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II. OCCAM AT VERAC '

Bart Kosko directs the VERAC OCCAM effort. Robert Sasseen provides

simulation and analysis support. Robert and all the OCCAM research team

have successfully completed Bart's Fuzzy Theory course at UCSD. The key

research results and activites of VERAC's OCCAM effort are listed below.

1. Bidirectional Associative Memory. Bart defined bidirectional stability

and proved that every matrix is a bidirectional associative memory (BAM).

With Clark Guest he devised a basic phase-conjugate resonator implementation

of a BAM. The paper "Bidirectional Associative Memories" is in preparation.

Let M be an arbitrary n-by-p real matrix. Let A be an n-dimensional

binary vector and B be a p-dimensional vector. Let M(...) and MT(...) be

nonlinear operators that depend on M and MT, where MT is the matrix

transpose of M. Suppose B = M(A), A' = MT(B), B' - M(A'), A'' = MT(B').

and so on. Then M is bidirectionally stable if for every initial pair (A,

B) there exists a fixed pair (Af, Bf) such that

B - M(A), A' - MT(B), . . . Bf - M(Af), Af - MT(Bf), Bf - M(Af)......

Hence if M is bidirectionally stable, M behaves a heteroassociative content

addressable memory (CAM). We know of no other heteroassociative CAM in the

literature.



Which matrices are bidirectionally stable? That depends on the how the

nonlinear operators M(...) and MT(...) are specified. Surely the simplest

operators are threshold linear:

1 if B MiT > 0

ai

0 if B MiT > 0

1 if A M > 0

bj

0 if A M > 0

where Mi is the ith row (column) of M (MT) and Mi is the jth column of M.

I.e., vector multiply M by A then hordclip to produce a binary B, vector

multiply MT by B then hardclip to produce a binary A', and so on. This

process can be interpreted as the synchronous interaction of two Grossberg

fields of McCulloch-Pitts neurons FA = (al, . . . , an ) and FB - (b1,

. bp) symmetrically interconnected via the synaptic weights {mij).

Asynchronous neuronal state changes are also permitted.

If M(...) and MT(...) are interpreted as threshold-linear adjoint

operators, then our question has been answered with a decisive theorem:

Every matrix is bidirectionally stable. The theorem is proven by

identifying a Lyapunov or energy with the operation of the bidirectional

threshold-linear operator. The correct energy potential turns out to be

~I1



E(A, B) - -1/2 A M BT - 1/2 B MT AT

Observe that B MT AT - B (A M)T . (A M BT)T A M BT, where the lost

inequality follows since the transpose of a scalar equals the scalar. Hence

E is equivalent to

E(A , B) = - A M BT

We can then show that the energy change E2 - El due to a state change in

neuron ak , or the entire neuron vector A, is negative. Since E is bounded

below by the negative of the sum of the absolute values of the entries of M,

E converges to a local energy minimum. Since M was arbitrary, the theorem

follows for both synchronous and asynchronous state changes. Hence every

* $,~matrix M can be decoded as an associative memory.

This result subsumes the result of Hopfield et al that a square

symmetric zero-diagonal matrix is unidirectionally stable (an autoassocative

CAM). The Hopfield case follows if M is square symmetric with zero (or more

generally nonnegative) diagonal elements and A - B. Moreover, in general

the Hopfield associative memory is stable only for asynchronous (serial)

recall, a serious restriction that does not apply to a BAM. For instance,

one of the simplest Hopfield associative memories stores the vector (1 0) as

0 -1

-1 0).



Now multiply this M by the bipolar vector X = (1 1). This gives Xc - (-1 -

1). But Xc M - (1 1). Hence the iterative recall procedure forever

oscillates or blinks back and forth between X and Xc. In other words, in

synchronous operation (vector multiplication), M is unidirectionally

unstable but bidirectionally stable!

The BAM storage algorithm allows m-many heteroassociative pairs (Ai,

Bi) to be encoded in M by suitably sculpting the energy surface defined by

D. Transform the binary pair (Ai , Bi ) into the bipolar pair (Xi, Yi).

Memorize the vector pair by forming the correlation matrix xiT Yi. (Since

Xic - -Xi , this encoding technique also memorizes the complement

association (Xic, Yic) since (Xic)T yic = xiT Yi.) Form M now by

superimposition: simply pointwise add the m correlation matrices xiT Yi.

We observe, as most have overlooked when using correlation memorization

techniques, that the BAM encoding algorithm employs Grossberg reciprocal

outstar coding. Indeed the BAM operation corresponds to a simple form of

Grossberg adoptive resonance between fields FA and FB.

It follows from BAM analysis that the storage capacity of M is given by

a generalization of the familiar bound for autoassociators:

m < min(n, p)

for reliable coding.

Finally, we comment that in the OCCAM 2nd Quarter research effort a

continuous/differentiable version of the BAM theorem has been proved. The



difference-equation version of this theorem allows fuzzy unit, or fit,

vectors (with element values in (0, 1]) to be used in the BAM recall and

storage procedure. With Clark Guest a preliminary phase-conjugate resonator

BAM implementation has been constructed.

2. Fuzzy Associative Memory. Fuzzy associative memory (FAM) is term

occasionally used (for instance in TRW's so called FAM (WAM) VHSIC

processor) but seldom defined. Bart defined a FAM as a fuzzy relation M

that maps input fuzzy sets A to output fuzzy sets B, and proved that every

fuzzy heteroassociative pair (A, B) can be stored and recalled with perfect

reliability in an easily construted relation M. M is realized by an n-by-p

matrix of elements in [0, 1], i.e., a point in the space [0, 1I]nxp
. A is an

n-fit vector and B is a p-fit vector, i.e., A and B are respectively points

in the unit hypercubes [0, 1]n and [0, liP. These results are included in

"Fuzzy Associative Memories," in preparation, invited to appear in a special

Addison-Wesley edition on fuzzy expert systems.

The key insight is that association generalizes the familiar logical

operation of modus ponens--if A and A --> B, then B. The (fuzzy) logical

conditional A --> B stores the pair (A, B). When a key C is applied to the

memory, B is recalled if C - A. More generally if C is approximately A,

then B' is recalled where B' is approximately B. Storing the pair (A, B)

corresponds to heteroassociative memory. As a special case, storing the

redundant pair (A, A) corresponds to outoassociative memory.

The fundamental fuzzy operation of set-relation composition (analogous

* to vector-motrix multiplication) is max-min composition. A o M denotes max-

Lim, 11 *tg 5 XO , " V. - J_
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min composition. The operation A o M is performed by intersection the fuzzy

set A with the fuzzy sets of M represented as columns. This is directly

analogous to the vector operation A M where the vector A multiplies the

columns of M. In particular if A a M = B, the jth element of fuzzy set B is

found by taking the maximum of the pairwise minima of A's fit values with

the fit values of the jth column of M:

bj = max{ min(a1 , mlj). . . . , min(on, mnj) )

This directly analogous to the vector-multiply operation of taking the

global sum of pairwise products. One difference, however, that min and max

do not disturb the data on which they act. They only effect order. Hence

if B = A a M, then every element of B is some element of A or M. We note

that M is in fact the conditional possibility distribution of B given A.

We now briefly state our results. Suppose we wish to memorize the

fuzzy set A = (.5 1 .4 .7). Hence we wish to store the autoassociative

pair (A, A) in M. The Compositional Rule of Inference, propounded by Zadeh,

says that we form the relation (conditional possibility distribution) M by

identifying mij with the pointwise fuzzy logical implication or truth value

tij. With this we agree. However, Zadeh et al suggest the Lukasawiecz

implication value tij - min(1, 1 - a i + bj) (where in the autoassociative

case bj = oj). This gives the fuzzy relation M:

.3 1 .4 .7

.3 1 1
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and hence in fact A a M - A. However, this is only true because this

technique always produces ls along the main diagonal. Moreover, tij = 1 if

(and only if) a i 5 bj, which tends to occur at least as often as a i > bj

occurs. Hence M tends to consist of 1s. This precludes heteroassociative

recall reliability, tending to produce B - (1, 1, , 1) for any input

A.

We have proven that the correct implication operator is tij = min(ai,

bi), which is essentially a fuzzy Hebb law. This is equivalent to

representing M as the fuzzy cartesian product M m A x B = AT a B. This

produces the memory M:

.3 .3 .3 .3

.3 1 .4 .7

.3 .4 . .

.3 .7 .4 .7

and hence again A a M m A. There are two key properties at work in this

selection of M. First, A m Diagonal(M) since tii - min(ai, ai) . ai .

- Second, the diagonal entries always dominant the column entries: mij : mji

for all j, for each i, which again follows from the nature of the minimum

operation. Our autoassociative theorem states that A can be perfectly

memorized by an M such A - Diagonal(M) and M is diagonal dominant. Hence AT

o A works, as well as the simpler choice of M that lists A down the main

diagonal and puts Os elsewhere. Another theorem says that for all other A',

, A' a M r A, i.e., the elements of A' a M are pairwise dominated by the



elements of A. Hence M is a subset classifier as opposed to the more

specialized (and more popular) metric classifiers. The further A' is A, the

more A' o M approaches the empty set (0, 0, . . . 0).

Our heteroassociative theorem says that mij - min(ai, bj) perfectly

memorizes (A, B) subject to one condition: for every element bj of B, there

exists some element ai of A such that bj ! o i . Note that if A and B are

binary, this condition is always satisfied since only A - (0, 0, . . . 1 0)

could violate it, but then AT B produces the zero matrix! Moreover, M is a

subset classifier since for all A', A' a M = B. We comment that MT also

produces the bidirectional memory relation subject to the same dominance

condition. We also comment that the recent AT&T Bell Labs fuzzy logic VLSI

*" chip implements our fuzzy associative memory without realizing it! Through

personal communication with its developer, Masaki Togai (now at Rockwell),

we learned that the chip designers selected the min operation after

exhaustive simulations because only it worked as an implication operator.

Suppose we wish to store the pair (A, B) where A = (.3 1 .4 .7) as

before and B = (.5 .2). The key condition of the theorem is satisfied since
I$

a 1 occurs in A. Hence M = AT B,

.5 .2

.5 .2

I.. 2

. .



perfectly learns the association since A o M = B. Suppose we present the

partial pattern A' = (.3 0 .4 0). Then A' o M - (.3 .2) = B. The

9, bidirectional FAM MT will be a good but suboptimal memory since the key

condition is not satisfied: no element in B is at least as large as 02 -1.

Hence B o MT . A'' = (.3 .5 .4 .5) = A.

The FAM theorems can be viewed as new theorems in the new field of

fuzzy eigensets. Our construction technique shows how to find the fuzzy

relation M that has a given fuzzy set A as an eigenset in the sense of max-

min composition: A o M = A. It turns out, however, that the m-many FAMs

Mi storing the pairs (Ai , Bi) cannot simply added or maxed together to store

the pairs. The eigenset property is too pervasive. For instance, suppose M

is formed by a pointwise maximum operation: M = max(M1 , . , Mm).

Then

M = (max(A1, , Am))T o max(B 1 ,  , Bm)

in other words, the eigenset pair of M is (max Ai , max Bi). Hence all

patterns (A, B) get mapped into a subset of the max pair. If pairwise max

is replaced with normalized addition, then all pairs get mapped into subsets

of the normalized sum pair, and so forth. So although these FAMs permit

parallel distributed storage of patterns, these storage media cannot be

naively superimposed. For many applications, including the AT&T Bell Labs

fuzzy logic chip, such superimposition is not necessary.
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5. Differential Hebbian Subsumption of Hebbian Learning. We report the

first derivation of Hebbian learning phenomena that we know of in the

literature. Bart derived this simple but powerful result in his work on

kinetic-energy Lyapunov functions for neural networks.

Hebb postulated that synoptic change is driven by the correlation of

pre-synoptic and post-synaptic activity. If we denote the nonnegative

activation of neuron i by Xi(t) at time t and the directed edge or synapse

from Xi to Xj by the real-valued function eij(t) at time t, then the Hebbion

learning law takes the form

eij = -eij + Xi Xj, (1)

where the "forget function" -eij has been appended to represent the passive

decay of neurotransmitter release when Xi and Xj are inactive. Equation (1)

takes many forms in the literature--cther terms are added, functions of Xi

and Xi are correlated, etc.--but the recurring structure is that concurrent

(or lagged) activation drives learning. Unfortunately the activation

product in (1) grows synaptic connections between neurons at an exponential

clip. If a forget term is not added, or if it has, as experimentally it

seems to have, a small weight, then eij rapidly saturates at its maximum

positive strength. Total connectivity results and no learning occurs. This

A is, we add, an abundant simulation phenomenon among neural net researchers.

The differential Hebbion hypothesis is that concurrent (or logged)

change, or concomitant variation, drives learning:

,2%



iij - -eij + xi xJ. (2)

We stress, however, that the forget term need not occur in (2). It is added

for sake of comparison. For instance, in causal reasoning, causal

connections do not passively decay away! So for sake of contrast let us

replace (1) and (2) with (3) and (4):

" xi  xj , (3)

4i i" i x (4)

Hence in (4) learning is governed by a natural correlation sign law: the

edge strengthens if the activations agree in sign and weakens or tends to be

inhibitory if they disagree in sign.

Which learning law is more accurate? Through personal communication,

we have found that many researchers pursuing this question answer it with a

natural, yet diplomatic, compromise:

eij " XiXj + i (5)

This model seems natural enough--just add first, and perhaps second, order

variables. Indeed it is natural, but we can now prove it is an unavoidable

restatement of (4).

Our argument focuses on the relatively noncontroversial model of

shortterm memory or Xi activation:



Xi = -a Xi  + epiS(X) +

p

= -a X i  + Oi  , (6)

where a > 0 is the shortterm memory decay constant (function), S is some

nondecreasing, usually sigmoid, signal function, and Oi represents other

terms. Then upon substitution of (6) into (4), we obtain the unambiguous

prediction that some Hebbian learning behavior occurs:

; - X1XJ

0 a2 Xi Xj + Oij, (7)

where Oij denotes other terms in the learning equation (that may or may not

be positive). Upon rearrangement and rescaling as necessary, we see that

(7) is in fact equivalent to (5).

Equation (7) summarizes a new synaptic theory. It predicts where and

to what extent Hebbian learning occurs and quantitatively suggests why a

strict Hebb low conflicts with neurophysiological data. For example, if a

regression analysis is performed on synaptic behavior, we expect the

explanatory contribution of the Hebb component to be negligible when the

behavior does not involve (much) passive decay. Since activation decay is

fundamental to both neural and causal processes, the Hebbian prediction of

(7) is quite robust. It even suggests where to search for on electro-



chemical mechanism for Hebbian behavior, namely in the interaction of two

resting-potential media along a conducting medium.

4. A New Fuzzy Integral and Expectation Operator. How can a function f be

* integrated over a fuzzy set A? Traditional fuzzy answers to this question

have produced noncomputable sup-min structures where the supremum is taken

over an uncountably infinite interval, usually [0, 1]. We find this

* , approach unfruitful for a variety reasons. Bart has developed an

alternative theory of integration.

We propose an abstract fuzzy integral defined in terms of the positive

measure Sigma-Count. The sigma count of a fuzzy set is simply the sum of

the fit values. For instance, Sigma-Count(.2 .5 1 .8) - 2.3; hence fuzzy

cardinality can be a real number, not just an integer. Though it is beyond

the scope of this R&D Status Report, we define the fuzzy integral of f over

A to be a sum of products--the product of fi with the Sigma-Count of A

intersected with all the points x such that f(x) = fi"

We define the fuzzy expectation of f with respect to A as simply the

sum of the products f(x) mA(x) , where mA(x) is the degree of membership,

or fit value, of x in the subset A. The point is that, unlike the

probabilistic expectation, we do not require that Sigma-Count(A) = 1.

Our fundamental theorem is that this Sigma-Count fuzzy integral equals

this intutive fuzzy expectation operator! Besides the many theoretical



problem this solves, it makes a fuzzy integral easy to compute, often by

hand. For instance, suppose the domain X - (1, 2, 3, 4) and A is given as

before by A - (.2 .5 1 .8). Then if f is the squaring function, f(x) -

then EA(f) - .2 x 1 + .5 x 4 + 1 x 9 + .8 x 4 a 15.6.

This theory is presented in the paper, "Fuzzy Expectations," also in

preparation. EA. and hence the fuzzy integral equivalent to it, are

obviously trivial to optically implement.

5. Fuzzy Knowledge Combination Theory for Arbitrary Many Fuzzy Cognitive

Maps--Hidden Patterns. Bart developed a new theory for combining arbitrary

many fuzzy cognitive maps (FCMs) obtained from arbitrary many experts of

arbitrary credibility. These results are in the paper "Adaptive Cognitive

Processing," also in preparation

We limit the discussion to simple FCMs. These are fuzzy signed

digraphs. An edge eij from concept variable Ci to concept variable Cj has a

weight or degree of causal strength in the fuzzy causal interval [-1, 1].

ei = 0 indicates no causal connection. eii > 0 indicates that Ci causally

increases Cj; the larger eij, the more Ci increases C*. eii ( 0 indicates

that C i causally decreases Cj--Ci up implies Cj down, Ci down implies Cj up.

A FCM can be represented by the fuzzy relation or square matrix F, where fij

II " eij"

Suppose k-many experts represent their knowledge of some complex

situation in k-many FCMs Fi of different square dimensions. What have the

experts given us? How can we combine their knowledge? What can we do with

- q', e .A, . .'N *" , '%, . % A *1 . " . . . . ."% " ' .' .. ".. , q% '''N ,.4- A. ' . V 'N ' , , , J . .



it when we have combined it? Nontrivial answers to these questions follow

from a simple examination of fundamentals.

We observe that the complex situation represented can contain a mix of

factual and conceptual variables deeply interconnected through partial

causality. The factual variables might include agricultural exports or

enemy mortality. The conceptual variables might include stress, utility, or

love. What sorts of inferences do people draw from such entangled fuzzy

concepts? How do they conceptually compute? Surely they associate input

patterns with predicted or output patterns. Although some people can

articulate some of the serial causal paths in their inferences about complex

phenomena, most do not. Indeed, from an evolutionary point of view,

inference articulation is for less important than inference accuracy.

This suggests that we can perform simple yet interesting associative

inferences on FCMs. Indeed we observe that each Fi matrix has the bipolar

form that is so important for threshold-linear dynamics. So let us proceed

as follows. As a first approximation, let each concept node Ci be either on

or off (1 or 0) at any given time. The simplest rule for deciding whether

Ci fires is the threshold-linear rule: if the gated summed inputs to Ci

exceed 0, then C i turns on; else off. (Incidentally this threshold law,

unlike the BAM and Hopfield threshold laws, approximates the passive

exponential decay of causal activation.) In synchronous operation we

therefore have reduced FCM operations to vector operations:

Si+1 - F(Si)

| 1-



where Si is the binary FCM state vector at iteration i. Since each FC F i

is nonsymmetric, we expect to observe rich dynamical behavior in terms of

stable limit cycles. In this setting, however, limit cycles (generalized

fixed points) are quite welcome. They are temporal predictions, forecasts

of sequences of events. Since all the weights in each Fi are in [-1, 1], we

do not expect that any given F i will possess many stable limit cycles

relative to the number of nodes. In other words, the perceived regularity

of responses of the experts to what-if questions (state vectors) corresponds

to mapping the 2 n possible questions to no more than n answers..

The next problem is how to deal with the different nodescausal

concepts, the experts discuss. The ith expert includes ni nodes in his FCM

F i . In general the node sets Ni and Nj overlap, i.e., the experts tend to

discuss many of the some concepts in their causal explanations. We view

this in a simple way. We assume every expert discusses every node (all the

nodes in the union of N1, , N). However, many of these nodes art

effectively undiscussed because the expert believes they are not causally

connected to any other nodes.

In summary, we augment the FCM matrices Fi to include all the nodes

discussed by all the experts, nodes C1 , - - . , Cn. The rows and columns of

each augmented connection matrix Mi are suitably permuted to bring them into

mutual coincidence.

The knowledge combination procedure is now clear. The simplest way to

superimpose the fuzzy bipolar matrix memories Mi is to add them together

pointwise:

MU



M =M

This combination technique amounts to an intuitive voting scheme. If 50

experts say Ci causes (+1) Cj and 50 say Ci causally decreases (-1) Cj, then

the synthesized eij - mij a 0. In general mij reflects the

prepondenerance of excitatory over inhibitory connections, or inhibitory

over excitatory connections.

We then conjecture that M embodies certain hidden patterns. A hidden

pattern is a resonant or equilibrium state of the activated FCM M: P -

M(P), where P is a finite limit cycle. An intuitive interpretation of a

hidden pattern is that it is the consensus eventually reached by a round-

table discussion among experts. A topic or situation (state vector) is

proposed, then fairly soon a rough agreement is reached. The point is that

the final agreement may differ from the complete position of each expert.

It emerges from associative group interaction. Nor need the final consensus

be a unanimous opinion (fixed point). It can be agreed upon sequence or set

of conditions, or a clear-cut disagreement, all of which intuitively

correspond to a stable limit-cycle. The task is to decode the hidden

patterns in M's edges.

The basic quantitative relationship that governs the dynamical shape of

the hidden patterns of M is the inverse relationship between symmetry of M

and occurrence of limit cyles, The more symmetric M--the closer M to MT__

the fewer and the shorter the limit cycles among the hidden patterns.



Symmetry up, limit cycles down. For instance, if M - MT , a simple

unidirectional Lyapunov argument (discrete version of the Cohen-Grossberg

Theorem) shows that all hidden patterns are fixed vectors. The less

symmetric M is, the more complicated the feedback loops in M, and thus the

greater change of oscillation.

We now derive a rough estimate of the frequency and length of limit

cycles "hidden" in M. Fix the total number of nodes discussed by the k-many

experts at n but let k vary. The fewer experts there are discussing the

some concepts, the sparser each augmented FCM M i tends to be, and hence the

sparser M tends to be. But the sparser M is, the more M approximates a

symmetric matrix, since the more often mij - Mji - 0 tends to occur.

Similarly, the more experts there are relative to the number of concepts

discussed, the less sparse Mi tends to be and thus the less symmetric M

tends to be. A similar conclusion follows when k is fixed and n is varied.

Hence the dynamics of M ore driven by its symmetry; in turn the symmetry of

M is driven by the ratio k/n. Therefore if L denotes the expected

frequency/length of limit cycles, L can be approximated by

L k/n

Suppose now each expert i has a credibility weight w i in [0, 1]. How

do we form the weighted augment FCM matrices Miw? Since M is formed by

summing the M i matrices, the natural operation for "gating" the knowledge of

i by wi is simply to multiply the connections in M i by wi:



Hence if i is highly credible (wi is near 1), Mi will be relatively well

represented in M. If i is incredible (wi is near 0), M i will make little

contribution to M.

How do the weights w = (w1, , wk ) affect Lw, the limit cycle

behavior of Mw? Note that if all w i -1, then k = w, + . . - + wk - W,

where W denotes the sum of weights. Otherwise, k > W. On average, the

smaller W is relative to k, the smaller each w i tends to be; hence, the

smaller the edges in M tend to be; hence, the closer MYTis to M; hence, the

more symmetric M tends to be. So, generalizing the above estimate for L, we

can approximate Lw by

Lw W/n

6. BAM Simulation and Demonstration. Robert Sasseen successfully

demonstrated both unidirectional and bidirectional bivalent associative

memories on VERAC's Texas Instruments Explore AI Workstation. This graphics

intensive software is written in the object-oriented programming language

FLAVORS, which seems especially appropriate, as well commodius, for

representing network behavior. We mention that Robert has developed several

other Explorer simulations of much more complex network behavior. Currently

S% the utility of using FLAVORS to model networks on the Explorer is heavily

constrained by the Explorer's arithmetic processing capabilities. To
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relieve these constraints, VERAC's Adaptive Systems Group has entered an

agreement with TI to beta-test their new Odyssey Board (containing four TMS-

32020 DSP processors) on the Explorer. We have agreed to receive the

Odyssey Board in November 1986. We expect that this neural network

accelerator will greatly increase our ability to test new network theories

and hypotheses.

At the American Association for Artificial Intelligence (AAAI)

Conference in Philiadelphia in early August 1986, Robert successfully

demonstrated some of these simulations at the TI exhibit booth. The

responses were quite positive.

While at the AAAI conference in Philadelphia, Bart and Robert were

given a tour of Nabil Farhat's optics lab at the University of Pennsylvania.

The tour was thorough and courteous, and we have invited Nabil Farhat to

tour the VERAC-UCSD OCCAM facilities.

III. OCCAM AT UCSD

This section summarizes the results of the 1st Quarter OCCAM research

effort at UCSD's Optics Lab. The principle points are six: (1) recruitment

of project personnel, (2) design and simulation of a new form of all-optical

dynamical associative memory, (3) design and simulation of a translation,

rotation, and scale invariant optical preprocessor suitable for pattern
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recognition by associative memory, (4) design and systems for performingV.

optical minimum and maximum operations that are fundamental to

V, implementations of fuzzy logic/sets, (5) design and construction of an

associative memory demonstration computer board, and presentation of a

tutorial titled "Holographic Approach to Associative Memory."

1. Recruitment of OCCAM personnel. Assistant Professor Clark Guest directs

the OCCAM effort at UCSD. When OCCAM commenced, Clark had recruited three

Ph.D. candidate graduate students in the department of Electrical

Engineering and Computer Science (EECS) to participate in the project.

,* Those students are Myung Soo Kim, Robert Te Kolste, and Hedong Yang. Clark

personally grounded all three in associative memory and neural net

methodology through independent sutdy projects; they also successfully

completed Bart's Fuzzy Theory course.

2. New Optical Dynamical Neural Network. A new optical implementation of a

crossbar associative network with feedback, the type studied by Kohonen,

Amari, Grossberg, et al and made popular by Hopfield, has been designed and

simulated. The design uses the sigmoidal response of the Hughes Liquid

Crystal Light Valve (LCLV) device to implement the threshold neuron

processing elements.

The LCLV modulates light through a birefringent polarization conversion

that nominally yields a sine squared output intensity response to an

increasing input intensity. Proper electrical biasing ensures that the

''. "- ". " %"% " '. '-"%" .'% %- ," " % %" " % % % " 'N' % ". "A . " . .k.•" .A A " " - . "- "- .A " - * -



output saturates at the first peak of the sine squared curve, thereby

yielding the approximately sigmoidal response necessary for noise-

quenching/signal-enhancing processing element behavior.

The crossbar interconnection of nodes is achieved with an optical

matrix-vector multiplier designed around the LCLV, as shown in Figure 1

attached. The matrix of connection strengths is imaged onto the output side

of the 1CLV with linearly polarized light. A uniform beam with the

orthogonal polarization is also shown onto the side of the LCLV. Bipolar

connection weights are achieved through a comparison of the two beams.

Where the matrix image intensity exceeds the uniform beam intensity a

* .positive weight is coded; otherwise, a negative weight is coded.

The current system has several advantages over other electrooptical

implementation of feedback associative memories. Connection matrix weights

are entered as light intensity, an image on the face of a CRT will suffice.

Thus connection strengths can be readily changed according to any desired

adaptation algorithm. Bipolar connection weights are achieved without

requiring separate display elements of the positive and negative values.

4The LCLV intrinsically provides the nonlinear response of the neurons,

thereby eliminating the need for optical-to-electronic and electronic-to-

optical conversions on every iteration. The LCLV is a high resolution

device, and should eventually be able to support 500 or more neuron

elements.

A computer simulation of the system was coded in the programming

language C. The simulation incorporated not only the general feedback
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associative memory architecture, but the sine squared characterisic of the

LCLV, the dynamical time response of the LCLV, and the polarization encoding

of bipolar weights as well. Simulation results show that the LCLV feedback

asociative memory dependably converges to correct recall within a few

response times of the LCLV. Since in the 2nd Quarter of the OCCAM program

conergence was proved for the continuous version of the BAM, an LCLV

.* implemenation seems promising.

Based on these results, Hughes was approached and subsequently

consented to donate a LCLV to the OCCAM project. Characterization

measurements are currently being conducted on the device, and experimental

• -implementation of the feedback associative mpmory will begin soon.

3. Translation, Scale, and Rotation Invariant Optical Preprocessor for

Associative Memory. One task specified at the beginning of the OCCAM

program was the determination of operating systems for optical associative

memories. An important part of this task is the characterization of the

boundary between the associative memory and the support environment that

makes up its operating system. Specifically, we are currently studying the

interface of preprocessing and associative processing in the field of image

pattern recognition.

The first phase will be to use a traditional optical preprocessing

16 system to achieve translation, scale, and rotation invariant feature

extraction. The feature values will serve as inputs to an associative

m cmemory that will perform image classification. In the second phase,
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invariance operations will be incorporated into thie associative part of the

system, simplifying and eventually eliminating the optical preprocessor. A

comparison of the approaches will be made to determine which tasks are most

Aefficiently carried out through preprocessing and which tasks are

appropriate for associative systems.

4-- Pursuant to the first phase objective, an optical preprocessor capable

of translation, scale, and rotation invariant feature extraction has been

designed. This preprocessor is represented in Figure 2 attached.

Translation invariance is achieved in the first stage by taking the

magnitude (with the LCLV) of the two-dimensional optical Fourier transform

of the object. The processor second stage is a phase-coded matched filter

that uses circular harmonics as rotationally invariant features. Radial

moments rk, k = 1, 2, . . . , of the circular harmonics are taken. When the

scale of the input object is changed, all moments are scaled in a

- - predictable way. Use of an on-center off-surround competitive feature

detector will compensate for this feature scaling, thus permitting invariant

recognition.

The use of circular moments for scale and rotation invariant feature

extraction has been simulated with a computer model. The four alphabetic

4.. letters A, E, F, and R were used as input images. Twenty-five circular

moments have been calculated for each letter in a variety of scales and

rotations. The results demonstrate good intraclass recognition and

interclass discrimination. Currently, the method of mutual information is

- being used to select a smaller set of moments that will be used in the

'AL



planned otpical implementation. Simulation of associative memory

classification of detected features is also proceeding.

4. Optical Min and Max Fuzzy Operators. Optical implementations of fuzzy

logic and fuzzy cognitive maps (FCMs) is a key objective of the OCCAM

project. The operations of maximum and minimum play roles in fuzzy logic

computations, as discussed above in the section on FAMs, that are parallel

to the roles of addition and multiplication in matrix algebra. Many fuzzy

operations, e.g., the compositional rule of inference, can be cost as matrix

vector products with max and min substituting for sum and product. Optical

implementations of matrix vector multipliers are well known. Recent work in

OCCAM has identified optical implementations of the max and min operations

that can be incorporated into fuzzy logic processors.

There are two basic approaches to optical implementation of min and

max. The first is an indirect approach. An optical implementation of the

Boolean test (A > B) is performed bitwise parallel on two data pages. The

binary mask obtained from this operation is applied to data page A, the

complement of the mask is applied to page B. The two resulting images are

then combined, yielding an image with the bitwise maximum of data pages A

*b. and B. If the mask and its complement are interchanged, the bitwise minimum

is formed.

The second approach yields directly a bitwise max or min data page,

with the intermediate masking steps. It is based on the identifies



max(a, b) - (a + b + Ia - bl) 2

min(a, b) - (a + b - ja - bl) /2

which follow by checking the three cases a = b, a ( b, and a > b. An

optical implementation of this approach is shown in Figure 5. The system

uses coherent subtraction, and implements the absolute value operation with

an LCLV, which must be operated in the linear range of its response curve.

5. Associative Memory Demonstration Board. For eduational and

demonstration purposes, a neural net demonstrator device has been designed

and built. The device consists of a single board microcontroller and a

custom designed display board. The LED display can indicate pairs of input

and output vectors that have been associated in memory. A trial input

vector may be supplied by the user, and an output vector pattern is

generated. The microcontroller is fully programmable and many memorization

and recall algorithms can be implemented, included BAM and optimal linear

heteroassociators. THe board is currently being programmed, and the

hardware is being tested.

6. SPIE Tutorial. At the invitation of SPIE, Clark presented a half day

tutorial entitled "Holographic Approach to Associative Memory" on 17 August

1986. The tutorial was attended by ten people and well received. A copy of

the notes is attached to this R&D Status Report.



Finally, an optical volume holographic associative memory has been

designed, and analysis of its characteristics has begun. Other

implementations of associative memories in photorefractive crystals are

under investigation by other groups, but they make no use of phase encoding

of the associated beams. This is an important aspect of any system that

will fully use the storage capacity of volume phase holograms, and is the

current center of our attention. Experiments with association of phase

encoded beams in photorefractive crystals are planned.
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