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INTRODUCTION

O major consideration driving modern aircraft gas turbine engine

designs is the desire to increase the thrust-to-weight ratio. This, in turn,

requires more highly loaded compressor and turbine stages with concern for

optimum spacing between adjacent blde passages. With this motivation, the

fluid dynamic processes in typical turbine and compressor blade passages and

stages have become an item of considerable importance. The aerodynamic

behavior of these components can have a major effect upon the overall engine

efficiency. In addition, details of the flow pattern can significantly

influence structural integrity via unsteady forces produced by the relative

blade motion and, in the case of the turbine, by influencing the leading edge

heat transfer rates.

To date, considerable attention has been focused upon single blade

passage flows. For example, Dring, Joslyn and Hardin (Ref. 1); Wagner, Dring

and Joslyn (Ref. 2); Joslyn and Dring (Ref. 3); and Shreeve and Neuhoff

(Ref. 4) have performed detailed investigations in compressor rotors and

stators. Linear cascades have been considered by Hobbs, Wagner, Dannenhoffer

and Dring (Ref. 5), among others. In regard to the single passage flow

field, Navier-Stokes procedures have been applied to this problem by several

Investigators including Shamroth, McDonald and Briley (Ref. 6); Hah (Ref. 7);

Weinberg, Yang, McDonald and Shamroth (Ref. 8); Schafer, Fruhaufer, Bauer and

Guggolz (Ref. 9); and Dawes (Ref. 10). These efforts include both two-dimen-

sional and three-dimensional analyses (Refs. 7 and 8). The two-dimensional

analyses of Refs. 6, and 8 through 10 are based upon ADI solutions of the

Navier-Stokes equations. Schafer, et al., (Ref. 9) considered Euler

solutions for flow through a cascade of NACA-0012 airfoils, as well as both

Navier-Stokes and "thin shear layer" solution for flow through a cascade of

NACA-9410 airfoils. Although convergence comments were made in regard to

EuLer cascade solutions presented in this paper; for example, a cascade of

0012 airfoils at zero degree stagger appeared to require approximately 400 to

600 time steps to converge, the number of time-steps to converge their "thin

- .shear layer" or Navier-Stokes calculation was not clear. Dawes (Ref. 10)

also used an AD1 approach to solve the Navier-Stokes equations for flow in

transonic compressor cascades; In this case 400-600 time steps are required

to converge. Both Refs. 9 and 10 considered compressor type cascades with



thin blades and relatively little turning. In contrast, Refs. 6 and 8, which

were performed with earlier versions of the code used here, considered both

compressor cascades and turbine cascades. The latter, having blunter leading

edges, higher stagger angles and more turning, become a more diffiult and

challenging simulation problem. Calculations performed recently with this

code required 80-120 time steps to convergence, with run time per time step

for the grids used being approximately 0.4 CPU seconds. Solutions were

obtained in 30 to 70 CPU seconds of Cray-I time using grids containing 3500

points. In Ref. 7, Hah took a different approach, using a control volume

relaxation approach to solving the Navier-Stokes equations. However, the

equations being solved by a relaxation procedure are limited to a steady mean

flow. It may be possible to extend such a procedure to unsteady flow,

however, such an extension would require iteration at each time step, which

would increase run time significantly.

Although considerable information can be gained by considering the flow

through a single row of blades, a more complex and potentially more important

problem is that of the flow through a stator-rotor stage. Such an

investigation would include the potentially important interaction between

adjacent blade passages. Information obtained from a stage investigation

could contain important flow physics not addressed in a single blade row

Investigation. To date, considerably less effort has focused upon the stage

problem. In regard to experimental efforts, Detroit Diesel Allison has

studied various aspects of unsteady flow in a compressor stage with the

primairy emphasis being the time-variant aerodynamics of the stator as a

function of rotor-stator spacing, solidity, etc. (Refs. 11-14). Dring,

Joslyn, Hardin and Wagner (Ref. 15) have considered the effect of axial

spacing upon the turbine stage flow field.

In regard to analysis, the rotor-stator stage calculation is

considerably more demanding than a single blade row passage calculation. In

the stage, the flow is Intrinsically unsteady and, therefore, transient

accuracy is required. Furthermore, the computational grid required for a

stage is considerably more complex than that for a single passage analysis.

To date, two stage calculation procedures which are based upon solution of

the Navfer-Stokes equations have been developed. They are the procedure of

Rai (Ref. 16) and the procedure reported herein. Both efforts considered the

same basic problem, that of a time dependent, two-dimensional Navier-Stokes

-2-
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simulation of flow through a stage. The major differences between the two

were the computational coordinate systems and the numerical techniques used.

Prior to considering the details of the present analysis, it is useful to

compare the similarities and differences of the present approach with that of

Ref. 16 in a general manner.

In regard to the computational grids used, Rei used a combination of

patched and overlaid grids, as shown in Fig. 1, which is taken from Ref. 16.

The blade geometries are shown in Fig. Ia. Figure lb shows 'O' grids in the

immediate vicinity of each blade. Each 'O' grid is embedded within an WH

grid where the WH grids are shown in Fig. Ic. The general patching and

overlay is shown in Fig. Id. Although this approach can give a highly

resolved grid through the flow field, the overlay between regions I and 2,

and regions 3 and 4, requires a technique to specify boundary conditions on

the inner boundaries of zones 3 and 4, and the outer boundaries of zones 1

and 2. This basically requires some method of applying "boundary conditions"

on a computational line internal to the flow field. Rai has successfully

approached this problem by an iterative procedure in which outer zone 1 and

and 2 boundary points are interpolated from zone 3 and 4 results, and inner

zone 3 and 4 boundary points are interpolated from zone I and 2 results.

Although this approach has heen successful, it does require additional

iteration within the calculation which, in turn, increases computer run

time. In addition, the overlapped multiple patched grids may require more

grid points than a single non-overlaid grid for each blade. Finally, the use

of these internal line boundary conditions may introduce a stability limit on

the allowable time step which can be taken. Along the patched boundaries a

somewhat similar approach is used in which an iterative solution between

zones is combined with conservation of fluxes across a patch line. A major

W.V. advantage of this approach is that it allows a relatively small gap between

rotor and stator to be considered.

In the approach detailed in the present report, a key priority was

deveiopment of an efficient stator-rotor stage calculation procedure which

would require a minimum run time. Minimization of run time was considered

critical for several reasons. -First, even for the simplest stage

calculation, which Is two-dimensional and assumes equal pitch In rotor and

staLor, four to eight cycles are expected to be required to obtain a periodic

solution. A cycle is defined as the time required for the rotor to move a



distance equal to one pitch. The goal of the present effort was to develop a

stage Navier-Stokes simulation technique which would lead to periodic

solutions for the two-dimensional, equal pitch configurations in a modest

4 amount of computer run time to allow stage calculations to be made on a

regular basis. Secondly, the eventual interest Is in either three-dimension-

al stage simulations or simulations in which rotor and stator have unequal

number of blades, i.e., unequal pitch. The three-dimensional simulation is

expected to require sixty times the computer time of the simple two-dimen-

4. sional calculation and the two-dimensional unequal blade calculation is

expected to require twenty to forty times the computer run time of the simple

two-dimensional calculation. If these are to be approached on anything but a

research demonstration-type basis, the basic two-dimensional equal pitch case

must be very efficient in use of computer resources.

Both a single grid approach and a patched grid approach were considered.

The trade-off appeared to be the single grid advantage of rapid run time

*1* versus tne small gap spacing ability of the patched grid approach. Since one

important application of the procedure would be compressor technology, and

since a compressor stage gap of approximately 25% axial chord appears to be

viable with the single grid approach, the single grid approach was chosen.

As will be discussed, this has led to a very efficient procedure which would

require only 2 CPU minutes of CRAY time per cycle and 10 minutes to obtain a

periodic solution. This appears, at the present time, to he significantly

faster than the run times achieved by Ral using a patched grid and a similar

number of grid points. The single deforming grid used in the present effort

is shown in Fig. 2. As can be seen, this approach basically combines a rigid

'C' grid for the leading stator and a rigid 'H' grid for the following rotor

with a deforming section between them. The primary advantage of this

* approach is the absence of Internal boundaries such as that which occurs In

'A overlaid or patched grids, and the consequent expected decrease in run time.

The main disadvantage of the single deforming grid approach lies in the

limitation as to how close the rotor and stator could he placed. Obviouisly,

a small gap wotiLd increase the interaction in both the rotor and stator.

However, It Is estimated for practical modern compressor blade shapes, a gap

of 25% axial chord could be calculated with this approach, and for turbine

hiades a gap of 40% axial chord could be considered. These are close to the

lower limits of the gaps currently used in practice.

.- 4
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The second difference in the approach concerns the numerical method.

The method of Rai is a multiple grid approach for the "thin shear layer"

approximation to the Navier-Stokes equations, in which the calculation is

performed on several grids which then are patched together or overlaid. The

method used for each individual grid is a factored, iterative implicit

technique which is an extension of the noniterative techniques of Ref. 18.

In brief, for each time step, the technique soilves the equations on each

subgrid by an approximate factorization technique. However, an iteration at

each time step is incorporated within the method. These additional iteration

steps are used primarily to match the solutions at patched and overlaid

boundaries. Although, use of the additional iteration increases run time, it

does have the beneficial effect of decreasing splitting and linearization

errors.

The approach used in the present effort solves the full time-dependent

Navier-Stokes equations via a technique in which a single grid deforms to

accommodate the relative motion. A single double sweep LBI procedure based

upon the technique of Ref s. 19 and 20 is used to advance the solution ea3ch

time step. Although an iteration could be incorporated to reduce the

splitting error and improve transient accuracy, previous experience (Ref. 21)

indicates that at modest subsonic Mach numbers, M > 0.35, accurate time-

* dependent results can be obtained for airfoil type problems in this frequency

* regime. Furthermore, for many aircraft gas turbine applications, the

limiting low Mach number of 0.35 for transient accuracy with the time step

used here fails within the range of practical applications. The techniques

of the present effort appear to be considerably more efficient in terms of

computer run time for a cycle, and this represents a major advantage.

However, vis-a-vis the patched grid approach, the technique is limited in

term,; of minimum gap.

4 -5-
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ANALYSIS

Governing Equations

The equations used are the full ensemble-averaged time-dependent Navier-

Stokes equations which can be written in vector form as

Continuity

L+ v. PU=O (1)

Momentum

at + V.(pi'i) = -VP + V-(T+IT) (2)' at

Energy

aph + V-(puh) = -V'(Q+Q- T) + DP + 0 + PC (3)

at Dt

+
where p is density , U is velocity, P is pressure, n is the molecular stress

tensor, .T is the turbulent stress tensor, h is enthalpy, Q is the mean

heat flux vector, OT is the turbulent heat flux vector, P is the mean flow

dissipation rate and E is the turbulence energy dissipation rate. If the

flow is assumed as having a constant total temperature, the energy equation

is replaced by

2

Tt = T + ! =-- constant (4)
2C p

where Tt is the stagnation temperature, q is the magnitude of the velocity,

and Cp is the specific heat at constant pressure. In the cases considered

in this work, the total temperature has been assumed constant. This

assumption was made solely to reduce computer run time, and the code has the

capability to solve an energy equation, as has been demonstrated in Ref. 8.

1-6-
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It should be noted that for time-dependent flows such as the rotor-stator

flow field, the constant total temperature assumption is an approximation.

As discussed in Ref. 21, the analysis of Ref. 22 shows the effect of unsteady

flow is proportional to the Mach number squared and the frequency. In terms

of demonstration results, such as those presented here, at the Mach number

and frequencies considered, the qualitative nature of the flow field should

be correct. The effect of this total temperature constant assumption on

quantitative results will require further investigation. In any case, future

efforts can easily include an energy equation.

A number of terms appearing in equations (1-4) require definition. The

stress tensor appearing in equation (4) is defined as

V2

nT = 2JD - i - KB)V'UI (5)
3

where KB is the bulk viscosity coefficient, I is the identity tensor and D

is the deformation tensor, defined by:

D -- ((V) + (VU)T) (6)
2

In addition, the turbulent stress tensor has been modeled using an

isotropic eddy viscosity such that:

T = -u'u' = 2TD - - (TVr)I (7)

3

where OT, the turbulent viscocity, is determined by a suitable turbulence

model. Turbulence modeling is described in the next section.

Equation (3) contains a mean heat flux vector defined as follows:

= -KVT (8)

-7-



and a turbulent heat flux vector defined as:

QT = KTVT (9)

where K and KT are the mean and turbulent thermal conductivities.

Also appearing in equation (8) is the mean flow dissipation term D.

- 2

= 2pD:D (- w.' - KB)(V'U) (10)
3

The equation of state for a perfect gas

P = pRT (11)

where R is the gas constant, the caloric equation of state

e = CvT (12)

and definition of static enthalpy

h = CpT (13)

supplement the equations of motion.

In regard to molecular viscosity, thermal conductivity and bulk

viscosity, the existing code sets bulk viscosity to zero and allows 0 and K

to either be constant or have a Sutherland type law variation. The results

presented here were obtained with V constant and the total temperature

assumption replacing the energy equation.

Dependent Variables and Coordinate Transformation

% The governing equations, equations (1-2), are written in general vector

form and, prior to their application to specific problems, it is necessary to

decide upon both a set of dependent variables and a proper coordinate trans-

S. formation. Based upon previous investigations (e.g., Ref. 6), the specific

N'-; -8-



N scalar momentum equations to be solved are the x and y Cartesian momentum

equations. The dependent variables chosen are the physical Cartesian

velocities u and v and the density p.

The present application focuses upon two-dimensional time-dependent

flows with the assumption of constant total temperature. Therefore, the

remainder of the equation development will be within this framework. The

equations are transformed from the Cartesian variables x, y to a set of

general coordinates E, n where

= E(x, y, t)

n= (x, y, t) (14)

i T = t

The equations themselves can be expressed in either the so-called

"strong conservation form"

W/D + . .. 1 ( ~ ~ ) _ wt + FN +CT
( L,+ ~x+ G', y ) + HL -z -+"Y

(15)

LI (Fl~x + Gy + _ ____~ + GiflV )

Re 9 D D) 3n D D

or the so-called "quasi-linear" or "chain rule conservation" form

;W aw F 9 G 9W 3F G

-w + t + + g + + + lIV-

(16)

I 9 3FI 3GG
- 1 + X- + + qV

Re Tl ~I



where

1) = y- yn x

(17)

p pu Pv 0 0
W = pu ),F = pu2+p ),G = puv )F, TXX ) G1 = Txy )

pv puv Ov2+p Txy Tyy

The advantages of the two possible forms have been discussed in detail in

Refs. 23-25. If the strong conservation form of the equations is to be used,

then care must be taken to evaluate the metric data by a method which is

consistent with a control volume approach (Refs. 23 and 24). Usually this

requires numerical evaluation of the metric data even if an analytical

functional relationship for the transformation is available. The analytical

representation of the metric data, Cx, Ey, etc., when combined with the

strong conservation form of the equations, leads to significant error for as

straightforward a calculation as low Reynolds number flow about a circular

cylinder (Ref. 23). The quasi-linear form of the equations is much less

sensitive to the form of metric evaluation and gives good results for both

numerical and analytical evaluations of the metric data. Furthermore, good

results have been obtained with this approach by the present authors for a

variety of steady state and time-dependent problems (e.g., Refs. 6, 8 and

21). Therefore, the set of equations represented by Eq. (16) was used in the

present study.

It should be noted that the previous calculations were made with non-

deforming coordinate grids. In the present stator-rotor application, most of

the grid is non-deforming, however, a deforming region is present between the

blades. Therefore, the use of the "quasi-linear" or "chain rule

conservation" form with the deforming grid between blades is an item which

may require further invesLigatton.

The Turbulence Model

Although the code contains both a mixing length model and a two-equation

turbulence model, and results have been obtained with both (e.g., Ref. 8),

the present effort utiLized a mixing length type model. The mixing length

model assumes the existence of a mixing Length, k, and then relates an eddy

ILI
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viscosity PT, to the mixing length by

PT = pt ( '1+ a ) V 2  (18)
axj aX1  axj

For flow regions upstream of the leading edge where the flow is attached, the

mixing length is determined by the usual boundary layer formulation

L = KyD X< max (19)

where K is the von-Karman constant, D is a sublayer damping factor and max

is taken as 0.09 6 where 6 is the boundary layer thickness. The damping

factor, D, which has for the most part been utilized, is the van Driest

damping factor

D = (I - e - y + /27) (20)

where y+ is the dimensionless coordinate normal to the wall, yuT/V.

When the mixing length formulation is used in a boundary layer

environment, 6 is usually taken as the location where u/ue = 0.99.

However, this definition assumes the existence of an outer portion of the

flow where ue is independent of distance from the wall, and assumes that

the location where ue becomes independent of distance from the wall marks

the end of the viscous region. In a cascade Navier-Stokes calculation no

such clear flow division occurs. Therefore, the boundary layer thickness, 6,

is set by first determining Umax, the maximum velocity at each given

streamwise station, and then setting 6 by

S= 2"Oy(u/U max = )(21)

i.e., 6 is taken as twice the distance from the wall to the location where

u/umax = kj. In the present calculation k, was set to 0.90.

-N.-



In the wake region, the free turbulent shear flow model of Rudy and

Bushnell (Ref. 26) is used. In brief, this model evaluated two length

scales, 6i and 61,

61 = 1.2 x (Y.95 - YCL) + (x - XTE) tan 80 (22)

611 = 2 x 1.2 x (Y.95 - YCL)

where Y.9 5 is the location where the velocity is 95 percent of the free-

stream velocity, YCL is the centerline location and XTE is the trailing

edge location. This model was developed for symmetric wakes and was modified

for the present application by setting

(Y.95 - YCL) = 0.5 x (Y. 95 - Y-.95) (23)

where y+.95 and Y-.95 represent the upper and lower locations where

the wake velocity reaches 95% of the freestream velocity. Following Ref. 26,

the mixing length, £, was taken as

Z = 0.07 x MIN (61, 611) (24)

In some preliminary unpublished work at SRA, this model has given good

agreement with data for the near wake region of a single row cascade. In the

stage problem examined here, the wake of the leading blade impinges upon the

trailing blade, and it is not clear how well the details of this can be

simulated with a mixing length type model. However, in this initial effort,

a mixing length model should give reasonable qualitative results, with a more

sophisticated model being considered for future efforts.

Boundary Conditions

The authors' experience in solving Navier-Stokes equations has indicated

the important role boundary conditions play in determining accurate solutions

and rapid numerical convergence. The present approach follows the tack of

Briley and McDonald (Ref. 27). In brief, this approach sets total pressure

and flow angle at the upstream inflow boundary and static pressure at the

downstream outflow boundary. These represent the physical boundary

-12-



conditions for the governing set of differential equations. in addition, the

density derivative is set to zero at the upstream boundary, and second

derivatives of both velocity components are set to zero at the downstream

boundary. On the blade surface, no slip conditions are applied. These are

applied with sublayer resolution; wall functions are not used, as the first

point off the wall is generally within the sublayer. In addition, the wall

normal pressure gradient is set to zero. Finally, periodic conditions are

applied in an implicit manner on the periodic line.

One item of interest in regard to boundary conditions concerns the

downstream constant pressure boundary. Since this is a reflecting boundary

condition, it was decided to explore possible non-reflecting boundary

conditions. After surveying the literature, a condition based upon the work

of Rudy and Strikwerda (Ref. 28), and Engquist and Majda (Ref. 29) was

incorporated into the code upon option. Cases were run for a single blade

row, however, this did not appear to give any advantage in convergence

properties over the constant pressure boundary. In addition, the final

results were nearly identical to those obtained with the constant pressure

boundary condition.

Numerical Procedure

The numerical procedure used to solve the governing equations is a

consistently split linearized block implicit (LBI) scheme originally

developed by Briley and McDonald (Ref. 19). A conceptually similar scheme

has been developed for two-dimensional MHD problets by Lindemuth and Killeen

(Ref. 30). The procedure is discussed in detail in Refs. 19 and 20. The

method can be briefly outlined as follows: the governing equations are

replaced by an implicit finite difference approximation, optionally a

backward difference or Crank-Nicolson scheme. Terms involving nonlinearities

at the implicit time level are linearized by Taylor expansion in time about

the solution at the known time level, and spatial difference approximations

are introduced. The result is a system of multidimensional coupled (but

linear) difference equations for the dependent variables at the unknown or

implicit time level. To solve these difference equations, the Douglas-Gunn

(Ref. 31) procedure for generating alternating direction implicit (ADI)

schemes as perturbations of fundamental Implicit difference schemes Is

introduced, in its natural extension, to systems of coupled Linear difference

-13-



equations having narrow-block banded matrix structures which can be solved

efficiently by standard block-elimination methods.

The method centers around the use of a formal linearization technique

adapted for the integration of initial-value problems. The linearization

technique, which requires an implicit solution procedure, permits the

solution of coupled nonlinear equations in one space dimension (to the

requisite degree of accuracy) by a one-step noniterative scheme. Since no

iteration is required to compute the solution for a single time step, and

since only moderate effort is required for solution of the implicit

difference equations, the method is computationally efficient; this

efficiency is retained for multidimensional problems by using what might be

termed block AD! techniques. The method is also economical in terms of

computer storage, and in its present form requires only two time levels of

storage for each dependent variable. Furthermore, the block AD! technique

reduces multidimensional problems to sequences of calculations which are

one-dimensional, in the sense that easily solved narrow block-banded matrices

associated with one-dimensional rows of grid points are produced.

Artificial Dissipation

The final item to be considered concerns the use of articifial dissipa-

tion. Since the calculations were at high Reynolds numbers typical of normal

turbomachinery applications, it was necessary to add "articifial dissipation"

terms to suppress central difference spatial oscillations. Such "artificial

dissipation" could be added via the spatial differencing formulation (e.g.,

one-sided difference approximations for first derivatives) or by explicitly

adding an additional dissipative type term. The present authors favor the

latter approach, since when an additional term is explicitly added, the

physical approximation being made is usually clearer than when dissipative

mechanisms are contained within numerical truncation errors, and further,

explicit addition of an artificial dissipation tern allows greater control

over the amount of nonphysical dissipation being added. Obviously, the most

desirable technique would add only enough dissipative mechanism to suppress

oscillations without deteriorating solution accuracy. Various methods of

* adding artificial dissipation were Investigated In Ref. 32, and these were

evaluated in the context of a model one-dimensional problem containing a

shock with a known analytic solution (one-dimensional flow with heat

-14-



transfer). The methods considered included second-order dissipation,

fourth-order dissipation and pressure dissipation techniques.

As a result of this investigation, it was concluded that a second-order

anisotropic artificial dissipation formulation suppressed spatial oscilla-

tions without impacting adversely on accuracy, and could be used to capture

shocks successfully. In this formulation the terms

9( pn-ldx /ax)

are added to the governing equations where = u, v and p for the x-momentum,

y-momentum, and continuity equations, respectively. The exponent, n, is zero

for the continuity equation and unity for the momenta equations. The dissi-

pation coefficient, dx, is determined as follows. The general equation has

an x-direction convective term of the form a34/ax and an x-direction

diffusion term of the form a(b3O/ax)/3x. The diffusive term is expanded

3(b3 /ax)/3x=ba2$/ax2+3b/3x $/3x (25)

and then a local cell Reynolds number ReAx is defined for the x-direction

by

ReAx = Ia-b/axI Ax/b (26)

where b is the total effective viscosity, including both laminar and

turbulent contributions, and Ax is the grid spacing. The dissipation

coefficient d. is nonnegative and is chosen as the larger of zero and the

local quantity Ue(OxReAx-Ol. The dissipation parameter a. is a

specified constant and represents the inverse of the cell Reynolds number

below which no artificial dissipation is added. The dissipation coefficient,

dy, is evaluated in an analogous manner and is based on the local cell

Reynolds number ReAy, grid spacing Ay for the y-direction and the specified

parameter y,

The question naturally arises as to the value to be used for ox and

Oy. Based upon a wide variety of experience (e.g., Refs. 6, 8, 21, 32), it

has been concluded that values of ax and ay of 0.05 are sufficient to

suppress spurious oscillations, but do not lead to non-physical damping of
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the mean flow. In some cases where gradients are large and grids relatively

coarse in terms of the change of dependent variable from point to point; for

example, the leading edge stagnation region; it may be necessary to increase

the streamwise dissipation ta 0.5 locally. However, the normal dissipation

Is held at 0.05.
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RESULTS

Assessment of Time-Accuracy

The Navier-Stokes cascade code which is used in the present stator-rotor

simulation has been successfully exercised for a variety of steady state

cascade flow fields (e.g., Refs. 6, 8, 23), however, an assessment was still

required as to the time accurate nature of the procedure. In this regard,

two calculations are relevant. The first, an oscillating airfoil calcula-

tion, was performed by SRA under contract to NASA Langley Research Center as

part of a dynamic stall analysis (Ref. 21). The second case considered was

performed under the present effort. The case was a 25.5% thick Joukowski

airfoil entering a gust in which the vertical velocity is 0.25 times the

freestream velocity.

In regard to the oscillating airfoil calculation, the case considered

was that of an NACA 0012 airfoil oscillating sinusoidally in pitch in a

stream with a Reynolds number based on chord of 2.08 x 106 and a Mach number

of 0.30. The airfoil oscillated between 4' and 200 with a dimensionless

frequency of 0.125. The case corresponds to Data RUN 51.005 of the data of

St. Hilaire and Carta (Refs. 33 and 34). Although this calculation

represents an isolated airfoil rather than a cascade, it was made with a code

essentially identical to the cascade deck used here with boundary conditions

appropriate to the isolated airfoil applied.

Comparisons between calculated and measured surface pressure coeffi-

cients are shown in Figs. 3-10. Three comparisons during the upstroke are

shown in Figs. 3 and 4. As can be seen, the agreement is good. The data was

reconstructed from the Fourier coefficient given by St. Hilaire and Carta

(NASA CR-165927). The third measured data point on the pressure surface

(x/c - .066) gave very erratic results and was not plotted for most of the

comparisons. The excellent comparisons shown in Figs. 3 and 4 give evidence

to the time-accurate calculation for the surface pressure. Figure 5 presents

a comparison at a = 17.7', a > 0. This is near the incidence where stall

would first be inferred from the lift and moment curves. The figure shows

some discrepancy between predicted and measured values as the data presents

some evidence of a vortex being shed on the suction surface leading edge.

The discrepancy Increases in Fig. 6 where the data clearly Indicates stall.

-17-
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The calculated plateau on the suction surface, x/c - .15, seems to indicate a

vortex being initiated. Furthermore, the calculated maximum suction peak at

a = 19.5% Fig. 6, is considerably less than that at a = 17.7, Fig. 5.

Based upon the plateau and the drop in suction peak, the calculated distribu-

tion at 19.50 appears to be beginning the stall process. The data at 19.50

is presented with the calculation at a = 19.90, h > 0 in Fig. 7. Although

these are at different values of a, they represent pressure distributions at

approximately the same incremental time after stall is initiated; the

distributions are remarkably similar. Comparisons over the downstroke are

given in Figs. 8-10. Obviously, the basic trends are in agreement, as a

strong qualitative comparison is shown between the calculation and the

measured data. The results of this calculation, particularly prior to stall,

Figs. 3-5, indicate the time-accuracy of the procedure, at least as far as

surface pressure is concerned. Although the reduced frequency for the

oscillating airfoil calculation is approximately an order of magnitude less

than that found in a typical rotor-stator interaction, the accurate and

efficient calculation of transients is more demanding from a numerical point

of view for low reduced frequencies than for high reduced frequencies.

The second case considered was performed under the present effort. The

case was a 25.5% thick Joukowski airfoil entering a gust in which the

vertical velocity is 0.25 times the freestream velocity. This case was also

calculated by Giesing via an inviscid analysis (Ref. 35) and although viscous

effects are present in the present analysis, it is expected that the calcula-

ted pressure gradients should be in reasonable agreement if little or no

separation occurs. Calculated surface pressure distributions from both tech-

niques are presented in Figs. 11-14, where T indicates the location of the

gust relative to the airfoil leading edge. As can be seen, the two calcula-

tLons are In good agreement. The major discrepancies are the appearance of

surface pressure discon inuities in the inviscid solution which are not found

. in the viscous solution, such as at x/c = .25 in Fig. 12. However, this Is

the expected result of viscous effects. This comparison along with the

ivnamic stall calculations of Ref. 21 serve to confirm the time-accuracy

capability of the cascade code in prediction of surface pressure for these

frequencies, geometries, Reynolds numbers and Mach numbers.
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H-Grid Assessment

The stator system to be used consists of a 'C' grid coordinate system

for the leading stator blade followed by an 'H' grid system for the rotor;

these two grids are joined by a deforming section, as shown in Fig. 2.

Although considerable work had been performed in a 'C' grid context, the

4, existing coordinate system had not been exercised for an 'H' grid. There-

fore, prior to performing a stage calculation, it was decided to perform a

single blade row calculation with an 'H' grid coordinate system. The case

originally chosen was flow about a 25.5% thick Joukowski airfoil at zero

incidence. This case was chosen since the relatively thick leading edge

region presented a relatively difficult test case for the 'H' grid. In

addition, the symmetric cascade should give a symmetric flow field which

would aid in verifying the code. The 'H' grid used is shown in Fig. 15. A

comparison between pressure distributions as calculated by the 'H' and 'C'

grids is shown in Fig. 16. These were performed for turbulent flow and

showed very good correspondence. The 'C' grid capability has been assessed

in a variety of comparisons (e.g., Refs. 6, 8, 21, 23) and therefore, this

serves to confirm the 'H' grid capability. In particular, it should be noted

that the stagnation point pressure coefficient with the 'H' grid was

approximately 0.96. This is at the coordinate singularity, and represents a

demanding computation for the 'H' grid. The computed Cp of 0.96 should be

regarded as quite good. In addition, the calculation proved to be symmetric,

"R as Indicated by the contour plot shown in Fig. 17.

Stator-Rotor Calculation

The final case of interest is the stator-rotor stage alculation, which

is the focus of the present effort. The case chosen for calcil ation was a

stage formed from two sets of compressor blade profiles of Hohhs, Wagner,

Dannenhoffer and Dring (Ref. 5). This blade shape has been previously con-

sidered as a cascade at SRA, and numerical simulations of the flow In this

cascade had shown good correspondence when comparel against the experimental

data (Ref. 6). The calculation was run for a stag- In which the Reynolds

* number at inflow was 6.8 x 10; the Inflow Mach number was 0.47. The grid

"" used ronsisted of a constructive 'C'-grid for the upstream stator, a

constructive 'H' grid for the downstream rotor and a taut spline blending
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region between the two. As previously discussed, the calculation set

* upstream total pressure and flow angle and downstream static pressure. The

upstream flow angle was set at a value of 380 and the upstream total to

downstream static pressure set at a ratio of 1.0807. The rotor wheel speed

was set at 52 per cent of the velocity upstream of the stator leading to the

incidence on the rotor in a frame tied to the rotor being approximately 380.

A figure showing these velocities is presented in Fig. 18.

The calculation was run on a very highly resolved grid. The first point

*off the blade was approximately 3x10-5 chords from the blade. High

* resolution was obtained in both the stator and rotor leading edge regions.

The blade spacing between rotor and stator was 0.5 axial chords; the spacing

between adjacent rotor blades (or stator blades) was 0.72 axial chords. A

computer plot of the grid is shown at three different times in Fig. 19. As

can be seen, the grid is a rigid 'C' grid in the vicinity of the stator;

* i.e. upstream of point A, and a rigid 'H' grid in the vicinity of the rotor;

i.e. downstream of point B. Between A and B the grid deforms. A cycle

begins with the grid in the position of the lower figure, T = 8.0. The

calculation proceeds with the grid moving until the position at T = 9.0 is

reached. This represents a cycle; the grid is then moved back to the

position at T = 8.0, the results in the deformed region are interpolated, and

the calculation then continues.

The calculation required approximately five cycles to reach a condition

of cyclic periodicity in the solution. Each cycle required 100 time steps

and approximately 4 CPU minutes of CRAY run time. The code being used is a

partially vectorized code; a more recent version of this same code is fully

vectorized and runs twice as fast as that used here. Therefore, it is

reasonable to expect run times of 2 CPU CRAY minutes per cycle for 7500 grid

points to be attainable. Plots of Mach number contours for this

* configuration at three different time levels are shown in Figs. 20 and 21.

During this calculation, minor changes were made in the turbulence model, as

well as In the leading edge region artificial dissipation. Therefore, this

does not represent nine cycles of calculation. As previously stated, a

reasonably periodic solution is obtained within five cycles. For the current

test case, the major Interactive effect is on the trailing blade. This can

be seen clearly in the Mach number contours where the flow field changes

signiftcantly between T =N and T =N+0.5. In the latter case, the stator

-20-
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wake impinges directly upon the rotor leading edge. In the former case, it

lies within the passages. No major effect is noted on the flow in the

upstream blade passage for this blade streamwise spacing. The change in

static pressure contours through the cycle appears less dramatic than the

change in Mach number coutours. However, significant changes do occur

particularly in the leading edge regions when viewed in terms of pressure

coefficient perturbation.

A plot of the 'baseline' rotor surface pressure coefficient is shown in

Fig. 22. This represents the surface pressure at a time when the rotor

leading edge location is midway between the stator trailing edges. It should

be noted that this should be approximately the minimum interference

configuration. It does not represent a result time-averaged over the cycle.

The rotor leading edge stagnation point pressure coefficient is considerably

greater than unity (-1.33) due to the work being performed on the fluid by

the moving blade. The pressure coefficient was smooth throughout the flow

except in the immediate vicinity of the leading edge (x/c<.O0l) where some

oscillations occurred. In any case, it is confined to a very snail region

of the flow.

Pressure coefficient perturbations relative to the base case are

presented in Figs. 22-28. in these figures, the relative positions of the

rotor leading edge and stator trailing edge art noted on the left side of the

figures. It should be noted that surface pressure perturbations are expected

to occur as the rotor passes through the nonuniform exit flow field generated

hy the stator. As the rotor passes throughi the stator wake it experiences

(i) a decrease in flow stagnation pressure due to losses in the wake and

(ii) an Increase In flow incidence due to a decrease In axial velocity. It

is estimated that the fLow incidence changes from approximately 320 from

horizontal when the rotor Is between stator blades, to approximately 38' when

the rotor is in the stator wake. In addition, when the rotor is In the

stator wake, it experiences an oncoming shear flow which will affect the

blade loading.

The results of Figs. 23-28 show the surface pressure perturhation as the

rotor passes through the cycle. The base case shown in Fig. 22 gives the

pressure distribution when the rotor Is between the stator blades. At this

location, the Incoming flow ang~e relative to the rotor is at Its minimum

angle to the horizontal. As time progresses, the rotor moves into the wake

P -21-
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and the relative flow angle increases, giving an increased pressure on the

leading edge region pressure surface and a decreased pressure on the leading

edge region suction surface. This becomes most pronounced at T = 8.59 to

8.67, as shown in Figs. 26 and 27. During this portion of the cycle

considerable additional leading edge loading occurs with ACp being approxi-

mately 0.'. At all times the major loading perturbations are confined to the

leading edge region, X/C<0.2. As the flow proceeds into the passage,

X/C>0.2, the flow basically behaves as a channel flow and the surfaceI pressure distribution is relatively insensitive to the incoming flow angle.

The major effect being in the leading edge region has serious implications in

terms of time-dependent pitching moment and possible structural consequences.

41though the major effect is in the rotor leading edge, there is a

smaller effect over the entire blade. As shown in Figs. 23-28, both the

pressure and suction surfaces show a pressure perturbation over the entire

blade chord. Since this perturbation becomes very small at T - 9.0, Fig. 28,

it does not represent a significant aperiodicity still present in the

solution. Downstream of the leading edge the perturbation is more pronounced

on the suction surface, reaching a maximum perturbation Cp of -0.025.

The perturbation flow field in the trailing rotor blade was considerably

,tronger than that observed on the stator. However, some relatively small

effects were noted on the stator. For example, the maximum suction peak on

the ;tator ranged from -0.86 to -0.81, giving a ACp of approximately 0.05,

wi4lth the highest value, -0.81, occurring when the trailing blade was

inproximitelv aligned with the leading blade. The trailing edge pressure

c',efricent ranged from 0.34 to 0.37, with the highest values again being

when the stator trailing edge and rotor leading edge were approximately

II i Yned. These results indicate a maximum interaction effect occurs on the

loadin , stator blade when the blades are nearly aligned, and minimum

S ntora(tion occiirs when the rotor is between stators. However, it should be

*ri, fl that these stator perturbations are relatively small.

In regard to data comparison, no data exists for this specific case.

Hlowever, the data of Fleeter, Jay and Bennett (Ref. 36) can be used for

guifdance. This data was taken on a rotor/stator configuration with the rotor

being the leading blade. The gap was approximately 0.4 axial chords. In

Veneral, this data shows the major perturbation, Cp, to be confined to the
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leading edge region of the trailing blade. When normalized by the incoming

dynamic head, the leading edge perturbation was approximately 0.10 to 0.30

over a range of flow conditions. This is the same order found in the present

simulations. As in the present numerical flow simulation, although some

perturbation was found downstream of the leading edge, it was considerably

less than at the leading edge. This again is consistent with the results

obtained here.
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CONCLUSIONS AND RECOMMENDATIONS

the present effort has led to the development of a numerical procedure

of the stage flow field based upon solution of the Navier-Stokes equations.

The specific case considered is the basic case in which two-dimensional flow

and equal rotor and stator pitch are assumed. The procedure developed is
capable of obtaining periodic solutions for a griO of 7500 points within ten

CPU minutes of Cray run time. This represents a very efficient technique

which will permit runs of this type on a regular basis, and which will allow

extension to either three dimensions or to stages in which rotor and stator

have unequal pitch and to multiple stages.

The results obtained show the qualitatively expected features.

Periodicity was obtained essentially within five cycles. The major effect of

the interaction to the specific case considered appeared in the leading edge

region of the downstream rotor blade. Significant perturbation pressures

were noted, ACp-O.4, which has major implications regarding unsteady loading

and unsteady fluid structure interaction. The concentration of the

interaction effect in the leading edge has particular significance in regard

to unsteady pitching moment. Although less significant, unsteady effects

were noted over the aft porti n of the trailing blade, as well as over the

entire leading blade.-#o

Possible extensions of this work fall into three natural paths. Under

the first additional two-dimensional, equal pitch calculations would be made

and the results investigated with particular enphasis on the flow physics and

possible structural implications of unsteady loading. The second path would

consider three-dimensional flow in a stage. This would allow inclusion of

the various vortices generated in the three-dimensional passage. Since the

three-dimensional calculation is expected to require sixty times the computer

resources as the two-dimensional, an efficient two-dimensional analysis is

imperative as a base. The analysis developed uinder the present effort is

very efficient and therefore would form a suitable base in meeting these

goals. The third option is extension to the case of unequal rotor and stator

pitch. Again, for this to be practical, an efficient base deck is key.

Finally, a more long-term goal would be development of a -two-dimensional

multi-stage analysis based upon this approach.
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