A METAL-CENTERED RADICAL-PAIR MECHANISM FOR ALKYNE HYDROGENATION WITH A B (U) ROCHESTER UNIV NY DEPT OF CHEMISTRY S I HOMMELTOFT ET AL 30 OCT 86 TR-11 UNCLASSIFIED N00014-83-K-0154
A Metal-Centered Radical-Pair Mechanism for Alkyne Hydrogenation With
A Binuclear Rhodium Hydride Complex. CIDNP Without Organic Radicals
by
Sven I. Hommeltoft, Donald H. Berry and Richard Eisenberg

Prepared for Publication
in the
Journal of the American Chemical Society

University of Rochester
Department of Chemistry
Rochester, NY 14627

October 30, 1986

Reproduction in whole, or in part, is permitted for
any purpose of the United States Government.

This document has been approved for public release
and sale; its distribution is unlimited.
A Metal-Centered Radical-Pair Mechanism for Alkyne Hydrogenation With A Binuclear Rhodium Hydride Complex. CIDNP Without Organic Radicals.

Sven I. Hommeltoft, Donald H. Berry and Richard Eisenberg*

The binuclear complex RH₂₂(CO)₂(dppe)₂, 1, reacts with alkenes under H₂ to form the corresponding olefins with predominantly cis addition, and an alkyne-bridged A-frame complex. Specific alkenes studied include PhCH₂, MeCH₆, t-BuCH₂, EtCH₂CH₂, HOCCOOMe, HOCH₂CH₂OH, and CH₂CH₂OH. In all of the hydrogenation reactions, CIDNP is observed with major polarizations occurring as multiplet effects in the trans and geminal proton resonances of the product olefins. Specific labelling studies using 1 + PhCH₂, PhCH₂, and PhCHCD, and 1 + PhCH₂ show no polarization due to ¹³C hyperfine coupling, and major polarizations only in those protons originally on the binuclear complex 1. These studies, together with radical trapping experiments, lead to the conclusion that the radical pair responsible for the observed CIDNP is metal-based and does not involve alkenyl radicals. The basis of the observed CIDNP thus differs from the previously described mechanism of H-atom transfer between a transition metal hydride and an organic substrate. The present results are consistent with a new mechanism in which a metal-centered biradical acts as the radical pair leading to the observed polarization effects.
A METAL-CENTERED RADICAL-PAIR MECHANISM FOR ALKYNE HYDROGENATION WITH A BINUCLEAR RHODIUM HYDRIDE COMPLEX. CIDNP WITHOUT ORGANIC RADICALS

Sven I. Hommeltoft, Donald H. Berry and Richard Eisenberg*

Department of Chemistry
University of Rochester
Rochester, New York 14627

Received

Abstract: The binuclear complex Rh₂H₂(CO)₂(dpdm)₂, 1, reacts with alkynes under H₂ to form the corresponding olefins with predominantly cis addition, and an alkyne-bridged A-frame complex. Specific alkynes studied include PhC≡CH, MeC≡CH, t-BuC≡CH, EtOC≡CH, HCC≡CCH₂OH, and CH₃C≡CCH₂OH. In all of the hydrogenation reactions, CIDNP is observed with major polarizations occurring as multiplet effects in the trans and geminal proton resonances of the product olefins. Specific labelling studies using 1 + PhC=¹³CH, Ph¹³C≡CH, and PhC≡CD, and 1-d₂ + PhC≡CH show no polarization due to ¹³C hyperfine coupling, and major polarizations only in those protons originally on the binuclear complex 1. These studies, together with radical trapping experiments, lead to the conclusion that the radical pair responsible for the observed CIDNP is metal-based and does not involve alkenyl radicals. The basis of the observed CIDNP thus differs from the previously described mechanism of H-atom transfer between a transition metal hydride and an organic substrate. The present results are consistent with a new mechanism in which a metal-centered biradical acts as the radical pair leading to the observed polarization effects.
A radical pair mechanism for the hydrogenation of unsaturated substrates by mononuclear transition metal hydrides has been demonstrated by the occurrence of chemically induced dynamic nuclear polarization or CIDNP.1-4 In this mechanism, an $M\cdot, R\cdot$ radical pair forms by H atom transfer, eqn (1), and leads to the observed CIDNP through singlet-triplet mixing and spin selective reactions. The reactant and product resonances in these reactions show net polarization which is explained by the difference in g values of the radical pair components, $M\cdot$ and $R\cdot$.1 In this communication, we report that CIDNP also occurs in the hydrogenation of alkynes by $\text{Rh}_2\text{H}_2(\text{CO})_2(\text{dppm})_2$, 1,5 but that the basis for CIDNP in this system is different, involving an extraordinary metal-centered biradical.6

Complex 1 reacts rapidly with PhC≡CH in C\textsubscript{6}D\textsubscript{6} under H\textsubscript{2} to give -1 equivalent of styrene and an intense blue complex, 2, which shows NMR resonances characteristic of an unsymmetrical alkyne-bridged A-frame structure, eqn (2).7 Complex 2 slowly converts to the more stable isomer containing a μ_2,η^2-alkyne bridge which has been reported previously along with the isomeric vinylidene complex, $\text{Rh}_2(\mu-$C=CHPh)(CO)\textsubscript{2}(dppm)\textsubscript{2}.8 The addition of hydrogen to PhC≡CH in (2) is predominantly cis as evidenced by relative amounts of isotopomers formed when using either 1 + PhC≡CD under H\textsubscript{2}, or $\text{Rh}_2\text{D}_2(\text{CO})_2(\text{dppm})_2$, 1-d\textsubscript{2}, + PhC≡CH under D\textsubscript{2}. Reaction similar to (2) occurs with a variety of alkynes including MeC≡CH, t-BuC≡CH, EtOC≡CH, HC≡CCOOMe, HC≡CCH\textsubscript{2}OH, and CH\textsubscript{3}C≡CCH\textsubscript{2}OH leading in each case to formation of the corresponding olefin and
an intensely colored complex analogous to 2.

In all of these reactions, CIDNP is seen as shown in Figure 1 for eqn (2). The most striking aspects of the observed CIDNP of Fig. 1 are the strong absorption/emission (A/E) multiplet effect of the trans proton (δ 5.06; $J_{HH} = 11$, 1 Hz) of the product styrene, the unusual A/E/A/E multiplet effect of the geminal proton (δ 6.57; 18, 11 Hz), a weak and variable multiplet effect in the cis proton resonance (δ 5.59; 18, 1 Hz), and the absence of a net effect. Also seen is the resonance for dissolved H$_2$ (δ 4.42) which shows an initial intensity three times greater than its long-term value. The reaction between EtOC=CH and I produces completely analogous CIDNP results with little polarization of the cis proton resonance of the product olefin. In the reaction of I with other alkynes, the cis proton resonance shows different degrees of polarization, while the trans and geminal protons exhibit strong multiplet effects similar to those of Figure 1. These results indicate that a radical pair mechanism is followed in the hydrogenation of alkyne by I, and Δg of the radical pair must be near zero to explain the absence of net effects in the observed CIDNP.$^{9-12}$ We can thus rule out a mechanism based on a M'-, R- radical pair similar to that invoked in previous studies using mononuclear transition metal hydrides.$^{1-4}$

In order to probe the basis of CIDNP in eqn (2), a series of labelling experiments was performed, the results of which are shown in Figure 2. Trace 2a corresponds to the initial spectrum seen in Fig. 1. When either PhC=CH$_3$ or Ph13C=CH is used as the alkyne in (2), large coupling is seen between the 13C nucleus and the styrene proton(s) attached to it, but as shown in spectra 2b and 2c, no polarization occurs in the CIDNP due to 13C hyperfine. Spectrum 2b exhibits particular enhancement of the H$_2$ absorption and a very slight net effect of the styrene trans and geminal resonances. In 2c the downfield half of the 13C coupled geminal resonance at δ 6.57 is obscured by aromatic proton resonances, while from 2d a value of 155 Hz is obtained for the $^1J_{CH}$ coupling.
using a mixture of Ph\(^{13}\)C=CH and PhC=CH in eqn (2). Spectrum 2c also shows a small resonance at δ 6.52 due to the \(\mu_2,\eta^2\)-alkyne bridged complex\(^7\) which grows in slowly.

Deuterium labelling reveals a strong multiplet effect in the trans and geminal protons when PhC=CD is reacted with 1 (spectrum 2e), and no CIDNP when PhC=CH reacts with 1-d\(_2\). In the reaction leading to 2e, a small amount of PhC=CH which is present accounts for the cis resonance at δ 5.59 and confirms an isotope shift of the trans resonance at δ 5.06. The major conclusions from these labelling studies are: (1) no polarization occurs for \(^1\)H and \(^{13}\)C nuclei which are part of the alkyne substrate throughout the course of the reaction, and (2) the only styrene protons showing polarization are those which originated on the binuclear complex Rh\(_2\)H\(_2\)(CO)\(_2\)(dppm)\(_2\), 1.

Both the absence of polarization due to \(^{13}\)C hyperfine in spectra 2b-2d and the cis addition of hydrogen to PhC=CH argue strongly against styrenyl radicals as components of the radical pair responsible for the CIDNP effect. This conclusion is further supported by the fact that efforts to block CIDNP by trapping styrenyl radicals using dihydroanthracene, 1,4-cyclohexadiene, and cumene have been unsuccessful. Moreover, when 1-d\(_2\) and PhC=CD are reacted in the presence of a 20-fold excess of cumene, no styrene containing olefinic protons is observed.

The results of our experiments lead us to the inescapable conclusion that the radical pair responsible for CIDNP in the reaction of 1 with alkynes must be a metal-centered biradical (MCBR). The major polarizations we see only occur in the hydrogens originally on 1. For a pure multiplet effect, \(\Delta g\) of the radical pair must be zero, but a radical pair based on styrenyl radicals is totally inconsistent with experiment. We therefore propose that 1 rapidly and reversibly forms a biradical isomer 3 which undergoes singlet-triplet mixing and spin-selective reaction to produce CIDNP. The "singlet" reaction channel of 3 is
recombination to 1, whereas the escape or "triplet" channel corresponds to reaction with RC=CH, as shown in eqn (3). Application of Kaptein's rule for multiplet effects based on this analysis leads to the prediction of A/E polarization of the geminal and trans resonances in accord with our observations. That the addition of H₂ to the alkyne occurs with predominantly cis stereochemistry and very little or no net effect indicates that the biradical 3 transfers its H atoms to RC=CH in an essentially concerted manner.

To our knowledge this is the first example of CIDNP based on a metal-centered biradical. Our CIDNP results may be compared with those of Closs and Kaptein for organic biradicals in which singlet-triplet mixing occurs by either a spin-sorting mechanism as is seen in the present study, or by T→S mixing which leads to emission effects exclusively. The latter is dominant when the exchange integral J, which reflects the singlet-triplet splitting, is large and comparable to the Zeeman splitting; our results suggest that in the case of 3, J is relatively small. Further experimental and theoretical work on biradicals such as 3 is needed.

While the present study is the first to recognize the MCBR for producing CIDNP, one other report involving a polynuclear transition metal organometallic compound shows similar effects. Specifically, Bergman, et al., find multiplet effects in the hydrogenolysis of Co₃(CO)₉(μ₃-CCH₂-t-Bu) to give t-BuCHCH₂ with polarization only in the protons originating from H₂. We think that that reaction may also proceed via a metal-centered biradical, and suggest that MCBR mechanisms which are difficult to detect may occur more commonly in
reactions involving polynuclear transition metal hydrides.

Acknowledgements. We wish to thank the Office of Naval Research and the National Science Foundation (CHE 83-08064) for support of this work, and the Johnson Matthey Co., Inc. for generous loan of rhodium salts. We also wish to acknowledge helpful and informative discussions with Prof. N. J. Turro, Dr. C. Doubleday, Prof. R. G. Lawler, Prof. G. L. Closs, Prof. R. G. Bergman, and Dr. H. Bryndza.

REFERENCES and NOTES

6. A metal-centered biradical, -(OC)₄ReP-PRe(CO)₄-, has recently been proposed but its reaction chemistry is similar to that of related monoradicals.

7. Typically, 10 mg (0.01 mmoles) of 1 is dissolved in 0.5 ml C₆D₆ under H₂ in an NMR tube sealed with a septum. Addition of PhCCH (3 μL, 0.03 mmoles) by syringe is followed immediately by placement in the probe of a Bruker WH-400 400 MHz NMR spectrometer. Spectroscopic data for 2. ¹H NMR (C₆D₆) -CH₂- region: δ 3.77 (m, 2 H), 2.64 (m, 2 H) with a geminal coupling ²JHH of 12 Hz. ³¹P [¹H] NMR: δ 23.0 (m) and 26.4 (m). ¹³C [¹H]
NMR for alkyne carbons: 150.1 (m, width ~70 Hz, PhCCH) and 174.1 (m, width ~70 Hz, PhCCH) with assignments made using specifically labelled PhCCH.

13. Complex I undergoes facile loss of H₂ in the absence of other reagents. This loss of H₂, seen in the present study when reaction (2) is done under N₂ with lower resultant yields of styrene, is not necessary to explain the observed multiplet effects. However, in some experiments, significant enhancement of H₂ absorption is detected. This result cannot be explained by 3, and suggests the possibility of a second metal-centered biradical such as one with both H's on a single Rh center prior to H₂ reductive elimination. This observation is under continuing study.

14. The A/E phase of the multiplet effect is determined from Kaptein's rule assuming a singlet precursor, escape or triplet products, a positive spin-spin coupling constant, and the fact that the coupled nuclei are on different radical centers of the MCBR.

Figure 1. 1H NMR spectra at 400 MHz for the reaction of $\text{Rh}_2\text{H}_2(\text{CO})_2(\text{dppm})_2$, 1, with $\text{PhC}=\text{CH}$ in C_6D_6 under H_2 during the first 5 minutes of reaction. The resonances labelled "a" are due to the product complex 2. The peak "x" which is truncated in the later spectra is due to benzene-d_5.
Figure 2. 1H NMR spectra at 400 MHz showing CIDNP of the styrene resonances for eqn (2) under H_2. (a) $1 + \text{PhC} = \text{CH}$; (b) $1 + \text{PhC} = ^{13}\text{CH}$; (c) $1 + \text{Ph}^{13}\text{C} = \text{CH}$; (d) $1 + \text{PhC} = \text{CH} + \text{Ph}^{13}\text{C} = \text{CH}$; (e) $1 + \text{PhC} = \text{CD}$.
Office of Naval Research	2	Dr. David Young	1
Attn: Code 1113		Code 334	
800 N. Quincy Street		NORDA	
Arlington, Virginia 22217-5000		NSTL, Mississippi 39529	
Dr. Bernard Douda	1	Naval Weapons Center	1
Naval Weapons Support Center		Attn: Dr. Ron Atkins	
Code 50C		Chemistry Division	
Crane, Indiana 47522-5050		China Lake, California 93555	
Naval Civil Engineering Laboratory	1	Scientific Advisor	1
Attn: Dr. R. W. Drisko, Code L52		Commandant of the Marine Corps	
Port Hueneme, California 93401		Code RD-1	
Defense Technical Information Center	12	U.S. Army Research Office	1
Attn: Dr. H. Singerman		Attn: CRD-AA-IP	
Applied Chemistry Division		P.O. Box 12211	
Annapolis, Maryland 21401		Research Triangle Park, NC 27709	
DTNSRDC	1	Mr. John Boyle	1
Attn: Dr. H. Singerman		Materials Branch	
Applied Chemistry Division		Naval Ship Engineering Center	
Annapolis, Maryland 21401		Philadelphia, Pennsylvania 19112	
Dr. William Tolles	1	Naval Ocean Systems Center	1
Superintendent		Attn: Dr. S. Yamamoto	
Chemistry Division, Code 6100		Marine Sciences Division	
Naval Research Laboratory		San Diego, California 91232	
Washington, D.C. 20375-5000			