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Abstract

The dynamic steady-state propagation.of two parallel semi-infinite,
mode III cracks is considered for a general, infinite, homogeneous, and
isotropic linearly viscoelastic body. A Barenblatt type failure zone is
introduced in order to cancel the singular stress and a formula for the
energy release rate is derived which provides immediate comparisons with
the corresponding single crack problem. The influence of crack speed,
crack separation, and material properties upon the energy release rate are

illustrated with numerical calculations for both power-law material and a

standard linear solid.



1. Introduction

In [1] the problem of the dynamic steady-state propagation of a
semi-infinite antiplane shear crack in a linear viscoelastic body was
investigated., By considering an over-all energy balance and incorporating
a Barenblatt type failure zone at the crack tip, an expression for the rate
of energy flux into the crack tip, hereafter referred to as the energy
release rate (ERR), was derived in [2]. The primary objective of the
latter study was to investigate the implications of using the ERR as a
fracture criterion for predicating the speed of dynamically propagating
cracks in a viscoelastic material. In particular, a steady-state, dynamic
elastic calculation would predict that Mode III cracks moye at the glassy
shear wave speed. However, experimentally observed cracks rarely propagate
faster than 20% of that speed. Amplifying on the elastic calculation
further, what one finds is that in steady-state the stress intensity factor
(SIF) is a constant independent of crack speed, while the ERR is a monotone
increasing function of crack speed tending to infinity at the shear wave
speed. Thus, increasing crack speed corresponds to increasing energy flux
to the crack tip. One is then led to conclude that the only stable
steady-state speed is the shear wave speed.

For viscoelastic material it was found in [1] that the SIF is a
monotene decreasing function of crack speed for crack speeds between the
equilibrium and glassy shear wave speeds and tends to zero at the glassy
wave speed. While for crack speeds less than the equilibrium wave speed,
the SIF has-the constant elastic value. 1In [2] it was shown that the ERR
has much more complicated behavior and in general does not depend

monotonically on crack speed. 1In particular there are intervals of stable



and unstable crack speeds less than the glassy shear wave speed. Thus
viscous effects in the body prevent much of the energy input by the applied
loads from reaching the crack tip thereby predicting crack speeds much
lower than results from an elastic calculation.

It has heen conjectured from experimental evidence® that another
mechanism limiting crack speeds in viscoelastic material is the interaction
of microcracks around the tip of a macrocrack. As a first step toward
investigating this conjecture, the problem of two parallel, semi-infinite
Mode I1I cracks dynamically propagating in steady-state is considered in
this paper. As demonstrated below it is found that the energy input into
the tip of one crack may be reduced by up to a factor of one-half due to
the prescence of another crack. The influence of crack interaction is
greatly influenced by crack speed, crack separation, and material
properties (e.g. stress relaxation time and the ratio of glassy to
equilibrium shear wave speeds).

In the next section the relevant boundary value problem is presented
and solved by reduction to a Riemann-Hilbert boundary value problem in a
manner similar to [l1]. Section 3 contains the calculation of the ERR
following the method of {2]. The paper concludes with numerical examples

in Sections 4 that illustrate the general results of Section 2 and 3.

* Private communication with Professor Wolfgang Knauss.



2. The Boundary Value Problem

The specific boundary value problem to be investigated is that of the
steady propagation (to the right) with speed V of two parallel,
semi-infinite, anti-ﬁlane shear cracks in a general, homogeneous, and
isotropic, linearly viscoelastic body. The shear modulus, H(t), is
assumed only to be a positive, non-increasing, and convex function of

time, t. The governing equation of motion for the out of plane

displacement, is

113,

H * dAU3 = 9113,tt

where A is the two-dimensional Laplacian, A = (32/3x%) + (32/3x§), and

U * d€ denotes the Riemann-Stieltzes convolution
wo*xde =[5 u(t - t)de(r).

The cracks are assumed to lie in the horizontal planes corresponding to

1]

X, = h and X -h with their tips aligned in the plane X, = 0. 1If

the crack faces are subjected to equal loadings, the problem is
anti-symmetric about the plane YRS 0. With the introduction of the
Galilean variables, x = X, - ve, vy = Xo» it then suffices to solve the
equation of motion in the half-plane y > 0 subject to the boundary

conditions
023(x,h+) = 023(x,h‘), —® g (1)

023(x,h) S T (n * du3) =f(x), x<0 (2)



-~

u3(x,h+) = u3(x,h_), x >N (3)

U3(X,0) = O) K (G I (4)

The boundary value problem is solved by proceeding as in [1]. The

Fourier transform, defined bv

- L ipx
£(p,y) = [ o e f(x,y)dx

is applied to the equation of motion resulting in the ordinary differential

equation

2
4% - 2, e
5 u3(p,y) =Y (P)u3 _ »
dy

2

where Yz(p) = p~ + ipr/ﬁ(—Vp). The solution of the differential equation

is written as

A(p)e Y y>h
53(p,y) =

B(p)sinh(Yy) 0<y<h

- 2 . .
so that (4) is satisfied and a square root of Y with positive real part
is selected to insure the stresses and displacements vanish as y *+ =,

From .(1) it easily follows that

A(p) = —B(p)ethosh(Yh).

: - +y - . -y = +
Define wu(x) = u3(x,h ) U3(X,h ) and o(x) 023(X,h ) 023(X,h ).

Then a simple calculation gives



N

3(p) = ~(1Vp)H(=Vp)Y(p)e M Mcosh(Yn)a(p). (5)
If the Carson transform E(s) of the function g(t) is defined by
(s) = 5(0) + [, e "Sag(r)

2

and Yl(p) = [1 - pVZ/F(in)]l/ , (5) may be written as

5(p) = -isgn(p)u (V)Y (p) % (1 + e_Zh‘p'Yl)G,l(p)~ (6)

Define
G, (p) = ~1sgn(p)H(iVp)Y (p) = sgn(p)G, (P),

= 1y
6,p) = L (1 + e720|P1y . 7 Cye),

and G = Gle. From (2) and (3) it then follows that (6) may be viewed as

the Riemann-Hilbert problem.
F¥(p) = G(p)F (p) + g(p) (7)

where F*(p) = 0%, F7(p) = 7, , &(p) = =& = ~E(p), and £*(x)(£7(x))
denotes the restriction of f(x) to x>0 (x < 0). Note that as h + 0,
G+ Gl and (7) is precisely the problem of a single crack solved in [1].
Sincevthe solution of (7) is constructed in a similar manner to [1], only a
brief.outline of the method of solution is presented here.

To solve (7) first consider the homogeneous problem of finding

ot
functions X (z) analytic for 1Im(z) z 0 which satisfy the boundary

relation



xt(p) = (p)x(p). (8)

+
The solution of (8) may be written as X = X.X. where XI(p) =

I+
I+

p—
N

+ + +~4
i(p)X'i'(p), i=1,2. XI(z) is given in [1] and XE = w_XE where

o n
XZ(Z) = exp [F—(z)]

| e 108G (1))
S o2mi e T-2 ar, (9)

+
and wH(p)/w(p) = 1/2. Though XZ(Z) is not uniquely determined, (7) has

a unique solution given by

L N@ONG) | g/ )
F (2) = —éjn_—-l——-— P — dr . (10)

Utilizing (10) and some trivial modifications of the methods of [1] it can
be shown that the asymptotic expansion of 053(x) for x near zero is

given by 0;3(x) ~ K/YX where the stress intensity factor K is defined by

] |@1(,,,)‘1/2

K f” g(t)

El e dr. (11)
£ X"{(T)X‘ZL(T)

In the next section attention is focused upon the calculation of the
energy release rate, the primary interest of this paper. For special forms
of the crack loadings explicit formulas for the ERR and the SIF are
developed. The paper concludes by presenting numerical results for the

special cases of a power-law material and a standard linear solid.



BE The Energy Release Rate

As discussed in [2], the energy flux into the tip of an extending
crack in a viscoelastic material depends upon the entire history of the
singular asymptotic Stress and strain fields at the crack tip during the
time the tip is advancing. This energy flux, referred to previously as the
energy release rate and hereafter denoted by G, is difficult to calculate
from the singular fields. For this reason it is convenient to introduce a
Barenblatt type failure zone behind the crack tip in order to cancel the
singular asymptotic fields in front of the crack. Adopting the same
notation as in [2] and [3], the appied external tractions, O;y(x,O) = f(x),
will now be denoted by Og(x) with the cohesive failure stresses Og(x)
acting in a failure zone of length ag. As pointed out in [2] what results
from incorporating a failure zone behind the crack tip is that the energy

flux into the crack tip may be expressed as
0 = N
Cl=0= f oZ(x)u~, (x) dx (12)
-ag f X

where now u(x) = u3(x,h+) - u3(x,h“) is the relative crack face
displacement corresponding to the combined loading c; + OE.

As in the previous studies, the external load G; and failure zone
stresses, GE, will be assumed to have the forms

x/ae x/af

U;(x) = Lee , UE(x) = -Lfe , =2 <x <0. (13)

For af/ae << 1 the essential features of the Barenblatt model are



satisfied by the assumptions (13), namely a set of cohesive stresses and
assoclated length scale ag and a 1ength scale a, associated with the
applied load 0; such that UE cancels the singular stresses produced by
0;. When GE and 0; are given by (13), (12) is replaced by

G = - [0 97GouT, (x)dx. (14)

Applying the Parseval formula for the Fourier transform, (14) may be

written as
L e Y- D
G f_m f(p)u ,x(p)dp (15)

~
where f denotes the inverse Fourier transform

@©

5 .
f(p) = 2—; [T, f(x)e 1 XPax,

From (13) it follows that

-a.L -a.L
f-f p £f°f

UE(D) = ?T:IZEET 5 f(P) = EF?T:IEEET (16)

V_
g

3 ﬁ—- - A— . .
with similar expressions for Ge and a® Since u - has an analytic

extension to the lower half-plane given by F7(z) and 5} has a

meromorphic extension to the lower half-plane with a simple polé at —i/af,
the integral in (15) may be evaluated using residues. This calculation

yields

G = LfF‘(-i/af).

Utilizing the general method for evaluating F'(—i/af) presented in {3]

one finds



(ag = a) L XT(-i/axt(i/ap)
- (af + ae) 2

5 (17)
[x+(i/ae)]

where Xi are defined by (8). A convenient factorization of G which

allows for comparisons between the single and two crack problems is

+ +

t +t
achieved by recalling X = XIXZ and writing G = C1G2 where

Cag - a) 12 X](-1/a )Xt (i/a,)

- LCS
1 (af + ae) 2

[(x*(i/a,)1?

and
3 +( s i .
X(=i/ag)Xh(i/ag)  2X,(-1i/ag)Xh(1/a,)
[x5(1/a )] (X$(i/a)]
It was shown in [1] that two cases arise naturally in constructing
+

X;: 0<V<C* and ¢*<V<C where c*= w)/e)t/?  and
Chs (11(0)/9)1/2 are the elastic shear wave speeds corresponding to the
equilibrium and glassy values of the shear modulus u(t)., If a

characteristic time scale, T, 1is introduced and the shear modulus given

in the form
H(t) = Hem(t/T)

where m(s) 1is a nondimensional function of s with lim m(s) =1 and

s'm
u_= 1im u(t), then Y (p) = (1 - DV2/u m(iVTp))l/z and from [2] it then
o l -3

g

follows that G1 may be expressed as
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a L2 2 1/2
e e

1-€ 1 - (e8)
¢ = (=) (=3I ]
1+€ 26, 1=y 2/5( C‘Z )

(19)

In (19) the following nondimensional parameters have been introduced

R
i

C*T/ae, B = q4a, Y=vV/CH, €= ag/a

and 9y = 0 for 0

I

* *
V<C while for € <V <C, 9 satisfies

qOVt

va, [5 (Ce/mco))e dt = (v/0)2,

Now write G2 = 2G2 so that from (18) and (9) there results

pOE U P 1 1 _ 2
log(G,) = mr /. log(Gz(s))[s_i[af + il S_i/ae]ds.

Making the substitution s = p/ae and introducing the nondimensional

parameter h/ae = 8 one finds

log (52)

a0 _ 2—
:% f_wlog[1+exp(—2'p’G(]—Yz/m(iglE))l/z][ ; + 2ip(e 1) 5 ]dp.
e P+l (pT+1)(1+(ep)7)

=15 n(p)dp (20)

where

-1 2_ J/ 2 2
h(p) = tan “(v/u)p(e®-1) log Yu® + v

(1+p2) (14(ep) ) 241




11

X X .
u=1+e cosy, v =e sin y

bl
f

-2 pé(/sz+t2 + 8)1/2’ y = —/i'pé(/s2+t2 - s)l/2
and (1 - YZ/EREEEBO)I/Z = (s + it)l/z. (21)
e

Note that the effects of the crack separation distance, h, are

contained in the term 62 while Gl’ which was computed in [2]

b

represents one half the energy flux into the crack tip for the single crack

problem. It is easy to verify that as h + cop G » 2G1, the ERR for the

single crack problem, and as h + 0, the work input into the crack tip is

reduced by one half since G + Gl'

The methods used to evaluate (14) when applied to (11) show that the

stress intensity factor may be expressed as

1 1
- X*(i/a) i;(i/ae>

r _Le’@l(w)'l/Z

1

=K —_—
1 X;(i/ae)

where Kl is the SIF for the single crack problem found in [1]. The same

reasoning leading to (20) yields

log (X5(i/a,)) = = [ k(p)dp (21)
where
k(p) ='——ljz— (log \/u2+v2 +p tan—l(v/u))
(1+p™)

with u and v defined as above. Again it is easily verified that as

h >« K=»K.
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This section concludes with the observation that the corresponding
results for the elastic problem are easily recovered from the above
calculations by setting @ =0 and n = 0, in which case C = c¢* and

0 £y < 1. 1In the next section the qualitative behavior of the ERR is

illustrated by numerically evaluating G for special cases of the shear

modulus,
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4. Numerical Examples

G will now be computed for the special cases of a standard linear
solid and power-law material. First considered is the standard linear

solid, which is modeléd by a shear modulus of the form

u(e) t/t

u (1 +ne

)

p m(t/T),

In this case m(w) = (14w(1+ ))/(14w) and s and t defined in (21) are

given by

_ 0D+ (pav)?(1n) (1 =v2)
1+ (paY(1+n))2

- pay h

1+ (pay(1+))2

For the standard linear solid restriction 0 < V < C corresponds to

0<v2< 1m.

In the case of a power law material the shear modulus is assumed to

have the form

M) = u (1 + (t/1)™, 0<n<1
=y m(t/1).
— n . 1/n :
Now m(w) = 1 + T'(l-n)w  and if al = a[l'(1l-n)] » S and t are given

by



n nm
1+ (palY). COS(_i)

2
s =1-Y { }
1+ 2(p<11Y)n COS(E%) + (palY)2r1

Yz(pdlY)n sin (3%)

1+ 2(palY)n COS(E%) + (palY)2n

In this case the glassy wave speed C 1is infinite so that 0 <y <=,
Since a formula for G1 is given in [2], to calculate G it suffices
to numerically integrate (20). Certain care must be exercised in
performing the necessary integrations as the integrand h(p) may display a
steep cusp near the origin along with severe oscillation for certain ranges
of the parameters considered. Adaptive Gaussian integration techniques
were utilized in obtaining the following results.
In Figure 1, G2 for the standard linear solid is plotted against
log ¥ when Y < 1 and against log((ﬁTIT - 1)/(M+1 - v)) for
1 <Y< Y1+n with 8§ =1, n =10, € = .0l, and « = .1, 1, 10, 100.
One explanation for these results is suggested by noting that &/a = h/c*tT
so that small values of a correspond to a crack separation distance that
is large compared to the distance a signal travels at the speed of an
equilibirum shear wave during a characteristic unit of time. Figure 1
illustrates that when J/a 1is large, the power input into the crack tip
approaches that corresponding to the single crack problem. As §/a
becomes small, this effect occurs only at crack propagation speeds that
approach the glassy shear wave speed., The normalized ERR for the standard

linear solid, g, defined by
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is graphed in Figure 2. The behavior of g is qualitatively similar to
that for the single crack problem and the appropriate comments in [2] apply
here. The corresponding results for the power law model appear in Figures

3 and 4. The only significant difference is that in Figure 3 G always

2

attains the value corresponding to the single crack problem. This is
explained by the fact that for the power-law model, the glassy shear wave
speed is infinite. Thus this model allows sufficiently large crack
propagation speeds to overcome the effect of §&/a, which may be regarded as
a measure of the influence that one crack tip has on the other.

The remaining figures apply to a standard linear solid. (The
corresponding graphs for the power-law model are qualitatively similar.)
In Figures 5 and 6 G2 is graphed versus 1log(8) when é = .01, a ; .1,
1, 10, 100 and Y = 3.3 and 1, respectively, corresponding to crack
propagation speeds near the glassy and equilibrium values. 02 is seen to
be a montonic increasing function of the crack separation distance.
Material effects, corresponding to the various values of @, are seen to
have a greater effect upon the ERR at a large crack propagation speed, as

in Figure 5, than at the slower crack speed displayed in Figure 6. The

previous comments concerning O6/a are consistent with the behavior of G2

illustrated in these figures. Figures 7 and 8 display G versus log(9d)

2
for varying crack speeds and & = .1 and 100, respectively. These

figures show that the ERR is more sensitive to changes in crack propagation
speeds and crack separation distances at smaller values of a, The results

of Figure 7 show that except for a small range of slow crack speeds, the

influence of the two cracks upon the ERR decreases with increasing crack
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propagation speed. When a 1is large, as in Figure 8, the reduction in the
work input into the crack tip due to the prescence of two cracks is only
overcome at large crack separation distances. Figure 9 illustrates the
influence of viscoelasticity in conjunction with crack separation
distance. As might Se expected, as viscous effects increase, G tends to
the value of the single crack problem.

In evaluating (22) it was found that the qualitative behavior of

1/X;(i/ae) is similar to that of G, with the SIF, K, being similar to

2

the single crack SIF presented in [2]. For this reason the normalized SIF,

k = %E Vzl , which with the results of [2] is seen to be k = . L

e e Y 148 X;(i/ae)

is plotted only for the standard linear solid.




(1]

[2]

(3]
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Figure Captions

Figure 1. G2 versus log(Y) for ¥ < 1 and log({/n+l - 1)/(¥n+l - Y))

for 1 <Y </n+l for a standard linear solid with § = 1,

n =10, €= .0I, and o = ,1(—), 1.0(—--—=), 10(—-—),
Figure 2. g versus log (Y) for 0 <y <1 and log((/Mm+1-1)/(M+I-Y))

for 1 <Y </n+l for a standard linear solid with § = 1,

n =10, € = .01, and a = .1(—), 1.0(—--—), 10(—-—),
100(— —).

Figure 3. 62 versus log(Y) for a power-law material with & = [,
n=.3 €=.0l, and a = .1(—), 1.0(—--—), 10(—-—),
100(— —).

Figure 4. g versus log Y for a power-law material with 6 = 1,
n=.3 ¢€=.01, and a= .1(—), 1.0(—--—), 10(—+—),
100(— —).

Figure 5. G, versus log(8) for a standard linear solid with n = 10,
€ =.01, ¥ =3.3, and a = .1(—), 1.0(—--—), 10(—: —),
100(— —).

Figure 6. G2 versus 1log(é) for a standard linear solid with n = 10,
€ = .01, v=10, and a = .1(—), 1.0(—--—),10(—-—),
100(— —).

Figure 7. 02 versus log(8) for a standard linear solid with n = 10,

€ = .01, a=.1, and Y = .1(), 1.0¢—--—), 10(—- —),

100(— —).
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Figure 8. G2 versus log(d) for a standard linear solid with n = 10,
€ = .01, @ = 100, and Y = .1(—), L.0(—--—), 10(— «—),
100(——).

Figure 9. G2 versus log(8) for a standard linear solid with ¢ = .01,
@a=1,and Y =1, and n = .1(—), 1.0(—--—), 10(—-—),
100(— —).

Figure 10. The normalized SIF k versus Y/(ﬂ+1)1/2 for a standard
linear solid with 8 =1, n =10, and a = .1(—), 1.0(—--—),

IO ==) 8
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Figure 5.
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Figure 6.
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