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APPENDIX A

Minimal Root Sensitivity in Linear Svstems
(IFAC Workshop for Applications of Nonlinear Programming and Optimal

Control, June 20-22, 1983, San Francisco.)

Robert E. Skeltonand David A. Wagie
Purdue University

School of Aeronautics & Astronautics
West Lafayette, Indiana 47907

Abstract
A lower bound is derived for root sensitivity and an explicit cri-
teria for achieving this minimum is given. Secondly, an optimal output

feechack control problem is discussed which penalizes an index related -

to root sensitivity.
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" 1.0 Introduction '

R The modal data for physical systems is rarely well known. This can

o . .
3; make stability predictions unreliable in feedback control problems and
. can make the behavior far from the analytical predictions. This paper
f: documents the smallest possible sensitivity of eigenvalues Ay with respect
L)
g to the independent plant parameters in linear systems of the form
W
.’
) s n
R x = Ax , xeR - (1)
: a-k,i
That is, the norm of . and the lower bound of its norm are of
i interest. Secondly, a metric related to root sensitivity is added to the optimal
Y
k output feedback problem to achieve a compromise between performance and
Y
K root sensitivity. .
3 The norm of a matrix shall be denoted by
. : IC- ]IIQ tr [-1%00-1, tr [-] 2 trace [-] (2)
9!
‘e and the norm of a vector shall be denoted by
; .
: HCIE = ) at) (3)
g where * denotes complex conjugate transpose. Results herein are limited
2 to the case of distinct eigenvalues for A.
; 2.0 The Construction of a Root Sensitivity Metric

The sensitivity of the ith eigenvalue axi/aA is a nxn matrix denoted

A
by S; = 32;/3A. The norm of S, from (3) is

ol

IsgB2erspas, = 1§ o[t et ) s
i P a=1 =1 A, row *Agrow QiaB )

i

‘_'-J‘ Ny
()

LhA4TEE A it

S0 ]:Ipf., " .'0’ o n;‘\.|. &



PLIAS LIS

N

i

A3

A
where Aurow = (Au]o

Q; is to be chosen larger than Qj if root shifts in A are of greater

...s A_), and Q1 = Q.T > 0. The weighting matrix
a, i

concern than roots shifts in Aj. Within the matrix 01’ the weight Q1
aa

th

is to be chosen larger than Qi if the parameters of the a " row of A

(these are associated with ia in (1)) are more uncertain than those of

the Bth

row of A. (Hence, a logical choice for Q1 is a value propor-
ax
tional to the variance of parameters Aarow)‘ Finally, the complete root

sensitivity metric of interest is
s = Is;llg. 2 (Evwl (5)
by Billg, L Wl

Thus, from the point of view of robustness, a system design with a large
value of s might be considered less desirable than a system design with a

small value of s.

3.0 Computation of the Root Sensitivity Metric
It is assumed that A has a linearly independent set of eigenvectors
€1
Ae{—= € Ay i=1, ..., n- (6)-
The reciprocal basis vectors %, are defined by

g
A : A -] * _
E = [e-'. L Y en] » 2. = E 'Y hence !‘i Ej = Gij (7)
n .

%*
Multiplying (6) from the left by £, » using (7), yields the eigenvalues

in terms of A, its eigenvectors, and its reciprocal basis vectors,

*
A =2y Aey . (8)
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Differentiation of the scalar (8) with respect to A provides the required
K sensitivity aa;/3A. To derive this result two identities from linear

algebra are required

)
‘ tr AB = tr BA (9)
)
[}

35 (tr AB) = 25 (tr BA) = 87 (10)

: where (9), (10) hold for real or complex matrices B and A, and (10) holds if

and only if the elements of A are independent. Hence from (8), using (9), (10),

C2
: = o ltr Aley 2,1 = (e, 2,V =57 (1)

where ~ denotes complex conjugate. The weighted norm (4) may now be -

b written

2 A * = = Ty* - Ty _ 2 2
R “Si"Q‘l = tr s‘i Qis'i tr("iei ) Q‘i(li €y ) = "z‘i "Qi "ei" (12)

where the last equality requires use of identity (9) again, and where

heglld = 27085 o Nleglt? = e, (13)

One may note the similarity between (11) and the weak differential of A

! given by Eq. (6.2.3) of [1 ]. Also note the similarity between (12) and
. the wpper bound of the weak derivative of A provided on the top of p. 235

in [1 ]. This paper seeks lower bounds rather than the upper bounds of
[1]. Otherwise the nature of the results are similar (see theorem 6.2.4

of [1]).

Note also that without loss of generality eigenvectors e may always

.- -

be normalized to unit length. In which case (12) may be written

2 2 2
ISsllg = liegli flesll© =1 14
illg = lirgllg, » ey . (14)

;
L)
! - - - P -, R Iy .

I SR IT R Vuir W S S L S . R M R T M ML LN -_-:.'_. - \.‘. P Y T -_,'\- ..(- 2 TS DS w3
: .-‘r:;fl : .'::f“s-.' \""' \I‘.' ‘ ot T A ':"\"-‘.',‘&' -‘..' - \.\"'.‘." 5 - ) -‘ -' ) A'w - 'ﬁ > be? o AWy 'M\.- Ch S N &.i ?'0"‘




o AD
:;' Define by use of the Cholesky [1] decomposition of Q; = Q;.r %

,

¢ A

R Nt =g Y (15)
-

{33 Then (12) may be written

i)

W 2 2

u ISillg, = e lig Negll® = Uryl® liegl (16)
,l

The Schwartz inequality [1 ] holds for any two vectors Lis €

N : .

)

Wy *

'!. 1] eyl < gyl lley a7)
‘*; Since the particular vectors i;, e; are related by (8),

4

K * =

. 2, eg =1 (18?
: (17) and (18) lead immediately to

o3

_.

; leg Il legll >0 (19)
& From (15) note also that

3

: logeqll = lir i - (20)
0

M Hence,

1)

" | gy Il eIl > fivgll - | (20b)
Ri

,: Multiply (19) by IIQ_i” and use (20) to obtain

4 :

A

By Ul Negll Negll = Hrgll Negll > figyll (21)
=

Squaring both sides of (21), using the fact IIQ{”2 = 1:1'21'1i =tr Q, = |loyll

Teads to

- o lfedy
- & B

e l12 fegll? > floyll (22)
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. and, for the case Q # 0 (i=1,2,...,n), the minimm sensitivity

The equality in (19), and hence in (22), holds if and only if 25 and e, are

i
colinear (2i = ey for normalized e, ), [1]. From linear algebra [2], 2=,

if and only if A is normal (AA* = A*A). Thus, these results are summarized as
follows. '

Theorem 1

Let (Ai, e» zi) be the ‘ith eigenvalue, eigenvector and its reciprocal

basis vector associated with the real matrix A. If A has a Zinearly inde-

pendent set of eigenvectérs ess i=1, ..., n, then
T’ (23)
— > .
vhere the lower bound
3
ip2 _
I5 G, =ty

is achieved (for Q; # 0) if and only if AA* = A*A,

Corollary téiThéorem 1:
The gensitivity metric (5) is bounded from below by

n
2 1; l ‘Q‘i I ’ (24)

n
s 21 ”Q'l || 18 achieved if and only if A is normal (AA* = A*A).
i=

The corollary provides necessary and sufficient conditions for minimum

root sensitivity. The next section suggests a means to incorporate this

informati‘on into the output feedback control design problem-;.




-

IR

G ey Y

AR A RIS FOTIL KL S .
MRS SERTEF AR A RSt e

4.0 Output Feedback Design

‘It has been shown [ 3]-[ 5] that the necessary conditions for the

output feedback for the system

X = Ax + Bu + Dw E($)=o,

y = Cx e W), VT = [g 3] s (t-1)
zZ=Mx+v

u = Gz E(‘c&;) xT(o) =0,t>0 (25)

to minimize

v=timE(llyll2+ ulld) @62)
t Q R
300 bl
= tr P(cTqc + MTG'RGM) + tr VG'RG @6b) -
are
0 = K(A+BGM) + (A+BGM)TK + MTGTRGM + C'qC (27)
0 = p(A+BGM)T + (A+BGM)P + BGVG'B' + DWD' (28)
0 = RGMPMT + RGV + BTKPM' + BTKBGV + ¥ (29)
where ¢ = 0 for the standard measurement feedback problem in [3]-[5].

" Various suboptimal strategies for approximating the solution of (27)-(29)

may be found in the literature [4 ]-[5 ].
Parameter sensitivity has long been a concern in optimal control.
some authors [6 ]-[ 7 ] have suggested modifying the performance index

IIZ (where

(26a) by the addition of trajectory sensitivity terms fll%%;
Pys i=1, ... ,r represent the uncertain parameters). The resulting

computational burdens are very great indeed, since the dimension of the
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constraint (state) equations becomes n(1+r). There is also the fact
that minimizing output sensitivity does not necessarily keep root
sensitivity small. Hence, the concerns of stability in the presence
of parameter uncertainty are not addressed by trajectory sensitivity .
methods. In Section 3.0 we showed that root sensitivity is minimized
when A is normal. Motivated by Section 3.0, we note that some of the
shortcomings of the trajectory sensitivity methods are therefore ayoided
by minimizing an "abnormality" index relatedto root sensitivity. It has also
been shown [8] that the robustness bound for a certain class of parameter

errors is maximized when the plant matrix, A, is nomal.

Motivated, therefore, by Theorem 1 and [8] we pose a new performance

index for optimization that includes an “abnormality" penalty

v = Tim 1s(||y||("‘2 + [lullZ) + o [|(A+BaM) (A+BaM) - (A+BaM) T (A+aBM) || 2. (30)
o cQc

When 8 is much smaller than the norms of Q and R the solution tends toward

the standard optimal control result (27)-(29) with y = 0. On the other extreme,
when B is chosen much larger than the norms of Q and R, the closed-

loop system approaches the smallest possible root sensitivity. (From

Theorem 1 and its corollary note that root sensitivity is minimized if and

only if the latter term in (30) is zero. Other choices

of weights on the matrix norm may be chosen besides CTQC. This choice

is suggested only to make the sensitivfty weight CTQC the same as the
state weight in yTQy = T[CTQC]x.

Using the same matrix norm as in previous sections, and defining

A s A+BGM, V' becomes




[ ma e - ge go

T T

GRGM) + tr VG'RG +

v = tr P(CTQC + M

g tr[(AT - aTa)IcTacr(aaT - ATa) 3 (31)

The necessary conditions for the optimum G are obtained by augmeﬁting the
constraint equation (28) [which defines the P in (26) and (29)] to (31)
via Lagrange multiplier matrix K and differentiating the augmented V' with
respect to P, K, and G. The equations (27) - (29) result, with the fol-

lowing definition of y:
v & eBT((aaT - aTa)cTac + cTac(aaT - ATa)34

- AL(AT - ATa)cTae + cTac(aaT - aTa)1M? (32)
These results are summarized as follows:

Theorem 2
The necessary conditions for minimizing (30) subject to the comstraints

(25) are given by (27) - (29) and (32).

The following conclusion should also be clear, since foran arbitrary
A the matrix A+BGM can be made normal(by choice of G)only if rank B =

rank M = n.

Theorem 3

Suppose Q; = I, i =1, ..., nin (5). The minimum sensitivity s = n
can be guaranteed by output  feedback control for arbitrary A if and
only if rank B = rank M = n. PFurthermore, the control gain in this case

18 notunique. Two gains that provide minimum sensitivity are
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G = 5 lam! (33)
6 =8 AN (34)

Proof:

Substitute (33), (34) into the normality condition for minimum sensitivity

(A + BGM)(A + BGM)T - (A + BGM)T(A + BGM) = 0 (35)
to see that tbe condition (35) holds.

5.0 Application of Closed-Loop Root Sensitivity Design
Example 1:

The pitch motion of a rigid aircraft is governed by, [ 9],

Qe

-1/t 1l /e 0 -
= + ) (u+ w) (36)
W, Q

Le
]
L3
(=)
LD

where a is the angle of attack, q is the pitch rate, u is the elevator
angle, v is the 1lifting time constant, w, is the undamped pitch natural -
frequency, and Q is the elevator effectiveness. In the open-loop case,
(u+w)= 0, we are interested in the root sensitivity properties of (36).

Note from the corollary to Theorem 1 that minimum sensitivity

9 .
s =i£1||3T1-||2 = 2 is achfeved if and only if A is normal. Computing the

"abnormality" matrix (AA* - A*A) yields
T-w

4 1 2
AA* - A*A = o | ?(““’o ) |
1 2 4
w{1+e) I Gy =1

(37)

Thus, root sensitivity takes on its absolute minimum when mo='l. %=0.’

This, of course, is not a practical possibility for the aircraft. Now con-

sider the output feedback design of Section 4.
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Example 2: Let the angle of attack measurement be made z = atv where Ev = 0,
E[t)v(t)]= 6(t-t) describes the white measurement noise v and & = 0
Efw(t)w(t)] =6(t-1) describes the white actuator noise w. For the system (36)

design a measurement feedback control law for regulating u such that

1t

v = Vim (E(aZ+ou”) +p||(A+BGM) (A+BaM) - (A+BGM)T (A+BaM) || 2 3 (38)
c'c

is minimized. Assume 9 =1, Q =1, and C = [0, 1].

The solution is provided by (29), where P is obtained from (28),

T ] sz (G2+])

P = T 201-6) (39)
] —+ o “7(1-6)
T 0

and K is obtained from (27) (For this example R = p)

) %—[Gzpt-wozr(ﬁ-])] -1/2 o;
= ;40.
-1/2 &212*'] - mosz(G"])
] 21«:02(1-3)

For the aircraft example, (29) yields a fifth order equation in G as a
function of 8, 0s w°2 and ¢. For given values of ,, 8, w2 and ¢ this
equation will yield five candidate valﬁes of G; The optimal G is that
root that minimizes the cost function. In the present case G < 1 is
required for stability. If none of the real G are < 1, then analysis

of this problem shows that a decrease in B will drive G toward more



stable values. After changing B, the equation can then be solved
once again for G. This iteration is repeated until a stable (G < 1)
solution is achieved. (One may also increase p to seek stability,
although the direction of change of p required depends on Bg).
Assume m02=1, t=.7 (this corresponds to damping ratio = .71). Set
ting 8=0, p=1 yields the standard optimal measurement feedback control

G =-0.118 (41)
and setting p= =, p <« yjelds the optimally sensitive design

G=2.0 . (42)

This choice of G in (63) forces the closed-loop system matrix to -
be symmetric

"1/ 1 RV r
A + BGM = - ' - (a3)

-woz'huozG 0 ] 0 N

and by Theorem 1 and its corollary, the sensitivity is at its minimum in
this case. Note, however, that stability is lost by this minimum sensitivity
design, (G < 1 is required for stability). Thus, minimally sensitive
designs might not be stable.
" Figures 1 and 2 show the tradeoff between output performance
v 2 1im E||,y||2 versus the control effort V 2 tim E||u||2 (Fig.1)
Y e Wi «Uy tow R
and abnormality of A = (A+BGM), V, = || AA -A A "cTQC’ versus the control
effort (Fig.2). For both figures wg =1, v=.7, 8 and p vary. In the stan-
dard output feedback design (8=0), the output performance is improved with

an increase in control effort (Fig. 1) whereas the abnormality index greatly

increases with control effort (Fig. 2 with g8 = 0). Note also that g > 2 is not
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desired, since larger values of 8 do not yield substantially larger
abnormality reductions (Fig. 2) but do accelerate the degradation of
the nominal output performance (Fig. 1).
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5.0 Conclusions

Explicit expressions for a scalar metric of root sensitivity is
given in temms of the left and right eigenvectors of the system, so that |
sensitivity of each eigenvalue with respect to the plant matrix may be
readily computed. A necessary and sufficient condition for minimum root
sensitivity is that the plant matrix of the state equations be normal.

However, root sensitivity alone is not a sufficient design goal.
Thus, an “"abnomality" term is added to the traditional quadratic per-
formance metric of optimal control. The necessary conditions are given
for the solution of this problem and an example gives some practical
insights.

The weaknesses in these results include the fact that the necessary
and sufficient condition (normality).fbr minimal root sensitivity are
only local results and also that they apply only for non-defective plant

matrices (A has linearly independent eigenvectors).
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? ABSTRACT
.: The weighting matrices in the standard Linear Quadratic Gaussian (LQG)
. theory are most often used to achieve pole assignment. Instead, this paper

proposes to select these weighting matrices to achieve RMS bounds on inputs

& and outputs.

y 1.0 INTRODUCTION
One of the most frequent complaints about the application of the
standard Linear Quadratic Gaussian (LQG) theory is the "arbitrariness" in

the choice of weights Q and R in the quadratic cost function
2 2
V=E lim (|lye) ||5 + [luCe)]]2) (1.1)
tow Q R

which is minimized subject to the constraints

X = Ax + Bu + Dw , xeR® , ueR® , weRP
y = Cx yeRk (system outputs) (1.2)

L
- zZ=Mx+ vV zeR™ (system measurements)

tw=0, Ev=0,

P E| ") [xT(to) wi(t), vT(t)] - [x 0 0

" w(t) 0 Ws(t-1) 0

, v(t) 0 0 vé(t-1)
1

e W>0, V>0

;

where w(t) and v(t) are zero-mean white noise processes with intensities
; W and V respectively, and E is the expectation operator and T denotes

b matrix transposition. In the literature, there have been two basic sug-
:1 gestions for the choice of Q, R.

: The first suggestion, made by Bryson [1], relates Q and R to the
input-output specifications oiz, uiz; vhere the desired values of the
response of the closed-loop system are

T ¥ A MK e g S S P N S
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yz(t) < 02 or (z—j;)z <
; 177 =" g ) =1
i
(1.3)
1 u, 2
o 2 2
K u (t) < or G—i) <1
g i -1 u -
i

i leading to Bryson's suggestion for the choices of Q and R
K.
o 2 2
W Q= 1/01 ’ R = 1/ul (1.4)
v T 2 Yy gyl
! 1/0k 1/
A
2

Hence with this choice of Q and R (1.1) becomes
Ve lim {Z Q (Eyi) + E R, (Eu)} (1.5)
. t4o =] j=1 i3
Ej 1t usually happens, however, that even though this choice of Q and R has
) some physical motivation the actual.yi(t), ui(t)Ado not satisfy the
; desired bounds (1.3). Purthermore, there is no theory available which )
]
s will show how to choose Q and R such that (1.3) is satisfied. Neither is
: there a method available which will guarantee satisfaction of (1.3) in the
4

mean squared sense
% Ey2(t) <o , 4=1, ..., k
) -1 (1.6)
) 2 2
: Euj(t).g Wy o j=1, ..., m
- The second basic suggestion about the choice of Q, R in the literature
, has been to choose Q and R to achieve a desired pole assignment in the

closed-loop system [21.[3]. 1n [4] a gradient technique adjusts the ele-
X ments of Q, R to maximize the singular values of selected return difference
% matrices which are related to stability margins and disturbance rejection.

There has been much more written about the pole assignment role for Q and
» R than about the time response assignment (1.3) or the variance assignment

(1.6). This is indeed curious since LQG is a theory steeped in the time-
domain and is directly concerned with the time responses y(t) and u(t).
One might even argue that it is a bit obtuse to use LQG theory to do pole

s e 8 X

assignment since there are more direct methods to assign poles which do

¥ not use the artifice of LQG theory, [s5].
This paper deals with the more natural use of LQG theory in the time-

¢ domain question relating to objective (1.6). The ideal goal is to find a
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RIRB D

linear dynamical feedback controller which satisfies the variance con-

straints (1.6). We shall alter this problem statement to make it more

tractable by using the steady approximation of the constraints (1.6)

2 \

1lim Eyi(t) 29

tax

(1.7)
2
1lim Eui(t)_i g

t >

Then, a penalty function approach (i.e. LQG theory) is employed to accommo-
date the constraints (1.7), in the manner (1.5) by proper choice of Qii’
and Rii' This formulation automatically satisfies the constraint for a

linear dynamical feedback controller, since the optimal LQG controller for
(1.5) employs the standard Kalman filter and state feedback control gains.

This will be called the
d

e N N NN TN N T RARARCES

i‘n.\-

Constrainfed Variance 1LQG Problem (LQG ) :

Find Qii and Rii in (1.5) so that (1.7) is satisfied, subject to -
(1.2).

The LQG problem does not have a solution for every set of require—
ments 0, (i-l, cees K), u , (J=1, ..., m). To see that ;ﬁis is true,
consider a single input-single output system. Hence, yeR (k=1), usRm(m-l).
The LQG theory promises an inverse relationship between output regulation
and control effort as the weighting R on control effort varies from 0 to
infinity, as depicted in Fig. 1.
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Clearly no sclution to the LQGCv problem exists for the problem imposed
by the values (ca, ua) but an infinite number of solutions exist for the
values (ob, ub).

The key to progress beyond the Bryson rule (1.4) is to provide a
relationship between the actual variances Eyi , Egi and the choices of
Q11 and Rii in (1.5). This step is provided in Section 2 and is based upon
the cost decomposition results of {6]. An iterative algorithm based upon
these results is given in Section 3. Section 4 applies the algorithm to a

Large Space Structure.

2.0 INPUT/OUTPUT COST ANALYSIS
Under the assumptions (2.1)

(A, B) , (A, D) stabilizable pairs

(2.1
(A, ) , (A, M) detectable pairs
the LQG problem (1.1) (1.2) has the solution [ ]
u=6x , G= -R I BTRx (2.2a)
KA + ATK - kBRIB'K + cTqc = 0 (2.2b)
x = (A+BG)x + F(z-Mx) , F = PMV (2.2¢)
PAT+aP - MV 1M + DWDT =~ 0 (2.24)
yielding the closed-loop regulator
% A BG 1 /x D 0] /w
.A = ~ +
x ™ A+BG-FM | X 0 F v
(2.3)
aly C 0 j X
y= = -
u 0 G | \x

System (2.3) is a linear system driven by white noise and with output
y. It has been established in [6] that such system outputs Yy satisfy a

"cost-decomposition" property

k+m 2 ]
ve I v = 1 Ellylly (2.4)
i=1 t-reo

where

2%
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(2.5)
t o
The calculation and study of the "output costs" Vy is called "Output Cost
Analysis" in [ 6 ]. We momentarily postpone the calculation of Vy
Now the choice Q = I in (2.5) leads to

A 1 .,3 2 2
VW = 14m = EC( y,) = lim E(y%) 4i=1, ..., k (2.6)
i e 2 ayi i £so0 i
T E(—-”-ﬂ- yj) = lim E(u? D, d=kt (2.7)
i :-»u
i=1, ..., m

and for Q = I, note that (2.4) becomes the unweighted cost V°

ve = 1im E(|ly||% + [lul]®) = Z v + { uj. (2.8)
tow i=] j=1 :

The system (2.3) evaluated according to (2.8) yields the following output
cost analysis, using the output cost formula given by Eq. (4.14) of [6].

W = 1in E(y%) = lle |[2 = ¢ Xe (2.9a)
17 e i illx 11

V¥ = 1in Eu?) = &2 I|b ||2 = R2 b K (2.9b)
: S i 1 Pl i1 71 4

where X and K satisfy

X = X4P . PAY + AP - PMV LMp + DWD! = O (2.10)
K=KXK , KA+ AK - KBR 'BTK + cTqC = 0 (2.11)

G = -R-lBTK, X(A+BG)T + (A+BG)TX + FVFT = 0 (2.12)
F = pMivt

These "output costs” V¥ and "input costs" VY provided by (2.9) show the
1 P 1 y

actual contributions of yy and u, as opposed to the desired contributions

o1 and 4.
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These results now allow a precise statement of the Q, R selection

problem. Note that the weights Q and R appear in the cost (1.1) which is

to be minimized to obtain the linear controller (2.2), but the weights

do not appear in the cost (2.6)-(2.8) used for evaluation of the controller.

Thus, using (2.9)-(2.12) the LQGcv problem reduces to

The LQGCv Problem:

Find Q, R such that

lle 12 < o2 (2.13a)
-2 2
R,y Mol < w (2.13b)

where X and K are given by (2.10)-(2.12).

3.0 AN ITERATIVE ALGORITHM FOR THE LQC,,, PROBLEM
The parameter optimization problem posed by (2.13) requires the
simultaneous solution of (n2+n+2k+2m) algebraic equations. Gradient
schemes may be developed for such purposes. However, we wish to avoid
gradient schemes and the attendant numerical problems. Instead, we intro-
duce an iterative scheme for the selection of Qii’ Rii such that the
weighted output, input costs are constant. That is, if U{(k) denotes the

value of Vi on the kth iteration of Qii(k) and Rii(k)' then

Wikel) Qg (ktl) = VW (k) Q) for all k (3.1a)

and similarly
u
U;(k+1) Ry, (ktl) = V (1) R (k) for all k (3.1b)

Now tf these iterations converge to the maximum allowable values

(Vi(k+l)* Oi and Vz(k+1)* ui) on the (k+1)St iteration then (3.1) reduces

to
VY (k)
Qii (k+l) = 3 Qii(k) = ¢i(k) Qii(k) (3.2a)
%
Vi (k)
Rii(k+1) = ) Rii(k) = wi(k) Rii(k) (3.2b)
1

where ®(k) and y(k) are non-negative numbers [6]. Note that the
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constraint (1.7) is satisfied if ¢(k) < 1 and y(k) < 1. The proposed

algorithm for Q, R selection is now summarized.

The LQGcv Algorithm for Q, R Selection:

STEP I: Set k=0, guess an initial value for Q(0), R(0) and solve

T 1 T 1

PAT+AP - PMV 'MP + DWD' = 0, F = PMV™ (3.3)

STEP 1I: Compute V{(k), V?(k) and check for solution
Y1) e 2 = 72 2 3.4
Vi = llegllyy » V00 = R0 b Il (3.4)

where X(k), K(k) satisfy X(k) 2 ﬁ(k) + P, K(k) 4 K(k)i(k)K(k)
and K(k), X(k) satisfy

0 = K(K)A+ATK(K) - K(K)BR T(k)BTK(K) + ClQK)C (3.5)
0= i(k)[A+sc(k)]T + [A+BG(Kk) ] i(k) + FVFT (3.6)
c(k) = R I(K)BIR(K) (3:7)

) A
STEP III: 1f oi(k) =
(o]
i
1f v (k) 2 i
i 2
1

< 1 do not change Qii

> 1 do not change Rii

1f ¢i(k)> 1 change Qii according to
Q, (et) = & () Q,, (1) (3.8)
1f wi(k) < 1 change Rii according to

R, (kt1) =y, (k) R, (k) (3.9

i

Set k=k+1 in (3.4)-(3.7) and return to STEP II until ¢i(k)_§ 1
for all i=1, ... k and wi(k)> 1 for some i=1, ... m.

STEP 1IV: Change Qii according to (3.8). 1If wi(k)< 1 change Rii according
to (3.9). Jo to STEP II until lwi(k+1) - wi(k)lli e for

wi(k+1)> 1 (1.e. no more change in out of spec actuators).




There are many more choices for a Q and R algorithm other than the
a one posed above. To date, this algorithm has produced the best results.
However, there is currently no proof that failure of this algorithm to
converge means that a choice for Q and R does not exist. Research is
continuing in this area. The algorithm does, however, attempt to use the
"general" (Fig. 1) nature of LQG theory to its benefit. Specifically,
choosing to adjust the r,,'s for those actuators with w (k)-<1 using

ii

(3.2b), reduces ry and should serve to reduce E {y } and E, {u } for

actuators with wi(k)> 1. Using (3.2b) to adjust the rii s on actuators
) with w (k)> 1 does not have this double beneficial effect. 1In addition,
y once wi(k) < 1 for all i=1, ... k, using (3.2a) to adjust Qy will reduce

' qy which should serve to reduce E {u } for all i=1, ... m.

4,0 HOOP-COLUMN ANTENNA EXAMPLE
The LQGCv algorithm has been applied to a model for a hoop~column
- antenna which has 26 states, 39 measurements, 12 actuators, and 24 outputs.
R A detailed description of the model is presented in [6]. The initial
guesses for Q and R were appropriately sized identity matricies. Figures
K 2, 3, and 4 are plots of ¢i(k) and wi(k) and reflect 14 iterations of the
5 algorithm. The numbers appearing along the horizontal axis represent the
output or actuator number. The 14 points associated with each horizontal
3 number are the values of ¢i(k) or wi(x)‘for each iteration from 1 to 14.
As was expected, Figs. 2 and 3 show that the algorithm forced all outputs
| to be at or below their maximum values (i.e. 1 or below on the plot).

The fact that the algorithm tried but could not drive all outputs to their

-

maximum allowable oi is mathematically predictable but can not be discussed

at this time. It is, however directly related to the sensitivity of X

P gl 40 4™

to changes in 94°

-

Figure 4 indicates that E_ {u } for all actuators converged to levels
above ui, and the algoritim does not provide a solution. However, a
solution 1is obtained if ui is changed to the converged value of Ew{ui}.
As mentioned earlier, the failure of the LQch algorithm to converge has

- yet to be proven as sufficient for no choice of Q and R to exist.
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5.0 CONCLUSION

This paper has presented an algorithm for selecting the Q and R
weighting matrices so that the steady-state LQG regulator operates within
specified RMS bounds on the input and output variables. The algorithm
is iterative and requires the calculation of the steady state control
Ricatti equation and a steady state Lyapunov equation of dimension n ({.e.
# of states) at each iteration. This is a considerable computational .
savings when compared to the requirements of a standard parameter optimi-
zation gradient technique. Research is continuing to determine if failure
of the algorithm to converge to an appropriate Q and R is necessary and
sufficient condition for no choice of Q and R to exist. As pointed out
by the hoop-column example of Section 4, even when the algorithm does not
determine the required Q and R it provides the RMS regulator specifications
for which Q and R weights have been found.
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APPENDIX C C

GENERALIZATIONS OF COST-EQUIVALENT REALIZATIONS

Robert E. Skelton, Arthur E. Frazho,

Purdue University, School of Aeronautics and Astronautics

West Lafayette, Indiana

ABSTRACT

This paper bridges a gap between two known
results in model reduction theory. Cost Equiva-
lent Realizations [1] are known to match the
first two output covariances of the full-order
system, while we will define a Stochastically
Equivalent Realization as one that matches all
the output covariances [2). The purpose of this
paper is twofold. First, we describe methods
for obtaining the minimal realization that mat-
ches the first two output covariances; this rea-
lization is shown to be a Cost Equivalent Reali-
zation. Second, we describe a method for
obtaining a realization {not necessarily minimal)
which matches any specified number of output co-
variances; in the limit, we can therefore obtain
a Stochastically Equivalent Realization. In
addition, certain generalizations of Cost Equi-
valent Realizations are described which apply to
infinite dimensional systems,

I. INTRODUCTION

Assume y(n) 1s a stable stationary Gaussian
k-vector random process. The time marker n is an
integer in (-=, =). We may consider y(n) as a
vector of independent outputs (rank C = dim y(n))
generated by a state space realization of the form

xc('.'l
x(n+1) = Ax(n) + Bu(n) veR® (1)
~y(n) = cx(n) y ¢ R

where A, B, and C are matrices of the appropriate
dimension. Assume u(n) fs a stationary vector-
valued Gaussian white noise process such that

Efu(n) u*(5)] = (1] 6 4 (2)

where 1n is the m x m fdentity matrix, & is the
Xronecker Delta, and £ {s the expectation.

Define Rn as the Toeplitz covarfance matrix

Ro R]' PN Rn'
R R . R 4%
1 (1} -1
R 2o (3)
:n ...... Ro B
where
R, = Ely(n+3) y* (3)] (4)

It is always assumed that Ry > 0. -
Recall (for n > 0)
R, = CA" XC* where X & E[x(n) x*(n)] (5)

I: is well known that X solves the Lyapunov equa-
tion:

X = AXA* + BB* (5)

Finally, system (1), with state covariance X
will be denoted by (A, B, C, X).

We now define a “q-COVER" (q - COVariance
Equivalent Realization).

Definition: A state space realization of the form

x.(n+1) = A x (n) + B u(n) Xy € cP
¥Yp(n) = € x_(n) u ¢ R(7)
Ir € R

vhere u(n) is a white noise process with identity
covariance, is a q-COVER of %’I) if

Ely (n+d) y *(N] =R, fornc<q (8)

A minimal q-COVER {s a q-COVER whose state space
dimension p 1s minimal over the class of all qg-
COVERs satisfying (8). A minimal 1-COVER s rela-
tively easy to obtain and has been done via Compo-
nent Cost Analysis (CCA) [1]. A minimal «-COVER is
the minimal Stochastically Equivalent Realfzation
(SER). In general, however, the task of finding a
minimal q-COVER for 1 < q < » is sti1l an unsolved
partial realization problem [3]. The purpose of
this paper is to describe methods for obtaining the
minimal 1-COVER, and to show that ft {s the Cost

W WU W L.

(IEEE International Sympo-
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and David A. Wagfe Ma{ 2-4, 1983, Newport Beac
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Equivalent Realization (CER) in [1]. For complete-
ness we also describe a method for finding a gene-
ral g-COVER (not necessarily minimal) of ?1) for

1 <q<=This 1s essentially a generalization of

the CER.

We feel these methods are valuable for a num-
ber of reasons. First, they produce a CER much
faster than the method in [1]. Second, the
approach is much more general than previous methods
and can be applied to infinite-dimensional systems.
Third, a q-COVER {q > 1) will provide a more faith-
ful model than a CER. Finally, this problem is
really a special case of the more general Partial
Realization Problem.

I1. MINIMAL 1-COVER: DIRECT METHOD

In this section we obtain the minimal 1-COVER
for any system (A, B, C, X). Assume and Ry are
the first two output covariances of (A, B, C, X)
which we wish to match with a reduced system (A,
Bro Cpu Xp).

To begin, define C,. as the positive definite
squere root of R;. Using the fact that y* > 0,

=) -1
C 0 R. R, |{C.* 0 I A

r 4 o. 1 r '-1 - . r,o (9)
o ¢ Y[R Jlo &Y A1

where A, & C.7TR C,."]. It can easily be shown that
Equation (9) impiies that |ad] < 1 or, equiva-
lently, that (I - AAp*) > 0. We can therefore
define B as the positive square root of (I-ArA‘_').

We claim that (Ar, 8., C., Xp) is 2 minimal
1-COVER of (A, B, C, X). To show this, note that
Xyr = [, and therefore

Rop = CrCr® = Ry (10)
Ri = CobrCe = CrlC T RICTIG" = By

The system (Ap, Bpo Cp, I) is therefore a 1-COVER.
It is minimal because the state and output vectors
are of the same dimension. We can now restate the

above as

Trheoren 1: The syatem (Ap, By, Cp, 1) with parame-
ters defined by r
N L N L ER T R

(1)

r

is a minimal 1-COVER of (A, 8B, C, X).

Now consider a different minimal 1-COVER of
A, B, C, X) denoted %v *I. B, T, X). Since both
AE. Brs Cps 1) and (K, B, T, X) are minima}
1-COVERs of (A, 8, C, X) they must be of the same
order. We say that any two systems of the same
order are "equivalent” {f there exfists a nonsingu-
lar transformation P such that

G eTP A= P AP (12)

TwewwR'y 4 v LomEE
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and

E[y (n+3)y *(3)] = ELyr(n+J)y,*(4)] for all n,4
(13)

1f P is a unitary matrix, we say that (A., By, Cp,0)
and (K, B, T, X) are "unitarily equivalent”, r

Theorem 2: All minimal 1-COVERsS are squivalent.
Proof: (The proof is similar to well known argu-

ments in [4] concerning equivalent systems.
For completeness it is provided here.)

Assume that (A., By, Cp, I) and (K, B, T, X)
are both minimal 1-COVERs of (A, B, C, X}, We will
show that a nonsingular P exists to satisfy (12)
and (13).

Now, since (Ap, By, Cp, 1) 2nd (K, B, T, 1)
both have the same R, and Ry by hypothesis, using
(8) and the definition X = Eﬁ{n) x*(n)] ylelds

R, = CrCr* = TXC* R]-CrArCr' = CAXC*

(14)
Let P be the positive square root of X > 0. Then
the first equation in (14) yields
Neelf = (PTe2  ecet (s’
This implies that there exists a unitary operator U
on gk such that Cp* = U*P*T*. Hence C. = CPU. Let-

ting P = PU gives C, = TP, as required in the first
equation in ?12). sfnce. by hypothesis, R,;Rj-ﬁl.

C,ALC,* = TAXC* = TRPPST* =(C ™! JAPUU*F+T*
- C,p 7 EPpeTe = P TP, (16)
B B e T
Ely,(n)y,*(0)] = CrAr"Cr* = TPA"PT*
= TPA, P ppeTe
= TE" PPaT* = TATPUU*FT* = TA"PP*C*
= TA'KC* = ELy(n)¥*(0)] an

where n > 0. A similar argument holds for n < 0.
This completes the proof.

Remark 1. B8y Theorem 1, 1f X = [ then the operator
Fhin {12) 1s unitary. This follows from the proof
where

PPr e ¥ =1 (18)

Hence, (A, By, Cp, 1) and (K, B, T, Y) are untta-
rily equivalent. ’

Remark 2. Assume, as before, that Cp > 0. Follow-
ing [5] a random process y(n) is Markov if y(n)
admits a representation of the form such that

the dimension of x(n) equals the dimension of y(n).
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Theorem 2 shows that y(n) = y.(n) when y(n) is Mar-
kov. Notice the operator P in (12) does not inter-
twine the operators B, and B in (A, B, Cp, 1) and
(X, 8, T, This is not unusual for stochastic
systems [5].

Remark 3. Theorem 2 cannot be generalized for q-
TOVERs where q > 1.

III. MINIMAL 1-COVER: PROJECTION METHOD

Given an initial state space realization (A, B,
C. X), we wish to obtain a minimal 1-COVER directly
from {t. The approach in this section is equivalent
to the method in [1] of obtaining a Cost Equivalent
Realization of (A, B, C, X).

Consider a system (A, B, C, X). Without loss
of generality, assume X = In. (This can always be
done by defining a new state x = Px through the
appropriate transformation P.) Now define H as the
range space of C* by

H e RKC) (19)

where N+ denotes the nullspace perpendicular.
Define the following operators, A on H and Cy: H-RK

by
A ] Py Al

where P denotes the orthogonal projection onto the
subspacu H, and the symbol " |" means restricted to.

¢, & ciw (20)

Now define By as the positive square root of
(I - AjA1*). Note that By 1s well dafined since
the Lyapunov equation (6) with X; = I shows that
(1-AjAy*) > 0. Obviously, with y; & C1Xj, we have

Ro = CC*sCyCy* = E[yy(n)y;*(n)] (21)
Ry ® CAC*=CiA C)* = E[y;(n9 )y,’(n)] (22)

Therefore (A7, By, Cy, I) 1is a minimal 1-COVER of
(A, B, C, I). By Theorem 2, 1t is unitarily equiva-
lent to (A,, Bp, C., I) found in Section II.

We will now demonstrate this approach with the
following generic example:

Example:

Since every state space realization cam be put
into a ‘Generalized Hessenberg form [6), them trans-
formed to coordinates where XeI, we will assume,
with no loss of generality, a system of the form
(A, B, C, 1) where

M7 Az Mg Mg
aelf Az Age- A xef
0 Ay Ayy - - uc R (23)
0 0 Ay ye®
o 0 o .. oA

r Wt
‘5‘4;(._1‘._'._’-
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Cse [Ck 0. .... 0]

and B s the positive square root of I-AA* to satis-
fy (6), with X = [,

Now, using the projection approach in this
example yields

Hange((R" 0......0]e (24)
APy (AlH)oAyy  Ci=ClH=C, s,-o(I-A,A,')”z (25)
Obviously

Elyy (ndyy*(m)] = Ry Ely(n)yy*(m)] = R, (26)

The system (A]. By, Ci, I) of dimension k ‘is there-
fore a minima 'I-IIOVE& of (A, 8, C, I).

NOTE: The method used in Section Il only
required and Ry; no initial state space realiza-
tion was required to obtain a minimal 1-COVER. How-
ever, the projection method above (or equivalently
in {1]), requires an initial state space reslization
(A, B, C, X) to obtain the minimal 1-COVER. The
results are identical.

Now, compare the methods in Sections Il and III
assuming both start with an initfal state space
representation (A, B, C, X). The method in Section
Il for obtaining a minimal 1-COVER is much faster
than the projection method or, equivalently, that in
{1]. Both the projection method and [1] require the
original ath order system (A, B, C, X) to be trans-
formed to (A', B, C', I). Thif ?quins finding an
n-dimensfonal transformation X!/2 and its a-
dimensional inverse. The method fn Section Il allows
one to go immediately to the smaller k {output)-
dimens{onal space, in which one must then only com-
pute C, and its k-dimensional inverse. Since always
k < n, and in many cases k < < n, it is computation-
81Ty much faster to obtain a 1-COVER by the method
of Section I1 than by the projection method and [1].

IV. q-COVER BY PROJECTION

Given a system (A, 8, C, 1) we wish to construct
a realization (A,, By, C,. I) Of lower order that
matches up through tﬁe qth covariance of the origi-
nal system. This can be done in two different ways.
First, by using the results in (7] and elsewhere
with Ry ... Ry, One can obtain the well known maxi-
mal entropy realization of Ry, which is a q-COVER.
In fact, the 1-COVER is precisely the maximal entro-
py realization of Ry, Ry (i.e., the rest of the
Schur parameters are zero). The
other approach, which we wish to pursue here, is a
generalization of the projection approach used in
the previous section. We expect the more general
q-COVER obtained by projection to provide a better
reduced order realization of (A, B, C, I) than
e:ther the 1-COVER or the maximum entropy realfiza-
tion.

Consider a system (A, B, C, 1). Define the
subspace Hq. by 1
|
Hoe * "‘Qo Al (27)




e et e e e ek e A

where H, the range space of C*, {s defined in (19).
The subscript “qc” denotes that we are obtaining a
realization that matches up through the qth covari-
ance by defining M? as part of the "q-controllabi-
1ity" subspace of i. c-S’?

Now define the following operators, on H
and Coe: Ho =~ Rk by Aac ac
4 ¢
ch P“qc(llﬂqc) ) ch tlnqc

Noting that || Aqc li<|[A ]l <1, we can therefore
define

(28)

1/2
Bec § o1 - Agchoc®)

crac (29)
We claim that (Aqc, Bqcs Cqc, 1) is a realiza-
tion (not necessarily minimal) which matches up
through the qth covariance of (A, B, C, I). To see
this, consider the case q = 3. Using (6) with XeI
yields

Ry = cader (30)

Now, using the fact that Hy. € Hzc € H3.. and, from
(27) that

1 . -
AHC M. k=1,2,.. (31

we can see that
3 2
R, = CP, (A°C*) = CcP, AP, (A“C*)
37 THye H3e H3c
= CPM APH APH

3
AC* = C, A TC*, = (32)
3¢ M3 Hae 3c*3¢6"3c"R3e

Similarly, we can show that Ry = Rq, R}*Ri¢, Ro”Rge-
s

we therefore see that (A3c, B3., €3, X& is a
3-COVER for (A, B, C, I). For arb?irary q, the
proof is analogous.

We could have obtained a q-COVER by defining

b= Y aety EX)
%@ " o9 (33)
where Hon 15 part of the "g-observability" subspace

of (A,C]. We then would have used H,, in place of
e in (28). The resulting q-COVER {8qo. 8qo. Cqos
1) could be of either larger or smaller dimension

th‘" (Aan chn cqc. 1)-

To sssure that one obtains the smallest dimen-
sion q-COVER possible by this method (though not
necessarily minimal), one should take the q-COVER
(Aqcs Bgcs Cqce 1) obtained initially and use this
r-u?in%?cn !o project onto its “q-observability"
subspace. In other words, after obtaining (ch,
Bac: Cqco 1) we form

M q;‘ P (34)
qco 10 qc
We can then obtain
Aaco” ancochlnqco cqco'cqcmcu:o (35)
- 172
'qco +(1 - Aqt:o‘qct)')

Therefore (Agcqs Bacor Cqcor 1) 18 2 q-COVER for

C4

(A, B, C, I) of dimension less than or equal to the
gi::en:;on of both (Aqc, Bgcs Cqeo I) and (Agy, Bgq.
qos 1J.

The example in Section III can be easily exten-
ded to demonstrate this method. Due to lack of
space, however, we are not able to include that
demonstration in this paper. -

NOTE 1: If, at any time, we find

H(q*-'l)co * Hqco (37)
then, obviously Hqeg ® Heco. In particular, the
Cayley-Hamilton Theorem implies that once q > n,(37)
will automatically hold. When (37) does appTy, then
the q-COVER 1s an «-COVER, and {s therefore an SER,
For the smallest q satisfying (37), the applicable

(Aqco» Bqco» Cqcor 1) s a Minima) SER of R,.

NOTE 2: The maximal entropy approach will always
yield a q-COVER of order g, even when q > n, while
our approach often gives a lower order q-COVER.

Y. CONCLUSION

A q-COVER (q COVariance Equivalent Realization)
has been defined as a realjzalion that matches up .
through the Rq covariance of a system or process. ~
Twa methods have been developed for obtaining a mini-
mal 1-COVER. One only requires R, and Ry, while the
other requires an initfal state space representation
and is essentially equivalent to the Cost Equivalent
Realfzation method in [1]. Finally, a projection
method was described which can be used to obtain a
q-COVER when q = 2,3,...s, When q = =, the «COVER
is a Stochastically Equivalent Realization.

Acknowledgement: Portions of this work were spon-
sored by AFOSR Grant No. 82-0209.
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APPENDIX D

CONTROLLER REDUCTION BY COMPONENT COST ANALYSIS
(IEEE Trans. Auto. Control, to appear 1983)

A. Yousuff R.E. Skelton
Department of Aeronautics and Astronautics
Purdue University
West Lafayette, Indiana 47907

ABSTRACT

Component Cost Analysis [1] is used to develop a method for control-
ler reduction. The reduction of the controller is based upon the parti-
cipation of the controller states in the value of a quadratic performance
metric. The controller states which have the smallest contribution to ‘
the performance metric are truncated to produce the reduced controllers.
An error index is defined to evaluate the reduced controller compared

witﬂ;dptimal LQG controller, and bounds on this index are derived. A

numerical example is included to illustrate the procedure.
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I. INTRODUCTION
The straightforward application of Linear-Quadratic-Gaussian (LQG)

theory in practical applications is hindered by these limitations:

) (i) The plant model which is accurate enough to serve in the
evaluation of candidate controllers is often too complex
for direct LQG computations.(beyond "Riccati-solvable"
dimension).

(ii) A traditional approach to synthesize a controller of a
specified order is to first apply (one's favorite) model
reduction theory to obtain a low order model (compatible
with on-1ine controller hardware/software limitations),
and then to apply optimal control and estimation theory
to obtain a LQG controller which is optimal for the
reduced model. Howev;r, this optimization is based upon
a reduced order model which was guaranteed "close" to
the plant only in the open-loop. Since the control
inputs can drastically affect the behavior of the system
(and the quality of the reduced model), reliable model
reduction cannot be performed without some knowledge
of the inputs. But since the control inputs are yet
to be determined, this is tantamount to admitting that
the modeling problem and the control problem are not
independent problems, as was pointed out in [1b].

Component Cost Analysis (CCA) [1-3] was introduced as an attempt

to unify the model reduction and control design problems. In the

open-l1oop model reduction versions of the CCA theory, the state

dependent term in the quadratic performance measure (which is intended
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for use in later control design) is used in the model reduction decisions.
In this way, the modeling and control problems were "integrated" in [1-3].
In these references, the following LQG control design strategy is sug-
gested to obtain a controller of order Neo beginning with a model of

order n>>n ., where n is too large for solutions of Riccati equations.

Suboptimal LQG Design Strategy

(a) Apply open-loop CCA model reduction methods [1-3] to the
high-order evaluation model of order n. Reduce the order

from n to s where n_ is the "Riccati-solvable" dimension

r
of the local offline computer.
(b) Solve for the optimal LQG controller for this model of
order . This yields a controller of order n., where
Ne< < M.
(c) Apply controller reduction CCA methods to reduce the
controller from order n. to order Ne<np.-
It is emphasized that model reduction [step (a)] and controller-reduction
[step (c)] are different mathematical procedures.
The intended advantage of this strategy over the traditional approach

(ii) [which sets n_ = N and skips step (c¢)] is that more information

r
about the higher order system and its would-be optimal controller is
made available for the design of the reduced controller.

The purpose of this paper is to present a reliable controller
reduction scheme to accomplish step (c) for infinite time, stationary
LQG problems. This paper assumes that a reliable reduced model of

order n_ is available. We will denote this model, by S(nr). Let this

reduced model of order n. be
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b

A .

e X = Ax+Bu+Dw

N

| S(n): {y=Cx (1.1)
5 : Z = Mx+v

o

e n .

L where xeR r’ yeRk, ueR" and zeRQ. The disturbances WeRd and v:R2 are
;: assumed to be uncorrelated zero-mean white noise processes with inten-
¢§ sities W >0 and V>0 respectively, and under the standard assumptions
}_:
~ the matrix pairs {C,A} and {M,A} are observable and the matrix pairs
‘;Z (A,B} and {A,D} are controllable. The vector z is composed of the
443 measurements corrupted by the noise v. The vector v contains only
R, .

o the variables which are used to measure the performance of the system

N via a cost function V defined as follows
o A5,

Ly V= lim E{V(t)} (1.2a)
"W t_,o

fg where

K2 s 2 2

' vit) = lly(t)llg + llu(tdip (1.2b)
o The notation Hyllé denotes yTQy, and Q>0 and R> 0 are weighting matrices.
.F.

e E denotes the expectation operator.

.I':
- Step (b) of the Suboptimal LQG Design Strategy is to obtain the

~ optimal controller [which minimizes the cost function V, in (1.2)] for
,.\j
o (1.1). This controller, denoted by S_(n ), is given by [4].

o
s . .

X = Acx + Fz .
\; Sc(nr): ) s XeR (1.3a)

; u = Gx
\I
%

' where
o

e

_J‘

nl

&,

'—“

_.\

4

A
<l
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N A, 2 A+BG-PM , G = -R'BTK; F = PMIV (1.3b)
W

< KA+ATK - KBR™TBTK + ¢Tqc = 0 (1.3¢c)
S

N 1 T
Y PAT + AP - PMTVT'MP + DWD' = 0 (1.3d)
Ly :

o Since the controller (1.3) is of order n.>n_, a reduction of this
.

j? controller (1.3) to order N is now required. [Step (c) of the

]

o strategy].

-

) Past Approaches

N
:ﬂ Since the original version of this paper was submitted, Verriest

[5,6] has proposed to select a set of coordinates, named "LQG-balanced"

W

" coordinates, in which the Riccati solutions K and P of (1.3c) and (1.3d)
.%l
43 are 'balanced’' in the sense, K = P = I = diag {n], Tos wevs T }, and

Y r
’ to delete those n=ne controller states that have the smallest =S,

- yielding a reduced controller of order Ne These deleted states are

- interpreted as those states that are estimated with the least uncertainty
Y

) (measured by nj of P) and have the least contribution to a 'fictitious’ H
&

N cost function (measured by . of K). This 'fictitious' cost function
L is evaluated by asswning that all the plant states are available for

£

] feedback. But, when the plant states are not available, one could

'i: feedback only the estimates [which is precisely why an estimator (1.3a)
f'

is constructed], and the contribution of the states to the actual cost
function V may be quite different from mis @S can be seen from Eq. 11
of [6].

The work of Kosut [7] and Wenk and Knapp [8] should also be

mentioned since they also deal with closed-loop methods for controller

.. . . .
R R L Pt R NS RO
T - a
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simplification. However, since they treat parameter optimization
approaches, their work is along totally different lines than the
work herein.

We consider the contribution of these controller states to the
cost function (1.2), and delete those controller states having the
smallest contribution to the cost function (1.2). Hence the proposed

controller reduction algorithm follows the following three steps.

Controller-reduction-algorithm
1. Select a suitable basis for the controller. The contribution
of each of the controller states to the cost function (1.2)
is precisely measured by a metric called the 'component
cost', Vi(i); i=1, 2, ..., n,.. Compute the component costs.
2. Rank the controller states so that

vy (x) > Vy(x) > eee > unr(i) .

3. Delete the last n=ne states to obtain the reduced controller.

Of course, this algorithm is similar to the "CCA Model Reduction
Algorithm" given in [2], where plant-states x; are considered for
truncation, unlike the above controller-reduction algorithm where the
controller states ;i are the only candidates for truncation. Both
these algorithms use the basic concepts of Component Cost Analysis [1].

The organization of the paper is as follows. Section Il presents

some preliminary results pertaining to controller-reduction schemes to

aid in the evaluation of reduced controllers, and develops a 'controller-

error-index' for this purpose. The main contribution of this paper

is in Section IIl where the concepts of CCA are used to systematically
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ﬁ develop a set of coordinates to be used for controller reduction studies.
N
Q Reduced controllers obtained in this representation are evaluated with

respect to the performance of the system (1.1). A Solar Optical Telescope

is considered as a numerical example in Section IV to illustrate the

proposed method. A comparison of these controllers with those obtained
by the LQG-balanced method [5,6] is also made. The numerical scheme
for the computation of the above mentioned coordinates is presented in

Appendix A.

II. PRELIMINARIES TO CONTROLLER REDUCTION

Let the model S(nr) in (1.1) be partitioned as follows:

ART Xp B

]
+
=
+
X

X7 A A X By Dy

xﬁ?
y = [CR CT] (2.1)
X
LT
-
z = [My M1 R1 4y
| *7 ]

n
where stR ¢ and xTeRt, t+nc=nr, with all the matrices appropriately

dimensioned. The corresponding partitioned form of the controller Sc("r)

in (1.3a) is

A A X

R R

%R G R
x A A wl Tl ?
T L G T T

. (2.2)
u = [6g Gr) | .
X1
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where XpeR (note that, ACR = AR+BRGR-FRMR). Now augmenting (2.1)
and (2.2) together, the closed loop system can be written as
: % A A X )
RY . R RT R 4 |R{ ¢
Xy AR At X 7
(2.3)
pa
X
where
Ta& T r A
xp = [ RT Xy XRT] R xReR S
(2.4a)
A, V1, 420y, ']
A A Ap  Apr BRBp i Bplq
R RT ;
ATR AT A ATR AT BTGR E BTGT (2.4b)
L |
FoMo, F AL ' oA
Rl TR e 1 Mo
[]
F F A. LA
PR o A fep
—DR 07
Opla |Br O
R1s (2.4¢)
i 0 Fo
_0 FT_
and
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CR CT 0

A (2.4d)
g ¢rl=1|o o &

Now assume that a reduced controller of order Ne denoted by Sc(nc)

is obtained from (2.2) by deleting ;T’ to yield,

n
AcRp + FRZ s peR ¢

O .
i

Sc(nc): (2.5)

UR = GRD

The rest of this section devotes attention to the evaluation of this
controller by considering the value of the cost function (1.2) when
S(nr) of (2.1) is driven by (2.5). For the convenience of evaluation,

S(nr) and Sc(nc) are augmented to obtain

.
-

X

P - r
(2.6)
Yp = Creg
which results from the truncation of ir from (2.3),

where

“TA T TT
xR = [XR XT p ]

and

gRT = LyRTo uRIJ

It is easy to verify that {AR, DR, CR} satisfy the definitions in (2.4b,

c, d), and that the cost function for the evaluation of (2.6) is

Vp = Tim E(Vp(t)} (2.7a)
e
e I L I e D L e e e e e LT e ]
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L where
i A 2 2
:“" Valt) = ”)’R(t)nq + HUR(t)”R . (2.7b)
f The cost functions V and Vg are computed by (4]
:
™ v = Tr[c'9cx] (2.8a)
T

g Vg = TrlCp aCpXpl (2.8b) .
)

> with X and Xp satisfying

Rl
. . XAT + AX + owp' = 0 (2.92)
b T, T.

XpAp + ApXp + Dpiilp 0 A (2.9b)
e
where

7 TAp Aol I

A
& ad | RORT e R o2 e o]

% R “1
R~ AR A O

p (2.9¢)
&,

> AW 0 s Q@ O

% W= » Q =

0 [0 v |0 R
o ) _
e The following definitions and lemmas will prove useful in the

-,

; subsequent development of the controller reduction algorithm proposed
herein. (The associated proofs are given in Appendix B).
,. Definitions:
}’ 1. The Predicted Controller Index i(nr,nc) 18 defined by
fe I(n,n ) 23 (o-v) 2.1
' re! TV VR (2.10a)
ty
where

.1

o

T P A AN AT e f.'l..)'ﬂl:!.,**
........ ol g T Nl T Oy, Vv, In?, [ & » L an L

)\(;ru A

» » "

e R
Kttty
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]
\‘
* ~ A T.n 2 Tan v T
3 =
;: and where )ER and RRT are obtained from partitioning X ae
)
s» o
" S B
A X =
AT ~
g r %
‘ 2. The Controller Error Index I(nr.nc) 16 defined as
i .
. 81 .
; I(nr,nc) =7 (VR V) . (2.11)
o
4; In the definitions above, the arguments n. and n.
)

indicate the order of the plant and the controller

; > respectively.
<
2
X Lemma 1:
K. 1. The error indices f(nr,nc) and I("r’nc) satisfy the
: following
"
) . - - ~T
(1) 1(npn.) = - 3 (Trle;'QCrXp] + TrlcR'aCrXer D) (2.12a)
: (11) T(n_,n.) = HTr[C.T0C, (Xg-Kg)I-TrlC:T0CX.] - 2TRLCIACXor 1)
A pofie) = plTrlCp QCp(Xp=Xp T L% R TXRr
‘ (2.12b)
l where (XR-)A(R) satisfies
; - :
3 and where
s
3 A T, - T
! U= [AgrRpr + XprApr 1 . (2.12d)
.‘
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4
b
" (i11) maz {0, u(nc)xm(xR)-l} < I(nr.nc) < mazx {O.p(nc)xM(xR)-l}
k (2.132)
) where Am(') [AM(-)] denotes the minimum [maximm] eigen-
- value of the matrix (), and

A

u(ng) = 3 rlcglacy] (2.13b)
3 where the argument n. is used to denote the dependence
o of uonn,..
$
” 2. The predicted controller error index is exact I(nr,nc) =
: I(nr,nc), under any of the following conditions:

(i) necessary and sufficient condition .
R/
; TrCy 100, (Xp-Xp) J-TA{C 100K 1] = 0 (2.142)
y R LRRXR R 2Cr%gt .
\
|}
K (i1) sufficient conditions
; :
) a) xq is unobservable in u in S (n.) (2.14b)
\
L) ~
b) xy 18 uncontrollable from z in Sc(nr) (2.14c)

; ¢) Xor = 0 with A, stable (2.14d)

3. The controller error index I("r’"c) 18 zero under any of the

following conditions
i) necessary and sufficient condition

T - T .2 S SURES
Tr{CRACR(Xp-Xg)] = Tr{C{OCX ] - 2Tr{CR0CXpr] = 0

(2.15a)

11)  sufficient conditions
a) ;T 18 unobservable in U in Sc(nr) (2.15b)
b) xq is widisturbable from z in S (n ) (2.15¢)

-y Nt .. > My Mg R ™
al "',“:\ <fein $'\\ ‘\,-“‘\ W (]
b X Cl X0 Ao N bl Mg i) ¢

P
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III. CONTROLLER REDUCTION BY COMPONENT COST ANALYSIS

The idea of Component Cost Analysis (CCA), [1-3] is to determine
the significance of each 'component' (in this paper, these 'components'
are the individual controller states ;i) by assigning a metric, called
'component-cost', to each component. Then, a reduced order controller
is obtained by deleting those controller states that have the smallest
component costs. These ideas are extended to controller-reductions
as follows.

From the structure of C in (2.4d) and Q in (2.9¢c), and by

partitioning X as

><
>

Tim E{x(t)x (t)}
‘= . teo (3.1)

2 Yim Etx(t)x' (t)}
toe

—
n
><)
>
n

the expression for the cost functions V in (2.8a) can be rewritten as

v = Tr[cTQcx] + Tr[GTRGX] . (3.2)

We note that the 'Control Cost' (Tr[GTRGi]) may be decomposed into

contributions from each controiler state
-~ A -
vxn=%1m6{ﬂﬂlm} (3.3a)
! v

such that

>

TLRY 2 Toex "
V(x) = Vim EJju(t){lp = Tr[6'RGX] = {1 Vi(x) . (3.3b)
toe i=

The 'Regulation Cost' V(x) is the remaining term in (3.2)




014
"
&
b\ il
%ﬁ V(x) = 1im EHy(t)HS = Tr[CTQCX] (3.3c)
", Lt
"
o so that
2 -
o v=v(x) + V(x) . (3.3d)
19
b
3 As a passing remark we mention that when Sc("r) is optimal LQG-controller,
%' we have Xyp = X and X = P+i, with P satisfying (1.3d) and X satisfying
1
R [4]
& X(A+86)T + (A+BG)X + FVFT =0 . (3.3 )
s
igg It follows from the definition (3.3a) and the derivations in [2] that
- ) .
;& Vi(x) = [G RGX]ii ,» 1=1,2, ..., N, (3.4)
“( -~
4 According to the CCA theory the controller states X; associated with
it& the smallest values of Vi(;) are deleted from the controller.
[}
K \ Now, the optimal controller Sc("r) may not be minimal (in the
. sense of Kalman), even if the plant S(nr) is minimal [9]. This
s means that the sufficient conditions of lemma 1 may be satisfied and
ig hence, there may exist reduced order controllers which are still
K|
o ‘ optimal, i.e., I("r’"c) = 0 for Ne <Np- However, for brevity in the
;: presentation, it will be assumed henceforth that the controller
:% (1.2) is completely controllable. (Refer to [10] for extension of
>y
. this work to the general case). This assumption implies that the
ié condition (2.15¢) of lemma 1 will not be satisfied, but (2.15b) may
A
o~ still be satisfied.
£
24
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In the context of model reduction, a set of coordinates called
Cost Decoupled Coordinates was presented in [2]. These coordinates
cause the largest number of component costs Vi(x) to be zero. Appli-
cation of the CCA theory in these coordinates yields a reduced model
of order n. = rank [C] with the property that Vg =V . Hence such reduced
order models are called “"cost-equivalent realizations" [2]. Analogously,

we define Controller Cost Decoupled Coordinates as follows.

Definition 3. The Controller COst-DEcoupled (CODE) coordinates are
defined by the following properties:

-

(P1) X=1 (3.5a)
r
(P2) G'RG = diag {1;7, «++y Yo, 0, =+, 0}  (3.5b)
with ]
le 3_\22 > el 2 Y Z, o, (3.5¢)

A
where ry = rank[G] <m .

These CODE-coordinates are non unique as established by the follow-

ing proposition.

Proposition 1: Under the assumption of distinct Yiz, i=1, 2, ..» in

(3.5b), the CODE-coordinates are unique within a similarity transforma-

tion ; =T ;N’ of the form

r.xr
1
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. eR(nr-r'])x(n'_.-r'I)
2
18 any orthonormal matriz.
Proof: Since the covariance of the transformed coordinates is given

by

Tim E{iN(t)QL(t)} = lim T E{§(t)§{t)}T'T ,
Lt T

the matrix T must be orthonormal to satisfy (3.5a). The state weight-
ing matrix G'RG in the transformed coordinates is T'G'RGT, which should
satisfy (3.5b,c), i.e.

TT6TRGT = diag 0 5 ¥ 0 0}
1
(3.6a)
Now (3.5b,c) imply that
mXry
and
GIRG, = A (3.6c)
%6 = Ay '
where
A .
A s diag {Yf, Yg, - 731}.
Hence partitioning T (which must be orthonormal) as
T T
o
T ;
T21 TZ _

rewrite (3.6a) as
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T T T
T Ty GRG0 Ty Tip| A O (3.64)
]
T T T
T]2 T2 0 0 12] T2 0 0
Two of the equations resulting from (3.6¢c) are
T.7 _ LT _
Ti6RG T, = TN Ty = A (3.6e)
and
T .T |
T1561R6, Ty, = TioA Ty, = 0, (3.6f)

which can be satisfied if and only if T]2 =0, T

2 = (O, and T21 is as

defined in Proposition 1. #

Hence, there exists a considerable flexibility in the cost
decoupled coordinates: from the structure of the transformation in
proposition 1 and from (3.6b), notice that the CODE-coordinates are
not uniquely defined within the null space of G. This non uniqueness
will later be used to obtain a generalized Hessenberg representation
while remaining within the class of CODE-coordinates.

Now, in any CODE-coordinates, the controller has the following

property (in addition to property (3.5)).

Proposition 2: Any comtroller Sc("r) in CODE-coordinates satisfies

the following property in addition to (P1) and (P2)
2 .
Y; i<ry
0 i>r]

The proof follows immediately from the substitution of (3.5a) and

(3.5b) into (3.4). #

»
o OO



Proposition 3: The compoment costs associated with the cost decoupled

controller coordinates are minimally sensitive to perturbations in the
weighting matrix GTRG.
Proof: The proof relies on a result derived by Skelton and Wagie [12]

which is restated here.

Lemma 2 [11] Let A; be an eigenvalue of a matriz A. Then the sensiti-

vity of A; to perturbations in A, measured by

Y
= llsrll° s
where || ( )H Tr[ ) (-)], is bounded from below by S > 1 and S

takes on its minimum value $; = 1 if and only if the matrix A is

normal (i.e. Al = ATA).

Now note from proposition 1, that the component costs Ui(i) are

the eigenvalues of GTRG, i.e.,

vi(i) - Ai(GTRG) L i=1,2, ...,n. . (3.7)

Since GTRG is symetric (hence, it is normal), the proof follows from
lemma 2 and (3.7). #

The implications of proposition 3 is the following. Consider
the case when the controller state weighting matrix GTRG in the cost
function is subject to perturbation - this may happen, for example,
when the control weighting matrix R is changed. In this situation,
it is shown that the choice of the reduced controller is least sensi-

tive to these perturbations.

Note from Proposition 2, that all the controller components

X5 i >r, are candidates for truncation, since their corresponding
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component costs are zero. Hence, a reduced controller obtained by
truncating some of these zero cost states seems attractive. We will

now evaluate such a reduced controller, Sc(nc).

Theorem 1: The error indices f(nr,nc) and I(nr,nc) associated with the

reduced controllers S (n. > r]) obtained by truncating t = n.-n.

CODE-controller states from Sc(nr) satisfy the following

(i) f(nr, n) =0 ne > 1y (3.8)

(ii) If (2.6) is stable, then

2 T :
In., n) = g trlCp QCp(Xp-Xp)] » n_ 21y (3.9)
where (XR-RR) satisfies
T
(Xp-XplAg + Ap(Xp=Xp) - u(n ) = 0 (3.70a)

and where Ap, Cp and Q are as defined in (2.4), (2.9¢c) and

0 0 0
Uin) £ |0 0 (Apr-Frir) (3.10b)
0 (Agr-Fpi) 0

(iii) In (2.13b), u(nc) = % Tr[CEQCR] i8 a constant for e

(3.11)

Proof: Since n. > ry in view of (3.6b) and (2.4d), (2.12a) yields
(3.8). Now since ¢y = 0, (2.12b) reduces to (3.9) with (xR-iR)
satisfying (2.12c). Comparing (3.10a,b) with (2.12c), we need to

show that ¢y = u(nc) as defined in (3.10b). Recall from (2.4b) that




+
—

RT

0
0

Aar=FrMy

029

(3.12a)

since GT = 0 and AC = ART + BRGT - FRMT. Also recall from (2.4a) that

RT

>x>

e
r ~
xR(t) XT(

n
—
—
3
™
o
>

(1)

QR(t) X1

Now, using the property that

\ Xp(t)
Xy, = 1im E{
12t o (t)

and (3.5a), X.. is shown to be

KT

.T _

ap = 1im Elxp(t) QT(t)}

[xg' (t) X (£)])

Substituting (3.12) in (2.12d) to show that U

[Xg(t)Xg(t)]3

(3.12b)

U(nc) proves (ii). Since

Cr = 0 for ne 2 1 the ”(nc) defined in (2.13b) is the same constant for

all Ne

> ry and hence (ii1) helds.

#

Now, since CT =0, ;T lies in the nullspace of the output matrix of

(2.3), its observability is measured by ART’ i.e., the "smaller" (in a

sense to be made precise later) is ART’ the less observable is ;T‘ In

fact, if ARTE 0, then xp s unocbservable. Furthermore, ART z 0 implies

A
Car

"atm
EaEav)

.-
2

. e
E O
. R

by

= Apy - FgMy = 0 and ;T is unobservable in S_(n.). Hence, by lemma 1,
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I("r'"c) = 0.

021

Therefore, in CODE-coordinates notice that I(nr,n ), is

influenced by the observability of the 'truncated' controller states.

However, in general, ART will not be zero. But there may exist some

-

X; €Xp which are either unobservable [in which case a truncation of

them would yield I("r’"c)=0] or "nearly" unobservable, [in which case

I("r’nc) would be small].

In order to identify these "nearly" unobservable states, we make

use of the transformation in proposition 1 to obtain a representation

of Sc("r) in a convenient set of CODE-coordinates having the following

structure.

-

N &
where x.eR Lii=1,2,...

A
1
Lp

1
21

31

p-1,1

12
22

32

p-1,2

p2

23 0
33 0
p-1,3 * ° ° Ap-1,p
p3 App

. 0] x
rioq» 1% 2, 3, ..

[The computational details are given in Appendix A].

X B

X 1 1F2

X F

X 1Fs |,

2| | Fp-1

5 F

|| 'p |
(3.13)

. Py [12]
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A
and where rs = rank (Ai-l i)’ i=2,3, ..., P, and the matrices Ai-

are compatibly dimensioned.

1,1

Representations of systems in the form of (3.13) have been used
in literature in different contexts. For example, Tse et al. [13] and
Perkin et al. [14] have used Generalized Hessenberg Representations (GHR)
in the context of model simplifications. In [13] and [14] GHR is used

. for detecting weakly observable subsystems". Also, if Ai,i+1 is
"small" in the sense of some reasonable criteria, a reduced model is
obtained by neglecting (truncating) gj, j>i. Clearly, from the pre-
sence of the trailing zeros in the matrix G in (3.13), it is seen that
if for some i, Aj iy =0 (or "small") then gj, j>i are unobservable
(or nearly unobservable). The representation (3.13) differs from the
GHR in the sense that B]#Im which is required of a GHR. However, the
statements made above are also applicable for the controller in (3.13).
Another context where such a representation is used is in extracting

a minimal realization from a non-minimal realization of a given trans-

fer function [12], where again it is used to detect the unobservable

subspace. The algorithm presented in Appendix A is almost identical

to that used in [12]. Due to these similarities some of the results
from [13] can be specialized to the controller reduction context. In

particular we have the following.

Conjecture: If for some i, ”Ai 1.+]|I+ is much smaller than HAC [,
’ R

”ACT]], ”ACTJl' IIFRH and HFTII, then the reduced controller S {(n_)

t x| = A;/Z(XTX) = maximum singular value of X.
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o S{n): e6=A.p+Fz, peR~, n_= r

- ct'c Cr R c jzl j

4

$ ug = B

4

{ where Gp = [G], 0, ..., 0], obtained by deleting the controller states

“ -~

q X4 j = i+1, ..., p yields a small controiler error index I(n.,n.).

j To show this, note from the structure of the controller in (3.12) and
L4

from the definition of ACPT that

v, ]
A 0/, _ |
; PRSI B L S
)
= Hence, from the definition of U(n_) in Theorem 1, small ”Ai,i+11| implies
small Hu(nc)}i. Furthermore, if Ap is stable, the solution tc (3.10a) is
T At ALt
. (X R) .J. e un) e dat |,
o
.
; from which we get
W
L NP At At
X | Xl <[ e R U - le - e
;: Hence, from (3.10b) small [|A; ;. Il leads to small ||u(n_)]| and hence from
(3.3) to small I(nr,nc).
‘ Recall that all the controller states x;, i>r; have zero controller
g costs Vi(;) and that the controller states ;i’ i=],2,...,r] are ordered
5,
v
o

-y -

e e e r e AT BT e A
TR TR I o 1' .'f R o CRCRCRCE h S
’:l e "{ ‘f" O l’l; ! W .lo‘ NSl TRANAN AN h'.'.‘n W t. # “ q’ P e ot e NN 2 Al

L) * Lae 8 0 N )
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w
zk according to (3.5b). This means, since YiZ = Vi(§), that ;i is more
;; significant than ;1+]; i=1,2, ..., ry- Hence, if the order of the

, controller is predetermined to be ne X ry» then the controller states
ig ;i’ i=nc+1, ---» N, are to be truncated. Therefore, for Ne < Tq» there

1 is no ambiguity of the controller states to be truncated, and the addi-
i: tional complexities of the GHR type structure (3.13) need not be computed.
ff It is only when ne>r that one requires an additional criteria, such as

observability of the components ;i' i >T1s to determine which of these
L, ;i are to be truncated. It is this requirement that led to the develop-
5 ment of (3.13). Clearly, more investigation is required in the study
;r

of the properties of the controller (3.13).

Stability Properties

Of primary concern to any controller reduction scheme is the stabil-
ity properties of the closed loop system. The following theorem and
corollaries present the known instability properties of Sc("c)‘ It
< is assumed that the controllier is represented as in (3.13).

Theorem 2: Let Sc(nc) be a reduced eontroller obtained by truncation
E from Sc(nr)' Then the closed loop system (2.6) is asymptotically
3 stable only if Sc(nc) ig controllable, i.e., only if the matriz pair
{(AR+BRGR), FR} 18 controllable,
Sf Proof: This is proved by showing that if Sc(nc) is not controllable i.e.,
if th: matrix pair {(AR+BRGR-FRMR), Fp} is not controllable, then AR
in (2.6) is not asymptotically stable. (Note that uncontrollability
of {(AR+BRGR), Fa} 1s equivalent to uncontrollability of {(AR+BRGR-FRMR),
. Fat [151).

-
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Now, let Sc("c) be uncontrollable and for simplicity assume that

the matrix (AR+BRGR) has ne distinct eigenvalues. Then there exists a

left eigenvector a,* of (AR+BRGR) such that

n

a,i*FR =0 ; aieC ¢ (3.14a)

and
ui* (AR+BRGR) = A a’; (3.14b).

for some ie{1,2,..., nc}, where A5 eA(AR+BRGR) and * denotes the conju-
gate transposition.

Now, since the controller states x are covariance-normalized, i.e.,

He»

X 2 Vim E(x(t) x'(t)} = I,
too r

(3.3d) reduces to

(A+BG)T + (A+BG) + FVF = 0 (3.15)

which can be written 1in its partitioned form as

T T T T
(Ap*BgBR)" (App+ByGp) (Ap*BBp) (Apy*BpBr) | [FRVFR'  FRVFy
+ + =0
T T T T
(Apr*BrGy) " (Ar+B16r) (Arp*Br6p) (Aq+BiGy) [ [FVFp'  FpVFy
The upper left corner of this eguation yields
T T .
(AR*BgGp) + (Ap+BpGp) + FoVFp' =0 . (3.16)

*
Now, pre- and post-multiply (3.1¢) by a; and a; respectively to get

* T * * T - 3.17a
o; (Ag*BaBp)' oy + a; (Ag+BpGp) o + o, FoVFplas =0 . ( )
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In view of (3.14) and the conjugate-transpose of (3.14b) this reduces to

- *

Aj oy a5 + A oy a =2 Re(x ) "“i” (3.17b)
where Re(-) denotes the real part of (-). Clearly from (3.17b)

Re(Ai) =0. (3.18)

*
Now consider ny AR where

* A * r
ng = [0, 0, a; Ji njeC
Then
- =
Mr A By6p
FRf e A 1
»
_ *
Loy P o R e o]

*
= [0, 0, ai ACR]

wnere (2.4b) and (3.14a) have been used. Now since AcR = Ap*BpGp -
FpMg: we get

* _ *
n.i AR = [Os 0, G.i (AR+BRGR - FRMR)]

= [0, 0, o (Ag*BgGp)] (3.19)

*

= {0, O, A aj ] = A n,

where (3.14) has been used. Hence from (3.19a) we see that

A, € A(AR) . (3.19H)

1
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Therefore from (3.18) and (3.19b) Ap s not asymptotically stable. #

Corollary 1: If the zeroth order Markov Parameter! of S ) i8 zero,

c(ny
then the resulting closed loop system (2.5) for any Sc(nc < r]).

18 not asymptotically stable.

Proof: Since the Markov Parameters are invariant under similarity

transformations, the zeroth order -Markov Parameter of Sc(nr) is zero if

and only if
F

GF = [6, 0] b 6,Fy =0, (3.20)
.

where the matrix F of Sc("r) is partitioned as

1 ryx2 (n_-r.)xz
F= ’ F]CR] ’FTERr]

Now, since rank (G1) =rocm (3.20) is satisfied if and only if F, = 0.
Therefore from (2.2) and (2.5), Fp = 0 for all n_ < r, and hence S(ne < ry)

is not controllable. The proof now follows from Theorem 2. #
The final controller reduction procedure is summarized in algorith-
mic form in Appendix A.
We now demonstrate this controller design scheme with the aid of an

example in the next section.

1The i~-th order Markov Parameter Ji of Sc(nr) is defined as

4 i .
J; = G(A+BG-FM) ' F ; i =10, 1, 2, ... .
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IV. EXAMPLE

The example considered is a Solar Telescope (SOT), schematically

represented by Fig. 1.

Fig. 1 Solar Optical Telescope Structure
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The truss structure of Fig. 1. has been modeled by finite element methods
in [11]. This SOT was originally described by 44 modes, but the model
was reduced to 10 modes by a Modal Cost Analysis [16]. (This detail is
not given here). The reduced model of 10 modes (8 elastic- and 2 rigid-

modes) is described by

- . 2. p.T = 4.1
ni + zciwini + w,i n.i = bi (U + W). 1 ],..o,]o ( )

\

There are m (=8) force actuators whose control forces Ugse-eslg act in
the z-direction, located as shown in Fig. 1. The actuator noise (white)

is denoted by w and has intensity W = 107Ig. w, is the frequency of the

i-th mode and %5 is the damping ratio of the i-th mode. The frequencies
(ordered by modal cost) are given in Table 1, and the damping ratios are
taken as L; = 0.001, i=1, 2, ..., 8 and gy = 0, i = 9, 10 corresponding

to rigid-modes. The control objective is

ve DBy NG+ ol B, (4.2)

Table 1
Modal Frequencies

Mode # 1 2 3 4 5 6 7 8 9 o

ui(rad/sec) 14.853)0.914110.817}3.652 [153.43153.861/3.630 [149.37} 0 | O

(*: #9 and 10 are the rigid modes)

where the output yst (k=3) is

= {LOSX, LOSy, Defocus} .

PR A A e N TR YA AT A A 3 g T S T LAl T OO
g ) / g 5 "
ty A MAN :h"'r.' Bt SOCTOY 50 2 e'c o Ah "!'&"'a‘\ Q‘a AN &- ) ‘ L. “.fs,.~‘ o N M .‘ \' X
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and where LOSx is the angular displacement of the optical Line of Sight
(LOS) error about the x axis. LOSy is the optical Line of Sight error
about the y axis. Defocus is caused by changes in the length of the

optical axis (deflections in the z direction). The output y is related

2 to the modes n; by
Y 10
Y y = Z] D1n1 (4.3)

. The output weighting matrix is chosen as Q = diag {1,10,]0-3} to indicate
that line-of-sight errors about the y axis are most critical to the

experiments. The available measurements for the control law implementa-

! tion are
z=y+v, zeRY, 2 =3 (4.4)

! where the noise v is assumed to be a zero mean white noise with intensity
V= 10']513 to refliect the uncertainties in the measurements.
This second order representation (4.1-4) of the SOT is equivalently

written in a first order state form as follows:

. n
X =Ax +Bu+Dw, xeR "
\
y = Cx (4.5)
: Z=Mx +v
|
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r where
{ ) . . [ _
. X [n-l 9“2,.--sn10gn],n2,-..,n.lo] , nr-zo
A = 2 . B =D =
-w -2tw B
c =M =[P 0]
; and where
' o & diagluy sy seeeauyg ) o ¢ = 0.000
:
T
by
A : 8
B = ‘T and P = [p]apz- . -,010] .
b1o

The matrices B and P are given in Table 2. Having represented the SCT

in the form (4.5) required by the Cost Decoupled Controller Design
Algorithm (given in Appendix A), this algorithm was used to design

reduced order controllers.

Reduced Order Controller Design:

The control weighting R in (4.2) was taken as R = 918 and p was
varied to study controllers of different bandwidth. For each p, the Cost
Decoupled Controller Design Algorithm was applied. This constitutes the

following steps.
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2

% i) Construct an optimal controller for (4.5).

) ii) Transform the controller to the form in (3.13) with prcperties (3.5).
i: i1i) Obtain reduced controllers of order n. by truncating the last

t‘ (nr-nc) controller states and evaluate these controllers. (Note,

’ N =N = 20 is the full order optimal controller for this

- example).

E The controller design algorithm was repeated for a range of p = .01-+100,

and reduced controllers of different orders were obtained. The per-
formance of the controllers was evaluated and is presented in Fig. 2.

The different labels presented in the followinc figures are defined by

N A .
% CONTROL €OST = 1im Elu(t)]|?

tox

i

4 ..
REGULATION COST = 1im EHY(t)llg
t

e s e
- el Al ]

CONTROL EFFORT = [control cost]'/2
§ A

LOS(y) = lim E[lLOS ()] .

oo
: The dotted lines indicate lines of constant p. The solid lines are
_E continued until instability occurs. Fig. 2 illustrates that the
f; Regulation Cost asymptotically reaches a constant value (~1°0E-07)
corresponding to a control cost of greater than 1-65-06N2 (control

N effort > 1.3E-03 Newtons). Fig. 2 and Table 3 show that for a fized
4 level of control effort (8-5E-4 Newtons for Table 3), controllers of
» smaller order perform worse than the controllers of larger order.
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REGULATION COST (X107°)

.40

.32

.24

.16

.08

.00

C = CONTROLLER GRDER : R = CONTROL WEIGHTING., RWG ]

FIG 2 - PERFORMANCE PLOT

CONTROL COST (x107°)
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X - 06
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Table 3 shows that the 4-th order controller and the full order

("c=20) controllers yield essentially the same RMS performance. Our
b explanation for this is that the relative observability conditions in
25 the conjecture on p. 21 regarding small I("r’"c) happens to hold more

accurately for the 4-th order controller than for other reduced

?f controllers. However, the 4-th order controller has a lower margin of
§ stability which is indicated by this controller becoming unstable even
for a small increase in the control effort beyond CONTROL COST > .07x10'6N2.
v (See Fig. 2).
Table 3
LOS(y) vs. n_ (Contro) Effort = 8.5E-4N)

) n. 20 18 12 10 6 4

LOS(y). Rad(x10'3) 0-28 0-28 0-29 0-35 0-37 0-29

I("r’"c) 0 .0150| .0196 | .0848 | .1301 | .0245

Controllers of order ne =18 anc 12 have not been included in Fig. 2.

From these figures one could pick a desion to meet the mission objective.
\ For examole, if the following is the mission objective:

(i) LOS(x) = 5-0E-4 Rad.

i (i1) LOS(y) < 3-0E-4 Rad.

and

(iii) Control Effort < 1-0E-3 Newtons.
one would pick a 6-th order controller instead of n.> 6 so that

y the performance specifications are met with the least amount of on-line

controller hardware/software.
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Obviously, none of the reduced controllers (nC < 20) can perform
better than the optimal controller (nc = 20). One could only aim to
get the corresponding performance curves close to the optimal curve.
Note that the reduced order Cost-Decoupled-controller designs in Fig. 2
are close to the optimal curve until instability occurs. (The

ath order controller (NC=4) eventually went unstable in Fig. 2).

P T

Comparison with Balanced [5,6] Controller Design:

Since [5,6] also consider LQG-based design problems we will now
compare the reduced controllers obtained by Cost-Decoupled (CODE)
controller design algorithm presented herein with the LQG-balanced
controller design method proposed by Verriest [5,6].

The results are presented in Fig. 3. Let CODE denote the con-
troller design presented herein and BAL denote that of [5,6]. The
points labeled by similar numbers indicate that the controllers were

ol tained from the same optimal controlier (nc = 20) but by different
methods. In this example the CODE-controllers performed better than
BAL-controllers and this difference increases with smaller order
controllers. For the values of o tried the LQG-balanced method did
not yield any stable controllers of orders less than 10 even for low
control effort. The Cost Decoupled Controller Design Algorithm result-
ed in stable reduced controllers of order less than 10 as shown by
Fig. 2. For a controller order Ne = 10, the smallest line-of-sight

(LOSy) error achieved by the LQG-BALANCED design was 0.4x1073 rad.,

and the smallest achieved by the Cost-Decoupled design was 0.03x10-3

rad.
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VI. CONCLUSIONS

The concepts of Component Cost Analysis (CCA) utilizes the contri-
bution of states to a quadratic cost function as a metric to measure
the significance of the states. Using these concepts, a controller-
reduction algorithm is proposed. Controller error jndices are defined
to measure the 'quality' of reduced-controllers and expressions are
derived for their computations. Upper bounds are also obtained for
these indices. The dependence of these indices on the observability

of the controller states that are truncated is also shown.

Employing CCA to reduce these error indices, a set of Cost Decoupled
Controller Coordinates are developed. The representation of the optimal
controller in these coordinates closely resembles the Generalized
Hessenberg Representation. The truncated controller states in this
representation have the following properties:

(i) smallest controller component costs,
(ii) the component cost is least sensitive to the control
weighting matrix R,

(ii1) least observability in the controller,

(iv) wuncorrelation from the retained controller states, and
(v) they have the least dynamic interaction with the retained
controller states.

Necessary conditions have been derived for the stability of the
closed loop system when driven by the reduced order controllers. The
conditions are shown to be related to the Markov Parameters of the
full order optimal controller. A Solar Optical Telescope is used to
illustrate the design procedure. The resulting controllers are compared

with those obtained by the LQG-balanced method proposed by Verriest [5,6].
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APPENDIX A. The Cost-Decoupled (CODE) Controller Desian Algorithm

Given a model,

x =Ax +Bu+Dw; wn n(o,W

n d .k [l
y =Cx , xeR r,UERm,WER ,YeR ,2eR"} (A.1)
Z =Mx +v;v~nlo,V)

the objective of this algorithm is to construct a controller in the

form (3.13) with the properties (3.5), to reduce

Ve aD BN S+ um il (A.2)

ALGORITHM

1. Ia. Read {A, B, D, C, M, W, V, Q, R}

Ib. Construct the optimal controller,

X = Ao x +Fz

(A.3a)
us=_6x
where A A +BG -FM (A.3b)
Fo=pml oy (A.3¢c)
6 = -R'BTx (A.3d)
with K and P satisfying.
KA +ATK -kBRBTK +¢Tqc =0 (A.3e)
» Wi Ty P P Ll OR A OL (LA L L ot o e TR T L YR Y i A T
DR S A R R R R S RE AR B R S S VS NN R RIR M AG RN
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o PAl +AP -PM VMP +DW =0 (A.3f)
e -
e Ie. Compute X by solving
A : T . T
g X(A +BG) + (A +BG)X+FVF =0 (A.4)
'-f'i -1

o 1d. Compute 6, the square root of X',

iy
;',"i - T
Ve -
;:5 X = OX eX (A.S)
8

S Te. Compute Oy the orthonormal modal matri;? of
W
% 6, G'RGe, such that
™
i | To TaTRee 0 = diagiv, (%),V,(X),...,v_ (X),0...0) (A.6)
;::"': 6, © 6,6, = diag ]x,zx,...,r] »0... .
A
i

v} > Yy > . . .2 <

™ where V.I(x) 2 Vz(x) Z 2 Vr](x) > 0.
,.h.'
::;:'
g . 8
,‘-' II. IIa. Define T1 = 9o 9, (4.7)

B B ) Y']XY'-I
o . M M2 g AppeR
\; IIb. Define K w | T AT N R(nr-r])x(nr-r.l) (A.82)
X 21 22 22°
L) -

: F rixg

% et lF , Fer ! . (A.8b)
:. . ] ] ]

3
P -

~ 1. In case of uncontrollable controllers, singular value decomposition
'\-; may be used in (A.5), to help factor out the uncontrollable subspace.
Oy

2. For this task use singular value decomposition [13] or use an

‘,, eigenvalue/eigenvector program specialized for symmetric matrices.
B
!
)
Wi

y -{- u-‘(.‘!,".'-".'". ;[(‘.‘-‘—.‘- '-.;‘(.".‘ PR LG4
" “‘4\5 “’"\"" Dt 20Ot
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s Ilc. Seti=2,p=2,r=r
I1I1. IIla. Obtain singular value decomposition of A;_] j as
. T
i i
o 0 V1
Q ! - 1. oT
Aiais Vo o v, (A.9)
¥,
1 i . i i i i i
: where o = d'lag{c1 209 ,ori 3 0y 2 OH1 0}
I\
¥ n_-rxr.
/ and V]1eR r !
¥
)
: Ir 0 .
. I11b. Define T, 2 s Ve L vl (A.10)
¥ 0 v
)
D)
> I1lc. Setr=1r+ rys if r= n. go to Iv.
: 1110, Define A, .. & v A ] (A.11a)
; : i,iv1 - 1 A2 :
.
L)
" ' it i
Aier,inn © V2 Ay LiY2 (R.11b)
)
IITe. Set i = i+1 and p = p+1 and repeat III.
. . s P
IV. Define T2 1 T, (A.12)
§ =1 !
)

PR PR G 8 O g
LY 3 .'__.‘,\ AOSAIDS

R L T ) AR PR Oy
SN *.‘-,'s, e *
v . o ki o b LY

RN 3,'-4."&:.\.:-.‘5-\. ::\
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Ky
i; V. The reduced controller of order r is
) p = AcR P+ Fpz, oeR"

(A.13a)
: uR = GR p
! where
" A
4 Aep = LeAcTR - (A.13b)
N
. 4
K Fp = LoF s (A.13c)
R

G, = 6T, , _
: R = 6Tp (A.13d)
t
b and where Tp and Lp are obtained from
K]
) nxr
X [TR TT] =T ) TR eR (A.'l3e)
f and
: LR & -1 rxn
. TR e (A.13f)
2 T
)
#

#
]
"
¥
b‘
)
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APPENDIX B. Proof of Lemma ]

Rewrite (2.8a) as
N } POy ) PP Tin o
V= Tr[CRQCRXR] + Tr[CTQCTXT] + 2Tr[CRQCTXRT] (B.1)

where RR’ iRT and iT satisfy

S~ T s s T ~T T
XeAR ¥ ARKR * XRTART * ARTXRT * DpWPp = 0 (B.2a)
XA 4 R AT 4 AKX+ ALKy + D.WDL = 0 (B.2b)
RATR * XrTiT RERT * ApTXT * DpY0p .
. T T

]
o
—
w
o
>
¢
~—

- "
1R * ATRSRT * D107

- T
XpAr *+ AXp + Xp

The equations (B.2) are obtained by partitioning equation (2.9a).
Equation (2.12a) follows from the substitution of (B.1) and (2.10b)
in (2.10a), and (2.12b) follows from (B.1), (2.11) and (2.8b). Equation
(2.12¢) is obtained by subtracting (B.2a) from (2.8b).
To prove (2.13a), use (2.8b) and (2.9b) to rewrite (2.11) as

I(n.n,) = ]7 Tr[c;QcRxR] 1. (B.3)

Now use the following identity [18]

A (K)Tr[Y] < Tr[VX]

IA

AM(X)Tr[Y] , for X>0,Y>0

in (B.3) to get

|A

1 T 1
7 AaUR)TrIcRacR]-1 < 1(n Lm0 < 5 ay(xg) TricRacgd-1

......................
-----------
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Clearly, from the definition of Cp in (2.4d), u as defined in Jemma )
depends on n_. (2.13a) is proved by observing that I(nr, "c).l 0.
(2.14a) is proved by equating (2.12a) and (2.12b). To prove the
sufficient condition (2.14b) assume without loss of generality that
(2.2) is in observable canonical form, so that ;T is unobservable
(i.e., A

=0, G = 0). Hence, from the definition of A T in (2.4b),

C R
RT
ART = 0. Now, since (2.2) is the optimal controller, (2.3) is

asymptotically stable. Therefore, with A, = 0,

RT

MA) = a(Ap) U atap) e (B.4a)

where A(-) denotes the eigenvalues of (-) and C° represents the open

left half complex plane. Hence
MAp) €c” . (B.4b)

Stability of AR guarantees that the solution to (2.12¢) is XR'iR =0,
since ART = 0. Hence recognizing that C; = 0 if GT = 0, (2.14a) is
satisfied. To prove (2.14c) let (2.2) be in controllable canonical
form so that x is uncontrollable (i.e., A =0, F: = 0). From

T CTR T
(2.4p) Arp = 0, hence (B.4) holds. Also note that from (2.4c) 07 =0,
yielding iT = 0 and iRT = 0 as the solutions to (B.2b) and (B.2c)
since A(AT)CZC-. Furthermore, the solution to (2.12¢c) is XR'iR = 0,
since Xpr = 0. Since Xpr = 0 and xp-xp = 0, (2.14a) is satisfied.
This proves (2.14c) and (2.14d).

The proof of the sufficient conditions (2.15b) and (2.15c) follows

identical steps, and equation (2.15a) is obvious from (2.12b). #
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Selection of Noisy Actuators and Sensors
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Abstract

Algorithms are given to determine the critical inputs and outputs
in a linear system evaluated by quadratic performance criteria. This
type of analysis is referred to as "input cost analysis" (ICA) and
"output cost analysis" (OCA). The fundamental concept is to decompose
the quadratic performance metric into contributions from each input/
output. This type of "cost-decomposition" has application in the selec-
tion of best sensors and actuators in engineering control systems, and

that application is the focus of this paper.
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1.0 INTRODUCTION
The problem under consideration is the time-invariant linear dynamic

system described by

(1.1a) X = Ax + B(u + w)
(1.1b) y = Cx
(1.1¢) Z=M+v

and evaluated by the performance metric

Q>0
(1.2) = lim t:'(lly(t)llQ + llu(t)lIR) , llyllQ =y, 4.0

Where the zero-mean white noise disturbances are described by Ew(t) =
Ev(t) = 0, Ew(t)w! (1) = Ws(t-1), Ex(o) w (t) = 0, Ex(o)v'(t) =
Ev(t)vT(r) = Vs(t-1), W> 0, V > 0. The notation "Q > 0" means that
“Q is a positive definite matrix". The superscript T denotes matrix
transposition, and the notation yeRk, UERm,ZeRE, xeR”, weR" indicates

the dimensions k, m, £, n, m of the real vectors y, u, 2z, X, w respec-

tively. It is assumed that rank B = m, rank M = £, and rank C = k.

This eliminates the possibility of redundant inputs/outputs. Now suppose

that m > 1. (In fact in some large scale systems m is quite large [7].)

One might wish to know which of the inputs have a greater effect on the

responses that contribute to the performance metric V in both the open

Toop (u=0) and closed loop (u#0) cases. We shall refer to these inputs

&3 the more "critical" inputs. Generally speaking, there are three reasons

for using input cost analysis:

(i) For the open loop case, the "critical" inputs can be retained in the
model and the others deleted if a simplified representation of the

system is desired, using fewer inputs.
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(ii) If the inputs evolve from actuator devices of varying degrees of
reliability (i.e. closed-loop case), the "critical actuators suggest
which actuator devices should be made more reliable.

(iii) If the inputs evolve from actuator devices with m admissible
locations throughout the engineering system, only the m < m most
"eritical" actuators might be retained if the system is to be
designed using only m < m actuators. In this way the optimal
location of m actuators is sought from an admissible set of
m > m actuators. In fact, when noisy actuators are considered, the
set of m actuators may yield better performance than the total set
of m actuators.

A similar set of circumstances and questions exist concerning outputs
of the system.

The idea of decomposing the performance metric V in terms of contri-
butions from each input was presented in [1]- [3] and this analysis is
referred to as "Input Cost Analysis" (ICA). Similarly, "Output Cost
’nalysis" (OCA) was also presented in [1]-[3]. This paper develops ICA
and OCA for the more difficult case of closed-loop systems, whereas
[2] and [3] are limited to open-loop systems. In [1] and [2], the
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and the definition of the ith "output cost" Uic is
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The definition for input costs employed herein and in [3] is

(1.4a) vﬂ=:m%%%§1W} WHQHH%

> - ‘
'.‘

~~~~~~

A T At [ IROLE 02 o S A L e
-$9. P47, ‘ ‘ — —



T

1 g
>

L3 P |

RS R

IS

i i

-

SISy

e
ol DA

T

...............

£S

and the definition for output costs described herein and in [3] is

(1.4b) v = lin u Ei%?l y,-} , v(t) & yToy

To see clearly the distinctions between (1.3a) and (1.4a) note that the
inputs and outputs of (1.1a) can be expanded in terms of the columns

of B, and the rows of C i.e.

(1.5) Bw b.w. and

1 11

n
te~m13

i

(1.6) y; = (0x); = ;7 x(t) .

Note that definitions (1.3) are given in terms of parameters bi and Ci»
whereas the definitions (1.4) are given in terms of the variables W, and
7 The early work on measurement optimization [8], [ 1] used the
parameters C; in the optimization process. However, the parameters b,
and c; are only the coefficiente of the variables for which we wish to
determine a performance value. That is, the physical entity which
might be deleted generates wi(t) or yi(t). Hence; it is reasonable to
expect definitions (1.4) to be more accurate in predicting the effect

of the deletion of an input or output. However, there is an important

case when definitions (1.3) and (1.4) yield the same result.

Theorem 1

Consider the linear system (1.1), (1.2). If u(t) = 0, then
b

-y ¥ C_yY
Vs V" and V4 V" -

Proof:

To show that Vic = Viy » compute first
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W
R}
(1.7¢) = Vim E[yy" Ql;;
« too
‘Y Then note from (1.3b) that . )
& T et
By c _1 a3V 1 ,3F P
2 1.8a) V.- =5-——¢; = hm—-( e, = lims+— ( I Ey.Q..y:)c.
X ( i 2 ac; i th ac i _’o'élac]. AR LA NS
Y = lim+ 22— ( '2( Ec Tx)Q.(c T.x))c
; tom 2 365 15 4T W50 i
%
! k k
, = 1im E[ ¢ ch ]c~11mE{}:yQ .Y}
7 too  j=1 tom  G=1 9 197
-
.
L (1.8b) = 1im E[yy'Ql,, = lim E[exx'c'Ql,. = [cxc'qQl.,
£oveo ii t i ii
3 o
./
D
)
; where X is the steady state covariance satisfying
L]
P (1.9) 0= XAT + AX + BWB'
i Hence, for open loop systems (u{t) = 0), (1.7c) and (1.8b) prove that
vic = Viy . The proof that V.iw = Vib follows similar arguments, using
:‘; the fact that
3 (1.10) V= tr [SBWB']
k: where S satisfies
)
! (1.11) 0=sA+Als +clqc,
' and leads to the calculation
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(1.12) A uib - [BTSBw]_“. . #

Certainly the new definitions (1.4a) and (1.4b) offer no advantage
in open-loop situations, as evidenced by Theorem 1. However, in closed-

loop situations the optimal closed-loop plant matrix A, which has the form,

BaltAN LAl Ra R Lad

a |A BG T,~1 T -1 T
(1.13a) A= [FM A+BG_FM] , F=pu'v?' , o0=pal +ap - PMv  w4BuB
6=-RTBK, 0=kKh+AK-KBRIBTK + CTq
(1.13b) X = Ax + Bw , X 2 (xT, iT) R w = (wT, vT)
y = Cx . yT = (yT, uT)

T W 0 T
(1.13c) Ew(t)w (t) = ws(t-t) = o v §(t-1), Ex(o)w' (t) = O.

B el

is a function of the input/output parameters bi’ Cye This situation does
not occur in the open-loop system since A in (1.1a) is not a function of
the parameters of B or C. Thus the definitions (1.3) and (1.4) will yield
different results for closed-loop applications. The closed-loop results
vhich follow from (1.4) are developed in this paper.

The properties of input costs (1.4a) and output costs (1.4b) for
open-loop systems are discussed in sections 2 and 3 respectively. The
essential results of these two sections are combined in section 4 to
produce the closed-loop ICA/0CA. Closed-loop ICA/OCA is then used in
the selection of noisy actuators (section 5) and the selection of noisy
sensors (section 6), while the problem of simultaneous selection of

noisy actuators and sensors is addressed in section 7.
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In Section 8, the methods suggested in this paper are applied to a
substantial example of a large space structure. Concludina comments

appear in Section 9.

2.0 Properties of Input Costs (1.4a) for Open-Loop  Systems (u(t) = 0)

Before applying results (1.4) to the closed loop system it will prove
useful to know the properties of the input cost Viw for the open-loop
system (u(t) = 0). This Section is devoted exclusively to the case
u(t) = 0 in (1.1), (1.2) with A asymptotically stable. Proofs of all

remaining theorems appear in Appendix A.

Theorem 2

The open-loop input costs Viw,i =1, ..., m, defined by (1.4a) and
calculated by (1.12), satisfy the cost-decomposition property

(2.1) V= .'f] vi" . (ult) = 0)
1=

Where the total value of the system performance metric is V, and the
in situ contribution from W, 18 Viw.

The sign of Viw is nonnegative under these conditions.

Theorem 3

For the stable open-loop system (1.1), 1.2), u(t) =0, W >0, if
Wij = 0 for all j # i then vi" > 0. If, in addition (A, C) is an
observable pair, then vi" > 0.

If the number of active inputs is not perturbed it is sufficient to
know the in situ input cost Viw. However, additional information is
required in order to determine the amount by which the performance metric

is perturbed after an input is deleted. This amount is defined by

W

where VRi is the value of V after the ith input is removed. Clearly, Viw

is the information available to the analyst prior to deletion of the ith
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; input and AViw is the information available after such deletion. If
l
%L Vi" is to be used a priori as a prediction of AViw, it is of interest then

to know how accurately Viw predicts the actual value of Aviw. Fur-

‘a s’

—

thermore, it is of interest to know when this prediction is exact (Viw = Aviw).

A Theorem 4

Q If u(t) = 0 in (1.1), (1.2) then
3|t

& (2.3) av.™ = 2v.¥ - b.T Sb.W

N y i j i “Pi%4

If W ig a diagonal matrix then Viw has the following properties:

e

(2.4) v = Avi” s =1, ,m
; - A -
" (2.5) vim) = } Viw s+ R = get of m retained inputs
ieR

where V(m) is the value of V with only the reduced set of W inputs acting.
8 The circumstances (2.4), (2.5) are very valuable, since they allow
! the performance of the reduced input system V(m) to be evaluated on the

basis of information computed prior to deletion of the inputs (Viw). Hence,

when (2.4) holds, then (2.5) follows. Eq. (2.5) is referred to as the

§ cost-guperposition property of inputs costs, whereas (2.1) is referred to
M)

¥

- as the cost-decomposition property. The cost-decomposition property (2.1)

always holds, whereas (2.5) holds only under certain restricted conditions,

%; such as the diagonal W condition of Theorem 4.

- Finally, it should be noted that the input costs Viw arc invariant
: under coordinate transformation.

¥ <

b Theorem 5

If u(t) = 0 in (1.1), (1.2), the input costs V defined by (1.4a) are

‘o

invaritant under state transformation x = Ts, |T| $ 0.
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The Open-Loop Input Selection Problem

Since the input costs Viw provide one with information concerning
the individual contributions of each input to the performance metric, the
next logical use of this information is to describe an algorithm which
provides an answer to problem (i) in the Introduction. This shall be
referred to as the Open-Loop Input Selection Problem.

There are two different statements of the Open-Loop Input
Selection Problem. We shall call them problem (ICA-1) and (ICA-2):
(ICA-1) Let m and m < m be specified integers. From an admissible set

of m inputs find a reduced set of M inputs such that the input

error index 1,

A \v-v(m)
I'lv‘

18 minimized.

Let m and 1 be specified numbers. .From an admissible set of
inputs find the smallest number, m, of inputs such
that

I1<1
The following algorithm provides a systematic means to solve problems

(ICA-1) or (ICA-2).

The ICA Algorithm

STEP 1: Specify system data (A, B, W) and output objectives (C, Q)
for (1.1), (1.2) withu = 0. Specify either m or T (to solve
either problem (ICA-1) or (ICA-2).

Compute the input cost perturbation, from (2.3), for i=1, ..., m.

DERERN P P g CITE. g OO A A O TR LA e P AL ST AN UM Pt T Y YO
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f W o_ T _ ral s .
» (2.7) av;" = 2[B'SBW];y - [B'SBHpL,; o Wp = diag (Wpys..., W)
R
i Te , (T
(2.8) 0=SA+AS+CQC

o
g"o
5% Of course,if W is diagonal, then W = ND and according to Theorem 4 the
o

e calculation (2.7) can be replaced by
%

A W L. T
s; (2.9) avs = v, [B SBN]ii
31
1 "r W W

e Rearrange the inputs W, such that Av]" > AV, > .., Z-Avm .
N STEP 3: 1If T is specified, go to STEP 4. If m is Specified and W is
Q,
3@ diagonal, then retain those m inputs having the m largest values
Bt

) of Avi" and stop. If W is not diagonal, delete the input having
)

f{ the smallest value of Avi". For this reduced B = [b], cees bm-]]
>

J
if‘ return to STEP 2. (Note that 2.8 does not have to be recomputed.)
oy Repeat this cycle m-m times. END.
. .
2% STEP 4: 1If 1 is specified, delete the input W with the smallest Avi“.

> With this reduced input matrix B = [b], cens bm_]], return to
W0 STEP 2 unless the following condition is satisfied: (Note that
¢
g: (2.8) does not have to be recomputed.)
o

i _v(m
’ (2.10) 12 |V—5iﬂ)-i > 1,
B
‘:; where V equals the value of performance metric with all inputs
;ﬁ' present and m refers to the number of inputs of the current
?: iteration. If 2.10 is satisfied, the required set of reduced
,72 inputs is the set of inputs from the previous iteration (i.e.
“ a set of m+ 1 inputs). END. (Note: if W is diagonal, the
gs STEP 4 iteration cycle is unnecessary, and V-V(m) = { Avi”;

] 'iEJ
R J = set of Towest Avi"'s calculated from the 1st iteration.
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3.0 Properties of Output Costs (1.4b) for Open-Loop Systems (u(t) = 0).

A1l of the questions of Section 2.0 can be applied to outputs instead
of inputs. To make the presentation of these similar results concise,
the following duality can be used. It is straightforward to show that
substitution of the parameters of TABLE 1 converts all of the ICA results
of Seciion 2.0 to results which hold for Output Cost Analysis (OCA).

With the help of this duality the following results are listed as
corollaries to the theorems corresponding to their ICA application of
Section 2. The proof of these corollaries is the exact dual (Table 1) of

the proofs for Theorems 1-5.

Corollary to Theorem 2:

y

The open-loop output costs V;”, i=1, ..., k defined by (1.4b) and

caleulated by

y _ T
(3.1) Vi = {CXC Q]ii

where X satisfies

(3.2) 0= XAT + AX + BWB' ,

satisfy the cost-decomposition property

k
(3.3) v=1 v
i=]
Corollary to Theorem 3:
For the stable cpen-loop system (1.1), (1.2), (u(t) = 0), Q>0,
if Qij = 0 for all j#i then Viy > 0. If, in addition, (A, B) is a
controllable pair, then Viy > 0.
Corollary to Theorem 4:

If u(t)

0 in (1.1), (1.2) then

e T -~ LU n?‘h"‘n MR )
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(3.4) AViy = 2Viy - ciT X <4 Qii ; where c, is the i

th T

column of C

If Q 28 a diagonal matrix then lli‘y has the following properties:

y - y
- a
(3.6) V(k) = .XR Viy s R = set of k retained outputs
le

where V(k) is the value of V with only the reduced set of outputs.

Corollary to Theorem 5:
If u(t) = 0 <n (1.1), (1.2), the output costs Viy defined by (1.4b)

are invariant under state transformation x = Ts, |T| # O.

The Open-Loop Output Selection Problem

Since the output costs Viy provide one with information concerning

the individual contributions of each output to the performance metric,
the next logical use of this information is to describe an algorithm
which provides an answer to questions (OCA-1) and (OCA-2) below.
(OCA-1) Let k and k < k be specified integers. From an admissible
set of koutputs find a reduced set of k outputse such
that

a -
(3:7) o & (k)
18 minimized.

(OCA-2) Let k and © be specified numbers. From an admissible set

of k outputs find the smallest number, k, of outputs such
that

» 9 PRI N T T T U P e
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The following algorithm provides a systematic means to solve problems

(OCA-1) and (OCA-2).

{- ‘)- (.

TR, T X 4
-

The OCA Algorithm

55

STEP 1: Specify system data (A,B,W) and output objectives (C,Q) for

» (1.1), (1.2) with u = 0. Specify k (to solve problem (0OCA-1))

s or specify © (to solve problem (0CA-2)).

;: STEP 2: Compute the output cost perturbation, from (3.4), for i=1, ..., k
y . T _ T a .

::‘ (3.8) Al’_i 2[cxc QJii [cxc QDJii s QD diag {Q]], cens Qkk}

N,

E)

& (3.8a) 0= XAT + AX + BWB'

oK Of course, if Q is diagonal, then Q- = QD and actording to the
corollary to theorem 4 the calculation (3.8) can be

replaced by

ﬁ
N Y o yp.Y = T
; (3.9) vy = v = [exc'aly,
e
5‘ Rearrange the outputs ¥; such that
e Yo s ... y
'5 AV.I _>_Al.’2 > lAVk
|
) L
- STEP 3: If o is specified go to STEP 4. If k is specified, and Q is
- diagonal, then retain those k outputs having the k largest
'ﬁj values of Aviy and END. If Q is not diagonal, delete the
output having the smallest value of AViy. For this reduced
)
R ¢’ - [cys -ons Cn1] return to STEP 2. (note thet 3.8a does
LY
2 not have to be recomputed). Repeat this cycle k-k times.
h END.
oo
W
»
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STEP 4: If § is specified, delete the output y, with the smallest

AViy. With this reduced output matrix CT = [Cl’ cees Cm-1]
return to STEP 2 unless the following condition is satisfied.

(note that (3.8a) does not have to be recomputed).

(3.10) Y LA A

where k refers to the number of outputs in the current iteration.
If 3.10 is satisfied, the required reduced set of outputs is the
set of outputs from the .previous iteration (i.e. a set of k+I
outputs) END. (Note: if Q is diagonal, the STEP 4 iteration
cycle is unnecessary, and V-v(k) = ¥ AViy; J = set of lowest

ied
Avi”'s calculated from the 1st iteration.

4.0 Closed-Loop ICA/OCA
Sections 2 and 3 assumed u(t) = 0 in (1.1), (1.2). However,
it was the closed-loop situation (1.13) which motivated the definitions
(1.4) of input and output costs. To treat the closed-loop system (1.13)
the following will be assumed:
(A, C) observable
(4.0) (A, M) observable
(A, B) controlable
Under these conditions the matrix A in (1.13) is guaranteed stable [4].
Now the concepts of Sections 2 and 3 will be applied to (1.13). The
practical value of such analysis is the determination of sensor and
actuator devices which are most critical to the performance metric
(1.2). Thus, reasons (ii) and (iii) in the Introduction are the
paramount goals of Section 4.0.
The performancg metric V associated with the closed-1oop system

(1.13) is given by (1.2), and can be rewritten in the form

ek e T R e e AT RN e D A AT A
4 o e L A A A g g (DT R ey
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v = Tim E |lgll3 Q 1o
4.1 = Yim E |lyll§ , - I I
(4.1) : 0 0 R

where y is defined in (1.13b). Thus, input cost analysis (ICA) applied
to (1.13) yields

W .
Ui i=1, ..., m

W _ gl =
(4.2) v,” = [B'sBuly; AR e R
(4.3) 0=SA+AS+clgc
m+f m £
(4.4) A ALI AL SN A
j=1 i=1 i=]

and output cost analysis (OCA) applied to (1.13) yields

y ‘e
V,i 'Y 1"], ...,k

(4.5) v,d = [exc’ad, = €,
AN N R
(4.6) 0=xAT + AX + BUB'
k+m k m
u
(4.7) v = .Z v,Y = Z v.Y + -Z v,

where Viw may be interpreted as the effect of the ith plant noise on

the closed-loop performance, Viv is the effect of the ith measurement

noise on the closed-loop performance, Viy is the effect of the jth

output y; on the closed-loop performance, and vi” is the effect of the

jth control input us

of viy, ui”, vi", uiv follow from (4.2) and (4.5), but the 2nx2n matrix

on the closed-1oop performance. The computation

equations (4.3) and (4.6) actually represent an excessive burden. The

following result shows that the special structure of A in {1.13a) ailows

[
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the solutions of (4.3) and (4.6) to be expressed in terms of the Riccati

matrices K and P already obtained in (1.13a).

Theorem 6

The solutions S and X of (4.3) and (4.6) respectively may be written

K+L -
(4.8) S :]
-L L

where K satisfies 0 : KA + ATK - KBR!

BTK + CTQC,'and L satisfies

(4.9) 0 = L(A-FM) + (A-FM)TL + 6'RG
and
[:P+N N :]
(4.10) X =
N N

where P satisfies 0 = PAT + AP - PMTV']MP + BWBT, and where N satisfies

(4.11) 0 = N(A+BG)T + (A+BG)N + FVF'

Theorem 6 and the special structure of the matrices C, 9, B and W

in (1.13), (4.1), allow these expressions as simplifications of (4.2)
and (4.5):

_ W _ ol - rnl -

(4.12) v;" = [8'smul,; = [BT(K+L)BMI,;, 1 =1, ..., m
(4.13) AR [BTKBw]jj = [FTLFV]ii, FemH, =1, ..., 4
(4.14) vy = [exgl,, = [C(P+N)CTQ]ii L i1, .k
(4.15) v = [cchQJJj = [GNG'R),; » J=kHi,i=1,...,m

Theorems 7-9 follow in the same manner as in Section 2. Their proofs
are contained in appendix A,
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éh Theorem 7
:Qsj .
' For the closed loop system (1.13) wunder the conditions (4.0), if
w.‘
:;c: wij =0 for all j # i then Viw >0. If v'ij =0 for all j # 1 then
e::: Viv > 0. In addition, if (A-FM,6) s an observable pair then V’.v > 0.
Bl -
) Theorem 8
_lh'
,, For the closed-loop system (1.13) under the conditions (4.0), if
‘
Q5 =0 for all j # i then vy >o0. 1r Rys = 0 for all j # i then
Y Viu > 0. In addition, if (A+BG,F) is a controllable pair, then V].u > 0.
0
2
K Theorem 9
K ' ,
" The closed-loop input and output costs, Viy. Viu. Viw, Viv are
) .
e invariant under state transformation x = Ts, |T| # 0.
N
3 Equations (4.2)-(4.7) and (4.12)-(4.15) can be used to set up the
5y duality of TABLE 2 applicable to closed-loop systems.
13
cs
_3 5.0 Selection of Noisy Actuators in Closed-Loop LQG Problems
‘ A simplifying assumption made in (1.1) is that the only source of
DU
«? disturbances w(t) is the actuator noises. Thus, the disturbance distri-
a: bution matrix and the control‘distribution matrix are the same (B~D).
\'a. X
) " Questions of the type (ICA-1) and (ICA-2) from Section 2 are now posed
,ﬁ for the closed-loop system. The questions are complicated by the
o
') fact that for the closed-loop system (u(t) # 0) there are
V!
— two costs, V1w and Viu associated with inputs to (1.1a). Since Viw is
ﬁ the "bad" effect (from noisy disturbances) and viu is the "good" effect
‘¢ (from optimal control action), it is reasonable to choose the difference
. between the good and bad effects
b
hﬁ
o

.‘ R
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By TABLE 2 DUALITY OF CLOSED-LOOP ICA/OCA

. CLOSED-LOOP ICA CLOSED-LOOP OCA
I: S s B X

j L &1 N

A-FM e—1—> (A+86)T

| 6 1> FT

: R &> v

B < > T’

! B & > cT

D K & > P

W e Q

' W &—rt > Q

E A < > AT

[)

! A S > AT

)

|}

[}

]

]

L)

[}

h
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act 8 Ju _ m
(5.1) Vi = Vi Vi

th act

as the "value" of the i~ actuator. A negative value of Vi indicates

that the ith actuator is contributing more noise than control action and
should either be de]eted or its signal to noise ratio should be improved.
If one defines ny U /V as the "effective signal to noise ratio" of

actuator i, then (5.1) becomes
(5.2) v, 2 = (n-1) 0¥

If (A,C) is an observable pair, and (A+BG,F) is a controllable pair, and
the matrices (W,R) have no negative elements then theorems 7 and 8
guarantee that n; > 0 (since Viu and Viw are both > 0). Under these con-
dit.ons improvement in performance is expected by deleting the actuators
with effective signal to noise ratios less than ]("i < 1) as long as
controllability of (A,B) is maintained. The two closed-loop versions of

actuator selection problems (ASP-1 and ASP-2) are now defined.
Problem ASP-1: Given the optimal system (1.13) using m admissible but

noisy actuators, find the set of m actuators which lead to the smallest

value of the closed loop system performance metric V as defined by (1.2)

without losing controllability. Label this minimum value as V(m). The
The computations suggested to approximate the solution of problem

(ASP-1) are as follows:

Algorithm ASP-1: Using (5.1), (4.12), (4.15), solve for viaCt, i=1,

..M, and rearrange so that Viact > ... VmBCt.

act

Delete the actuator with
the smallest value of Vi i1f that value t8 negative or zero and if
deletion of that actuator does not reduce the rank [B, AB, ..... An-]B].

Solve the optimal LQG problem for the reduced number of actuators {i.e.

ot

L iy ir BT RCAESA f‘k N AT



B = [b], "'bm-l]’ W= [w],...wm_]]). Repeat the above cycle until no
actuator satisfies the deletion criteria. The number of actuators left

18 the set of m actuators to be used.

Note: At present, no guarantee exists that algorithm ASP-1 provides an
optimal solution for Problem ASP-1; however, the results of Section 8

do lend some empirical support, and in addition they suggest a possibility

for greatly reducing the computational burden of the algorithm.

Problem ASP-2: Specify the integer m and the number ic > 1.0. Given
the optimal system (1.13) using m admissible but noisy
actuators, find the smallest m set of actuators such

that

(5.3) <1 (and (A,B) a controilable pair)

- C

=1
A

V(
where V(M) is the smallest value of V obtained in
(ASP-1) and V(m) is the value of V obtained with

m < M actuators.

Although no proof of optimality is currently available, the following

algorithm is suggested for the solution of ASP-2.

Algorithm ASP-2: Solve algorithm ASP-1 and use this set of M actuators

act . =

in the solution of the LQG system (1.13). Compute Vit i = 1, ...m,

and rearrange so that V_iaCt > .2 V=aCt. Delete the actuator with the
m

act if deletion of that actuator does not effect the

smallest value of Vi

rank of [B, .... An-]B]. Solve the optimal LQG problem for the reduced

number of actuators. Repeat the above cycle until etther %E'—L:% < Tc or

wntil all remaining actuators are necegsary for controllability. The

previous set of M actuators is then the number desired.
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6.0 Selection of Noisy Sensors in Closed-Loop LQG Problems
Before discussing noisy sensor selection, it is useful to consider

the following theorem:

Theorem 10

Adding noisy sensors to the LQG system described by (1.13) camnot

increase the performance metric V (i.e. 4.1), of the system.

Heuristically speaking, Theorem 10 is plausable since the sensor

measurements, z, are being passed through a Kalman filter and the purpose
of the Kalman filter is to "de-emphasize" or "throw-out" the measurements
which have more noise than estimation information, [4]. (Note: A result
such as Theorem 10 does not exist for actuators. In fact it will be shown
later that adding actuators can degrade performance (Likewise deleting
actuators can help).) As a result of this property of the Kalman filter,
it is not surprising that any sensor noise source (Vi) that is making a
large contribution to the closed loop performénce metric (i.e. large Viv)
eminates from a sensor which is making an even larger contribution in

estimation information! Based upon these points, the following definiticn

for the ith sensor value is offered.

sen & v
(6.1) Vi = Vi

Large values of Viv indicate sensors which are providing a “"large"
amount of estimation information and are therefore critical to the
performance of the closed loop system. Sensors with smaller values of
Viv are providing less information and are therefore candidates for deletion.

In Tight of this discussion the following closed loop sensor selection

problems and algorithms are defined.

Problem SSP-1: Let £ and § < £ be specified integers. From an admissible

set of L sensors find a reduced set of £ sensors such that

- - o - - SR Y
-------- RIS RO ~ - . ORI » o AR I - (- q {- < < o
PRTRPI AR A R St T e N \,\_ \\\
Al lfein Lodle Srla st N RN NS AR, ‘ :
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A V-V(L
£:| (6.2) ¢ = _V_V(_—l

* ig minimized. Where V(L) is the system performance metric

. with only L sensors operating.

i..

it

Q The computations suggested to approximate the solution of problem SSP-1

o

M are as follows:

Algorithm SSP-1: Solve for Visen, i=l, ....£ framn (6.1), (4.13) and rearrange
159

N so that Visen > .00 > sten. Delete the sensor with the smallest value of

o n-1

* V,i sen if deletion of that sensor does not reduce the rank of [MT, cee AT MT].
A;: Solve the optimal LQG problem for the reduced number of sensors (i.e.

7 MT = [M1’ M£-1]’ V = diag [V.I, VZ_]]). Repeat the above cycle

“ £-L times or wntil all remaining measurements are necessary for observ-

:: ability of (A, M).

'; At present, no guarantee exists that algorithm SSP-1 is optimal.

o

However, it can be shown (See Appendix B) that V: (i.e. visen) is closely
related to the switching functions of the extended-Chen-Seinfeld method for
$ optimal selection of sensors, [1]. The switching functions are used to

b indicate the sensors which satisfy the necessary conditions for optimality
N [1]. (i.e. minimization of (6.2)). The above fact, together with the

b limited results presented in section 8 indicate that algorithm SSP-1 may

~in fact be optimal. Research is continuing in this area.

N ‘
N A second version of the closed-loop sensor selection problem is 4
I
e presented below.

)

. Problem SSP-2: Let £ and ¢ be specified numbers. From an admissible
k- set of L sensors, find the smallest numbern, £, of semsors

Ca

L such that

N < ¢
) -
r, and observability of (A, M) is maintained.
b,

R
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The computations suggested to approximate the solutions to SSP-2 are

as follows:

Algorithm SSP-2: Solve for U sen , 1 =1, ... £, and rearrange so that
v. e .
i
y_ sen
i

« > .. Z_Vtsen. Delete the sensor with the smallest value of

if deletion of that sensor does not effect observability of (A, M).

Solve the optimal LQG problem for the reduced number of sensors (i.e.

[M], ..o M£-1]’ V = diag [V], - VL_]]). Repeat the above cycle
wntil ¢ is no longer less than or equal to ¢ or (A, M) is no longer
observable. At this point the last set of sensors is the desired set of

2 sensors.

Further research is required to establish the relative degree of

optimality of Algorithm SSP-2.

7.0 The Sensor/Actuator Selection (SAS) Algorithm

The actuator selection problems and algorithms presented in section
5 assumed that no change takes place in the number, type, and location of
the sensors. The sensor selection problems and algorithms presented in
section 6 assumed that no change takes place in the number, type, and
location of the actuators. In practical design problems one needs an
algorithm for combined actuator and sensor selection. The fact that
‘actuator and sensor selection are coupled is well evidenced by equations
(4.9), (4.11) and (4.12-4.15). As a result of this coupling, it is
necessary to have an algorithm which simultaneously solves problems of
type (ASP-1, ASP-2) and (SSP-1, SSP-2). As our first attempt for
generating such an algorithm it is suggested that the appropriate actuator
algorithm and sensor algorithm of Sections 5 and 6 be solved simultaneously.
More specifically, if it is desired to solve ASP-1 and SSP-1, algorithms
ASP-1 and SSP-1 should be implimented simultaneously. The optimality of

o’

‘. " " o " A
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such an algorithm or the possibility of simplified variations of such an

algorithm is currently under study.

8.0 Hoop-Antenna Example

The ASP-1 Algorithm of Section 6 was applied to a 26-state model of a
Hoop-Antenna Satellite which has 12 actuators, 39 sensors, and 27 outputs.
Data was also collected to provide some verification of the validity of
algorithm SSP-1. For the sake of brevity, only the general details of the
model are presented in (8.1). A complete model description is provided

in Appendix C along with a schematic describing sensor and actuator

locations.
X = Ax + B(u + w); x:R26; uaR]Z; weR'2
y = Cx; yeR27
v =1i 2 2. ) i
= 1im Ef||¥||Q + llull g}; @ >0, R>0(Q, and R diagonal)
toe

More specifically,

27 q 12 r
2. 4 2, i
Tim |} E{y.“} + ) E{u.%}
e e A E (8.1)
where, _th
ay Yim = Max allowable value of i~ output
i ==
Yim Lq. = dimensionless output weight
i
rs Usm = Max allowable control effort for ith actuator
1 ;?;. iry = dimensionless control weight
39

zZ = Mx + v; 2R

E{w(t)) = E{v(t)} =
EW(t)w (1) = W6(t-t)s W > O

E{U(t)UT(T)} V&(t-r); V>0

ECu(t)wl (1)} = 0,E{x(t)w (1)} = 0, E(x(t)u'(x)} = 0, v > t

S NS e SN s S




A closed loop analysis of (8.1) was performed and Q and R were chosen such
that system specifications were met (i.e. y?m 2.E{Y12}’ i=1, ....27, “?m >
E{u,?}, i=1, ....12). Algorithm ASP-1 was then applied. Specifically, the

actuators with negative values of Viact (and not necessary for controllability)

were deleted one at a time. Figure la shows a graph of the total system cost
versus the number of closed loop actuators as the algorithm progressed. The
nuniders above the bar graphs indicate deleted actuators. Figure 1b shows the

total output cost W versus the number of closed loop actuators.

Note that the algorithm recommends a 6-actuator closed loop system and
that this system is almost 25% better in terms of total cost and performance

cost than the original 12-actuator system. It is important to note also

that the control effort of each actuator in the reduced actuator system
was still within its specifications.

As a partial check on the optimality of the ASP-1 algorithm, the
system was iteratively operated with each one of the 12 actuators deleted
while the 11 other actuators remained. The results are shown in
Figure 2.

From Figure 2 it is apparent that deleting actuator 10 would be the
optimal decision if only 1 actuator were to be deleted. This result agrees

with the decision of Algorithm ASP-1 for one actuator (See Fig. 1). To



»
\
)

check the complete optimality of Algorithm ASP-1 empirically, the analysis
of Fig. 2 would have to be repeated for any 2 actuators deleted, any 3
actuators deleted, etc. until the entire set of possible combinations were
exercised. Clearly, this brute force approach is, computationally, an

undesirable alternative to Algorithm ASP-1.

The in situ contribution or "value" of the ith actuator is given by
viaCt. However, the actual perturbation of the cost after the deletion of
the ith actuator will be labeled AViaCt.

Mathematically speaking,

(8.2) 20,2t £ y(m-1) - v(m)

th

where V(m-1) is the cost of the system operating without the i actuator

and V(m) is the cost of the system operating with all actuators.

act act

Since we intend to use Vi as an approximation of Avi in the

actuator selection process, we wish to know how good the approximation

is.
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act

Figure 3 indicates that Uiact tracks the actual aV.®“" with some bias.

However, a more important feature of actuator costs would be

(8.4) (V.act Z.VjaCt)

1 act lAV.ac'c)

=> (AV_i ;

Verification of (8.4) would be sufficient for verifying the optimality of

Algorithm ASP-1. By comparing the data of Figure 2 to the ordering of

act
i

v with all actuators present, condition (8.4) was verified for the

example problem.
Another interesting fact noticed in the data for this example was
that if the deletion criteria of Alg»rithm ASP-1 was applied only to the

act’ (i.e. a new ranking was not calculated after

original ranking of Vi
each deletion) the algorithm still retained the same six actuators as
before. If this result is shown to be a property of ViaCt, Algorithm
ASP-1 would become non-iterative and this would greatly reduce its
computational burden. In summary, the results presented above indicate

the usefulness and potential optimality of Algorithm ASP-1 for solving

the noisy actuator selection problem.

A P B G R St RIS T ICAERCPEREN BN ,‘.'__.'J.P\_.-,\_. R i
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ff In addition to applying ASP-1 to the hoop-antenna model, some
K
f‘ verification data was collected for Algorithm SSP-1. The data consisted
Q.

a of 7 simulations with only 38 of the 39 sensors acting (See Appendix C)
(Y
iﬁ. and a different sensor deleted for each simulation. Table 3 shows the
iy
?w original Viv ranking of the seven sensors when all 39 sensors were
g

' acting.

KX
s
A Sensor_# Ranking
X
& 10 - 1

v 37 13

SN

38 14
Qi 34 15
A 29 17

14 28

z. .
it ! 2
o v

' Table 3: Vi ranking

_{ Figure 4 is a plot of aV = V-V(£-1) and Viv versus the deleted sensor where
~  V(£-1) is the value of the performance metric with only 38 sensors acting.
,
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X Figure 4 indicates that Viv is a good prediction of the increase in the

th

p performance metric that results when the i~ sensor is deleted. Comparing

Figure 4 to Table 3 the following observation can be made

:' (8.5) Viv > Vjv => AV,‘ > AV:j
.
R If (8.5) can be shown to be a generic property of the SSP-1 algorithm, it
'g would be sufficient to prove the optimality of the Algorithm.

i'

! 9.0 Conclusion

Y This paper has defined Input Cost Analysis (ICA) and Output Cost
& Analysis (OCA) and shown the basic properties of each. Algorithms using
f ICA and OCA in an open loop setting were then presented and they provided
fj an optimal solution to the open-loop input and output selection problems

S posed in Sections 2 and 3. In Section 4, closed loop versions of ICA and

‘ OCA were developed and their properties discussed. Selection of noisy

i actuators was discussed in Section 5.0 and algorithms using closed-loop
33 ICA and OCA were suggested for the solution of ASP-1 and ASP-2. In

R Section 6 it was shown that adding sensors cannot degrade LQG performance.
f' Noisy sensor selection problems were defined and algorithms using closed-

: loop OCA and ICA were posed for the solution of SSP-1 and SSP-2. In

) -Section 7, a combined sensor and actuator selection algorithm was suggested.
;2 The noisy actuator selection algorithm, ASP-1, of Section 5, was applied

E: to a model of a hoop antenna satellite in Section 8. The results indicated
) that the system performed better with a fewer number of noisy actuators.

j‘ Research is continuing in these areas. In addition, data was also presented
3 in Section 8 which supported the optimality of algorithms SSP-1 and SSP-2.

: Both empirical and analytical research on the optimality of the algorithms |
,: posed in this paper are continuing with particular focus on the combined

g algorithms suggested in Section 7.
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Appendix A: Proofs

Proof of Theorem 2:

For u = 0, it can be shown [4] that the V defined in (1.1) is equal to
value given by (1.10), (1.11). Using the fact that trAB = trBA, (1.10)

vecomes
(A1) v = tr[SBWB'] = tr[BVSBW)
But, from (1.12)

v.Y =

j=1 ! i

[B SBW),, = tr(BTsBW]

wem 3
|IM5

(A2)

Therefore, from (A1) and (A2)

w
1V‘

<
n
ne~3

i
Proof of Theorem 3:
The expression (1.12) can be written as follows, if W is diagonal,

(A3) v = b, TSb]N11 (b = ith co1. of B)

" The stability of A guarantees that S is the unique and at Teast positive

semi-definite solution of the Lyapunov equation (1.11). Therefore, since
B is of maximal rank (i.e. "bill >0 for all i =1, ... m) and since

W > 0 implies wii > 0, then (A3) cannot be negative and the first part of

the theorem is proved.

The observability of (A, C) guarantees that S is positive definite.

Hence (A3) is strictly positive and the theorem is proved. #
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it Proof of Theorem 4:

Without loss of generality but with considerably more ease in re-

0! presentation, assume the last input, Wos is to be deleted. The following
E partitions are defined:
)
l~‘
by (A8) B = [By b 15 By eR™X(MT)p cqnX]
\
:
B Wp W 1)x(m-1 1x1 1

(A5) W= | R MR (MIXT) I, o
9 “Rm
N
0
k' using (A4) and (A5),(1.12) can be written as
. _ T _ T T, T T T
- (A6) V=tr[SBWB' ] = 1:r‘[SBRwRBR + Sbwpr BR + SBRmebm + Sbmwmbm ]
i after deletion of the mth input,

T
2 (A7) V(m-1) = tr[SBRwRBR ]
s
D! and
' W _ rgl =n T T
ﬂ:. (A8) Vp = [B'SBW] = b 'SBow + by Sb¥
!
: note that (A8) can be written as follows:
. w _ T T

. (R9) V" = trlsBawp b+ Sb w b ']
: using (A6) and (A7),
I
- wia V= T, T T T
; (A10) AV V-v(m-1) tr[Sbmem Bp ]+tr[SBRmebm ]+tr[Sbmwmmbm ]
]
[}
45 substituting (A9) into (A10) yields:
"y
.:'
L To T W

(A11) AV, tr[Sbmem Bg ]+ Vi
§
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) Now, using tr(AB) = tr(ATBT) and the fact that S is symmetric, (A11) becomes

W T W
(A12) sy = tr[SBRmebm ]+ v,
Adding and subtracting tr[Sbmemme] to (A12) results in:

w_ T T w T
(A13) sV "= tr{SBowpnb 4Sbow b 1Y+ v Y - tr[sbow b "]

using (A9) and rewriting tr[Sb w_b T] b TSb w__ gives

m mmm m mm

wo_ w T
(A14) Avm = 2Vm - bm SbmWnn

letting m = i in (A14) completes the proof of (2.3)
ﬂ' For Proof of (2.4) look again at (A11)

3y
/ (A15) AVm = trisb wp. BR T+ v

Where wp. = 0 if W is diagonal. Hence (A15) leads immediately to (2.4).

. for Proof of (2.5),

! If W is diagonal, the expression for Viw becomes:

; (m6) v -

W~ 3

T R T
5 bi Sbjwji = bi Sbiwii

since S does not depend on B, (A16) implies that the input cost for the jth

z input s dependent strictly upon the ith colum of the B matrix and the

ith diagonal entry of W. Therefore, no matter how many inputs are deleted,

the cost of the ith input in the reduced system will not change. There-

e fore, invoking Theorem 2 for the reduced input system

2 X
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v(m) = ¢ Viw where R is the set of m inputs now acting
ieR
on the system.
#
Proof of Theorem 5:
For the transformed system,

% = T 1ATx + 7" VBw
(AY7) y = CTx

V= 1lim E{HyIIQ}, Q>0

to

the input cost is

(A18) v = 87Tk VBu),;  (from 1.12)

where from (1.11)

1 T

(A19) kT AT+ TATT Tk + TTcToeT = 0

post multiply by T']and premultiply by 7 in (A19)

-T

(A20) T k17!

To-T

A+ AT !

+C'QC = 0

~ Because A is stable, (A20) and (1.11) both have a unique solution which in

(1.11) was defined to be S. Therefore,

(A21) s =T k7]
or
(A22) k= TIST

substituting (A22) into (A18) gives:
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W _ rale-T¢Terr) = al
(A23) Vi =[BT 'TSTT Bw]ii (8 SBw]ii

which is identical to Viw in (1.12), and the proposition is proved. #

Outline of Proof of Theorem 6:

The most straight forward proof of the validity of (4.8 and 4.10)
is to substitute them into (4.3 and 4.6) respectively and then multiply
out the partitioned forms of the matrices which are given in (1.13).

The details are omitted.

Proof of Theorem 7:
For diagonal W and V, equations (4.12) and (4.13) can be rewritten

as follows:

(A24) v

T .
i bi (K+L)biwii, i=l, ... m

v_T _ -1 | _ :th T
(A25) l/_i fi Lfivii (fi = Pmivii )s m, =i col. of M

and P is defined by (1.13).

The conditions (4.0) when applied to the closed loop system (1.13)

guarantee that K is positive definite and L defined by (4.9) is at least

positive semi-definite. [4] Therefore, since W > 0 and V > 0 (A24) can
never be zero or negative and (A25) can never be negative. The matrix L
defined in (4.9) will be positive definite if the pair (A-FM, G) is
observable. Hence, with this condition, (A25) can never be zero or

negative and the theorems proof is complete. It should be noted that the

full rank of B and M imp1ies||b1H # 0 and HfiH ¢ 0.
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Proof of Theorem 8:

The proof is the exact dual (Table 2) of the proof of Theorem 7.

Proof of Theorem 9:
Since the closed loop system of 1.13b is in the same form as 1.1

the proof of Theorem 5 and its corollary applies directly to Theorem 9.

Proof of Theorem 10:
From [4] it is known that the closed loop performance metric V (4.1)

of (1.13) can be expressed as follows:

T

(A26) v = tr[KewB' + PGTRG]

Now let V_ equal the system performance metric for the system operating

with one additional sensor. Therefore,

(A27) v, = tr[KBKB' + P,G'RG]
where

T T, -1 T,
(A28)  PAT + AP, - pMTV, M P, +BuBT = 0

M
(A29) M, 7| s meR” .
m (i.e. added column of M' matrix)

1x1

-<
n

(A30) . 3 v, eR
+ (i.e. variance of new sensor noise)

Subtracting (A27) from (A26) gives the following:

(A31)  av 2 v-v, = tr[(P-P,)GTRE]
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Equation (A31) can be rewritten as follows:
(A32)  av = tr[(P-P,)6'RG] = tr[ /RG (P-P,) /RG ']

Therefore, if (P-P+) is at least positive semi-definite the theorem is
proved.
Recall that the matrix P used here and in (1.13) is defined by the

following:
(A33) PAT + AP - PM'V TMP + BWB' = 0

Now, subtracting (A28) from (A33) gives:

Ty-1

(R38)  (P-P,)AT + A(P-P,) - PMIV" T

-1 _
MP + P.M,'V,TMP, =0

adding + PM, Ty !

LV, MP, to (A34) yields:

Ty Ty -1 Ty~ Ty lup -
(A35)  (P-P,)(A"-M,_'V,"'M,P) + A(P-P,) - PM'V'MP + PM,'V,"'M,P =0

"M, to (A35) results in:

+
o
=

adding v,

Ty Ty -1 Ty -1 T,-1
(A36)  (P-P,)(A'-M,'V,"'MP,) + (A-P,M,_'V,”'M,)(P-P,) - PM'V™'MP +

T, -1 T

-] _
PM,'V,'MP_ + PM V7'M (P-P,) = O

adding + Pmv,”'m'P to (A36), making use of (A29) and (A30) and the

definition F, = P,M, TV,

MV, gives:

(A37)  (P-P,)(A-FM)T + (A-F M)(P-P,) - PM.TV, "M (P-P,) +

T 1T

-1 - _
PM, 'V, M (P-P,) + Pmv,"'m P = 0

+

collecting terms gives:
T T, -1
(A38) (P-P+),(A-F+M+) + (A-F+M+)(P-P+) - (P-P+)M+ v, M+(P-P+) +

=1 T, _
va+ mpP =

-t
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K Equation (A38) is a standard matrix Ricatti eq. It is well known, [4],
i that the soln. to (A38) (i.e. P-P,) is at least positive semi-definite

if the matrix (A-F, M) is stable. The matrix (A-F,M,) will be stable

if the matrix pair (A, B) is controllable and the pairs (A, C) and (A, M+)
2: are observable. From the conditions (4.0) (A, B) is controllable and

(A, C) and (A, M) are observable. Therefore (A, M+) must be observable

RS

since adding a Row to M (i.e. generating M+ cannot effect the observability

of (A, M). #

.......
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Appendix B: Vi and the Chen-Seinfeld Switching-Function

In [1] it was shown that the switching function for the extended

Chen-Seinfeld method of optimal selection of sensors in systems of type

(1.13) was
(81) oc? - tr(ﬁmiv“miTﬁAz)
where m, is a column of M' and A, is defined by:
(82) np(A-PMTV™TH) + (AT-MTV"TMP)1, + kBR™TBTK = O
where P is defined by:
(83) PAT + AP - f]qif’miV']miﬁ + BWB! = 0
i-
and .. .th
1 if i~ sensor is to be used

i 0 if ith sensor is to be deleted
The expression for Viv is given by (4.3), using F = PMTV'] gives,
(B4) v,Y = [v"MPLPMT]H = Vii']miTPLPmi
where
(85) LCA-PNTV M) + (A-PMTVTM)TL + kR TBTK = 0
(B6) PAT + AP - PMV WP + BWBT = 0
using the tr AB = tr BA (B1) becomes :
(87) ocf = tR0V'm, TPPm. ] = m TPa P ey

NI .‘jf;v;?}y}\'p’ﬂ;\‘?1?\3}%;?;?2?;u{\;ﬂ;?'?j}ﬂF:r\fi*;Tl?“?i??f}*jff“i*i;i*; FABARIS
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comparing eqs. (B2), (B3) and (B7) to egs. (B4), (B5) and (B6) it is
apparent that, with the exception of the trace operation on V'] in (B7),
Viv is equivalent to calculating oc: for the system with q77 admissible
measurements present. (i.e. all q; = 1 in (B3)).

----------
Bt <
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: Appendix C: Hoop Antenna Model

&l

%

- Figure C-1 is a schematic of the hoop antenna rodel (8.1).
o
£
i3 *

o

i

¢

g

b

:

p

b

2 Table C-1 describes the actuator types and locations.
;: Actuator (Torquer) # Location Direction of Torque
E 1 2 X

: 2 Y

’ 3 2 A

4 6 X

K. 5 6 Y

: 6 6 z

: 7 9 X

; 8 9 Y

9 9 z

& 10 10 X

) 11 10 Y

: 12 10 z

o Table C-1: Actuator description

\

e LN T e ™ AT e R A F T o e TR T Tn T S AT A P W B T T S T T L _’z,:.ﬂ_“: s .‘_;-",;-"."f".
(q"')' "-"‘f'\.‘.’l e o)‘"ﬁ' Wy ,-,'{Xu n,: ‘n'l“\. i %r).*' - e P ,‘\' " \' L .. N, Mt




Table C-2 describes the sensor types and locations.

Sensor # Type Location Direction
1 Inertial Angle 2 X
2 113 1 Y
3 " " Z
4 Relative Linear Disp. Between 6 and 2 X
5 1] 1] Y
6 " |1} Z
7 " 9 and 2 X

; 8 n [1] Y
9 [ 1] [1] Z
10 " 10 and 2 X
1 1 n " Y
12 " " Z
13 Inertial Angle 10 X
14 W [1} Y
1 5 L] n Z
16 Relative Linear Displ. between 101 and 10 X
1 7 1] [1} Y
18 H n Z
19 " 107 and 10 X
20 " " Y
2 1 11 [} Z
22 " 113 and 10 X
23 n 1} Y
24 ] 1] Z
25 " 119 and 10 X
26 n [} Y
27 1] " Z
28 Inertial Angular Rate 2 X
29 " " Y
30 " L1} Z
31 " 6 X
32 " " Y
33 [1] n Z
34 " 9 X
35 " 11] Y
36 " [1] Z
37 " 10 X
38 " 1] Y
39 in [1} Z

Table C-2: Sensor description

Iy S.4 & o - . .
"‘9""‘:' :e"!‘“.:""fe ‘.," " e :"gad

R A
DT A

) LN N
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Table C-3 describes the output types and locations (the Y vector

in (8.1).)

Output # Type Location  Direction

>

Inertial Angle 2
» Y n "
Y " "
; Y4 Relative Angle Between 10 and 2
Y " "
Inertial Angle 10
Relative Linear Displ. Between 6 and 2

Y13 " 10 and 2
\ Yie " 101 and 10
Yl " 107 and 10

Y22 " 113 and 10

)
t
¥
§

Yoe " 119 and 10

Y
Z
X
Y
Z
X
Y
Z
X
Y
Z
X
Y
Y " " z
X
Y
yA
X
Y
z
X
Y
/A
X
Y
l

Table C-3: Output description

SRR R T e A
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. The contents of the matrices (A, B, C, Q, M, R, W, V) specified
b))

ik

i in (8.1) are described below.

N . _ 12

3 0 I T
; 10 o [0 0 f 10
! i | se] 10
h @) A L 2 S PO I
e 3 6

: | 0 0 o0 BR | 3

fl N — .

) : 6

AQ

%

. w2 = diag [.40579, 7.2090, 7.2362, 13.277, 44.834, 132.14,
$

4 ' 142.66, 445.01, 448.69, 775.86] (radians?/secz)
> (Clb) Iyp = 10x10 Identity Matrix, I3 = 3x3 Identity Matrix

s 2cw =-diag [.0127, .053699, .0538, .07286, .26283, .45981,
.47777 , .84381, .8473, 1.1182] (radians/sec)
X 10 _

- ME 0 MR 0 10 10 3 3
$ (Clc) M= ’ c=27 [CE 0 CR 0]
R 0 MER 0 MR

\ 10 3

L)

o

o

i The contents of the above defined submatricies are listed on the next
r'.

several pages.

;

i

)

LF

)

}

)

)
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System Performance Requirements:

.02°, i =1,6
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(c2) Y, = .0005 meters, i =7, 8, ... 27

uim =1 n-m

Weights:

qi =1,1i=1,2,4,5

q; = .01, 1=3,6
(C3)

q; = d, 1 =7, 8, 27

r = 10°, =1, ... 12
(c4) Q = diag [82.07, 82.07, .8207, 82.07, 82.07, .8207,

400,000, ...... 400,000] 10°
\_______—w
21 elements
, .5 . -8
(C5) R=1071, , W=1071,
— )
Yy V, = 7.6154 x 10‘913
v
2 3
(c6) v - v .V, =2.5x10 719
v
3 _ -7
y V= 2.5 x 1071,
4 15,
v, = 4.7597 x 107°1,,
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FIG. 2:
FIG. 3:
FIG. 4:
FIG C-1:
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