CENTER FOR STOCHASTIC PROCESSES

Department of Statistics
University of North Carolina
Chapel Hill, North Carolina

CORRELATION LENGTH AND ITS CRITICAL EXONENTS
FOR PERCOLATION PROCESSES

by

Bao Gia Nguyen

Technical Report No. 144
July 1986

DISTRIBUTION STATEMENT A
Approved for public release; Distribution Unlimited
In this paper we show some critical exponent inequalities involving the correlation length of site percolation process on \mathbb{Z}^d. The abstract further discusses the correlation length and its critical exponents for percolation processes.
CORRELATION LENGTH AND ITS CRITICAL EXPOONENTS
FOR PERCOLATION PROCESSES

Bao Gia Nguyen
Center for Stochastic Processes
University of North Carolina at Chapel Hill

Abstract

In this paper we show some critical exponent inequalities involving the correlation length of site percolation process on \mathbb{Z}^d.

Keywords: Percolation process, correlation lengths, critical exponent inequalities.

This work supported by Air Force Contract No. F49620 85 C 0144.
Section 1. Introduction

We first define the model and introduce the notation we will use in this paper. A site percolation process in \mathbb{Z}^d (here $d \geq 2$) is a family of probability measures P_p, $p \in [0,1]$, together with a collection of random variables $\eta: \mathbb{Z}^d \rightarrow \{0,1\}$ such that under P_p the η's are independent and $P_p(\eta(x) = 1) = p$. A site x is thought of being occupied (nonoccupied) if $\eta(x) = 1$ ($\eta(x) = 0$). We say that x is connected to y if there is a path of occupied sites connecting x and y; i.e., there is a sequence of sites $x_0 = x, x_1, x_2, \ldots, x_n = y$ in \mathbb{Z}^d so that x_i and x_{i+1} are nearest neighbors and $\eta(x_i) = 1$ for every $i = 0, 1, 2, \ldots, n$. We denote this event by $(x \leftrightarrow y)$. Let $C_x = \{x : 0 \leftrightarrow x\}$. We say that C_x is the cluster containing 0.

It has been shown by Aizenman-Newman [1984] that $P_p(0 \leftrightarrow x)$ decays exponentially whenever the site density p is below the critical value $P_c = \sup\{p : E(0 \leftrightarrow 0) < \infty\}$.

This leads to the definition of the correlation length $\xi(p)$ as the minimal value for which

$$P_p(0 \leftrightarrow x) \leq \exp(-|x|/\xi(p)), \quad \text{for all } x \in \mathbb{Z}^d.$$

It is easy to see by the FKG inequality that the minimum is attained. Furthermore, one can show that $\xi(p) \uparrow \infty$ as $p \uparrow p_c$. It is of our interest to study the rate of decay of the correlation length as $p \uparrow p_c$, which can be represented by the critical exponent ν defined by

$$\nu = -\lim_{p \uparrow p_c} \frac{\log \xi(p)}{\log(p - p_c)}.$$

We denote this by $\xi(p) \approx (p_c - p)^{-\nu}$.

As suggested by many physicists it is believed that the correlation length $\xi(p)$ can be thought of as being the same as the length scales:
\[\xi_t(p) = \left[\sum_{x} x^{\nu} P_x(0+x) / \sum_{x} P_x(0+x) \right]^{1/t} \]

(see e.g. Essam [1980]). To be more precise, we say that the two length scales \(\xi(p) \) and \(\xi_t(p) \) are the same if they decay at the same rate; i.e. if we assume that \(\xi_t(p) \approx (p_c - p)^{-\nu_t} \) then \(\nu = \nu_t \). In support of the above belief we give a proof of the following weaker result and its corollary.

Result (1):

\[0 \leq \nu - \nu_t \leq \frac{\gamma - \nu}{t} \]

where \(\gamma \) is the critical exponent of \(\mathcal{E}_p(\left| C_0 \right|) \), i.e.

\[\mathcal{E}_p(\left| C_0 \right|) \approx (p_c - p)^{-\gamma} \]

Corollary:

\[\lim_{t \to \infty} \nu_t = \nu. \]

In Section 2 we will give a proof for the Result (1). In the course of doing this we prove some critical exponent inequalities related to scaling theory in Section 3. The scaling theory (see Essam [1980]) predicted that

\[(\ast) \quad P_p(0+x) \sim |x|^{-(d-2-\eta)f(\left| x \right|/\xi(p))} \quad \text{as } p \uparrow p_c \]

where \(f(r) \) is a function with \(f(0) > 0 \) and \(f(r) \to 0 \) exponentially fast as \(r \to \infty \), and \(\eta \) is the critical exponent defined by

\[P_{p_c}(0+x) \approx |x|^{-(d-2-\eta)} \quad \text{as } |x| \to \infty. \]

Assuming the scaling hypothesis (\(\ast \)) we can see, by Fubini's theorem, that

\[\mathcal{E}_p(\left| C_0 \right|) = \sum_{x} P_p(0+x) \sim \sum_{x} |x|^{-(d-2-\eta)f(\left| x \right|/\xi(p))} \]

\[= \xi(p)^{2-\eta} \sum_{z=x/\xi(p)} |z|^{-(d-2-\eta)f(\left| z \right|)} \]

\[= \text{Constant} \times \xi(p)^{2-\eta} \approx (p_c - p)^{-(2-\eta)\nu}. \]
This leads to the critical exponent equality

\[\gamma = (2 - \eta)\nu. \]

As we shall see later, this equality is at least half correct if we assume, for \(B_n \) a box of radius \(n \) centered at \(0 \), that

\[E_{P_c}(|C_0 \cap B_n|) \approx \sum_{x \in B_n} P_{P_c}(0 \to x) \approx n^{2-\eta} \]

in replacing the old definition of \(\eta \) as above. (The two definitions for \(\eta \) are expected to be the same. In order for our proof to work we want to stick with the second definition of \(\eta \)). In fact we shall show that it is safe to truncate the sum \(E_p(|C_0|) = \sum_{x \in P} (0 \to x) \) at \(n = 2 \xi_\epsilon(p) \) without losing more than a half of the sum as in the result below.

Result (2): \[E_p(|C_0|) \geq E_p(|C_0 \cap B_n|) \geq (1 - \frac{1}{2^\xi})E_p(|C_0|). \]

With this bound in hand we immediately see that

\[\gamma \leq (2 - \eta)\nu. \]

Also in the same section we will show a lower bound for the critical exponent \(\nu: \nu \geq \Delta_2 \), where \(\Delta_2 \) is defined by

\[E_p(|C_0|^2)/E_p(|C_0|) \approx (p_c - p)^{-\Delta_2} \text{ as } p \uparrow p_c. \]

This together with our earlier mean field bound \(\Delta_2 \geq 2 \) implies that \(\nu \geq 2/d. \)
Section 2. In this section we shall prove the Result 1. Let
\[N(p) = \inf \{ n : \sum_{x : |x| = n} p_x (0 \to x) \leq \frac{1}{2} \} \].

Aizenman-Newman [1984] have shown that
\[N(p) \leq 2E_p (|C_0|) \text{ for } p < p_c \]
and also
\[p_p (0 \to x) \leq \exp \left(-\frac{\log^2 N(p)}{N(p)} |x| \right) \].

This shows \((3) \, \xi(p) \leq N(p) / 2 \). On the other hand from definition of the correlation length
\[\sum_{x : |x| = n} p_p (0 \to x) \leq \sum_{x : |x| = n} \exp \left(-\frac{|x|}{\xi(p)} \right) \leq K_n \frac{d - 1}{\xi(p)^{d - 1}} \exp \left(-\frac{n}{\xi(p)} \right) \].

Hence if \(n = d \xi(p) \log \xi(p) \) and if \(p \) is close enough to \(p_c \) the RHS will be smaller than \(1 / 2 \) which gives
\[(4) \, N(p) \leq d \xi(p) \log \xi(p) \].

Thus by (3) and (4), \(N(p) \) and \(\xi(p) \) share the same critical exponent. With this in hand we see that
\[\xi_t \in (|C_0|) = \sum_{x} |x| p_x (0 \to x) \geq \sum_{x : |x| = N(p) / 2} |x| p_x (0 \to x) \geq \sum_{n = N(p) / 2}^{N(p)} \frac{N(p)}{2} \frac{1}{2} \]
\[= \frac{1}{2} \frac{N(p)}{t + 1} \]

where in the second inequality we used the fact that \(\sum_{x : |x| = n} p_x (0 \to x) \geq \frac{1}{2} \) if \(n \leq N(p) \). This leads to the critical inequality
\[tv_t + \gamma \geq (t + 1) \nu \]
or
\[\frac{\gamma - \nu}{t} \geq \nu - \nu_t \].

Furthermore, it is easy to see from the Jensen's inequality that \(\xi_t \) is increasing in \(t \), hence so is \(\nu_t \). Thus \(\lim_{t \to \infty} \nu_t \) exists. Then letting \(t \to \infty \) we get from (5)
\[\nu - \lim_{t \to \infty} \nu \leq 0. \]

To show the other half we look at

\[\xi_t \left[x \mid \mid C_0 \right] = \sum_{x} \left| x \right| x^p (0 \to x) \leq \sum_{x} \left| x \right|^p \exp(-\left| x \right| / \xi(p)) \]

\[\leq K \sum_{n=0}^{\infty} n^{t+d-1} \exp(-n/\xi(p)) \]

\[= K \sum_{\ell=0}^{\infty} \sum_{\ell \xi(p) \leq n < (\ell+1)\xi(p)} n^{t+d-1} \exp(-\ell) \leq K \sum_{\ell=0}^{\infty} \xi(p) [(\ell+1)\xi(p)]^{t+d-1} \exp(-\ell) \]

\[= K_1 [\xi(p)]^{t+d} \]

where \(K_1 = K \sum_{\ell=0}^{\infty} (\ell+1)^{t+d-1} \exp(-\ell) \). In terms of the critical exponent we have

\[(t+d)\nu \geq t\nu + \gamma \]

or

\[\nu - \nu_t \geq \frac{\gamma - d\nu}{t}. \]

Letting \(t \to \infty \) from (5) and (6) we get the corollary of Result (1) and from this we know that \(\nu \geq \nu_t \) so the Result (1) follows.
Section 3. In this section we shall show Result (2) and derive a lower bound for v. The proof of the result is analogous to Fisher's [1960] argument for the Ising model. Observe that

$$E_p(|C_0 \cap B_N|) \equiv \sum_{x:|x| \leq N} P(0 \to x)$$

$$= \left[1 - \sum_{x:|x| > N} \frac{P(0 \to x)}{E_p(|C_0|)} \right] E_p(|C_0|) \geq \left[1 - \sum_{x:|x| > N} \frac{n^t P(0 \to x)}{N^t E_p(|C_0|)} \right] E_p(|C_0|)$$

$$\geq (1 - \frac{\xi^t}{N^t}) E_p(|C_0|).$$

By choosing $N \geq 2\xi^t$ we get the second inequality of (2):

$$E_p(|C_0 \cap B_N|) \geq (1 - \frac{1}{2^t}) E_p(|C_0|).$$

The other equality of result (2) is trivial. To get a lower bound for v we look at

$$E_p(|C_0|^2) = \sum_{x,y} P(0 \to x, y) \leq 2 \sum_{x,y:|x| \leq |y|} P(0 \to x, 0 \to y)$$

$$= 2 \sum_x P(0 \to x) \sum_{y:|y| \leq |x|} P(0 \to y | 0 \to x) \leq 2K|_x d P(0 \to x)$$

$$= K^t \xi^d E_p(|C_0|)$$

In terms of the critical exponents we have

$$\text{LHS} \approx (p_c - p)^{-\Delta_2 - \gamma}$$

$$\text{RHS} \approx (p_c - p)^{-d \nu_d - \gamma}.$$

So

$$\Delta_2 \leq d \nu_d.$$

But we know that $\Delta_2 \geq 2$ (see Durrett-Nguyen [1985]), so we have

$$d \nu \geq d \nu_d \geq \Delta_2 \geq 2 \quad \text{or} \quad \nu \geq 2/d.$$

QED
References

END
I-81
DTIC