
4D-4174 816 atif~ FgL /1

UNCLSSIFlIED.

nun 7:hCU F ED
F, ML

CA* Li

MICROCOPY RESOLUTIO TES14CHARI
,tua.StEAU Of STIAO, ,A

NR-R-851 AR-003-032

0 DEPARTMENT OF DEFENCE

DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION

N MATERIALS RESEARCH LABORATORIES

MELBOURNE, VICTORIA

C REPORT

MRLI- R - 51

A SYSTEM FOR COMPUTER-AIDED DESIGN OF

PRINTED CIRCUIT BOARDS

Z' T. Pletsch

THE UNITED STATES NATION~AL

TEC4NIfCAL INFORMATION SERVICE 0
IS AUTH3 IISED TO

REPRODUCE ANI) SELL TH~IS RrP'Dvr

Approved for Public Release

Sc_
Comm~onwealth of Australia]

lorictinalc) APRIL, 1982

jo'm .II be______________aid

bfi 12 03 028

DEPARTMENT OF DEFENCE

MATERIALS RESEARCH LABORATORIES

REPORT

MRL-R-851

A SYSTEM FOR COMPUTER-AIDED DESIGN OF

PRINTED CIRCUIT BOARDS

T. Pietsch

ABSTRACT

A general purpose system for interactive computer-aided design of
printed circuit boards is described. Included are details for encoding a
circuit diagram in the computer, the placement of electronic component
packages, the determination of a link/wire list and the routing of this list
to obtain a wire layout. Design documentation in the form of component
schedules and layout drawings are produced so that artwork can be generated on
a Gerber drafting machine. A feature of the system is the method by which the
routers find different size wire-paths on successive grids of increasing
resolution. The use of this method approximately halves the routing time and
increases the link connection rate by over 15%.

-iimlcontfr, O~l@"

pie: llL I2 reroauO%-
v .ill be in blac4 and

Approved for Public Release

POSTAL ADDRESS: Director, Materials Research Laboratories
P.O. Box 50, Ascot Vale, Victoria 3032. Australia

SECURITY CLASSIFICATION OF THIS PAGE UNCLASSIFIED

DOCUMENT CONTROL DATA SHEET

REPORT NO. AR NO. REPORT SECURITY CLASSIFICATION

MRL-R-851 AR-003-032 Unclassified

TITLE

A system for computer-aided design of printed circuit boards

AUTHOR(S) CORPORATE AUTHOR

Materials Research Laboratories

T. Pietsch P.O. Box 50,
Ascot Vale, Victoria 3032

REPORT DATE TASK NO. SPONSOR

April, 1982
August, 1986, Revised

FILE NO. REFERENCES PAGES

G6/4/8-2290 13 48

CLASSIFICATION/LIMITATION REVIEW DATE CLASSIFICATION/RELEASE AUTHORITY

Superintendent, MRL
Physics Division

SECONDART DISTRIBUTION

Approved for Public Release

ANNOUNCEMENT

Announcement of this report is unlimited

KEYWORDS

Printed circuit boards Computer aided design
Computer graphics
Drafting
Computer programs

COSATI GROUPS 0901

ABSTRACT

A general purpose system for interactive computer-aided design of
printed circuit boards is described. Included are details for encoding a
circuit diagram in the computer, the placement of electronic component
packages, the determination of a link/wire list and the routing of this list
to obtain a wire layout. Design documentation in the form of component
schedules and layout drawings are produced so that artwork can be generated on
a Gerber drafting machine. A feature of the system is the method by which the
routers find different size wire-paths on successive grids of increasing
resolution. The use of this method approximately halves the routing time and
increases the link connection rate by over 15%.

SECURITY CLASSIFICATION OF TRIS PAGE

UNCLASSIFIED

F--

CONTENTS

Page No.

1. INTRODUCTION 1

2. PHASE ONE: SELECTION OF COMPONENTS, PLACEMENT AND
CIRCUIT ENCODING 2

2.1 Selection of Components 3

2.2 Placement 3

2.3 Circuit Encoding 3

3. PHASE TWO: WIRE PATH LAYOUT 4

3.1 Definition of the Terms Link and Mask 4

3.2 Link Generation 5

3.3 Routing 6

3.4 The Recommended Approach for Routing a PCB 7

4. INTERACTION BETWEEN PHASES ONE AND TWO 8

5. SPECIAL FEATURES 8

5.1 The Data Base 8

5.2 A Scheme of Wire-Path and Terminal-Pad Sizes 9

5.3 Ground Planes or Area Masks 11

5.4 Storage and Execution Time Economies 11

5.5 Macro Interpreted Command Programs to Control SCAD.PC8 11

6. CONCLUSION 12

7. REFERENCES 13

,..
,

O

CONTENTS
(continued)

Page No.

APPENDIX A HARDWARE AND SOFTWARE CHARACTERISTICS 15

A.1 Computer Peripherals 15

A.2 Consideration of Software Limitations 15

A.3 Using the System 16

APPENDIX B A DESCRIPTION OF THE DATA BASE 18

B. 1 The Package-Outline Library 18

B.2 The Catalogue Library 19

APPENDIX C HOW TO ENCODE A CIRCUIT OR DATA PREPARATION 21

C.1 Circuit Partitioning 21

C.2 Tabulating Components and Package-Outlines 21

C.3 Component Placement 22

C.4 Encoding a Circuit 22

C.5 Tabulating the Circuit 24

APPENDIX D A DESCRIPTION OF THE SCAD.PCB PROGRAMS 25

D.1 PCBOA: Maintenace of the Package Outline Libraries 25

D.2 PCBOB: Maintenance of the Catalogue LiLraries 25

D.3 PCBOC: Generation of Gerber Drafting Machine
Apertures 26

D.4 PCBIA: Component Selection and Placement 26

D.5 PCBIB: Entry and Amendment of CircuiC Data 27

D.6 PCB2A: Drawing of Components in Position on

the Board 28

D. 7 PCB2B: Create and/or Modify Termina.' Pad Data 28

D.8 PCB2C: Drawing the Package-Outline Libraries 29

D.9 PCB3A: Generation of Linking Data 29

D.9.1. PCB3A: Input of Old Linking Data 30

D.9.2 PCB3A: Generation of Links and/or Masks 30

CONTENTS
(continued)

Page No.

D.9.3 PCB3A: Ordering the Link List 31

D.9.4 PCB3A: Output Instructions 32

D.10 PCB3B: Integrated Placement, Linker and Router 32

D.11 PCB4A: Data File Generation for the Router 32

D.12 PCB4B: Control Files for the Router Programs 33

D.13 PCB4C: Control Files for Graphics Output 33

D.14 PCB5A, PCB5B, PCBSC, PCB5I: Router Programs 33

D.14.1 PCB5A: Router Program 33

D.14.2 PCB5B: Router Program 34

D.14.3 PCB5C: Router Program 34

D.1I.4 PCB5I: Automatic Wire-Path Inspection 34

D.15 PCBGA: Wire Layout for Inspection 35

D.16 PCB6B: Driving Instructions for the Gerber Drafting
Machine 35

D.17 PCB7: Post-Router Link Mask Extractor 35

D.18 PCB8: Archiving 35

A SYSTEM FOR COMPUTER-AIDED DESIGN OF

PRINTED CIRCUIT BOARDS

1. INTRODUCTION

The manual design of printed circuit boards (pcb's) is a tedious and
time-consuming occupation that requires meticulous attention to detail. A
large board layout may take several months of design effort and, as this work
is particularly subject to human error, careful checking procedures must be
adopted throughout to avoid mistakes. As boards become more complex these
problems are compounded and methods that inherently avoid human error whilst
reducing design time are to be welcomed. The use of these methods should
increase both the productivity and the realiability of pcb design.

Modern computers have the capacity to store and manipulate vast
amounts of data efficiently and quickly. They are eminently suited to accept
into memory the large amounts. of detail involved in a board design so that
data integrity can be maintained without continual cross-checking with the
original circuit. Such cross-checking is usually prone to human error.

For these reasons a System for Computer-Aided Design of Printed
Circuit Boards (SCAD.PCB) has been evolved at Materials Research
Laboratories. It consists of a set of interrelated computer programs
implemented in DEC-System 10/20 Algol 60 Il] and designed to handle every
aspect of a board design in a time-share environment. The peripherals used
are an inexpensive plotter for design verification and a Gerber drafting
machine to produce the artwork. However, the SCAD.PCB data files have been
structured to permit interfacing with more sophisticated interactive graphics
systems as these become available.

The different facets of a board design are:

(a) the maintenance of a data base of electrcnic components and pcb
blanks;

(b) the selection of the required components from the data base and
their placement on the pcb blank;

(c) the encoding of the circuit for the pcb;

(d) automatic assignment of correct pad and drill sizes to component
terminals/pins;

(e) link or wire list determination from the encoded circuit;

(f) routing of the link list to arrive at the wire layout;

(g) generation of artwork, production documentation and numerically
controlled drill tapes; and

(h) archiving.

The production of a pcb layout using SCAD.PCB is divided into two
phases. In the first phase all of the electronic components are declared,
their positions on the board defined, and the circuit is encoded. The second
phase is the process of finding a wire layout in which a link list of proposed
connections between components is defined and then used to steer the router
routines. These routines take each link in turn and attempt to find a
corresponding wire-path.

SCAD.PCB is a large software system with more than 19 different
programs having a combined total of over 20,000 lines of source code. The
sequence of operations involving all programs are shown in the Operator
Flowchart (Fig. 1). Most of the significant operations are described in the
body of this report and more detailed information is contained in the
Appendices. Appendix A summarises the hardware and software requirements of
the system. Appendix B describes how the data base is organised, and Appendix
C the methods of encoding the circuit. Appendix D gives a brief description
of each of the programs in the system.

The large size of SCAD.PCB precludes a detailed description at
operational level in this report. Assistance at this level may be found in a
set of macro-programs [2] (see also Section 5.4 below), written especially to
demonstrate a typical pcb design.

2. PHASE ONE: SELECTION OF COMPONENTS, PLACEMENT AND CIRCUIT ENCODING

Phase one starts with data initialisation, that is, all the data for
defining the circuit board are entered into the computer. Then follows an
iterative process of checking and amending this data until a satisfactory
layout of components on the board is obtained, and there are no errors in the
encoded circuit.

2

2.1 Selection of Components

A component is declared to be a part of the circuit board when Its
name is typed in at the computer terminal. A component specification is
completed when the package type for the component and its position are also
entered. The package type Is drawn from a library of standard package-
outlines, and the position chosen for it depends on the user's proposed
layout.

2.2 Placement

Placement is the process of finding a position on the board for
every component. Currently, the process is a manual one, where the operator
determines the coordinates of components for the best pcb layout. Drawings of
the components in position on the board are obtained, as in Fig. 2, to assist
in the inspection for errors. Such an inspection may detect wrong package
type references or incorrect placement specifications. Of particular
importance at this stage is the need to detect incorrect package types as
these will affect both the placement and the subsequent encoding of the
circuit.

Ideally, the placement process should be computer-assisted, but for
this to be feasible the circuit must be encoded first, to establish the
required relationships between components. The inspection for package
reference errors at this stage is important and should be carried out with
components placed in temporary positions if necessary.

2.3 Circuit Encoding

A dictionary definition of the word "node" is, "knob on root or
branch; point at which leaves spring from stem." This is an accurate
portrayal of the situation on a printed circuit board where a component
terminal or pin is soldered to a copper pad (knob), which in turn has printed
w.re-paths (branches) springing from it to go to other pads (knobs). But in
circuit analysis a different meaning is assumed. There, a node is taken to
mean a collection of such knobs, there being exactly one node for every
electrically common point in the circuit. SCAD.PCB adopts the latter
definition of a node 13] and the 'knobs' are instead called terminals/pins or
vertices, depending on the context in which they are used. The branches are
also called links and wire-paths.

When the circuit is being encoded each declared component is treated
as a separate entity with a hardware package having a discrete number of
pins. In this context the 'knobs' are called terminals/pins. Fig. 3
illustrates how a circuit diagram may be prepared as an aid to circuit data
entry at the computer keyboard. Unique node numbers are given to all parts of
the circuit that are electrically common and the pins on each component are
clearly marked with a pin number. The routine for encoding the circuit
systematically introduces each component in turn for the user to assign node

3

numbers to its pins. All pins with the same node numbers will ultimately be
linked together by a network of printed wire-paths.

Computer listings of the encoded circuit enable the user to cross-
check his data with the original circuit and note any errors for subsequent
correction. If thorough circuit validation procedures are adopted at this
stage, before any wire-paths are found, an error free pcb is predicted.

3. PHASE TWO: WIRE PATH LAYOUT

The objective of phase two is to link the pins of each node in a
network of printed wire-paths. In this context the pins of section 2.3 are
called vertices. The modus operandi of phase two dictates that all the
vertices of a node be identified and easily accessed. To this end SCAD.PCB
creates an alternative listing of the encoded circuit, called the vertex list,
in which each node is a set of vertices or pins.

3.1 Definition of the Terms Link and Mask

A link is a specification for a wire-path of given size to be found
between two nominated vertices. The term "link" Is synonomous with the term
*branch, used above in Section 2.3. The name "link' has been adopted because
whole chains of vertices are often linked together in a continuous sequence.
For each node, a "tree" of links must be brought into being, to cause all the
vertices in it to be connected together by a network of wire-paths. After
link "trees" have been generated for every node they are all deposited in a
single data file called the link list, which is used as an instruction list to
direct the automatic routers in their search for wire-paths.

It should be clearly understood that, at this stage, a link is a
specification for, and not an actual wire-path. As such it contains a track
type-number to specify path-size, a start vertex, and a finish vertex. In
the link list both vertices are automatically listed in component name and pin
number format, e.g. "IC12" 19. Reduced to their simplest form, vertices are
represented by the grid coordinates of their positions on the board. The
simplest interpretation of a link is, therefore, a directive for a wire-path
of specified size to be found between a start position and a finish position.

Router routines find wire-paths for links and append them to a data
file. Within the data file each wire-path is tagged with the name and node
number of the link that gave birth to its existence.

A wire-path is a concatenated sequence of path segments which
connect the start and finish positions of a link. Etch path segment is
characterised by a track type-number, the coordinates of the start position of
the segment and a direction indicator. The finish position coinc'.des with the
start position of the next segment. The track type-number is inherited from

,4

the track type-number of the link, although individual segments may have hand
selected type-numbers. The coordinates are in units that reflect physical
locations on the board. The direction indicator assumes values in the range 0
to 7 as illustrated in Fig. 4. Direction 7, in particular, indicates that the
segment is in fact the terminus of the wire-path. Direction 0 is used when a
path segment has a direction other than orthogonal. Track type-number 0
specifies that no printed path be produced for the segment.

Much of the flexibility inherent in SCAD.PCB hinges on the concept
of "masking". Masks are simply templates of, and for, wire-paths. A mask is
extracted from a wire-path by subtracting the start position coordinates of
the path from all segments in the path, so that the coordinates of the start
position become (9,h). Conversley, a wire-path may be assembled from a link
and a mask by adding the coordinates of the start position of the link to
every path segment in the mask. A mask is said to no longer "fit" a link when
the end point of the wire path it produces fails to map on to the end point of
the link.

A set of masks is extracted from the data file of wire-paths
produced by the router routines. At the same time, the links have their track
type-numbers substituted (or masked, covered, or hidden from view) with index
numbers of masks extracted from their wire-paths. Subsequent referrals to the
mask/track type-numbers of links will indicate whether or not wire-paths have
been found for them.

A mask may be associated with one or more links, so that any changes
to a mask will be reflected automatically in all the wire-paths produced by
it. The application of the mask concept enables Immediate identification of
the links that need rerouting, because after moving groups of components about
on the pcb to achieve a better layout, certain components will have moved
relative to each other and the links between them will no longer have masks
that fit. If a group of components is moved en block to a new location on the
pcb the links between them will remain intact because no internal relative
movement between components has occurred. On the other hand, any links from
that group to the remainder of the pcb will sever their mask associations.
When a mask no longer fits a link the mask type-number of the link is replaced
with the track type-number of the first sequent on the mask being displaced.

in addition to the link-mask described above, two other types of
masks have been defined in SCAD.PCB. These are the area-mask for producing
ground planes on a pcb and the finger-mask for edge-connectors. The method of
handling of all mask types is exactly the same, except that each finger-mask
or area-mask is assigned to a dummy link with identical start and finish
vertices.

3.2 Link Generation

A tree of links must be generated for every node. A special manual
tree growing routine is available when tight control needs to be exercised
over the way a tree is cast. This routine is usually applied to those nodes

5

AN.mimm mmm

with relatively large numbers of vertices, such as the ground and power supply
nodes. An automatic minimum spanning tree algorithm is used for the remaining
nodes where the wire-path layout is not so critical. In either case,
individual links can be added to a tree, or modifications can be made to a
tree after it has been constructed.

When manual routines are used to modify the structure of a link tree
the user may fail to include all the vertices of a node in the tree, or he can
inadvertantly fragment a tree into several segments by omitting or corrupting
links. In such cases the user's confidence in the integrity of a tree is
maintained by an automatic checking routine that reports all inconsistancies
(4].

While the trees are being constructed all the links generated are
grouped under their respective nodes, but later they are brought together in a
single link list, in preparation for routing. An automatic routine is used to
check that all links have, in fact, been included in this list.

There are special facilities for rearranging all the links on this
list into any order that might improve the number and quality of the wire-
paths found for them by the automatic routers. Many schemes for increasing
the connection rate by ordering the link list have been canvassed in the
literature [5,6], but in the experience of SCAD.PCB they have yielded only a
marginal improvement in performance because the connection rate is most
influenced by wiring density. This is confirmed in more recent literature
(7], where it is stated that once the critical wiring density is reached, the
probability of finding wire-paths for links rapidly drops from near unity to a
value approaching zero. The main benefit of most ordering schemes appears to
be aesthetic appeal and the recommended approach for ordering the link list is
the mixture of methods to be outlined in Section 3.4.

3.3 Routing

Routing is the process of finding wire-paths for links. This is a
process where most of the routing is done by automatic routines before using
manual routines to route the remaining links. The ideal situation occurs when
the automatic routines route 100% of the links leaving none for manual
routing; when the wiring density is low enough the probability of this
occuring is very high.

There are two types of automatic routers used in SCAD.PCB. They
both initiate their grids with the wire-paths of pre-routed links and then
attempt to route the remainder. As new wire-paths are found they are appended
to a temporary data file. The routers also have log files to record the
success of failure of each attempt to find a wire-path for a link. A common
data base for the routers allows each of them to continue the search for wire-
paths from where the other left off.

Most of the paths on a board can be classified into a few basic
shapes and the first type of rou:er '3 a heuristic router, designed to search
only for wire-paths of the basic shapes. Because of the small number of path

6

mnmmm • u m mmmmm sir

options available, these routers tend to be much faster than those of the
second type, the more conventional Lee Algorithm (8,9] routers. Although this
second type of router is much slower, it will find a wire-path for a link if
it exists.

After the routers have finished their work, the information appended
to temporary data files is translated to the link list and mask file. When
converted to the mask file format, the manual routine can be used to modify
selected wire-paths and improve the wire layout. Generally, the unrouted
links that remain after automatic routing will stay unconnected until the
manual routine is used to re-route certain critical wire-paths that are
blocking their way. SCAD.PCB allows a user to route critical wire-paths
before the automatic routers are called, by creating masks for, and then
assigning them to links.

The manual router routine creates and modifies wire-paths indirectly
through the changes it makes to masks. In the environment of the mask there
is no grid containing pre-routed wire-paths in which a new path can be
embedded to check whether it overlaps other paths. Consequently, it is
possible to intentionally, and unintentionally, make wire-paths intersect
other paths when they shouldn't. This may be acceptable in the short term
while the manual routing is in a state of flux, but such intersections must
eventually be removed. Visual inspection cannot be relied upon to detect all
intersections, so an automaton is needed to do the work. The routine provided
for the task reports all overlap violations as it systematically embeds all
wire-paths in a high resolution grid.

During the routing process no data is lost as the user switches
between the automnatic and manual routines and vice-versa. The user can, if he
wants, route the board one node at a time until the wire layout is complete,
in which case the data in the link list and mask file accumulates as the board
design proceeds.

3.4 The Recommended Approach for Routing a PCB

The most successful way to route a pcb is in stages. All node
numbers with large numbers of vertices should be routed in a first stage
before any attempt is made to route the remainder. The rationale behind this
is that the large networks (ground and power rails, and bus nodes in digital
circuits) require well defined layouts, which are best achieved while the
board is uncluttered with the tree structures of the lower order nodes.

After the nodes requiring a well-defined layout have been routed,
all of the links for the remaining nodes can be generated, placed on the link
list, and routed en block. While on the link list the links are sorted into
the order in which they will be routed. Before any sorting takes place each
link is given a weight to determine its routing priority. One of the
functions used to calculate weights counts the vertices found within the
rectangle formed by the intersections of the coordinates of the end points of
a link. This estimates the difficulty likely to be encountered by a router in
the locale of a link. Difficult links, those with a large number of vertices,

i7

!

are placed towards the end of the link liit. Of the different weight
functions tried, this one seems to produce a higher connection rate than the
others, and a more appealing wire layout.

Ground and power supply node links need large path-sizes because of
the extra current they must carry. For these the routers use grids of low
resolution (0.1 inch per grid increment). The other nodes use smaller tracks
for their links and may be routed on a succession of grids of increasing
resolution (from 0.100 up to 0.0167 inch per grid increment) to improve the
connection rate and reduce the overall routing time. This is discussed
further in Sections 5.2 and 5.3 below.

4. INTERACTION BETWEEN PHASES ONE AND TWO

Often in the course of phase two it becomes apparent that
unnecessary congestion has been introduced into the wire layout by the
misplacement of certain components. The system permits a return to phase one
for the relocation of such components, without losing all of the wire-paths
found in the routing phase. All the links remain intact, but some of those
with masks assigned may find them detached because they no longer fit. This
only happens between components that have suffered relative movement. If the
shift was a minor one no change in the link tree structure may be necessary,
but if it was a major shift from one side of the board to the other, the tree
structure may need radical revision. Each case should be examined and
rectified as the user sees fit.

5. SPECIAL FEATURES

The DEC System 10/20 ALGOL 60 computer language, in which SCAD.PCB
is written, has the standard 'own' variables and arrays of ALGOL 60, plus a
powerful set of string handling facilities to manipulate variable length
strings with different byte sizes. These features are utilised in special
data-structure arrays which have variable dimensions, and they contribute
significantly to efficient use of computer memory. Computer languages without
these facilities place restrictions on maximum board size, numbers of
components, through-holes, links, etc., and use more computer memory than
necessary.

5.1 The Data Base

A large data-base of different package-outline configurations is
maintained by the system. It is divided into two parts, one for pcb blanks
and the other for electronic component outlines. These contain information
requi.:ad for the production of realistic drawings of components in position on
a board, plus the position and diameter of all pins for drilling holes and

IS

selecting pad sizes. A catalogue of electronic components is also kept. In
it, electronic components are classified by description and part number, and
have cross-references to one or more of the package-outlines in the basic
library. A standard package-outline can be selected for a component, either
directly from the basic library, or indirectly through the catalogue
library. When selected directly, it is the user's responsibility to ensure
that he has the correct package-outline; indirectly, the correct package-
outline is automatically guaranteed after a catalogue item is chosen.

5.2 A Scheme of Wire-Path and Terminal-Pad Sizes

Embodied in the system are certain mechanisms for handling different
"schemes" of tracks and pads. A standard scheme is generally adopted for most
pcb designs but there are facilities for creating a large number of
"Schemes". The concept behind a *scheme* of tracks and pads plays an
important part in the efficiency of SCAD.PCB because when the normal practice
of routing a pcb with a single grid resolution is compared with the use of
multiple grid resolutions in SCAD.PCB, there is a significant increase in the
number of wire-paths found for links accompanied by a drastic reduction in the
overall routing time. This section outlines the basic features of the
"scheme" concept that help to produce these savings.

Four parameters are needed to completely define a scheme of tracks
and pads. The first is the minimum grid increment size (G), or highest
resolution grid that can be used by the routers. One of three available
resolutions may be chosen by selecting a "scheme-number" (Scheme #). The
resolutions are 0.0100, 0.0125, and 0.0167 (10.0, 12.5 and 16.7 mil) for
Scheme #1, #2, and #3 respectively. Note that all the tracks and pads in a
"scheme" have a domain (Fig. 6a) equal to an integral number of minimum grid
increments, that they may fit neatly into the grid of a router.

The second and third parameters are related. The second parameter
is the minimum path size (P). The third parameter, which is the clearance (C)
between adjacent pads and/or paths on a pcb, is chosen through the relation
C = NoG-P, where No is an integer such that C is sufficiently greater than
zero. the actual size of a track or pad in a scheme Is found by subtracting
the clearance from its domain, that is, Pn - nG-C where n = No, No+1,
No+2,..., up to the maximum size allowed for an aperture on the Gerber
drafting machine. Thus the domain of a track or pad on a grid comprises a
path (P) with a clearance (C/2) on either side as in Fig. 6a. When two tracks
are placed side by side a total clearance of C is obtained between the copper
wire-paths (Fig. 6c).

The fourth and final parameter needed to define a scheme is the pad
annulus. It Is the distance between the outer extremity of the copper of a
pad and the hole in its center. This effectively sets maximum hole size of a
pad and an upper limit on the pin size that a terminal pad can receive.

The standard scheme of tracks and pads is based on Scheme #3 (16.7
mil minimum grid increment size). The minimum path size of 15.0 mil was
recommended by a manufacturer of pcb's. When NO - 2 the clearance becomes

9

18.3 Mul which Is very close to the recomended 20.0 mil for low voltage
circuits. The pad annulus of 10.0 mll is small enough to accommodate a useful
range of component pin sizes in every pad without compromising the amount of
solder interface area between pad and pin. The different tracks and pads that
are available in the standard scheme are tabulated in Table I. The track and
pad type-numbers in Table I are used for selecting the wire-path and pad
sizes. They also correspond to the different work stations found on the
aperture wheel of the Gerber drafting machine.

In the remaining part of this section a description is given of the
way the routers use the different tracks and pads of a "scheme" for routing a
pcb. Particular attention will be given to the way the routers handle
different grid resolutions. There are two aspects considered in the following
discussion, one of searching for, and another of storing a wire-path.

The simplest modes that a router can use to find a wire-path occur
when the grid resolution is a maximum (16.7 mil) and the track size is a
minimum (15.0 nIl). The search for a path proceeds in the direction of the
arrows as illustrated by Fig. 6b examining only one point at a time to see if
a path can be found. As the search front (arrow) moves forward the router
tacitly accepts that the space within one grid increment on either side of the
grid point is a legitimate domain for the wire-path. Then as the wire-path is
being stored in the grid both the center grid point (arrow) and the grid
points on either side of it are tagged as shown in Fig. 6c.

The concept of searching for a path with a single point front
applies at all levels of grid resolution. If the size of a proposed wire-path
ever violates its legitimate domain of twice the current grid resolution then
the track specification on the link to be searched is adjusted to a smaller
path size. When the size of a track has a domain less than the legitimate
domain no adjustments are needed. If the routers did not automatically adjust
path sizes, but opted for a search Involving a front of multiple grid points
to cover the increased domain, then they would become unnecessarily
complicated and slow because of the increased number of grid points that need
to be examined. It is much simpler to reduce the path size.

Storage of wire-paths within the router's grid can be accomplished
at all levels of grid resolution and with every path size by the method
described above. This method, however, seems to be wasteful of space because
on a low resolution grid many of the available tracks can have domains that
are less than the maximum domain. For example, when the domain of a track is
equal to (or less than) the current grid resolution then it is equal to (or
less than) half the maximum domain allowed for the grid. It should not be
hard to see that such paths could lie on adjacent co-ordinates, one grid
increment apart, instead of the normal two grid Increments apart as in Fig.
6c. For this a second storage mode of one grid point can be used. Although
the second mode of storage may introduce certain economies of space it
precludes the utilisation of larger tracks because their domains would intrude
upon the domains of smaller tracks.

With the above arrangements for path storage, wire-paths can be
found on successive grids of increasing resolution without interfering with or

10

overlapping each other. For successive grids of decreasing resolution the
same is true, but the restrictions on path-size will apply. The three
available minimum grid increments are all fractions of the customary 100.0 mil
spacing between terminals on electronic components, i.e. 100/10 - 10.0, 100/8
- 12.5, and 100/6 - 16.7 mil. For the standard *scheme* based on Scheme #3
the successive grids of increasing resolution are 100/1, 100/i, 100/3 and
100/6, or 100/1, 100/3, 100/2 and 100/6.

5.3 Ground Planes or Area Masks

Ground planes play an important part in pcb design. In SCAD.PCB
they are easily created by first specifying an outer-loop or boundary for the
plane. Inner-loops contained within the outer-loop are zones from which the
plane is excluded. The area-mask routine automatically establishes an
exclusion-zone or inner-loop around every terminal pad within the outer loop
that does not have the same node-number as the area-mask link. The area
between the outer-loop and inner-loops is filled in by a routine that traces
out a sequence of wire-paths that transverse every grid point.

5.4 Storage and Execution Time Economies

The router programs work from an internal grid model of a printed
circuit board. Using the string handling facilities in conjunction with data
compression techniques, the total amount of computer memory required to model
a pcb has been kept to a minimum.

The automatic routers use the "scheme* described in the previous
section to save time and grid storage space. These can be set up to route
links using any one of a number of grid resolutions, all of which are a
multiple of the basic highest grid resolution. By attempting to route links
on a grid with a low resolution first, followed by grids of increasing
resolution, instead of a single high resolution grid, the routing time is
halved and the connection rate of wire-paths found for links is increased by
over 15%. This is because grids of low resolution have fewer grid points and
are proportionately faster to search. Since most of the links are routed on
the lower resolution grids the overall routine time Is drastically reduced.
Also, adjacent paths found on a low resolution grid will, in general, have
enough space between them to allow the passage of other paths on a high
resolution grid thus effectively by-passing the blockages normally caused by
links routed at an earlier stage.

5.5 Macro Interpreted Command Programs to Control SCAD.PCE

A Macro Interpreted command Program is one that will automatically
execute a sequence of commands as if a user were engaged in a session at a
computer terminal. Such programs are constructed by users to get the computer
to automatically carry out often repeated sequences of instructions. These
programs can automatically enter and substitute data, and then halt at
predefined points to allow the user to take critical decisions before
continuing.

11

Several such programs have been implemented (2] to reproduce the
sequences of instructions most often used in SCAD.PCB. One such program
called DEMO is used to demonstrate a typical pcb design to potential users.
Interspersed with numerous comments and illustrations of corrective modes, the
whole demonstration takes about an hour on a computer terminal with a total
computer run time of about 10 minutes. In the demonstration all wire-paths
are connected without user intervention. Some of the drawings from the
demonstration program have been used to illustrate this report.

6. CONCLUSION

The system has been used to design both analogue and logic pcbs
involving up to 80 integrated circuits and 1300 wire-paths. Software
development has reached a 'user-hardened' stage where mistakes introduced
through typing errors etc., are detected before they seriously affect a pcb
design. Also, a considerable amount of work has been done to break down the
'man-machine communication barrier' which can, through the use of tortuous
data entry procedures and confusing errors messages, inhibit a user's work
flow.

SCAD.PCB has shown itself capable of maintaining data integrity by
faithfully reproducing the encoded circuit on the pcb without errors. It has
proved itself to be flexible enought to handle modifications and special
requirements. With its expandable data base, SCAD.PCB avoids the problems
that can occur with fixed data base systems where programs often need to be
recompiled with extra data storage in order to finish a pcb design.

12

1. REFERENCES

1. Anon.: -, DEC System 10/20 ALGOL Programmer's Guide (1977), Digital
Equipment Corporation, AA-01960-TK.

2. Pietsch, T.D.: "Macro Interpreted Command Programs to Control
SCAD.PCB", (May 1981), available from Materials Rezearch
Laboratories.

3. Rose, N.A. and Oldfield, J.V.: *Printed-Wiring-Board Layout by
Computer", Electronics and Power (October 1971), pp. 376-379.

4. Deo, N.: "Chapter 11 Graph-Theoretic Algorithms and Computer Programs*,
Graph Theory with Applications to Engineering and Computer Science,
Prentice Hall (1974), pp. 258-327.

5. Hightower, D.W.: "The interconnection Problem: A Tutorial", Computer
(April 1974), pp. 18-32.

6. Breuer, M. Ed., et al: "Chapter 6. Routing-, Design Automation of
Digital Systems, Prentice Hall (1972), Vol. 1, pp. 283-333.

7. Agrawal, P., Breuer, M.A.: "A Probabilistic Model for the Analysis of
the Routing Process for Circuits", Network (1980), Vol. 10, pp.
111-127.

8. Lee, C.Y.: "An Algorithm for Path connections and its Applications",
IRE Transactions on Electronic Computers (September 1961), pp.
346-365.

9. Hoel, J.H.: "Some Variations of Lee's Algorithm", IEEE Transactions on
Computers (January 1976), Vol. C-25, No. 1, pp. 19-24.

I0. Breuer, M.A. Ed., et al: "Chapter 5. Placemen: Techniques', Design
Automation of Digital Systems, Prentice Hall (1972), Vol. 1, pp.
213-282.

11. Hanan, M. and Kurtzberg, J.M.: "A Review of the Placement and Quadratic
Assignment Problems", SIAM Review (April 1972), Vol. 14, No. 2, pp.
324-342.

13

12. Bentley, J.L. and Ottmann, T.A.: 'Algorithms for Reporting and Counting
Geometric Intersections", IEEE Transactions on Computers (September
1919), Vol. C-28, No. 9, pp. 643-647.

13. Hoaking, K.H.: "A New Technique for the Placement of 'Solder Blobs' and
Hence Discrete Components", The Marconi Review (Fourth Quarter
1975), pp. 169-183.

14

TABLE I

The set of apertures using Scheme #3, based on a minimum
grid Increment size of 0.100/6 - 0.00167 inch - 16.1 mil
Other schemes available (without apertures) are:
Scheme #1: Grid sizes: - 10.0, 20.0, 50.0, 100.0 mil
Scheme #2: Grid sizes: - 12.5, 25.0, 50.0, 100.0 mil

SUMMARY OF TRACK AND PAD TYPES FOR SCHEME # 3

Grid Sizes: - 16.7, 33.3, 50.0, 100.0
Minimum Track Size: - 15.0 mil
Minimum Pad Annulus: - 10.0 mil
Minimum Clearance: 18.3 mil
Note: Type # 1 Is used exclusively for delineating

PCB borders (or outlines) and/or lettering.

Type Track Pad Role Lead
DX x DY DX x DY Size Size

2. 15.0 x 15.0

3. 31.7 X 31.7

4. 48.3 X 48.3

5. 81.7 X 81.7

6. 115.0 X 115.0

7. 148.3 X 148.3

8. 181.7 x 181.7

9. 33.3 x 33.3 - Square for AREA.MASK filling

11. 31.7 X 31.7 11.7 9.6

12. 48.3 x 48.3 28.3 26.2

13. 81.7 x 81.7 61.7 59.6

14. 115.0 x 115.0 95.0 91.9

15. 148.3 X 148.3 128.3 125.2

16. 181.7 x 181.7 161.7 158.6

17. 48.3 x 81.7 28.3 26.2

18. 81.7 x 48.3 28.3 26.2

15

APPENDIX A

HARDWARE ANfD SOFTWARE CHARACTERISTICS

A.1 computer Peripherals

Only a minimum number of peripherals are required to operate
SCAD.PCB and these will be available at nearly all computer installations.
They are teletype or simple visual display unit, a line-printer and a
plotter. With these a user is able to complete and inspect a pcb design
before sending it to a Gerber drafting machine for the automatic production of
artwork.

Any type of plotter can be used with the SCAD.PCB programs by
compiling and loading a particular plotter software package. If a new
software package is needed for a different plotter, then a copy of an existing
plotter package can be easily modified. All that needs to be changed are the
plotting increment sizes, the maximum physical dimensions over which the unit
can operate, and the format of data produced by the PLOT routine to drive the
device. Software packages are currently available to drive Zeta Series 100,
Tektronix 4006-1, Tektronix 4014 and Hewlett-Packard 7221B machines.

The SCAD.PCB programs automatically use the dimensional information
supplied with a plotter package to scale drawings correctly. when a drawing
exceeds the physical limits of a plotter the system automatically partitions
the drawing into several frames which can be viewed individlually.

A.2 Consideration of Software Limitations

The system has built into it very flexible data storage handling
facilities that automatically expand to the physical or logical limits of the
computer. This has been made possible through the language in which the
system has been written, namely DEC system 10/20 ALGOL 60 [1]. Dynamic memory
assignment is used, allowing arrays to expand or contract as a board design
progresses, making efficient use of computer memory. SCAD.PCB will,
therefore, expand its data arrays to accept unlimited numbers of components,
through-holes, links, etc. Other systems with fixed data arrays have limits
on these parameters, which, if exceeded cause problems.

The programs asking for the largest amounts of computer memory are
the automatic routers, which set up grids containing up to 60 points per
inch. For a double-sided 15 x 10 inch board the total number of grid point
that must be represented in memory is 1,080,000. If each point were to use
just one word of computer memory, the capacity of many a computer would be
severely taxed. Through data compression techniques tris number has been
reduced to about 80 K or 81,920 36-bit words. This is equivalent to 368,640
8-bit bytes. This quantity is a typical maximum vilue 'or a board of this
size.

16

In practice, the routers require only a small amount of memory at
the start of a job, and as links are searched for wire-paths, the data arrays
are progressively expanded to store new wire-paths. The quantity of memory
also depends on the number of different nodes a router must handle in a pass
through the link list, explained as follows. When a router initiates a grid
with the wire-paths of previously routed links, the grid points which
represent each path are tagged with a number representing the node of the
link. The tags are used by the routers to discern the paths open to each
node: paths of the same node may coincide, others may not. A distinct tag is
assigned for each node found on the link list with links still to be routed.
The paths of nodes that have been completely routed are all given the same
tag, because they are no longer considered in the routing process except as
constraints on unrouted links. Now the size of the byte of computer memory
needed to register a tag on a grid point depends on the maximum tag number,
which is equal to the number of unconnected nodes on the link list being
routed, plus one extra for all connected nodes and pcb boundaries. The lower
the tag number, the smaller the byte size. Thus, a router utilises a minimum
amount of computer memory when one node at a time is being added to the link
list and routed. A maximum amount of memory is required when all nodes appear
unconnected on the link list, but as the links of each node are routed the
quantity of memory drops markedly after each pass through the link list, even
though new paths are being found and added to the grid.

Multi-layer boards with up to 14 layers can be accommodated. A mix
of up to 24 different pad and track sizes can be used in routing a board.
This limit is imposed by the 24 photo-plotting apertures available on the
Gerber drafting machine, which is used for automatic production of pcb
artwork. Link and area masks can be used to create special edge-connectors
and ground-planes for a pcb design using the 24 apertures.

A.3 Using the System

SCAD.PCB is set up to be used interactively in a time-share
environment. Individual programs are executed as functional entities, to
perform specific tasks as and when needed. These programs have names prefixed
by PCB, e.g. PCBiA, PCB3A and PCB7, and a guide to their usage is found in the
operator flow chart of Fig. 1. This flow chart gives an abbreviated
description of the function of each program and a number of decision boxes
which define the circumstances under which they should be used.

The flow chart reveals three basic areas of operation; data-base
management, component placement, and routing. Progrms related to data-base
management are PCBdA, PCBdB and PCB2C. Those related to placement are PCBIA,
PCBIB, PCB2A, PCB2B and PCB3B. For routing, the programs are PCB3A, PCB3B,
PCB4A, PCB4B, PCB4C, PCB5A, PCB5B, PCB5C, PCB5I, PCB6A, PCB6B and PCB7.

A program being executed, will, in general, provide a running
commentary on what it is doing, interspersed with requests for instructions
and/or data. In many instances a list of availabli instructions can be
obtained by typing the number 99 in response to a * or # at the computer
terminal. Default instructions and/or data may be used to mninimse keyboard

17

entry. Wrong responses will evoke error messages that describe the fault and
invite the user to try again.

Hatfield Polytechnic Computer Centre has implemented a Macro
Interpreted Commands (MIC) program by which frequently used sequences of
commands, at monitor and user level, on a DEC System 10 can be called. Macro-
programs to execute sequences of SCAD.PCB programs with all the correct
responses have been implemented with MIC to simplify the use of SCAD.PCB.
They allow a standard pcb design procedure to be adopted, with the option of
using individual SCAD.PCB programs to perform specific tasks. Further detail
on the macro-programs available, the context in which they are used, and how
they are called is contained in reference [2].

18

APPENDIX B

A DESCRIPTION OF THE DATA BASE

Any electronic circuit has components like resistors, capacitors,
integrated circuits, which must be interconnected in a well defined manner by
printed wire-paths. This system takes the components and places them on a
board in an ordered fashion and then proceeds to work out the printed wire-
paths between them.

When positioning the components on a board the main constraints are
that they be placed close to each other, but far enough apart to permit the
passage of printed wire paths amongst them. For this to happen the physical
dimensions of both the pcb blank and the components must be known. To this
end, the system has a data base of package-outlines contained in a package-
outline library. The user must identify those package-outlines in the library
that resemble the components of the circuit.

To assist the user in the selection of a correct package-outline for
each component, a stores inventory of electronic parts is kept called the
catalogue library. In it, each item, as part of its specification, has a
reference to at least one of the package-outlines contained in the package-
outline library. Either or both of these libraries may be consulted to select
a package-outline, but use of the catalogue library enables the automatic
selection of a package-outline from a predefined list, removing uncertainties
from the choice. The structure and usage of the libraries are detailed below.

B.1 The Package-Outline Library

This library contains the physical dimensions for over 600 pcb
blanks and some 200 electronic components. The pcb blank and component
dimensions are held in two computer data files called "BOARDS.LIB" and
"PACKGE.LIB" respectively. A computer plot of all package-outlines in these
libraries can be obtained where all the items are drawn and numbered in
sequence. Each outline is a realistic plan view of the item as shown in F
3. It is not recommended that all the outlines of "BOARDS.LIB" be reproduced
since they are large items using much paper to show very little detail, but
all the items in "PACKGE.LIB" should be plotted by each user, so that the
individual outlines in it can be consulted for selection.

As and when required, new package-outlines can be made and appended
to the library, while obsolete outlines may be modified or deleted. See 'New
Package Outlines?' of Fig 1. Most resistors, capacitors, etc. have similar
shapes but different dimensions. For example, resistors generally have a
cylindrical body with a wire protruding from both ends. For these only a few
critical dimensions are needed to enable speciallsed computer routines to
create package-outlines. Routines to produce most basic shapes have been
implemented, plus a general routine for outlines of any shape.

19

Examination of a package-outline in Fig. 7 will show that it has
five parts. (1) It has a name, e.g. "14-PIN DIP", placed below the outline
drawing. (2) There is a position for a circuit name, (Ici) in the place
where the library sequence number (615) now appears. (3) The cross-hairs
locate the logical center about which the package-outline can be rotated.
(4) The position of each pin is designated by a cross (the actual
specification requires both a position and diameter for each pin), with the
exception of pin number one, which has a cross enclosed in a square. (5)
Finally there is the sequence of plotter instructions needed to reproduce the
realistic plan view of the package.

A package-outline is selected for a component by using a library
sequence number. In the example, IC1=P2, the symbols '"P' and '2' cause the
package-outline in position 2 of "PACKGE.LIB" to be selected and assigned to
ICI. (The indirect selection of P2 using the catalogue library is covered in
B.2.) Thereafter SCAD.PCB keeps tabs on the package-outline for Ici by using
its package name '14-PIN DIP", instead of its library sequency number 2.
Should, for example, "14-PIN DIP" now be deleted from "PACKGE.LIB' another
package-outline will be found in second position. The automatic crosschecking
carried out by SCAD.PCB will now be unable to locate the name "14-PIN DIP" for
IC1, and will issue a request for a substitute. If the sequence number had
been used as a tag instead of the name, the outline now in second pusition
would have been chosen with possibly disastrous results. The use of names to
keep tabs on the outlines assigned to components permits the reordering,
insertion and deletion of package-outlines in a library in the knowledge that
the integrity of package-outli:.e assignments to components will be maintained.

In addition to the standard package-outline libraries the system
supports privately generated and maintained package-outline libraries to
supplement the standard libraries. These are "HOARDS.USR" for pcb blanks and
"PACKGZ.USR" for component packages. New pcb designs very often have a
requirement for one or more package-outlines not found in the standard
libraries, and to avoid increasing the size of already large standard
libraries even further, a pcb's unique package requirements can be kept in the
supplementary libraries. A typical selection from a supplementary package-
outline library would be ICIQ2, where the selector symbol 'P' has been
replaced by IQ'.

3.2 The Catalogue Library

The catalogue library is an inventory of electronic components
containing about 640 separate items. Location of individual items in the
catalogue is facilitated by their classification into groups by function, such
as resistors, capacitors, etc. New functional groups may be added to the
library, and old groups may be deleted or have their function descriptions
altered. New items may be defined for groups and old ones deleted or
modified.

Only one parameter is needed to define a new group of items and that
consists of a brief description of the function of the group, e.g. TRANSISTOR
FIELD EFFECT, or RESISTOR, FIXED, FILM.

20

Every item within a group is characterised by a Part-Description,
Catalogue/Stock-Number, Bin-Number, Quantity-Unit, and one or more package-
outline-options. The Part-Description is a brief description of the item such
as: MM74CS6, Quad 2-Input NAND Gate, or 680K Ohm, 5%. The Catalogue/Stock-
Number, e.g. 5962-TN-997-3295, is used for accounting and stock control. The
Bin-Number, e.g. 159/247, is used by storemen to locate an item. Quantity-
Unit is the unit of issue, e.g. 1 or 100, for stores requisition. Each
package-outline-option lists the name of a package-outline suitable for use
with an item.

The user may select only one of the package-outline-options, but a
special feature of SCAD.PCB creates options consisting of chains of package-
outline-options. This arrangement causes all of the outlines named in the
chain to be merged into a single new package-outline without having to include
it in a library. When an option such as this is being defined, each outline
named in the chain is also supplied with a 'drawing instruction' for the
merging routine to instruct it to include certain parts of an outline and omit
others. In this way certain desirable combinations of components can be built
up, such as, an integrated circuit mounted in a socket, or a heat sink on a
transistor.

All the catalogue library information for component packages is
stored in a computer data file called *PCATAL.LIB*. A computer listing of the
catalogue can be obtained through program PCB6B. A typical selection from the
catalogue would be IC1=G1I 115 01, where Gi, 115 and 01 specify the group,
the item, and the option respectively. Note that the symbols 'G' or 'P' are
mutually exclusive, meaning that either the catalogue library or the package-
outline library may be used, but not both together.

The standard catalogue libraries are *BCATAL.LIB" and "PCATAL.LIB"
for pcb blanks and components respectively. The corresponding supplementary
catalogue libraries are "BCATAL.USR" and "PCATAL.USR". Each catalogue library
references only one package-outline library, i.e. "BCATAL.LIB" references
"BOARDS.LIB-, -PCATAL.LIB" references "PACKGE.LIB", *BCATAL.USR" references
"BOARDS.USR" , and "PCATAL.USR" references "PACKGE.USR". Selections are made
from the supplementary catalogue libraries by using the selector symbol 'H' in
place of 'G' e.g. IC1-H1d 115 01.

The system has the ability to take all the items selected from the
catalogue library and use the information stored therein to create a parts
description list of all circuit components (including the extras chosen
through the special options) and produce a completed 'materials schedule form'
for store requisitions.

The principle of using names as tags instead of sequence numbers, as
described in B.1, is also applied to items selected from the catalogue
library. Thus, when an item selected for a component is deleted from the
catalogue, the cross-checking routines will detect this and request a
replacement item, and the user may be sure that the integrity of the
assignment of items to components will be maintained.

21

APPENDIX C

HOW TO ENCODE A CIRCUIT OR DATA PREPARATION

Before a pcb design is started, sets of data must be prepared for
entry at a computer terminal. All of the electronic components in the circuit
must first be named and have suitable package-outlines selected for them.
Then the positions on the board for these package-outlines must be worked
out. Finally, to define the circuit, a node number must be assigned to every
component terminal (Fig. 3).

In this appendix consideration Is given to different aspects of data
preparation that will facilitate an orderly approach to the use of SCAD.PCB.

C.I Circuit Partitioning

When a circuit is large it is often advantageous to partition it
into smaller circuits, complete the design of each small circuit, and
recombine them later into a single large board. An alternative to recombining
sub-circuits is to create a back-plane on which any interconnections between
the sub-circuits are made.

The system has built into it the ability to handle up to 99 sub-
circuits or sections, but with no facilities, as yet, for automatic circuit-
partitioning into sub-circuits (See D.4).

C.2 Tabulating Components and Package-outlines

Every section is made up of a blank pcb plus a number of electronic
components to be mounted on it. A special form (Fig. 8a) has been prepared
where a user can tabulate the name, package-outline specification, and
position of the package-outline on the board. In this section the method for
tabulating component names and outline specifications is described; section
C.3 deals with component placement.

Each component in the circuit should be given a unique name starting
with the pcb blank itself. This is always the first component in any section,
and without it a section cannot exist. There is no limit set on the number of
characters in the name of the board. Names of electronic components, by
contrast, are only allowed a maximum of 5 characters, usually one or two
alpha-characters followed by one or more digits, e.g. R1, R2, IM, IC16, C3
etc. All alpha-characters must be entered upper-case.

Package outlines are selected from the "BOARDS.LIB" library for the
pcb blank and "PACX:E.LIB" for every other component in a section. The
principles for selecting package-outlines were discussed in Appendix B.

22

C.3 Component Placement

The process of working out a location for each package-outline on
the blank circuit board Is called component placement. This is a difficult
task as individual components must be located close to each other without
overlapping to minimise the length of wire-paths between them, yet far enough
apart to reserve sufficient space for the passage of all wire-paths.

This task is an obvious candidate for the interactive and automatic
placement procedures used by PCB3B, but for these to operate the encoded
circuit must be available. Methods for encoding circuits are discussed in
Appendices C.4 and C.5, and placement methods are here restricted to manual
specification. The present discussion also forms a basis for a discussion of
automated methods later.

Once a decision on component positions has been reached, the next
task is to encode these locations. This is achieved by giving the coordinates
of the logical center of the package, expressed in mils relative to the lower
left hand corner of the blank pcb, and an integer giving the anticlockwise
rotation of the outline from its standard position. Negative coordinates will
be rejected by SCAD.PCB. As an example, the coordinates (1.050, 3.500) in
inches becomes (1050, 3500) in mils. (The Imperial system of measurement has
been adopted because the spacing between the terminals of most electronic
components is standardised to fractions or multiples of 0.100"). An outline
can take one of four orientations: 0, 1, 2 and 3 corresponding to 6, 99, 186
and 27A degrees rotation in a counter-clockwise direction about the logical
center. The package-outline drawings of the libraries are always located with
6 orientation. Thus, a typical placement specification could be X165d Y3566
R3. (Note: The efficiency of the automatic router programs is greatly
increased by arranging for all component terminals to be on a 0.100 inch or
100 mil grid where possible).

C.4 Encoding a Circuit

Further to the discussion in 2.3 of the basics for encoding a
circuit, this section describes advanced features of the system that will give
a user greater control over the way a wire layout is produced.

Every electronic component has a number of terminals/pins that are
inserted in specially prepared through-holes on the board. Each through-hole
consists of vertically aligned terminal-pads on each layer of a multi-layer
board with a hole drilled through the center of them. On the inside perimeter
of the hole is deposited a layer of copper which connects all the pads
together electrically. The final inside diameter of the through-hole must be
large enough to take the pin. The system also permits pins with zero
diameter, where no electrical interconnection between layers occurs, to
reserve special points on a board.

In the context of circuit definition a distinction between the zero
diameter pins and the non-zero diameter pins must be made; they will be
called dummy-terminals/pins and, (normal) terminals/pins respectively. The

23

(normal) pins occur in a package-outline exactly as they appear in the
manufacturer's specifications, numbered pin for pin in a counter-clockwise
direction. Dummy-pins are generally included in a package-outline by SCAD.PCB
and have no relation to a manufacturer's specifications at all; the reasons
will become apparent in the following paragraphs.

Pertinent to this discussion is a clarification of the way In which
the router programs use a grid to model the pcb. As stated in A.2, the grid
points that represent a wire-path are assigned tags which represent the node
of the path. Further, the points at which the edges of pads and/or tracks
intersect (as illustrated in Fig. 6c) and the grid points traversed by the
boundaries of the pcb are all assigned the tag of the node NMAX. NMAX is
called the forbidden node and is equal to the maximum node number for the
circuit plus one. It has the special property of not being able to generate
any node tree of links; as well, any grid points tagged with NMAX will not
permit the passage of new wire-paths for any node. All the remaining grid
points that have not been traversed by boundaries or wire-paths are tagged
with the node 6 (zero), called the free node because grid points tagged with 6
are free to be traversed by new wire-paths of any node. Like NMAX, the free
node cannot generate any links. of course, the grid points of wire-paths of a
particular node will allow new wire-paths of the same node to coincide with
them.

How are the two types of terminals represented on the grid of the
pcb in the light of the model above? For a (normal) pin every layer of a
multilayer pcb must assume the node number of the pin. This being the case,
the (normal) pin cannot be assigned the free node number because the new wire-
paths of any node that are allowed to cross the pin would be short-circuited
by the through-hole. All (normal) pins are initiated with the forbidden node,
and not the free node, to avoid any possibility of short-circuits occurring
between nodes. A dummy-pin is always initiated with the free node because
there is no chance of a short occurring between board layers.

In SCAD.PCB there is one mode for encoding (normal) pins and another
for encoding dummy-pins. For (normal) pins, only one node number is assigned
per pin, and the routers will automatically tag every layer of the board at
the position of the pin with the same node. Dummy-pins are assigned one node
number per layer.

As the context shifts to that of link creation, both the dummy-pin
and the (normal) pin are represented on the vertex list differently. For
every (normal) pin there will be exactly one multi-layer-vertex; each dummy-
pin will have several uni-layer vertices, one for each non-zero node number
layer and one for every free or zero node number. Up to t3is point the layer
specification on every start and finish vertex of a link tas not been
mentioned, because, with multi-layer-vertices a wire-path can start from or
finish on any layer whatever. In practice, start and finish layers are
automatically assigned to a link every time a multi-layer-vertex is used, and
the routers will treat these specified layers as being preferred but not
essential. The wire-path to or from a uni-layer-vertex must be on the
predefined layer of the vertex.

24

How then can dummy-pins b6 effectively utilised? One way is to
declare components with dummy package-outlines having one or more dummy
pins. Such components can be placed at strategic positions on the pcb to
produce certain desirable effects when It is being routed. For example, a
user may require a common ground point for a pcb; a dummy-pin is an ideal way
of ensuring that the different parts of a circuit will be linked and then
routed to a common point. This idea can be extended by replacing a single
rather long link with several intermediate links; dummy-pins are placed at
strategic points along the proposed path of the long link to segment it into a
link tree of several small links. Also, many of the package-outlines in
"PACKGE.LIB" possess dummy-pins In their configuration that, with careful
planning, could be utilised without needing to declare dummy components. (The
use of dummy pins may be extended at some later stage with the development of
a routine, in PCB3B, based on graph theory, to automatically generate and
route link trees that are planar).

C.5 Tabulating the Circuit

When encoding the circuit the electronic components of a section are
presented to the user in sequence. As each component is presented the node
numbers are assigned to its terminals one by one. Forms are available for
tabulating the node numbers for the (normal) pins and dummy-pins in Figs. 8b &
c.

A useful convention to adopt when assigning node numbers is to
reserve the lower order node numbers for those link trees with the greatest
number of branches, as this reduces the number of keystrokes on data entry.

25

APPENDIX D

A DESCRIPTION OF THE SCAD.PCB PROGRAMS

A brief description of each program found in the operator flowchart
of Fig. 1 is contained in this appendix to provide more information on
different aspects of the system.

D.1 PCBIA: Maintenance of the Package Outline Libraries

When an electronic component is to be incorporated in the catalogue
library or directly used in a pcb design and there is no suitable package-
outline in 'PACKGE.LIB" to associate with it, a new package-outline must be
appended to *PACKGE.USR* before a pcb design can proceed. Similarly, a new
board-outline may need to be added to "BOARDS.USR* (see Appendix B). Program
PCBdA is designed to create new board or package-outlines and insert them in
either of the package-outline libraries, as well as perform other maintenance
functions, such as deletion and updating.

To avoid confusion in a multi-user environment any access to modify
the libraries "BOARDS.LIB" and *PACKGE.LIB" should be limited to a few
persons. Board and package-outlines peculiar to a pcb design should be
generated by the user in PCB6A and stored in the supplementary libraries
"BOARDS.USR" and "PACKGE.USR". As the formats of the data in the standard and
supplementary libraries are identical, the manner in which modifications to a
library may be carried out is the same in all cases.

After creating a new outline it is advisable to use PCB2C to draw it
and then check it before incorporating it in one of the libraries. After its
inclusion in a library, PCB2C is again used, this time to produce a drawing of
a complete list of outlines in the library to use as a reference when
selecting package-outlines for electronic components. This is important, as
all the library sequence numbers from the point of insertion of a new outline
will have been altered.

D.2 PCBiB: Maintenance of the Catalogue Libraries

The catalogue library is an inventory of the items held in a local
store which will need periodic updates. When an update occurs all users will
be supplied with a new computer listing of the library. If a pcb design has
items which have subsequently been deleted from the catalogue library the
automatic cross-checking carried out by SCAD.PCB will uncover these items and
request replacements.

Program PCB6B is used specifically for updating the catalogue
libraries. New items can be appended, and existing items can be modified or
deleted. Many other functions related to these basic functions can be

26

performed on the library. But, as with the package-outline library, an
updated listing of the catalogue library should be used when selecting items,
otherwise the wrong component may be chosen when library sequence numbers are
incremented or decremented by insertions and deletions.

As items in the catalogue library have cross-reference links to the
outlines in the package-outline library, new outlines must be included in the
latter library before they can be assigned to new items in the catalogue
library. Conversely, items should be deleted from the catalogue first, and a
list of package-outlines still used by the catalogue library obtained before
deciding which outlines can be deleted from the package libraries. In either
case, comprehensive internal checking procedures will inform the user if the
cross-linking has been abused. All internal checking is carried out using the
'names' of outlines, not sequence numbers, thus preventing a source of
confusion when the order of package-outlines is altered by PCBiA.

When catalogue libraries are created or modified they can only refer
to the outlines contained in one package-outline library. Thus, "BCATAL.LIB'
refers to "BOARDS.LIB", "PCATAL.LIB" refers to "PACKGE.LIB", "BCATAL.USR"
refers to "BOARDS.USR", and "PCATAL.USR" refers to "PACKGE.USR". Note that
the use of supplementary libraries, as outlined in D.1, is extended to the
supplementary catalogue libraries.

D.3 PCBfC: Generation of Gerber Drafting Machine Apertures

A set of Gerber drafting machine instructions is generated for
creating a new set of pad and track aperatures for a specified wiring
scheme. The amount of work involved in setting up new apertures on a Gerber
drafting machine is considerable and should be avoided unless absolutely
necessary. Modern laser machines, which also accept Gerber machine
instructions, require much less effort to set up new apertures.

D.4 PCBlA: Component Selection and Placement

This program has several data-entry modes wherein a user enters the
component name, package specification and the placement specification of every
electronic component in the circuit. The entry of placement data is optional,
depending on whether or not the user is going to use automatic placement. The
program creates three data storage files on disk which form the data base of
the board being designed. The first is "COMPNT.DAT", which stores the name,
package-outline name, and placement of every component. The others are
"BOARDS.DAT" and *PACKGE.DAT", which are subsets of the package-outlines
contained in "BOARDS.LIB" (or "BOARDS.USR") and *PACKGE.LIB" (or "PACKGE.USR")
respectively. These sub-files are formed containinq only the minimum number
of outlines required by "COMPNT.DAT*, which is significantly less than the
total number available. An auxilary file called "STORES.DAT" is also formed
when items are selected from the catalogue library, *PCATAL.LIB" (or
"PCATAL.USR"), and this serves as a cross-reference between "COMPNT.DAT' and
"PCATAL.LIB" (or "PCATAL.USR"), for producing a parts list and materials
schedule.

27

When a pcb design is to be started, the user must first specify the
different sections or sub-circuits (see Appendix C.I) that are to be used. In
so doing, the package-outlines selected are pcb blanks from "BOARDS.LIB" (or
"BOARDS.USR"). Later, when the components are being specified, the package-
outlines are taken from -PACKGE.LIB" (or -PACKGE.USR-).

There are instructions for rearranging the order of components
within a section. Once a reordering has taken place, the names of components
may be changed by reindexing them. To illustrate the process, consider the
initial sequence of resistors as an example: R1, R2, R3, R4, R5. After
reordering the sequence becomes: R5, R2, R1, R3, R4. On reindexing, R5
becomes Ri, R2 is unchanged, R1 becomes R2, R3 becomes R4, and R4 becomes
R5. This renaming enables groups of components in close proximity to each
other on the pcb to have similar index numbers, to facilitate component
identification. As well as changing the order of individual components for
reindexing, all components may be sorted, section by section, with the
component names in alpha-numeric order.

In PCBIA components with incorrect package-outlines may be corrected
and those badly placed may be repositioned. Facilities for shifting
individual, groups of, or whole sections of components from one part of a pcb
to another whilst being rotated are also available within the program.
Interactive placement on a graphics terminal with PCB3B is the preferred
alternative, after the circuit is defined with PCBIB.

Instructions for partitioning circuits (see C.i) are available in
PCBIA. Sections may be deleted, split or merged. Individual components may
be shifted from one section to another or deleted. The sphere of influence of
these operations extends into the data files created by subsequent programs.
These are "CIRCUT.DAT* handled by PCBIB, the *TERMNL.A??" terminal data of
PCB2B, and the linking data of PCB3A and PCB3B, namely *LINKIN.6??",
AMASK.9?? and -LMASK.6??". These data files are automatically updated by
PCBIA to reflect all sectional modifications.

The splitting and merging of sections is illustrated by the
following example. Say, for example, a group of components in section #2 is
broken off and shifted to section #3. In "CIRCUT.DAT" the group will be
transferred from #2 to #3. The *TERMNL.662" file will have all data relating
to the group copied to *TERMNL.663" and then deleted from it. Similarly, all
the relevant data will be extracted from "LINKIN.62", "AMASK.662" and
"LMASK.662" and transferred to "LINKIN.663", "AMASK.A3" and "LMASK.663".
However, the linking data may contain links between components in the two
sections, which now belong exclusively to neither secticn. This data Is
diverted to the data pool of "LINKIN.66-, "AMASK.666" and "LMASK.666", where
it can be either deleted or saved until required for merging the two sections.

D.5 PCBIB: Entry and Amendment of Circuit Data

Before any wire-paths can be found for a pcb the encoded circuit
data must be entered at the computer t-rminal and stored in a data file called
"CIRCUT.DAT" using program PCB1B. A listing of *CIRCUT.DAT" can be obtained

28

for cross-checking the stored data with the original circuit, and if any
errors are found or modifications are necessary, PCB1B is again used to
introduce these changes.

Initially, PCB1B sets up data arrays to receive a circuit according
to the package-outline information stored in "COMPWT.DAT". For each component
package a data array of pins is initiated; (normal) pins are preset to the
forbidden node NMAX and the dummy-pins are preset to zero. PCBlB then checks
the existence of *CIRCUT.DAT*, and if it is available, the old encoded circuit
is read into the data arrays, replacing the preset nodes with the nodes of the
encoded circuit. As this process is taking place, checks are carried out to
ensure that the data from *CIRCUT.DAT* can still be properly placed in the
data arrays. If not, the preset nodes are not replaced by the nodes of the
encoded circuit, and the user must reassign nodes to the components affected
in this way. If "CIRCUT.DAT" is unavailable the preset pins stand as they
were initiated. PCBIB has now initiated its data arrays and is ready to
encode a complete circuit or change an existing circuit. To do this the user
must call the apprioriate instructions in PCB1B which enable him to scan the
pins of each component and assign node numbers of them. After entering and/or
modifying an encoded circuit another instruction can be called to dump the
encoded circuit in the data file "CIRCUT.DAT*.

D.6 PCB2A: Drawing of Components in Position on the Board

All the data stored in "COMPNT.DAT*, "BOARDS.DAT" and 'PACKGE.DAT"
are relatively meaningless unless they can be transformed into a picture for
inspection (Fig. 2). PCB2A takes the above data files and uses them to
generate graphics output consisting of a fully labelled drawings of components
in position on the pcb. Several options are available for controlling the
amount of detail produced in these drawings.

This program may be loaded with one of several available plotter
packages (see A.) which produces data in the format required to drive a
specified device. PCB2A automatically partitions the drawing into frames when
the scale of the drawing causes the physical limits of the device used to be
exceeded.

If some components of a layout have the wronc package-type or have
been badly placed the user should return to PCBIA and make the necessary
modifications.

D. 7 PCB2B: Create and/or Modify Terminal Pad Data

A printed circuit board has large numbers of terminal pads that
provide an interface between the pins of components, and the wire paths of the
board. Each pad must have a hole large enough to receive the intended pin,
with a copper annulus around it that is large enough to satisfy mechanical and
electrical interface requirements.

29

Program PCB2B takes into its data arrays all the relevant
information found in the data files called *BOARDS.DATI, OPACKGE.DAT" and
"COMPNT.DAT". From these data all pin positions on the blank pcb are computed
and placed in arrays with their pin diameters. The user selects a wiring
*scheme' (see Table I) which will determine the pad and track (wire-path)
sizes that can be used for routing the board. He also selects a set of drill
sizes to match the pin sizes of the components, and each pin is allocated a
drill size by the program. Then the smallest pad size that produces a minimum
standard copper annulus around the drill size assigned to each pin is
automatically chosen for each terminal position. Larger pad sizes can be
manually assigned in special circumstances.

After the pad and drill assignment is complete, all the accumulated
terminal information is dumped into data files called "BORDER.??" and
"TERMNL.A??', ready for access by other programs. If any changes are
introduced to "COMPNT.DAT" that force an update of ICIRCLTT.DAT', namely
insertions, deletions, renaming or reordering of components, or changes in
package-outlines, then a complete reassignment of pads is needed, but this is
accomplished very quickly. When the changes to "COMPNT.DATI are confined to
placement specifications, the old "T.ERMNL??" data file should be accessed
and updated immediately, so as to implement all position changes
automatically; the original assignment of pads is not changed.

D.8 PCB2C: Drawing the Package-Outline Libraries

This program is similar to PCB2A and PCB2B in many respects because
it uses the same algorithms to draw package-outlines and compute terminal
positions. Its main function is to create a drawing of all the package-
outlines contained in "BOARDS.LIB', "PACKGE.LIB*, *BOARDS.USR', "PACKGE.USR",
"BOARDS.DAT-, -PACKGE.DAT" or any other temporary library file created for
checking purposes by PCB6A (Fig. 7).

Each package-outline in such a data file is drawn with its name
included underneath it, with cross-hairs to mark its logical center and a
pseuido-component-name (which is its sequence number in the file). All
package-outlines are drawn in sequence, to provide a handy cross-reference to
use when selecting outlines for assignment to components.

D.9 PCB3A: Generation of Linking Data

Program PCB3A carries out the basic function described in 3.2, i.e.
the creation of a tree of links for every node in the circuit. PCB3A uses the
node numbers of component terminals contained In *CIRCUT.DATI, as well as
their positions as found in "TERMOL.??1, to create and/or modify sets of
links and store them in the link list data file called "LINKIN.d??*. PCB3A
also creates and/or modifies different types of masks and stores them in data
files called "AMASK.A??" and -LMASK.6??.

In this program the handling of the link list Is subdivided into
four distinct segments. These are: (a) Input of old link list and mask

30

data; (b) generation of new links and masks and/or modification of old links
and masks; (c) the ordering of the link list; (d) output instructions for
creating and/or updating the link list and mask data files.

Before any of the above operations can be carried out the program
must initiate its own data arrays. On entry to the program the circuit and
terminal data are assimilated into a data structure that associates every
terminal in the circuit with a physical position on the board, in the form of
a vertex list. The minimum number of links needed to form each node tree is
known from the numbers of vertices in the vertex list, and empty data arrays
are set up to receive links as they are created. These data arrays are
automatically extended when superfluous links are generated for special
purposes.

D.9.1 PCB3A: Input of Old Linking Data

When a pcb design is in progress, the accumulated data stored in the
link list, *LINKIN.6??", must be read into the empty link data arrays before
any amendments can be made or extra links appended to them. Facilities also
exist for reading data from the different mask data files.

D.9.2 PCB3A: Generation of Links and/or Masks

Various options allow a user to create a tree of links for each node
by automatic or manual methods, and initiate changes to individual links
within a tree. Masks can also be created and/or modified and assigned to
links in this segment of the program. Entire node trees or portions thereof
can be referenced at the user's computer terminal. Masks can be referenced in
like manner, where a cross-reference list of the links to which a mask has
been assigned appears, followed by a segment by segment listing of the mask
itself (Fig. 4). Finally, there are checking procedures to ensure that no
node tree is fragmented or remains unconnected, and other checking procedures
to make sure that masks still 'fit' the links to which they have been
assigned.

Links for a node are automatically generated using a minimum
spanning-tree algorithm [4), which is described below. This algorithm
maintains two lists of vertices; the first contains those vertices that have
already been connected together in the tree of links; the second list
contains those vertices not yet linked to the tree. The first list is
initiated with one vertex which acts as a seed. The algorithm examines each
vertex combination between the two lists in turn, to find the pair of vertices
with the minimum distance before creating a link between them. After this the
vertex on the second list is transferred to the first list. This procedure is
repeated until no vertices remain on the second list.

Links can be manually generated for a node with the aid of a special
tree-growing routine as follows. The user first obtains a map of the vertices
belonging to the node by using PCB4C in conjunction with PCB6A, to produce a
drawing which shows the physical position of the pads of all vertices on the

31

board, where the pads of the node for which a tree of links is to be"
constructed are replaced by vertex numbers, so that they can be identified.
The user joins these vertex numbers together by pencil lines to establish a
proposed link-tree map. This map is followed as the user Invokes the tree-
growing routine to create a link-tree.

SCAD.PCB currently supports three different mask types with a
reserve capacity for implementing other types. The first is the link-mask
described in 3.1, which is a detached wire-path between two points that should
be assigned to at least one link. The second is the area-mask which is in
effect a ground-plane, where a special routine is used to establish an outer
loop (or ground-plane boundary) followed by a number of inner loops around
reserved positions within the boundary. All the space between the inner loops
and the outer loop is then filled in automatically. Such masks do not have
start and finish points to allow them to be assigned to one of the
conventional links, so a special dummy link, consisting of a vertex connected
to itself is created every time an area mask is assigned. The vertex to which
the mask is assigned serves as the reference point for positioning the mask on
the board. The third type of mask Is the finger-mask, which Is used for
implementing edge-connectors and the like. An edge-connector is basically an
area-mask with dimensions too small to permit the establishment of loops. As
such, the finger-mask is generated by the link-mask routine and then assigned
to a special dummy link as an area mask is.

D.9.3 PCB3A: Ordering the Link List

In this third segment, all links that have been generated are placed
on a link list and sorted into an order specified by the user. The objective
of this process is to find an order for the links that is conducive to the
router programs finding a maximum number of wire-paths 15,61. According to
recent literature [71, the most significant factor affecting the connection
rate is the wiring density of the board. it states that once the wiring
density exceeds about 35%, the probability of making a connection drops from a
near certainty to virtually zero. Despite this, ordering of the link list has
been retained because It often assists in producing an aesthetically pleasing
wire layout, and provides a limited increase in the total number of wire-paths
found on a densely wired pcb.

Several weight functions are available for the user to assign a
weight to each link. Often, large numbers of links will have identical
weights, and so, second, third and fourth order weight classes may be added to
each link to serve as tie-breakers when the preceding weights are equal. The
user may also assign different classes of weights to subsets of the total link
list. There is a weight function to give priority to short links; the pin
density function of section 3.4; a weight function that cgves priority to
links on a specified layer; another that gives priority to links with uni-
layer vertices; and one to give priority to links bounded by rectangles whose
aspect is more that of a square than a rectangle.

32

D.9.4 PCB3A: Output Instructions

In this fourth segment of the program there are instructions for
updating all of the link list and mask data files plus others for obtaining
cross-reference lists of vertices, links and masks.

D.1O PCB3B: Integrated Placement, Linker and Router*

PCB3B gives the user the facility to manipulate images of objects
interactively on a graphics display terminal. The component and package data
of PCB1A, the circuit data of PCBIB and the terminal pad data of PCB2B are
melded to provide spatial information with the required connection
relationships between components, to aid the interactive placement process.

Components are initially sorted into one of two sets called two-pin
components or cluster-seed components. The two-pin components are then
assigned to clusters in tiers, where each tier is a subset of two-pins that
can be linked to the seed or preceeding tier of a cluster. Placement first
occurs at the macro level where succeeding tiers of two-pins are placed about
cluster-seeds, then at a global level where clusters are placed in relation to
each other. All placement is constrained by the required connections between
components.

Because connection relationships are used in the placement process,
these relationships are readily extended to the creation of the links needed
for routing. Both the manual link preparation and mask generation for links
described in D.9.2 are also subjects of interactive processes on a graphics
terminal t10-13].

D.11 PCB4A: Data File Generation for the Router

PCB4A takes the data accumulated by earlier programs and combines it
into a data format suitable for the router programs. Information from the
data files "CIRCUT.DAT", "BORDER.A??', "TERMNL.??", LINKIN.??, -LMASKS.A??"
and "AMASKS.6??" are merged to form data files "LINKI.A??", "TERMS.A??',
*LINKED.A??" and "SECTON.A??". "LINKI.A??" is a list of the links contained
in "LINKIN.A??", where all the vertex names have been replaced by their
physical dimensions held in *TERMNL.6??*. "TERMS.6??" is a subset of the data
in "TERMNL.6??", rearranged into a format suitable for router
initiallsation. *LINKED.6??" is a record of those links that have had wire-
paths or masks found for them. 'SECTON.6??" contains all the information
needed to initialise the router grids with pcb borders and the wire-paths
already found, and is obtained by combining the data found in "BORDER.6??",
"TERMNL.??-, "LINXIN.6??", "LMASKS.6??" and "AMASKS.6??", where the vertex,
names used to define links are substituted with their physical dimensions.

* PCB3B is currently being developed (August 1986).

33

D.12 PCB4B: Control Files for the Router Programs

The operation of each router program is regulated by a control file
('PCB5A.CTL", "PCB5B.CTL', "PCBSC.CTL", or "PCB5I.CTL*) set up through a user
dialogue with PCB4B. Each control file consists of one or more control lines,
where each line corresponds to a single pass on a router. In each pass the
grid resolution on which wire-paths are to be found is set, together with
certain parameters that control the routing functions of the router programs.

PCB4B also allows the user to set up a batch control file to run
several of the router programs without user Intervention, followed by PCB6A to
generate graphics display.

D.13 PCD4C: Control Files for Graphics Output

The operation to prcduce graphics output of the wire-layout is
regulated by control files (*PCB6A.CTL", *PCB6B.CTL") that are set up through
user dialogue with PCB4C. The user has various options available for him to
label wire-paths and draw selected portions of a pcb.

D.14 PCB5A, PCB5B, PCB5C, PCB5I: Router Programs

Router programs find wire-paths for the links listed in
"LINKI.d??". Each of the above programs have different functions and
capabilities, but they are all initialised in the same way. First a grid is
3et up of the resolution specified in the control file. Then the terminal zad
positions from "TERMS.6??" are marked on the grid using the node numbers
assigned to them. After that, all the pcb borders and pre-routed links found
in "SECTON.6??" are similarly marked on the.grid. Finally, the router wor'Cs
Its way through all the unrouted links found in "LINXI.A??", attempting to

find paths for them. As each wire-path is found, it is marked on the grid and
appended to "SECTON.A??".

When a router program begins execution it sets up several temporary
control data files which keep a running record of its status. All of these
files are periodically updated, so that if the computer system should 'crash'
at any time, all the data accumulated up to the time of the last update will
be retained. When the computer system is restored to operational status after
a 'crash', the router will automatically use these temporary control files to
continue its execution from the point of the last update. When the router
finishes execution, it deletes all of the temporary files.

D.14.1 PCB5A: Router Program

This is a fast router which gains its speed through the type of
search algorithms it uses, and the fact that only one printed circuit layer is
searched at a time. It takes each layer of a board in turn and sets up a grid
rn which it attempts to find wire-paths for unroute l1n..3. An option exists

34

for the user to specify whether paths are found either on a designated layer,
or on the first available layer. This router is most effective for single
layer boards or multi-layer boards without through-holes.

There are three algorithms from which to choose, and either a single
or a combination of algorithms can be selected for a pass. The first
algorithm will attempt to route only those links whose two end points lie on a
straight line or grid coordinate. The second algorithm tries to connect only
those links whose end points lie on two disjoint sets of coordinates. Both of
these algorithms are restricted In the shape of the paths they may find, and
as a consequence may not find a path even though it exists. A third algorithm
is included, called the Lee Algorithm [8,9], which has the advantage of being
able to find a path of any shape if it exists, but is much slower because it
examines all path options. A common method of increasing the speed of this
router is to restrict the search area to a rectangle on the grid that
surrounds the two end points. If a user elects to use the Lee Algorithm, he
will have to specify this boundary. A secondary effect of introducing this
boundary is to eliminate those paths that tend to become unacceptably long due
to local congestion.

D.14.2 PCB5B: Router Program

Here, the Lee Algorithm is used exclusively in a multi-layer mode,
searching on several layers to find a path for a link. It is slower than the
algorithms used in PCBSA, and it also uses more computer memory to store the
extra layers. But a wire-path is more likely to be found amoung several
layers than on a single layer. Similar boundary restrictions to those used in
PCB5A are placed on the router to improve its efficiency. The Lee Algorithm
can be called with constraints that cause wire-paths with certain
characteristics to be chosen in preference to all others. After trying many
constraints, the best strategy to emerge was to give priority to placing
orthogonal wire-path segments on opposite sides of a two-layer board. This,
more than anything else, improves the routability of a board, despite its
tendency to produce superfluous through-holes.

D.14.2 PCB5C: Router Program

This also is a fast router, with extended versions of the first and
second algorithms of PCB5A. These find wire-paths with orthognal segments on
opposite sides of a two-layer board joined by through-holes. PCBsC and PCB5B
are designed to complement each other. A single or multiple passes through
PCB5C should be used to find over 90% of the wire-paths, followed by several
passes through PCB5B with successively higher resolution grids to route any
remaining links.

D.14.4 PCB5I: Automatic Wre-Path Inspection

Often, the creation and modification of wire-paths through the mask
routines described for PCB3A can leave Intersecting wire-paths. Visual
inspection is not sufficient to detect all inconsistancles. This program is

35

used to certify that the final wire-layout contains no errors, or if it has
errors, to report where they have occurred on the pcb.

In coimon with the router programs a grid Is set up, in this case
the highest Possible grid resolution is used. Then the pads from "TERMSAi??"
are embedded in the grid, followed by the pre-routed links found in
"SECTON.6??*. It makes no attempt to route any links, but as each pad and
wire-path is being embedded a check is carried out to ensure that the node of
the link segment being Inserted In the grid does not clash with a different
node number already In the grid. Ife It does, the clashing segment only is
appended to *SECTOI.S??", as a wire-path.

D.15 PCB6A: Wire Layout for Inspection

Output data files -TERMS.6??7, *LImKD.6?', "SECTON.d?'- and
"SECTOI.6??V from PCfl4A, PCB5A, PC~S5, PCB5C and PCB5I, are Used to draw the
current wire layout for inspection (Fig. 5). Various options for controlling
the type and amount of output from PCB6A are available through the control
file "PCB6A.CTL* from PCB4C. These Include overlays for multilayer boards,
frame selection to view only important parts of a board, and facilities to
draw different combinations of connected and unconnected links.

D.26 PCB6B: Drivin' Instruction ear the Gerber Draftin' Hachine

All the data tiles used by PCBSA with the exception of "SECTOI.9??"
and including "TERMNL.6??", are accessed by PCBGB to generate instructions for
a Gerber drafting machine to produce the pcb artwork, drilling Instructions,
and a summary of required apertures and through-hole sizes.

D.17 PCB7: Post-Router Link Mask Extractor

All of the wire-paths contained in "SECTON.6??" are examined by PCB7
to see if any new link-masks can be extracted from those links recently
connected by the routers and appended to *LKASKS.6??*. If there are, the
track-type numbers contained in the link specifications cf "LINKIN.6??" are
updated by overwriting them with the indices of the link--masks of their wire
paths. The User can then modify wire-paths found by the routers by changing
their masks in PCB3A.

SD.18 PCB: Archivin

All the data files that have been generated thus far can be combined
Into one large data file ready for the user's archives. If, in the future,the board design needs to be updated, the data file can be decomposed or

broken down into its constituent files again, ready for access by SCAD.PCB.
The archiving facility permits a user to retain backup versions of a job and
have more than one job in progress at any-time.

36

I'IS

FIG. 1 Operator Flowchart.

TOGGLE LOGIC

D Icl f3 1 C4

" .S'S~ S.S S.s
T7

1, IC2 I C5
T T7

- - - - E" r" E" 0nc

WIG. 2 - A Drawinq of Components in Position on i Board.

T22

I,
I

?1G. 3 Assigning Nodes to Encode a Circuit* The node
numbers wi thin the circles will be assigned to the
terminals of different components.

-x +x

-Y
+

0o for Directions other than orthogonal

7 =for Mask Terminus

(0.7) SJ

TERMU4US

FIG. 4 Illustration of a TlYpical Mask Construction as
Assigned to Link *1 of Node #9 in fig. 5.

El El

El E Em E

El EIZ:a n

E

-too B B. BR~v B B BBBBI n:

EEl

E~El

FIG. 5 A Typical Wire-Layout Ready for Inspection after Routing the
Board. Links destined for Mask modifications are identified by the
labels on them.

f C/2\ , '

TG T-- F -om 0/2 ~ I. I I~~LTrack

SDomain
_G 0 /2, , i - 4 -

FIG. 6a Representation of a wire-path size of P constructed

on a minimum grid increment of size G for clearance

C. Actual width of the path of the grid is traced

y i 2G x 2G spot, to give a path size P = 2G-C.

2G P ,+ ,,

r------ +

--- --- -- -- ---; .: .

FIG. 6b l #in 2G x 2G Wire-paths terminated in 6G x 4G
pads. Arrows show a typical search for a path on
the grid using a 2G x 2G spot. Note that the path
advances on a single grid-point front even through
it is 2 units wide.

...

FIG. 6c The search-path of Fig. 6b shown inserted in the
grid.

TO-220AA

_. 14-PIN DIP(N)

RT-8*20

4.. 10-PIN DIP(N)

8 LEAD TO-3
TAG-9.0

8-PIN DIP(N)

RC1/2W

TO-220(V)
RH1/4W 2 LEAD TO-3

RJ1/4W DO-39 TO-220AB

FIG. 7 A small package-outline library constructed as a
sub-set of the total library.

CATALOGUE PACKAGE PLACEMENT DATA

Name Part Description G I 0 Pack name P S F X Y R

Fig. 8a Form for tabulating component declarations prior to

keyboard entry.

PINS (or TERMINALS)

'lame 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

I

Fig. 8b Form for tabulating (normal) pins prior to keyboard
entry.

DUMMY-PINS 2-LAYER BOARD

Name L 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

1

2

1
2

Fig. 8c Form for tabulating Dummy-Pins priJor to keyboard entry.

DATE

FILMED

