Reliability of Complex Devices in Random Environments

E. CINLAR and S. OZEKICI

Interim

From ________ to ________

July, 1986

34

Reliability, multi-component devices, random environments, semimarkov processes.

The lifetimes of the components of a device depend on each other because of their joint dependence on the environmental conditions. We introduce intrinsic age processes, one for each component, to handle such dependence. The data required can be obtained by experiments under controlled laboratory conditions. The computations needed for randomly varying conditions are recursive and can be used for making decisions regarding maintenance and replacement.
RELIABILITY OF COMPLEX DEVICES IN RANDOM ENVIRONMENTS*

by

E. ÇINLAR and S. ÖZEKİÇİ

Princeton University
Department of Civil Engineering
Princeton, New Jersey 08544

Engineering-Economic Series
Report EES-86-14
July, 1986

*Research was supported partially by AFOSR Grant 82-0189 to Northwestern University, while both authors were there.
Consider a device like a jet engine, which is composed of 100 to 150 components. Each component itself is made of many parts, but for purposes of repair and replacement the components are indivisible units. Reliability studies for such a device are made difficult by the complexity of the device and the changing environmental conditions it is subjected to.

The source of difficulty is the stochastic dependence of the components' lifetimes on each other. This dependence is largely caused by the fact that the same environmental conditions affect all components simultaneously.

Moreover, the environmental conditions in the field vary randomly over time and are different from the test environments used in laboratories. A paper by WINTERBOTTOM (1984) reviews some of the recent developments on this issue and highlights the difficulties involved.

In MASTRAN and SINGPURWALLA (1978) and SHAKE (1977) attempts are made to confront the problem by assuming that the lifetimes are "associated" or "positively dependent by mixture." In LINDLEY and SINGPURWALLA (1984), for the case of two components, the lifetimes are assumed to be conditionally independent given a certain parameter, which parameter is then randomized. Thus, the random parameter represents the effect of environment, which is construed to be unchanging over time.

*Research was supported partially by AFOSR Grant No. 82-0189 to Northwestern University, while both authors were there.
Explicit consideration of the environment as a stochastic process has been attempted in a number of papers. Most such papers take the model of ESARY, MARSHALL, and PROSCHAN (1973) as the starting point, and model the shock and wear "intensities" as randomly varying in response to environmental conditions; see A-HAMEED and PROSCHAN (1973), (1975), ČINLAR (1984) and FELDMAN (1976), (1977). These models are, however, for one component, and tend to be statistically intractable. The use of multi-components are discussed by ESARY and MARSHALL (1974), and very sophisticated models are introduced in ČINLAR (1977). The last paper models the environment as an abstract Markov process, lets the Markov process govern the intensities of shock and wear for each component, and view the deterioration levels of components as an n-dimensional process with conditionally independent increments given the intensity processes. However, the mathematical complexity and statistical intractability of this paper detract much from its usefulness.

In the present paper we introduce a relatively simple model. Environment process is explicitly considered, but its effect on the components is made deterministic. For this purpose, we introduce a concept, which we call intrinsic age, in order to relate the deterioration of a component under field conditions to the deterioration it would have experienced under laboratory conditions. The data required are the distribution functions $t \rightarrow F_k(x,t)$, one for each component k and each environmental state x, where $F_k(x,t)$ is the probability that the lifetime of the component k is at most t given that the environmental state remains fixed at x throughout.
We envision these distribution functions to be obtained, by statistical and engineering considerations, from test data in laboratory. Afterward, based on these and the probabilistic structure of the environment process, certain rules for maintenance and replacement decisions would be worked out by mathematical means. For the operating engineer who is to make those decisions daily, we provide simple schemes to compute the quantities needed for decision making. Although we shall develop the concept fully, it seems particularly useful if the number of environmental states can be kept small; for instance, for the jet engine alluded to above, it would be helpful if the environmental states were summarized as take-off, cruise, landing, and idleness, instead of the exact descriptions provided by temperatures, accelerations, vibrations, and so on.

The paper is organized as follows. In the first section, the basic idea is introduced in the simple case of one component and in a non-technical style. The basic model is described in the second section. Some reliability computations are discussed, in the final section, assuming that the environment evolves as a semimarkov process; these computations would be needed to determine optimal policies for maintenance and replacement, which issues are not touched in this paper. Finally, in the appendix a brief account is given of semimarkov processes and related results.
1. INTRINSIC AGE OF A COMPONENT

Our aim in this section is to introduce the basic idea in the simple case of one component and in a non-technical style.

Consider one component. Suppose that, throughout its lifetime, the environmental conditions remain fixed at x. Let $H(x,t)$ be the cumulative hazard function in t under this condition, that is, if the probability that the component's lifetime exceeds t is $1 - F(x,t)$, then

$$1 - F(x,t) = \exp(-H(x,t)), \quad t > 0.$$

Observe that this is also the probability that \hat{L} exceeds $H(x,t)$ where \hat{L} is an exponentially distributed random variable with mean one.

We view $H(x,t)$ as the intrinsic age of the component at time t given that the environmental state remains x throughout $[0,t]$ and that the component was new to start with. Then, \hat{L} may be thought as the intrinsic lifetime: when the intrinsic age reaches the intrinsic lifetime, the component fails.

Assuming that the distribution function $t \mapsto F(x,t)$ has a density, so does the increasing function $t \mapsto H(x,t)$, and the derivative of the latter is called the hazard rate function. In this case, it is profitable to introduce a new function, which we call the intrinsic ageing rate function, by

$$r(x,a) = \frac{d}{dt} H(x,t) \bigg|_{t=\tau(x,a)} , \quad a > 0 ,$$
where \(T(x,a) \) is the time at which the intrinsic age becomes \(a \):

\[
T(x,a) = \inf \{ t: H(x,t) > a \}.
\]

These relationships are pictured in Figure 1 below.

We come now to the main point. Suppose that the component is subject to varying environmental conditions. Our basic assumption is that, at any time \(t \), the rate (per unit time) of increase of intrinsic age is \(r(x,a) \) if the environment is in state \(x \) and the intrinsic age is \(a \), this being independent
of how the environment and intrinsic age have arrived at their present values \(x \) and \(a \). In other words, letting \(X_t \) and \(A_t \) denote the environmental state and intrinsic age respectively at time \(t \), we assume that

\[
(1.4) \quad dA_t = r(X_t, A_t) \, dt, \quad t > 0.
\]

Finally, as before, we assume that the intrinsic lifetime \(\hat{L} \) is a standard (mean one) exponential random variable independent of the environmental process \((X_t) \), and we model the lifetime \(L \) of the component as the time at which intrinsic age is about to exceed \(\hat{L} \):

\[
(1.5) \quad L = \inf \{t: A_t > \hat{L}\}.
\]

By the continuity of \(t \to A_t \) implicit in the main assumption, we indeed have \(\hat{L} = A_L \).

Next, we describe various implications of the model that (1.4) and (1.5) sets up. We do this in plain language, call the results "principles," and omit proofs. The first statement is a re-statement of (1.1) - (1.2): if \((A_t) \) satisfies (1.4) then \(r \) figuring in (1.4) is as described earlier by (1.1) - (1.2).

The remaining statements show the workings of the model in the simple case where the environmental process \((X_t) \) is piecewise constant. They suggest an easy updating scheme for the intrinsic age process, which would be used in practice for making decisions on when to do maintenance.
(1.6) IDENTIFICATION PRINCIPLE. Suppose that the component is new at the beginning and spends all its life in a fixed environmental state x. Let $t \rightarrow F(x,t)$ be the distribution function of the lifetime under this condition. Then, the intrinsic age of the component at time t is

$$A_t = H(x,t) = -\log[1 - F(x,t)].$$

(1.7) AGEING PRINCIPLE. Suppose that a mission is to start at time s and last t time units, and the environmental state is to remain x throughout the mission. If the intrinsic age at the start is $A_s = a$, then at the end it is

$$A_{s+t} = h(x,a,t) = H(x,T(x,a) + t).$$

(See Figure 2 below.) We call $h(x,a,t) - a$ the amount of ageing caused by the mission.

Figure 2. If the intrinsic age is a at the beginning, then it is $h(x,a,t)$ after t time units spent under condition x. Generally, $T(x,a)$ is not equal to the starting time s.
(1.8) ADDITIVITY PRINCIPLE. Suppose that a mission consists of n sub-missions causing a_1, \ldots, a_n amounts of ageing. Then, the amount of ageing caused by the mission is $a_1 + \ldots + a_n$.

(1.9) RELIABILITY PRINCIPLE. Suppose that a mission is to cause an amount a of ageing. Given that the component has not failed before the mission starts, its reliability in the mission is e^{-a}.

We illustrate these principles with an example. For simplicity, we consider a mission with two stages, during which the environmental states are x and y. Let $H(x,t)$ and $H(y,t)$ be given according to the identification principle (1.6). Initially, when the mission starts at time s, the component's intrinsic age is known to be a. The component spends t time units under the environmental state x and u time units under y. According to the ageing principle, then, its intrinsic age will be $b = h(x,a,t)$ at time $s+t$ and $c = h(y,b,u)$ at time $s+t+u$. See Figure 3 below. So, the mission is to cause $c-a$ amount of ageing, and the reliability is $e^{-(c-a)}$.

Figure 3. Starting with intrinsic age a, t time units spent under x makes it b and u time units spent under y makes it c.
As the example shows, the ageing principle is in fact an updating scheme assuming that the environmental state is known. In practice, as time flows, past history of the environmental process will become known and the intrinsic age can be computed by the principles here. The decisions regarding preventive maintenance and replacement would then be made on the basis of the computed intrinsic age. On the other hand, finding the optimal maintenance and/or replacement policies require computations of a different sort: then the future has to be taken into account, which requires a stochastic description of the environmental process (X_t). We shall take up computations of that kind in Section 3.
2. DEVICES WITH MANY COMPONENTS

In this section we describe the basic model for a device with many components.

Throughout, \((\Omega, \mathcal{A}, P)\) will be a complete probability space. We write \(\mathbb{R}_+\) for \([0, \infty)\). To save on notation, we do not introduce \(\sigma\)-algebras explicitly on \(\mathbb{R}_+\), and later, on other spaces.

Let \(E\) be a set equipped with a \(\sigma\)-algebra. Elements of \(E\) are called environmental states (or states, simply). Elements of the \(\sigma\)-algebra on \(E\) are called the measurable subsets of \(E\). We suppose that, for each state \(x\) in \(E\), the singleton \(\{x\}\) is measurable. We distinguish a point in \(E\), denote it by \(\delta\), and think of it as the state that causes no ageing (idle state for the device). We let \(X = (X_t)_{t \in \mathbb{R}_+}\) be a stochastic process with state space \(E\); it represents the environmental process. For the present, we leave its probability law unspecified.

We let \(K\) denote the collection of all components. It is a finite set, its elements are called components. For each \(k\) in \(K\), we let \(\hat{L}(k)\) be an exponentially distributed random variable with mean one; it stands for the intrinsic lifetime of the component \(k\). We assume that \(\hat{L}(k), k \in K\), are independent of each other and of the process \(X\).

We let \(F\) denote the collection of all positive vectors \(a = (a(k))_{k \in K}\), that is, \(F = \mathbb{R}_+^K\). Each \(a\) in \(F\) represents a vector of intrinsic ages of all components. We let \(A = (A_t)_{t \in \mathbb{R}_+}\) be an increasing continuous stochastic process taking values in \(F\); that is, for each component \(k\), \(t \to A_t(k)\) is increasing and continuous and takes values in \(\mathbb{R}_+\); it represents the intrinsic age process for component \(k\).
We define the lifetime of component k by

\begin{equation}
L(k) = \inf \{ t : A_t(k) > \Lambda(k) \},
\end{equation}

and let $L = (L(k))_{k \in K}$ be the vector of lifetimes. The following is the main assumption regarding the structure of A.

(2.2) HYPOTHESES. i) For each $k \in K$ there exists a positive measurable function r_k on $E \times F$ such that

\begin{equation}
dA_t(k) = r_k(X_t, A_t) dt, \quad t > 0.
\end{equation}

(ii) We have $r_k(x,a)$ strictly positive for each $k \in K$, $a \in F$, and $x \in E$ with $x \neq \delta$. For $x = \delta$, the idle state in E, we have $r_k(x,a) = 0$ for all $k \in K$ and $a \in F$.

The basic hypothesis is the first one: the intrinsic age process A is a deterministic functional of the environment process X. In particular, (2.3) implies that the rate of increase of the intrinsic age of component k at time t is a function of the identity of that component, the present state of the environment, and the present intrinsic ages of all the components. Hypothesis (ii) is a regularity condition that is meant to ensure that (2.3) has a unique solution; in particular, it singles out the state δ as the only state that causes no ageing.
A special case of interest is when \(r_k(x,a) \) depends on \(a \in F = \mathbb{R}_+^K \) only through \(a(k) \), that is,

\[
(2.4) \quad r_k(x,a) = \tilde{r}_k(x,a(k)) \quad \text{if} \quad a = (a(k))_{k \in K}.
\]

In this case, the intrinsic ages \(A_t(k), k \in K \), do not interact except through their common dependence on \(X \). Then, the results of the preceding section applies to each component separately. This case is important in applications because of its computational simplicity. But we do not assume this simpler case because it does not reduce the mathematical development appreciably.

In the further special case where \(r_k(x,a) \) is free of \(a \), say,

\[
(2.5) \quad r_k(x,a) = \tilde{r}_k(x),
\]

we have

\[
A_t(k) = A_0(k) + \int_0^t \tilde{r}_k(X_s) \, ds,
\]

and \(t \to A_t(k) \) is an additive functional of \(X \). This case has been studied in some depth, see PARKUS and BARGMAN (1970) and especially ČINLAR (1977) where this case occurs as a special case of a model different from the general one here.

In the special case, uninteresting from our present perspective, where \(r_k(x,a) \) is free of \(x \), the process \(A \) becomes deterministic. Since the intrinsic lifetimes \(\hat{L}(k) \) are independent of each other, in this case the lifetimes \(L(k) \) are also independent. Note that, though the lifetimes \(L(k) \) are
stochastically independent, this case does accommodate deterministic interactions between the intrinsic age processes.

Going back to the general case, we summarize our point of view once more. Every component is endowed with an intrinsic lifetime that is independent of everything else and has the exponential distribution with mean one. The distinguishing characteristics of a component k are summarized by the function $r_k(x,a)$, which is the response (the ageing rate) of k to the environmental state x at a time when the intrinsic ages of the components are $a(j)$, $j \in K$.

We shall think of A_t as a function defined on K and taking random values in \mathbb{R}_+; similarly, we think of elements $a \in F$ as functions defined on K and taking values in \mathbb{R}_+. We let $r(x,a)$ denote the function on K whose value at $k \in K$ is $r_k(x,a)$. For computational and display purposes, functions on K ought to be thought as column vectors. We let σ denote the counting measure on K, it can be thought as a row vector whose entries are all equal to one. Thus, for $a \in F$ we have

\begin{equation}
\sigma a = \sum_{k \in K} a(k).
\end{equation}
With these notational conventions, the basic hypothesis expressed by the differential equation (2.3) can be re-stated as

\[\frac{dA_t}{dt} = r(X_t, A_t) \quad t > 0. \]

Solution of this can be obtained by mimicking the one-dimensional (one component) case discussed in the preceding section. We describe a few details for the special case where the environment process \(X \) is piecewise constant.

For fixed \(x \in E \), let \(t \rightarrow h(x, a, t) \) denote the solution of

\[df(t) = r(x, f(t)) \, dt, \quad t > 0, \]

with the initial condition

\[f(0) = a. \]

In other words, the \(k \)-entry of column vector \(h(x, a, t) \) is the intrinsic age of component \(k \) at time \(s+t \) assuming that the environment remained in state \(x \) throughout \([s, s+t)\) and the intrinsic ages of the components at time \(s \) were \(a(j), \ j \in K \). In particular, for \(x = \delta \), we have

\[h(\delta, a, t) = a, \quad t > 0, \]

because of the assumption that \(r(\delta, a) = 0 \) for all \(a \).
Next, we describe the construction of the path $t \mapsto A_t$ as a functional of the trajectory $t \mapsto X_t$ in the simple and important case where $t \mapsto X_t$ is piecewise constant. Let $T_0 = 0$ and let T_1, T_2, \ldots be the successive jump times of X. By the term piecewise constant, we mean that $t \mapsto X_t$ is constant over each interval $[T_n, T_{n+1})$ and that the increasing sequence of times T_n approaches $+\infty$ as n goes to $+\infty$. We let Y_n be the value of X_t for $t \in [T_n, T_{n+1})$ for each integer $n \geq 0$, that is,

$$X_t = Y_n \quad \text{for} \quad T_n < t < T_{n+1}. \quad (2.11)$$

Given A_0, we first define the values B_n of A_t for $t = T_n$ recursively:

$$B_0 = A_0; \quad B_{n+1} = h(Y_n, B_n, T_{n+1} - T_n), \quad n \geq 0; \quad (2.12)$$

and then put

$$A_t = h(Y_n, B_n, t - T_n) \quad \text{for} \quad T_n \leq t < T_{n+1}. \quad (2.13)$$

This defines A_t for all $t \in \mathbb{R}_+$, and in view of the way h is defined as the solution to (2.8) and (2.9), the resulting path $t \mapsto A_t$ satisfies (2.7).
3. RELIABILITY CONSIDERATIONS

This section is devoted to various computations on the reliability of the device. These computations would be needed for purposes of decision making on maintenance and replacement studies.

Throughout, we assume that the environment process $X = (X_t)_{t \in \mathbb{R}_+}$ is a piecewise constant semimarkov process with state space E and semimarkov kernel Q. In other words, with the jump times T_n and the successive states Y_n defined as in (2.11), we assume that

$$(3.1) \quad P[Y_{n+1} \in C, T_{n+1} - T_n \in D | Y_0, \ldots, Y_n; T_0, \ldots, T_n] = Q(Y_n, C, D)$$

for every integer $n \geq 0$, measurable set $C \subseteq E$, and Borel set $D \subseteq \mathbb{R}_+$. For further information on the processes (X_t), (Y_n, T_n), and the semimarkov kernel Q we refer to the appendix. At this point, we should mention that, then, (Y_n) is a Markov chain with state space E and transition kernel

$$(3.2) \quad P(x, C) = Q(x, C, \mathbb{R}_+),$$

and that, given the Markov chain (Y_n), the successive sojourn durations $T_1 - T_0, T_2 - T_1, \ldots$ are conditionally independent, with the conditional distribution of $T_{n+1} - T_n$ depending on Y_n and Y_{n+1} only, but otherwise arbitrary. In the special case where the sojourn distributions are exponential and depend only on Y_n, that is, if
(3.3) \[Q(x,C,D) = P(x,C) \int_D \lambda(x)e^{-\lambda(x)t} \, dt, \]

then the semimarkov process \(X \) becomes Markov.

In general, the sequence \((Y_n, T_n) \) satisfying (3.1) is called a Markov renewal process with state space \(E \) (that the \(T_n \) take values in \(\mathbb{R}_+ \) is understood). Moreover, then, defining \(B_n = A_{T_n} \) as in (2.12), the sequence \(((Y_n, B_n), T_n) \) is again a Markov renewal process, the Markov chain \((Y_n, B_n) \) taking values in the space \(\hat{E} = E \times F \). In fact, in the computations to follow, it is \((Y_n, B_n, T_n) \) that plays the central role. Note that, even if we assumed \(E \) to be discrete, the space \(\hat{E} \) is not discrete and hence there is little to be gained mathematically by specializing \(E \) to be discrete (computations in practice are another matter). However, if \(E \) is discrete, the corresponding formulas can be obtained by replacing \(dy \) and \(dz \) below by \(y \) and \(z \) and changing the integrals over \(y \) and \(z \) to summations.

Recall that the lifetimes \(L(k) \), intrinsic lifetimes \(\hat{L}(k) \), and intrinsic ages \(A_t(k) \) define random functions \(L, \hat{L}, \) and \(A_t \) on the finite set \(K \) of components. Therefore, \(\hat{L} > A_t \) means that \(\hat{L}(k) > A_t(k) \) for all \(k \in K \), and \(L > t \) means that \(L(k) > t \) for all \(k \in K \). Also, recall that \(\sigma \) is the counting measure on \(K \) and acts as the summation operator as described by (2.6).

Finally, we introduce the following notations of convenience. We write \(I_D \) for the indicator function of \(D \), that is, \(I_D(x) \) is equal to 1 or 0 according as \(x \) is in \(D \) or not. We let

(3.4) \[H(x,a,t;C) = 1_C(h(x,a,t)) , \]
(3.5) \[q(x,t) = Q(x,E_{(t,\infty)}) = P[T_{n+1} - T_n > t | Y_n = x] \]

and, for all \(x \in E \) and \(a \in F \), we write

(3.6) \[P_{xa}[] = P[a_0 = a, L > a] \]

that is, the conditional probability measure given that environment starts in state \(x \), intrinsic ages at \(a(k) \), \(k \in E \), and all of the components are in working order.

Reliability in a mission of length \(t \)

By this we mean the probability that no component fails during \([0,t]\)
and that there can be no maintenance, repair, or replacement during \([0,t]\).

We compute this probability assuming that the time 0 coincides with a jump of environmental process and that the state \(x \) of the environment and the intrinsic ages \(a(k) \) of the components are known and it is further known that all components are in working order. Thus, what we want is

(3.7) \[P_{xa}[L > t] = P_{xa}[L > A_t] = E_{xa} \exp[-\sigma(A_t - a)] \]

in view of (2.1) and the memorylessness of the exponential variables \(L(k) \)
and their independence from each other and from \(X \) and \(A \).

To this end we use a renewal argument at the time \(T_1 \) of first jump for \(X \). If \(T_1 > t \), then \(A_t = h(x,a,t) = b \) and the probability that no failures occur is \(\exp[-\sigma(b-a)] \). If \(T_1 = s \leq t \), then \(A_s = h(x,a,s) = b \), probability
that no failures occur during \([0,s]\) is \(\exp[-\sigma(b-a)]\), and the future after \(s\) is a probabilistic replica of that at time 0 except that the initial variables now are \(y\) and \(b\), where \(y\) is the state that \(X\) jumps to at time \(s = T_1\). Thus,

\[
(3.8) \quad P_{xa}[L > t] = q(x,t) \exp[-\sigma(h(x,a,t) - a)] \\
+ \int_{E \times F \times [0,t]} Q(x,dy,ds) H(x,a,s; db) e^{-\sigma(b-a)} P_{yb}[L > t-s].
\]

We introduce a semimarkov kernel \(\hat{Q}\) on the space \(E \times F\) by, in differential form,

\[
(3.9) \quad \hat{Q}(x,a; dy,db; ds) = Q(x,dy,ds) H(x,a,s; db) e^{-\sigma(b-a)},
\]

where we removed the parentheses in the more correct notation \(Q((x,a),d(y,b),ds)\).

In the notation of Appendix, the equation (3.8) is a Markov renewal equation: letting \(f(x,a,t)\) denote the left side and \(g(x,a,t)\) the first term on the right, we have

\[
(3.10) \quad f = g + \hat{Q} \ast f.
\]

According to Proposition (A.14) of Appendix, (3.10) has a unique solution, \(f = \hat{R} \ast g\), where \(\hat{R}\) is the Markov renewal kernel corresponding to \(\hat{Q}\). Thus, the solution of (3.8) is

\[
(3.11) \quad P_{xa}[L > t] = \int_{E \times F \times [0,t]} \hat{R}(x,a; dy,db; ds) q(y,t-s) \exp[-\sigma(h(y,b,t-s) - b)].
\]
Perhaps the more important point here is that (3.8) has a unique solution. For, computing \(R \) requires solving equations of similar difficulty. However, an explicit solution like (3.11) is valuable for theoretical purposes and is useful to those who would seek optimal policies for maintenance. An envisioned use of (3.11) is mentioned in the next paragraph.

Failure before maintenance

At each time \(T_n \) of change of state for the environment, the new state \(Y_n \) and the intrinsic age vector \(B_n = A_{T_n} \) will be known through computations of the sort described in Section 1. We suppose that the times \(T_n \) would be the only times at which a maintenance action can be taken, and the decision maker would decide for maintenance by considering only the state \(Y_n \) and the vector \(B_n : \) if \(Y_n = y \) and \(B_n = b \), maintenance would be decided for if \((y, b) \) belongs to a certain set \(M \). In other words, the time of first maintenance would be

\[
T = \inf \{ T_n : (Y_n, B_n) \in M \},
\]

where \(M \) is a pre-specified measurable subset of \(E \times F \). The set \(M \) itself would be chosen in accordance with further studies considering costs, risks, etc. Of particular importance in such considerations would be probabilities like \(P_{xa}[L > t] \), which we just examined, and \(P_{xa}[L > T] \), which we shall compute next. For instance, if one or the other or some combination of these two numbers is "too low," then the point \((x, a)\) would belong to \(M \).
Thus, the probability we consider next, \(P_{xa}[L > T] \) is the probability that no failures occur before the maintenance time \(T \), given that \(X_0 = x \), \(A_0 = a \), and no failures occurred before the time taken as 0. We use a renewal argument at the time \(T_1 \) of first jump for \(X \), just as in the preceding computation. It yields, for \((x,a) \notin M\),

\[
(3.13) \quad P_{xa}[L > T] = \int_{E \times \mathbb{R}_+} Q(x,dy,ds) \, l_N(y,h(x,a,s)) \, \exp \left[-\sigma(h(x,a,s) - a) \right] \\
+ \int_{E \times F \times \mathbb{R}_+} Q(x,dy,ds) \, H(x,a,s; db) \, l_N(y,b) \, e^{-\sigma(b-a)} \, P_{yb}[L > T],
\]

where we put \(N = (E \times F) \setminus M \), the no-maintenance set. This is a linear equation of the form

\[
(3.14) \quad f(x,a) = g(x,a) + \int_{E \times F} \bar{P}(x,a; dy,db) \, f(y,b),
\]

and the sub-Markovian kernel \(\bar{P} \) is "highly defective":

\[
(3.15) \quad \bar{P}(x,a; E,F) < \int_{E \times \mathbb{R}_+} Q(x,dy,ds) \, l_N(y,h(x,a,s)) \leq Q(x,E,\mathbb{R}_+) = 1
\]

for \(x \neq \delta \), since \(h(x,a,s) = b > a \) for \(x \neq \delta \), and for \(x = \delta \), it is clear that the next state will differ from \(\delta \). It follows that (3.14) has a unique solution, of the form \(f = \bar{R} g \) in kernel-function notation, where \(\bar{R} \) is the potential kernel corresponding to \(\bar{P} \):

\[
(3.16) \quad \bar{R}(x,a; dy,db) = \sum_{n=0}^{\infty} \bar{P}^n(x,a; dy,db).
\]
Thus, the unique solution of (3.13) is

\[(3.17) \quad P_{xa}[L>T] = \int_{E \times F} \tilde{R}(x,a; dy,db) g(y,b) \]

\[= \int_{E \times F} \tilde{R}(x,a; dy,db) \int_{E \times I_+} Q(y,dz,ds) \cdot \]

\[l_n(z,h(z,b,s)) \exp[-\sigma(h(z,b,s) - b)] .\]

Again, as we remarked after (3.11), this computation shifts the real burden to the computation of \(\tilde{R}\). On the latter issue, we should note that, in view of (3.15), \(\bar{P}^n(x,a; E \times F)\) has a geometric tail in \(n\), and approximating \(\tilde{R}\) should be easy.

At the time of first failure or maintenance

Let \(T\) be the time of first maintenance as described earlier, by (3.12). Let \(S\) be \(T\) or the time of first failure (of some component), whichever is smaller:

\[(3.18) \quad S = T \wedge \inf_{k \in K} L(k) .\]

In this paragraph we are interested in the time \(S\) and the states of environment and intrinsic ages at the time \(S\). Our aim is to compute the following joint "distributions":
\[(3.19) \quad Q_M(x,a; D,B; t) = P_{xa}[\chi_S \in D, A_S \in B, S \leq t, S = T] \]

\[(3.20) \quad Q_k(x,a; D,B; t) = P_{xa}[\chi_S \in D, A_S \in B, S \leq t, S = L(k)] , \]

where \(D \) is a measurable subset of \(E \), \(B \) is a Borel subset of \(F = \mathbb{R}_+^k \), and \(t \in \mathbb{R}_+^k \). Of course,

\[(3.21) \quad Q_M(x,a; D,B; t) + \sum_{k \in K} Q_k(x,a; D,B; t) = P_{xa}[\chi_S \in D, A_S \in B, S \leq t] . \]

These distributions would be needed in studies concerning optimal maintenance and replacement and in figuring out system performance characteristics in the long run.

These computations are similar to the preceding ones. Letting \(N = (E \times F) \setminus M \), we introduce the semimarkov kernel \(\tilde{Q} \) by

\[(3.22) \quad \tilde{Q}(x,a; dy,db; ds) = Q(x,dy,ds) H(x,a,s; db) e^{-c(b-a)} 1_N(y,b) . \]

Then, using a Markov renewal argument at \(T_1 \) as before, for \((x,a) \in \mathcal{N}\),

\[(3.23) \quad Q_M(x,a; D,B; t) = \int_{D \times [0,t] } Q(x,dy,ds) \int_B H(x,a,s; db) e^{-c(b-a)} 1_M(y,b) \]

\[+ \int_{E \times F \times [0,t]} \tilde{Q}(x,a; dy,db; ds) Q_M(y,b; D,B; t-s) \]

and
For fixed D and B, each of these equations is a Markov renewal equation of the form $f = g + \tilde{Q} \ast f$. Therefore, by (A.14), each has a unique solution of the form $f = R \ast g$, where

\[
(3.25) \quad \tilde{R} = \sum_{n=0}^{\infty} \tilde{Q}^n
\]

is the Markov renewal kernel corresponding to \tilde{Q} and where $g(x,a,t)$ is the first term on the right of (3.23) or (3.24). So,

\[
(3.26) \quad Q_k(x,a; D,B; t) = \int_{E \times [0,t]} \tilde{R}(x,a; dy,db; ds) \cdot \int_{D \times [0,t-s]} Q_k(y,dz,du) \cdot \int_{B} H(y,b,u; dc) e^{-\sigma(c-b)} l_D(z,c)
\]

and

\[
(3.27) \quad Q_k(z,a; D,B; t) = \int_{E \times [0,t]} \tilde{R}(x,a; dy,db; ds) \int_{[0,t-s]} du \cdot q(y,u) l_D(y) \cdot \int_{B} H(y,b,u; dc) e^{-\sigma(c-b)} r_k(y,c).
\]
APPENDIX

This is a rapid account of notions we need from Markov renewal theory. We refer to GINLAR (1969) and (1975) for further details.

As before we write \(\mathbb{R}_+ \) for \([0, \infty) \) we let \(E \) be a measurable space (the \(\sigma \)-algebra of measurable subsets of \(E \) will be implicit). In applications, \(E \) is sometimes the environmental state space \(E \) and sometimes the space \(\hat{E} = E \times F \).

A semimarkov kernel on \(E \) is a family of numbers \(Q(x, C) \) in \([0,1]\), defined for each \(x \in E \) and each measurable subset \(C \) of \(E \times \mathbb{R}_+ \), such that

i) \(x \to Q(x, C) \) is a measurable function on \(E \), and

ii) \(C \to Q(x, C) \) is a measure on \(E \times \mathbb{R}_+ \) whose total mass is at most one.

When \(C = A \times B \) , a measurable rectangle, we write \(Q(x,A,B) \) instead of \(Q(x,A \times B) \). Similarly, for the measure element at \(y \in E \) and \(t \in \mathbb{R}_+ \) , we write \(Q(x,dy,dt) \) instead of \(Q(x,d(y,t)) \).

Given a semimarkov kernel \(Q \) on \(E \), its iterates \(Q^n \) are defined recursively via

\[
Q^0(x,A,B) = \begin{cases}
1 & \text{if } x \in A \text{ and } 0 \in B, \\
0 & \text{otherwise},
\end{cases}
\]

\[
Q^{n+1}(x,A,B) = \int_{E \times \mathbb{R}_+} Q(x,dy,dt) Q^n(y,A,B-t), \quad n \geq 0,
\]
where \(B - t = \{ s - t : s \in B \} \). With these we define a kernel \(R \) by

\[
(A.3) \quad R(x, A, B) = \sum_{n=0}^{\infty} Q^n(x, A, B)
\]

called the Markov renewal kernel corresponding to the kernel \(Q \), which plays the same role in Markov renewal theory as the renewal function does in renewal theory.

Let \(Q \) be a semimarkov kernel on \(E \) and suppose that it is not defective, that is, \(Q(x, E, \mathbb{R}_+) = 1 \) for all \(x \). A Markov renewal process with semimarkov kernel \(Q \) is a discrete parameter process \((Y_n, T_n)\) taking values in \(E \times \mathbb{R}_+ \) such that

\[
(A.4) \quad P[Y_{n+1} \in A, T_{n+1} \in B | Y_0, \ldots, Y_n; T_0, \ldots, T_n] = Q(Y_n, A, B)
\]

for all integers \(n \geq 0 \), all measurable \(A \subset E \), and all Borel \(B \subset \mathbb{R}_+ \). Then, \((Y_n)\) is a Markov chain with state space \(E \) and transition kernel

\[
(A.5) \quad P(x, A) = Q(x, A, \mathbb{R}_+) .
\]

Also, it is easy to see that

\[
(A.6) \quad Q^n(x, A, B) = P[Y_n \in A, T_n \in B | Y_0 = x, T_0 = 0] ,
\]

and that \(R(x, A, B) \) is the expected number of times \(Y_n \in A \) and \(T_n \in B \), assuming that \(Y_0 = x \) and \(T_0 = 0 \).
Associated with a Markov renewal process \((Y_n, T_n)\) with \(T_0 = 0\) and the added condition that

\[
\lim_{n} T_n = \infty,
\]

we define a continuous parameter process \((X_t)\) taking values in \(E\) by setting

\[
X_t = Y_n \quad \text{if} \quad T_n < t < T_{n+1}.
\]

Note that \(X\) is piecewise constant, its jumps occur at \(T_1, T_2, \ldots\), and the successive states it visits are \(Y_0, Y_1, \ldots\). Such a process \(X\) is called a semimarkov process with state space \(F\) and semimarkov kernel \(Q\).

In the applications here, we modeled the environment process \(X\) as a semimarkov process on the state space \(E\) with semimarkov kernel \(Q\). In this case, the conditions that \(Q(x, E, t, +) = 1\) for all \(x\) and that \(\lim T_n = +\infty\) are very natural. However, in subsequent computations, a number of other semimarkov kernels arose naturally but are defective: \(\hat{Q}\) defined by (3.9), \(Q_M\) defined by (3.19), \(Q_k\) defined by (3.20), and \(\hat{Q}\) defined by (3.22) are all semimarkov kernels on \(\hat{E} = E \times F\) and are all defective, that is, for instance, \(\hat{Q}(x,a; \hat{E}, +) \leq 1\) for most \(x\). We do not associate Markov renewal processes with such defective kernels.
Markov renewal equations

Markov renewal equations are generalizations of renewal equations. We put here the essentials in the general case and give a result that got used a number of times in Section 3.

Let Q be a semimarkov kernel on E; we do allow it to be defective, that is, $Q(x,E,E_+) < 1$ is possible. For a bounded measurable function f on $E \times E_+$, we define the function $Q*f$ on $E \times E_+$ by

\[(A.9)\quad Q*f(x,t) = \int_{E \times [0,t]} Q(x,dy,ds) f(y,t-s),\]

and define $Q*f$ and $R*f$ similarly (the latter is well-defined for f positive but may fail to exist for arbitrary bounded f).

Let f and g be bounded positive measurable functions on $E \times E_+$. Suppose that

\[(A.10)\quad f = g + Q*f.\]

This is called a Markov renewal equation. The following shows how to solve it (theoretically) and points out its strong resemblance to renewal equations.

\[(A.11)\quad \text{PROPOSITION. Suppose that } Q^n(x,E,[0,t]) \to 0 \text{ as } n \to \infty \text{ for all } x \in E \text{ and } t \in E_+. \text{ Let } f \text{ and } g \text{ be bounded positive measurable functions satisfying } (A.10). \text{ Then,}\]

\[(A.12)\quad f = R*g.\]
PROOF. We start by observing that \(Q^n * (Q * f) = Q * (Q^n * f) = Q^{n+1} * f \),
which follows from (A.9) and (A.2). Now, replacing \(f \) on the right side of
(A.10) by \(g + Q * f \), and repeating this operation, we obtain

\[
f = g + Q * f = (g + Q * g + Q^2 * g + \ldots + Q^n * g) + Q^{n+1} * f
\]

for any integer \(n \geq 1 \). In view of (A.3), the first term on the right increases
to \(R * g \), and we see that

\[
(A.13) \quad f = R * g + \lim_{n \to \infty} Q^{n+1} * f.
\]

Fix \(x \in E \) and \(t \in \mathbb{R}_+ \), and let \(f \) be bounded by the number \(b \). Then,

\[
Q^n * f(x,t) = \int_{\text{Ex}[0,t]} Q^n(x,dy,ds) \, f(y,t-s)
\leq b \int_{\text{Ex}[0,t]} Q^n(x,dy,ds) = b \, Q^n(x,E,\{0,t\}),
\]

which approaches zero as \(n \to \infty \) by hypothesis. Thus, \(\lim Q^n * f = 0 \) and in
view of (A.13) the proof is complete.

The condition of the preceding proposition, namely, that \(Q^n(x,E,\{0,t\}) \to 0 \)
as \(n \to \infty \), is difficult to check in practice, especially when \(Q \) is given by a
complicated expression as \(\hat{Q} \) and \(\tilde{Q} \) are. The following simplifies the task
immensely. We state it in the form needed.
(A.14) PROPOSITION. Let \(\hat{Q} \) be a non-defective semimarkov kernel on \(E \) and suppose that the corresponding Markov renewal process \((Y_n, T_n)\) is such that
\[
\lim T_n = +\infty.
\]
Let \(\hat{Q} \) be a semimarkov kernel on \(\hat{E} = E \times F \) such that
\[
Q(x,a; dy, F; ds) > Q(x, dy, ds)
\]
for all \(x \in E, a \in F, y \in E, s \in \mathbb{R}_+ \). Then,
\[
\lim \hat{Q}^n(x, a; E, F; [0, t]) = 0.
\]
Therefore if \(f \) and \(g \) are bounded positive functions on \(E \times F \times \mathbb{R}_+ \) satisfying
\[
f = g + \hat{Q} \ast f,
\]
then \(f = \hat{R} \ast g \), where \(\hat{R} \) is the Markov renewal kernel corresponding to \(\hat{Q} \).

REMARK. The meaning of (A.15) is as follows: for any positive measurable function \(f \) on \(E \times \mathbb{R}_+ \), the integral of \(f \) with respect to the kernel on the left-side is less than or equal to the integral of \(f \) with respect to the kernel on the right.

PROOF. Suppose that we have shown that
\[
\hat{Q}^n(x, a; E, F; [0, t]) \leq Q^n(x, E, [0, t]).
\]
Then, since

\[Q^n(x, E, [0, t]) = P[T_n \leq t | Y_n = x], \]

and since \(T_n \to \infty \) as \(n \to \infty \) by hypothesis, we see that

\[\lim_{n \to \infty} Q^n(x, E, [0, t]) = 0, \]

which in turn implies (A.16) via (A.17). The last statement of the proposition is now a restatement of Proposition (A.11), with \(\hat{Q} \) replacing \(Q \).

To complete the proof, then, we need to show (A.17). We do this by induction on \(n \). For \(n = 1 \), (A.17) is immediate from the condition (A.15).

Suppose (A.17) holds for \(n \). Then,

\[\hat{Q}^{n+1}(x, a; E, F; [0, t]) = \]

\[= \int_{E \times F \times [0, t]} \hat{Q}(x, a; dy, db; ds) \hat{Q}^n(y, b; E, F; [0, t-s]) \]

\[\leq \int_{E \times [0, t]} \hat{Q}(x, a; dy, db; ds) Q^n(y, E, [0, t-s]) \]

\[\leq \int_{E \times [0, t]} \hat{Q}(x, a; dy, F; ds) Q^n(y, E, [0, t-s]) \leq \]

\[\leq \int_{E \times [0, t]} Q(x, dy, ds) Q^n(y, E, [0, t]) = Q^{n+1}(x, E, [0, t]) . \]
Here, the first inequality is justified by the induction hypothesis, and the last inequality by the condition (A.15). So, (A.17) holds for $n + 1$ as well, and this completes the proof.

We remark that all the conditions of the preceding proposition hold when \hat{Q} is the semimarkov kernel associated with the environment process and \hat{Q} is either the \hat{Q} of (3.9) or the \hat{Q} of (3.22).
REFERENCES

E. ÇINLAR
Department of Civil Engineering
Princeton University
Princeton, New Jersey 08544
U.S.A.

S. ÖZEKİÇİ
Department of Industrial Engineering
Bosphorus University
Bebek, Istanbul
TURKEY
END
1-87
DTLC