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N INTRODOCTION

L

° . b4

&

i

5ﬁ This report addresses some theoretical problems assocliated with the
)

a railgun. It 1is comprised of five sections. In the first section a fully
ﬁﬁ relativistic analysis {is made of a simple prototype of the railgun.
0

i)

iﬁ Electromagnetic field criteria are obtained for the realization of maximum
.‘\

propulsion speed. The second and third sections address an equation of state for

,3 a strongly coupled plasma. Results relevant to two-component plasma given in the
. .

¥

35 second section are generalized to a multi-component plasma 1in the third
3

..‘

o section. A significant result of this work is exhibited in a plot of PV/NkgT vs.
%ﬁ temperature T which exhibits variation with the shell structure of atoms in the
3

%s plasma. Application is made specifically to an aluminum plasma.

.g"‘

lJ' - Studies of electrical conductivity in a strongly coupled plasma are reviewed
:’ in the fourth section, and in the final section, an analytic expression is
¥,

‘ﬂj obtained for nonlinear electrical conductivity in strongly coupled plasmas,
Eg‘ Figures and references as included at the end of each section,
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FUNDAMENTAL RELATIVISTIC SOLUTION FOR A RAIL GUN

5 ,:: Summa ry

LK P
it

A’fully relativistic analysis is made of the dynamics of a rail-gum based
bl on three assumptions: (1) Ohm's law is valid in the rest frame of the plasma;
o (2) total electron momentum is transferred to the projectile; and (3) motiom

of the projectile is constrained to ome direction. With these assumptions, a
) relativistic equation for the velocity of the projectile is obtained whose
N solution monotonically increases to ome of two values depending om field

strengths. For B > E, the maximum velocity is cE/B whereas for E > B it is ¢
:{: where ¢ is the speed of light, and E and B are applied electric and magnetic

L' fields, respectively (in cgs).‘
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o INTRODUCTION

2

i Attention has recently been givem to dymamical properties of

_% electromagnetic propulsion. In the rail-gun device, 7 a non-conducting pro-
M . . . . .

$ Jectile is propelled by a current-carrying plasma dciven by the Lorentz force.

W

" Plasma dynamics is more difficult due to ablation of the projectile and for

a& the most part previous studies have attempted to incorporate this effect.

X

e

v'r‘"‘

A In the present study, we return to a more elementary configuration for
the purpose of developing a fully relativistic study of this problem. Thus,
for example, it is assumed that the rest mass of the projectile is constant,

and that total electron momentum from the plasma is transferred to the projec-

A

tile. Furthermore, it is assumed that the projectile is constrained to move

ry

‘( R

) in one direction. Our remaining assumptioan is that Ohm's law is valid in the
b

;$ rest frame of the projec:ile.6

7

A With these assumptions at hand, a relativistic equation is constructed .
b\

29 . . . . . .
25 for the projectile velocity. Solution to this equation reveals two asymptotic
:; velocities which depends on initial field strengths. Thus, for example. for
" the case E > B, the velocity is ¢, the speed of light, whereas for B > E, the
o
r; velocity is ¢E/B. It is further demonstrated that for initial velocities less
1S

'57 than respective asymptotic values, velocities monotonically approach their
3' respective limiting values. For the case B > E, starting velocities greater
W

MC than cE/B are found to decay to this asymptotic value.

e

ad:

s

N

0

3 :
3

)

0y

g ‘

"

.;l’

ACESLAS WA TR T g
SR

- 0 T iy T A P I AT
A DIN T O &l'n‘i‘of"tf"':"h DI Bl e, "" 3

A AL AL et AL m e " . . -
Lol b BUCRa YN -, . ,
: "“!'.‘l‘. .'b‘ .,\‘ .’I’!)A“ l"r\" AT ITANN, U .':\\ 8 10Ny, ,,



] : NG SRR AR - 5. U T AF AP > W O RO ~
Al ) Deddd ) ey Rty !
SR FUCK [';‘.:z‘?ﬁ‘t'a‘?lg.)a ’.’Gn ?'; A A b.’a“.h‘!'; ANk A‘!':"h‘!“ ' "“‘.j.!. AT !09 M :" W !h “""\ »'::'.-'l.& '.'e‘!‘a'.h'!lo ':fl Pt SO RO WA

ANALYSIS

Our starting equation is Obm's law., which in the rest frame of the

projectile (primed coordinates) is writtenm

3! =oE! (1)

vhere o is conduciivity. Transforming back to the lab frame (see Figure 1) we

find
Y(Jx-c B o) SoE_
J s Y(E_ -BB) (2)
y y z
J =0 Y(E -BB)
z z y

_ 2,-1/2 .
where B =v/c and Y =(1-8°) . The charge density p. for a charge-neutral

plasma, is equal to zero. Ian the lab frame we take

A
E=Ey (3)

where hatted variables denmote unit vectors. Inserting these values into (2)

with § denoting microscopic electron velocity we write

:I.:qn<'i> (3)

~

. TR TR At -y




e Electron charge and density are q and n respectively. We further recall that

RN the density transforms as

o n=Yan' (6)
14 Combining the latter four equations gives

A
<§>=u(8-ﬂ8)z (1)
ol where

ok -
W= (8)

i represents mobility in the rest frame.
thly Taking the average of the Lorentz force on electrons we obtain

-

2 =%
¢'§§i dt<py> c <‘§y>B (9)

Ak where we have recalled the vector property given by (7). We assume a total

transfer of electron momentum to the projectile which gives

e 4 A d
?‘.:.\' th < py> Z - dtg (10)

where N is total number of current-carrying electrons in the colummn. The

momentum of the projectile, P , is given by

y,{‘ £=HYV (11)

~

where M is the mass of the projectile.

" Combining (7)., (9), (10), and (11) gives the desired equation of motion

S5 4 a4l %
% rr At S Sl (12)
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vhere a is the length of the conducting column, I is the curremt

al = NquE (13)
and
wz sk (14)

Note in particular that from (13) we may write

. O
B2ty (15)

where aA represents the volume of the conducting columm in the rest frame.

Integrating (12) gives

O e
o ¢
of . (2]3/2,, _u (15)
[1-&7 2 -8
wheren is the dimensionless time
_ alic
nz™ (16)
Mc

and v=v° at n =n°. From (15) we see that n+oo at the singular paints u=c
and u =w which represemt asymptotic velocities. It will be shown below that
these asymptotic velocities are approached monotonically. With this property

ve may conclude that for zero starting velocities maximum values are given by
E>B v z¢c (17)

E<B v v

A sketch of these findings is shown in Figure 2.

To examine the momotomnicity of v(t) we differentiate (12) to obtain

lde _r, _x713/2 _ﬂ (18)
L -
7
o . R U N o e la
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‘t\‘.
!‘_._afr
We conclude that for vSc¢ and vsw, dv/dn2o. Furtherwore, with v=o0 at t =0,
!.;?
N (18) gives the starting acceleration (in dimensional form)
:;: 4
0
oty dv ( _ alB
- dt lo Mc (19)
‘:n Note that for the case E<B, an initial velocity v, > w, decays to v=w as is
8,
!9
K evident from (18). Furthermore, as is clear from (15), asymptotic values (17)
X
45’3 are independent of initial velocities.
O
J‘;}: Characteristic times corresponding to the maximum velocities (17) are as
m“;i
j:,‘ follows. In the limit w>>c, (12) gives the characteristic time
N
¢}
2
B v, = Moo (20)
;,’ ] 1 alB
ﬁ with maximum velocity
43.
) v(l) = ¢ (20a)
" max
K
_' In the limit w<<¢, (12) has the solution (with v=o at t =o),
dolg )
! = ( (21)
vIw [1 - exp -r./'rz)] 1
L& 4
:;:" where
f.‘i'
S
::6:' 1’2 = g’ ‘1’1 (22)
and
ai.::
A
¢
PR v o, (22a)
::; max
DA )
’ We note that although Ty <<Ts accelerations
i
\
e (1) (2
B v v
-.::v -Rax _ _max
Ll
W 1 T2
are the same.
.}':"
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APPLICATION

PP

In applying the preceding results to experimental values, first

‘ we
. rewrite w in practical units. Setting
~ r
' =X
: E=y (19) |
b 1
; where V is the potential across the rails, permits (l4) to be rewritten i
t
: 4
' =
y LA (20)
t
: In practical units this expression becomes
_ 3
b ( ) =
g B(kgauss)a(cm)
)
: : : 5.7 - - .
3 Typical experimental values are : V= 1kV, a = lems B T 200 kgauss which
i gives w = 5km/s. This value agrees in order-of-magnitude with observed max-
o

imum velocities.

-

CONCLUSIONS

We have examined the relativistic solution to the rail-gum comnfiguratiom.

Incorporating some simplifying assumptions we found that the projectile velo-
R city goes monotonically to the minimum of the two velocities, ¢ and cE/B. The

asymptotic value ¢ corresponds to E < B whereas the value cE/B corresponds to

o~

the limit B > E. It should be emphasized that this present study does zot

take into account thermodynamic effects such as momentum imparted to the pro-

-~

jectile from the exploding "fuse."
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(b) B> E

The asymptotic speed w for B>E

-
b-v

- L
(a) E >B
Dimensionless time as a function of projectile velocity v, with v=o0 at t=o

The asymptotic speed ¢ for E>B

Figure 2.
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Uy ONE-COMPONENT PLASMA AND LARGE Z LABORATORY PLASMA

Summary

¥ Stemming from an expression for the mean two-particle
potential energy of a two-component laboratory plasma comprised

X of ions of charge Ze and electrons, it is argued that for suf-

X ficiently large Z, thermodynamic properties of such plasmas are
the same as those relevant to Wigner's one-component plasma

' model. Thus the following equation of state is obtained for a

KTy laboratory plasma with Z > 5 and I > 1.

i P _ d , 1 ,-. 1/4 ~-1/6
::,: HE]';—T l+3-+3(a;+br + cf ) %

i In this equation, P is pressure, T is temperature, n is ion
. number density and a, b, ¢, d are known numerical constants.
o The plasma parameter [ = (Ze)z/akBT where &wa3/3 represents mean

A occupation volume per ion.

W2 ) 15

1
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oy Strongly-coupled plasmas play a role in recombination
i approaches to x-ray lasing [1], inertial-confinement fusion
devices (2], the interiors of certain super-dense stars [3],
NS and in plasma-driven rail-gun devices [4].

oy For the most part studies addressing stcongly-coupled

plasmas [5,6,7] have employed a plasma model due to Wigner [8]

“ . .
*f which was conceived for the purposes of studying phase transi-
&
A . . . . . . .
W tion to the solid state: This medium is called "jellium", or
Bl

more commonly, a "'one-component plasma', which often carries
t' 3 . » .
ga the abbreviation, OCP. An OCP is comprised of ions moving in
)
2 . . .
;f a charge-neutralizing uniform negative background.
% »
” In the oresent work attention is directed at a laboratory
o
L} . . . . .
R plasma comprised of ions of charge Ze and electrons in equilib-
L
A L . . . . . . P
;? rium at a given temperature. Examining the interaction emergy
A
l"

of the plasma indicates that for Z > 5, thermodynamic properties
e . : : 1
qk such as internal energy and equation of state are given by cor-
& %l .
N . : : o
! responding expressions appropriate to an OCP. As an application
N .

of this finding, the equation of state for such a relatively
.
I"‘
33 high Z plasma is obtained from a previously constructed expres-
!..’
N .
ﬁ" sion for the Helmholtz free energy [9].
- With the plasma under consideration comprised of electrons
Y
5& and ions of charge eZ, charge neutrality implies the constraint
Qé
W -
) eV(n, -20,) = 0 (1)
..;...
3; where V is plasma volume and n, and n, are electron and ion

? number densities, respectivelv. The approximate equalitv in




(1) derives from the inherent statistical nature of a plasma.
For a two-component plasma, three interactions contribute to

the mean two-particle potential energy and we write
<S> = (Aw)1/3[n;/3e2 - (n nz)1/6 1/3(Ze) ] (2)

With the constraint (l) we may set n_ = an and (2) becomes

e

1/3,,1/3 _ ,7/6 , 52

<> = e2(4ﬂnz) (Z + Z2°) | (3)

Thus in the limit

2 1.17

Z2°>> 2 (4)
the relation (3) reduces to
<> = (43 (ze)? (5)
which we recognize to be the interaction potential of a one-
component plasma comprised of ions of charge Ze.
This similarity may be further illustrated through the
plasma parameter [10,11]

where <E¢> is mean kinetic energy per particle. The relevance
of y to the properties of a plasma is evident from (6). Namely,
with this expression we may conclude that a plasma is strongly

coupled when vy > 1 and weakly coupled when y << 1.

Substituting (5) into (6) gives (dropping the Z subscript

on nz)

P e N L T NN asz 0
6’«’!’1‘\‘ Wy .'i‘c.*”..?‘t‘ AN 3’1“'1“'«.’":."9”"




2 1/3
2/3 _ (Ze)“(47mn)

which, again, is the plasma parameter relevant to an OCP with

ions of charge Ze.

The canonical expression for y is e¢iven by

1
y = —— (8)
4T
D
where Ap is the Debye distance.13’14 With the latter two expres-
sions we find
’\DZ = _%—Tz (9)
4mn(Ze)

which is seen to be the Debye distance for an OCP comprised of

ions of charge Ze. )

These relations may be cast in terms of a plasma parameter

more common to studies of OCP. It is given by
[ = (Ze)Z/akBT (10)

3

where a” is a measure of the mean occupation volume per ion.

That is,

§na3n =1 (11)

The parallel structure of y and I' is evidenced by revriting (8):




TN o S
i

I; y

S

W 2

e (ze)/a,

f:! Yy = —EB_T_ (12a)
S . 2

:::.: r o= Ze)“/a (12b)
.5": BT

k&

. so that

ek 2 3

iy Yo =3

?_(;_t'

N We may conclude that the previously stated criterion that

o separates weakly from strongly coupled plasmas may also be given
M

;&: in terms of T.

%

it Thus we find that in the limit (4), the coupling and

R parameters of a two-component plasma of electrons and ions of

?O

é% charge Ze reduce to those relevant to an OCP of ions of charge
8

R Ze in a negative background. We may conclude that thermodynamic
@a properties such as intermal energy and equation of state for a
l,;.!

E?t two~component laboratory plasma with Z >> 21‘17 are the same as
s‘:

2 those of an OCP comprised of the same species of ioms.

2 Numerical work of Slattery, Doolan and DeWitt [9] estab-
i lished the following expression for internal energy U for
th .

o the fluid phase of an OCP.

!

. - - -

55 ﬁé%T - ar e brt/E e er Tt e g e ey (13)
X

_ where N is total ion number and

s

R 3=-0.898, b =0.950, ¢ = 0.190,

s::::

8 .. -

oy d = -0.815. & = 0.010

L)
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The Helmholtz free energy, F, may then be obtained through

o integration. Namely,

e
. F(Ty)

F(r) . (T |y ' 1

i R P - A R e (14)
_':l:g;' B l B B
BEAY
,.#,:.‘
5&%- The normalized free energy F(Pl)/NkBT, w1CO Flh-l.was calculated
» employing various contributions over the unit interval. There
o

ﬁr results (in the limit of large N) [9]

\‘!z.,‘i

O F(T) _ 2 174 _ -1/4 . = _

§$‘ NF;T ar + 4(br el ) + (d+3) 1nT (a+4b -4c +1.152)
l".!

R

ﬁi With this value of free energy at hand an equation of state is
;%} obtained from the thermodynamic relation

o

- -|2E

.- (3],

To perform this differentiation we first rewrite I (10,12b) in

explicit form

LR
A MWl

ol (ze)? (4ny)1/3

¥ I = &=L, (222 (17)
X kT |3V

0

" ‘.:;

Eﬁg There results

i ar r

n{; Fy 2y (18)
P "

Yl

Wl Differentiating (l5) we obtain

:l".;“

;55:" L 3F _ 5 4 pr73/8 ¢ opo57% 4 (geyroly 22 (19)
.:.a:‘ NkgT 3V ~ a : ¢ 3V

R
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With (16) and (18) we then obtain

PV _ d . 1 ,=
NT(-B_T l+-3-+-3~(al“+br‘

1/4

+ert/4y

(20)

With the previously stated argument we may conclude that (13)
and (20) are valid energy and equation-of-state formulas for a
laboratory plasma comprised of ions and electrons in equilibrium
at a given temperature and obeying the constraint (4). Note in

particular that for Z=5 (completely ionized boron) 21'17/22

0.26. For Z=13 (completely ionized aluminum) this ratio
becomes 0.12. Thus the proposed equivalence should be valid for
Z>5. It is also important to note that this equivalence is

not appropriate to processes where the dynamics of electrons

come into play, such as conductivity [12].
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\ UNIFIED EQUATION OF STATE FOR WEAKLY AND STRONGLY COUPLED PLASMAS

i+

& Summary

™

g\’, An argumeat is presented which permits a laboratory plasma
)

of arbitrary ionization to be viewed as a one-component plasma.

& In this equivalence, effective ion charge number Z is dependent
A on temperature and ion number-density. The plasma parameter [
, thus gains additional dependence on these parameters due to its
)

f; dependence on Z. Employing previous results for the internal

s

[ . . . o .

5, energy of such fluids gives the following unified equation of

1

) state for a laboratory plasma valid over the interval,
k<
‘? ——
o 0 < T < 300.
‘e

.’,

PV = Nk,T + + U*(T)@l-ﬂ+u*(ﬂe? \Il

‘ B T [TwWC Z ] sC \

k>

"

$ . .

A Here we have written Uéc and USC’ respectively, for weakly and
&

a strongly-coupled excess energy and 9(x) represents the unit

ﬁ, step function. The volume, pressure, temperature, and number
5 of ions in the plasma are written V, P, T and N, respectively.
.“.'

e A numerical plot of this equation as a function of temperature

reflects the shell structure of atoms in the plasma.
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INTRODUCTION

The study of strongly-coupled plasmas is relevant to x-ray

lasing,l inertial-confinement fusion devices,2

the interior of
certain super-dense stars,3 and in plasma-driven rail-gun
devices.4 Studies of strongly-coupled plasmas have, for the

5,6,7 8

most part, in which the

utilized a model due to Wigner
plasma is viewed as ions moving in a uniform charge-neutralizing
background. This model is called a one-component plasma and
carries the abbreviation OCP.

In an earlier work9 a means of comstructing the equation
of state for a laboratory plasma was described which permitted
use of OC results.10 However the consistency of this analysis
required a two-component fluid and therefore addressed fully
ionized plasmas only.

In the present work, stemming from an aralysis of

Zel'dovich and Raizer,ll

the results of the aforementioned
study are extended to a laboratory plasma of arbitrary ionmiza-
tion. The wotrk of Zel'dovich-Raizer permits the plasma to be
viewed as a two-component species comprised of electrons and
ions with effective charge-number, Z. The parameter Z emerges

as an implicit function of temperature T and ion density, n.

Thus the equation of state is found to contain additional

temperature and density dependence in Z as it appears in the

Ay oy &Ry

cffective plasma parameter, T.
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i

-dependent expressions for the
10

The present work employs
internal energy previously obtained for strongly coupled
. (1 < T < 300) and weakly coupled12 (T << 1) OCP. The smooth
connection of these two curves near T = 0.5 motivates the
extrapolation of the strongly-coupled form to the domain
0.5 <T <1 This connecting segment results in a unified
equation of state valid over the entire domain, 0 < T < 300.
Two interesting effects run through the analysis. The

first of these pertains to the form of the effective plasma

parameter

n1/37_ (T.n)

[ = T

For the most part, previous plasma studies did not view Z as
temperature dependent. Under such circumstances, the plasma
parameter grows large with decrease in temperature. However,
in the present study Z is seen to increase monotonically with
T (with steps at ionization shells) and we find an overall
decrease of T with T. The second interesting observation is
that the shell structure of atoms in the plasma is reflected
in the equation of state.

As the analysis is dependent on the details of ionization
energies, a specific material must be chosen prior to numeri-
cal work. The present study addresses aluminum.13 Thus plots
of PV/NkpT vs T as well as T (where P is pressure) are pre-

15 420

=1
sented for n in the range 10 10 cm *. Plots are also

included of Z vs T.

T
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ANALYSIS
Review

Previous Finding

In ref. 9 it was noted that for a two-component plasma

one may write the mean two-particle putential energy as
1/3
> (%g] [1/3 e? - (n /6 ze? + 1/ (Ze)z] 0
\

where n, and n are, respectively, electron and ion number den-

sity. With conservation of charge, n, =Zn, (1) becomes

1/3
V> = [%EJ (ze)? (2)
providing
Z2 >> Z1.17 (3)

We recognize (2) to be the average interaction potential of a
OCP comprised of ions of charge Ze. A key parameter in the study

of strongly-coupled plasmas is the plasma parameter, which with

(2) is written

(470

1/3
<V> ) ]
k

(Ze)2

(&)
BT kBT

T

Thus a plasma is strongly coupled for [ > 1 and weakly coupled

for I << 1_1&

With these observations and employing a previously obtained

expression for the internal energy of an OCP,lo an equation of

state was obtained relevant to the domain 1 < [ < 300.
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Thermodynamic Relations

Prior to generalizing these results to a laboratory plasma
of arbitrary ionization we present a brief review of basic ther-
modynamic relations relevant to a plasma.

An equation of state for a plasma is related to internal

energy in t.c following manner (see Appendix A).

PV _ _U¥ .1 (5)
NkGT =~ 3WkT

where we have set

U*=U-%NkT (6)

Here U denotes total plasma energy and U* "excess" internal

energy. Note that if U* is known, then with the thermodynamic

relation

Q
i

3
3

d5
0
t
|
=

@
-3
<l

-

and (4), we may write

PV _ T 3 F
NEBT -3 3T [N_E—BT}

where F is the Helmholtz free energy. Integrating the preceding

equation at constant T gives, with (5),

r * F(I) - F(Tr )
dr 1] 0 -
[ T (VE_-BT * 3] = Nk, T (7)
T \
0

27




i
3§3 Thus knowledge of U* as a function of T for a plasma gives both
’§?‘ the equation of state (5) and the free energy (7).
'?%' Effective ionization
g&s As noted in ref. 11, a plasma in Saha equilibrium at a
R given temperature is characterized by ions of effective charge
?i eZ, where e is (positive) electron charge. Thus, the results
Zd; of ref. 9 carry over with Z replaced by an effective ion charge
. number, Z. Specifically one may write (1) with Z replaced by
;%é Z and again we find reduction to (2) relevant to an OCP, in the
g%ﬁ domain (3).

B The ion-charge number, Z(T,n) is obtained in the following
t%f manner. First the discrete ionization energies, I(Z), as a
éx& function of degree of ionization, Z, are connected by line seg-
‘g: ments, such as depicted in Fig. 1 for the case of aluminum.l3
-Eg This gives the continuous function T(Z). The function Z(T,n) is
#&S then obtained by solving the following implicit equation, which
! stems from the Saha equation as well as counservation of charge,
P

X 3/2 T|Z + -%
t;é 7 = AT exp - T (8)
;; where A = 6 x10°1 em™3 ev™3/2 4and T is in eV. In the present

$4 work this procedure for obtaining Z(T,n) was carried out again
—~ for the case of aluminum. Results are shown in Fig. 2 for ion
3 densities (10°° - 10%9) cm™3. |
:33 The plasma parameter 7, as given by (4), now includes addi-

tional temperature and density dependence through Z(T,n). That

A is,

28
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4 . 1/3 _

, - L"—gﬂ} (Z(T,n)e]?

' = ~F (9)
. kgT

IQ;‘

ﬁ‘ A plot of this parameter vs T is shown in Fig. 3.

N

‘;f‘

Equation of State

Ordinarily for an OCP, U* =U*(r). To incorporate our

U

o

2 findings as described above in an equation of state we write

i - - _

B U* = U*(T), where T is given by (9) with Z determined from (8).
e Thus (5) becomes

)

Sa .

X PV_ _ UN(T)

B Nk,T = 3NT © 1 (10)
“w 12

RN In the weakly coupled domain (T < 0.53), U* was obtained “ as a
i

% function of ¢ = /3 T3/2. Converting these results to a

"

. r-dependent function gives

: Uyre (1)

3 WC 3/2 3 3 9/2 9/2

g:‘ T alr' + bll‘ InT + Cll" + dll‘ InT + elf (1la)
i

2& In the strongly-coupled domain,9 over the interval 1 < [ < 300,
l'..

‘ﬁ we have

L,, U*

B sC . ~1/4 -1/4

‘::‘ w azl‘ + bzx + CZF + d2 (11lb)
)

3

o Constants have the following values

Wy

Y

i

A )

"

oy

X

29

. l - - LA P S R A R A P I S T B T B AT NP R A L Y P - -
:ltlr R 3SR "r'ﬁ“ NI, AN I o Y O T Y Bl L
AN AN IR ALY l’-\‘-‘ﬂ-_'\k'\‘.,‘,”.. ':‘J.\?“s,‘l‘g. Lt T ARy } ‘)- ) ! \ niw A



T

- PR

op " e et

o e

v g e e m e

- -

RO
'.-"'?v “{i

a; = -0.866 , b1 = -1.125 , ¢, = -1.102
d, = -2.923 , e, = 0.243

a, = -0.898 , b2 = 0.950 , Cy = 0.190 ,
d2 = -0.815

Inserting these results into (10) gives two equatioms of
state relevant, respectively, to the two said domains. Numeri-
cal plots (see Fig. 4) of these results strongly suggest an
interpolation insert over the interval 0.5 < T < 1, given
namely by the strong coupling form (11).

With this interpretation at hand one is able to write a
unified equation of state valid over the whole interval,

0 <T < 300. Namely,

BV = Nk,T + % [u;jc(ﬂ 9 {% - ?] + vk (Mo [T - %H (12)

where T, Ugc and Uéc are given respectively, by (9) and (11),
and 9(x) is written for the unit step function 9(x) = 1, x > 0
and zero elsewhere.

In application of (12) ome should recall that T is
implicitly dependent on T and n through its dependence on Z
given by (8). A numerical plot of PV/NkBT vs T obtained from
(12) is shown in Fig. 5. Note that the shell structure of

atoms in the plasma is reflected in this equation of state.
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CONCLUSIONS

A unified equation of state was constructed for a labora-
tory plasma of arbitrary ionization. This was achieved by
introducing an effective ion charge-number, Z(T,n), obtained
from the equations of Saha equilibrium. This form of Z was
then used to obtain a generalized plasma parameter, T(T,n).
Employing this value of T in previously obtained expressions

for internal energy, and effecting an interpolation over the

internal % < T <1, gave a unified equation of state over the

total interval o < T < 300 for effective ionization z2 > 7+
It is important to note that the equivalence between a labora-
tory and one-component plasma described in Section A.l is not
relevant to processes where the dynamics of electrons come into

play, such as conductivicy.15
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Appendix A

In this appendix we wish to derive the relation (5) rele-

vant to an OCP. First we recall the statistical mechanical

relations16
WCT T 2t IWgT  w(fe(menciar (A.1)
PV N .0 3
=] - jou'(r)g(r)arnrdr (A.2)
Nk, T BVELT /g

In these expressions, g(r) is the radial distribution function,
and u(r) is the two-particle interaction potential. Let us

assume the form

u(r) = at ® (A.3)
where a and s are constants. Inserting the derivative
' = - 83
u'(r) -
into (A.2) gives
Fo 2
NEXT =1 + EéELT ;7 u(r)g(r)bsrmrdr (A. %)
B B* ©
which may be combined with (A.l) to give
\
PV s U 30 4
WT " 3 [w— -7 ¢ (8.5)

For the Coulomb interaction, s=1, and (A.5) returns (5).
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{f REVIEW OF ELECTRICAL CONDUCTIVITY IN PLASMAS

~:- Summary

’:

v'..‘

b A review of studies of electrical conductivity in a plasma
p is presented. A brief description of domains and parameters of
s

. plasma physics encountered in studies of conductivity is

L included. An historical account of conductivity calculations
) is given and it is concluded that ome such study is most rele-
!

P # . ) . .

. vant to conductivity in a strongly-coupled classical plasma.
)

1 ) : , :

1 Expressions and numerical results stemming from this study are
N included.
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! Introduction
?
)
) The main thrust of this report addresses state-of-the-art
b3

studies of conductivity in a classical strongly-coupled plasma.
Preparatory to this discussion, in part II of the report,

plasma domains are introduced and various important parameters

. are discussed relevant to the natural separation of these

g domains. A brief description of the fluid picture for a plasma
o

R is included as well as a discussion of domains relevant to the
&

' case where a magnetic field is present.

R In part [II various plasma models are introduced and a

N )

discussion of Saha equilibrium is included.
Ay ]
D)
Part IV presents a brief historical review of electrical

)

N conductivity calculations for a plasma.

L

'2 In part YV formulas and results orf numerical evaluation

o

for electrical conductivity are presented. Values of electri-

. .
) . . .

X cal conductivity as a function of the plasma and compression
‘A

E parameters are given in a table at the conclusion of the report.
1)

A

9 Plasma Domains

ﬁ

W Parameters

4o s . - .. . : 1
3 Physical domains of a plasma divide into four basic areas
N as depicted below.
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The parameters in the above inequalities are defined as

follows. The quantum degeneracy parameter A\ is given by

AQ =n)\d3 (1)

where n is particle number density and

\F = T—Eé—— (2)
d M BT -

is the thermal deBroglie wavelength.
Thus, in the quantum domain 1\, > n /3 and che deBroglie

wavelength is of the order of interparticle separation.
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The plasma parameter

o R e e S

; (3)
(Ana3/3 = nil)

is a measure of the ratio of mean two-particle ion potential to
particle kinetic energy. Ion density is written n,. When

T << 1, mean kinetic energy dominates potential interaction and
the plasma is weakly coupled. 1In the limit I' > 1 mean potential
energy begins to dominate and the plasma is strongly coupled.

For extreme potential dominance, T >> 1, and one expects the

5
4 medium to undergo a phase change.“’3
b The quantum parameter FQ is defined as followsl )
: o .
QT T (4)
; 6ﬂnATF
)
where
k)
SR (5
A =
‘ TF 67ne2
‘ 4,5

is the Thomas Fermi length, ™’ Ep is the Fermi energy and : is

‘ the dielectric constant of the medium. In the weakly coupled

| degenerate domain FQ << 1 and densities grow so large cthat
kinetic energy due to the uncertainty principle dominates poten-

1 rial energy.6

¢ Fluid Picture

’ The plasma Zraquency is given by (in cgs)

. 2 (6)
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Let v denote the dominant collision frequency of plasma con-

stituents. When

NS
y Wy (7)

collisions tend to diminish collective plasma behavior and fluid

7,8

behavior ensues. This situation is depicted below.

Plasma

|

| l

w, 2V ‘ v o>> w ;
Collective i Hydrodynamic
behavior ! picture |

Magnetic Domains

If a magnetic field B permeates the plasma then additional
criteria come into play. We recall that a free particle of
charge e and mass m undergoes circular motion in a magnetic

field with frequency (cgs)

_ eB
Q = 3 (8

If plasma particles suffer collisions at frequency v, then at
v >> Q, the circular magnetic motion is lost to collisions and
if further v >> wy the plasma is fluid like.

If an electric field E is also present then with Ohm's

law (cgs)
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where o is charge density and ¢ is the speed of light. We may
conclude that for oE >> JB/c the plasma is nonmagnetic. These

criteria are listed below.

Plasma}
B#0 [

s !
l R -'1\ B
. Orbital | % Fluid ! 1 Magnetic }? Nounmagnetic
oA Hﬁ v >> i | JB/c 2 cEl) JB/e << 2E |

As previously noted, a plasma with a magnetic field is

fluid-like for v >> w_,2. If, further, JB/c > oE, then we may
term the plasma magnetofluid dynamic. Plasmas with v > {& are
typically termed magnetohydrodynamic (MHD).9

An assortment of waves may propagate in a plasma in these

various domains.lo‘ll'12

Fluid Picture and Transoort Coefficients

In concluding this section we estimate cthe conditions

j under which a piasma is fluid like with respect to specific

rransport processes. (n making this estimate we recall that




different collision processes pertain to different transport
coefficients. Thus, for example, in calculation of viscosity

. , , . . 8 . }
in a plasma, ion-ion collisions play the major role. For this
case we take the magnitude of the Coulomb ion-ion cross section

to be

oy = 71(ze) kT = v rdaf (10)

This gives the mean free path

~
{

l/nzoii (1)

and collision time

i

. = z/rkBT/M (12)

where M and n, are mass and number density of cthe ion species.
Combining these relations and recalling (3,6) we obtain (with

n =-an)

2.2 16 M 1
BT T mz :3' (13)
We may conclude that for calculation of viscosity, a fluid pic-

ture is appropriate for

P> 21.6 (a/)t3 (14)

where A is atomic mass.
For evaluation of electrical conductivity, electron-ion
collisions dominate8 and wve write
/,
_ ) 722e4 (
Yei T 2

(kaT)

b
wn
'

and
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when atoms are stripped of all electromns leaving bare nuclei

and electrons in the plasma.

Saha Equilibrium

The equilibrium state of a laboratory plasma is described

by the Saha equation15'16'17
n, ] 2u, exp(-AEZ/kBT) .
fz.1 Yz-1 N
e d

We have written n, for the density of ions of charge eZ and
AEZ is the ground state ionization energy for the transition

Z-1~+ 2. The electronic partition function u, is given by

( .
% (1)
u, = B o (1) oy | °z (20)
z 7~ .z, 8z P -
1=0 BT
\ J
/s .
where g%l) and Eél) are, respectively, statistical weight and
th

excitation energy of the 1 excited state of the Z ion. The

series (20) terminates at the value i* corresponding to orbits
whose radii are comparable with mean distance between constitu-
ents of the plasma. It has been demonstrated by Zel'dovich and

17

Raizer that for a majority of ions, the ground-state term in

(20) dominates over the remaining terms. Thus (2C) reduces to

Ny, 2géo) exp(-2E,/k3T)

- , (21)
(0)" .3
-1 gz-1 Te 'd

n




(16)

In this latter expression we have recalled that it is the

'target’' ion demsity which is relevant. There results

22 16 M 23 ,

wpt -Taj \l

L

~4

)

Thus, for a fluid picture to be relevant for electrical conduc-

tivity one must have

1/3

r > 21.42A (18)

The inequalities (13) and (17) follow from the fluid-picture

criterion (7).

Plasma Models

CCP? and Other Models

A model often employed to describe a strongly coupled

plasma is the so-called one-component plasma, which carries

the abbreviation, OCP. This model is comprised of ions moving
A

in a charge-neutral background. It was conceived by Wignerl‘

to study phase change to the solid state. An extensive review

L4 rhis

of the physics of an OCP has been given by Ichimaru.
model is often employed in the study of strongly coupled
plasmas.

The simplest laboratory plasma model i{s that of a fullv-

ionized or two-component plasma comprised of electroms and ions

of charge Ze. This situation is approached in the limit of

very high temperature (kBT > 1 IZ = atomic ionization energy)

Z ’
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This equation indicates that in an actual laboratory plasma
B at finite temperature, all ionic species of atoms are present
1

- at varying relative densities.

y Historical Review

; Earliest expressions for electrical conductivity in a

20 21

plasma are due to Spitzer and Harm

and Braginskii. These

results are relevant to a fully ionized nondegenerate weakly-

- ek v e

coupled plasma.

. These findings were improved upon by Rogers, DeWitt and

s]
Boercker‘2 in a study of electrical conductivity in a partially

1 ionized non-degenerate plasma. In this calculation the authors

23,24

employed a Chapman-Enskog expansion (with Sonine poly-

nomials) of the Williams—DeWitt25 kinetic equation. Scatter-
ing from electronic shells of ions and neutrals was treated

using effective interaction potentials developed by Rogers.z6 -

R We note that the Williams-DeWitt equation is the standard
Boltzmann equation with quantum corrections entering through
the scattering cross section. It is sometimes called a

Balescu-Lenard equation due to shielding structure included in

the interaction potential.
N
</

In the work of Boercker et al. a plasma collision fre-

4

! , . . . 28,29
g quency is developed which correctly reduces to the Z1rnam"8

E)

K
iy and B8alescu-Lenard?’ results in appropriate limits. The Ziman

formulation considers a strongly-coupled degererate plasma at

A
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The work of ref. 27 is a generalization of Boercker‘s30

in which a t-matrix formulation of the Kubo formula31 is

employed to calculate electrical conductivity.
Working with the Uehling-Uhlenbeck quantum generalized

Boltzmann equation Lampe,33

in an early study, employs a
Chapman-Enskog expansion about the Fermi-Dirac distribution
to calculate thermal conductivit’, «, which may be related to

mobility, u, through the Einstein relation

ex

W nEBch

Here we have written c, for specific heat per particle in the

plasma.

34

Lee and More employ a Krook-Bhatnager-Grossz3 equation

to calculate transport coefficients in a plasma. This technique

depends on knowledge of the relaxation time which the authors

calculate working with the Fermi-Dirac equilibrium distribution.

Electrical Conductivity

Strongly Coupled Classical Plasma

The most relevant expression for electrical conductivity

in a strongly coupled quasiclassical plasma among those

described in the preceding section, appears to be that obtained

by Boercker et al.%7 1t is given by
2
3 = A(T) emvn
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where I, the plasma parameter, is given by (3). With

3 = (kBT)'l, the collision frequency v is given by
2.2
3 -3%°k“/8m
o (s 13/2 o dkk”e ug; (k) (k)
37 LZ‘Tm) Jo ‘:(k,O) (23)

[Sae (kIS (k) = S ()8 (k)]

A closely allied expression for v was obtained by Baus et 31.35
In (23), Sab(k) is the (dimensionless) dynamic structure factor
relevant to the two components, a and b. The electron-ion
Fourier transformed potential is vei(k) and the Fourier trans-
formed generalized potential is uei(k)' These potentials have

dimensions of energy x volume. The transform uei(k) satisfies

the relation
Uab(k) = —cab(k)/s

where cab(k) is the Fourier transform of the direct correlation

function.36’37 The factor A (I) in (22) is a correction factor

to account for the fact that v as given by (23) is equivalent
to a single-Sonine polynomial approximation.

A rough estimate of (') is obtained in the weak-coupling

limit which gives

11/3
‘ 1.93 .uD (377/2) -

-
ém[‘37"\

24

—
-
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(Recall that in cgs units o has the dimensions of frequency.)

The function A is given by

2,2 u_. (k)
. =1 .= -3h“k"/8m ei .
Az = [T dke K —2 s, (k) {25)
4re” C te(k,o0) | 1t \

In the Debye-Huckel limic one obtains

-

A = el/o E, (L/a) - 5 el/2° E, (1/20)
(26)
1 1
-3 (Ina-y=-1In2) = 5 (lnx-1.27)

-

where

8m

3 = ——
Sﬁ“kD

El(x) is the exponential integral and v is Zuler's constant.

Numerical Results

Numerical evaluation of 1 given by (25) was performed

using direct correlation functions and structure factors from
solution of the hypernetted chain equation (HNC).3/ With these
values of A inserted into (22,23), numerical integration for

o/w, was performed27

1,6,36

at two values of the compression

parameter

= !~
rs = a/,o

where a  is the Bobr ru.u.ius. Values of J/up stemming Irom the
Debye-Huckel result (26) were also obtained. These values ara

listed in Table 1.
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a Table 1. Value of conductivity at varying . and r
5
Yot

b= 16.2 14.6
.0 12.7 11.9
A 8.61 7.69
0 6.16 5.77
A 5.33 4.52
.0 3.36 3.12
A 4.13 3.55
0 .07 1.87
b 5.29 4.88
.0 .13 1.88
- 12.3 11.6
0 .72 3.11

.05

l,
L
Q O
—

o
3
— (&) (@)
o w
O OO OHHOFHO

[US T NS B

59

0 3 r - - LY B4 'y - oy o Yy, L . - "\--" ) A o PO
Ar.gd”5‘0)4:.‘"0““.‘_" ’.‘,;J,‘.,"‘ P Hey -!‘4-(' oL .‘;‘ ‘\- Y '-_(‘-.r:'z”f. -:‘2(:’_!:#.\_(._4‘.,1._- - LU/

(e X5 - LA LAY LB Y



e ST Ty e e e o
\ai Aoa Ad- L2 OO YT v
P’!,W'Kr‘. 2 Hed med SaZ 222 ash Bar pal el b Sac T Sl e Ay e dai dao di ot i aal i
Al

4

-
Enly
St ,
e Conclusions
1
&% A review of studies of electrical conductivity in a plasma
]
o)
\B .}) ) . 3
has been presented. The report began with a description of
1% p g P
URA X
Ok domains and parameters of plasma physics common to such studies.
i p P P
Jhal
&’ An historical account of calculations led to the conclusion
W\
'. '.. I3 . I3 -
that the formulas most germain to conductivity in a classical
e
e strongly coupled plasma were those obtained by Boercker et al.27
Gy
Sy s , . . .
ﬁ.{ These findings were reported in section V concluding with a
Sy
AN
list of numerical results given in Table 1.
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NONLINEAR ELECTRICAL CONDUCTIVITY FOR STRONGLY COUPLED PLASMAS

Summary

A nonlinear analysis of electrical conductivity in a plasma
is given stemming from the Uehling-Uhlenbeck equation. Aniso-
tropy due to an applied electric field is incorporated through
a Legendre polynomial expansion of the distribution function.
The plasma is comprised of ions, electroms and a neutral compo-
nent. The electron-ion interaction is described by a shielded
Debye potential at high energy and a cut-off Coulomb potential
at low energy. A nonlinear equation for the distribution func-

tion is solved and yields

3 1
for (x) =
SL 1-+BeAEx;
for the symmetric part of the solution. Nondimensional energy
is x, B is a normalization constant and A(x) is an explicit
integral dependent on the electric field and specifics of the

interaction. Resulting nondimensional conductivity 3, is given

by
. p.3/2 agzentE '
9=3(F o b B0 & (5! 9%
59
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where Z is effective ionization, ac is the ratio of charge to
total heavy-particle density, Q is dimensionless, weighted

cross section and AQ and FD are quantum and plasma parameters

respectively. Application is made to an aluminum plasma and

plots of conductivity vs electric field are obtained. These

plots exhibit three distinct regions. With increase in field

strength thege are: Obhmic, Coulomb-dominated and neutral-

dominated.
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? . Introduction

W

3 Previous kinetic studies of electrical conductivity in

g plasmas have, for the most part, involved linear theory. Thus,
y for example, approaches based on the Kubol’2 formula involve

2 linear response theory; those based on a Chapman-Enskog expan-
‘% sion employ a linearized collision integral in the Boltzmann

ﬁ equation;3’A whereas others start with a linear equat:ion5 such
: as the linear Krook equation,6 or the linearized Fokker-Planck
§ equation. As a consequence, such analyses can obtain expres-
g sions for current which, at best, are linearly dependent on

" electric field.

§ The present non-linear analysis begins with the Uehling-
E Uhlenbeck8 quasi-clcssical kinetic equation. A Lorentz expan-
’ sion9 of the distribution function in terms of Legendre Poly-
ﬁ \ nomialslo'll’12 is employed to account for anisotropy in the

i distribution function due to the presence of an electric field.
| The analysis addresses a three-component plasma comprised of

: electrons, heavy ions of arbitrary iomization Z, and neutrals.
% These latter two components are assumed to be in equilibrium.
; The interaction between electrons and ions is described by a

E shielded Coulomb potential. It is found that the presence of
5 the neutral component inhibits over population of the tail of
; the distribution funstion, better known as the ‘runaway

3 effect'.13

b

«

- "

-
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oy Two key parameters which enter the analysis are the Debye

plasma parameter Ty and quantum degeneracy parameter, Aq.l4

Thus when I'p 2 1 the plasma is termed strongly coupled and when

Wy

i Aq 2 1 it is degenerate. The present .urx bridges the quasi-

}; classical (AQ = 1) and classical domains (AQ << 1). Further-

%% more, apart from the assumption of a specific interaction poten-
&E tial, the analysis should prove valid in the strongly-coupled

o

.~ domain as well.

Y

$§ A nonlinear equation is obtained for the symmetric part

%& of the distribution and solved exactly. In the limit of zero

o electric field the total distribution reduces to the Fermi Dirac
éﬁ distribution. For small-electric field it gives the displaced ‘
%33 Fermi Dirac distribution. 1In the classical domain it returns

é” the Druyvesteynm distribution.lo'15 '
sé Integrating the total distribution function gives a closed
%g expression for conductivity as a function of electric field.

rf Numerical integration at constant heavy-particle temperature,

e

fﬂ density and ionization, yields conductivity vs electric field

%ﬁ for various values of ion density. For reasonable charge den-
fﬁ sities three distinct regions are evident. At low field values
l#ﬁ Ohm's law is obeyed. At intermediate fields the conductivity

;mj rises due to effects of the Coulomb cross section. At high

iﬁ?. fields the hard core potential of the neutral component domi-

?'. nates yielding the familiar EL/2 £all off of conductivicy. -8
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Analysis

Starting equation

Our starting equation is the Uehling-Uhlenbeck quasi-

classical kinetic equation.8

appropriate to a plasma comprised
of electrons, ions and neutrals. It is assumed that ions and
neutrals are of the same mass, M, and are both in equilibrium

at the temperature T. These equilibrium distributions are

* given by
Folyp) = acF,(yy)
(1)
H FN(Yl) - aNFo(Yl)
i where
N
3/2 -Mv"/2k,T
F (vy) =n M e ! B (2)
o''1 othEBT -
and acn, and ayn, are ion and neutral number densities respec-
A tively. With ay+a, = 1, n, represents total heavy-particle
4 number density.
4
{ With these assumptions our starting kinetic equation for
the electron distribution function, £(x,v,t) is given by
3 f 3f . €E  5f _ 3 3
STtV st = e Jc(f,FC) + Jy(E. Y (3)

where E is applied electri~ field and m is electron mass. The
17)

S Y T W

collision integrals are given by (in Boltzmann notation
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Ji(f.F) = f[f'(l—if)Fi- f(l-&f')Flloingdyl (4a)

L e o o e g

where
£ (2mh/m)>, g = |y-v| (4b)

and F denotes either FC or Fy and o4 is the corresponding elec-
tron heavy-particle cross section. Inserting (l) into the RHS

of (3) gives

J(F)

I+ Jy = JLE'(1-66)F)) - £(1-££')F JogdRdv, (5)

Here ¢ represents the composite cross section
+
G = ac0s + ayOy (6)

Combining (5) and (3) gives our starting kinetic equation for
the subsequent analysis. We will apply this equation to an
equilibrium homogeneous plasma for purposes of calculating elec-

trical conductivity. There results

8.6
QJ
rn

= J(f) )

&

with J(f) given by (5).

Lorentz Expansion

To account for anisotropy in the distribution f(v) we

expand it in Legendre polynomials as follows.

v

E(v) =

o1 8

P,(u)E, (V) (8)

=0

where

(9

o
1]
<.
[}
HT >

1, U ¥ J
' "‘i“","i?l')’l”n,z V4
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and hatted variables are unit vectors. Substituting (8) into

the LHS of (7) and keeping i=1 terms gives

”n

3

o

P df 2f df
"39{371*71]*"13%’ (10)

Q)
¢

Substituting the series (8) into the RHS of (7) we obtain
J(fo-+ufl) = J(fo) + AJ(fo,fl) (11la)
where

AJ(fO'fl) = r{[u'fi(l-ifo-iufl) - fé(iufl)]l’él
(11b)
- [ufl(l-ifé-iu'fi) -fo(Eu'fi)]F01}ng9dY1
[Note that fl==fl(v) whereas FOl = Fo(vl).] With

2 m

< P ——
€ =

m+M
taken as a parameter of smallness we find (see appendix A)

Fl

o1 = F

o1 * 0(e) ,

v' = v + 0(2)
Keeping terms of leading order, (llb) becomes
AJ(E,, ) = ngfy | (u'-u)cgde (12)
With
Q(v) = [(l-cos 3) 3(v,9)dQ (13)
the preceding equation becomes, to this same order (see

Appendix B)
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R,

S

3 J(f_,€,) = -n_f 4

i:,::‘ AJ( o’ 1) -nO luVQ (1 )

'a:;:i

pR Combining (7, 10, 1l and 14) and equating coefficients of like

w Legendre-polynomial degree gives |
L U |
By |
«,’_l,s'

e %% [33-+ VI] = J(fo) (15a)

o

1*29‘&

R, df

i =52 - i s

- We note that (l5a) may be rewritten

e B oA ¢hEp = I (16)

the

Integrating v in this equation over a sphere of radius v we find

RIS
LR AL

i“rr‘;-@ szlm = 1(%) (17)

R where

ERN ) -~ - g \; [ 1 ' 2

RO I(v) = J{fo [£5(1-€f )F)p - £5,(1-5£)Fq, JogvTdvidade dv, (18)
;Q‘.' and-

- w2
.!h'i' dY \' dVdQv

o Evaluation of I(V)

5 As is shown in Appendix C, I(v) may be reduce? to the form

_— (to leading order in <)
B o= Y e (lge 2491 dadn,d (19
- ! I(7) =j fJ,; O( ‘;fo)FOlOSV V. Q QV Yl )

- 4 1
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y where

Av =y ¢ (g-8") (20)

We concentrate on the integrand of (19)

€2 £ (1-£f))Fy o8V’ (21)
With the observations-
V<v< v o+ oAy, Av = 0(e)
we expand
df (v)

= £ (v) = £ (V) + (v-V) ——3——~

0

df (V)
6 = f (v ) = ¢ (v) + (v'-v) -—3———

and obtain, to leading order in ¢,

) . df (V) . dE (V)
= Wlfo(v)[l-EfO(V)] i, = —  * V3Efo(V) — (22)

where wi(g.G,a,yl)are known functions (see Appendix D.)

Writing (18) to leading order in ¢ we find

df dfo
I =1 f (1- gf )+ I7 TT— 'f v (23)
where
VAV
Ij z jf& wjddeVdﬂdyl (26&)
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'}$ Following a technique introduced by Davydov11 we concentrate on
U
% Iy

a‘-; - v+Av -~ -~ ~3
b I, [fv (V-9)Fy, (V)0 (V,8)¥ dvda dady, (25)
N

Integrating over v and noting the equality
z‘ -8

b}
:X“, 4
~-¥; j

{where T is the unit tensor) we find

1<)

1Yy dy =3 [dyy

R 1 - 2

s y33
W I, =5 [ v{" (l-cos 9)Fy; (v )a(v,3)v7da dady;

?y With the distribution (2) we note that

[For(vp)  Mv)dy) = 3 ngkgT

X which gives

n_ k,T
& PR (26)

o It is evident from (18) that I(v) depends on E only through
WO

hﬁ: its dependence on fo. However we see that Ij as given by (23,24)
l"g’ A\

do not depend on fo. Wicth this observation we evaluate I, from

i 3 17) by setting E=0. We choose fo(v,E) at E=0 to be the Fermi
)

&¢ Jirac distribution

.;‘:;:. fO(V.O) = — 1 >
;::,:.: £+ B, exp(mv”/2kgT)

(27)

R vhich has the properties

N IR

1'"‘ . . .-.(-4-.(;-."4-.-4'/-"-','-“1" 4\(".'*&*
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dfo(V,O) v
—v— = - EET (l-ifo)fo (28)

Furthermore, fo(v,E) is normalized by

i EOARVZdv a n (29)
0

where n is electron density. With this distribution at hand we

obtain

1 " T 2 I =0 (30)

Inserting these values into (23) gives the result

. 4mn_ v Q(v) r df |
I(v) = q lme (v)(1- gf, (Vv)) + k g7l :;— (V) (31)
L

With I(Vv) thus evaluated we return to (17).

Equation for f(v)

Combining (15b) and (17) gives
v df,

?J mw‘ I(\:') (32)

Inserting (31) into this equation and introducing the dimension-

less energy,

2
mv

BT 2

gives, after some reduction, the nonlinear equation
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df
8 [x+s(x)] =2 + xf_(1-£f) = 0 (34)

- where

-1 M
R *FF a (30T (35)
Ml Integrating (34) we find

k;'l - 1
U fo(X) (36)

" where

o x __x'dx'
v A(x) '(o FAETIC3D) (37)
}Q First note that (36) and (37) give
dfo <
Ix T "o (U, (38)

J% which is seen to reduce to (28) in the limit s=20.

‘ With (38) and recalling (8) and (15b), we obtain the
b total distribution function

L E(x) = £,C0 (L-ul6es () ]H2 Ees (1-5£ (O 1) (39)

X+s (X

It is convenient at this point to introduce the dimensionless

e dist:t‘ibut:ion]'8

- 1
for(x) = € (x) = (40)
SL o 1-+BeAEx;

o]

Mg where B = B/

42

This distribution has the normalization ’
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( YSL(x)xl/zdx = %;-AQ (41)
where

‘\Q = nkd (42a)

T (42b)

14

Note that in the classical limit, £+0 [see (4b)] and fSL(x)

10

goes to the Druyvesteyn distribution. For low electric field,

from (35,37) we see that s =0, A(x) =x and (38,39) return the

displaced Fermi-Dirac discribution.19

Conductivity

Calculation of Q integrals

Employing the distribution (39) gives the current density

(after an integration by parts)

3w £ |8 2 kBT 2 d -
o o)

r X 5
J=5E |2 N @) Fop () dx (43)

Evaluation of the integral in this expression demands knowledge

of Q(x) as given by (13). Inserting the composite cross section

(6) into (13) we find
Q = [{L-cos 3) (2,00 + ayoylda (44a)

or, equivalently,

Q = Qe + Qy (a4b)
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gt
f@* where Qc and Qy correspond to the charge and neutral components i
Wy
{i of (44a), respectively. For QC we employ the results of Liboffzo
o for the high-energy domain and those of Chapman and Cowling15
i -
; relevant to the low-energy domain. In the [lirst of these cal-
7; culations the electron-ion interaction potential was taken to be
s 202
Y V(r) = == exp(-t/Ay) (45a)
: T D
)
]
2.
e where the Debye distance AD is given by
R X
} -2 Awacn e2
: A = 2(Z+1) (45b)
~§:: D T kgT
43 In the low-energy calculation the potential was taken to be
!::s' Zez
..i ) V(r) = —r- ’ r < I\D (46)
".. .
z' and zero for r > A\y. Related cross sections are as follows.
M
%ﬁ We introduce the dimensionless cross section
g |
" Q = 7423 N
i
) where
t":
2
" A ze”
A k B T
5
Y
;ﬁ is the so-called ''distance of closest approach.'" Litoff's
o result may then be written
"a?
o
!t x ac 1, 2X - ,
P Q = = |ln == + 3 (48)
fon c.L” 2T ]
e ::ln2 -v- 3
L3¢ Y - -
o
l;h
o 7o

-y > [T LY oM DI P N : I T T R e D S N g o RN T Y .'-1\". L. _‘\{ et
i o X " b} » 1 A < L o, - . XN g1 “ '(}ﬂs- CANYT Ve
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"
o o v}

TS T F

where vy is Euler's constant and

r

L
D 15

is the conventional plasma parameter. Chapman-Cowling's result

appears as

~ ac 2% 2
QC,C~C = 5;7 In|l + TB (49)

A smooth interpol-icion formula bridging the two results (48,49)

is given by

a 2 4 1
Y C
QC.T %1n[1+[§—’5]J+81-exp -)—{T (50)
X D r
D
See Fig. 1. For x > Ipo (50) gives 6C = éc L whereas for
x < Ip, it gives Q. = QC,C-C'
Lastly for QN we set21
(aao)2
= 51)
oy = — (

where a is a pure number between one and six and a, is the Bohr

radius. For example, for Al, a = 2.4. With (51) we find

——J (52)

Substituting (50) and (52) into (44b) gives the desired com-

posite Q.
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With (47), the expression (35) may be rewritten
2 . -
E -
4 o]
?7 where the characteristic electric fiela
: 2
. n TATk, T
E - 6ém 0 B
: Eo T (54)
N
: Furthermore we note that the parameters TD and AQ may be con-
i; veniently written in terms of the Bohr radius, a, = ﬁz/me2 and
ki
ﬁ; Rydberg, R = ez/Zao.
y 02 2 dra 23(z¢1) (na ) | 2R (55a)
b D "C 052 [kBT
4
.4
3
. ~ N A
\ 2 _ 3.2.,2 311 2R |7
g = enalz [noao)- 5 J (55b)
:1:
B These forms give
2'; 12
%k noag - éﬁ%;ll.i% (56a)
5 27 “a r
!?15 C D
4 3 2
L koT A
gt‘ { B - 2 4 2
o '71_2-} = 2 (Z+1) '—QZ (56b)
D \ fp
" with these expressions at hand Eo as given by (54) may be
‘W .
W written
.::
%
. :
A
. 74

e i M

e AT RO TN Ty T b T O N N S e N e G S LT e L n D
R BRI AT A N A s e N SR OO R RO B X e R O e



E 1/2 v1/2 ,5/3,. 1/3 A
o . 3 o 27 "(Z+1)
=% - s [MJ 2 G (57)
ao 2 " C 1D
2 9
where e/ao = 5.14 x 10° V/cm.
Evaluation of Conductivity
Rewriting (43) in the form
J = cE (58)
and setting
g = c/wp (59
where
2 _ aTraCnoZe2
mp o
we obtain
1/2
3/2 a~(Z+1)
-1 2} C ® d [x
g = £ S [T Ty (%) (r] dx (60)
’3‘[1: 17D ¢ SL dx |§]

where ?SL(x) is given by (40) and 6 by (46b), (50) and (52).
Note that o as given by (60) is a function of E, Z, a-, ng and T
where, we recall, T is heavy-particle temperature. We apply
this formula to an aluminum plasma with n, = lO20 and kBT = SeV

for which Z = 2.5. With these values, (57) gives

E, = 8.97 x 10* V/em. Takiug a = 2.4 in (51) permits evaluation

-~

of o as given by (60) with a. a free variable. Numerical plots

of

Qe

Vs (E/Eo) for these values at a. = 0.1, 0.5 and 0.9 are

shown in Fig. 2.
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o . .
el Three regions of behavior are apparent from these curves.
W Tt

\b‘«“. “ . . |
o For low electric field the curves are seen to obey Ohm's law. !
‘ y
o At E = 0.1E  nonlinear effects due to the Coulomb cross section
:‘;..‘l ¥

' . . . .
jﬁ? come into play which are evidently more prcuounced for higher
RO
W, ion density, acn,. At E = O.3Eo the Coulomb cross section gives
}QQ way to the cross section of the neutrals resulting in a E'l/z
e fall off of conductivity.
R

vy

‘ Conclusions

e

o . . . 3 . . .
ﬂﬂ? Starting with the Uehling-Uhlenbeck quasi-classical kinetic

07 F)

:ﬂﬁ equation we have addressed the problem of nonlinear electrical
]

. conductivity in a plasma comprised of electroms, iomns and

‘aryat

gty . . .
{Mi neutrals. A Legendre polynomial expansion was introduced to
B\

AOAD . . , . .
'&? account for anisotropy of the electron distribution function
A

- due to the applied electric field. An interpolation was intro-
o pI P

b ) .

éﬁ’ duced to bridge the low and high energy components of the

Yy

BRI, . . . .
ﬁﬂn electron-ion cross section. An exact solution of the resulting
B equation for the electron distribution was obtained which was
%'- found to go to consistent limits in the classical and quantum
LAY

d A . . . . ; ..

e limits. With this distribution at hand an explicit formula for
aﬁb electrical conductivity was obtained in terms of E, Z, ac, 0
4 .

() . I . .

&?‘ and T. Numerical plots of conductivity vs electric field for
W,

i a specific case of an aluminum plasma at varying vaiues of ac
;ﬁﬂ were obtained. These curves revealed three distiact domains of
3

' l'.
gﬁ{ behavior which were associated with various components of the
s |

R crToss section.
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Appendix A

In this appendix we wish to justify the relations pre-

ceding (12). With

2 . _m
€ = ¥+

the center of :z2ss velocity is given by

-~

¢ = cly+(l-edyy;

With relative velocities defined by

we find
v'2 = v2-+2(1—62)G . (g'-g)
v:? - vlz-ZsZCj . (g'-g)
Dropping terms of order ez then gives
. v, -8
vl = v + T
1= V1

(ALl)

(A2)

(A3.

(A3

(A4

(A4

(AS

(AS5.

The latter of these relations gives, to O(sz), the desired

rTesult
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For electron temperature Te equal to or in excess of ion

temperature T, we write

3

EkBT=<;2L-MV2 2

> g<<% mve> = % kBTe (A6)

or equivalently, <x> > 1. 1In addition this relation gives
V1

< - € (A7)

This result together with (A3.a) permits (A5.a) to be written

vi = vy e (8-8) (48)
which to 0(e) returns the relation
v' = v (A9)
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Appendix B
We wish to derive (14). Recalling (l12) we write
AJ(fo.fl) = noflf(u'-u)ogdﬂ (B1)

Dropping terms of order =, we note

Wz VeE =gk
uls\:{r.g.én.g‘ (BZ)
g =V

With g = g(0,0,1), E = E(sina, O, cosa) and g' = g(sin 3 cos o,

~

sin 9 sin o, cOs 2)

t

u' = cosacosd + sinasind cos ® (33)
u = ¢C0s

Integration over dQ gives no contribution from the cos ¢ term of

1

u'. There results
A3(f°,f1) - noflvu [ (l-cosd)cdQ (B4)

which with (13) returns (l4).
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. Appendix C

In this appendix, we wish to derive (19). Recalling (18)

g we write

W I(v) = [ {IO" (£ (L-E )FH; - fo(l-efé)FM]ogvzd‘f}dﬂdﬂvd\zl (cL)

%. Consider the transformation which exchanges primed with unprimed

variables. We find

il =8 (C2a)

" dg dy' dy; = d

1
a
<
a
<
'_-l

(C2b)

o c(g) = 0(5.;.') (C2c)

E‘ where (C2c¢) holds due tc the invariance of the inverse cross-

17

section. With (C2) at hand, we obtain

-~

5 (C3)

X RS

-
>
S

-

f fé(l-sfo)Félogddedyl = [ fo(l-ifo)FOIOngdeY

-~

Jl’ i - l
Vi< lv' <

& From (A8) |v'| < v and [v| < v + v, * (g-g') are equivalent to

-~

et otrder €. Combining this fact with (Cl) and (C3) returns the

desired result, (19).
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Appendix D

In this appendix the functions Wi of (22) are found. With
the observations

VL<V<V + Ay (D1)

and that 4dv as given by (20) is of order ¢, we find

g = v + 0(¢) (D2a)
vZ = 3% + o(e) (D2b)
v - v = 0(¢) (D2c)
v - Vv = 0(c) (D2d)
o(g,g') = o(\?,g') + 0(e) (D2e)

Inserting these expressions into (21) and expanding fo and fé

about v, we obtain

X = £ (L-€f')Fnyagve = £ (¥)(L-Ef (¥))Fn (vq)a(¥,8' )93

=t o’F0198 o “to 01 V17988
df

+ (v-v) T (v)(l-¢f ("))F01(" Yo(v,g )v
(D3)

. df, . < L s oaas
- L (V= V) 7 (MFH (P, 2"V

+ AR VL YD E (D) (L-2E (WF (v) + 0(e2)

Rk where the function A(é‘.G.G.Yl) is of order <. Comparison of
fll'., ~ ~
X : : . . - "
W, the above expression with (22) serves to identify the ¥,
L} -
. functions.
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Conductivity vs. electric field at various ion concentrations
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