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Section 1 Introduction

The word anemometer stems from the Greek "anemos” meaning "wind"
and "metron” meaning "measure”. A hot-wire anemometer senses any
changes in the variables which aft;ect the rate of heat-transfer between
the wire and the fluid. Variations in heat transfer coefficient can change
both wire temperature and resistance. If the wire is made part of a
suitable electrical circuit, these changes can be used to generate a signal
which is related to the instantaneous heat transfer. Thus, as Morkovin
(ref. 1) points out, for correct interpretation of the electrical signal we
need to know: 1) the identity of possible fluid flow variations (eg.
turbulence or sound), 2) the laws of heat transfer between the wire and
fluid, 3) the variation of wire resistance with temperature and the effects
of conduction to the supports, and 4) the response of the associated
electrical system which produces the measured current or voltage

variations.

Unfortunately, our knowledge in each of these categories is far from
complete and could well be responsible for the current lack of reliable
data. A review of hot-wire data taken in zero pressure gradient,
adiabatic or isothermal wall boundary layers illustrates the problem.
Figure 1.1 shows data from several sources for the fluctuating axial
velocity component. The scatter is so large thei it is impossibie to
construe that any form of similarity with Reynolds or Mach number

exists. The picture is even more confusing when the distributions of the

other two normal stresses are plotted. Fig. 1.2 shows the measured shear
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stress distributions and again no pattern of similarity can be observed.
Indeed, only Klebanoff's incompressible measurements (shown for
comparison) approach the anticipated limiting value of unity in the wall
region. These results give some indication of the deficiencies in the
measurement and data reduction assumptions.  Unfortunately, many
measurements have been with film gages which have doubtful validity
for quantitative turbulence measurements, since substrate thermal
feedback causes probe sensitivities to be functions of frequency. It is
particularly serious and complex for multiple films mounted on the same
substrate - the type of probes used for shear stress and normal stress
measurement.  Even with crossed-wire probes, data interpretation is
involved and can be unreliable. For instance, the time-averaged
expression for one component of the compressible turbulent shear stress
is -(pv)u’ whereas the hot-wire, after assumption, measures (pu)'v' which
differs by a first-order term. Thus it is clear that systematic
investigations of fluctuating velocities are still needed even in
zero-pressure gradient, compressible boundary layers to establish a

reliable data base for turbulence modeling.

The effects of wind tunnel freestream turbulent flow quality are known
to determine model performance in many test cases. But, for decades,
wind tunnel testing has mainly been conducted in test section
environments which have not been adequately or consistently
documented. In general, the effects of dynamic-flow properties on
time-averaged model parameters have been largely ignored. Perhaps the

major and most widely recognized question is the influence of freestream
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disturbances on model boundary-layer transition. Recent developments
in boundary-layer transition research, particularly those of the NASA
Transition Study Group, have stressed the dominant role that freestream
fluctuations have on model boundary-layer stability at transonic and
supersonic speeds. Not only do the external fluctuation amplitudes
influence transition, but their energy spectra are also particularly
significant.  Streamwise turbulence also produces fluctuations in dynamic
pressure and local Mach number which lead to time-dependent inviscid
forces on the model. The normal turbulence components produce
fluctuations in the angles of incidence and side slip. It is important,
therefore, that we document the dynamic flow quality of the tunnels
which are used for advanced aerodynamic testing. In this way, the list of
tunnels can be ranked and judgments made as to the meaningful
operating ranges of adequate flow quality in each facility relative to each
proposed test program. Problems of wind tunnel flow quality have been

addressed recently in ref. 3.

The purpose of this report is to address the requirements and pitfalls
involved in the use of hot-wire anemometers in high-speed flows and to
detail the measurement techniques required in the study of freestream

and shear-layer turbulence.
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Fig. 1.1 Reynolds normal stress distribution in compressible
turbulent boundary layers (ref. 2).
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Fig. 1.2 Reynolds shear stress distribution in compressible
turbulent boundary layers (ref. 2).




Section 2 Definitions and Descriptive Properties

of Turbulence

Turbulence is the usual state of fluid motion except at low Reynolds
numbers. It is a three-dimensional irregular flow condition in which the
various properties of the fluid show random variations in space and time
and in which vortex stretching causes the fluctuations to spread to all
wavelengths between a minimum determined by viscosity and a

maximum determined by the boundary conditions.

Homogeneous turbulence is statistically independent of position in space
but is not necessarily isotropic.  Isotropic turbulence is statistically

2 _ g2 g2

independent of direction, ie., u'“ = v'“ = w'* and in practice is also
homogeneous with uv’ = vw = uw = 0. Scales of turbulence are
generally referred to in terms of the dissipating length scale (micro scale)
and the energy containing (macro) scales. Wave number is the inverse of
wavelength and is defined as the frequencyl divided by a turbulence

velocity, normally the turbulence convection velocity.

Mean square values of fluctuating parameters define their intensity.
Probability densities provide information in the amplitude domain.
Information on turbulence structure in the space, time and frequency
domains can be obtained from auto- and cross-correlation and power

spectral density measurements.

The mean square value of a random property is defined as
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where \sz is the mean square value and the square root y is referred to

.
-

as the root mean square (RMS) value. If we think of the instantaneous
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value of a fluctuating quantity as a time mean (steady) and a fluctuating

(¢,
A - . .
;g},: (dynamic) component, then u = u + u' where the mean value is defined as
g . T
N By = lim f u(t)dt 2.2
o T—bﬁ 0
i
::' and the variance which is the mean square value about the mean is
¢
A
expressed as
:‘ T 2
o ei=1im J [u(t)-pyl dt 2.3
e T 0
.‘" »
tud
r ~~ that we have
by 2 2 2
o 6x=¥% - Bx 2.4
}:p
)
¥
where the nositive square root of o2 is called standard deviation.
&
;:" If the variable of interest is random, it can only be defined in terms of its
' total time history and it must be defined in probabilistic terms. There
‘_,3 are two types of probability density function. The amplitude probability
9 . . . .
5_“:‘, function, [P(x)], defines the percentage of the time a property is less than
(WY,
— a given threshold level, as shown on the next page.
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Amplitude
\ &

|

|

| |
I tx l tx tx
! 1 2 3

T.
Prob [ x(t) <X ] =P(X) = lim —
Tow 1

It is given by

The complementary distribution function is defined as 1 - P(x). The
amplitude probability density function [p(x)] defines the perceniage of

the time a property has a value within a given window width as shown

below.

AR

/
X \ / R R
\,./J

158 tx , tX 5 tx 4

We define the probability that the signal will be in a given window as

p(x)Ax so that

1 T
p(x) = tim ProRIX XM cxedx] -y gy = 1 25
AX-0 AX AX-0 To e X
ie. p(x) = dP(x)/dx
7
B 0 o e e e L R e Y A




e The probability density distribution of a continuous variable, which is the
P sum of a large number of independent variables, is  approximately
i:::: normal or Gaussian.

g L )

; 26
) ie X) = e 2.6
RN p(x) V2

Most random processes in nature are Gaussian or have related Maxwell
distributions. Unfortunately turbulence is not, since skewness values are
5 . . 2o . .

' not necessarily zero, ie., u'?v' # 0 for instance. Turbulence then is the sum

iy of a large number of processes, but they are not quite independent.

Probability densities are used to establish a probabilistic description for

o the instantaneous values of the data. They are shown below for a signal

x(t).

! x(t)
{%Q N\ P S
4

t

:':, A4 < ~J <

P(x) ——

0 + oo

Probability distribution of x(t)

T~
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p(x)

- oo 0 + oo

Probability density of x(t)

The auto-correlation, or co-variance, describes the general dependence of

values of a property between one time and another and is defined as

1 f “x(t) X(t+T) dt 2.7

Ry(T) = lim = |

Tow

The auto-correlation is always a real-valued, even function with a
maximum at t = O and may have both positive and negative values so
that

R,(-tr) =R,(t) and R, (0) 2 IR (7)} for all




Following are two examples, one for a pure sine wave, the other for

turbulence of variable frequency content.

5 R &

X

o e 4

sine wave .

: v

; R, Increasing
y turbulence
: scale
;
-
¢ Thus, we can use the auto-correlation to separate coherent from random
data and get an idea of the energy-frequency content. The power .

spectral density function G (f) is the Fourier transform of the

‘ auto-correlation function. It can also be determined by band-pass

filtering and RMS measurement since
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#2 = [G, (1) df 2.8
0

R The joint probability density may be defined as before, ie..

Eh . 1 . Txy

) p(xy) = lim [hm —] 29
AZ0 AX Ay Tow T

Ay-0

when x and y are statistically independent.
p(x.y) = p(x) p(y) 2.10

143, . . . o
B Cross-correlation measurements can be made with or without time delay

1 1
! Ryy(T) = lim = J %(t) y(t+T) dt 2.11
To o 0

3’.&’,‘ It is not necessarily an even function and ny(t) max is not necessarily at
t = 0. But we can say ny(-‘l:) = Ryx(‘t) Also

e R,(O)R (0) 2 IR, (t)?

¥ 12[R (0) + Ry(O)] 2 |ny(1:)|

gRx If ny = 0, then x(t) and y(t) are uncorrelated. If ny = 0 for all times, x(t)
v and y(t) are statistically independent or, if the time average # O then ny
‘;if,. = KKy

W

-“ . Examples are shown on the next page for frozen and decaying turbulence

e convection.
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A decay

& no decay
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time delay time delay

o8 As we will see later, the cross-correlation is useful for the determination

T of convection velocities and determining signal-to-noise ratios.

3 The cross-spectral density [Gxy(f)] is the Fourier transformation of cross-
correlation. But since Rxy is not an even function, Gxy(f) is complex and
may be written as

Gay(f) = Cxy(f) -j Qxy(f) 2.12

ie.

Gxy(f) = 1Gxy(f)l e 8xy(f) 2.13

where

803
e Gyl = VT + Q) 2.14

xyl

e i} Q
\‘. 6,y = tan ! E-"l 2.15
X Xy

ix Typical variations of these parameters with frequency are shown in the
o next figure. A useful relationship is
e GxGy 2 |ny|2

We generally define the coherence function as

12
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2
|Gy (D]

Vel = ———— |
6,(0) 6, (D)

When yxy2(f) = 0 at a given frequency, x(t) and y(t) are incoherent, ie.
. uncorrelated. Both x(t) and y(t) are statistically independent if vxy2(f) = 0

for all frequencies.

Oxy(f) phase

Note also that the time delay 1t = 8xy(f)/2nf, so we can determine the time
delay as a function of frequency. This provides the relationship between

convection velocity and the turbulent scale.
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Section 3 Turbulence Measurement Requirements

Most of the measurements required for the definition of. turbulent flow
fields can be derived by considering the influence of turbulent
fluctuations on the overall momentum and energy balances. Consider
first the incompressible form of the streamwise momentum equation

which may be written as

2 2 2 2
du , du, duv duw ___1 aP“,(a u+au+8u) 3.1

+

dt "I dy 3z e dx \3x? 3yt 3z

Now if we write u=1T+U and noting that U= Tu = 0
qeu — s 372

and that S8 *+W) _ 3 (g2, TF, 2 qy) = 2420, QU
Jox ox dx Jx

we obtain

dU, 530,530, ,3u,__1 3P, 82ﬁ+82ﬁ+azﬁ)
3t " 3x Vay Waz o x . dx® 3y? 3zt
_(au-z+ Y, aa-—w-)
x? 3dy? 3zt

3.2

The last three additional terms have the units of stress and are commonly
known as the turbulent or Reynolds shear stresses. These additional
stresses are extremely important. If, for example, we have a pipe flow
where the velocity fluctuations are +10% of the mean flow, then the
Reynolds stresses are of order .001pu?. Since the mean velocity gradient
in the pipe is of order u/d then the viscous stress is p(u/d). The ratio of

turbulent to viscous stress is therefore .00lud/u. So that, for a pipe flow
with a Reynolds number of 100,000, the turbulent stress exceeds the

viscous stress by two orders of magnitude.

14
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Thus, it can be seen that turbulent shear stresses are extremely
important. The mathematical difficulty in solving the equations of motion
for turbulent flow is that they are non-linear; ie.,. the turbulent
fluctuations cannot be superimposed on the mean flow without affecting
it. Equations for first order terms involve double correlations and so each
equation involves higher order terms. The problem is further
complicated by the fact that turbulent cross-correlations (stresses)

depend on the phase as well as the magnitude of the two fluctuations.

To determine the turbulent energy balance in a flow we need a
relationship for the time rate of change of the individual normal stresses

ie.

w 3.3

where 3 5
D _ 23,53 .92 .,
Dt " 3t ax " 3y " 2z

To determine this relationship we substitute u = u + u' in the equation of

motion and multiply each term by u'.

12
du_,3u, 3w, 37V
Thus at ~ ot T Vot at
and
.a_.g = '-_a_ll..g, 'z_a—l—-l- + 'zﬂ..p ' E.
“ax ““ax 4 ox 4 ox “ﬁax
= { a%u'z + F-aj + u'z—a-! 34
ax ax ox

Continuing in this manner and collecting terms we obtain

i S e S e S e
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Dau™ __ 1 0P, oty (5290, g5l , 501

Dt = 2 u 3% yuvu (U 3% UVaY uwaz)
(g29Y, v OV, g OY ,
(“ ax Y 3y “‘”az) 35

where the first three groups on the RHS represent the spatial transport of
turbulent energy by local pressure gradient fluctuations, the viscous
dissipation of turbulent kinetic energy and production terms ie. rate of
mean work against turbulence. The last group may be rewritten using

continuity as

1 du’ R u’y’ . dulw:
2\ Jx ay dz

and so represents the spatial transport of ;'5/2 by turbulence. Thus, we
have a balance for the turbulence energy in a flow which involves

production, dissipation, and convection, where the production term

represents an extraction of energy from the mean flow.

In boundary layer flows we can make the approximations

._a_=0, Q«_a_‘l, andﬁ»v
0z X y
so that the continuity and Navier Stokes equations reduce to the following

forms:

Q

ot |, 9V _
. 3y 0 36
and

3p, 3 _ 9uv _ du?
3% *Vay: 3y aw O

16
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Since the normal mean momentum equation may be written as

o7

= - 38
P=F >
. puz
where P + > - const
we obtain
- - 2 —_— —_—
ﬁ_al.,, ﬂl_ auco+va ﬁ_ auv _ a (uuz_v.z) 39

3x 3y - Ceax Vayr oy ox

Thus, we can solve for u and VvV only if the turbulence terms are known
and/or can be modeled. Normally we may assume that (a/ax)(u—'i - ;'_2-) is

negligible except near separation.

For turbulence modeling purposes, it is usual to divide the boundary
layer into two regions, an outer and inner layer. The outer layer contains
80% of the flow, the inner layer also contains the viscous sub-layer.
Mixing length models relate the local shear stress to a mean velocity

gradient by means of a turbulence length scale or mixing length

oo . p2ldu)
TV 1.|ay 3.10

where for the inner region L = K,y with K, = 0.4

However, in the viscous sub-layer close to the wall, we must account for

turbulence damping so a "damping factor” (A) is included such that
y
L =K,y[1-exp(--A-)] 311

where (A) is a strong function of local wall boundary conditions
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ie. A=26v(%“‘1) 3.12

so that (A) approaches zero outside the sub-layer.

In the outer region it is usual to assume

-u'v'=szﬁ“6*|~g% 3.13

In locations where boundary layer edge intermittency is present we

multiply this expression by an intermittency factor

‘1 - erf[SE—Z—) - 0.78]

3.14

The major objection to the mixing length hypothesis is that it is based on
the local mean velocity gradient. But, we know that turbulent length
scales and lifetimes are many boundary layer thicknesses, so we cannot
assume that turbulence properties are uniquely related to local mean
profiles. We must account for mean flow history and turbulence

convection,

Other models relate the turbulent shear stress to turbulent kinetic energy
ie. -u'v' = kq?, where k is taken to be 0.3. This assumed proportionality
once again has only limited validity. Along the axis of a pipe, for
example, the stress is zero but the turbulence energy is not. In practice,
therefore, only external boundary-layer flows can be predicted. It cannot
be applied to wakes, wall jets or natural-convection boundary layers
since, in these flows the shear stress changes sign whereas the turbulence

energy cannot.
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Thus we need to determine the types of measurements which will be
required to help in turbulence modeling. As a first step, let us determine
the mean flow kinetic energy equation in boundary layer form. To
achieve this we must use u = u + u' and multiply by u. So that for the

case of zero pressure gradient

- oU . 01 - %%
“ax "ay v dy? 315
becomes
1_> 12 -
= 92U -azu o ol + d e
3% +7 3y uv 3y ——ay(uvu)-o 3.16

The first two terms represent the gain due to advection ie. mean energy
transport. The third and fourth terms represent the loss due to
turbulence production and the gain due to energy flux. In boundary
layer flow there is a loss of mean flow kinetic energy over most of the
layer except near the wall. The loss in the outer region is due to transfer
to the inner layer by means of the Reynolds stress gradient. For flows
with pressure gradient the term 63(07/2)/3)(, a term dropped in the
above derivation, cannot be neglected. So we can see that, in general, the
mean flow energy balance involves expressions for the rate of change of
turbulence kinetic energy and shear stress. Derivation of these

expressions will give an indicatiou of the required measurements.

To derive the equation for the rate of change of turbulence kinetic energy
we insert u = u + u' in the boundary layer momentum equation, multiply

the result by u' and take the time average. This results in
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where we can see that the convection of turbulence energy by the mean
flow is the balance between the turbulence energy produced by the mean

motion working against the turbulence shear stress and the turbulence

energy diffusion and viscous dissipation (g).

Finally, the rate of change of Reynolds shear stress may be derived by
inserting u = u + u' into the boundary layer momentum equation, and

multiplying the result by v' and taking the time average. Thus we obtain:

] i p[apu apv] 318

DIV _ _[5220 , 3 T
Dt [V

+ P[j}; + -a—Z] + v[u'V2V'+ v'vzu‘]

where the rate of change of Reynolds shear stress is the balance between
shear stress diffusion, pressure diffusion, pressure scrambling and

viscous dissipation.

If heat transfer is present, by analogy with the mean enthalpy equation,

we determine that
.2

1
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where we can see that the rate of change of enthalpy function depends on

the conductive diffusion, production and turbulent transport respectively.

By analogy with the Reynolds shear stress equation we can derive

pve _ _1 .9dp kK oo e
bt = F O3y * pe VYOt v OV 3.20
_(u——_ai,,;,——év_)_(—7§9+_z§§)
X y X y
_(au'v'e' . avze)
ox ox

In this case we have two sets of molecular dissipative terms and two sets

of production terms.

Eddy conductivity may be expressed as

Kp = -pc, V6 321
L)
y
so that the turbulent Prandtl number becomes
98
_€Cy UV 9y
dy

In most cases the turbulent Prandtl number is assumed equal to unity
inferring that heat and momentum are transferred by the same

processes. However, measurements (ref. 4) indicate significant variations

can occur across shear layers. A curve fit to these data suggests the form




W)

i Prp= 095[1-05(3)] 3.23

.i;:‘

; Now, all these previous equations express the rate of change not the
3:\. magnitude of the turbulence kinetic energy, shear stress and turbulent
P heat transfer. The local magnitude depends on the integral along the
’*-_ length of a streamline. To get some idea of the length scales of turbulen:
ol motion, we can study spatial and space-time correlations.

,.

31-: From the turbulence modeling viewpoint, information on the turbulence
'(~ scales and lifetimes are also of crucial importance. Since turbulent flows
o vary not only in time but also in space, their investigation must involve
_:"'; an examination of both the spatial and temporal statistical structure.
u . . . .

N Space-time correlations can make a contribution to this study since they
™ give evidence of the heredity and structure of turbulence, as well as
': values of the convection velocities of the vorticity and entropy modes
:.,a compared with the average mass transport velocities. Examples of both
o auto and space-time correlations in a compressible turbulent boundary
:::_ layer are given in figs. 3.1 and 3.2. These data were obtained on a
::c‘ cone-ogive-cylinder model in the Ames 3.5-ft. wind tunnel (ref. 5). Fig.
3.1 shows the auto-correlation of the fluctuating signals on the cylindrical
:\‘j portion of the model 176 cm from the cone apex, at two positions in the
turbulent boundary layer and in the far field. It can be seen that there i

a marked variation of energy distribution with frequency across the
boundary layer and that, as expected, the far field contains
proportionately much less energy in the high wave number range than

the wall region. The results of a series of filtered (4 kU
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cross-correlation measurements at several wire separation distances in
the boundary layer are shown in fig. 3.2. It can be seen that each
cross-correlation curve reaches a maximum at a non-zero value of the
time delay, clearly indicating the presence of convection. The amplitude
of this maximum is a function of the wire separation distance. A
convection velocity of these disturbances may be determined from the

time delay at which the maximum of a particular cross-correlation occurs.

The peaks of the cross-correlation obtained for various values of wire
separation distance represent the auto-correlation in a reference frame
moving with disturbances. They are, therefore, a measure of the lifetime
of the disturbance pattern as it is swept along with the mean flow. The
long turbulence lifetimes which can be inferred from these space-time
correlation measurements (ref. 5) illustrate a major objection to
turbulence models based on local mean flow gradients. It cannot be
assumed that turbulence in uniquely related to local conditions, and flow
history must be considered, especially when attempting to calculate

non-equilibrium flows.

To conclude, we can list some of the measurement requirements for the
definition of turbulent flow fields. These requirements include:

1) Measurements of the spatial and temporal distributions of turbulence,
kinetic energy and shear stress.

2) Determination of the rates at which these properties are produced,
transported and dissipated.

3) Determination, from spectra or correlation measurements, of the
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%;%; contribution of different length scales to the turbulence kinetic energy
“ and shear stresses.

XN 4) The rate at which Reynolds stress and turbulence kinetic energy are

¥ transferred from one range of eddy sizes to another. !
5) Components of the viscous dissipation from point time histories,

'%‘:g assuming Taylor's hypothesis holds, ie.
(X

:":;o.t du : -1 (a_“)z
OON (ax) 32 3t 3.24 1

CORRELATION COEFFICIENT

el TIME DELAY, msec

iy Fig. 3.1  Auto-correlations across a compressible
I turbulent bundary layer (ref. 5).
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Fig. 3.2 Space-time cross-correlation measurements
in a compressible turbulent boundary layer (ref. 5).
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}' Section 4 The Measurement of Turbulent Fluctuations
e
iq"§ A hot-wire can be assumed to be a cylinder placed in a flow field for the
) ‘
igf’_:;!, purpose of making certain types of flow field measurements. The wire is
ML assumed to have length L and a diameter d. Furthermore, we assume
15193
::g that the wire temperature is Tw and if we take a heat balance we note
40
Bk that
. W-Qr- Q -Hw=0 4.1
5o : : .
3:" 2 where W = the energy (electrical) put into the wire.
o .
R Qr = Heat loss due to radiation.
;. Qc = Heat loss due to conduction.
A \" .
3 Hw = Heat loss due to convection.
:
e : s :
i If we assume that there is no heat loss due to radiation, or conduction to
e, the supports, then equation 4.1 can be expressed as W = Hw. In
Wy
LSS . . . .
AG incompressible flow numerous hot-wire heat transfer studies show that
LY
. Nu =Ad/k, = 0.42P%2 + 0.57PiO3Re® 4.2
O
‘_; Equation (4.2) is applicable in air and diatomic gases when 0.1 < Re <
B *
by )
:'h 1000, where Re = pgud/ug and Pr, p, 0 are evaluated at the film
e temperature  Tp = (Tw + Tg)/2. Free convection effects may be neglected
] )
0" ‘
:::'-: if Gr x Pr < 10 and Re > 0.5. For a 5-micron wire, in high-speed airflows, ;
N N |
Gr x Pr = 10 and the Reynolds number based on wire diameter is !
.
j:-;::j generally » 0.5.
o
o
_I.\:J )
N Since, the heat transferred from a wire of length L is AndL(Tw - Tg) = I'Rw,
:' 0 we may rewrite equation 4.2 as
-,!",
R 26
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nk L(Tw - Tg)[0.42Pr%2 + 0.57Pr%33Re®5) = I’Rw 4.3
Now, Rw = Ro[l + a(Tw - To) + ¥(Tw - To)2 + ... ] and neglecting higher

order terms, Tw -Tg = (Rw - Rg)/aRo  so that

Y R _R
2Ry = K :L( :R ‘)[0‘42Pr°'2+ 0.57Pr%33Re%’] 44
(.}
ie
PRv _ A.puT 45
Rw-Rg
where
kK.L
A = 04201 pp02 46
& Ro
and
0.5
KL 033 (Ptd)
B 057m Pr _)I— 4.7

We can determine A and B experimentally by plotting I? vs. Yu for

constant electrical resistance as shown below.

A :

[ * R -
12 Slope = Rv -Re g
w
T‘.
- / —’
. Ju :
Intercept = Rv "R A X
Rw

Now let us consider the unsteady heat transfer from a wire in a turbulent

flow field where we have u =u + v, Rw = Rw + rw. If the sensor is made hy

)
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"fla! part of the constant current circuit system shown on the next page. If we

assume u'f/u « 1 so that r1w/(Rw - Rg) « 1 equation 4.5 may then be

’% written as

]

Y 2

RN I1“Rw rw fw = 1u
T ﬁw-Rg (l ¥ Rw)( Rw-Rg) * * 24

() bl
dnhy Constant Current System
"fl:'g! Rec
ANy

-
b |
N A - V Rwire

\Y
Rc + Rwire ~ Rc

Rc > Rwire so that I =

! or since

R 1%Rw
_A_'ii' —_— = \/-ﬁ— 49
o Rw-Rg A+B

- we have
D)

;
v
?:83 so that

W e =Iftw= - ———-B/ﬁ% 4.10

ie

where
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(Rv-Rg)? B /T
2IRg 1

and e = -su. [Equation 4.10 applies only in absence of thermal inertia of
the wire, cooling effects of the supports and non-uniform velocity

distribution along the wire.

Let us first consider the effects of thermal inertia and rewrite the energy
balance to account for the heat capacity of the entire wire, C_, as

wd? L 8Tv

2 at 4.11

I?Rw = (Rw-Rg(A +BVT)+p,c,

where ¢ is the specific heat of the wire.

Perturbing this equation and cancelling the steady state terms gives

C drw
2 _ _ u w
I“r/w = (A +Bv/U)rw + (Rw Rg)B\/U—U + —ﬁ'a‘ g_—dt 4.12

where
Cy = OuCy lff_z L 4.13
or
90%’ . #r = g(t) 4.14
where
CW
Mo o gRg[(A + BVT) -1 15
and




a gRg(Rw-Rg)BVU

g(t) = 4.16
2C,,
But from the mean heat balance
A+B/T-1% = & 2 4.17
w-Rg
therefore
M = E.‘%Bl_'_Rﬂ_) 4.18
I°xgRg

The solution of equation 4.14 is obtained as follows. Let (prw) = A(t) and

Brw = ' _ A(t)dt

drv | w38 .
gt * v T MW 19
1d8 1 - - L
Tat " M aMt) = g(t)8 log 8 M
t
~ B = e(ﬁ-)
t T
A (T
v = [ e (n);u(‘c) e (n) 4t 4.20

= -£t¢(‘C) exp [—ﬁ (t-‘c)] dt

Thus if u(t) = u*e'®" where u* represents a velocity amplitude, then
o(t) = g*e'@r™ 4.21
where
aRo(Rw-Rg)BVT u*  (Rw-Rge)’B /T u*

¢' = = 2 422
Cw 20 MI“Rg 20

30




Equation 4.20 then gives

eiut

- x ~i{ot-¥)
T+ oM frw” € 423

tw =-g*M

where
* - ¢* M

r =
Y ;l+w2M2

and

¢ = tan’ (+wM)

If we take e = -su where s is the velocity sensitivity then we can see that
thermal inertia affects both the amplitude and phase of the hot-wire

response ie.
-i¥

e
S = S 424
\; l+w2M2 NI

where NTI denotes no thermal inertia. This shows that both phase shifts

and amplitude variations are functions of the frequency of the velocity
fluctuation. M is defined as the time constant and o, = 1/M is called the
roll-off frequency. The time constant is a strong function of wire

diameter and mass flux. Take, for example, a 5 micron tungsten wire in a

turbulent flow of 30 m/sec, with Tw - Tg = 115°C, Tg = 288°K, and I = 76
mA, the wire time constant is approximately 3 x 10 sec and the signal

amplitude at 250 Hz is
s 1 o o1
SNt /14 ox 10%G2m*250% Y1+22  1.1055

so that the signal has already dropped down 10% at very low frequencies.

The signal phase angle, which may be calculated from

31




¢ = tan’'(-oM) = tan"!(2m x 250 x 3x10°%) = tan’!(0.47)  4.25
shows that there is a 25-deg. phase lag at 250 Hz. Thus it is crucial that

we compensate for these effects. i

A typical compensation circuit is shown below

Ri1Zc
C Req = Ri1+Zc
—
el
R1
Vi R2 Vo

: 4

An analysis of this circuit gives

- Vi
Req+ R2

4.26

. Vo = ViR2a _ Vi - Vi 427

Req+R2 1 Req ( RiZe )
* Rz 1+ o
Ri1R2+R2Z¢
Now again assume u = U+ u' , Rw=Rw +rw , Tw = Tw + tw and since

Rw-Rg
«g Rg

Tw-Tg =

428

so that rw = Roatw. On substitution in equation 4.11 we obtain

12Rw + 11w = (Rw+ rw-R@)[ A + B/T (1 + )] 420

c. d
i'd:§37§?
Since
12Rw = (A + B/T)(Rw-Rq) 4.30

32




neglecting higher order terms we obtain

Cy drw

agRg dt 431

I2rw = (A +B/TW)rw + (Rw- Rg)Bf_'Zu +

where the wire phase and amplitude characteristics may be written as

- a¢Ro (Rw-R¢g) BVT u

t) = 4.32
g Cw2U 5
and
M Cw 4.33
aRo [1%+ (A + BV/T)] '
Or, since
A+BJ/T-12= R¢_ |2
Rw-Rg
- Cw (Rw-Rg) 4.34
«12RoRg '

Now the relationship between the circuit input and output voltages may
be expressed as

Vo _ _ RiRz+R2Ze _ Rz [_Ri+Zc ]
A% RiRz + RzZc +R1Z¢  Ri Zc+R2+%—Zc

R1 ] )
_Ref 't0 | _Re [ LrioRiC l
" Ri1 Rz Rz T Ri R2\ .
1+ TR -(1 *1 )+ jwR2C
Lo
/ 2.2 ~2 . jtan’ (wWR1C)
1+ RiC" e

R1

, 1(3’_1339.)
R2 202 A2 j tan R2
‘/{l+ ﬁ—) w R2C e l-*§I

so that
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)

F At 3

h]

L)
duid
TN
A
A 2 ‘ oy
. Vo _Rz l+w2R1C2 ejtanl)" 4.36
Wi Vi Rt R2Y,  2p%c2 '
;::' y (1 + 'ﬁl— +w R2C

¢
A Clearly then we can match for the hot-wire amplitude roll off if,
139 ) 1+o?REC
1058 1+u’M? = — 4.37
ot 2 2522
fj‘;n ( + i_f) +w R2C
TLE"'S Now defining o', = 1/RiC and @, = 1/M for the hot-wire, for amplitude
Dy 4
thy
”“‘, compensation we have
‘:‘0.; 2
" SR
B>y 1+(—°—°-) = 2 4.38
RN w 2 2 2 '
= T BNEE)
:{,‘: Rl 1 wo

I
a0 and the circuit phase angle
o Rz w

“:% w (Rt wo
R Wo 1 R2 w

, | *Ri ~,
g g R T T (R TR
y 2 w 2 w
'::" 1+(£) ﬁwo l+(_1-)[1“(0\:,,) ]

) o\ ;. Re

| "Ry

1

N, for hot-wire phase correction.
In an actual compensating circuit, the capacitance must be a variable as
i

3‘,:\ the wire time constant depends on both overheat and mass flow (pu).
‘\)\f
WA Usually R, « R, (say 1/1000) so that

357

s
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at w=0 %:—z %31

v 4 .40
and for w=w - - 1

Vi

The point on the curve where Vo/V1 flattens off is w/w =R2/R1 or @

=1/CR2so that variable capacitance provides for adjustable limiting

frequency compensation but the overall gain is fixed at R2/R1. For

variable R1, the frequency at which compensation is correct is fixed at

®comp = 1/CR2 and the overall gain changes with R1. Since it can be shown
that
dy
R2 w \2
w x l+=(1+]—
d(;;) = (wo))
y' is maximum when
Rz R2 rw \2
That is when
wo. R
~, 1+ Rz 4.42




Typical circuit response curves for R2/R1 = 1/1000 are shown below

along with the wire circuit output.

|
A | 6 db/octave
| roll off
A, | A Combined Response
o_ 1.0
n l1.0 ®o A
0 Ao
| .001
. | L
2 1.0 | ¢=0 @o
1.0 I 1 )
| o _ R ry
_& ®Wo R ¢°
| .
Ri I > X 7 o >
— @o
|

We note that it is possible to correct amplitude to higher frequency than
phase. The effect of time-constant error on the hot-wire output can also
be determined. For the circuit we may write

Vo

7= G 1+(&)z 4.43

wa

G = gain factor and o, = set for M,

A
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Since the wire output may be written as

A A - 4.44

where Mo = l/o)o

4.45

for ®« >0 Vo/Vio G

Ww—>e Vo/Vio G (:)o/(n)A
We can see from figure 4.1, that as long as o /o, is within £ 30% of unity,
the response is flat above w/w = 5. So, apart from signals of frequencies
less than 50 , we can account for errors due to incorrect circuit

time-constant settings (w,) by multiplying the signal by w,/0 .

Alternatively, we can write

e? = [TF(D) of 4.46

where e, is the uncompensated wire output and F(f) is the power

spectrum ie. the signal amplitude squared vs. frequency. The

compensated signal is then

eZimp = J, F(D(1+ w2+ ME) A = €2+ ME fL2F(N) Al 447

=
comp




Kot The true signal would therefore be

o = [TF()(1+ w2+ ME) df = o2+ ME[W2F(D A1  4.48

A eliminating

J, wW2E(f) df

R we have

ht) 2 2 2
! €comp™ € MT

= 1 4.49

G el-e2 M

A which may be rewritten as

2 2 2 Y
o €r _ Mr /1 _ % (e'r'ecomp) 4.50

[]
" €comp  Me % mp (€2-02)

?!0.& This correction is acceptable when MT and Mc differ by less than 30

e percent.

@A 1.25
1.0

————
~——_ 0.25

Gain of compensating circuit
o

Sa it
s o] 1.0 10.0
o o

Ty o

U
.. . 3 . 3
4:"2' Fig. 4.1 Hot-wire compensating circuit response.
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Now let us turn our attention to the constant temperature method (rw —

0) and consider a hot-wire probe in the circuit shown below.

transconductance

I+1
dl
g = °“‘( ho)

Power

Amplifier
Rw + 1w hI

dl=i=-g, dE =-g, Irw

Now assuming I = I + i, u = u + u' and substituting in equation 4.5,

neglecting terms in rw, we obtain

12R + 2ilRw = (Rw-Rg)(A + BVE) + Rw-Rg)BV/T 55 451

so that
ﬁ\v Rw -Rg
B/U = T 4.52
“41Rw >
and e = iRw =5, u. Where the constant temperature sensitivity is given
by
s (Rw - R¢g)BVU 453
«t 410 |

We also see that the constant temperature sensitivity is related to the

constant current sensitivity (s) by

39
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= Rg S
2(Rw -Rg)

Sect 4.54

so that for Rw/Rg > 3/2, s, <'s, ie. at low overheats, constant temperature

operation is less sensitive than constant current.

In order to study dynamic behavior, we must consider small changes
(lags) in Rw = Rw + rw. Neglecting higher order terms in i, rw and u', we see

from the thermal equilibrium equation that
dTw

121w + 2iTRw = (A + BV 1w + ®w - Rg) BVT iuﬁ rCvzs 455

using Tw = rw/aRo and substituting for gir we obtain

di «Ro = =2 .T2= . dgt,TRo(R-w -Rg) u
a‘E'F'ET(A*-B\/ﬁ'-I +2I°Rwgy) i = & B\fﬁzﬁ
4.56
solving this equation as previously, we determine that
Cw
Met = — —— 4.57
© " aRe(A +B/T- 1%+ 21%Rw ggy)
or
M
Mect = v} 458
w-Rgl=
1+ 2[ Rg ]ngtr
ie. Mct « M.

Typically, Rw/Rg =2, Rw =10 Q and g = 10 mhos, so that Ma = 1/200 M.
However, we also note that the response depends on (Rw - Rg)/Rg,so that
when Rw- Rg—> 0 Ma-> M Thus, the constant temperature

anemometer frequency response is poor at low overheat (ref. 6).
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The phase shift is also a strong function of overheat and mass flow rate.
At low overheat, phase shifts in the feed back amplifier can lead to large
bridge oscillations. To avoid this we need flat amplifier response to at
least twice the desired compensation frequency. Bridge stability also
depends on the amount of out of balance which is a function of Rw - Rg.
Typically for a Sum tungsten wire at high overheat, -3db relative

amplitude can exceed 100 kHz, but with a phase lag of 60 deg.

Now let us consider the effects of conduction to the wire supports.
Generally, hot-wire supports are much thicker than the wire itself for
reasons of strength so that, since their relative resistance is low, they will
not be heated appreciably by the electric current. We can determine the
hot-wire temperature distribution and determine the effects of heat

conduction to the supports by rewriting the energy balance as

X

2 wd?2 « d2Tw
L I°Rw = (Rw-Rg)(A + B/UO) - 4 w I’

4.59

where kw is the thermal conductivity of the wire. Now since Rw - Rg=

oRo (Tw - Tg) we obtain

42 (Tv -Te) 12 IzRg
v; 8 aRo[A;Bfﬁ I ](Tw-Tg) . 2 =0 4.60
dx s g = kv

where
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The solution of this equation is

2Re
T = Ro _ cosh (x/Lc)
Tw-Te o (A + BV/U-12) [ cosh (X/ZLc)] 461

where L_, the cold length ie. the length effectively cooled by the end

supports, is a function of wire diameter f(d) and may be written as

d wKw '
L. =8 4.62
° 2/«(A+Bm-12)

and the effective wire length is equal to 1 - 2(L ). With some

approximations equation 4.61 may be written as

Tw -Tg . cosh x/L¢ 463
TwTg coshL/ 2L, '

and examples are shown below.

1.0

TW -Tg

Fig. 4.2 Hot-wire temperature distributions.

From this figure we can see that we must keep L/2(L ) 2 5 ie. no more

than about 20 percent of the wire cooled, no more than 10 percent at
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each end. For typical operating conditions this means L/d = 100 to 200
for platinum-rhodium wires and still higher for tungsten since

kw(tungsten) = 2.5 kw(platinum).

The effects of end losses on dynamic response are very complex. They
may be summarized as follows. It is impossible to correctly compensate

with simple RC circuits since the phase shift is not constant along the

wire. However deviations are small (within 2 percent for L/2(Lc) > 3) if

compensation is correct for o = 0 and . The wire time constant

decreases as L/d increases, but there is a limit to L/d due to strength and
non-uniform velocity distribution along the wire which we will consider

next.

Consider the case of uniform flow u and turbulence intensity u,. Since

the wire voltage

L
e =K/ u,(x,)dx, 4.64
0
then if u, = constant,
e?=K2L2u? 4.65

This would also be the case in non-uniform flow if we measure a true

. "point” value. Now if R2(x,) is the lateral correlation coefficient

distribution along the wire then, when the two rms levels u',(x,) and

u'l(x2 + a) are equal,

O X s S D vt




...................

uy(x,) us(x,+a) _ Uy (x,) uy(xp+ a)

u;(x,) uj(x,+2) - Ui(Xz)z 4.66

RZ(Xz) =

But if u',(x,) is not constant, the measured mean square voltage output is

—3 L 2
e,i= Kz[J; u1(x2)dx2] 467

which, if Jf(x,) = [f(x,) can be written as

L L
ez=KzJ;J; Uy (%,) U, (X,)dx,dx, 468

m

In homogeneous turbulence
u? = ué(x,) = ui(x,)

so we have

— L L
o= Kzuffofo R2(X)(X,-X>) dX,dX; 4.69
ie
R2(x)u?
Uy(xy) = —— 4.70
ux(Xz)

Now, substituting in equation 4.68, and defining s = (x, - x,’) we obtain

_ — L
€% = 2K*uf [ (L - s)R2ds 4.71

comparing ¢2 and em2 given by both equation 4.65 and 4.71 we see that

-"‘_% =12 4.72
em
where
1 2 (L
_ = = L -s)Rz2ds 47
A LZJ; Loe) >
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Since R, < 1.0, the wrbulent energy measured with a long wire is always

smaller than the true point value. So, to correct emz, we need to know the

lateral cross-correlation coefficient. Now, if the wire length far exceeds

. the lateral integral scale,
A =J; R,dx,) 4.74
{ then
-2 23 :
e.= 2K uf({Az-Az) 4.75
, where

A'z ={) X,R2dx,

(the first moment of R2) so that

ez A, A, Al
LoZ2unay- ot M) L
12 e L L (A)? 12
where
A;
(A,

depends on the shape of the correlation curve. When

l —
A I—t-%»o so that erg\-»o

ie. no turbulence would measured at all if L = oo,

The effects of L, d, and L/d can be summarized as follows. For a small
time- constant, ie. high-frequency compensation, we require a small wire

diameter. For a long uniform wire temperature and high-frequency
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response, we require L/d > 200. Decreased wire diameter increases
signal/noise ratio, but decreases strength and large L/d probes give poor
response in a variable field. However, small L/d probes lead to adverse
aerodynamic interference effects. So we can see that probe design must

be a compromise.

The effects of mean fluid temperature changes can be assessed as follows.

Consider the energy balance

——— = A(Tg) + BVU 4.77

where A = f(Tg) whereas B is generally constant provided Tw is adjusted
to keep Tw/Tg constant. But the turbulence measurements are
independent of A since

I2Rwrw _ —

—_— 47
®- Ra) 8

Sl

so that mean temperature changes do not effect hot-wire turbulence
measurements. The primary effect of mean flow temperature changes on

the wire calibrations are shown in fig. 4.3.
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Fig. 4.3 Effect of ambient temperature change on hot-wire calibration

Finally, let us consider the effects of large turbulence fluctuations and the
limitations they impose on our earlier assumptions. In such cases the

effective velocity may be written as

2
u u U
VU = VT '[1+l___1-i_1+_1__1+ih__3_“1“z+...] 479

3 ul
— — — _1_1_1_1 Luz 1 Yy 311 2,
Urneas = Uegs = T [1 532*4 _l—-l_é+1—6-ﬁ—3--6— g3 ] 4.80
N2 , u2 3 2 |
149,14 14" 344
- ﬁmu= u [1'232’232*73_3'2 a3 +] 481 j

So if the fluctuations are large, the measurement is a function of u,, u,

and u u, plus higher order terms. So we must correct the mean

measurements. Neglecting higher order terms we have

2 2
- 19,14
Yo = 8 [1-550e 7 g ]
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In isotropic flows u ¢ = u,* so that u > U .- Now the hot-wire

meas

2
I’Rw 1Y 1Y
Rw_Rg_A-l-B\/ﬁ-[l-fEﬁ --g:_j—z +] 4.82

putting Rw = Rw + rw where rw is not « Rw. We obtain

12(Rw+rw) = (A + B/T)(Rw-Rg+rw) + B/T(Rw-Rg+rw)u* 483

where
averaging we obtain
12Rw = (A + B/TW)(Rw-Rg) + BVT(Rw~Rg) u*+ BVT U¥rv 4.85
Now for linearized theory
12Rw; = (A + B/T)(Rwy3; Re) 4.86

so that from equations 4.83, 4.85 and 4.86 we obtain

2

52
_ _ _u

According to linearized theory, equation 4.10, we determine that

2

g7 - —in (L 4.88
12py °© u( 4ﬁ2)un

Rwy;; Rg v
"'(%u_t‘ﬁ)ui(::-ﬂ)m( iR [1-su,0)] 489

or after further calculation

@ B fesd o
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where y(u,,u,) is a function of u ", u,™, u,"u,™. So that, in highly

turbulent environments, what is actually measured is not the u,

component alone but a mixture. To measure u, we must not only know

1

u, but also the higher order correlations which are not usually known for

non isotropic turbulent flows. We may conclude that the correct
measurement of turbulence of high intensity is practically impossible
with a hot-wire. But, if errors of 10-20% are accepted, it is permissible to
use linearized theory up to turbulence intensities of 20-25%. This covers
a large range of flows as the table below indicates. Errors due to high

turbulence and resulting directional intermittency are discussed in ref. 7.

Table 1
Flow Type Turbulence Intensity

Wind Tunnel (poor) 0.1 - 0.5%
Wind Tunnel (good) < 0.05%

Turbulent Jet 30 - 60%
Karman Vortex Street 5-15%
Turbulent Boundary Layer 4 - 10%
Turbulent Wake 2- 5%
Screen Turbulence (nearly isentropic) 03 - 2%

The measurement of turbulence characteristics with a hot-wire
anemometer may be achieved as follows. Consider the response of the

hot wires designated O, I and II shown in the flow on the folluwing page.
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- V=U sin¢sin@

$ For thermal equilibrium we may write

e - (51)0“1 491

0 =
e; = - (s)u; - (s,)u, 4.92

e = - (s)u, + (8)4u, 4.93
Now, if we use an X array with identical wires or make the sensitivities
equal by adjusting the individual currents, we get
a8 (sy); = (sy)yy and (s,); = ()
if $, =¢, = 45 deg. then s, =5, = s, so that u, u, and u,u, may be
s obtained from
T ¥=W=4szu2 4s?u f
v ?=W=4s = 452 u2 4.94

22_a2 25—
and eI -eII =4S U, 4slszu1uz

n
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where

JoE

S = P 4.95

1 | g =const, V=const
° and

JE

S, = — 4.96

2 av U

The calibration sensitivities can be determined as follows. Since

JE . J0E /9V
oV  Jd¢g/ 9d¢

4.97

and velocity component resolution shows that

Vv . de .
g = U, [sin g cos © .} + COS ¢ sin 6] 498

If the wire is at 45 deg. to the flow then

— = U 4.
EP; ! %9

and

. - E| L1
U, d¢

2 -37 U 4.100

U; =const

so calibration is relatively straightforward.

Alternatively, u,u, may be obtained by measuring the correlation factor
between e; and e ie.

: — PY—
RoB = RAB(mees) Gp0p = G\Cpes€p = 4s°U U,

where G, and Gy are the anemometer gains. So that
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4.101

To determine the cross-correlation coefficient of u, we put two wires at

points A and B,

and

The cross-correlation of u, can then be calculated from

so we have

ep = (5),(u))y

eg = (5))g(u;)g

(e,+ eB)2 - (e,- en)2

4 e,y

2 (58150008

4.102

4.103

4.104

2 2
(e,+ep)” + (e,-ey)

If we adjust

2 2 4
€ = CB 1€.

L} ’_
A € € =

cross-correlation coefficient reduces to

where ' denotes

ReAeB =

We can determine the Reynolds shear stress coefficient

from

AT AN LA T T 4
A NN e

2(ef+e2) (s +(s)2(u)?

2e €, 2e,e; 2e,e;
eeh el e—BZ
RMS values ie.
(Ufu)y  (udlupy  w)lu)y
(Ui (uy)y (u,)? (upd

u,u,
u;u;,
2.2 2
e - e, _ 4s U,u, g,

2 0 . . ‘
4s uu, u,u,

VeIV eE
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So we do not need to calibrate the probes.
| To determine the space-time correlation of the Reynolds shear stress
(uyu, )(u;u,) = u,, U 4.107
1,020 5 12,512
we can use two hot-wire X probes and measure the correlation function
between
e =(e -e )= 2s,u
Da 1, I Al12
A TA A 4.108
e, =(e -e. )= 28U
i Dy Iz Tl B2,
ie.
(e, + e, )% (e, - ¢, )2 4e e 2SSgUyz U
Do~ "Dy Do D' Do Dg A °B
' = = = == = 4.109
' - + e +
| (ep,+ epp)™ (ep, - ep) 20ep,+ ep)  SxUf, " SBUizg
If we adjust -e_2 = ;—2 ie e e = ;7 = ;7 then
1 Do Dp == "DpADp "Dy B
e e e, e e e
Ru,,u,, = —2a08 _ DPalp _ _Dalp 4.110
12Y12 = —=—= = —=" = :
A B e?2 2 e, e
DA D DA"Dp
so that
u12Au1zB u1zAusz ‘112A‘J‘1zB
R‘Jm‘t‘xz13 = — = — = 4.111
2 2 -
u u Uy, U
12, 12, 12,712

Triple-point correlation measurements determine the kinematic diffusion

of turbulent energy. Terms such as

2
usu,

may be obtained from an X wire when s, =s, = s as follows, with
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el A’=(e +ey® = 4s’u? and B=e -g; = 2007

N then !

0 (A+B)? - (A%-B)° 4AB  2s%fy, |

g (A2+B)% + (A2-B)?  2(A%B%) stulss?ul

If we adjust A? =B%, then A?B =A*=B2 sothat
" T
S R . uiu,

> 4.113
uiu,

1

.

;' or we can measure the correlation factor
5

]

(ey+ep)?-(e,-ep)?

?. ) so that
A

- — R,
2 53 AB = GAGBRAB(MGS) = RAB , & AB = 2_8-3

w

4.114

‘ A
A P
59 3,3

Then divide by say s to remove the wire sensitivity.  Other

R components eg.

. 3 1. u2
! U2 & U2U3

Y . . —
IR may be obtained in a similar manner.

The space-time triple point correlations can be obtained from two X wires

SN at two different points in the flow. Defining A and B as

A=e2=e2-¢2 =52y,
1 U2
e A IA HA A A A
RO 4.115
‘ot B=e2z=e2-e2 =52y, u
PN BTl Ny B2,

then
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(ud) (u,)

R(xt) = ;) (uy)  and  (up) (u) () 4116

()2 (uy);

Flatness factors, which give an indication of the extent of turbulent

intermittency, are defined as

=312
[u?]
ve wi
v w
— =Ty & — =Tw
v.4 w.4

The turbulence intermittency may be determined from
4 _35_35
Tu Tv Tw

Y =

Longitudinal microscale may be defined, using the auto-correlation R, as

2ul 2
2 g~ .. 4.117
' du, \ [_az
1 Ry (x ,0,0,0)]
Co) I e P

(au‘)z- u? —a-z—R( 0,0,0) 4118
3%, ) T axg M B0 %m0 '

for steady homogeneous turbulence only. Since for steady homogeneous

turbulence
R,,(%,,0,00) »1-%x/2} asr=0

Now invoking Taylor's hypothesis x = u_t

)»l =7L1/uc

where A, is defined by




2

t

n—-N'

. 2 _
ie. A, =

2u
5 4.119
u
(aatl) '
Similarly, we may measure the lateral microscales defined as

2u?

4.120

and

Ay, = ——— 4.121
3 2
du,
(ax3)
We can also measure terms such as
du,
Jx,

which appear in the equation for the turbulent dissipation (g), by placing

[ 4

two wires a distance x, apart to obtain
2
[(uy), - (Ul )

With a differentiation circuit, which will be described later, we can also

e obtain

l:: 2
)

. and in a similar manner we may measure
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When the electronic noise is large enough to influence measurements

made with a hot-wire anemometer, the noise must be substracted from

the anemometer output to obtain the correct net result.

To make this

correction, the hot-wire equation can be expressed (ref. 8) as

(e"+ey) - S (u' +up)

4.122

GE U

where the gain is G and the noise is denoted by the subscript n.

The level

of the electronic noise can be approximately obtained by covering the

hot-wire probe and measuring e’ and E . Under this condition, equation

4.122 can be expressed as

én _ g (UYn
GaEn S(ﬁ

4.123

Forming the mean square of equation 4.122 and assuming that there is no
correlation between the electronic noise and the velocity fluctuations we

have

(e’ + ey)?

I 4.124

) N
- s2 (Y Un
st | @]
So that, the velocity fluctuation in the flow is
2
u
(7) -
Substituting equation 4.123 into 4.125 results in

&) - & - @)

u S2G2E? u

e+ )t (3&"—)2 4.125

S2GeEZ \U

ze-nz

B 126
STeIE 4.12
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T:f:::';‘ A value is now required for the quantity un2/u2 in equation 4.126. From
e the calibration of the hot-wire, we have
R
A
:::;': 1og E = A log T + log B 4.127
PN
§£:§:|
e which can be written as follows by noting that A = S
W L
o = S
454 0= (_E.) 4.128
:‘. B
":‘:.!'
oty
Then using equation 4.128 u_/u becomes
o 1
K G EpS
o N 4.129
0.¢.
oA
— Substituting equation 4.129 into 4.126 gives the final result
e L
s — POPTEY 2 3
R (E)z | Eren)? (Ea)s ex 4.130
Ha% i S2G2E2 \E/ S2G2E? ‘
'l
oy or in terms of the rms voltages measured with an rms meter
?}. 2
R 2 32 £ z2
33 (E) . ST (_I.':_&)S___l_ 4.131
| S 2G2E? E/ S2G2E2 '
AR where the subscript T refers to the total rms measurement.
N
o
3} LS .
W5 The effect of noise on correlation measurements may be assessed as
A follows. Let the noise be a and b on two anemometer outputs v, and v,.
vy i
*'-S then the cross-correlation function may be written as
3%
5% S
— R = : ; = . : 4.132
ah N t =3 S\t /({, .\t
e (v, +2)2) ((v,+ 0%)"  (F+2D) ((v2+0%)
0~ -
Need sincevi,a=v,b=v,b=v,a=ab=0
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If we write ==E;, & ==E, then
a? b2

So we can see that the measured correlation

signal to noise ratio.

59

w Cu i g € - PN . .
oG O o ARt ot
MR DR A e R & ek a7 il 0 b WA Sy

h)

BCY
0

4.133

increases with increased

. - ~ NP e A (TS LR T »
N !‘,5&:‘..““"}‘_. o \" ) .-.o.l.n\ ‘h 0‘



Section 5 The Hot-Wire in Compressible Flow

We shall see that hot-wire fluctuation measurements require detailed
knowledge of the steady-state heat loss laws. Wire response to mean flow
is well defined for the incompressible case. For isothermal,
incompressible flow, a hot-wire responds only to velocity changes and the
output can be correlated quite well over a wide range of Reynolds
numbers. Fig. 5.1 is a summary plot of heat transfer measurements for

circular cylinders in subsonic, continuum flow.

However, at high speeds, wire response is more complex since wire
recovery factor is a function of both Mach number and Knudsen number.
Fig. 5.2 was prepared as a guide to the experimental variation of Nusselt
number as a function of Reynolds number and Mach number. The sensor
output is reasonably well behaved for supersonic Mach numbers as
indicated by the lower curve of fig. 5.2. However, the output is Mach
number dependent in the transonic range particularly at low Reynolds
number. It will be seen that the slope of the Nu vs. Re relationship is of
particular concern in turbulence measurements. Fig. 5.3 shows the
measured exponents as a function of Reynolds and Mach numbers for
several investigations. At high Mach numbers, the exponent is seen to
vary monotonically between the free molecular and continuum values.
For an insulated wire, the slope begins to deviate from the continuum
value at wire Reynolds numbers below 200. In continuum flow, wire

recovery temperature is a function of Mach number since there is a

changing relationship between frictional and compression effects. But, as
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Mach number increases, these effects cancel so that the recovery
temperature ratio becomes approximately constant at supersonic Mach
numbers (fig. 5.4). In the transitional regime, measurements indicate
that at Knudsen numbers of about 0.1 the recovery temperature begins to
rise above the high Reynolds number value. Thus the recovery
temperature can range from below to above total temperature.
Measurements have been made over the complete range range from
continuum to free molecular Knudsen numbers. These results are
summarized in fig. 5.5. The direct effect of wire Reynolds number on

wire recovery temperature in supersonic flow can be determined from

fig. 5.6.

Nusselt Number, Nu
o =)
o —

10'1 Il L 2 2 4 ] -
10-2 10! 10° 10! 102 103 104 107

Reynolds Number, Re
Fig. 5.1 Summary of heat loss from circular cylinders in cross-flow
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Nusselt Number, Nu

j

10-3 1 1 1 1 ] 1 ‘

10°210-' 109 10! 102 103 104 10°
Reynolds Number, Re

Fig. 5.2 Empirical correlations of hot-wire heat transfer
at low Reynolds number.

Reynolds number, Re,

Fig. 5.3 Slope of Nusselt number - Reynolds number relation
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Recovery Temp. Ratio, n
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0 0.4 0.8 1.2 1.6 2.0
Mach Number, M
Fig. 5.4 Recovery temperature variations.

1.1r Theoretical limit for free-molecular flow
5 0.9
& 08
> 0.7
g 0.6
§ 0.5
0.4
=]
§ 0.3
s 02 Experimental limit
s 0.1 continuum flow
Z 0
-0.1 0.10 1.0 10.0

Free - stream Knudsen number, Kn__

Fig. 5.5 Normalized variation of recovery temperature
with Knudsen number.
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%ﬁ!‘-
;‘ The derivation of the general fluctuation sensitivities of a hot-wire
L)
"‘; anemometer involves the perturbation of the steady-state heat transfer
4 . . . .

e law and expressing the result in measurable electrical and fluid flow
ii". properties. In compressible flow, dimensional analysis and test data
t
:g imply that

e

: Nu =Ad/k = f(Re, M, 8) 6 = Tw/T: 5.1
,~; and, assuming that the electrical energy input to the wire equals the heat
4
2 i loss due to convection, we may write
%)

- W =I’R = Nuzk L(Tw - nTy) 5.2
(232 Consider first the electrical properties where

e
% dW/W =2din1+dInRw 5.3

T But, since the wire current does change with wire resistance, we, in fact.
"::’:: have
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dW _ 2diInl
W -dlandlan+dlan 5.4

Now if we define the finite circuit parameter € = (d In I)/(d In Rw) we
obtain

b ' din W =(1-2¢)dInRw 5.5

W or

dln W=(1-2)dInRw/dIn Tw)dIn Tw =(1-2¢)KdIn Tw 5.6

where K = d In Rw/d In Tw. Now

din IRw
dinl+dinRw

RIS dine

il dinl )_
ry =(l+m -(I—E) 57

oo Since

ol dIn Rw

R dine =(l1-e)g7F—-dinTv =(1-eXdinTv 5.8

i then

(1-¢)

T20t W >-9

"i' | dlne =

Also, combining equations 5.6 and 5.9, we determine that

b dinTw =dIne /K(1 - €) 5.10
v

N , These are important relationships between wire heat transfer and i

e measurable wire properties, which will be used later.

Now we need to determine similar logarithmic variations in heat loss. To i
id do this we write

Y H =nLk(Tw - nT)NuRe, 5.11
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i H=rnLk(Tw - 1T )NuRe, 5.11
0 Now, using the chain rule

p dH=dk;=—"+dTw=—+dNu= + dn=="24+dTi=— 5
; tak: aIw+ 8Nu+ n an * taIt 12

If we divide by H, the first term on the RHS of equation 5.12 becomes

e
ol 19H 4, _ _Nu(Tw-nTt) _ dky _
o 3k, 5" LNu(v-nto 0Kt = g - dinke=ndinh

the second term becomes

L ky{Nu ATw dTw Tw/ Tt 1nTw =

T = - dInT
el K¢{Nu(Tw- nTv) (Tw-nTt) (Tw/Ti-N) (®-n) v

the third term becomes

-."‘.‘_ k -
ot t (Tw-nTv) dNu = d Nu d1n Nu

o KNU(Tw- NT1) Nu

the fourth term becomes

Tek¢Nu dn

n
) - = e e—— E e e———
e K NU(Tw-nT0 - " Tw/Te-m - (@-ma!nn

<0 and finally the fifth term becomes

et n k{Nu n
t d T
' _ dTe = = —— n
:—‘: K{Nu(Tw- nTt) ! ®-n n Tt

i.i’;t’ﬁ
- (e__'_“_'e_] din Tt
®-n)

n
= -(1+(9-n))d1n Tt

KON Now defining the overheat parameter as

o _Tw-Tr (8-n)
Twr = T - n 5.13

and collecting terms we obtain
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) 1
dinH=——dinTw + [ne- l-t—w—‘]dln'l‘x

)

-—dlnn+ dinNu 5.14
wr
Now, compressible flow measurements suggest that Nu = f(Re, M, 6, p, ¢)
and n =f(Re, M, 6,p, ). Thus, as a first step, we must determine the
auxiliary dependence of M and Re, on the sensing variables. Accordingly,
we may write Re =pud/p, as
dinRe =dInp + dlnu-dlnp, 5.15

if = T¢ tthen

dinRe, =dInp + dinu-mdiInT, 5.16
Now the iso-energetic compressible relation gives
2 2 1 2
2_ U v-1 u u
Mi- 25 (05 rr) = 517
so that
dinM=a'(d In u - 1/2(d In T)) 5.18

where o = (1 + 12'—1 M2yt

Now, using the chain rule once again, we may write

an an an an
dn=aRec:Ret+aMdM+apdp+ 30d° 5.19

dividing by n, we may write the first term as

(an/aRe,)dReQ _ dinn d In Re,
n/ Rey/ Rey d1n Re,

and, treating successive terms, we obtain
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dinn= 210" giipe s 200 gy, AN 4
310 Rey 3mM 3 o
Jdinn
dln
* din¢ ¢

which may be rewritten, using equations 5.16 and 5.18, as

dinn
dinn-= dinu+dlnp-m,dinT
dIn Rey * e t t)
dinn ¢dinu dinTi dinn
- din
"IMM\ & 2« )+ dmmp
dinn
din .20
* diné¢ ¢ >
In a similar manner we determine that
dinNu = 210NU ) pe, S AIANU Gy, I0NY
d1n Re, din M dinp
dinNu dinNu
+ dine dlin 21
dno Y 3mo ¢ >
Now, since
- . < Jw
dine=dinTw-dinTe ( ~.n) 5.22

We may rewrite equation 5.21 as

d1nNu
dinNu = dinu+dinp-m,dinTi)
d1n Rey * "M '
LommNu o g & 2BNU G
din e dinp
, Jd1inNu
dln .2
) + alno 0 5 3

hahadado ol dhadb Ak Aok do Rk g b Bol el Bui Aot st Zal koo sad Bad Bac sel iy i Say mes . 4

Substituting for d In n and d In Nu in equation 5.14 and collecting like

terms, we determine that:




Re, dNu, © JNu, |
m |
*Nu,dRe, Nu, 36 |

1 1 M dn Re, dn 1 M JNu,
Tl 7T M ™ n Ire,)  Zau oM 190 T

Zo:Nut
' Rey ONuy 1 M JNu, | {1 M dn Rey dn }]dlnu

dinH = [nt

—  —  ot— —

*LNu,9Re, "« Nu,;d0M Twla N IM ~n O Re,

rRey, dNu, 1 Re, dn ]dln [e aNut ]dlnTw
Nu, 96 ©-n

[ Nu, 3¢ Twmen ao]‘““ >-24

Since we have previously shown that

dine
K( -€)

dinW=dinH=(L=2%)dme and dinTw =

we can rewrite equation 5.24 as !

l-Ze d In Nu dine
F2)dme- [dme K(1-o

=[n m Rey dNu, © OJNu,
t""tNu,JdRe, Nu, 36

1 { 1 M dn Re‘ an } 1 M aNu‘]dlnT‘

"2« M ™R IRe)  ZaNuIM

Re,aNu, 1 MJNy, 1 1 M dn . Rey an
[Nu* * & Nu,oM Tl T m 3M ' n JRe, -)]dmy

[Re'aNu, 1 Re, dn ]dlnp

¢ JdNu, 1 ¢ dn

Jame 5.25

Now

dlnw-dlnlznw-%‘llnl’l}ldmuz(dml) 5.26




o, D o
;‘E‘:\
B
gl
i,
‘E"" and, for fixed flow conditions, equation 5.14 gives
ot - [41n Nu o
o dinH = [SIAlL. O -lqinTv 5.27
e
"“t So that, introducing A, = 1/2(@ In Rw/@ In I) and equating W = H, we
N obtain
"
H . - [din Nu 8 __12A,;
ﬂ (2A, +2)dIn1 dine *5.m KWdlnI 5.28
o:..:
so that

2 - [dinNu e
1,%:' K[“—]= dine "6-n 529
A
‘.‘1".:
e and so the LHS of equation 5.25 reduces to

: 1 - 2¢ dine _ 1 (1-2eAvw
¥ (2 ame-x[1e 27 | s = a5 (&Y ame
A
* -
-* If we define E' = (1 - €)/(1 - 2eAw"), then we determine that

| Re, dNu, © JNu
Vot d =F'A’ - t t_ t
's Ine=-EAy [[n, ™t Nu, 9Re, Nu, 96
I 1 1 M 3n Re, dn { M 3Nu
W, . 2 M eon Ak | M ONUg
he ‘er{ 2« oM Tty aRet} 2« Nu, oM ]dln Tt
e, ' Rey ONuy, 1 M ONu, 1 (1 M dn Re dn
-'l‘; t t —_— _f_ —_ e t
s * L Nu, JRe,  « Nu,aM ‘er{cc n aM aRe‘}]dmu
)
v"." -
s Rey ONuy 1 Rey M 7444
e
R 6 ONu, 1 ¢ 3n ]
N t_ v
:}Es:‘ * . Nu, d¢ Twrn d¢ ] dine 530
W
R where the last term in equation 5.30 may be rewritten as
é
:3:: 1 Jdinn 81nNu‘]d
A " a @
I:.:.' ‘CWT 0

..L
g';.:'. Now, following Kovasznay (ref. 9), the basic equation for a hot-wire
R
l’izc
!“'0
oY 70
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32
:"“
Ay
R
e inclined to the flow may be written as
X i _ f_ u’ T v
)., = = Ae PP+Ae = Aem_t the, = 5.31
Lo
e where the sign conventions must be determined separately for constant
o ) current and constant temperature operation as will be shown in section 6.
Replacing the logarithmic variables by fractional perturbations and
o)
"!“ approximating d¢ by v'/u, the hot-wire sensitivities in equation 5.31 may
R , be finally written as
- E .. din Nuy) _(dlnNu
Rt ber = 1oo[n* m(§5re) $in e ) >-32
A
_L{ 1 Modn _ Rey dn y 1 (2nNuyy

K Tl " 2am M TN JRe) 2« amM
‘v
ﬁ re. = E (alnNu)+L(81nNu) 533
L “ 100 alnRet a\din M
ol ainn Jdin n
KLy | { din M (alnRet)}]
. _E |(dInNu ainn
N A = 100 [(a lnRet) Twr (alnRe‘) >-34
t": ,
A and
3 E 1 (3 din N
i . _E In n)_(dlnNu

' aey = 100 [‘er( 3¢ ) ( J¢ )] 5.35
} We shall see that the proportionality constants are related to the
.

particular electrical system and are different for constant current and

N constant temperature applications. However, these hot-wire sensitivities
X
:':e apply to all flows whether subsonic, supersonic, incompressible or
:‘ : compressible whether continuum or free molecular. For supersonic Mach
:5 numbers ie. M sin ¢ > 1.2 we have seen that all derivatives with respect to
5
o
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W
;.’f(

BN LA e A N e it AT ¢ d o] e N v o T T o o e
BE RGN RN DN OO Lt \ ey \ WOty IR e St oA O };&ﬁ.‘\\ﬂ



DT bl bAR cad Dol Sk Baa Loa st Ll k)

Mach number are negligible so that Ae, = Ae,.

3w _ 3¢, 3u

pu ~ P U
equation 5.31 may be rewritten as
. T (Pu) v
¢ = ber [ * S%upu t

Now, since

5.36

5.37

Now let us consider how to evaluate various fluctuating terms for the

case of a normal hot-wire, where we can rewrite equation 5.37 as

If—+Ae S‘P'—u-)

e' = Ae,. =
ATth ex pu

5.38

We start by taking into consideration the so called Kovasznay diagram

(ref. 9) as follows. Squaring both sides of equation 5.38 we get

e? = Ae%T g+2(Ae ) (8e,,) === ((-Ef?:; + Ae:“%s_%): 5.39
Dividing through by (Ae.l.l)2 the above expression becomes
e? - (_&B"i(“pu)z (PW K Tt( < 40
(Ae.r') (p_u)z Ae (puT«)
If we now define
(-g)z =s?® and 2::‘ =r
then our expression can be rewritten as
2 (pu)? ‘2, (pu) T¢ T2 541

B ¢ VR

Kovasznay then suggests we plot s2

in r and the coefficients

VEersus r.

This is a second order curve
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i
‘
i
W
B ew? (PWT T
T2 ' (Pun) ' T
M (pu)z (PUTh) Tt
N
ol
.::t are obtained by a least square fit of the function s2 = f(r). These
. coefficients then become
X N N
A
"; 5 N z Siz z r,'z
,:‘ i=1 =1
R (Pu) ¥ 1 N N N
- = 2 .3
—_—= - T I; 5;S; r
2 (PuT‘) D E‘ 1 'i§1 ™ IZJ 1
’:! t
) N N N
‘:‘ z r‘z z r‘zS12 z r‘4
& =1 izt i=1
R
and
R
-y
1R N N N
ot > ;2 P ¢ > ;2
1y i=1 i=1 i1
Wty —
T 1 N N N
= 2 2 3
= = = ;s T 1
E: T‘z D g ™ E 1 i;l 1
A
. N N N
;“. Z rizsiz z ri3 z r‘4
:l 1=1 i=1 =1
R
) where
e N N
'!( N Z ri Z f.,z
izt 1=
t).;f N N 2 N
¥ D = Z T Z I Z ri3
N 121 V=1 iz
A
Al N N N
IR LI W LD N O
. iz =9 129
e and N is the total number of points used.
\\]..
R In order to obtain other terms which appear directly in the turbulent
4
3
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K
y 73
N
N

K

O S AN W 7 WP . LW - R T S TN LD W et it te L e te Lt el Cm - . TR W A - %A
AR b s S AR R T h L .Q’l‘v, N A L £ L L PoLad Tridle AU ;) NP SIS M A ¢ WOty
M A N 7 V! o WV Rh AL N A R L R h o R




T

v e e e b

baRN00N

momentum and energy equations, we assume that we have an isentropic
flow field. This permits us to write the energy equation in its differential

form as

daT _ 2du , dp dp
T -(Y-I)MTJ-'*p-T 5-42

1
o

where o« = 1/(1 +-‘%1M2) ’

Next let us consider the equation for the mass flow per unit area and time
in its differential form
dm du 9

£ 5.43

——— ED  —— o ——
m u e

Substituting for dp/p in equation 5.42 gives

1 aTt zau ap am Ju
= T = (v- 1M TP Om™m'T 5.44
or, collecting terms, we obtain |
du _ 1 T _ 1 [a_p - a_m 5.45 |
U g1+ (v-DMI R [1e(y-npMEEP T
Which, defining B = a(y - 1)M2, can be written as
du 1 dT o dp dm
T:(a+8 Tt - a+8)[—§--—ﬁ 546
so that, since p'/p < 1.0
wo (L )E, (e yew
a —(ou-B)Tf +(o<+8)(§ﬁ) > 47

Squaring both sides of this equation leads to the expression for the

streamwise turbulence intensity

74
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e
o
R
3 A

al —
L. —3 2 2 (ou)?
A u? ( 1 @R )(pu)T‘ o« Y (pu) 5.48
o 92 \a+B/ T 0(+B(UTt) x+B/ (gu)? '
o u e e
B
,”. In order to obtain an expression for the density fluctuation, we consider
(o

i the mass flow equation in the form

W doe dm 3du

o) —_ = - == 5.49
W e m u
&
N
. Substituting in equation 5.46 and again neglecting pressure fluctuations
O we obtain

-
B 3 dm 1 \3T
‘.!. } _F{ = _ [0 4 _ t
3 s I «+glm (oc+8) 550
" which may be written as
"'
b a(()U) 1 \OT
-:. . .
% - (25)280 - (1)
»
S ‘ ie.

)
e e (pu) 1 VT
:.; ° (cx+B (oc+B T 3-52
L2
o | while the squared term may be written as
9
L a2 2 Y
L es B (pu) U) (W Tt 2T
E! 52 -(ou B) (pu o + B)(pUTt) (OH B) T >3
-* The mass fluctuation can now be derived by setting
s Ul (ou)’
i _‘_)T'__’ = ,P, [( P ( ) ]
,t eu e o+ B «+B
— ’ (QU) 1 \T
%, [(we) (0“3)-?;] 5-54
"
E::' time averaging we obtain

#y -

‘ pu oB (pu)2 @ - x) PW)T 1 \2T?

4 - - .
-3 B0 (x+B)? (pu)2 (o + B)? (BUTY) (OH B) T >33
]
L
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We can also determine expressions for the static temperature fluctuation

and the term u'T' which is obtained by considering the perfect gas law

p=R(pT) 5.56
or

AT _9p _dp

T P e 357

Neglecting Jp/p because it is small compared to the other terms, we see

that
9T _ _%e Ir._¢g
T "% or x =-3% 5.58
then from equation 5.53 we see that
T (pU) 1 \T
? - -[(a+B -(d*’B)?ﬁ_] 259

. , . (ou) '
%=%"%=[(a+s)pu atB%]
(pu)’
x-[(ocEB)g_E (oz+3) ] 5.60

which may be rewritten as

TT _ _[«-8) GUT _ _«B (pw?, .
uT (x +B)2(BUT)  (x+B)? (p0)? (a =+ B)? T2 ] 5.

The relationship between p'u’ and u'T' can be determined using equation

5.58 since
5.62

oo
x
el
f
I
=3l
X
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so that
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Other useful relationships between the measured and derived normal

hot-wire parameters may also be obtained. Previously, we showed that

T By (puw) 1 T
T - -[(ouB)-g:u- '(a+3)"1=‘:']

and
: 1 T (pu)
%=(a+3)'7~:_+ (aTB)(%tlx_)

Solving both equations for (pu)'/(pu) leads to

(ou) + T' + |
e (228 [¢- (L) F] - (=) E

so that

then

=Dt - (DT (D1

multiplying through by aB/(a + B) we get

K _u, T
Tt V] T
Now, since
T u T _ T (ow)
z BﬁuxT (oc+B)T+B(P_u)
then
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5.63

5.59

5.47

= - —l 5.64
5.65
5.66
5.67

5.68

5.69
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R
Q’-
,"\L so that |
e (ew) uw T
n 2 = - = .70
oy vy ©w T °
D,
285
) It should be noted that this last expression can also be derived from the
:§ fact that m = pu and p = RpT provided the assumption is made that the
: ‘ p'/p is negligible.
!:'t
7 hE
!',.‘i It is important to recall that all the above relationships can be derived
e
,:'i'é from single normal hot-wire measurements. However, other turbulent
i:‘!',x terms which appear in the momentum and energy equations require
R inclined hot-wire measurements.
\.l
B
:;':3: Let us now consider the case of a yawed hot-wire. If we return to the
iy hot-wire equation 5.37 and square it we see that
4% o0 2
o — T u)' \A
s Z=|ae. = + Ao, T 4 Ao, — 71
5 A >
ﬁ:: expanding and collecting like terms we obtain
»
»? 3 T2 =3 —
s = 2 (W 2 T’ 2 V' W T
e'é= (he,,) 0 +(bey) 72t (ae,) 32 * 2 (ae, Xae,y,) GO
o TV puw)'v’
40 + 2(ae ) ae,)— + 2(Ae, ) Ae,) — 72
;‘ TV aT PETTTTV (BU) T >
A“,
£ Now we run the test twice at each point, once with the hot-wire at ¢ = 0°
and a second time with the wire at ¢ = 180°, then we can write that
= _ﬁ'._v'.
+4 (Aev)[(Ae.r )TV, (ae, ) ERY ] 5.73
T OTt pu)
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. [(Ae.r')(Ae )(-&——U)'T(

' (eW'Tt
o) Gart, (Ae.r')(Ae )

0° | (e (E)Tﬁ ]¢=160°

¢

[ yria
Ae_ )(Ae ) —
(e oo, 22

KA ]
0° L g=180°

TR |

g [(Ae.rt)(Ae )

&
g and

g [(Aepu)(Aev) (8—_‘3_1] - [(Aepu)(Ae,,) (fi‘_‘—)l’—]
i (PU)U #=0° (PU)U #=180° J

b Dividing through by
- t4 (Ae.rr)(Ae,,)
a« we obtain

f S _ o2 e e
:" : e¢=00 e¢= 180° . (Aepu) (pU)'V' + T”v 5.74
| £ 4 (ae,)ae,) ae, /(EWT TR

However, if we define
B —.2 —-2
"A; e -Nne - e = o
. o* = g=0 #=180 5.75
Y, t 4(be )ae,)
T

2% 5.76

then equation 5.74 can be rewritten as follows

+ . I (ew'v' T:V_
p " Bwu TR >

If we now plot s* versus r we see that the function is linear with a slope

of
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f::r,!:
AL
:g‘.‘;; Yoyt
PR, (QU)V
()t
R
Bl
;:g; and an intercept of
by v
‘,.;.:. Tt
A 3 These values can also be obtained if we perform a least square fit to the
e data. It can be shown that, if we have N number of data points, this
e method gives
3':?‘: ST LIS S R
o Euv Nz nst-gngs
) — = 578
i GuT N, (N 2
RS N Z‘ I - Z r'l)
1= 1=1
N and
iy N N N N
P v Zfazs?‘z'z 1'12 I s'lz
Ttl’ = 1=t iz=1 izt 121 579

. T N , (N \2
oY sza '(fo)
PO, is1 i=1
25
Sndq . . . .
,,“ At this point it should be noted that from the normal hot-wire

o measurements we have values for
:s (ou)? (ou)'T¥ and T2
s (eu) " EWT Te?
‘l_'!"
o and from the yawed wire measurements we now know
3. u)'v’ v
W -P——(_)_ and ==
"t (Pu) T vt
i}:‘l'
:’Q G . 2 . . "_2 -2
S Since e'“,_o will also have been recorded we can obtain the value of v'“/u
D)
N
W . .
i from the following expression
,|’,
i
REN
R
e
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s
)
i —_— _
h v'2 1 [ 2 (pu)'? T2 (W'
' — = ez -lre2 =l pe2 Y -2 (Aeg )(Ae et
: 7" gl o (G e *EUR
.4'5
4 2 (80, Yoo ) 2T z<AeP,,)(Ae)(_“)"}] 5.80
- (Pw
3.
R ' We can now determine the Reynolds shear stress term u'v' by
;‘ . multiplying equation 5.47 by v'/u to obtain:
o —
fle e ea® Iy . .
v =( 1 )EX . ( s )(pu)v 5.81
02 o+ B/ UTt a+B/ (gu)u
4
The term v'T' which appears in the turbulent Prandtl number
B
K formulation, equation 3.22, is obtained by multiplying equation 5.59 by
" v'/T to obtain:
! — _
) vT ﬁU)V 1 T’V
3 5 C — .82
: [(oc+8) (oU)T (oc+8) UTt >
"W
; Two other useful relationships may also be derived. Multiplying equation
i
5.67 by v'/u gives
N
"" —_—= f—r—y 6
, A M >83
§ ’ Similarly, from equation 5.70 we obtain
X - .
. WV _ TV _VT 584
- Wt §* uT '
W
2t —
The triple correlation p'u'v’ which appears in the compressible shear
¢
0 stress formulation (see section 1) can be determined from equation 5.47,
; 5.52 and the rms measurement of equation 5.80. So, at this point we
4 know, in principle, how to obtain the turbulent flow properties and
X}
:E correlations which appear in the momentum and energy equations from

variables determined directly by the hot-wire.
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Although many years of effort have been expended in hot-wire

o
-

-

anemometry research, it is still clearly an inexact science. We have seen

'%‘-‘
A

that numerous assumptions must be made to estimate the fluctuating

TS
ZHG

flow variables from the measured hot-wire quantities. Now let us turn

our attention to some of the practical aspects of hot-wire anemometry.
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Section 6 Practical Procedures for Turbulence

3 Measurements

We have seen in section 4 that, with appropriate electrical compensation,

el

the time constant can be restored to frequencies sufficient to assume

-
et

essentially instantaneous response. Imposing this constraint, we may

rewrite the general expressions for wire sensitivity (ref. 1) for constant

% current as
N
R)
o A AU
" Ae = - Aep (100-5‘3) - Aeu(loo-—ﬁ—)
! A (lOOAT°)+A (100 v) 6.1
.Y — _—
'3 + eTQ To e¢ U *
)
with
B
) - T R
) SE [, dInNus Aw Jdlnn ]
P 8¢ = 160 .A“' JdinReo Twr JlnReo 6.2
A
W
8E'[.. (d1nNu, 1 31nNu,

s 4« = 156 | \3tnRes '« 3 M
§|
X _ Awv {l dinn__ Jdinn }] 6 |
" Twr l« dInM  JinReo -3 |
3 8E . dinNu, ! JdlnNu,
- 481 = 100 [K*A“’{K" TR M I Res T30 I M
i _Aw{l dan _ dlnn }] 6.4
) . ‘er 2(! alnM *gln Reo '
'
L
" and
t sog = - SEAW dmH] _ éE'Aw[ 1 alnn_alnNu.,] 65 |

100 Y 100 | Twr J¢ o ‘
)
:3 where E' = (1 - e)/(1 + 2Aw') 6.6
(
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o For constant temperature systems, the sensitivities are usually defined
8

with respect to a fluctuating current, so we may write

R al = al,(100 -AF_TP) . Alu(loo%u-)
|

- AIT.(IOOATE:) + a1g(100%) 6.7

5:‘2 We can obtain the sensitivities for Al from those for Ae by replacing €E'
1

by IE", where E" is the feed-back reduction factor defined in (ref. 10) as
Ay |
U

E'=- ——7
2Aw +?

6.8

Thus, for the correct interpretation of the electrical signal from a

e hot-wire, we must consider the response of the electrical system, the

variation of wire resistance with operating temperature and the fluid

(Ot dynamic calibration.

Let us first consider the electrical system. We can see that an important

v term in any hot-wire anemometer measurement is the feedback
e parameter (¢) which relates wire power loss to measured wire voltage.
n;:; Consider then the constant-current circuit shown on the next page where
e = -(d log Iw)/(d log Rw) and its equivalent circuit derived using

- q Thevenin's theorem.
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4 T T T ——m—
}: i |
:
g v Vo A |
'n.~ R1 A Ro '
i 10Q
i 0@ 1009 gquivalent
R Circuit Rw
A Rv Rs °
- ¥
<X B
;, | Now the open-circuit voltage across AB is
"" |
v V (100 + RB)
!‘] =
“y Ve = (Ri+Rs +100) °9
B and the resistance in series with AB when V is shorted is
)
K 1 13\1
2 Re = (155 +7s * &1)
_ _RI(RB +100)
) (Ri+RB +100) 6.10
4
E:, so that the wire current is
‘ .
o e — Vo . V (100 + RB)(RI+ RB + 100)
§ V' " Ro+Rw+10 (RI+RB+100)(R1(RB+100)+(10+Rw)(R1+RB+100))
i RI(RB +Rw +110) +(10+ Rw)(Rp+100) '
’ Since
.
" dlogIv _ - Rw (R1+RB+100) 6.12
. d10gRv ~ RI(RB +Rw+110)+(10+ Rw)(RB+100) '
i
-5 then
K .. Rw (RI1+R3+100) 613
y RI(RB + Rw +110) +(10+ Rw)(RB+100) '

Now consider the constant temperature system shown in the figure below
“ where the amplifier is characterized by its transconductance, G, and its
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short circuit current Isc.

X Amplifier .
; L G
; ¥

‘ Ri1 Rw, Iw

I'=GAe + Isc

<

Now I' = GAe + Isc and the relationship between the current I' supplied to

the bridge and wire current Iw, is ﬂ

- -

R2 + R3
Ri+R2+R3+Rw 6.14

Iw =I'at’ where «'=

The unbalanced voltage is proportional to the bridge unbalance Rb - Rw so
that
Ae = o'T'(Rb - Rw) 6.15

Perturbing these equations leads to

N dlogI'  dloglw i RwGx 6.16 h

: =T dlogRw  JlogRw 1 -Ge'(Rb-Rw)

¥ Thus we can relate wire voltage to the wire input power for both constant

‘| current and constant temperature anemometer systems. Next we need to ’ k

determine the relationship between the measured output voltage and

actual wire voltage as shown on the next page
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Vout

Vout

R2 Vout

Vout| Iw 1 e Vbalance — lIB Vout

RB

Rw e =
P A
e' =
¥ o =
so that
’ . Rl ’ E
Vout = € - — e = €
Rw 1-¢€

or

RMS Vit = RMS e‘[1 -

= € + RIIW
= e' + RIS—IR%R.VI
. . Iw Rwdlw
= e “Nawdlw
*+ RiRw Rw Iw ORw
= e - RiRwi¥ ¢ 6.17
Rw
Iw Rw
IwRw + Rwlw
dlv p. -
3Rw RwRw + Rwlw 6.18
. R1i €
[1 - e] 6.19
Ri _e ] 6.20
Rw | - €

Now let us look at the parameters which govern the relationship between

wire resistance and operating temperature. First consider the resistance-

temperature relation and some wire properties given below.

Wire Properties

Platinum Platinum/10%Rhodium Units
cp 032 @ 500°R slightly higher cal/g°C
.037 @ 850°R
p 21.37 20.48 gm/cc
k 17 .072 cal/sec cm °C
of 3.8 x1073 1.6 x10-3 1/°C
¥ -.045 -.06 1/°C
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% The resistance-temperature relationship may be expressed as

5

;i Rw = Ri{1 + af(Tw - Tt) + yflaf(Tw - TH]?} 6.21

:, where f is some reference condition. The parameter K which relates wire
! power input and temperature can be calculated from )
s 3 .. dlog Rw )
s = R v [ + 2veat?(Tw-To)]

;:: —--R—w wlaxt + avfod w- 1t

\'

’:a Rt

» = =—atTw [ 1+ 2veat(Tw-Tt)] 6.22

oy RW

“-‘. Plots of K and wire temperature versus wire resistance ratios are shown
%

v in figures 6.1 and 6.2.

'™

5y Wire overheat parameters may be determined as follows

2 aw' = (Rw- Rr)/Rr 6.23

" where Rr is the recovery resistance of the wire. The recovery factor
:E: T:/Tw varies between 0.96 and 1.1, but is essentially constant (0.96) for
' Mach numbers greater than 2.0 and Reynolds numbers greater than 20.
" Typically, Aw' > aw' by up to 20% at high overheat ratios and there are
: several ways to compute its value. A method which eliminates the
1

3 differentiation of experimental data with a steep slope is detailed below. .
K

L Experimentally it is easier to determine Aw' beginning with a plot of

. IiRv ys ay = Re-Rr

. aw Rr

;‘g Now, defining C as the slope of (Iw2Rw)/aw’ vs aw' at high overheat,

s

)

"

™
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B (1% ;zw) . _ 14 Rw
| je. C= —2v78v=0 av 6.24

o (529

b then

. a\

.,E.s‘:' Av = h . 6.25
s;!’u‘ ) 1-(1-aw) _QaL..

N 1-Caw

We are now in a position to determine the finite circuit parameter E'. The
2 remaining terms in the sensitivity equations are defined as follows

‘.‘ e = mean voltage across the wire H = total power to the wire

s _Tw Tr_ aw o
o Twr TS arTx(l awyr) 6.26

':": A o = L 6.27

oy Pt
1.0F

g 0.9
: 08}
3‘}'&:

o 0.7F

DL 0.6

Pt - 10% Rh

LW
oo 0.5

L 1 [l L 1 1 ]

W 0.4
g 1.0 1.5 2.0 2.5 3.0 3.5
R/R amb

o Fig. 6.1 Variation of parameter K with wire temperature
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Fig. 6.2 Variation of wire temperature with wire resistance

600

For constant current operation we also need to determine the wire time

constant from ref. 1 as

i vkl 6.28
4 NUoy, Kogiy Rr

n o=

A plot of Nu  versus Re  is given below. But we should use measured values
of Nusselt number (Nuo_,). Typical comparisons between measured and
theoretical values are shown in figure 6.3. Figure 6.4 shows the effects of
the wire dimensions and thermal properties. If we know Cp,,p_, d?, Nuo,,.

ko, and Rw/Rr, we may calculate the true time-constant and correct the
measured wire voltage as follows

de /1_ Ae? (Aez-Aei\)' 629
Aep  Myet ae? \pe? - ae?

where Ae_ is uncompensated wire voltage which is small for usual values of
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e p. Thus,
i Ae }.L

% =
R Aep, Hget

- where p__ is the compensating amplifier time constant. So we are now in

R » set

ol a position to account for the effects of the electrical system and wire

s K resistance variations on the measured electrical signal.
e 10

» 1.0

~ . D 0.1 | i S |
1 1.0 10.0 100 1000

L Re,

299
":‘! ’ Fig. 6.3 Comparison of measured and theoretical heat loss.

Ll 1.0

$R Nup,

:‘::s 0.1
W 0.1

‘ . (%_)-1(1]:_\:)1/2(Nu()-1/2

el Fig. 6.4 Effect of wire properties on heat transfer.

1.0
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Now let us direct our attention to the remaining terms in the sensitivity

equations. Following the results of section 5, we may make the following

high Mach number approximations for M sin ¢ > 1.2 and (@ In Nu /0 In M)

= 0.

dinNuo _ 0.5

d1lnRe, L / ReX., '

Re, sin ¢
where
ReXn = [1.1- .82¢(VRe, - 1.1)7]2
with
d /kw
$= LY Kogir

n = 0.95 + 0.0963/Re_

6.30

6.31

6.32

6.33 j

dn__ 0963 = Jdinn

3Res  ReZ ¥ JinRe. 1+ 10 Reo

Normally we assume that for Re_ > 40

dlnn -
dinRe,

Finally for M sin ¢ > 1.2

and we may rewrite the sensitivity equations as
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N A

- _ &' ,, dInNu, Av 3lnn
vl 8¢pu = 156 [ v 31nRe, Twr 3 In Re, 6.36
0l
?‘?a‘ pog = o= [K+ A (K-175+065———a In N4,
n .~ 100 v ' 27371n Re,
- _0.65 dInn
$’§\ | Twr J In Re, )] ©.37
X s
SR €EAwfdIn H
AL = - A 1
1 beg 100 [ 3 6.3
R
e Thus, for M sin & > 1.2 and Re, > 40, it is possible to calibrate a wire
S
‘:ff'::: directly in a flow with varying mean mass flow distribution such as a
y g
;:g:;;- f boundary layer or by varying the freestream total pressure. With
o 2 2
R Re. = Pud i Ny, = —LRe _ _I?2RwRror 6.39
"'!: ®= T 3¢ Mo = T 1k(Tw-Tr) 7nlk(Rw-Rr)
il the term
() '
R 31nNu, Re, dNu,
{i::: | d InRe, = Nu,dRe,
Rt
N -( pu/p )(312 Rer/kT(Rw-Rr)) 6.40
vl I2 RwRr/(Rw-Rr dpu/p
:l';:l
L;i;i:: So that if we measure
ot
" 12 RwRe
;:,‘: v k T(Rw - Rr)
5{"0
sg at several different values of pu/p and differentiate the data we can
Y .
= . determine
Y d InNu,
! o In Re,
‘::':o
.|.
e directly. It helps to plot
,J:.;I 12 RW Rl‘
,::: / kp(Rw-Rr)
S0
:33:'2'
' 93
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against the square root of pu/p since, for Re > 40, this plot is usually

linear and may be smoothed before differentiation.

Other forms of the sensitivity equations can be introduced which also
allow for direct, in-situ calibration. If we put a normal wire into a

uniform free-stream, equation 6.1 reduces to

. KY_E |9mnE
e-AeT’(IOO-.I-.t—) 100[—_—Blni‘} 6.41

Similarly, holding other terms constant, we can show that

E |dInE
Aepu= T_O_G[—a_l_n_(_)-:ﬁ- 6.42
and
E |[dInE

Now, if total temperature and Mach number are held constant, we may

write
dlnpu=29dln P, 6.44
so that equation 6.42 may be rewritten as

Ae E |JoInE ]

eu™ 160\ Tin 6.45

The sensitivity Aepu can then be evaluated from the wind tunnel

calibration of a wire on the tunnel center-line by varying p_for constant

M and To. We also must hold the overheat constant at various values. If

we record values of E versus at various constant overheats and plot
o p

In E versus In p, as shown on the next page,
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A M = const
To = const
lnE Twr= Co
€
Ca
. C3
>
In po

we can obtain the slopes 9 In E In p,- These slopes are independent of

M and twr. In fact, @ In Ef In p, is only a function of Re, as shown below.

f

.

aln E
dln p,
’
Re,
. It is recommended that Ae, is obtained by changing wire angle at

constant overheat in a fixed free-stream flow.

We note that this

calibration should be conducted at a variety of tunnel total pressures

with Mach number and total temperature held constant. The sensitivity

varies non-linearly with Reynolds number but is independent of Mach
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number. A typical calibration is shown below.

5
g 0.20 4

oln E

3¢ (N
W 0 -
0 Re 60

t

ey The sensitivity Ae,, presents a slight problem since it cannot normally be
determined in-situ using the simplified equation 6.41 as it requires a
’ﬁ: tunnel center-line calibration in which M and p, are held constant as total
\‘?'E: temperature is changed. This is generally not feasible, since changing To
will usually change p_ as well as pu. However, for M sin ¢ > 1.2 and Re >

i 40 we can rewrite equation 6.37 as

L) |'} -y
“"ﬁié. eE

Ber, = Tog [K+ AW R -175) - m,ae,,] 6.46

ou

SRR B
Pt A v
AWM

so that the total temperature sensitivity can be calculated using the

ey B

B

in-situ determination of mass flux sensitivity and equation 6.22.

na Once the hot-wire has been calibrated, the usual test procedure is as

i follows.  First we record Iw, Vw, V'out (compensated), V'balance

(uncompensated), RB, R1 (setting for overheat), Rw cold and Her for each
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overheat setting. Next we plot Rw vs Iw and calculate A'w vs Rw. Then, for

each Rw, we calculate the following terms

l.e . -aallTnR'lé 15.

2. Aw 9. @ ~ wire voltage (Vw) 16. Vout

3. Tw 10. E 17. Yot

4. K 11. Aem 18. ¢

5. aw 12. Aer, 19. Teors

6. Twr 13. Iw 20. r the sensitivity ratio
7. %‘%’;—: 14.Cw 2::

If we now take the root-mean-square hot-wire signal and divide by Aer,

we obtain

2 _ € 2_-—2 2 v2_ )
v _(Ae-r) =TS + r2(pu)*- 2rpu'T, 6.47

and we may determine the three unknowns

T .(pu)? and (pu)T,

In principle, only three overheat settings are required. But, in practice, at
least three times that number should be made in order to provide
consistency checks and reduce the scatter. The results can also be
determined from the so-called Kovasznay diagram (ref. 9) or by
regression. The Kovasznay diagram can be obtained by plotting v =
e'/Aer  against the sensitivity ratio (r). Typical curves showing the
dependence on the relative magnitude of the three unknown quantities

are presented in figure 6.5. If only mass flow fluctuations are present

the diagram will be a straight line from the origin with the slope
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T proportional to the mass flow fluctuation level. If only total temperature
el fluctuations are present, the diagram is a horizonal line at the total
ey

"" . .

;:;’fﬁzf; temperature fluctuation level. If both fluctuations are present, the plot
6

R varies according to the correlation coefficient between the two
8N . . :
~:'.-;S§ fluctuations. For perfectly correlated or anti-correlated fluctuations, the
3
RAR . . . C
::Q" curve becomes a straight line, and when there is zero correlation it is a
f'“ﬂ: . .
e hyperbola. In these cases, the two fluctuation levels can be determined
;:"::i‘i as indicated in figure 6.5.
i
i
li ..‘
ot

o'l For a yawed wire we have

e , u ' Tv V'
S e = Aepugg—_2 +AeT=5-iAe°-_— 6.48

Iﬁ pu t T[ u
23
o so that, when we difference the mean square of two readings taken 180
209 deg. apart, we obtain
1259
o8 ¢2= e -e2  =4[Ae, Ae,(pu)v + AeyAer VT 6.49
B I ¢ 180° ~ [ pus €4 (P 6= Ty t] ’
Z:i::‘ which we may write as
1 o7 — —_
e s¥ = o——=——— = 4[V'T{ +1*(pu)'v'] 6.50
L 4Ae,leq
i where
Ao Ae, Ae
S
Pt * = __.E___A “A ° 6.51
e,Ae

L o T
If we plot s* against r* we obtain
"’:..:- S ————— —————
i:if (pu)'v' and V'T
A
YD . .

. from the intercept and slope respectively.
' 9’

24
'o‘. ]
b
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T r
a) velocity fluctuation alone b) temperature fluctuation alone

Fig. 6.5 Typical mode fluctuation diagrams

99

-

v e 0« \ ¥ 1 b LYl vl A - - 3
5 Ax J) D e Ayt S 3
SSRGS u’&\. ARV GNP CIE




Now, having obtained the rms values

X S‘_)—:-l , —_T‘— and the correlation (pu)'T;
Wiy pu 1

e from a normal wire, and
G (pu)'v' and V'T{
from a yawed wire, we are in a position to determine the fluctuating flow

St ¥ N . N .
et variables outlined in section 3.

Unfortunately, the mass flow and total temperature fluctuations are not

iR the sole characteristic parameters of an unsteady supersonic flow field.

R We must also consider the vorticity 1, entropy o, and sound © modes.

.H' . .
A If the fluctuation levels are low, as in the free stream, these modes

o satisfy separate linear differential equations and the hot-wire equation
i becomes (ref. 1)

g Ae =g Ae  + 1T Ae_+ T Ae, 6.52

)
il where

Ae =Aep + o Aep 6.53
i Ae,t:[}Av.a.l.-A«au:BAe.l.-Ac:p M>1.2) 6.54
e Aoy = aly - 1(1 - n,M) Ay - o5 Aoy e,

= v - 1(1 - nM) ey - (£ + 1)ae, M>12) 655

where

o = 1/(1+”Z;l M2) = (1+0.2M?)
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B = alvy - )M? = 0.4cM

for air and n_ is the direction cosine defined as n, = -1/M.

The fluctuation variables are given in ref. 1 as

% = g+(v- 1w 6.56

A—PP = -+ 657

AU nm

T = T + M 6.56

% = v 6.59
%‘ oo+ BT+ v - Dex o 9;/}*]« 6.60
Am n _ 4P Au
—n—l=-‘+‘c+(l-m¥)‘r{——p-+T 661

But we cannot determine all these variables directly from hot-wire
measurements. A usual compromise is to plot Ae/Ae  against Ae /Ae  to

determine which variables may be neglected (ref. 1).

Since turbulent flows vary in both space and time, useful insight into
turbulent structure can be gained from space-time correlations in
compressible flows. Two approaches will be aescribed. In the first, let

us locate two wires at points A and B normal to the flow direction such

that
e, = -S,m, + SCN 6.62
€ = - SpmMy + 5,6, 663

Cross-correlating, we obtain

------------

o
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5 e e, = m,m

;;_533:3 €A = 5,Sp M, My + Sp, Sep 6,65

oA O e T "
7" \) L

':5::(&.

:a‘;}‘ or

’::Z*s'v 56 m.©

1, "} 2 = eAeB - rB mBeA + rA(rB mAmB - mAeB) 6.65
{4 %,

gg:s' where

PAAN] e o

Y ee S S

% R RO R

R Soa%en oA B

This plots linearly in the z, r, plane with intercept

(9,05 1y mg6,)

and slope

(rg m,my - m,S;)

-

So that, if we fix Ty =Ty, which is a known constant, and test with known

values T, =Ta; and Ty, to obtain z, and z,, we obtain

o2
3 (Sl°pe)r31=const = ry,m,my - m,B, 6.66
A
and
(intaercept)rm= const = OaPp- Ty My, 6.67

If we repeat procedure with a new known constant ry, we obtain four

equations and four unknowns. To improve our accuracy we can continue
the test sequence and determine the four unknowns graphically as shown

on the next page.
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First plot (—g—:-) vs (rg)

E)zA

ar 4

intercept

Then plot (intercept, I) =6 ,065r5 - mgb, vs (ry)

intercept = 6,6 5

Space-time correlations in compressible flows may be obtained with two

wires at points A and B in the flow as follows:
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e, =a,m, +B,6, attimet 6.68

{_Z:% eg = Opgmpy + Bp6,  at time t 6.69
Q‘Q
¢
H If we adjust the anemometer gains such that r, =r, = r and measure
‘," J A B
2_(e - e )2
& (e,+ eg)? - (e, - ep)
Wy
W 2 - 2
;& (e,+ eg) + (e,- €p)
l"‘t)
K we obtain
3 =——
e A°B 2 m2 -] Y '
;;..:: r‘mg + 2r, m,0, + 6%
)
hel
0 where
X oy & (o4
. / A %B A
B r= (=822 r =_4
;; Ba B AT By
L
e and
B « « [« Y [T —
2 c-(fon - [22)( frmm,- [fams,) e
153 A B A B
N\
L)
‘k' When the wires are made of the same material and operated at the same
W overheat ratio then
i
:%:'
e /_"‘Az/.‘_"l 4c=0 & 12 =12
Ba Bs A
p
i
:,.:
:::| Furthermore, as the overheat — 0, o/ » 0 and equation 6.70 reduces to
4
T the temperature-temperature correlation {
&
%
;" y
ned
't'$ —
A
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At high overheat ratios o/f — 1.0, or » 1.0, so that if 8 « m, or 6 = m, the

;5}; ? equation reduces to the mass flux - mass flux correlation

M\

)

u

g iy

- A'B

o ik
‘3 )

» To determined the statistical values outlined earlier, we have to add,
W subtract and multiply the fluctuating outputs and sometimes delay them
5

o in time and filter with frequency. Addition and subtraction are
R

accomplished by converting signal voltages to currents and applying
an them to resistors as shown in the circuit below.

4 R3
" |

N Ri

;;r-. ; € | AN

L/

Ao R2 s A o

W

~ ———— AN

ey €

.’s

A7y ! R

g

I.' i

‘.|‘

In the circuit, A has a high input resistance (>> R3), so that all current goes

R, through R3, a large voltage amplification occurs at A and the voltage at s

which is equal to e /A, tends to 0. Now

i €= 'R3(R1 Rz) 672

)
::'0 so that if R1 = R2 then e, = -(c:1 +e,). Also, if e, = 0 then R1 = R3 and e, =

< -e. In these ways we are able to add and subtract hot-wire voltages. We

oy can integrate hot-wire signals as follows
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A%
;,’i!\
B
o
LK
i
f'::‘i C
b i
iy R
R € | = AN P~ A €,
RRY s(e=0)
;«4‘: Again if A - «, e = 0 and the input impedance of A — <. For the
g
P
;’335'3 capacitance Q = Ce we may write
B aQ . de, e
o T T 6.73
('l
Al
X
N so that
s .
‘.‘l A' = -—i—d
N €= [ Re at 6.74
A
-;;', and if ¢, = asin © then e, = -(a/oRC) cos ot.
e . - :
o2 Differentiation may be accomplished as follows
y P
o >
991 |
i :
"l C 1!
ko 11 1
€, =11 > !A> €o
¥ s(e=0)
e
i :
;;:‘.:', where we may write
(NN
i de, e
B Ct=1=2° :
) G-l % 6.75
b Y
1oy so that
o... e.= RC de; 6.76
s ° dt '
Ay In general, what is termed the quarter-square-technique is used for
i‘{-
*J multiplication. In this case two squaring circuits are used, one to square
L]
the quantity (x + y) and the other to square the quantity (x - y). The
bl
2, outputs of the two squaring circuits are then scaled such that
5
U
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(/I +y)* - (x - y)2] = xy 6.7
The input is usually scaled such that the output is (1/10)xy. This scaling
is necessary to use the full dynamic range of the two input amplifiers
without saturation of the output amplifier. Division can be accomplished

by placing a squaring network in a feedback loop as shown below

A Q-S 10A
Multiplier B

B
The power spectrum of a hot-wire signal can be obtained by Fourier
transformation of the auto-correlation or by spectrum analysis using L

inductance-capacitance band pass filters. However, filters with band
width of 1/3 octave, ie. 2! x center frequency, are not suitable for
measuring spectra with sharp peaks. Typical turbulent velocity spectra
drop off rapidly with frequency. But, in supersonic flows, there may still
be significant energy beyond 50 kHz. The sharp drop off can cause
changes in the effective filter band width and, at extremely high
frequencies, the spatial resolution of the hot-wire sensing element
renders spectral measurements open to question. Although spectra of
higher order correlations have been reported at low speeds, care must be
exercised to match the phase shifts of the two filter sets, when making

these measurements in high-speed flows.
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Some practical hot-wire signal analysis set ups are shown below

E+eau+u e,ou
-l-l. +u ezauz
Probe Anem li Square I

e.ou2
e;au

Measurement of u?
u+v
Anem ‘
Xwire probe ==
iff.
X—] Probe Amp. I

[y

) , (M)
Jdtdemttaddanntintatate ot




u |‘|’- u(w) Square u(w))? f [ung]2<::>
Filter

Intensity Spectrum

Mult. J ——@

y I | viw) NB. watch for phase

differences in filters
Cross_Spectrum

u Time
Delay
o T
u or v

Auto or Cr rrelation

Details of the properties of materials used in the fabrication of hot-wire
probes are given in an attached list. Generally hot-wire probes are

welded or soft-soldered to the supports. Conventional or etched

wollaston wires are used. Film gages have much less directional
sensitivity because of conduction to the glass (ie. their effective aspect
ratio is lower). They also have a complex time-constant so it is difficult to

compensate for quantitative measurements. Some examples of probe
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fabrication sequences are given on the following pages.

Hot-wire probes

gold plated stainless steel or similar

Jewelers broaches

/ knitting needles/ Epoxy or ceramic body

.

[

L =

T gy,

To avoid strain gage oscillations, we must maintain slack in the wires.

Active
length ~ Inm |~ d~5 pm~.0002"
Up

X pro
(also V & slant)

Film Probes

alternative film

film \ / pryex
) leads on surface




o Pyrex rod

. B quartz fibre —
Q.‘
kY — film

1’: : leads

il

" The fabrication sequence for double sensor with straight or coiled wires is

5 shown as follows:

(8) Grooves ~.02 Deep

i Tip#.003
S
W 0152 Ni .010—-4“*— /

ormar> 1 1°

o s

“3 Tip#.003

-

Ceramic Insert

AN RSN I TIh



.125 Drill
| 10-11°
200 + .002
1 -
L"" j

.002
*—.500—1‘-.375"—’ 004

Aluminum or Stainless Steel Body

— — ~145

75 I"—

=== _2d

g

Miniature Co-axial Cable Beldon 8700, 28AWG

(2) Ni oxide coated pins

325—T- 0—
- & /(2) Ni pins

Epoxied to insert
(BB 2101 Epoxy)

Pin/Ceramic Assembly

T +
.-a S )-.-(:

-~ '\-'E zi
o2




SOLDER
INSULATE JOINTS
WITH EPOXY

E—Téé’—é
L == ~145 —-]

Cable/Pin/Ceramic Assembly

Apply
APpPply

l Epoxy Epoxy
w30

L_ 2 5J
(leads)—] .350 33

(to ceramic) — 50 —|

Assembled Probe

~ .10

distance of
unobstructed

length —
mit 30| =r_

ya

bend (2) Ni wires

Preparation of Pins for Coil Winding

T TN OU TR TN W




'?‘.'» ..'n..'?’. l“q 4 0%

Finally wind the coil, straighten bent pins, spot weld single wire to Ni
pins, record resistances; check for shorts to ground, and coat spot-weld

with conductive epoxy (E3021).

The procedure for the construction of surface wire gages is shown on the
following pages. These probes can be used for transition and separation
detection without disturbing the flow. Surface flow direction can also be

sensed with a pair of wires on a single gage (ref. 11).
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| Y 3 Electrical leads
(0.015" dia Ni Wires)

Polystyrene Plug
(cast from resin)

Stainless Steel Tube —
(0.125" O.D., 3" long)

Shield of cable Core lead of cable

Epoxy filling

Coaxial Cable
ending in BNC (female)
connector.

0.125 O.D.

Sensor Wire

(0.0002" dia. Tungsten Wire)
spot welded to electrical
leads and solvent buried
using methyl-ethyl-ketone
as solvent.

—» 14— 0.0625

Surface Wire Gage

-------

. - --\F‘!ﬂ.."\"\'"" '..l‘ :
T, ¥ e L Py




i 0.125 O.D.
45 f 0.116 O.D.

BV
e 0.0275

v

0.08

L)
Py 0.

p—
o0
~3
W

SO SANSSNNNNS

¢

o,
w
V]
A
N

H

=B

P
Lp
)

Surface Flow Direction Sensor (ref. 12).
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ot Section 7 Hot-Wire and Laser Velocimeter Measurements
*|0‘
#
% In the first part of this section, the results of our hot-wire freestream
e turbulence measurements in the M = 6.0 and M = 3.0 high Reynolds
::i" number facilities will be described. Comparisons with previous data
1328
i obtained at much lower unit Reynolds numbers in the Ames 3.5 foot HWT
1456
> (fig. 7.1) are very encouraging as they show superior flow quality in the
s AFWAL facility at high unit Reynolds numbers. The mass flow
W
" fluctuations increase with tunnel total pressure and range from 0.6 to 1.6
2458
ik percent. Our previous Ames data were taken in 1972 and after the
<8 tunnel was converted to a free jet test section. These latter data were
N

af taken in 1974,

\(::'
,0'| If we assume that the disturbances sensed by the hot-wire are
A : :
b predominantly sound waves radiated from the turbulent nozzle wall
bt
ol boundary layers, then the pressure fluctuation levels can be estimated
Qs from our hot-wire data. Hot-wire theory shows this assumption to be
N(' 3 3 . ] 3

o consistent with linear mode diagrams, (fig. 7.2). The results of these
?'j_i_ calculations are shown in fig. 7.3 and comparisons made with the Ames
_w_ HWT and the Langley VDT. This figure clearly shows better flow quality
’ Y
:3{_ in the M = 6 facility. But, sound is not the only disturbance mode, as
: 3 . . .
PO temperature spottiness, probably due to non-uniform heating of the
6’}' supply gas, is not negligible (fig. 7.1). Thus, the pressure level estimates
"-r‘ from the hot-wire data should be viewed as upper bounds. The actual
"l‘.’O.
‘e levels should be somewhat lower. Direct pressure measurements should
gl';.‘; confirm this.
‘_32;‘2':
by
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Two hot-wire signals are shown in fig. 7.4; one for a pressure of 930 psi,
the other for a pressure of 1860 psi. These traces clearly show the
increased high frequency (smaller length scale) contribution at the higher
tunnel total pressure. Low-frequency (large scale) contributions are also
apparent in both hot-wire traces. In general, most of the energy is
concentrated at low frequencies. Auto-correlation measurements show
the turbulent integral length scales to be of the order of the jet exit
diameter. Freestream turbulence measurements have also been made in

the M = 3 facility. These results are shown in fig. 7.5.

The laser velocimeter data were obtained across flat plate boundary
layers in the FDL M = 6.0 wind tunnel. Zero pressure gradient and
adverse, ramp induced, pressure gradient flows were investigated. In the
latter case, the capability for both streamwise and vertical velocity
measurements was demonstrated.  Previously, problems with particle
arrival rates, run to run velocity variations and probe volume location
within the boundary layer had been encountered. These problems had
led to significant uncertainties and scatter in the measured velocity

profiles.

Although more costly, laborious and tedious to operate, the laser
velocimeter probably represents the instrument of last resort for the
measurement of flow in compression corners, shock boundary layer
interactions and other large scale unsteady turbulent flows. Once in

operation, linear, non-intrusive unambiguous turbulent velocity and

shear stresses can be obtained once seeding and sampling bias problems




o

‘:':::'

s

e have been overcome. Flows of most practical interest and importance
. often involve high turbulence, flow separation and large scale
.g!'y_' g p g

A . : . : .

::1{::; unsteadiness. Here the inherent linearity, non-perturbing, directionally
LA

‘ "1 . o . . . .
:::2::5' sensitive properties of the laser velocimeter come to bear. However, it is
o also at these conditions that laser velocimeter sampling bias comes to the
)

5y

;,5:,' forefront.

gt

i

o Most researchers agree that continuous-wave mode signals are free from
B : N : .

,:',:. bias. However, in high-speed wind tunnel applications where particle
"f‘ '

A . TR oL . . .

?,:'r::: concentrations are low, individual realization processing is required. In
LA I ¥

ey these cases the potential errors attributable to sampling bias can become
k)

ég significant at high turbulence levels. In a recent paper (ref. 12) the
j:‘:,l:: existence of "sampling bias" in individual realization laser velocimeter
s measurements has been experimentally verified and shown to be
20 :

R independent of the sample rate. The results clearly demonstrate that, for
f:g% the individual realization mode of laser velocimetry, sampling bias exists
ot and that it increases approximately with the square of the turbulence
"l'.$

;'::: intensity. It was also demonstrated that these bias effects are
s.‘i

;:.,‘: independent of sampling rate provided the seeding concentration is
e sufficiently low to insure individual realization measurements. A
L "<

’ 3 two-dimensional weighting of the velocity samples was shown to be
';g effective in correcting the individual realization measurements for
P sampling bias.

) ‘:

TV . : : : . .

:Z:., With particle bias problems identified and corrected, the seeding problem
ol was the first to be addressed during the present work. A fluidized bed of
L)

g

L]

[

120

4

- ] - - r v » -
p A O NON0 ) R0 T, e o LAY TR TR EY . ot )
1% LS T AW R L n..i,lh IR &5 iy ' iy 0 LR i) L . NI :l.‘:t?lfﬂ:t’ko".. Y NN




P P T B R O U O O PO R P i W P U U W i P ey W P U " e

carbon particles which proved to be ineffective was replaced by an
atomizer ahead of the throat. The accelerations and shear through the
nozzle were sufficient to break up and provide an ample supply of
scattering centers in the laser velocimeter focal volume. Signal to noise
was also improved by the use of pre-amplifiers on the photomultiplier

tube outputs. With these improvements, valid velocity data rates were

increased to 3,000 samples per second.

The improved data acquisition rate also alleviated the thermal growth
problem and its effect on probe volume location within the boundary
layer. Increased data rates in the wall region enabled shorter run times,
reduced model heating and less thermal distortion. Measurements can
now be made through the wall region without excessive model heating,
thus minimizing measurement location uncertainties. Reliable
measurements of the axial velocity component were made within 0.010
inches of the wall. Vertical velocity measurements were limited to 0.03

inches from the wall.

The problem of run to run edge velocity variations was first noticed
during preliminary freestream shakedown runs. These variations were
corrected by correlating each set of shear layer measurements with
individual run total temperature measurements. A more elusive data

reduction problem was also identified. It concerns the relatively crude

filter ranges on the laser velocimeter signal processor. Since the mean
flow velocity and turbulence measurements were made with a dual beam

velocimeter utilizing bragg cell frequency shift, a stationary particle
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produced a doppler frequency of (f)) 14 mHz for example in fig. 7.6.
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Thus, in the flow field, particles generated doppler frequencies f + f

....
S
<u
A
L Y d

e

depending on their direction normal to the moving fringes. However,

:',‘f-‘-"

even with this offset errors can arise due to incorrect filter settings.

s, Extra care in their selection must be exercised not only in separated flow
gg‘g, regions but also in the wall region of attached flows where local
( turbulence levels are high. The effect of 16 mHz and 8 mHz filter settings
':: ; are shown by the solid and dashed lines on fig. 7.6. The problem would
;'::‘".: be more pronounced closer to the wall.
i
\_,?. Fig. 7.7 shows a zero pressure gradient flat plate velocity profile. It can
% j& be seen that the comparison with the Van Driest theory is excellent. Fig.
A'. 7.8 shows a profile measured across the ramp induced pressure gradient
'.;} flow field. A direct comparison of ramp induced effects on the mean and
".l turbulent flow fields can be seen in fig. 7.9 where measurements
" obtained at the same streamwise station are presented. These
é}?‘ measurements obtained at a station 3.3 & ahead of the 30-deg. ramp
;‘? clearly show retardation of the flow and a significant increase in
;7. turbulence level over a wide region. The vertical velocity profile
:..' measured at the same location ahead of the interaction is shown in fig.
VAS:"! 7.10. Local flow angularity profiles across the boundary layer have been
' calculated from the two component laser measurements. These results
J_:.'El (fig. 7.11), show that local flow angles close to the wedge deflection angle
‘-C are present in the shear layer just upstream of the interaction.
[ M
A
:'ég Comparison of the two turbulence level profiles shows that the
" 122
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streamwise turbulent kinetic energy for the ramp flow is more than three
times that for the flat-plate boundary layer. Turbulent mixing length
scales, calculated using local rms levels and mean gradients, are an order
of magnitude larger. Turbulence levels based on local mean flow values
exceed 30 percent in the wall region so that we can see from section 4
that significant hot-wire measurement errors would arise. At this high
intensity, large-scale turbulence results in directional intermittency of up
to 15 percent ahead of the time-averaged recirculation zone. Hot-wire
measurement errors associated with directional intermittency are

discussed in detail in ref. 7.

To conclude, diagnostic tools are now available to attempt the
measurement of turbulent high-speed flows, an area where
comprehensive studies are lacking. However, measurement techniques
must be used with understanding and care in appropriate situations. All
too often experimental methods have been stretched beyond their
reliable limits and misleading results have been reported.  Apparent
discrepancies between measurements and calculations cannot solely be
attributed to deficiencies in turbulence modeling until reliable
assessments have been made of measurement errors.  Although the
potential of laser velocimetry for the non-intrusive measurement of
mean velocity, turbulence intensity and shear stress in complex wind
tunnel flow fields has long been recognized, the design, construction and
successful operation of systems in other than small, closely controlled
laboratory situations still presents a formidable engineering challenge.

Thus, it is important that redundant hot-wire and laser velocimetry
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experiments be carried out to determine the reliable range of hot-wire

application.
4r
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Fig. 7.1 Mass flow and total temperature fluctuations
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List of Symbols

Overheat parameter, 1L 1/Rw

2 Rw\ dI

Rw-Rr
Overheat parameter, &

Thermal capacity, electrical capacitance
Modulus of cross spectral density function
Specific heat

DC voltage

Unsteady voltages

Mass flux, total temperature and angle sensitivities
Frequency

Power spectral density

Cross spectral density

Grashof number

DC current

Unsteady currents

d log Rw

d log Tw

constant in equation 3.13

Thermal conductivity

Wire length, turbulent mixing length
Mach number, wire time constant

Mass flow fluctuation
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P

P(x), P(x,y)

Pr

q2

Qx,y)
Re
R

L]

X, Yy, 2

EA i i il ah aal e e g a2 dy o T — hoba ik

dlog 4
d log Tw
Nusselt number
d log k
d log Tw

Pressure

Probability, joint probability functions
Prandtl number

Defined inequation 3.3 (turbulent energy)
Modulus of cross spectral density function
Reynolds number

Wire resistance, correlation function
Sensitivity ratio, fluctuating wire resistance
Sensitivity

Temperature

Mean velocity components

Fluctuating velocity components in section 4
Fluctuating velocity components

Mean and fluctuating voltage

Impedence

Cartesian Coordinates
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a, Y

«

€ € *©

Temperature coefficients of resistance

1] (1+ 5= mP)

a(Y- 1)M?

Ratio of specific heats
Boundary layer thickness

Displacement thickness
L dlogIw
Finite circuit factor — ———— , viscous dissipation
dlog Rw
Recovery factor
. T
Temperature fluctuation, overheat parameter T‘ﬁ
t
Wavelength, heat transfer coefficient
Viscosity, wire time constant
Density

Kinematic viscosity, voltage ratio
TW-TI'

Temperature loading T
r

Skin friction

RMS value

Time delay

Wire inclination angle
Mean square value

Time constant
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Subscripts denote values evaluated at

c Compensated
f Film temperature Tw2+ Te
g Gas temperature
m Measured
n Noise
o, t Total temperature
T Recovery temperature
w Wire temperature
ad Freestream
p Due to density
pu Due to mass flux
u Due to axial velocity
v Due to vertical velocity
Superscripts denote
) Fluctuating component, rms value
~ rms value
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