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Abstract 

The dynamic steady-state propagation of two parallel semi-infinite, 

mode III cracks is considered for a general, infinite, homogeneous, and 

isotropic linearly viscoelastic body.  A Barenblatt type failure zone is 

introduced in order to cancel the singular stress and a formula for the 

energy release rate is derived which provides immediate comparisons with 

the corresponding single crack problem.  The influence of crack speed, 

crack separation, and material properties upon the energy release rate are 

illustrated with numerical calculations for both power-law material and a 

standard linear solid. 



1 .   Introduction , 

In [I] the problem of the dynamic steady-state propagation of a 

semi-infinite antiplane shear crack in a linear viscoelastic body was 

investigated.  By considering an over-all energy balance and incorporating 

a Barenblatt type failure zone at the crack tip, an expression for the rate 

of energy flux into the crack tip, hereafter referred to as the energy 

release rate (ERR), was derived in [2].  The primary objective of the 

latter study was to investigate the implications of using the ERR as a 

fracture criterion for predicating the speed of dynamically propagating 

cracks in a viscoelastic material.  In particular, a steady-state, dynamic 

elastic calculation would predict that Mode III cracks move at the glassy 

shear wave speed.  However, experimentally observed cracks rarely propagate 

faster than 20% of that speed.  Amplifying on the elastic calculation 

further, what one finds is that in steady-state the stress intensity factor 

(SIF) is a constant independent of crack speed, while the ERR is a monotone 

increasing function of crack speed tending to infinity at the shear wave 

speed.  Thus, increasing crack speed corresponds to increasing energy flux 

to the crack tip.  One is then led to conclude that the only stable 

steady-state speed is the shear wave speed. 

For viscoelastic material it was found in [1] that the SIF is a 

monotone decreasing function of crack speed for crack speeds between the 

equilibrium and glassy shear wave speeds and tends to zero at the glassy 

wave speed.  While for crack speeds less than the equilibrium wave speed, 

the SIF has the constant elastic value.  In [2] it was shown that the ERR 

has much more complicated behavior and in general does not depend 

monotonically on crack speed.  In particular there are intervals of stable 



and unstable crack speeds less than the j^lassy shear wave speed.  Thus 

viscous effects in the body prevent much of the energy input by the applied 

loads from reaching the crack tip thereby predicting crack speeds much 

lower than results from an elastic calculation. 

It has been conjectured from experimental evidence  that another 

mechanism limiting crack speeds in viscoelastic material is the interaction 

of microcracks around the tip of a macrocrack.  As a first step toward 

investigating this conjecture, the problem of two parallel, semi-infinite 

Mode III cracks dynamically propagating in steady-state is considered in 

this paper.  As demonstrated below it is found that the energy input into 

the tip of one crack may be reduced by up to a factor of one-half due to 

the prescence of another crack.  The influence of crack interaction is 

greatly influenced by crack speed, crack separation, and material 

properties (e.g. stress relaxation time and the ratio of glassy to 

equilibrium shear wave speeds). 

In the next section the relevant boundary value problem is presented 

and solved by reduction to a Riemann-Hilbert boundary value problem in a 

manner similar to [1].  Section 3 contains the calculation of the ERR 

following the method of [2].  The paper concludes with numerical examples 

in Sections 4 that illustrate the general results of Section 2 and 3. 

* Private communication with Professor Wolfgang Knauss. 



2.   The Boundary Value Problem 

The specific boundary value problem to be investigated is that of the 

steady propagation (to the right) with speed  V  of two parallel, 

semi-infinite, anti-plane shear cracks in a general, homogeneous, and 

isotropic, linearly viscoelastic body.  The shear modulus,  y(t), is 

assumed only to be a positive, non-increasing, and convex function of 

time,  t.  The governing equation of motion for the out of plane 

displacement,  u_, is 

y * dAu3 = PU3,^^ 

y * de  denotes the Riemann-Stieltzes convolution 

where A  is the two-dimensional Laplacian,  A = (3^/8x^) + (8^/9x^), and 

IJ * de = /^ M(t - T)de(T). 

The cracks are assumed to lie in the horizontal planes corresponding to 

x^ = h  and  x^ = -h with their tips aligned in the plane  x  = 0.  If 

the crack faces are subjected to equal loadings, the problem is 

anti-symmetric about the plane y^ = 0.  With the introduction of the 

Galilean variables,  x = x^ - Vt,  y = x^, it then suffices to solve the 

equation of motion in the half-plane  y > 0  subject to the boundary 

conditions 

a23(x,h+) = o^^Cx.h-),  -« < x < " (i) 

a^^Cx.h) = ^ (y * du ) = f(x),   X < 0        (2) 



u^Cx.h"^) = u^(x,h-),  X > 0 

u,(x,0) =0,  -^ < X < ». 

(3) 

(4) 

The boundary value problem is solved by proceeding as in [1].  The 

Fourier transforn, defined bv 

ipx 
f(P.y) = / CO e   f(x,y)dx 

is applied to the equation of motion resulting in the ordinary differential 

equation 

—2 "3(p»y)  = "Y (P)u„ 
dy 

2      2       * 
where Y (p) = p  + ipVp/y(-Vp).  The solution of the differential equation 

is written as 

UjCp.y) = 

A(p)e -Yy y > h 

B(p)sinh(Yv)     0 < y < h 

so that (4) is satisfied and a square root of T  with positive real part 

is selected to insure the stresses and displacements vanish as  y ■»■ °°. 

From (1) it easily follows that 

A(p) = -B(p)e^'^cosh(Yh). 

Define u(x) = u^Cx.h"*") - u^Cx.h )  and a(x) = a^,(x,h~) = a^^Cx.h"*"), 
23' 23 

Then a simple calculation gives 



a(p) = -(iVp)u(-Vp)T(p)e '^^cosh(yh)u(p). (5) 

If the Carson transform g(s)  of the function g( t)  is defined by 

■g(s) = g(0) + /" e"^^dg(t) 

and T^(p) = [1 - PV^/TTdVp)]^^^, (5) may be written as 

5(p) = -isgn(p)y(iVp)Y^(p) -| (1 + e ^^1 ^1^ l)u, ^(p). (6) 

Define 

G^(p) = -isgn(p)y(iVp)T^(p) = sgn(p)G^(P), 

and  G = G^G2'     ^^^^  ^2) and (3) it then follows that (6) may be viewed as 

the Riemann-Hilbert problem. 

F+(p) = G(p)F-(p) + g(p) (7) 

where  F+(p) = o+,     F'Cp) = u"  g(p) = -5 = -f(p), and  f+(x)(f-(x)) 

denotes the restriction of  f(x)  to  x > 0  (x < 0).  Note that as  h -»■ 0, 

G->-   G,^  and  (7) is precisely the problem of a single crack solved in [1]. 

Since the solution of (7) is constructed in a similar manner to [1], only a 

brief outline of the method of solution is presented here. 

To solve (7) first consider the homogeneous problem of finding 

± y 
functions  X (z) analytic for  Im(z)   0  which satisfy the boundary 

relation 



X+(p) =  (p)X-(p). (8) 

The solution of (8) may be written as  X = X X  where  X+(p) = 

^(p)X^(p),  i = 1,2.  X^(z)  is given in [1] and  X^ = w~X~  wh 
2   " -2  ""^^^ 

X (z) = exp [r"(z) 

logCG^CT)) 
2^J_co  i—  dr, (9) ^'(^) = ^r "°^"2 

and  w+(p)/w (p) = 1/2.  Though  X^Cz)  is not uniquely determined, (7) has 

a unique solution given by 

+   -+ 
+      X^(z)X2(z) ^    g(T)/(xtX+)(T) 

F (z) =  ~  /_  __^  dT. (10). 

Utilizing (10) and some trivial modifications of the methods of [Ij it can 

be shown that the asymptotic expansion of a+3(x)  for  x  near zero is 

given by a+^(x) - K//7 where the stress intensity factor K is defined by 

K = 
G^(=o) 1/2 

X|(T)X+(T) 

1  r'^      g(T ) 
^      - 27 /-co —^^-^  dT. (11) 

In the next section attention is focused upon the calculation of the 

energy release rate, the primary interest of this paper.  For special forms 

of the crack loadings explicit formulas for the ERR and the SIF are 

developed.  The paper concludes by presenting numerical results for the 

special cases of a power-law material and a standard linear solid. 



3.   The Energy Release Rate 

As discussed in [2], the energy flux Into the tip of an extending 

crack in a vlscoelastlc material depends upon the entire history of the 

singular asymptotic stress and strain fields at the crack tin during the 

time the tip is advancing.  This energy flux, referred to previously as the 

energy release rate and hereafter denoted by  G, is difficult to calculate 

from the singular fields.  For this reason it is convenient to introduce a 

Barenblatt type failure zone behind the crack tip in order to cancel the 

singular asymptotic fields in front of the crack.  Adopting the same 

notation as in [2] and [3], the appied external tractions, a" (x,0) = f(x), 

will now be denoted by a~(x) with the cohesive failure stresses 07(x) 

acting in a failure zone of length a,.  As pointed out in [2] what results 

from incorporating a failure zone behind the crack tip is that the energy 

flux into the crack tip may be expressed as 

G = - /^  a7(x)u-, (x) dx (12) 
d._    1 X 

where now  u(x) = u_(x,h"'") - u.(x,h~)  is the relative crack face 

displacement corresponding to the combined loading a~ + a~. 

As in the previous studies, the external load o~     and failure zone 
e 

stresses, o~    will be assumed to have the forms 

x/a^ x/a. 

°e^''^ " ^e^   '  ''f^''^ " '^f^   '  -" < X < 0.      (13) 

For  a^/a^ « 1  the essential features of the Barenblatt model are 



satisfied by the assumptions (13), namely a set of cohesive stresses and 

associated length scale  a,  and a length scale  a   associated with the t e 

applied load  a~  such that o'     cancels the singular stresses produced by 

o~.     When o~    and o~    are given by (13), (12) is replaced by 

G = - /°„ o-(x)u-,^(x)dx. (14) 

Applying the Parseval formula for the Fourier transform, (14) may be 

written as 

G = - r=o a-(p)G-,^(p)dp (15) 

where  f  denotes the inverse Fourier transform 

f(P) = ^ Too f(x)e-i^Pdx. 

From (13) it follows that 

^F^^^ = Tmi;^ >  ^i(p> = 2.(i-ia,p) <i6) 

with similar expressions for o       and a .  Since u~.       has an analytic 
e       e 'x 

extension to the lower half-plane given by  F~(z)  and o~    has a 

meromorphic extension to the lower half-plane with a simple polfe at  -i/a^, 

the integral in (15) may be evaluated using residues.  This calculation 

yields 

G = L^F-(-i/aj). 

Utilizing the general method for evaluating F~(-i/a-:)  presented in [3] 

one finds 



(a^ - a^) L^ X-(-i/a^)X+(i/a^) 

^ = (a  + a ) ~2    .....     ^,2  ^^^^ 
f   e       [X+(i/a )] 

e 

+ 
where  X  are defined by (8).  A convenient factorization of  G which 

allows for comparisons between the single and two crack problems is 

±   ± ± 
achieved by recalling  X = X.X-  and writing  G = G G where 

(3f - %">  ^l  5q(-i/a^)X-J(i/a^) 

'       ^^f"V  2    [xt(i/a^)]2 

and 

X^(-i/aj)X+(i/a^)  2X2(-i/a^)X+(i/aj) 
G^ =  r— =  ~  .      (18) 

(X+(i/a )]^        [X+(i/a )r z   e /   e 

It was shown in [1] that two cases arise naturally in constructing 

X~:  0 < V < C*  and  C* < V < C  where  C* = (y(<»)/p)^^^  and 

1/2 
C = (u(n)/p)    are the elastic shear wave speeds corresponding to the 

equilibrium and glassy values of the shear modulus  y(t).  If a 

characteristic time scale,  i,  is introduced and the shear modulus given 

in the form 

y(t) = Moom(t/T) 

where ra(s) is a nondimensional function of s with lira m(s) = 1 and 

y^= lira y(t), then T (p) = (1 - PV^/y„m(iVTp))^^^ and from [2] it then 

follows that  G,  may be expressed as 



m 

(19) 

In (19) the following nondiraensional parameters have been introduced 

ct  =  C*T/ag,  6 = q^a^,  T =   V/C*,  £ H a^/a f/ <3. e 

and  q^ = 0  for  0 <_ V < C  while for  C  < V < C, q   satisfies ^0 

Vq^ /^ (M(t)/M(0))e      dt = (V/C)\ 

Now write  G^ = 20^  so that from (18) and (9) there results 

log(G ) = ^ r„ log(G,(s))L ],       + —i^ _2_]ds, 
z   zTii  -°°     2    s-i/a    s+i/a.   s-i/a ■' 

Making the substitution s = p/a^ and introducing the nondiraensional 

parameter  h/a  = <5  one finds 
e 

log (G^) 

e       p>l   (p-+i)(i+(ep)^) 

I /o h(p)<iP (20) 

where 

h(p) 
_ tan ^(v/u)p(e'^-l)   log v'u    + 

(l+p^)(l+(ep)^) P^l 



11 

X V 
u  =   1   + e     cos   y,       v  =  e     sin  y 

-/2  p6(/s2+t2 +  s)l/2^     y = -/2  p6(/s2+t2 -  s)^/^ 

and (1   -y2/-(iVrp))l/2  ^   (^  ^^^^1/2 
a 

e 
(21) 

Note that the effects of the crack separation distance,  h,  are 

contained in the term  G^  while  G^,  which was computed in [2], 

represents one half the energy flux into the crack tip for the single crack 

problem.  It is easy to verify that as  h ^ «,   G ^ 2G^,  the ERR for the 

single crack problem, and as  h + 0, the work input into the crack tip is 

reduced by one half since  G ->■ G . 

The methods used to evaluate (14) when applied to (11) show that the 

stress intensity factor may be expressed as ■ 

K = 
-LjG^(=o) 1/2 

1 

= K 

/.       X|(i/a^) X+(i/a^) 

1 

1 Xt(i/a ) 
I e 

where K^  is the SIF for the single crack problem found in [1].  The same 

reasoning leading to (20) yields 

log (X+(i/a^)) =1/^ k(p)dp (21) 

where 

1 9  9 — 1 
k(p) =  ^ (log /u +v  + p tan  (v/u)) 

(iV) 
with u  and  v  defined as above.  Again it is easily verified that as 

h ->■ ",  K ->• K . 
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This section concludes with the observation that the corresponding 

results for the elastic problem are easily recovered from the above 

calculations by setting a = 0  and n = 0,  in which case  C = C* and 

0 _< Y < 1.  In the next section the qualitative behavior of the ERR is 

illustrated by numerically evaluating G for special cases of the shear 

modulus. 
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4.   Numerical Examples 

G will now be computed for the special cases of a standard linear 

solid and power-law material.  First considered is the standard linear 

solid, which is modeled by a shear modulus of the form 

u(t) = y„(l + ne"'^'''^) 

= U„m(t/T ). 

In this case  m(w) = (l+w(1-m ))/(i+w)  and  s  and  t  defined in (21) arc 

given by     , 

= (1-Y^) + (paY)^(Hn)(l-m-Y^) 

1 + (pcxYd+T,))^ 

t = 
3 

pay n 

1 + (paT(l+a ))^ 

For the standard linear solid restriction 0 < V < C corresponds to 

0 < Y^ < 1-H1 . 

In the case of a power law material the shear modulus is assumed to 

have the form 

, U(t) = vjl  + (t/T) "),   0 < n < 1 

= v„m( t/T ) . 

Now m(w) = 1 + r(l-n)w" and if a^ = a[r(l-n)]^/", s and  t  are given 

%.■■■■■.■'■■■■■■■... 
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1 + (pa Y)" cos(^) 
= 1 - Y2| 1 2 ^1 

1 + ZCpaj)" cos(^) + (pa^Y)^" 

2, . n  .  / niT. 
Y (poijY)  sin (—) 

1 + 2(pa^Y)'' cos(^) + (pa^Y)^" 

In this case the glassy wave speed  C  is infinite so that  0 < Y < °°. 

Since a formula for  G   is given in [2], to calculate  G  it suffices 

to numerically integrate (20).  Certain care must be exercised in 

performing the necessary integrations as the integrand  h(p)  may display a 

steep cusp near the origin along with severe oscillation for certain ranges 

of the parameters considered.  Adaptive Gaussian integration techniques 

were utilized in obtaining the following results. 

In Figure 1,  G  for the standard linear solid is plotted against 

log Y  when Y < 1  and against  log((/n+l - l)/(/n+l - Y))  for 

1 < Y < /l+n with 6=1,  n = 10,  e = .01,  and a = .1, 1, 10, 100. 

One explanation for these results is suggested by noting that  6/a = h/c*T 

so that small values of  a  correspond to a crack separation distance that 

is large compared to the distance a signal travels at the speed of an 

equilibirum shear wave during a characteristic unit of time.  Figure 1 

illustrates that when  6/a  is large, the power input into the crack tip 

approaches that corresponding to the single crack problem.  As  6/a 

becomes small, this effect occurs only at crack propagation speeds that 

approach the glassy shear wave speed.  The normalized ERR for the standard 

linear solid,  g, defined by 

1 .  -^' 1 -e w e e ■ 
M+e^^ 2y ^' 
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is graphed in Figure 2.  The behavior of  g  is qualitatively similar to ' 

that for the single crack problem and the appropriate comments in [2] apply 

here.  The corresponding results for the power law model appear in Figures 

3 and 4.  The only significant difference is that in Figure 3  G„  always 

attains the value corresponding to the single crack problem.  This is 

explained by the fact that for the power-law model, the glassy shear wave 

speed is infinite.  Thus this model allows sufficiently large crack 

propagation speeds to overcome the effect of  <5/a, which may be regarded as 

a measure of the influence that one crack tip has on the other. 

The remaining figures apply to a standard linear solid.  (The 

corresponding graphs for the power-law model are qualitatively similar.) 

In Figures 5 and 6  G  is graphed versus  log(6)  when  £ = .01,  a = .1, 

1, 10, 100  and y = 3.3  and  I, respectively, corresponding to crack 

propagation speeds near the glassy and equilibrium values.  G„  is seen to 

be a montonic increasing function of the crack separation distance. 

Material effects, corresponding to the various values of a,   are seen to 

have a greater effect upon the ERR at a large crack propagation speed, as 

in Figure 5, than at the slower crack speed displayed in Figure 6.  The 

previous comments concerning  6/a  are consistent with the behavior of  G 

illustrated in these figures.  Figures 7 and 8 display  G„  versus  log(6) 

for varying crack speeds and a = .1  and  100, respectively.  These 

figures show that the ERR is more sensitive to changes in crack propagation 

speeds and crack separation distances at smaller values of  a.  The results 

of Figure 7 show that except for a small range of slow crack speeds, the 

influence of the two cracks upon the ERR decreases with increasing crack 
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propagation speed.  When a  is large, as in Figure 8, the reduction in the 

work input into the crack tip due to the prescence of two cracks is only 

overcome at large crack separation distances.  Figure 9 illustrates the 

influence of viscoelasticity in conjunction with crack separation 

distance.  As might be expected, as viscous effects increase,  G tends to 

the value of the single crack problem. 

In evaluating (22) it was found that the qualitative behavior of 

l/Xt(i/a )  is similar to that of  G  with the SIF, K, being similar to 

the single crack SIF presented in [2].  For this reason the normalized SIF, 

k = -— /— , which with the results of [2] is seen to be k =  
La' I  «^ 
e  e /l+3 X+(i/a ) 

2   e 
is plotted only for the standard linear solid. 
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Figure Captions 

Figure 1.    G^ versus  log(Y) for Y < 1  and log((/n+l - l)/(/n+l - Y)) 

for  1 < Y < /n+1  for a standard linear solid with  <S = 1, 

n = 10,  e = .01,  and a = .!(—), i.o( ), io( ), 

100( ). 

Figure 2.    g  versus log (Y ) for  0 < Y < 1  and log( (/n+l-l)/(/fr+r-Y)) 

for  1 < Y < /n+T for a standard linear solid with  6 = 1, 

n = 10,  e = .01, and a = .1( —), 1.0( ), 10( ), 

100( ). 

Figure 3.    G^  versus  log(Y)  for a power-law material with 6=1, 

n = .3,  e = .01,  and a = .1(—), l .0( —), 10( •) , 

100( ). 

Figure 4.    g  versus  log Y  for a power-law material with 6=1, 

n = .3,  e = .01,  and  a = ,1(—), 1.0( ), 10( ), 

100( ). 

Figure 5.    G^  versus  log(6)  for a standard linear solid with n = 10, 

e = .01,  Y = 3.3, and a = .1(—), 1.0( ), 10(- • —), 

I00( ). ■     ' 

Figure 6.    G  versus  log(6)  for a standard linear solid with ri = 10, 

e = .01,  Y = 1.0,  and a = .1(—), 1.0( ),io(—-—), 

100( ). 

Figure 7.    G  versus log(6)  for a standard linear solid with n = 10, 

- e = .01, a = .1, and Y = .1(—), 1.0( ), 10( ), 

100( ). 
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Figure 8.    G  versus log(6)  for a standard linear solid with n = 10, 

e = .01, a = 100, and T = .1(—), I.0( ), 10(— •—), 

100(——). 

Figure 9.     G   versus log(6)  for a standard linear solid with  e = ,01, 

a = 1, and Y = 1, and n = .1(—), 1.0( ), 10( ), 

100( ). 

1/2 
Figure 10.    The normalized SIF  k  versus  Y/(ri+l)     for a standard 

linear solid with 6 = 1,  n = 10, and a ^   .1(—), 1.0(- ), 

10.0( ). 
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