (iii) If f is non-negative, then
‘ (w — f f(x,w) v,(dx)) is H-measurable
E
o
: and
. ftdp = [ [f(x,w) v, (dx)P(dw). (2)
o U 0E
L
: If feL,(u#), then equation (2) holds and (x—f(x,w))eL,(v,),
) a.s.P.
l?‘
ad 1.2.3. Remark: In the special case that v, is independent of w, u is called the
,:" product measure.
kL
ki, 1.2.4. Remark: We have stated Fubini’s Theorem in terms of transition proba-
bilities. It holds also, and will be applied, when the indexed family of probability
o measures in the definition of transition probability is replaced by an indexed fam-
,. ily of o-finite measures, satisfying the measurability condition of the definition.
Z::' The result is called a transition measure.
L)
3
i
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Appendix B
B 1. Lebesgue-Stieltjes Stochastic Integrals:

B 1.1. On the Existence of a Lebesgue-Stieltjes Stochastic Integral:

We will now give a detailed explanation of the the existence of the stochastic
Lebesgue-Stieltjes integral induced by an increasing stochastic process, A.

Let B=B([0,00]) be the o algebra of subsets generated by intervals of the form
(a,b], a and b non-negative. Let C — v(C,w), CeB, be the measure on B induced
by the right continuous, increasing function, A by setting v((a,b],w) := A(b,w) -
A(a,w), for all non-negative a and b (a<b) and each wef).

Let V := BXH be the product algebra on U := [0,00)X (2. Since t—A(t,w) is
increasing, A is V-measurable. Therefore, the mapping w — v(C,w) is H-
measurable for each Cin B .

By Fubini's Theorem, given the family of o—finite transition measures {v(.,w) :
we(l } and the probability measure, P, on H, there corresponds a unique o-finite
measure, g, from V into [0,00], such that

#CXD) = £V(C,W)P(dW)

for all CeB and De¢H, and for any p-integrable real function, f, defined on U, the
mapping »

w— [ f(s,w)v(ds,w)
[0,00)

is H-measurable, and

[tdp = [ [ f(s,w)v(ds,w)P(dw).
U 10,00}

o0
Let X be any V-measurable process such that Ef | X(s) | dA(s) < oo, where dA
0

denotes the integration relative to the measure v.
Then
o0
[Xdp = E [X(s) dA(s)
U 0
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t" and Fubini's theorem states that the pathwise Lebesgue Stieltjes integral
"’?.t_ oo
R (XA) (W) = { X(s,w) dA(s,w)
R
::EE:" exists, a.s.P. The process ((X.A),t>0) is then defined by setting
:;;3:' (X.A), = (1jpyX.A)g, for each t>0.
P,
:‘:’1?: B 1.2. Monotone Class Theorem:
e
W B 1.2.1. Theorem: Let O be a set and C a collection of subsets of O which is
- closed under finite intersection.
Pl
'“-j?, 1) Let S(C) be the smallest collection of subsets of O which contains C and
e satisfies
ooty
&ﬁ a) O€S(C);
o
o b) If A,BeS(C), with A a subset of B, then B-A¢S(C);
¢) S(C) is closed under countable unions of increasing

:"' sequences of its members.
oy
" Ny Then S(C) is the smallest ¢ algebra containing C.
, A
-'3:0'. 2) Let H® be a vector space of real-valued functions defined on the set O and
;"u’. satisfying
\
ot y a) 1eH* and if AeC then 1,¢H*;
B X
: b) If (f,,n > 0) is an increasing sequence of nonnegative
Z:::f members of H*, with bounded supremum, then sup{f®:n>0}
";:J is also a member of H*.
- Lo
, Then H* contains all bounded real-valued functions, defined on O, which are
! :E'ﬂ measurable relative to the o algebra generated by C.
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USER EVALUATION SHEET/CHANGE OF ADDRESS
This Laboratory undertakes a continuing effort to improve the quality of the
reports it publishes. Your comments/answers to the items/questions below will

aid us in our efforts.

1. BRL Report Number Date of Report

2. Date Report Received

3. Does this report satisfy a need? (Comment on purpose, related project, or
other area of interest for which the report will be used.)

4. How specifically, is the report being used? (Information source, design
data, procedure, source of ideas, etc.)

5. Has the information in this report led to any quantitative savings as far
as man-hours or dollars saved, operating costs avoided or efficiencies achieved,
etc? If so, please elaborate.

6. General Comments. What do you think should be changed to improve future
reports? (Indicate changes to organization, technical content, format, etc.)

Name

CURRENT Organization

ADDRESS

Address

City, State, Zip

7. If indicating a Change of Address or Address Correction, please provide the
New or Correct Address in Block 6 above and the .1ld or Incorrect address below.

Name
OLD Organization - -
ADDRESS

Address

City, State, Zip

(Remove this sheet along the perfoaration, fold as indicated, staple or tape
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