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I This research seeks to unify certain problems of distributed

parameter control: model reduction, control, sensor/actuator

selections/failure, and decentralized control. These topics are all

related and are to be unified through the quadratic performance metric

with use of cost decomposition methods. The final research topic

on model error estimation is required to make vernier adjustments

after tbestlmodels and controllers are developed, to absorb remaining

modeling errors..-,
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APPENDIX A

Minimal Root Sensitivity in Linear Systems

(IFAC Workshop for Applications of Nonlinear Programiing and Optimal
Control, June 20-22, 1983, San Francisco.)

Robert E. Skeltonand David A. Wagie
Purdue University
School of Aeronautics & Astronautics
West Lafayette, Indiana 47907

Abstract

A lower bound is derived for root sensitivity and an explicit cri-

teria for achieving this minimum is given. Secondly, an optimal output

feec2ack control problem is discussed which penalizes an index related

to root sensitivity.



A2

1.0 Introduction

The modal data for physical systems is rarely well known. This can

make stability predictions unreliable in feedback control problems and

can make the behavior far from the analytical predictions. This paper

documents the smallest possible sensitivity of eigenvalues Ai with respect

to the independent plant parameters in linear systems of the form

=Ax , xcRn ()

axi

That is, the norm of -T and the lower bound of its norm are of

interest. Secondly, a metric related to root sensitivity is added to the optimal

output feedback problem to achieve a compromise between performance and

root sensitivity.

The norm of a matrix shall be denoted by

ll[-]l2 = tr []Q[-] , tr [-] = trace [-J (2)

and the norm of a vector shall be denoted by

II(-)1II =  (.)* Q(-) (3)

where * denotes complex conjugate transpose. Results herein are limited

to the case of distinct elgenvalues for A.

2.0 The Construction of a Root Sensitivity Metric

The sensitivity of the ith elgenvalue axi/aA is a nxn matrix denoted

by Si  3xAi/aA. The norm of SI from (3) is

4 Qn n ax

S tr S i i row ) JQi (4)
t i  =1 aro row

a -. ~ ~ * (4)
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where Aarow = (Aal, ... , A ), and Qi = Q*T > 0. The weighting matrix

Qi is to be chosen larger than Qj if root shifts in xi are of greater

concern than roots shifts in xJ, Within the matrix QI" the weight QI

is to be chosen larger than Q, if the parameters of the nth row of A

(these are associated with x in (1)) are more uncertain than those of

the oth row of A. (Hence, a logical choice for Q is a value propor-

tional to the variance of parameters A row). Finally, the complete root

sensitivity metric of interest is

n n
iS l 1 i 1 2 (5)s =( l Qi BA-Q1

Thus, from the point of view of robustness, a system design with a large

value of s might be considered less desirable than a system design with a

small value of s.

3.0 Computation of the Root Sensitivity Metric

It is assumed that A has a linearly independent set of eigenvectors

e.

Ae= el -' I - 1, ..., n - (6)-

The reciprocal basis vectors xi are defined by

E =[e" . en, Ln1 E 1 . hence Li e = aii (7)

n

Multiplying (6) from the left by Lt , using (7), yields the eigenvalues

in terms of A, its eigenvectors, and its reciprocal basis vectors,

X t IAet . (8)
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Differentiation of the scalar (8) with respect to A provides the required

sensitivity aXI/3A. To derive this result two identities from linear

algebra are required

tr AB = tr BA (9)

m (tr AB) : -A' (tr BA) = BT (10)

where (9), (10) hold for real or complex matrices B and A, and (10) holds if

and only if the elements of A are independent. Hence from (8), using (9), (10),

Etr A(e i*)] = T (11)@--A- = - = ei LI ) =  ie T (

where denotes complex conjugate. The weighted norm (4) may now be -

written

lls i lli 4 tr S QiSi = tr(ieiT)* QIi etT) = ll-il 12 eill 2 (12)

where the last equality requires use of identity (9) again, and where

ne y not t ti* Qti , 11ei112 = e e (13)-

One may note the similarity between (11) and the weak differential of AI
given by Eq. (6.2.3) of [1 ]. Also note the similarity between (12) and

the upper bound of the weak derivative of xi provided on the top of p. 235

in [I ]. This paper seeks lower bounds rather than the upper bounds of

[1 ]. Otherwise the nature of the results are similar (see theorem 6.2.4

- of El]).
Of11D

Note also that without loss of generality eigenvectors ei may always

be normalized to unit length. In which case (12) may be written

US 112 lj , 11ei2I 2 - 1 2 (14)

Q Q
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Define by use of the Cholesky [1] decomposition of Qi= Qi Qi,

r1 = Q1i - Qi =Q; Qi ()

Then (12) may be written

IIsilli = iPitll2 IleiUI2 = t1riI1 2 Ujei12 (16)

The Schwartz inequality [I ] holds for ay two vectors i. e.

I .~ ell <_ IIill Ilei ll  (17)

Since the particuZar vectors i, ei are related by (8),

L1  e1 =1 (18)

(17) and (18) lead immediately to

I tL 11 IIleill > 1 (19)

From (15) note also that

llQ iL l = lrill . (20a)

Hence,

lloill lltill I_ 1lrill -(20b)

Multiply (19) by IIQilj and use (20) to obtain

i I~o 11 IItll (lei l 11 Ilri 11 Ileil Ii IIQil 111

Squaring both sides of (21), using the fact 1jQil 2 = trQT 4 = tr qj = 1Qj 11
leads to

llrill 2  ileill 2  > llQil I  (22)

-U " '



The equality in (19), and hence in (22), holds if and only if xi and eI are

colinear (t.i = e for normalized ej ), [I ]. From linear algebra [2], tl=e i

if and only if A is normal (AA* = A*A). Thus, these results are summarized as

follows.

Theorem 1

Let (Xi, e1 , Zi) be the ith eigenvalue, eigenvector and its reciprocal

baais vector associated with the real matrix A. If A has a linearly inde-

pendent set of eigenvectors ei, i-l, ..., n, then

ax. 2

IBA -lQi 1 IIQi 1I (23)

where the lower bound

1) 2=

is achieved (for Qi t 0) if and only if AA* A*A.

Corollary to Theorem 1:

The sensitivity metric (5) is bounded from beZo by

ns _ .1 I lQill (2!4)

and, for the case QI t 0 (i-1,2,...,n), the minimum sensitivity
n

.S 1.011 is achieved if and onZy if A is noraZ (AA* = A*A).

The corollary provides necessary and sufficient conditions for minimum

root sensitivity. The next section suggests a means to incorporate this

information into the output feedback control design problem...

*
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4.0 Output Feedback Design

It has been shown [ 3]-[ 5] that the necessary conditions for the

output feedback for the system

=Ax +Bu +Dw E(w) = 0,

y =Cx E(w~t) (w T (r), v T(-M) [ 0o (t-T)

Z = MX + v

u = Gz E(w~t) xT(o) =0, t >0 (25)

to minimize

V = lim E( Ily 112+ 1U 2 26 a)

= tr P(C TQC + MTG TRGM) + tr VG TRG (6)

are

0= K(A+BGM) + (A+BG) T K+ MTGTR +T C(7

O = p(A+BGM)T + (A+BGM)P + BGVGT BT + DWO T (28)

0 = RGMPMT + RGV + BTKPMT + B TKBGV + T' (29)

where 0p = 0 for the standard measurement feedback problem in [3 )-5)

Various suboptimal strategies for approximating the solution of (27)-(29)

may be found in the I terature [ 4J.5J

Parameter sensitivity has long been a concern in optimal control.

Some authors [6 ]-[7 ] have suggested modifying the performance index

(26a) by the addition of trajectory sensitivity terms ZJJ 12Y1 1 j2 (where
,i ap1

i = Z, ... ,r represent the uncertain parameters). The resulting

computational burdens are very great indeed, since the dimension of the



A

constraint (state) equations becomes n(l+r). There is also the fact

that minimizing output sensitivity does not necessarily keep root

sensitivity small. Hence, the concerns of stability in the presence

of parameter uncertainty are not addressed by trajectory sensitivity

methods. In Section 3.0 we showed that root sensitivity is minimized

when A is normal. Motivated by Section 3.0, we note that some of the

shortcomings of the trajectory sensitivity methods are therefore avoided

by minimizing an "abnormality" index related to root sensitivity. It has also

been shown [8] that the robustness bound for a certain class of parameter

errors is maximized when the plant matrix, A, is normal.

Motivated, therefore, by Theorem 1 and [8] we pose a new performance

index for optimization that includes an "abnormality" penalty

Vm = lim E(jjyII + 2) 11 ) + 8II(A+BGM)(A+BGM)T-(A+BGM)T(A+GBM)II (30)
t-- C TQC

When B is much smaller than the norms of Q and R the solution tends toward

the standard optimal control result (27)-(29) with 0 = . On the other extreme,

when a is chosen much larger than the norms of Q and R, the closed-

loop system approaches the smallest possible root sensitivity. (From

Theorem 1 and its corollary note that root sensitivity is minimized if and

only if the latter term in (30) is zero. Other choices

of weights on the matrix norm may be chosen besides CTQC. This choice

is suggested only to make the sensitivity weight CTQC the same as the

state weight in y xTQy = xT[cTQCIx.

Using the same matrix norm as in previous sections, and defining

A = A+BGM, V becomes

row.-



V' = tr P(CTQC + MTGTRGM) + tr VG TRG +

0 tr[(AAT - ATA)]CTQC[(AAT - ATA) ] (31)

The necessary conditions for the optimum G are obtained by augmenting the

constraint equation (28) [which defines the P in (26) and (29)] to (31 )

via Lagrange multiplier matrix K and differentiating the augmented V' with

respect to P, K, and G. The equations (27) - (29) result, with the fol-

lowing definition of *:

6 TB{[(AA T - ATA)CTQC + CTQC(AAT - ATA)]A

- A[(AAT - ATA)CTQC + CTQC(AAT - ATA)]IM T  (32)

These results are summarized as follows:

Theorem 2

The necessary conditions for minimizing (30) subject to the constraints

(25) are given by (27) - (29) and (32).

The following conclusion should also be clear, since-for-an -arbitrary

A the matrix A+BGM can be made normal (by choice of G)only if rank B =

rank M = n.

Theorem 3

Suppose Qi = , i 1, ... , n in (5). The minimum sensitivity s = n

can be guaranteed by output feedback control for arbitrary A if and

only if rank B = rank M = n. Furthermore, the control gain in this case

is not unique. Two gains that provide minimum sensitivity are



G = -B IAM-1  (33)

G= B-1 ATM-  (34)

Proof:

Substitute (33), (34) into the normality condition for minimum sensitivity

(A + BGM)(A + BGM)T - (A + BGM) T(A + BGM) = 0 (35)

to see that the condition (35) holds.

5.0 Application of Closed-Loop Root Sensitivity Design

Example 1:

The pitch motion of a rigid aircraft is governed by, [9],

Y-=+ u + w) (36)
2- 2L'% '

where a is the angle of attack, q is the pitch rate, u is the elevator

angle, T is the lifting time constant, w0 is the undamped pitch natural

frequency, and Q is the elevator effectiveness. In the open-loop case,

(u+w)= 0. we are interested in the root sensitivity properties of (36).

Note from the corollary to Theorem 1 that minimum sensitivity
2 i 2

s - I ti-Il = 2 is achieved if and only if A is normal. Computing the~i=1

"abnormality" matrix (AA* - A*A)yields

1 21
AA* - A*A (0 IT+% (37)

Thus, root sensitivity takes on its absolute minimum when 6)0=1, 0.

This, of course, is not a practical possibility for the aircraft. Now con-

sider the output feedback design of Section 4.
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Example 2: Let the angle of attack measurement be made z = e+v where Ev = 0,

E[%(t)v()]= 6(t-T) describes the white measurement noise v and EW = 0

E[W(t)w(r)] =6(t--r) describes the white actuator noise w. For the system (36)

design a measurement feedback control law for regulating u such that

V = lim {E(q2+pU 2 ) +B IKA+BGM) (A+B.1) T-(A+BGM) T (A+BGM)Ii T 1 (38)

is minimized. Assume Q = 1, Q = I, and C = [0, 1].

The solution is provided by (29), where P is obtained from (28),

S T I -1 WO2 (G2+1)

1 "+ .'T1-G 2Fl-T

and K is obtained from (27) (For this example R p)

- =L [G2 PT-WoZT(G-1)] -1/2
-1/2 pG22+1 - '"o2  (40)

2"rw 2(1-G)

For the aircraft example, (29) yields a fifth order equation in G as a

2 2
function of B, p, w0 and T. For given values of p, B, and T this

equation will yield five candidate values of G. The optimal G is that

root that minimizes the cost function. tn the present case G < I is

required for stability. If none of the real G are < 1, then analysis

of this problem shows that a decrease in B will drive G toward more
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stable values. After changing 8, the equation can then be solved

once again for G. This iteration is repeated until a stable (G < 1)

solution is achieved. (One may also increase p to seek stability,

although the direction of change of p required depends on 0).
• %~2=

Assume w 2=1, T=.7 (this corresponds to damping ratio = .71). Set

ting .8=0, p=l yields the standard optimal measurement feedback control

G = -0.118 (41)

and setting a= , p < - yields the optimally sensitive design

2.0 .(42)

This choice of G in (63) forces the closed-loop system matrix to

be symmetric

A + BGM - +(43)

[W 0 2+W 0 2G 0 1 01

and by Theorem 1 and its corollary, the sensitivity is at its minimum in

this case. Note, however, that stability is lost by this minimum sensitivity

design, (G < 1 is required for stability). Thus, minimally sensitive

designs might not be stable.

Figures 1 and 2 show the tradeoff between output performance

VY-- lim EIIyIIQ versus the control effort Vu ,-lim Ellull (Fig.l)

and abnormality of A = (A+BGM), VA -- I --A A IICTQC, versus the control

2
effort (Fig.2). For both figures w = 1, T=.7, B and p vary. In the stan-

dard output feedback design (8=O), the output performance is improved with

an increase in control effort (Fig. 1) whereas the abnormality index greatly

increases with control effort (Fig. 2 with B = 0). Note also that a > 2 is not

S.c
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desired, since larger values of B do not yield substantially larger

abnormality reductions (Fig. 2) but do accelerate the degradation of

the nominal output performance (Fig. 1).

ID

*CU

CC3

C)

-I

Increasing p

.I I I I I I '
.0000 .0500 .1000 .1500 .2000- .2500 .3000 .3500

u m E u II

Figure 1. Output Cost (Vy) vs Input Cost (Vu) (T.7, wo 1.0]



A14

0

Increasing p

Cv

.0000 5..5. 03

Vu <-t-.

Figure 2. Abnormality Cost (VA) vs Input Cost (V ) T-.7, w'o=1.o)

=:-- B =
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5.0 Conclusions

Explicit expressions for a scalar metric of root sensitivity is

given in terms of the left and right eigenvectors of the system, so that

sensitivity of each eigenvalue with respect to the plant matrix may be

readily computed. A necessary and sufficient condition for minimum root

sensitivity is that the plant matrix of the state equations be normal.

However, root sensitivity alone is not a sufficient design goal.

Thus, an "abnormality" term is added to the traditional quadratic per-

formance metric of optimal control. The necessary conditions are given

for the solution of this problem and an example gives some practical

insights.

The weaknesses in these results include the fact that the necessary

and sufficient condition (normality) for minimal root sensitivity are

only local results and also that they apply only for non-defective plant

matrices (A has linearly independent eigenvectors).
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ON SELECTION OF WEIGHTING MATRICIES IN THE LQG PROBLEM

R.E. SKELTON AND M.L. DE LORENZO (20th Allerton Conf. on Commu-
Purdue University nications, Control and Computinq,
School of Aeronautics and Astronautics Oct. 6-8, 1982, Monticello, IL.)
West Lafayette, Indiana 47907

ABSTRACT

The weighting matrices in the standard Linear Quadratic Gaussian (LQG)

theory are most often used to achieve pole assignment. Instead, this paper

proposes to select these weighting matrices to achieve RMS bounds on inputs

and outputs.

1.0 INTRODUCTION

One of the most frequent complaints about the application of the

standard Linear Quadratic Gaussian (LQG) theory is the "arbitrariness" in

the choice of weights Q and R in the quadratic cost function

lim (Ily(t) 11 2 1u(t) 112) (1.1)-). (f t iQR

which is minimized subject to the constraints

-Ax + Bu + Dw , xcRn , uCR' , wERp

y = Cx ycR (system outputs) (1.2)

z - Mx + v zERI (system measurements)

Ew o Ev- 0o

E xT(to )  xT(t o ) wT(T), vT() - 0 00

w(t) 0 W6(t-T)

L V L 0 V6(t-t)

W >O, V >0

where w(t) and v(t) are zero-mean white noise processes with intensities

W and V respectively, and E is the expectation operator and T denotes

matrix transposition. In the literature, there have been two basic sug-

gestions for the choice of Q, R.

The first suggestion, made by Bryson [1], relates Q and R to the
2 2input-output specifications ai , 1i ; where the desired values of the

response of the closed-loop system are



2 2 Yi 2 62

yi(t) <co or (;i) < 1

(1.3)

2 2 u 2
U21 (t) < )i  or ()2< I1

± - i -

leading to Bryson's suggestion for the choices of Q and R

Q / 2 R - 2 (1.4)

Hence with this choice of Q and R (1.1) becomes

k m
V -r {i I Q ii(Ey i) + IR ji(Eu2)1 (1.5)

V -1- j =i

It usually happens, however, that even though this choice of Q and R has

some physical motivation the actual y2(t). u2(t) do not satisfy the

desired bounds (1.3). Furthermore, there is no theory available which

will show how to choose Q and R such that (1.3) is satisfied. Neither is

there a method available which will guarantee satisfaction of (1.3) in the

mean squared sense

Ey 2 2 a 2
i i (1.6)

2 2Eu ) <j • j1= , ... , m
ju -j Pi

The second basic suggestion about the choice of Q, R in the literature

has been to choose Q and R to achieve a desired pole assignment in the

closed-loop system [2] ,[3]. In [4] a gradient technique adjusts the ele-

ments of Q, R to maximize the singular values of selected return difference

matrices which are related to stability margins and disturbance rejection.

There has been much more written about the pole assignment role for Q and

R than about the time response assignment (1.3) or the variance assignment

(1.6). This is indeed curious since LQG is a theory steeped in the time-

domain and is directZy concerned with the time responses y(t) and u(t).

One might even argue that it is a bit obtuse to use LQG theory to do pole

assignment since there are more direct methods to assign poles which do

not use the artifice of LQG theory, [5].

This paper deals with the more natural use of LQG theory in the time-

domain question relating to objective (1.6). The ideal goal is to find a

4 
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linear dynamical feedback controller which satisfies the variance con-

straints (1.6). We shall alter this problem statement to make it more

tractable by using the steady approximation of the constraints (1.6)

li Ey(t) < 2

t-).w i -1(1.7)

lim Eu (t) 2

Then, a penalty function approach (i.e. LQG theory) is employed to accommo-

date the constraints (1.7), in the manner (1.5) by proper choice of Qii'

and R ii. This formulation automatically satisfies the constraint for a

linear dynamical feedback controller, since the optimal LQG controller for

(1.5) employs the standard Kalman filter and state feedback control gains.

This will be called the

Constrain/ed Variance LQG Problem (LQG ):

Find Q and R in (1.5) so that (1.7) is satisfied, subject to

(1 .2).

The LQGcv problem does not have a solution for every set of require-

2 cv-, k), , (-,J, m). To see that this is true,

J k
consider a single input-single output system. Hence, ycR (k-1), ucl'(m-l).

The LQG theory promises an inverse relationship between output regulation

and control effort as the weighting R on control effort varies from 0 to

infinity, as depicted in Fig. 1.

et

Fig. 1 Results of LQG theory for SISO Systems



Clearly no solution to the LQGcv problem exists for the problem imposed

by the values (Oa, Pa) but an infinite number of solutions exist for the

values (ob, 1b).

The key to progress beyond the Bryson rule (1.4) is to provide a

relationship between the actual variances Eyi 2 Eu2  and the choices of
i 

and Rii in (1.5). This step is provided in Section 2 and is based upon

the cost decomposition results of [6]. An iterative algorithm based upon

these results is given in Section 3. Section 4 applies the algorithm to a

Large Space Structure.

2.0 INPUT/OUTPUT COST ANALYSIS

Under the assumptions (2.1)

(A, B) , (A, D) stabilizable pairs

(2.1)
(A, C) , (A, M) detectable pairs

the LQG problem (1.1) (1.2) has the solution [ J

-1 T
u - Gx , G -R BKx (2.2a)

KA + ATK -KBR-IBTK + CTQC -O (2.2b)

x - (A+BG)x + F(Z-Hx) , F- PMTV -  (2.2c)

PA T+Ap -PH V MP + DWDT - 0 (2.2d)

yielding the closed-loop regulator

( ) [: [ ;] (:)
(2.3)

System (2.3) is a linear system driven by white noise and with output

y. It has been established in [6) that such system outputs y, satisfy a
"cost-decomposition" property

k+m2V I V =lim EjlylI2  (2.4)

where

" " " "" " " , , . . . . .. . . . . " . .- . -' .,
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VY 1im E(Y (2.5)
t-- QY

The calculation and study of the "output costs" VY is called "Output Cost

Analysis" in [6 ]. We momentarily postpone the calculation of VI.

Now the choice Q - I in (2.5) leads to

- lim E I y) lim E(y ) i-1, ... , k (2.6)

1 2 ay 2  2

t+- ai t:-+=

S1 im - E( Yj) lir E(ui) , j=k+i (2.7):t-- 2 yj t -C
i=l, ... , m

and for Q I, note that (2.4) becomes the unzeighted cost V°

1° l1 ly112  + IjuIl 2)  . k m u
V= lim E(y I V + I " (2.8)

t-. i-l j=l

The system (2.3) evaluated according to (2.8) yields the following output

cost analysis, using the output cost formula given by Eq. (4.14) of [6].

2 2 T
v -lim E(y )- ilcill = cT Xc (2.9a)

- lim E(u2 ) -2  2 - 2  T Kb (2.9b)
t-*W ±il 1b 2K " 

i  ±

where X and K satisfy

T VIMP  T

-X+P , PA +AP-PMT  +DWD - (2.10)

T -1 T TK = KXK , KA + ATK - KBR-BTK + CTQC - 0 (2.11)

-RBK, X(A+BG) + (A+BG)Tx + FVFT - 0 (2.12)

F - PMTV- 1

These "output costs" Vy and "input costs" U provided by (2.9) show the
±

actual contributions of y and ui as opposed to the desired contributions

a i and i"

...................... .". . . ." .



These results now allow a precise statement of the Q, R selection

problem. Note that the weights Q and R appear in the cost (1.1) which is

N' to be minimized to obtain the linear controller (2.2), but the weights

do not appear in the cost (2.6)-(2.8) used for evaZuation of the controller.

Thus, using (2.9)-(2.12) the LQGcv problem reduces to

The LQG Problem:
cv

Find Q, R such that

11c1112 -< a°2 (2.13a)
, - i

Ri ijbiK < i (2.13b)

V

where X and K are given by (2.1O)-(2.12).

3.0 AN ITERATIVE ALGORITHM FOR THE LQCcv PROBLEM

The parameter optimization problem posed by (2.13) requires the

simultaneous solution of (n2+n+2k+2m) algebraic equations. Gradient

schemes may be developed for such purposes. However, we wish to avoid

gradient schemes and the attendant numerical problems. Instead, we intro-

duce an iterative scheme for the selection of Qtt. Ru such that the

weighted output, input costs are constant. That is, if VY(k) denotes the
othkth ofik ndR()

value of Vy on the k iteration of Q (k) and Rl(k), then

VY(k+l) Q i(k+l) - Vy(k) Q(k) for all k (3.1a)

and similarly

Va:(k+l) R (k+l) - Vu(k) R (k) for all k (3.1b)
i ii i ii

Now if these iterations converge to the maximum allowable values

(Vy ( k + l ) ) 02 and V (k+l)p 2 )on the (k+l)St iteration then (3.1) reduces
.: to

a Y(k)

Qli (k+l) =-2 Qii(k) = 1 (k) Qii(k) (3.2a)
.a t
* i

R (k+l) = R (k) - el(k) R (k) (3.2b)
ii 2 ii i i

" where 0(k) and *(k) are non-negative numbers [6]. Note that the

A:



constraint (1.7) is satisfied if W'(k) < 1 and (k) < 1. The proposed

algorithm for Q, R selection is now summarized.

The LQGcv Algorithm for Q, R Selection:

STEP I: Set k-0, guess an initial value for Q(O), R(O) and solve

PAT+AP - PMTv-IMP + DWDT . 0 , F - pMTv-1 (3.3)

STEP II: Compute Vy(k), e(k) and check for solution

2 -2

V 2 LP (k) -, - (k) Ib 12 (3.4)Il IX(k) i ii 1K

where X(k), K(k) satisfy X(k) ! X(k) + P, K(k) A K(k)X(k)K(k)

and K(k), X(k) satisfy

0 = K(k)A+ATK(k) - K(k)BR-I(k)B TK(k) + CTQ(k)C (3.5)

T -T

0 - X(k)[A+BG(k)] + [A+BG(k)] X(k) + FVF (3.6)

G(k) - R -(k)B TK(k) , (37)

STEP III: If 4 (k) 2 1 do not change Q 
ii

if *p (k) -2 >1 do not change Rii

Pi

If 0 (k) > 1 change Qii according to

Qii(k+l) - 4i(k) Qii(k) (3.8)

If @i(k) < 1 change Rii according to

R ii(k+l) - i(k) R ii(k) (3.9)

Set k-k+l in (3.4)-(3.7) and return to STEP II until 4i(k) < 1

for all i-1, ... k and i (k)> 1 for some i-I, ... m.

STEP IV: Change Qii according to (3.8). If i (k)< 1 change R according

to (3.9). Jo to STEP II until i (k+l) - *i(k)I < e for
4.4(k+l)> 1 (i.e. no more change in out of spec actuators).



There are many more choices for a Q and R algorithm other than the

one posed above. To date, this algorithm has produced the best results.

However, there is currently no proof that failure of this algorithm to

converge means that a choice for Q and R does not exist. Research is

continuing in this area. The algorithm does, however, attempt to use the

"general" (Fig. 1) nature of LQG theory to its benefit. Specifically,

choosing to adjust the rii's for those actuators with <(k) 1, using
* 2 2

(3.2b), reduces ri and should serve to reduce E {y) and E.{u ) for
1i i

actuators with (k)> 1. Using (3.2b) to adjust the r i' s on actuators

with *i(k)> I does not have this doubZe beneficial effect. In addition,

once i(k) < 1 for all i-1, ... k, using (3.2a) to adjust q i will reduce

qii which should serve to reduce E {u 2  for all i-1, ... m.
Wi

4.0 HOOP-COLUMN ANTENNA EXAMPLE

The LQGcv algorithm has been applied to a model for a hoop-column

antenna which has 26 states, 39 measurements, 12 actuators, and 24 outputs.

A detailed description of the model is presented in [6]. The initial

guesses for Q and R were appropriately sized identity matricies. Figures

2, 3, and 4 are plots of i(k) and *i(k) and reflect 14 iterations of the

algorithm. The numbers appearing along the horizontal axis represent the

output or actuator number. The 14 points associated with each horizontal

number are the values of W(k) or (i.)for each iteration from 1 to 14.

As was expected, Figs. 2 and 3 show that the algorithm forced all outputs

to be at or below their maximum values (i.e. 1 or below on the plot).

The fact that the algorithm tried but could not drive all outputs to their

maximum allowable a is mathematically predictable but can not be discussed

at this time. It is, however directly related to the sensitivity of X

to changes in q 2

Figure 4 indicates that E.{u } for all actuators converged to levels

abovei and the algorthm does not provide a solution. However, a

solution is obtained if p 2is changed to the converged value of E {u 2.
i ODi.

As mentioned earlier, the failure of the LQGcv algorithm to converge has

yet to be proven as sufficient for no choice of Q and R to exist.

laZ.2
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5.0 CONCLUSION

This paper has presented an algorithm for selecting the Q and R

weighting matrices so that the steady-state LQG regulator operates within

specified RMS bounds on the input and output variables. The algorithm

is iterative and requires the calculation of the steady state control

Ricatti equation and a steady state Lyapunov equation of dimension n (i.e.

# of states) at each iteration. This is a considerable computational

savings when compared to the requirements of a standard parameter optimi-

zation gradient technique. Research is continuing to determine if failure

of the algorithm to converge to an appropriate Q and R is necessary and

sufficient condition for no choice of Q and R to exist. As pointed out

by the hoop-column example of Section 4, even when the algorithm does not

determine the required Q and R it provides the RMS regulator specifications

for which Q and R weights have been found.
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APPENDIX C C1

GENERALIZATIONS OF COST-EQUIVALENT REALIZATIONS (IEEE International Sympo-
sium on Circuits and System

Robert E. Skelton, Arthur E. Frazho, and David A. Wagie Ma 2-4, 1983, Newport Beac

Purdue University. School of Aeronautics and Astronautics
West Lafayette, Indiana

Ro R "  Rn*

ABSTRACT RI R0  . . . Rn_ 1 .

This paper bridges a gap between two known n
results in model reduction theory. Cost Equiva-
lent Realizations [1] are known to match the
first jto output covariances of the full-order Rn .. ...... R
system. while we will define a Stochastically 0 -
Equivalent Realization as one that matches all where
the output covariances [2]. The purpose of this
paper is twofold. First, we describe methods
for obtaining the minimal realization that mat- Rn - E[y(n+j) y* (j)] (4)
ches the first two output covariances; this rea-
lization is shown to be a Cost Equivalent Reali- It is always assumed that Ro  0.
zation. Second, we describe a method for
obtaining a realization (not necessarily minimal) Recall (for n > 0)
which matches any specified number of output co-
variances; in the limit, we can therefore obtain Rn - CAn XC* where X A E[x(n) x*(n)] (5)
a Stochastically Equivalent Realization. In
addition, certain generalizations of Cost Equi- It is well known that X solves the Lyapunov equa-
valent Realizations are described which apply to tion:
infinite dimensional systems.

X - AXA* + BB* (6)

Finally, system (1), with state covariance X
I. INTRODUCTION will be denoted by (A, B, C, X).

Assume y(n) is a stable stationary Gaussian We now define a "q-COVERN (q - COVartance
k-vectDr random process. The time marker n is an Equivalent Realization).
integer in (--, -). We may consider y(n) as a
vector of independent outputs (rank C - dim y(n)) Definition: A state space 2vaZiaation of the form
generated by a state space realization of the form

x . C- n A x (n) Rm B nr

x(n+l) - Ax(n) + Bu(n) u • Yr(n) - Crxr(n) u R( 7)Y~n - x~n y RkYr"
k

* Cx~n) where u(n) is a w~hite noise rocess with identity

where A, B, and C are matrices of the appropriate coaori.noe, i a q-COVER of if
dimension. Assume u(n) is a stationary vector- E[r(n+J) yr'(J - R for n < q (8)
valued Gaussian white noise process such that -

E[u(n) u(J - (II 6 (2) A minimal q-COVER is a q-COVER whose state space
S I'dimension p is minimal over the class of all q-

where 1m is the i x m identity matrix, 6 is the COVERs satisfying (8). A minimal 1-COVER is rela-
Kronecker Delta. and E is the expectation. tively easy to obtain and has been done via Compo-

nent Cost Analysis (CCA) [1). A minimal -COVER Is
Define R as the Toeplitz covariance mtrix the minimal Stochastically Equivalent Realization
ief n (SER). In general, however, the task of finding a

minimal q-COVER for 1 c q < - is still an unsolved
partial realization problem [3]. The purpose of
this paper is to describe methods for obtaining the
minimal 1-COVER, and to show that it is the Cost



C2

Equivalent Realization (CER) in (1). For complete- and
ness we also describe a method for finding a gene-
ral q-COVER (not necessarily minimal) of (1) for E[. (n+j)y *(J)] - ELvr(n+J)yr*(j)] for all nj
1 v q • -. This is essentially a generalization of (13)
th CE1.

If P is a unitary matrix, we say that (Ar, *r, Cr,!)
We feel these methods are valuable for a num- and (ff, F. , ) are "unitarily equivalent"..

ber of reasons. First, they produce a CER much
faster than the method in [1). Second, the Theorem 2: AZZ minimaZ 1-COVERs am equivalent.
approach is much more general than previous methods
and can be applied to infinite-dimensional systems. Proof: (The proof is similar to well known argu-
Third, a q-COVER (q 3 1) will provide a more faith- ments in [4] concerning equivalent systems.
ful model than a CER. Finally, this problem is For completeness it is provided here.)
really a special case ofr the more general Partial
Realization Problem. Assume that (A , Br, Cr, 1) and (K, I, ', 1)

are both minimal 1-OVERs of (A. B, C, X), We will
show that a nonsingular P exists to satisfy (12)

I. MINIMAL 1-COVER: DIRECT ITHOD and (13).

In this section we obtain the minimal 1-COVER Now, since (Ar, Br , Cr, 1) and (X, T, I, Y)
for any system (A, B, C, X). Assume Ro and R1 are both have the same Ro and Rl by hypothesis, using

the first two output covariances of (A, B, C, X) (8) and the definition r . E[x(n) x*(n)] yields
which we wish to match with a reduced system (Ar.

Br, Cr, X.). R0  r CrCr* RI.CrArCr*  u -*

To begin, define Cr as the positive definite (14)

squmre root of Ro . Using the fact that RI* t 0, Let F be the positive square root of r 0. Then
we have the first equation in (14) yields

r"1 0 RI1  r*1 o Ar] I Cr*f " II V' 2f ' (15)

L" r *R 0 * I This implies that there exists a unitary operator U~~~on gk such that Cr* - U** . Hence Cr -* lJ Let-

where Ar 4 C. 1 R C r* -I. It can easily be shown that ting P - FU aives Cr - P, as required in the first
Equation (9) implies that fIA, c I or, equiva- equation in 12). Since, by hypothesis, RIr-R- 1,
lently, that (I - ArAr*) t 0. W can therefore
define 8r as the positive square root of (I-AA*). * *

We claim that (Ar, Br, Cr, Xr) is a minimal a CrP I KPP*C* - CrplIPCr* (16)
1-COVER of (A, B, C, X). To show this, note that
Xr w 1, and therefore Sloce Cr is invertible, this leads directly to Ar

P-11P as required in (12). Proof of (13) follows
Rot CrCr* %o (10) from

RI - CrArCr* - Cr(Cr-l Cr*l )C - R1  Ey .r(n)yr*(O)J - CrArnCr * - rPArnP*Z;&

The system (Ar. Br, Cr. r) is therefore a 1-COVER. - VPAr np1pP*r'*

It is minimal because the state and output vectors
are of the same dimension. We can now restate the - PP*,C* _ " UU*F*,C

* . Unpp*-*

above as

. ero 1: "w system (Ar, Br, Cr, I) with Pa- 
-E-

tars a df-d by where n : 0. A similar argument holds for n - 0.

r c +l l ( /1 1+(l./rAr*)l/2 This completes the proof.
.Cr " + 2  Ar R Brfl (Remark 1. By Theorem 1, if T a I then the operator

(11) VTF-() is unitary. This follows from the proof

* is a minim Z 1-COVER of (A, B, C, X). where

Now consider a different minimal 1-COVER of * " I (18)
(AB. C. X) denoted by X, 1, C, T). Since both Hence, (Ar, Br. Cr- I) and (K. I, f. X) are unita-

B(A.,Sr, C,.1) and (1,, 1, I) are minimal
l-OVERs of (A, B, C, X) they must be of the Same rily equivalent.

order. We say that any two systems of the same Remark 2. Assume, as before, that C 0 ' 0. Follow-
order are -equivalent" If there exists a nonsingu ing Fja random process y(n) Is Ma iov if y(n)
lar transfomation P such that admits a representation of the foi---T3T such that

' Cr .p Ar p-lNp (12) the dimension of x(n) equals the dimension of y(n).

.. , -. - .... .. . t -.. ....- ..-.....- ".,- '
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Theorem 2 shows that y(n) Yr(n) when y(n) is Mar- C - [Ck 0 ....... 0C

kov. Notice the operator P in (12) does not inter-
twine the operators Br and If in (Art Br, Cr, 1) and and B Is the positive square root of I-AA* to satis-
(), [, . X). This is not unusual for stochastic fy (6). with X 1 I.
ystem [5]. Now. using the projection approach in this

Remark 3. Theorem 2 cannot be generalized for q- example yieldsZ VrE -nere q 1. k1,CIUk Bu(IAA' 1 2 (5S•NC 0 ( ..k  0 ...... 0)- (24)

III. MINIMAL 1-COVER: PROJECTION NET140D AI-PH(AIH)-Al C IH=Ck  B1-+(I-A1Al*)1/2 (25)

Given an initial state space realization (A. B, Obviously
C, X), we wish to obtain a minimal 1-COVER directly
from it. The approach in this section is equivalent EEyl(n)yl*(n)- R0  Etly(n+l)yl*(n)) a R1  (26)
to the method in [1] of obtaining a Cost Equivalent
Realization of (A, B, C. X). The system (Al. B1 , C1 . I) of dimension k-is there-

fore a minimal 1-COVER of (A, 8. C. I).
Consider a system (A, B. C. X). Without loss

of generality, assume X a In-_ (This can always be NOTE: The method used in Section 11 only
done by defining a new state x a Px through the required Ro and R1 ; no initial state space realiza-
appropriate transformation P.) Now define H as the tion was required to obtain a minimal 1-COVER. How-
range space of C* by ever, the projection method above (or equivalently

in [1)), requires an initial state space realization
H - NI(C) (19) (A, B. C, X) to obtain the minimal 1-COVER. The

results are identical.
where NA denotes the nullspace perpendicular.
Define the following operators, A on H and C1 : H-Rk Now, compare the methods in Sections It and III
by assuming both start with an initial state space -

representation (A, B. C, X). The method in Section

Al 0 PH AIN C1 A CIM (20) 11 for obtaining a minimal 1-COVER is much faster
than the projection method or. equivalently, that In

where P denotes the orthogonal projection onto the [13. Both the projection method and 1J] require the
subspacJ H. and the symbol "I" means restricted to. original Rth order system (A, B, C, X) to be trans-

formed to(A',B, C', 1). Thit jequires finding an
Now define 51 as the positive square root of n-dimensional transformation Xl/ and its n-

(I - A1AI*). Note that el is well defined since dimensional inverse. The method in SectionTI allows
the Lyapunov equation (6) with X1 Y shows that one to go inmediately to the smaller k (output)-
(I-A 1 A1

e ) 0 0. Obviously, with yl ClXl, we have dimensional space, in which one must then only com-
pute Cr and its k-dimensional inverse. Since always

Ro - CC*-C l CI* a ECyl(n)yl*(n)J (21) k i t, and In many cases k c n. itis computation-
a1Ty much faster to obtain a 1-COVER by the method

R1 - CAC*-C 1 A1 CI* - E[yi(n+l)yl*(n)]  (22) of Section I than by the projection method and (13.

Therefore (A1 , B1 . C1 , I) is a minimal 1-COVER of
(A. B. C, I). By Theorem 2. it is unitarily equiva- IV. q-COVER BY PROJECTIONlent to (Ar. Br, Cr, I) found in Section II.

Given a system (A. B. C, I) we wish to construct
We will now demonstrate this approach with the a realization (A,, Bo, C I) of lower order that

following generic example: matches up through Uet qh covariance of the origi-
nal system. This can be done in two different ways.

Exsaele. First, by using the results in [7) and elsewhere
Since every state space realization ca be put with RO ... Rq. one can obtain the well known maxi-

into a -Generalized Hessenberg form (63, the trans- ml entropy realization of Ro , which is a q-COVER.
formed to coordinates where X*I, we will assume. In fact, the 1-COVER is precisely the maximal entro-
with no loss of generality, a system of the form py realization of RO . RI (i.e., the rest of the
(A. B. C. 1) where Schur parameters are zero). The

other approach, which we wish to pursue here, is a
12 A1 generalization of the projection approach used in

the previous section. We expect the more general
A - A2 1  A22 A23 . . An x e q-COVER obtained by projection to provide a better

reduced order realization of (A, B, C, 1) than
0 A32 A33 . . u C I (23) either the 1-COVER or the maximum entropy realiza-

tion.
Consider a system (A, B. C. 1). Define the

subspace Hqc by q(

O 0 0 . Ann H j AtH (27)

.. %. %
- .. -'. - " " - e " *. '. '*' ' .-.. %' . % '. Z- '-'. "." / -. * '.' ' - " ".
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where H, the range space of C*, is defined In (19). (A, 8, C, I) of dimension less than or equal to the
The subscript "qc" denotes that we are obtaining a dimension of both (Aqc, Bqc, Cqc. I) and (AQO, Bqo,
realization that matches up through the qth covari- Cqo. 1).
aince by defining H(c as part of the "q-controllabi-
lity" subspace of(A, C'). The example in Section III can be easily exten-

ded to demonstrate this method. Due to lack of
Now define the following operators, Aqc on Hqc space, however, we are not able to include that

and Cqc: Hqc ' Rk by demonstration in this paper.

Akqc A PHqc(AIHqc) Cqc A C1mHq (28) NOTE 1: If, at any time, we find

Noting that II Aqc III IIA 1I _1 1, we can therefore H(q+l)co 0 Hqco (37)
define

then, obviously Hqco a Hco. In particular, the
Bqc 0 +(1 - AqC A*)/2 (29) Cayley-Hamilton Theorem implies that once q i_ n,(37)

will automatically hold. When (37) does appTy, then
We claim that (Aqc, 8 qc, Cqc, I) is a realiza- the q-COVER is an -COVER, and is therefore an SER.

tion (not necessarily minimal) which matches up For the smallest q satisfying (37), the applicable
through the qth covariance of (A. B, C, 1). To see (Aqco, Bq,CqcO  1) is a Minimal SER of R.
this, consider the case q a 3. Using (6) with X-q
yields NOTE 2: The maximal entropy approach will a

yield a q-COVER of order q, even when q > n, while
R3 - CA3C*  (30) our approach often gives a lower order q-COVER.

Now, using the fact that HlcC H2cC H3c, and, from
(27) that V. CONCLUSION

AiH C H(i+k)c k I,2,.... (31) A q-COVER (q COVariance Equivalent Realization)
has been defined as-a realization that mitches up -

we can see that through the Rq covariance of a system or process.
Two methods have been developed for obtaining a mini-

R3 m CPH (A3 C*) . CPH AP Hc(A2 C*) mal 1-COVER. One only requires R. and R1 o while the
3C 3c H3c other requires an initial state space representation

CPcAPH AP AC*. CA 3 C*uo (32) and is essentially equivalent to the Cost Equivalent
N H C3cA3c 3c 3c ( Realization method in [1]. Finally, a projection

method was described which can be used to obtain a

Similarly, we can show that R2 = R2c RIlRlc, RouRoc. q-COVER when q - 2,3 ...... When q - -, the -COVER
We thertfore see that (3c, 63c, C, I) is a is a Stochastically Equivalent Realization.
3-COVER for (A, B, C, I). For arbtrary q. the
proof is analogous. Acknowledgement: Portions of this work were spon-

sored by AFOSR Grant No. 82-0209.
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ABSTRACT

Component Cost Analysis [1] is used to develop a method for control-

ler reduction. The reduction of the controller is based upon the parti-

cipation of the controller states in the value of a quadratic performance

metric. The controller states which have the smallest contribution to

the performance metric are truncated to produce the reduced controllers.

An error index is defined to evaluate the reduced controller compared

with optimal LQG controller, and bounds on this index are derived. A

numerical example is included to illustrate the procedure.

% %
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I. INTRODUCTION

The straightforward application of Linear-Quadratic-Gaussian (LQG)

theory in practical applications is hindered by these limitations:

(i) The plant model which is accurate enough to serve in the

evaluation of candidate controllers is often too complex

for direct LQG computations (beyond "Riccati-solvable"

dimension).

(ii) A traditional approach to synthesize a controller of a

specified order is to first apply (one's favorite) model

reduction theory to obtain a low order model (compatible

with on-line controller hardware/software limitations),

and then to apply optimal control and estimation theory

to obtain a LQG controller which is optimal for the

reduced model. However, this optimization is based upon

a reduced order model which was guaranteed "close" to

the plant only in the open-loop. Since the control

inputs can drastically affect the behavior of the system

(and the quality of the reduced model), reliable model

reduction cannot be performed without some knowledge

of the inputs. But since the control inputs are yet

to be determined, this is tantamount to admitting that

the modeling problem and the control problem are not

independent problems, as was pointed out in [lb].

Component Cost Analysis (CCA) [1-3j was introduced as an attempt

to unify the model reduction and control design problems. In the

open-loop model reduction versions of the CCA theory, the state

dependent term in the quadratic performance measure (which is intended
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for use in later control design) is used in the model reduction decisions.

In this way, the modeling and control problems were "integrated" in [1-3].

In these references, the following LQG control design strategy is sug-

gested to obtain a controller of order nc, beginning with a model of

order n>>nc , where n is too large for solutions of Riccati equations.

.-" Suboptimal LQG Design Strategy

(a) Apply open-loop CCA model reduction methods [1-3] to the

high-order evaluation model of order n. Reduce the order

from n to n r, where n r is the "Riccati-solvable" dimension

of the local offline computer.

(b) Solve for the optimal LQG controller for this model of

order nr . This yields a controller of order nr., where

n c< nr< n.

(c) Apply controZler reduction CCA methods to reduce the

controller from order nr to order n c <nr '

It is emphasized that model reduction [step (a)] and controller-reduction

[step (c)] are different mathematical procedures.

The intended advantage of this strategy over the traditional approach

* (ii) [which sets nr = nc and skips step (c)] is that more information

about the higher order system and its would-be optimal controller is

made available for the design of the reduced controller.

The purpose of this paper is to present a reliable controller

reduction scheme to accomplish step (c) for infinite time, stationary

LQG problems. This paper assumes that a reliable reduced model of

order nr is available. We will denote this model, by S(nr). Let this

reduced model of order nr be

*%I* -. , -I-
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S(nr): Ax+Bu+Dw (.)

z Mx+v

n rn k
where xcR r, ycRk , ucRl and zcR . The disturbances wcRd and vcR£ are

assumed to be uncorrelated zero-mean white noise processes with inten-

sities W >0 and V >0 respectively, and under the standard assumptions

the matrix pairs {C,A} and {M,A} are observable and the matrix pairs

{A,B} and {A,D} are controllable. The vector z is composed of the

A measurements corrupted by the noise v. The vector v contains only

the variables which are used to measure the performance of the system

* -via a cost function V defined as follows

V = lim E{V(t)} (l.2a)
, , t-MVo

where

V(t) = Ily(t)IQ + IIu(t)IIR (l.2b)

The notation Ilyll2 denotes yTQy, and Q> 0 and R> 0 are weighting matrices.

Qy

-; E denotes the expectation operator.

* Step (b) of the Suboptimal LQG Design Strategy is to obtain the

optimal controller [which minimizes the cost function V, in (1.2)] for

(1.1). This controller, denoted by S c(n r ), is given by [4].

=Ac +Fz

5(nr): R (1.3a)

where

',p
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A c  A+BG-FM , G -R-1BTK; F P MTv- (l.3b)

KA+ATK - BR-1BTK + C TQC = 0 (l.3c)

PAT + AP - PMTV'lMP + DWDT = 0 (l.3d)

Since the controller (1.3) is of order nr >nc, a reduction of this

controller (1.3) to order nc is now required. [Step (c) of the

strategy].

Past Approaches

Since the original version of this paper was submitted, Verriest

[5,6] has proposed to select a set of coordinates, named "LQG-balanced"

coordinates, in which the Riccati solutions K and P of (l.3c) and (l.3d)

are 'balanced' in the sense, K = P = IT = diag {71 , r2, . rn }, and
V r

to delete those nr-nc controller states that have the smallest i-s,

,'S.

yielding a reduced controller of order n . These deleted states are

interpreted as those states that are estimated with the least uncertainty

(measured by ri of P) and have the least contribution to a 'fictitious'

cost function (measured by ri of K). This 'fictitious' cost function
.-,

is evaluated by asswring that all the plant states are available for

feedback. But, when the plant states are not available, one could

feedback only the estimates [which is precisely why an estimator (l.3a)

is constructed], and the contribution of the states to the actual cost

function V may be quite different from ii, as can be seen from Eq. 11

of [6].

The work of Kosut [7] and Wenk and Knapp [8] should also be

mentioned since they also deal with closed-loop methods for controller

4i*
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simplification. However, since they treat parameter optimization

approaches, their work is along totally different lines than the

work herein.

We consider the contribution of these controller states to the

cost function (1.2), and delete those controller states having the

smallest contribution to the cost function (1.2). Hence the proposed

controller reduction algorithm follows the following three steps.

ControZ ZLer-redction-algo-itvn

1. Select a suitable basis for the controller. The contribution

of each of the controller states to the cost function (1.2)

is precisely measured by a metric called the 'component

cost', V.(x); i=l, 2, ... , nr. Compute the component costs.

2. Rank the controller states so that

V1  V) V x> .> V (x)

3. Delete the last nr-nc states to obtain the reduced controller.

Of course, this algorithm is similar to the "CCA Model Reduction

Algorithm" given in [2], where plant-states xi are considered for

truncation, unlike the above controller-reduction algorithm where the

controller states xi are the only candidates for truncation. Both

these algorithms use the basic concepts of Component Cost Analysis [1].

The organization of the paper is as follows. Section II presents

some preliminary results pertaining to controller-reduction schemes to

aid in the evaluation of reduced controllers, and develops a 'controller-

error-index' for this purpose. The main contribution of this paper

is in Section III where the concepts of CCA are used to systematically

I ~~~~~~~~~. .. . .. . .. . . . . .. . -........ . ". " .",' ,:'',, 
' - - ' :
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develop a set of coordinates to be used for controller reduction studies.

Reduced controllers obtained in this representation are evaluated with

respect to the performance of the system (1.1). A Solar Optical Telescope

is considered as a numerical example in Section IV to illustrate the
proposed method. A comparison of these controllers with those obtained

by the LQG-balanced method [5,6] is also made. The numerical scheme

for the computation of the above mentioned coordinates is presented in'"

'. Appendix A.

II. PRELIMINARIES TO CONTROLLER REDUCTION

Let the model S(n ) in (1.1) be partitioned as follows:

kR -AR RT- x BR DR-

+ u + w

SBTR T

y = [CR CT] (2.1)

Z = [MR MT] rR] + V

where xR R and xcR t+ncn r' with all the matrices appropriately

dimensioned. The corresponding partitioned form of the controller S c(nr)

in (l.3a) is

R] A C AC RTF• -A:I+-

SLxACTR ACT  LTF T

T R (2L2)

u [GR GT]
x T-

::: . . .. . .. . .. ... . -.-.-..-..-.. ....:.-..:.-. .:..:: :.-. ::. .:..... . . .... . . .. . . . . . . . . . . . . . . . . . . . .:. ... .... . . .-.. . . . . ...... .-....
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C

where XRCR (note that, AC = AR+BRGR-FRMR). Now augmenting (2.1)

R
and (2.2) together, the closed loop system can be written as

A AT xD
[A R RT LR + LR:1

(2.3)

L~T_
= [C R CT) [:;]

where

T T T RT r
XR = [ x T xR I , r r nr+nci (2.4a)

T [wT, T] , yT [yT uT

AR ART BRGR RGT

[ ATR T R T Rr (2.4b)-ATR AT
FRM R  FR MT  A C  Ac CR

-- - - - - - - .L --- --

FMR FTMT ACTR AcT

-DR 0

-- 0(2.4c)

DT 0 FR

0 FT

and



D9

,,[C C] R Cr 0

C C [ (2.4d)
0 GR

Now assume that a reduced controller of order nc denoted by Sc(nC)

is obtained from (2.2) by deleting xT, to yield,

nf = ARP+ FRZ , nerc

Sc (nc): (2.5)
uR =GRP

The rest of this section devotes attention to the evaluation of this

controller by considering the value of the cost function (1.2) when

S(n r) of (2.1) is driven by (2.5). For the convenience of evaluation,

S(nr and S c(n c) are augmented to obtain

xR = ARXR + D R x cRr

(2.6)

YR = CR R

which results from the truncation of xT from (2.3),

where

RTA [RT T

R [ x R T 0 J

and

YR= yRT , URT I

It is easy to verify that {AR, DR' CR) satisfy the definitions in (2.4b,

c, d), and that the cost function for the evaluation of (2.6) is

VR =lim E{VR(t)} (2.7a)
t!&co
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where

VR(t) llya(t)lil + 2luR(t)ll2  (2.7b)

The cost functions V and V R are computed by [4]

V = Tr[C TQcx] (2.8a)

VR = Tr[CRT QCRXR (2.8b).

with X and XR satisfying

XAT + AX + vWvT = 0 (2.9a)

XART + A T 0 (2.9b)

R R RR RWR

where

A ,RT] , C- [CR CT

(2.9c)

W ro 0] PO R]0

The following definitions and lemmas will prove useful in the

subsequent development of the controller reduction algorithm proposed

herein. (The associated proofs are given in Appendix B).

. Definitions:

1. The Predicted Controller Index '(nrnc) is defined by

where i(nr9nC) = ( RV) (2.10a)
! where
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V Tr[C[ QCR + Tr[CRQCTXRT (2.10b)

and where XR and XRT are obtained from partitioning X as

FR X RT]

= LT XTj

2. The Controller Error Index i(n ,n ) is defined as
r c

r(nr,nc) C ± (VR-V) (2.11)

In the definitions above, the arguments nr and nc

indicate the order of the plant and the controller

respective ly.

Lemma 1:

1. The error indices I(nr,n c ) and l(nr,nc ) satisfy the

folowing

(i) (nrn = - (Tr[CTTQCT T + Tr[CRTQCT4T) (2.12a)

(ii) I(nr n) = l(Tr[C TQC (X -) Tr[CTQC X]- 2Tr[ AT T

(2.12b)

where (XR-XR) satisfies

(XR-XR)AR T + AR(XR-X R) - U = 0 (2.12c)

and where

[ARTRRT + XRT RT (2.12d)

'5- - .).~ e. S~ ~ ~ .. v~
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(Mi) max (0, u(n c)X m(X R)-'} < I(n r nc ) f._max O,-p(n c)XM (X R)-I)

(2.13a)

where Xm() [XM()] denotes the minimum [r aximwn eigen-

vaZue of the matrix ), and

u(nc) _ _ Tr[CR [ CR] (2.13b)

where the argument nc is used to denote the dependence

of v on nc -

2. The predicted controller error index is exact I(nr,n ) =

l(nr n ), under any of the following conditions:

(i) necessary and sufficient condition

Tr[CT QCR(XR-X) J-TrCTQCTT = 0 (2.14a)

(ii) sufficient conditions

a) T is unobservable in u in S c(n) (2.14b)

b) xT is uncontrollable from Z in Sc(n ) (2.14c)

C) XRT = 0 with AR stable (2.14d)

3. The controller error index l(nr n) is zero under any of the

following conditions

i) necessary and sufficient condition

TC'CX 1 T - I T '^T
Tr[CiQCR(XR-XR) - Tr[CQCTXT] - 2TrtCRQCTXRT] = 0

(2.15a)

ii ) sufficient conditions

a) xT is unobservabZe in u in Sc (nr) (2.15b)

b) XT is undisturbable from Z in SC(n r) (2.15c)
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III. CONTROLLER REDUCTION BY COMPONENT COST ANALYSIS

The idea of Component Cost Analysis (CCA), [1-31 is to determine

the significance of each 'component' (in this paper, these 'components'

are the individual controller states x.) by assigning a metric, called

'component-cost', to each component. Then, a reduced order controller

is obtained by deleting those controller states that have the smallest

component costs. These ideas are extended to controller-reductions

as follows.

From the structure of C in (2.4d) and Q in (2.9c), and by

partitioning X as

_ X X12lim Efx(t)x (TM)

tX' (3.1)
X X = lim E{x(t)xT(t)}

the expression for the cost functions V in (2.8a) can be rewritten as

V = Tr[CTQCX] + Tr[GTRGx) . (3.2)

We note that the 'Control Cost' (Tr[G TRdx]) may be decomposed into

contributions from each controller state

V(x) 1 im E{ xi }  (3.3a)
t - O M ax i

such that

n
2 r

V(x) _ lim Ellu(t) 11R = Tr[GTRGX] = Z Vi(x) (3.3b)t+= i =l

The 'Regulation Cost' V(x) is the remaining term in (3.2)
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V(x) = lim Elly(t)112 = Tr[CTQCX] (3.3c)

so that

V =V(x) + V(x) (3.3d)

As a passing remark we mention that when Sc(nr) is optimal LQG-controller,

we have = X and X = P+X, with P satisfying (l.3d) and X satisfying

[4]

i(A+BG)T + (A+BG)i + FVFT = 0 (3.3)

It follows from the definition (3.3a) and the derivations in [2] that

V.(x) = [GTRGX]1  , i = 1, 2, nr. (3.4)

According to the CCA theory the controller states xi associated with

the smallest values of V i(x) are deleted from the controller.

Now, the optimal controller S c(nr) may not be minimal (in the

sense of Kalman), even if the plant S(n ) is minimal [9]. This

means that the sufficient conditions of lemma 1 may be satisfied and

hence, there may exist reduced order controllers which are still

optimal, i.e., I(n rn ) = 0 for n .<n However, for brevity in the

presentation, it will be assumed henceforth that the controller

(1.2) is completely controllable. (Refer to [10] for extension of

this work to the general case). This assumption implies that the

condition (2.15c) of lemma 1 will not be satisfied, but (2.15b) may

still be satisfied.

41Z t N'~ .~ ~K
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In the context of modeZ reduction, a set of coordinates called

Cost Decoupled Coordinates was presented in [2]. These coordinates

cause the largest number of component costs Vi(x) to be zero. Appli-

cation of the CCA theory in these coordinates yields a reduced modeZ

of order nr = rank [C] with the property that VR = V. Hence such reduced

order models are called "cost-equivalent realizations" [2]. Analogously,

we define Controller Cost Decoupled Coordinates as follows.

Definition 3. The ControZZer COst-DEcoupZed (CODE) coordinates are

defined by the following properties:

(P1) n  (3.5a)
r

(P2) GTRG= diag {yl 2 , ... , y 2, 0, -, 0) (3.5b)

with
2 2 2

Y1 2>2 >) 2 ' >- y r
I 

> 0 , (3.5c)

where rI = rank[G] < m

These CODE-coordinates are non unique as established by the follow-

ing proposition.

Proposition 1: Under the assunption of distinct yi2, i=l, 2, .., in

(3.5b), the CODE-coordinates are unique within a similarity transforma-

tion X = T xN, of the formT 1'o 0
where

T1 =diag {+l, ..., +l} cR
r xr 1

and



T c(n r-r 1  )n 
r-r 
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vs any ort honoml mwtzx.

Proof: Since the covariance of the transformed coordinates is given

by

lirE{ t;Tt) = urn T-1 Efx(t);lt)IT-T
E-p- xN t~N t)

the matrix T must be orthonormal to satisfy (3.5a). The state weight-

ing matrix G TRG in the transformed coordinates is T T GTRGT, which should

satisfy (3.5b,c), i.e.

TGT = ig~ 2 2 2T GRGT= dag 1 I Y29 .**'r10,1

(3.6a)

Now (3.5b,c) imply that

G = [Gig 0]; G, eR mr(3.6b)

and

G TRGi = Al, (3. 6c)

where

A1  diag {y, ~ 2 2.

Hence partitioning T (which must be orthonormal) as

T T [T T 127

rewrite (3.6a) as
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FTT TT [GITR
1 1 11 21 (3.6d)

ITT T T0 0 T T0 0L12 2 2

Two of the equations resulting from (3.6c) are

T TGTRGT =TTAT A (3.6e)
1 1 1 1 1 1 1

and

TT GTRGT = TT A 0 (3.6f)
12G1 12 12 1T12

which can be satisfied if and only if Tl2 = 0, T2 1  0, and T21 is as

defined in Proposition 1. #

Hence, there exists a considerable flexibility in the cost

decoupled coordinates: from the structure of the transformation in

proposition 1 and from (3.6b), notice that the CODE-coordinates are

not uniquely defined within the null space of G. This non uniqueness

will later be used to obtain a generalized Hessenberg representation

while remaining within the class of CODE-coordinates.

Now, in any CODE-coordinates, the controller has the following

property (in addition to property (3.5)).

Proposition 2: Any controZlIer S (n ) in CODE-coordinates satisfiesc r

the foZiowing property in addition to (Pl) and (P2)

Y. i<r 1v i(x) =

i>r 1

The proof follows immediately from the substitution of (3.5a) and

(3.5b) into (3.4). #
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Proposition 3: The component costs associated with the cost decoupled

controller coordinates are minimally sensitive to perturbations in the

weighting matrix GTRG.

Proof: The proof relies on a result derived by Skelton and Wagie [12]

which is restated here.

Lenma 2 [11] Let X i be an eigenvalue of a matrix A. Then the sensiti-

vity of Xi to perturbations in A, measured by

s. 2

2 A Twhere 1(.)J = Tr[(.) ()], is bounded from below by S > and si

takes on its minimum value s i  1 if and only if the matrix A is

normal (i.e. AAT = ATA).

Now note from proposition 1, that the component costs V(W are
1

the eigenalues of GTRG, i.e.,

TVi(x) = Xi(GTRG) , i = 1, 2, ..., nr  (3.7)

Since GTRG is symmetric (hence, it is normal), the proof follows from

lemma 2 and (3.7). #

* The implications of proposition 3 is the following. Consider

the case when the controller state weighting matrix GTRG in the cost

function is subject to perturbation - this may happen, for example,

when the control weighting matrix R is changed. In this situation,

it is shown that the choice of the reduced controller is least sensi-

tive to these perturbations.

Note from Proposition 2, that all the controller components

x i , i >r I are candidates for truncation, since their corresponding
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component costs are zero. Hence, a reduced controller obtained by

truncating some of these zero cost states seems attractive. We will

now evaluate such a reduced controller, S c(n d.

Theorem 1: The error indices l(n ,n ) and I(n ,n ) associated with the

reduced controllers Sc (nc > rI ) obtained by truncating t =r-n c

CODE-controller states from S c(nr) satisfy the folowing

(i) i(n r , nc ) = 0 nc > rl (3.8)

(ii) If (2.6) is stable, then

I(nr nc = n tr[C QCR(XR-XR)] n > r (3.9)

where (XR-XR satisfies

(XR-RR)A + AR(XR-R) - U(nc ) = 0 (3.70a)

and where AR, CR and Q are as defined in (2.4), (2.9c) and

0o 0

U (nc) _ 0 (ART-FRMT) (3.1Ob)

Lo (ART'FRT) 0

(iii) In (2.13b), (nc : Tr[CT QCR] is a constant for nc>r 1

(3.11)

Proof: Since nc > rI in view of (3.6b) and (2.4d), (2.12a) yields

(3.8). Now since CT = 0, (2.12b) reduces to (3.9) with (XR- R)

satisfying (2.12c). Comparing (3.10a,b) with (2.12c), we need to

show that U - u(n ) as defined in (3.10b). Recall from (2.4b) that

ibc

S.
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A RT B'T.GTI (3.1 2a)

-Ac CTi ~ ART F R MTj

since GT  0 and ACR T : ART + BRGT - FRM. Also recall from (2.4a) that

A

XRT = lim E{XR(t) x (t)}

xR(t) xT(t)

= lim E{ xT(t) xT
T XT(t)

XR(t) xT(t)

Now, using the property that

X12 : lim E F(t)]} : X : limE{. ] (t)x (t)]St -+ LXT Mt t-OW X TM]

and (3.5a), XRT is shown to be

T =  [0 1 0 . (3.12b)
RT tO'~~

Substituting (3.12) in (2.12d) to show that U = U(n c) proves (ii). Since

CT = 0 for nc .> r1 the V(n c ) defined in (2.13b) is the same constant for

all nc > r I and hence (iii) holcs. #

Now, since CT = 0, XT lies in the nullspace of the output matrix of

(2.3), its observability is measured by ART, i.e., the "smaller" (in a

sense to be made precise later) is ART, the less observable is xT. In

fact, if ART- 0, then xT is unobservable. Furthermore, ART - 0 implies

ACRT = ART - FRM T = 0 and -T is unobservable in Sc(nr). Hence, by lemma 1,

C~~~ RT RT. RM T

Z d L,-_q
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I(nr,n ) = 0. Therefore, in CODE-coordinates notice that 7(nr,nc ), is

influenced by the observability of the 'truncated' controller states.

However, in general, ART will not be zero. But there may exist some

xi ExT which are either unobservable [in which case a truncation of

them would yield I(n r,n c)=O] or "nearly" unobservable, [in which case

I(nr!nc) would be small].

In order to identify these "nearly" unobservable states, we make

use of the transformation in proposition 1 to obtain a representation

of Sc (nr) in a convenient set of CODE-coordinates having the following

structure. [The computational details are given in Appendix A].

"_l A11  A12  0 0 il F 1
-2 A21 A22 A23  -2 F2

j3  A31 A32  A33  0 x-3  F3
+

SXp- 1 Ap-1+,Il ,2 Ap-1,3' " Ap-l,p -p-l Fp

Apl Ap2  Ap3  A X F
pp,,--p p

u [G1  0 0 . . . 0 (3.13)

where xiR

p1 r.n, ri <  ,i 2, 3, p, [13

I. . .- . . - . . - . , .' , - . . . . . . . . , .. . , . - - , ; .|
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and where r i  rank (A ili) , i = 2,3, ... , p, and the matrices Ail, i

are compatibly dimensioned.

Representations of systems in the form of (3.13) have been used

in literature in different contexts. For example, Tse et al. [13) and

Perkin et al. [14] have used Generalized Hessenberg Representations (GHR)

in the context of model simplifications. In [13) and [14] GHR is used

"... for detecting weakly observable subsystems". Also, if Ai ,i+l is

"small" in the sense of some reasonable criteria, a reduced model is

obtained by neglecting (truncating) xj, j>i. Clearly, from the pre-

sence of the trailing zeros in the matrix G in (3.13), it is seen that

if for some i, Aii+l = 0 (or "small") then x., j>i are unobservable

(or nearly unobservable). The representation (3.13) differs from the

GR in the sense that Gl$1 m which is required of a GHR. However, the

statements made above are also applicable for the controller in (3.13).

Another context where such a representation is used is in extracting

a minimal realization from a non-minimal realization of a given trans-

fer function [12], where again it is used to detect the unobservable

subspace. The algorithm presented in Appendix A is almost identical

to that used in [12]. Due to these similarities some of the results

from [13] can be specialized to the controller reduction context. In

particular we have the following.

Conjecture: If for some i, I1A i i+l is much smaller than IlAC 1,

IlAC 1i, IlAC 11, JIFR 1 and 1F T 11, then the reduced controller Sc(n d
T TR Tc

+ jX A A112 (XTX) = maximum singular value of X.

-. ' . ..,' -
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n i
S c(nc) =ACRP + FRZ , PeR c , nc = rj

UR= GR P

where GR = [G, 0, ... , 0], obtained by deleting the controller states

j = iW, ... , p yields a small contro',ler error index I(nr.nc).

To show this, note from the structure of the controller in (3.13) and

.° from the definition of AC R that

O(nc-r i ) x r i +  nxt

AR= ARTFRM -L - A  + l  1
C RT =iT-RTi ncx~lrW

Hence, from the definition of U(nc) in Theorem 1, small IIAi,+ifl implies

small JIU(nc)Ii. Furthermore, if AR is stable, the solution tc (3.10a) is

A A~ At A t
(XR-XR) = e U(nC ) e dt

0

from which we get

1 R-II R 11 11 U(nC)  II 11 e R 11 dt

0

Hence, from (3.10b) small IIAi 1i+ 11 leads to small IIU(nc)I1 and hence from
(3.3) to small I(n r,nC).

Recall that all the controller states xi, i >rI have zero controller

costs Vi(x) and that the controller states xi, i=l,2,...,r 1 are ordered

'0p

cotsp

4
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2according to (3.5b). This means, since yi = Vi(x), that xi is more

significant than xiW; i = Is 2, ..., rl. Hence, if the order of the

controller is predetermined to be nc < rl, then the controller states

xi , i=nc+l, ...9 nr are to be truncated. Therefore, for nc _< r1, there

is no ambiguity of the controller states to be truncated, and the addi-

tional complexities of the GHR type structure (3.13) need not be computed.

It is only when nc>r 1 that one requires an additional criteria, such as

observability of the components xi, i >rl , to determine which of these

xi are to be truncated. It is this requirement that led to the develop-

ment of (3.13). Clearly, more investigation is required in the study

of the properties of the controller (3.13).

Stability Properties

Of primary concern to any controller reduction scheme is the stabil-

ity properties of the clnqed loop system. The following theorem and

corollaries present the known instability properties of Sc (n c). It

is assumed that the controller is represented as in (3.13).

Theorem 2: Let S c(n c) be a reduced controller obtained by truncation

from S c(n r). Then the closed loop system (2.6) is asymptotically

stable only if Sc(nc) is controllable, i.e.., only if the matrix pair

{(AR+BRGR), FR} is controllable.

Proof: This is proved by showing that if Sc(n c) is not controllable i.e.,

if th- matrix pair {(AR+BRGR-FRMR), FR) is not controllable, then AR

in (2.6) is not asymptotically stable. (Note that uncontrollability

of {(AR+BRGR), FR) is equivalent to uncontrollability of {(AR+BRGR-FRMR),

FR} [15]).

'J
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Now, let S c(n ) be uncontrollable and for simplicity assume that

the matrix (AR+BRGR) has nc distinct eigenvalues. Then there exists a

left eigenvector ai* of (AR+BRGR) such that

n

0i*FR = 0 ; aieC c (3.14a)

and

ai* (AR+BRGR) Xi a (3.14b)

for some ic{l,2..., nc}, where XichA(AR+BRGR) and * denotes the conju-

gate transposition.

Now, since the controller states x are covariance-normalized, i.e.,

lim E{x(t) nT(t)} I

t-n r

(3.3d) reduces to

(A+BG)T + (A+BG) + FVFT = 0 (3.15)

which can be written in its partitioned form as

F(AR+BRGR)T (AT+BTG)T + AR+BGR)(AT+B ) F VFRT FVFT

1 + ATRBTG)(A+BTl.R T TI_

The upper left corner of this equation yields

(AR+BRGR)T + (AR+BRGR) + FRVFR = 0 (3.16)

Now, pre- and post-multiply (3.16) by a. and ai respectively to get

i (AR+BRGR) Ti + a (AR+BRGR) i +  i* FVFTa = 0. (3.17a)

, . - , , - - -, , . . - - - , . -, - .. . - . - , - - , - .- . - , ' - ' °' ' r - "1, " 1 ,R, . . . ',i'
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In view of(3.14) and the conjugate-transpose of(3.1l4b) this reduces to

i .i Ili + i i Ili =2 Re(x ).f11112 = 0 , (3•17b)

where Re(-) denotes the real part of (). Clearly from (3.17b)

Re(x i ) = 0. (3.18)

Now consider ni AR where

*A * Cr
ni  :[0, 0, ai ) ; nc c

Then

ni AR= [0, O, iI AR ART BRGR

ATR AT BTGR

FRMR FRMT  ACR

= [ai * FRMR i FRMT. - a' i ACR

= [0, 0, i* ACR]

where (2.4b) and (3.14a) have been used. Now since AC = AR BRGR -

FRMR, we get

ni AR = [0, 0, ai (AR+BRGR - FRMR)]
[0, 0, ai (A G)] (3.19a)

= [0, 0, A.i = n

where (3.14) has been used. Hence from (3.19a) we see that

c MA (R) (3.19b)
1. , f(A'

J.
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Therefore from (3.18) and (3.19b) AR is not asymptotically stable. #

Corollary 1: If the zeroth order Markov Parameter1  of S c(nr) is zero,

then the resulting closed loop system (2.6) for any Sc(n c :i rl),

is not asymptotically stable.

Proof: Since the Markov Parameters are invariant under similarity

transformations, the zeroth orderMarkov Parameter of Sc(nr) is zero if

and only if

GF = [Gl, 0 ) GIF 1 = 0 , (3.20)

where the matrix F of Sc(nr) is partitioned as

F11 r1  x (nr-rl)xIF FT; Fl E R , FT ER

Now, since rank (G) = rI < m, (3,20) is satisfied if and only if F1 = 0.

Therefore from (2.2) and (2.5), FR = 0 for all nc <_ r I and hence Sc(nc < r l )

is not controllable. The proof now follows from Theorem 2. #

The final controller reduction procedure is summarized in algorith-

mic form in Appendix A.

We now demonstrate this controller design scheme with the aid of an

example in the next section.

'The i-th order Markov Parameter Ji of S c(n r) is defined as

A i
Ji G(A+BG-FM) F ; i = 0, 1, 2,....
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IV. EXAMPLE

The example considered is a Solar Telescope (SOT), schematically

represented by Fig. 1.

3

p.,. z

x Y

Fig. 1 Solar Optical Telescope Structure

j ''{, , - L il ' ',_, % ' ,- ,', ',,,, -j, 'w-.-,,,w ' ' Q _ w w, 'w , v+ . .- ,mr-, w ~ .w"w '-'- (
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The truss structure of Fig. 1. has been modeled by finite element methods

in [ll]. This SOT was originally described by 44 modes, but the model

was reduced to 10 modes by a Modal Cost Analysis (16]. (This detail is

not given here). The reduced model of 10 modes (B elastic- and 2 rigid-

modes) is described by

ni + 2wii. i + i2ni = bT (u + w), i=l,...,l0 (4.1)

There are m (=8) force actuators whose control forces ul ,...,u 8 act in

the z-direction, located as shown in Fig. 1. The actuator noise (white)

is denoted by w and has intensity W = 10-418. W i is the frequency of the

i-th mode and i is the damping ratio of the i-th mode. The frequencies

(ordered by modal cost) are given in Table 1, and the damping ratios are

taken as i = 0.001, i = 1, 2, ... , 8 and =, i = 9,10 corresponding

to rigid-modes. The control objective is

V t= limE{jlYj1 + 11u 11} , (4.2)

Table 1

Modal Frequencies

Mode # 1 2 3 4 5 6 7 8 i0

wi(rad/sec) 14.853 0.914 10.817 3.652 153.43 53.861 3.630 149.37 0 0
1 ,

(*: #9 and 10 are the rigid modes)

where the output ycRk (k=3) is

T
y - {LOS x LOSy, Defocus}
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and where LOSx is the angular displacement of the optical Line of Sight

(LOS) error about the x axis. LOSy is the optical Line of Sight error

about the y axis. Defocus is caused by changes in the length of the

optical axis (deflections in the z direction). The output y is related

to the modes ni by

10
Y Piri (4.3)

i=l

-3
The output weighting matrix is chosen as Q = diag {l,10,1O 1 to indicate

that line-of-sight errors about the y axis are most critical to the

experiments. The available measurements for the control law implementa-

tion are

z = y+v , zEcR , j = 3 (4.4)

where the noise v is assumed to be a zero mean white noise with intensity

V = 10-1513 to reflect the uncertainties in the measurements.

This second order representation (4.1-4) of the SOT is equivalently

written in a first order state form as follows:

= Ax + Bu + Dw , x eR r

y = Cx (4.5)

z = Mx + V

.......--MX+-V ...-

• - , ,,. , ,,. . . .- . ,.. -. -..- - -, - ; . . ..- -. . v -,.. .- .- , .-.--.- / . -..... .... . . .-. I ,;:. . " ", , " .
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where

x - nlon2,...,0nlO,;l,;2, ... ,9;1O]T  n nr=20

A 2  '1zl B D = ]

C :M = [P 0

and where

w diag{wl '" 2 '9lO ' = 0.001

r1

The matrices B and P are given in Table 2. Having represented the SOT

in the form (4.5) required by the Cost Decoupled Controller Design

Algorithm (given in Appendix A), this algorithm was used to design

reduced order controllers.

Reduced Order Controller Design:

The control weighting R in (4.2) was taken as R = pl8 and p was

varied to study controllers of different bandwidth. For each 0, the Cost

Decoupled Controller Design Algorithm was applied. This constitutes the

following steps.
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i) Construct an optimal controller for (4.5).

ii) Transform the controller to the form in (3.13) i-;ith prcperties (3.5).

iii) Obtain reduced controllers of order nc by truncating the last

(nr-n c ) controller states and evaluate these controllers. (Note,

nc = nr = 20 is the full order optimal controller for this

example).

The controller design algorithm was repeated for a range of o= .Ol0-lO0,

and reduced controllers of different orders were obtained. The per-

formance of the controllers was evaluated and is presented in Fig. 2.

The different labels presented in the followino ficures are defined by

CONTROL COST _ lim ElIu(t)112t-I'

REGULATION COST lim Elly(t)l
2

tI Q

CONTROL EFFORT = [control cost]112

LOS(y) Alim EILOS (t) I
y

The dotted lines indicate lines of constant p. The solid lines are

continued until instability occurs. Fig. 2 illustrates that the

Regulation Cost asymptotically reaches a constant value (l'OE-07)

corresponding to a control cost of greater than 1.6E-06N2 (control

effort > 1.3E-03 Newtons). Fig. 2 and Table 3 show that for a fixed

level of control effort (8.5E-4 Newtons for Table 3), controllers of

smaller order perform worse than the controllers of larger order.

. . . . . . . .. . .. . .

I ' ~ > , % V . \ ' ~ ~ 4 * * * ~ . -. . ~ . . . .
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FIG 2 - PERFORMRNCE PLOT
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Table 3 shows that the 4-th order controller and the full order

(nc=20) controllers yield essentially the same RMS performance. Our

explanation for this is that the relative observability conditions in

the conjecture on p. 21 regarding small l(n r,n c) happens to hold more

accurately for the 4-th order controller than for other reduced

controllers. However, the 4-th order controller has a lower margin of

stability which is indicated by this controller becoming unstable even

for a small increase in the control effort beyond CONTROL COST > .07xlO 6 N2.

(See Fig. 2).

Table 3

LOS(y) vs. n, (Control Effort = 8.5E-4N)

n 20 18 12 10 6 4

LOS(y). Rad(xlO "3) 0.28 0.28 0-29 0.35 0.37 0.29

7(nr ,nc) 0 .0150 .0196 .0848 .1301 .0245

Controllers of order nc =18 and 12 have not been included in Fig. 2.

From these figures one could pick a design to meet the mission objective.

For examole, if the following is the mission objective:

(i) LOS(x) < 5.OE-4 Rad.

(ii) LOS(y) f 3.0E-4 Rad.

and

(iii) Control Effort f 1OE-3 Newtons.

one would pick a 6-th order controller instead of nc> 6 so that

the performance specifications are met with the least amount of on-line

controller hardware/software.



D36

Obviously, none of the reduced controllers (nc < 20) can perform

better than the optimal controller (nc = 20). One could only aim to

get the corresponding performance curves close to the optimal curve.

Note that the reduced order Cost-Decoupled-controller designs in Fig. 2

are close to the optimal curve until instability occurs. (The

4th order controller (NC=4) eventually went unstable in Fig. 2).

Comparison with Balanced [5,6] Controller Design:

Since [5,6] also consider LQG-based design problems we wll now

compare the reduced controllers obtained by Cost-Decoupled (CODE)

controller design algorithm presented herein with the LQG-balanced

controller design method proposed by Verriest [5.,6].

The results are presented in Fig. 3. Let CODE denote the con-

troller design presented herein and BAL denote that of [5,6]. The

points labeled by similar numbers indicate that the controllers were

oL rained from the same optimal controller (nc = 20) but by different

methods. In this example the CODE-controllers performed better than

BAL-controllers and this difference increases with smaller order

controllers. For the values of p tried the LQG-balanced method did

not yield any stable controllers of orders less than 10 even for low

control effort. The Cost Decoupled Controller Design Algorithm result-

ed in stable reduced controllers of order less than 10 as shown by

Fig. 2. For a controller order nc = 10, the smallest line-of-sight

(LOS y) error achieved by the LQG-BALANCED design was O.4xI0 "3 rad.,

and the smallest achieved by the Cost-Decoupled design was 0.03xlO
3

rad.



D37

FIG3 CONTROLLER DIMENSION : 10
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VI. CONCLUSIONS

The concepts of Component Cost Analysis (CCA) utilizes the contri-

bution of states to a quadratic cost function as a metric 
to measure

the significance of the states. Using these concepts, a controller-

reduction algorithm is proposed. Controller error indices are defined

to measure the 'quality' of reduced-controllers and expressions are

derived for their computations. Upper bounds are also obtained for

these indices. The dependence of these indices on the observability

of the controller states that are truncated is also shown.

Employing CCA to reduce these error indices, a set of Cost Decoupled

Controller Coordinates are developed. The representation of the optimal

controller in these coordinates closely resembles the Generalized

Hessenberg Representation. The truncated controller states in this

representation have the following properties:

(i) smallest controller component costs,

(ii) the component cost is least sensitive to the control

weighting matrix R,

(iii) least observability in the controller,

(iv) uncorrelation from the retained controller states, and

(v) they have the least dynamic interaction with the retained

controller states.

Necessary conditions have been derived for the stability of the

closed loop system when driven by the reduced order controllers. The

conditions are shown to be related to the Markov Parameters of the

full order optimal controller. A Solar Optical Telescope is used to

illustrate the design procedure. The resulting controllers are compared

with those obtained by the LQG-balanced method proposed by Verriest [5,6].

~1~ W .j
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APPENDIX A. The Cost-Decoupled (CODE) Controller Design Algorithm

Given a model,

A Ax +Bu +D w; w --n(o,W)

n r ' k I A1y = C x , xcR rucRe,wcRdIYERk, zcR (A)

z =M x + v ; v n(o,V)

the objective of this algorithm is to construct a controller in the

form (3.13) with the properties (3.5), to reduce

V lim E{I y(t) I + IIu(t)I 2} (A.2)

ALGORITHM

1. Ia. Read {A, B, D, C, M., W, V, Q, R}

lb. Construct the optimal controller,

x =A cx +F z

(A.3a)

u G

where A~ c A + BG - FM (A.3b)

F =P MT V- (A.3c)

G -- 1 B T K (A.3d)

with K and P satisfying.

K A +ATK - K BR- B TK + C TQC =0 (A.3e)
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.4 PAT +AP - PMTV-'MP +DWDT =0 (A.3f)

le. Compute X by solving

i(A + B G )T + (A + B G )i + FVFT  =0 (A.4)

Id. Compute ex, the square root of il,

= e e T  
(A.5)x x

le. Compute Ou, the orthonormal modal matrix of

OxTGTRGex such that

eu T xTGTRGexeu= diag{V1 (i),V2(i),.. Vrl (i),O...0) (A.6)

1where Vl(X) _ 2 (') >  Vrl(x) > 0.

II. Ha. Define TI = ex  Gu  (4.7)

I I , !r 1xr1lA1  A1 A2 C

lib. Define ] TlA1A T1 ; AcR(nr-rl)x(nrr) (A.8a)
21  A212

F - - I F  Fi R (A.8b)

1. In case of incontrollable controllers, singular value decomposition
may be used in (A.5), to help factor out the uncontrollable subspace.

2. For this task use singular value decomposition [41 or use an
eigenvalue/eigenvector program specialized for symmetric matrices.

4 V\V~
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IIc. Set i = 2, p = 2, r = rI

III. lia. Obtain singular value decomposition of Ai-l i as

At i F
i-li LV2 (A.9)

i i i i i>where a = diag{o i  i i >0i > i,'2 ,..ari ; - aj+l >0

a i Rn r-rXr iand Vl Ri

IIIb. Define Ti r= ; Vi-[V ,V2] (A.10)

IIIc. Set r = r + ri; if r = nr go to IV.

111d. Define AT iV (A.a)
ii+l I i , i 2

.T
A. 4 V' 1 1  (AT,
Ai+11 i+l 2 Aii 2

lIe. Set i = i+l and p = p+l and repeat III.

' p

IV. Define T 4_ n T. (A.12)' i~l 1
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V. The reduced controller of order r is

AC R p + F RZ , P R r(A.13a)

UR =GR P

where

AC R LRACT R ,(A.13b)

FR L (A. 13c)

G R GT R (A. 13d)

and where T R and L R are obtained from

[T R T TJ=T T RcR n rxr (A.13e)

and

FR rxn

LT] L LT~ LR L R (A. 13f)
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APPENDIX B. Proof of Lemmna 1

Rewrite (2.8a) as

V Tr[C TCXR + T T[ TQ TT (B.1)
TrECR ITQCTXl] + r[RQCTRT)

whe re X R X RT and XT satisfy

XAT + A + T,+ T +D T (.
XRAR ARXR + RTART + RTXRT + RWVR = 0 (.a

AT+XA T + + ART (.bXRATR XRTAT ARXRT ARTXT + P0 (B.2b)

XTA +TA + ATRR + TWV 7  = 0 .(B.Z-)

XAT ATXT +XR#ATR RTT

The equations (B.2) are obtained by partitioning equation (2.9a).

Equation (2.12a) follows from the substitution of (B.1) and (2.10b)

in (2.10a), and (2.12b) follows from (B.1), (2.11) and (2.8b). Equation

(2.12c) is obtained by subtracting (B.2a) from (2.8b).

To prove (2..13a), use (2.8b) and (2.9b) to rewrite (2.11) as

1(nr nc) = 1- Tr [CRQCRX]- (B.3)

Now use the following identity [18]

x(X)Tr[Y] < Tr[YX) x XM(X)Tr[Y) for X > 0, Y > 0

in (B.3) to get

I1 ( T QC7(1c T
V Am(R )Tr [CRQCR>.l < 1[~r V XM(XR )TrEc RQCR>1
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Clearly, from the definition of CR in (2.4d), as defined in lemma 1
depends on nc. (2.13a) is proved by observing that I(n r nc) > 0.

(2.14a) is proved by equating (2.12a) and (2.12b). To prove the

sufficient condition (2.14b) assume without loss of generality that

(2.2) is in observable canonical form, so that xT is unobservable

(i.e., A = 0, GT = 0). Hence, from the definition of ART in (2.4b),

ART = 0. Now, since (2.2) is the optimal controller, (2.3) is

'4 asymptotically stable. Therefore, with ART = 0,

A(A) = A(AR) U A(AT) C C" (B.4a)

where A(.) denotes the eigenvalues of (.) and C- represents the open

left half complex plane. Hence

A(AR) -c-c . (B.4b)

Stability of AR guarantees that the solution to (2.12c) is XR-XR =0,

since ART = 0. Hence recognizing that CT = 0 if GT = 0, (2.14a) is

satisfied. To prove (2.14c) let (2.2) be in controllable canonical

form so that XT is uncontrollable (i.e., ACTR = 0, FT = 0). From

(2.4b) ATR : 0, hence (B.4) holds. Also note that from (2.4c) VT = 0,

yielding XT = 0 and XRT = 0 as the solutions to (B.2b) and (B.2c)

since A(AT)C.C. Furthermore, the solution to (2.12c) is XR-XR = 0,

since XRT = 0. Since XRT = 0 and XR0XR = 0, (2.14a) is satisfied.

This proves (2.14c) and (2.14d).

The proof of the sufficient conditions (2.15b) and (2.15c) follows

identical steps, and equation (2.15a) is obvious from (2.12b). #
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Abstract

Algorithms are given to determine the critical inputs and outputs

in a linear system evaluated by quadratic performance criteria. This

type of analysis is referred to as "input cost analysis" (ICA) and

"output cost analysis" (OCA). The fundamental concept is to decompose

the quadratic performance metric into contributions from each input/

output. This type of "cost-decomposition" has application in the selec-

tion of best sensors and actuators in engineering control systems, and

that application is the focus of this paper.

I
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1.0 INTRODUCTION

The problem under consideration is the time-invariant linear dynamic

system described by

(1.la) =Ax + B(u + w)

(1.lb) y = Cx

(10lc) z = Wv + v

and evaluated by the performance metric

(1.2) V = lim E(IIy(t)llI + 2, yTQy Q >0

tQ + u(t)1R) 1R > 0

Where the zero-mean white noise disturbances are described by Ew(t) = 0,

Ev(t) = 0, Ew(t)wT(T) = W6(t-T), Ex(o) wT(t) = 0, Ex(o)v (t) = 0,

Ev(t)v (T) = V6(t-T), W > 0, V > 0. The notation "Q > 0" means that

"Q is a positive definite matrix". The superscript T denotes matrix

k Z. n m
transposition, and the notation ycR , ucR,zcR , xeR , WcRm indicates

the dimensions k, m, t, n, m of the real vectors y, u, z, x, w respec-

tively. It is assumed that rank B = m, rank M = Z, and rank C = k.

This eliminates the possibility of redundant inputs/outputs. Now suppose

that m > 1. (In fact in some large scale systems m is quite large [7].)

One might wish to know which of the inputs have a greater effect on the

responses that contribute to the performance metric V in both the open

loop (u=O) and closed loop (u$O) cases. We shall refer to these inputs

as the more "critical" inputs. Generally speaking, there are three reasons

for using input cost analysis:

(i) For the open loop case, the "critical" inputs can be retained in the

model and the others deleted if a simplified representation of the

system is desired, using fewer inputs.

%r r
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(ii) If the inputs evolve from actuator devices of varying degrees of

reliability (i.e. closed-loop case), the "critical actuators suggest

which actuator devices should be made more reliable.

(iii) If the inputs evolve from actuator devices with m admissible

locations throughout the engineering system, only the m < m most

"critical" actuators might be retained if the system is to be

designed using only m < m actuators. In this way the optimal

location of n actuators is sought from an admissible set of

m > m actuators. In fact, when noisy actuators are considered, the

set of m actuators may yield better performance than the total set

of m actuators.

A similar set of circumstances and questions exist concerning outputs

of the system.

The idea of decomposing the performance metric V in terms of contri-

butions from each input was presented in [l]- [3] and this analysis is

referred to as "Input Cost Analysis" (ICA). Similarly, "Output Cost

inalysis" (OCA) was also presented in [l]-[3]. This paper develops ICA

and OCA for the more difficult case of closed-loop systems, whereas

[2] and [3] are limited to open-loop systems. In [1] and [2], the

definition of the ith "input cost" V ,
b is

*1

(I 3a) Uib _A 1 aV b b
(1 3 ) 2 abib i ' B""bl ., b m]

and the definition uf the ith "output cost" V .c is
1

c V 1 Y a . c- C- T = [cl, ... , ck ]

The definition for input costs employed herein and in [3] is

(1.4a) viW lira wi lt V(t) 11Y112t +- Ewi ~) JYI
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and the definition for output costs described herein and in [3] is

(1.4b) vY = lim7E I (t) , vt) Qy
t-#=

To see clearly the distinctions between (l.3a) and (l.4a) note that the

inputs and outputs of (l.la) can be expanded in terms of the columns

of B, and the rows of C i.e.

m
(1.5) Bw = biwi  andil

(1.6) Yi = (Cx)i = ciT x(t)

Note that definitions (1.3) are given in terms of parameters bi and ci ,

whereas the definitions (1.4) are given in terms of the variables wI and

Yi" The early work on measurement optimization [ 8], [ 1] used the

parameters c i in the optimization process. However, the parameters bi

and ci are only the coefficients of the variables for which we wish to

determine a performance value. That is, the physical entity which

might be deleted generates wi(t) or yi(t). Hence, it is reasonable to

expect definitions (1.4) to be more accurate in predicting the effect

of the deletion of an input or output. However, there is an important

case when definitions (1.3) and (1.4) yield the same result.

Theorem 1

Consider the linear system (1.1), (1.2). If u(t) 0, then

V ib = Viw and Vc = ViY

Proof:

To show that Vic = Y, compute first
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(1.7a) V Y lim E( yi}
i Yt-OaW Dyi

k
(l.7b) lir E{ I YjQijYi}

t-0 j=l

(1.7c) =lim E yyTQ)ii., t-O-

Then note from (1.3b) that
(l8a v C i. . "* kY(18) Vc - iim 1 (,Ey TOy~ lim I Eii yj)

(I8) vc Uc. 1 . = rn ( E. EyQ.y)c
ci  t-*= 2 a .c i t-o' a i,j=l i3I

I a k T T== lim 2 aci. (,= E (c i x)Q ii(c j X)) c i

- k T jTk

= lim E[ r xTc QiXT]ci = lir E{ r yQijYi}t-ow j=l t= j=1

(1.8b) = lim EEyyTQ]il = lim E[cxxTcTQ]ii = [CXCTQii

where X is the steady state covariance satisfying

(1.9) 0 = XAT+ AX + BWBT

Hence, for open loop systems (u(t) 0), (1.7c) and (1.8b) prove that
Vic = V . The proof that Viw = vib follows similar arguments, using

the fact that

(1.10) V = tr [SBWB T

where S satisfies

(1.11) 0 = SA + ATS + CTQC

and leads to the calculation

11E
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(1.12) V .= b = [B TSBW]ii

Certainly the new definitions (1.4a) and (l.4b) offer no advantage

in open-loop situations, as evidenced by Theorem 1. However, in closed-

loop situations the optimal closed-loop plant matrix A, which has the form,

(.13a) A= [ A BG -FM] F=PMTV 0 = PAT + AP-PMTV
LFG = -R-BBTK, 0 = KA + ATK - KBR-IBTK + CTQ

(1.13b) i = Ax + BW , xT (xT , T) , wT = (wT, vT)

Y=CX , yT (yT uT

0.l30 Ew(t)WT() =W6(t-T) ] 6(t-T), Ex(o)wT(t) = 0.

B=  0F C = G

is a function of the input/output parameters bi , ci. This situation does

not occur in the open-loop system since A in (l.la) is not a function of

the parameters of B or C. Thus the definitions (1.3) and (1.4) will yield

different results for closed-loop applications. The closed-loop results

Which follow from (1.4) are developed in this paper.

The properties of input costs (l.4a) and output costs (l.4b) for

open-loop systems are discussed in sections 2 and 3 respectively. The

essential results of these two sections are combined in section 4 to

produce the closed-loop ICA/OCA. Closed-loop ICA/OCA is then used in

the selection of noisy actuators (section 5) and the selection of noisy

sensors (section 6), while the problem of simultaneous selection of

noisy actuators and sensors is addressed in section 7.



In Section 8, the methods suggested in this paper are applied to a

substantial example of a large space structure. Concluding comments

appear in Section 9.

2.0 Properties of Input Costs (1.4a) for Open-Loop Systems (u(t) B-0)

Before applying results (1.4) to the closed loop system it will prove

useful to know the properties of the input cost Viw for the open-loop

system (u(t) E 0). This Section is devoted exclusively to the case

u(t) - 0 in (1.1), (1.2) with A asymptotically stable. Proofs of all

remaining theorems appear in Appendix A.

Theorem 2

The open-loop input costs ViWi = 1, ... , m, defined by (l.4a) and

calculated by (1.12), satisfy the cost-decomposition property

m
(2.1) V , (u(t) 0).

Where the total value of the system performance metric is V, and the

in situ contribution from w i is V iw

The sign of Viw is nonnegative under these conditions.

Theorem 3

For the stable open-loop system (1.1), 1.2), u(t) 0- 0, W > 0, if

Sij = 0 for all j i then V'w > 0. If, in addition (A, C) is an

observable pair, then V . w > 0.~1 "

If the number of active inputs is not perturbed it is sufficient to

know the in situ input cost V iw . However, additional information is

required in order to determine the amount by which the performance metric

is perturbed after an input is deleted. This amount is defined by

(2.2) AV iw--6 V/- V RI

where V Ri is the value of V after the ith input is removed Clearly, i w

is the information available to the analyst prior to deletion of the ith

.. K.""" N N N %- % " ,-,44 "- N N
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input and A/iw is the information available after such deletion. If

ViW is to be used a priori as a prediction of AViw, it is of interest then

to know how accurately viw predicts the actual value of AVtw. Fur-

thermore, it is of interest to know when this prediction is exact (V w = Avtw).

Theorem 4

If u(t) -0 in (1.1), (1.2) then

(2.3) AViw = 2Vw - i Sb W

w
If W is a diagonal matrix then V. has the following properties:

(2.4) Viw= AViw , i = 1, ... , im

w A
(2.5) V(ii) =, R = set of m retained inputs

where V(m) is the value of V with only the reduced set of ffi inputs acting.

The circumstances (2.4), (2.5) are very valuable, since they allow

the performance of the reduced input system V(mi) to be evaluated on the

basis of information computed prior to deletion of the inputs (V iW). Hence,

when (2.4) holds, then (2.5) follows. Eq. (2.5) is referred to as the

cost-superposition property of inputs costs, whereas (2.1) is referred to

as the cost-decomposition property. The cost-decomposition property (2.1)

always holds, whereas (2.5) holds only under certain restricted conditions,

such as the diagonal W condition of Theorem 4.

Finally, it should be noted that the input costs Vi W ar invariant

under coordinate transformation.

Theorem 5

If u(t) E 0 in (1.1), (1.2), the input costs ViW defined by (l.4a) are

invariant under state transformation x = Ts, ITI # 0.
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The Open-Loop Input Selection Problem

Since the input costs Vi w provide one with information concerning

the individual contributions of each input to the performance metric, the

next logical use of this information is to describe an algorithm which

provides an answer to problem (i) in the Introduction. This shall be

referred to as the Open-Loop Input Selection Problem.

There are two different statements of the Open-Loop Input

Selection Problem. We shall call them problem (ICA-1) and (ICA-2):

(ICA-l) Let m and il < m be specified integers. From an admissible set

of m inputs find a reduced set of m inputs such that the input

error index 1,

(2.6) 1 ______

is minimized.

(ICA-2) Let m and i be specified numbers. From an admissible set of

inputs find the smallest number, m, of inputs such

that

I<-

The following algorithm provides a systematic means to solve problems

(ICA-l) or (ICA-2).

The ICA Algorithm

STEP 1: Specify system data (A, B, W) and output objectives (C, Q)

for (1.1), (1.2) with u = 0 . Specify either m or I (to solve

either problem (ICA-l) or (ICA-2).

STEP 2: Compute the input cost perturbation, from (2.3), for i=l, ... , m.



(2.7) AViW = 2[BTSBW]ii - [BTSBWD~ii , WD diag {W1l,..., W }

(2.8) 0 = SA + ATS + CTQC

Of course,if W is diagonal, then W = WD and according to Theorem 4 the

calculation (2.7) can be replaced by

(2.9) Av = Vi= [BTSBW]ii

Rearrange the inputs wi such that AI >- AV2 > ... , > AVmW

STEP 3: If 7 is specified, go to STEP 4. If i is Specified and W is

diagonal, then retain those mi inputs having the Fm largest values

of AV/iW and stop. If W is not diagonal, delete the input having

the smallest value of AViw. For this reduced B = [bl, ... , bml]

return to STEP 2. (Note that 2.8 does not have to be recomputed.)

Repeat this cycle m-4 times. END.
STEP 4: If 7 is specified, delete the input wm with the smallest AViW.

With this reduced input matrix B = [b l , ... , bml], return to

STEP 2 unless the following condition is satisfied: (Note that

(2.8) does not have to be recomputed.)

(2.10 i ~ V-V(t )j > T
(2.10) 1 -I V 7

where V equals the value of performance metric with all inputs

present and i refers to the number of inputs of the current

iteration. If 2.10 is satisfied, the required set of reduced

inputs is the set of inputs from the previous iteration (i.e.

a set of + 1 inputs). END. (Note: if W is diagonal, the

STEP 4 iteration cycle is unnecessary, and V-V( ) = I Avi w "

i E J

J = set of lowest AViW's calculated from the Ist iteration.

is1
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3.0 Properties of Output Costs (l.4b) for Open-Loop Systems (u(t) E 0).

All of the questions of Section 2.0 can be applied to outputs instead

of inputs. To make the presentation of these similar results concise,

the following duality can be used. It is straightforward to show that

substitution of the parameters of TABLE 1 converts all of the ICA results

of Section 2.0 to results which hold for Output Cost Analysis (OCA).

With the help of this duality the following results are listed as

corollaries to the theorems corresponding to their ICA application of

Section 2. The proof of these corollaries is the exact dual (Table 1) of

the proofs for Theorems 1-5.

Corollary to Theorem 2:

The open-loop output costs ViY, il, ... , k defined by (l.4b) and

4. calculated by

(3.1) iY= [CXCTQ)ii

where X satisfies

(3.2) 0 =XT + AX+ BWBT,

, satisfy the cost-decomposition property

k
(3.3) V Y •

Corollary to Theorem 3:

For the stable open-loop system (1.1), (1.2), (u(t) 0), Q > 0,

if Qij = 0 for all j~i then ViY > 0. If, in addition, (A, B) is a

controllable pair, then ViY > 0.

Corollary to Theorem 4:

If u(t) 0 in (1.1), (1.2) then

- * -<i, ~ ~ * ~ 4 *~~~
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TABLE 1 ICA/OCA DUALITY

ICA MATRICES DUAL OCA MATRICES

A AT

B C T

S x: X

W
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(3.4) AV i = 2ViY - iT X ci Qii ; where c, is the ith column of CT

If Q is a diagonal matrix then Vi has the following properties:

(3.5) viY = AViY

(3.6)~ V~) !vY , RA
(3.6) V(k) = R = set of K retained outputs

icR

where V(R) is the value of V with only the reduced set of outputs.

Corollary to Theorem 5:

If u(t) - 0 in (1.1), (1.2). the output costs ViY defined by (l.4b)

are invariant under state transformation x = Ts, ITI t 0.

The Open-Loop Output Selection Problem

Since the output costs ViY provide one with information concerning

the individual contributions of each output .to the performance metric,

the next logical use of this information is to describe an algorithm

which provides an answer to questions (OCA-l) and (OCA-2) below.

(OCA-l) Let k and k < k be specified integers. From an admissible

set of k outputs find a reduced set of k outputs such

that

iV-V R)I(3.7) e =

is minimized.

(OCA-2) Let k and 0 be specified numbers. From an admissible set

of k outputs find the smallest number, k3 of outputs such

that

9<
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The following algorithm provides a systematic means to solve problems

(OCA-1) and (OCA-2).

The OCA Algorithm

STEP 1: Specify system data (A,B,W) and output objectives (C,Q) for

(1.1), (1.2) with u = . Specify K (to solve problem (OCA-l))

or specify 5 (to solve problem (OCA-2)).

STEP 2: Compute the output cost perturbation, from (3.4), for i=l, ..., k

(3.8) AVY = 2[CXCTQ]ii - [CxCTQD] 'QD diag {Qllq ""' Qkk }

(3.8a) 0 = XAT + AX + BWBT

Of course, if Q is diagonal, then Q= QD and according to the

corollary to theorem 4 the calculation (3.8) can be

replaced by

(3.9) AViY= IiY = [cxcTQ]ii

Rearrange the outputs yi such that

AV1Y > AV 2Y > ... > AVkY

STEP 3: If e is specified go to STEP 4. If k is specified, and Q is

diagonal, then retain those k outputs having the k largest

values of AViY and END. If Q is not diagonal, delete the

output having the smallest value of AIiY. For this reduced¢T1

"4 cT = [c I , ... , cn1 ] return to STEP 2. (note that 3.8a does

.4 not have to be recomputed). Repeat this cycle k-R times.

END.

r .• ' " % - , - ...
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STEP 4: If o is specified, delete the output Yk with the smallest

AV.Y. With this reduced output matrix CT = [c1 , ..., cmi]
1 -1

return to STEP 2 unless the following condition is satisfied.

(note that (3.8a) does not have to be recomputed).

(3.10) 0 IVV1k) 1 > ;

where R refers to the number of outputs in the current iteration.

If 3.10 is satisfied, the required reduced set of outputs is the

set of outputs from the previous iteration (i.e. a set of R+l

outputs) END. (Note: if Q is diagonal, the STEP 4 iteration

cycle is unnecessary, and V-V(k) = I AviY; J = set of lowest
iciJ

AViW's calculated from the 1st iteration.

4.0 Closed-Loop ICA/OCA

Sections 2 and 3 assumed u(t) =_ 0 in (1.1), (1.2). However,

it was the closed-loop situation (1.13) which motivated the definitions

(1.4) of input and output costs. To treat the closed-loop system (1.13)

the following will be assumed:

(A, C) observable

(4.0) (A, M) observable

(A, B) controlable

Under these conditions the matrix A iin (1.13) is guaranteed stable [4].

Now the concepts of Sections 2 and 3 will be applied to (1.13). The

practical value of such analysis is the determination of sensor and

actuator devices which are most critical to the performance metric

(1.2). Thus, reasons (ii) and (iii) in the Introduction are the

paramount goals of Section 4.0.

The performance metric V associated with the closed-loop system

(1.13) is given by (1.2), and can be rewritten in the form



t")?

where y is defined in (l.13b). Thus, input cost analysis (ICA) applied

to (1.13) yields

S) i w i=1, m
: (4.2) V iw : [BTsBW] j = i i J = . t ~~

(4.3) 0 = SA + ATS +C TQC

m+Z m Z
(4.4) v= V v. + V""i~l i=l 1~

and output cost analysis (OCA) applied to (1.13) yields

- , i=l, ... , k

(4.5) Vi [cx -ii = ., T Qu
11 j=1, ... m, i=k+j

(4.6) 0 =X + AX +

k+m k m
(4.7) V = VI Y + vi u

il i1 11

where Viw may be interpreted as the effect of the ith plant noise on
the closed-loop performance, V v is the effect of the ith measurement

noise on the closed-loop performance, ViY is the effect of the ith

output Yi on the closed-loop performance, and ViU i the effect of the

ith control input ui on the closed-loop performance. The computation

of Vs', Vi u ,  Vi v follow from (4.2) and (4.5), but the Znx2n matrix

equations (4.3) and (4.6) actually represent an excessive burden. The

following result shows that the special structure of A i" (,.1a allows

,- , :,,'z~r <-- .:............-.......-.......,,.."..,.-,...-.......-...-,........................-'.....,....-....v,.....................,.....-...,.. ,......,. , .4 ,
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the solutions of (4.3) and (4.6) to be expressed in terms of the Riccati

matrices K and P already obtained in (1.13a).

Theorem 6

The soZutions S and X of (4.3) and (4.6) respectiveZy may be written

(4.8) [KL -UL

where K satisfies 0 , KA + ATK - KBR 1'BTK + CToc,'and L satisfies

(4.9) 0 = L(A-FM) + (A-FM)TL + GTRG

and

(4.10) x[PN N]

where P satisfies 0 = PAT + AP - PMTV-IMP + BWBT, and where N satisfies

(4.11) 0 = N(A+BG)T + (A+BG)N + FVFT

Theorem 6 and the special structure of the matrices C, Q, B and W

in (1.13), (4.1), allow these expressions as simplifications of (4.2)

and (4.5):

.(4.12) viw = BT.SW]i = cBT(K+L)BWi i = 1, ..., m{/~i v TBi]j TLF

(4.13) = [ KBW = [F LFV]ii j = m+i, i = 1, ... , Z

(4.14) v iy = [cxcTQlii = [C(P+N)cTQii , i = 1, ..., k

(4.15) viu = [CXCTQJj [GNGT R]i , j = k+i, i = 1, ... , m

Theorems 7-9 follow in the same manner as in Section 2. Their proofs

are contained in appendix A.
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Theorem 7

For the closed loop system (1.13) under the conditions (4.0), if

W. =O for all j t i then V'W > 0. If V =0 for all j t i then

V.V > 0. In addition, if (A-FM,G) is an observable pair then Viv > 0.

Theorem 8

For the closed-loop system (1.13) under the conditions (4.0), if

Q 20 for alljti thenV > 0. If Ri = 0 for all j t i thenQi3 = 1 o l j ite 1.)

V u > 0. In addition, if (A+BG,F) is a controllable pair, then V.u > 0.

Theorem 9

The closed-loop input and output costs, Viy ', Vi u , Vi w i v are

invariant under state transformation x - Ts, ITI ' 0.

Equations (4.2)-(4.7) and (4.12)-(4.15) can be used to set up the

duality of TABLE 2 applicable to closed-loop systems.

5.0 Selection of Noisy Actuators in Closed-Loop LQG Problems

A simplifying assumption made in (1.1) is that the only source of

disturbances w(t) is the actuator noises. Thus, the disturbance distri-

bution matrix and the control distribution matrix are the same (BFD).

Questions of the type (ICA-I) and (ICA-2) from Section 2 are now posed

for the closed-loop system. The questions are complicated by the

fact that for the closed-loop system (u(t) 1 0) there are

two costs, Viw and V .u associated with inputs to (l.la). Since Viw is

the "bad" effect (from noisy disturbances) and Viu is the "good'! effect

(from optimal control action), it is reasonable to choose the difference

between the good and bad effects
p ,
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TABLE 2 DUALITY OF CLOSED-LOOP ICA/OCA

CLOSED-LOOP ICA CLOSED-LOOP OCA

L N

A- FM (A+BG) T

G <FT

R v

B c T

B C T

K ()P

w Q
w, Q

A A T

A t AT
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(5.1) V a~c t  = . u  _ Vw

1 1 1

as the "value" of the ith actuator. A negative value of V1 act indicates

that the ith actuator is contributing more noise than control action and

should either be deleted or its signal to noise ratio should be improved.
If oe deine ni A u/Viw

If one defines = V / as the "effective signal to noise ratio" of

actuator i, then (5.1) becomes

(5.2) act = (hi-l) Viw

If (A,C) is an observable pair, and (A+BG,F) is a controllable pair, and

the matrices (W,R) have no negative elements then theorems 7 and 8

guarantee that n i > 0 (since Viu and Viw are both > 0). Under these con-

ditbons improvement in performance is expected by deleti'ng the actuators

with effective signal to noise ratios less than l(ni < 1) as long as

controllability of (A,B) is maintained. The two closed-loop versions of

actuator selection problems (ASP-I and ASP-2) are now defined.

Problem ASP-l: Given the optimal system (i.13) using m admissible but

noisy actuators, find the set of m actuators which lead to the smallest

value of the closed loop system performance metric V as defined by (1 .2)

without losing controllability. Label this minimum value as V(mi). The

The computations suggested to approximate the solution of problem

(ASP-l) are as follows:

Algorithm ASP-l: Using (5.1), (4.12), (4.15), solve for Vi act, i = 1,

actac.m, and rearrange so that V. > .. mact* Delete the actuator with

the smallest value of V. act if that value is negative or zero and if

deletion of that actuator does not reduce the rank [B, AB ...... AnlB].

Solve the optimal LQG problem for the reduced number of actuators (i.e.



E22

B = [bl, ..bmil], W = [w 1 ...Wm-]) . Repeat the above cycle until no

actuator satisfies the deletion criteria. The number of actuators left

is the set of m actuators to be used.

Note: At present, no guarantee exists that algorithm ASP-i provides an

optimal solution for Problem ASP-i; however, the results of Section 8

do lend some empirical support, and in addition they suggest a possibility

for greatly reducing the computational burden of the algorithm.

Problem ASP-2: Specify the integer m and the number 1 > 1.0. Given

the optimal system (1.13) using m adnissible but noisy

actuators, find the smallest ; set of actuators such

that

(5.3) V ) c  (and (A,B) a controllable pair)

where V(i) is the smallest value of V obtained in

(ASP-i) and V(m) is the value of V obtained with

m < m actuators.

Although no proof of optimality is currently available, the following

algorithm is suggested for the solution of ASP-2.

Algorithm ASP-2: Solve algorithm ASP-I and use this set of m actuators

in the solution of the LQG system (1.13). Compute Viact, i = 1, .•.m,

act act
and rearrange so that V.a  > .> V- a Delete the actuator with the

smallest value of Viact if deletion of that actuator does not: effect the

rank of [B, .... A n-B]. Solve the optimal LQG problem for the reduced

number of actuators. Repeat the above cycle until either L(a) < or

until all remaining actuators are necessary for controllability. The

previous set of m actuators is then the number desired.
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6.0 Selection of Noisy Sensors in Closed-Loop LQG Problems

Before discussing noisy sensor selection, it is useful to consider

the following theorem:

Theorem 10

Adding noisy sensors to the LQG system described by (1.13) cannot

increase the performance metric V (i.e. 4.1), of the system.

Heuristically speaking, Theorem 10 is plausable since the sensor

measurements, z, are being passed through a Kalman filter and the purpose

of the Kalman filter is to "de-emphasize" or "throw-out" the measurements

which have more noise than estimation information, [4]. (Note: A result

such as Theorem 10 does not exist for actuators. In fact it will be shown

later that adding actuators can degrade performance (Likewise deleting

actuators can help).) As a result of this property of the Kalman filter,

it is not surprising that any sensor noise source (vi) that is making a

large contribution to the closed loop performance metric (i.e. large Vi V)

eminates from a sensor which is making an even larger contribution in

estimation information! Based upon these points, the following definiticn

for the ith sensor value is offered.

(6.1) Vsen V

Large values of V. indicate sensors which are providing a "large"

amount of estimation information and are therefore critical to the

performance of the closed loop system. Sensors with smaller values of

V v are providing less information and are therefore candidates for deletion.

In light of this discussion the following closed loop sensor selection

problems and algorithms are defined.

Problem SSP-l: Let t and I < t be specified integers. From an admissible

set of t sensors find a reduced set of 1 sensors such that
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(6.2) VV

is minimized. Where V(L) is the system performance metric

with only Z sensors operating.

The computations suggested to approximate the solution of problem SSP-1

are as follows:

Algorithm SSP-l: Solve for Visen, il ....t from (6.1), (4.13) and rearrange

sen sen
so that V. > ... > Ve . Delete the sensor with the smallest value of

V. sen if deletion of that sensor does not reduce the rank of [M
T , ... ATn-IMT

Solve the optimal LQG problem for the reduced number of sensors (i.e.

MT = [M1l . . . . M_ 1 ], V = diag [V1 , .. .. Vzl]). Repeat the above cycle

Z-Z times or until all remaining measurements are necessary for observ-

ability of (A, M).

At present, no guarantee exists that algorithm SSP-l is optimal.

However, it can be shown (See Appendix B) that Vv (i.e. Vi sen) is closely

related to the switching functions of the extended-Chen-Seinfeld method for

optimal selection of sensors, [1]. The switching functions are used to

indicate the sensors which satisfy the necessary conditions for optimality

[1]. (i.e. minimization of (6.2)). The above fact, together with the

limited results presented in section 8 indicate that algorithm SSP-l may

in fact be optimal. Research is continuing in this area.

"A second version of the closed-loop sensor selection problem is

'ft presented below.

Problem SSP-2: Let Z and j be specified numbers. Fran an admissible

set of t sensors, find the smallest number, Z, of sensors

such that

0 <

and observability of (A, M) is maintained.

- .- -% ." .f t" .% "w ", ' " w ,, " b".-.w -
h

" " 'N
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The computations suggested to approximate the solutions to SSP-2 are

as follows:

Algorithm SSP-2: Solve for Vi sen, i = 1, ... t, and rearrange so that
sen sen

Vei ... > ... > {se . Delete the sensor with the smallest value of

Visen if deletion of that sensor does not effect observability of (A, M).

Solve the optimal LQG problem for the reduced number of sensors (i.e.

MT = [M, Mz1J, V = diag [V,, ... Vt1 ]). Repeat the above cycle

until 0 is no longer less than or equal to j or (A, M) is no longer

observable. At this point the last set of sensors is the desired set of

Z sensors.

Further research is required to establish the relative degree of

optimality of Algorithm SSP-2.

* 7.0 The Sensor/Actuator Selection (SAS) Algorithm

The actuator selection problems and algorithms presented in section

5 assumed that no change takes place in the number, type, and location of

the sensors. The sensor selection problems and algorithms presented in

section 6 assumed that no change takes place in the number, type, and

location of the actuators. In practical design problems one needs an

algorithm for combined actuator and sensor selection. The fact that

actuator and sensor selection are coupled is well evidenced by equations

(4.9), (4.11) and (4.12-4.15). As a result of this coupling, it is

necessary to have an, algorithm which simultaneously solves problems of

type (ASP-l, ASP-2) and (SSP-l, SSP-2). As our first attempt for

generating such an algorithm it is suggested that the appropriate actuator

algorithm and sensor algorithm of Sections 5 and 6 be solved simultaneously.

More specifically, if it is desired to solve ASP-l and SSP-l, algorithms

ASP-I and SSP-l should be implimented simultaneously. The optimality of
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such an algorithm or the possibility of simplified variations of such an

algorithm is currently under study.

8.0 Hoop-Antenna Example

The ASP-i Algorithm of Section 6 was applied to a 26-state model of a

Hoop-Antenna Satellite which has 12 actuators, 39 sensors, and 27 outputs.

Data was also collected to provide some verification of the validity of

algorithm SSP-l. For the sake of brevity, only the general details of the

model are presented in (8.1). A complete model description is provided

in Appendix C along with a schematic describing sensor and actuator

locations.

x = Ax + B(u + w); xER 26; ucR12 ; wR 12

y = Cx; ycR
27

V = lim E{Ily112 + 11u1 2}; Q > 0, R > 0(Q, and R diagonal)
t-4-

More specifically,

[27 2 qi 12 2
V =lim E{y. T + ] E{u i

t Yim i=Um ] (8.1I)

w he re, tqi e-Yim = Max allowable value of ith output
ii= f

Yim Lqi= dimensionless output weight

r. Ui = Max allowable control effort for ith actuator

1 u2m ri dimensionless control weight

z = Mx + v; zcR
39

E{w(t)} = E{v(t)} = 0

E{w(t)w T(T) = W6(t-T); W > 0

T
Efv(t)v (T)} : V6(t-T); V > 0

E{v(t)wT)) o,E{x(t)w T(T)} 0, E{x(t)v T()) = 0, T > t



A closed loop analysis of (8.1) was performed and Q and R were chosen such

that system specifications were met (i.e. y2 > EYi 2, i=l, ....27, Uim_

E{ui2}, i=l, ....12). Algorithm ASP-] was then applied. Specifically, the

actuators with negative values of V.act (and not necessary for controllability)1

were deleted one at a time. Figure la shows a graph of the total system cost

versus the number of closed loop actuators as the algorithm progressed. Ttw

nurbers above the bar graphs indicate deleted actuators. Figure lb shows the

total output cost Vy versus the number of closed loop actuators.

Note that the algorithm recommends a 6-actuator closed loop system and

that this system is almost 25% better in terms of total cost and performance

cost than the original 12-actuator system. It is important to note also

that the control effort of each actuator in the reduced actuator system

was still within its specifications.

As a partial check on the optimality of the ASP-1 algorithm, the

system was iteratively operated with each one of the 12 actuators deleted

while the 11 other actuators remained. The results are shown in

Figure 2.

From Figure 2 it is apparent that deleting actuator 10 would be the

optimal decision if only 1 actuator were to be deleted. This result agrees

with the decision of Algorithm ASP-l for one actuator (See Fig. 1). To

A.4 AA *. * 9~~*~v
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I

check the complete optimality of Algorithm ASP-i empirically, the analysis

of Fig. 2 would have to be repeated for any 2 actuators deleted, any 3

actuators deleted, etc. until the entire set of possible combinations were

exercised. Clearly, this brute force approach is, computationally, an

undesirable alternative to Algorithm ASP-i.

The in situ contribution or "value" of the i th actuator is given by
Vact
.t However, the actual perturbation of the cost after the deletion of

1

the ith actuator will be labeled ~act.

Mathematically speaking,

(8.2) M,.act _ V(m-l) - V(m)1

where V(m-1) is the cost of the system operating without the ith actuator

and V(m) is the cost of the system operating with all actuators.

Since we intend to use Vi act as an approximation of AV.act in the

actuator selection process, we wish to know how good the approximation

is.

. _.. - . . . . . . . . ,, , . - .,- ,- .- , -. . ,' . ,. ', -. , '-: :. ,. . '
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Figure 3 indicates that V'ac- tracks the actual £Viact with some bias.

However, a more important feature of actuator costs would be

(8.4) (Viact > Vjact) => (AVi act > AVjact)

Verification of (8.4) would be sufficient for verifying the optimality of

Algorithm ASP-i. By comparing the data of Figure 2 to the ordering of

V.act with all actuators present, condition (8.4) was verified for the

example problem.

Another interesting fact noticed in the data for this example was

that if the deletion criteria of Alg-rithm ASP-I was applied only to the

original ranking of V act, (i.e. a new ranking was not calculated after

each deletion) the algorithm still retained the same six actuators as
before. If this result is shown to be a property of Vact Algorithm

1

ASP-1 would become non-iterative and this would greatly reduce its

computational burden. In summary, the results presented above indicate

the usefulness and potential optimality of Algorithm ASP-I for solving

the noisy actuator selection problem.

-. -- . U. -- - ,"
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In addition to applying ASP-i to the hoop-antenna model, some

verification data was collected for Algorithm SSP-l. The data consisted

of 7 simulations with only 38 of the 39 sensors acting (See Appendix C)

and a different sensor deleted for each simulation. Table 3 shows the

original Viv ranking of the seven sensors when all 39 sensors were

acting.

Sensor Ranking

10 1
37 13

38 14

34 15

29 17

14 28

1 34

Table 3: Viv ranking

Figure 4 is a plot of AV = V-V(L-l) and V . v versus the deleted sensor wherei
V(L-l) is the value of the performance metric with only 38 sensors acting.

5!
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Figure 4 indicates that V iv is a good prediction of the increase in the

performance metric that results when the ith sensor is deleted. Comparing

Figure 4 to Table 3 the following observation can be made

(8.5) V iv_ v .v > i >

If (8.5) can be shown to be a generic property of the SSP-l algorithm, it

would be sufficient to prove the optimality of the Algorithm.

9.0 Conclusion

This paper has defined Input Cost Analysis (ICA) and Output Cost

Analysis (OCA) and shown the basic properties of each. Algorithms using

ICA and OCA in an open loop setting were then presented and they provided

an optimal solution to the open-loop input and output selection problems

posed in Sections 2 and 3. In Section 4, closed loop versions of ICA and

OCA were developed and their properties discussed. Selection of noisy

actuators was discussed in Section 5.0 and algorithms using closed-loop

ICA and OCA were suggested for the solution of ASP-l and ASP-2. In

Section 6 it was shown that adding sensors cannot degrade LQG performance.

Noisy sensor selection problems were defined and algorithms using closed-

loop OCA and ICA were posed for the solution of SSP-l and SSP-2. In

Section 7, a combined sensor and actuator selection algorithm was suggested.

The noisy actuator selection algorithm, ASP-l, of Section 5, was applied

to a model of a hoop antenna satellite in Section 8. The results indicated

that the system performed better with a fewer number of noisy actuators.

Research is continuing in these areas. In addition, data was also presented

in Section 8 which supported the optimality of algorithms SSP-l and SSP-2.

Both empirical and analytical research on the optimality of the algorithms

posed in this paper are continuing with particular focus on the combined

algorithms suggested in Section 7.
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Appendix A: Proofs

Proof of Theorem 2:

For u 0., it can be shown [4] that the V defined in (1.1) is equal to

value given by (1.10), (1.11). Using the fact that trAB = trBA, (1.10)

oecomes

(Al) V = tr[SBWBT] = tr[BTSBW)

But, from (1.12)

m T
(A2) V i [BSBW]ii = tr[B SBW ]

i~l i=l

Therefore, from (Al) and (A2)

m
V E V.w

i=l '

Proof of Theorem 3:

The expression (1.12) can be written as follows, if W is diagonal,

(A3) viw = biTSbiWii (bi = ith col. of B)

The stability of A guarantees that S is the unique and at least positive

semi-definite solution of the Lyapunov equation (1.11). Therefore, since

B is of maximal rank (i.e. I1bi 1 > 0 for all i = 1, ... m) and since

W > 0 implies Wii > 0, then (A3) cannot be negative and the first part of

the theorem is proved.

The observability of (A, C) guarantees that S is positive definite.

Hence (A3) is strictly positive and the theorem is proved. #
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Proof of Theorem 4:

Without loss of generality but with considerably more ease in re-

presentation, assume the last input, wm, is to be deleted. The following

partitions are defined:

(A4) B = [BR b]; BR cRnx(m-1); bmeRnxl

wR  
l ( m-I)x )lxl1

(A5) W T; W RcR wmRm R

using (A4) and (A5),(1.12) can be written as

T T T T O bT +T(A6) V = tr[SBWBT ] = tr[SBRWRBRT + SbmwRm BR + SBRWbm + SbmWb

after deletion of the mth input,

(A7) V(m-l) = tr[SBRWRBR 
T

and

(A8) w = [BTsBW]m = bmTSBRwRm + bmTSb WVM un m m m mm

note that (A8) can be written as follows:

(Ag) Vmw = tr[SBRWRmbmT + SbmWbm T

using (A6) and (A7),

(AlO) AVmw VV(ml)=tr[SbmwRmTBR T+tr[SBRWRmbmT]+tr[SbmWmmbm T I

substituting (A) into (AlO) yields:

(All) & m w tr[SbmwBRTB + VmW

N N' NF' , - _ : ,! :. . .. - . . ._ . . - -. , jS LS. ;
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Now, using tr(AB) = tr(AT B T ) and the fact that S is symmetric, (All) becomes

(A12) AVW = tr[SBW RmbmT] + VmW

Adding and subtracting tr[SbmWmmbm T] to (A12) results in:

(A13) AV w = tr[SBRWR bT+SbmwmmbTI + Vw - tr[SbmWTmbm]

T bTbusing (A9) and rewriting tr[Sbmwm bm b mTSbmWmm gives

(A14) A 2VT- bTSb
VM m m M'iT6

letting m = i in (A14) completes the proof of (2.3)

For Proof of (2.4) look again at (All)

(A15) AVmW = tr[SbmwRm TBRT + Vmw

Where w Rm= 0 if W is diagonal. Hence (A15) leads immediately to (2.4).

for Proof of (2.5),

If W is diagonal, the expression for Vi w becomes:

m

(A16) V.iw = E biTSbjWji = biTSbiWii
1 j=l1 JJI 1 1

since S does not depend on B, (A16) implies that the input 
cost for the ith

input is dependent strictly upon the i t h coZumn of the B matrix and the

ith diagonal entry of W. Therefore, no matter how many inputs are deleted,

the cost of the ith input in the reduced system will not change. There-

fore, invoking Theorem 2 for the reduced input system

l
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V(Fn) = E Viw where R is the set of m inputs now acting
iER

on the system.

Proof of Theorem 5:

For the transformed system,

i = T-I ATx + T-1 Bw

(Al7) y = CTx

V = lim E({IyIQ}, Q ' 0
t-+=

the input cost is

(A18) ViW = [BTT-TKT-IBW]ii (from 1.12)

where from (1.11)

(Aig) KT-1AT + TTATTTK + TTcTQcT = 0

post multiply by T-land premultiply by T- T in (A19)

(A20) T- TKT- 1 A+ATT-TKT- + cTQc = 0

Because A is stable, (A20) and (1.11) both have a unique solution which in

(1.11) was defined to be S. Therefore,

(A21) S = T- TKT-l

or

(A22) K = TTST

substituting (A22) into (AiB) gives:
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(A23) Viw = [BTTTTTSTTIBW]ii = [BT SBW]ii

which is identical to ViW in (1.12), and the proposition is proved. #

Outline of Proof of Theorem 6:

The most straight forward proof of the validity of (4.8 and 4.10)

is to substitute them into (4.3 and 4.6) respectively and then multiply

out the partitioned forms of the matrices which are given in (1.13).

The details are omitted.

Proof of Theorem 7:

For diagonal W and V, equations (4.12) and (4.13) can be rewritten

as follows:

(A24) V i w = biT (K+L)biWi, i=l, ... m

(A25) Viv = f Vi (fi = PmiV ii 1), mi = i th col. of MT

and P is defined by (1.13).

The conditions (4.0) when applied to the closed loop system (1.13)

guarantee that K is positive definite and L defined by (4.9) is at least

positive semi-definite. [4] Therefore, since W > 0 and V > 0 (A24) can

never be zero or negative and (A25) can never be negative. The matrix L

defined in (4.9) will be positive definite if the pair (A-FM, G) is

observable. Hence, with this condition, (A25) can never be zero or

negative and the theorems proof is complete. It should be noted that the

full rank of B and M implies 11b 11 0 and I1fi I 0.
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Proof of Theorem 8:

The proof is the exact dual (Table 2) of the proof of Theorem 7.

Proof of Theorem 9:

Since the closed loop system of 1.13b is in the same form as 1.1

the proof of Theorem 5 and its corollary applies directly to Theorem 9.

Proof of Theorem 10:

From [4] it is known that the closed loop performance metric V (4.1)

of (1.13) can be expressed as follows:

(A26) V = tr[KBWBT + PGTRG]

Now let V+ equal the system performance metric for the system operating

with one additional sensor. Therefore,

(A27) V+ = tr[KBKBT + P+GTRG]

where

(A28) P+AT + AP+ - Tv+-1M+p+ + BWBT = 0

(A29) M= Ti ;meRnT
Lm (i.e. added column of iT matrix)

(A30) V+ = [ 1 ; v+ERlxl
L0  v (i.e. variance of new sensor noise)

Subtracting (A27) from (A26) gives the following:

(A31) AV _a V-V/+ = tr[(P-P+)GTRG]

,e,.4 " , ,"- - " "- "; -'." "- - -. .%S ,-kj ~ ~ .X ..-2 e ':K.',. .- - , ," . - ' ' '.
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Equation (A31) can be rewritten as follows:

(A32) AV = tr[(P-P+)GTRG] = tr[ RG-(P-P+) /RG T]

Therefore, if (P-P+) is at least positive semi-definite the theorem is

proved.

Recall that the matrix P used here and in (1.13) is defined by the

following:

(A33) PAT + AP - PMTV-lMP + BWBT = 0

Now, subtracting (A28) from (A33) gives:

(A34) (P-P+)AT + A(P-P+) - pMTV-lMp + P+M+TV+-IM+p+ = 0

adding ± PM+TV+-1M+P+ to (A34) yields:

(A35) (P-P+)(AT-M+Tv+-1M+p+) + A(P-P+) -pM T V-Mp + pM+TV+'lM+ p+ =0

adding ± P+M+TV+- M+p+, _ P+M+ v+-IM+p to (A35) results in:

(A36) (P-P+)(AT-M+Tv+-IM+p+) + (A-P+M+Tv+ 1M+)(P-P+) - PMTV-IMP +

PM+TV+- M+p+ + P+M+TV+-1M+(P-P+) = 0

adding + Pmv+1mT P to (A36), making use of (A29) and (A30) and the

definition F+ = P+M+Tv+ - I gives:

(A37) (P-P+)(A-F+M+) T + (A-F+M+)(P-P+) - PM+TV+-IM+(P-P+) +

P+M+Tv+-IM+(P-P+) + Pmv+ -1mTp = 0

collecting terms gives:

(A38) (P-P+) (A-F+M+)T + (A-F+M+)(P-P+) - (P-P+)M+ Tv+-M+(P-P+)+

Pmv +-ImTp = 0



E40

Equation (A38) is a standard matrix Ricatti eq. It is well known, [4],

that the soln. to (A38) (i.e. P-P+) is at least positive semi-definite

if the matrix (A-F+M+) is stable. The matrix (A-F+i+) will be stable

if the matrix pair (A, B) is controllable and the pairs (A, C) and (A, M+)

are observable. From the conditions (4.0) (A, B) is controllable and

(A, C) and (A, M) are observable. Therefore (A, M+) must be observable

since addin-g a Row to M (i.e. generating M+ cannot effect the observability

of (A, M). #
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Appendix B: Viv and the Chen-Seinfeld Switching-Function

In [1] it was shown that the switching function for the extended

Chen-Seinfeld method of optimal selection of sensors in systems of type

(1.13) was

(BI) cci = tr(PmiV-m iTPA2)

where mi is a column of MT and A2 is defined by:

(B2) A2 (A-pMTV-1M) + (AT-MTV'IMP)A2 + KBR' BTK = 0

where P is defined by:

(B3) PA+ AP q1Pm im V - m iP + BWBT = 0

and l if ith sensor is to be used

q= th0 if i sensor is to be deleted

The expression for Vi v is given by (4.3), using F = PMT - l gives,

(B4) v = [V-lMPLPMT]i = V ii 1 TPLPmi

where

(B5) L(A-PM TV-1M) + (A-PMTvlIM)TL + KBR- 1 BTK = 0

(B6) PAT + AP - PMTv-IMp + BWBT =0

using the tr AB = tr BA (Bl) becomes

(B7) S = tR[V-ImiTA 2 mi = miT A%2mitrV-l

I 21 1' £
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comparing eqs. (B2), (B3) and (B7) to eqs. (B4), (B5) and (B6) it is

apparent that, with the exception of the trace operation on V-1 in (B7),

/.v is equivalent to calculating oS for the system with aZZ admissibleI ci

measurements present. (i.e. all qi 1 in (B3)).

k ~
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Appendix C: Hoop Antenna Model

Figure C-i is a schematic of the hoop antenna rodel (8.1).

Table C-i describes the actuator types and locations.

Actuator (Torquer) # Location Direction of Torque

1 2 x
2 2 Y
3 2 Z
4 6 X
5 6 Y
6 6 Z
7 9 x
8 9 Y
9 9 Z

10 10 X
11 10 Y
12 10 Z

Table C-i: Actuator description

5, .' W W. '"' '.Z ' .'. .'. .''' -' . -
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Table C-2 describes the sensor types and locations.

Sensor # Type Location Direction

1 Inertial Angle 2 x
2 y
3 mmz

4 Relative Linear Disp. Between 6 and 2 X
5 $1 mm y
6 B 1Z
7 9 and 2 X
8 I Iy

9 ma z
10 10 and 2 X
11 it may
12 Be Z
13 Inertial Angle 10 X
14 1m 11Y
15 ggoZ
16 Relative Linear Displ. between 101 and 10 X
17 111 Y
18 11Z
19 mm107 and 10 X
20 It y
21 11Z
22 am113 and 10 X
23 IIam y
24 mm mmz
25 mm 119 and 10 X
26 aH mm y
27 to mm z
28 Inertial Angular Rate 2 X
29 mm ma y
30 mt ofm
31 mm 6 x
32 It mm
33 mm mm
34 mm 9 X
35 mm aa y
36 mm mm
37 am10 X
38 go mmy
39 mam

Table C-2: Sensor description
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Table C-3 describes the output types and locations (the Y vector

in (8.1).)

Output # Type Location Direction

Y1  Inertial Angle 2 X

Y 2  if 11 y

Y3  It "I Z

Y4  Relative Angle Between 10 and 2 X

Y " " Y

Y6 Inertial Angle 10 Z

Y7  Relative Linear Displ. Between 6 and 2 X
Y 8 ""Y

Y9  " IZ

Y 10  9 and 2 X

Y11  " " Y

Y 12 Z

Y13  " 10and 2 X

Y 14 ""Y

Y 15 Z

Y16  " 101 and 10 X
Y 17 " if Y

Y 18 " " Z
Y19  " 107 and 10 X

Y20 Y
Y21""Z

Y22  " 113 and 10 X

Y"23 Y

Y24 Z

Y25  119 and 10 X

Y26 Y

Y"27 " Z

Table C-3: Output description
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The contents of the matrices (A, B, C, Q, M, R, W, V) specified

in (8.1) are described below.

12

0 Ilo 0 20 0 10

(Cla) A = 2 B , 8= BE 10
-1 -3g 0 6 0 3

00 0 BR 3

2
= diag [.40579, 7.2090, 7.2362, 13.277, 44.834, 132.14,

142.66, 445.01, 448.69, 775.86] (radians 2jsec )

*' (Clb) 110 - lOxlO Identity Matrix, 13 = 3x3 Identity Matrix

2cw =-diag [.0127, .053699, .0538, .07286, .26283, .45981,

.47777 , .84381, .8473, 1.1142] (radians/sec)

10 3

ME 0 MR~ ol100
(Clc) M= , C = 27 [CE 0 CR 0]

[0 ER 0 MRR

10 3

The contents of the above defined submatricies are listed on the next

several pages.

- . ?
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System Performance Requirements:

Yi = "020, i = 1, 6

(C2) Y im .0005 meters, i = 7, 8, .... 27

Uim = in-m

Weights:

qi = 1, i = 1, 2, 4, 5

(C3)qi = .01, i =3, 6

qi = .1, i 7, 8, ... 27

ri = 10
-5 , i = 1, ... 12

(C4) Q = diag [82.07, 82.07, .8207, 82.07, 82.07, .8207,

400,000, . 400,000] 105

21 elements

(C5) R = 10-5112 W 10-8112

mV 1V
1 = 7.6154 x 10-913

(C6) V VI V2 = 2.5 x 10-719

3V4 V3 = 2.5 x 10-7112

V4 = 4.7597 x 10"15112
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