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substitution of objects not usually processed by the schema with functional
equivalents that can be processed, scaling of features using schema criteria
curves, weighting of features, and combining features using a weighted
geometric mean of scaled features. The seventh step is an iteration of the
last three. The experimental data strongly support the proposed model as a
descriptive model of human information processing. The model has value, as
well, for the design of information presentation aids.
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A SCHEMA-BASED MODEL OF INFORMATION PROCESSING
FOR SITUATION ASSESSMENT

The research reported here tests a model of human information processing

that links the properties of presented information to the situation assessments

based on this information (Noble, 1985). The model focuses on the kind of

information processing required to support judgmental processes that are based

primarily on experience and situation recognition. These include processes that

may underlie "intuitive" decision making. This model is based primarily on

schema* theory, though it also qraws from other cognitive psychology notions.

OSchema are memory structures used for information processing that enable

people to use their experience to recognize and interpret situations, understand

language and stories, make decisions, and solve problems. A well-known type of

to. schema is the script (Bower, Black and Turner, 1979; Pryor, 1985) Scripts are

time-event models of familiar experiences. The events, which partition the

script into major scenes, may be scripts themselves. Schema, in general, need

not be time or event oriented. They are characterized by variables, a hierarchy

of embedding, and varying levels of abstraction which "attempt to represent

knowledge in the kind of flexible way which reflects human tolerance for

vagueness, imprecision, and quasi-inconsistencies" (Rumelhart, 1977). As

recognition devices their "processing is aimed at the evaluation of their good-

ness of fit to the data being processed" (Rumelhart, 1980).

* We use schema, rather than schemata, as the plural.
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Several researchers have shown that people use schema to understand

natural language and stories (van Dijk and Kintch, 1983; Rumelhart, 1981;

Thornkyke, 1977). Thorndyke showed that there exist schema that define a stan-

dard structure for stories. Stories with this structure were easier to

understand than those with a different structure. Van Dijk and Kintch's model

of language comprehension explains how multiple schema interacting within a

linked hierarchy enables people to understand words, sentences, and paragraphs.

Rumelhart showed that stories seem to be understood in terms of explanatory

schema evoked by key words.

Schema have also been shown to guide actual judgment, behavior and deci-

sion making in cognitive, social, and clinical psychology (Abelson, 1981). They

have been shown to be useful in several cases where problem solving is based on

the ability to use methods that worked previously in similar situations. These

cases have included understanding and solving arithmetic word problems (Kintsch,

1985), solving algebra problems based on their propositional structure (Mayer,

1982), and finding promising solution strategies for geometry and maze problems

based on their surface features (Lewis, 1985). They have also been shown to

account for differences between expert and novice approaches to solving physics

problems (Larkin, 1983), and to account for some flawed heuristics and biases

associated with human information processing (Tversky, 1980; Kahneman, 1973;

Tversky, 1983). In their papers, Tversky and Kahneman showed that people seem

to try to establish schema that can account for observed data, and then to use

schema for reasoning. A classic paper on chess expertize (Chase and Simon,

1973), though not explicitly a "schema" paper, also shows that expertize can be

based upon the ability to recognize chess patterns associated with previously

learned good moves.
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The knowledge contained in schema can be applied to a particular problem

only if that problem's relevance to a schema can be recognized. Since schema

enable particular instances to be recognized as belonging to a class of instan-

ces, schema can be regarded to be partly classification devices (Abelson, 1981).
The present research adopts a probabilistic view of classification (Smith,,

1981), in which an object or concept is classified when enough of its weighted

features match the set of features associated with the category. The features s.

can be at several levels of abstrac!)n 'Tversky, 1984; Larkin, 1983) They may

be physical parts, properties such as synmetry or color, and functions (Gati,

1984). It is not presently understood how people are able to recognize the

features used in classification. One possible mechanism could be based on a

hierarchy of similarity assessments (Tversky, 1977) at different levels of

aggregation and abstraction (Rumelhart, 1980).

Schema can support reasoning by analogy by helping people to recognize

that a particular situation is related to a class of situations. In reasoning

by analogy, methods proven to work for one class of problems are applied to a

new class (diSessa, 1983).

It is not yet understood how schema are formed (Rumelhart, 1977), but

since schema represent the results of experience, schema must somehow be

generalized from a sequence of past experiences. One model (Hayes-Roth,

1q77; Elio, 1981), based on feature powersets of examplars, proposes that each

time a new experience is encountered which is similar to one for which a schema

exists, the elements of the property set of the new experience augment in memory

those property sets which have been previously stored. Our research is also

based on the assumption that schema are developed from past experiences.
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Accordingly, subject training, which is designed to help people quickly acquire

schema, is based on presentation of examples.

The research described here builds upon many previous concepts, but is

most iirectly related to the work of Zimmerman and Zysno (1980) which applies

fuzzy set concepts to decision making. In that study, subjects rated the

quality of features (fit and strength, as inferred from shape and color) of each

tile to be used in a furnace, and separately rated the overall quality of that

tile. Zysno and Zimmerman noted that the assessments of overall tile quality

could be estimated from the geometric mean of the subjects' estimates of tile

color and shape.

Schema-based information processing is described in the literature for a

broad range of tasks. Some of the researchers describe general principles of

schema structure and operation that are applicable to many problems. Others

propose a specific structure and information processing sequence within the con-

text of a particular problem. This paper is of the latter type. It describes a

specific information processing model for situation assessment.

This model assumes that situation assessment occurs by comparing an

observed situation with memory reference models for different situation types

Fnd by associating the observed situation with the reference model that it

matches best. This mndel "represents knowledge in the kind of flexible way

which reflects human tolerance for .... imprecision" (Rumelhart, 1977), thereby

enabling it to accommodate inexact matches between observed and reference

situations. While the model draws on the current literature and is consistent

with the data in this literature, the specific model proposed here is believed

to be new.

4
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The information processing model

The human information processing model presented here is comprised of an

information processing structure and information processing steps that relate

the properties of presented information assessments made about that situation.

In the experiments to be described, the situations to be evaluated are

"all-out attacks" or "barriers". The information processing model describes the

specific steps through which presented information results in an assessment of

attack or barrier quality. An example of the presented information is shown in

Figure 1. This particular picture was one of several used for training. The

test pictures are similar, but do not include text information about attack

quality. In this figure the friendly forces (white) are positioned in the

center of the picture. They are surrounded by hostile (black) ships, sub- V

marines, and aircraft. The information processing model accounts for subjects'

assessments of the effectiveness of this attack in terms of the attack features.

Information processing structure

The information processing structure consists of a network of linked

schema. The hypothesized structure for evaluating the quality of an all-out

attack consists of four primary schema: one each for the surface, air, and sub-

marines threats, and one for the overall attack.

Each schema (Figure 2) consists of three layers: a slot layer, a
criteria layer, and an inference and action layer. Each schema can be thought

of as a decision making mechanism, with each layer corresponding to a step in

the decision process: the slot layer corresponds to problem formulation; the

criteria layer to problem analysis; and the inference and action layer to alter-

native selection.

5
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Figure 1. An example of a training picture for all-out attacks in experiment 1.
Subjects were told that "Attack effectiveness is 4. The air threat

is severe, but the ship and sub threats are weak. There are too few
ships, and the submarines are concentrated in only a single quadrant."
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The slot layer specifies a set of slots used for identifying situation

features that are relevant to the schema. Each slot specifies the physical and

functional properties of potential slot fillers. The schema for the submarine

threat contains a slot for the feature "many submarines" and a second slot for

the feature "multi-axis threat". The schema for the overall attack contains

slots for the overall surface, subsurface, and air threats.

The second layer contains data for feature assessment. Our model pre-

sents these data as feature criteria curves and weighting rules. The criteria

curves convert measurable picture properties, such as the number of aircraft or

the distance between ships, into subjective feature assessments such as "many

aircraft" or "barrier length". In our experiments the feature assessments

measure the degree to which features have characteristics consistent with a high

quality hostile attack or barrier. In the schema for the surface threat, for

example, the criteria curve for the feature "many ships" defines the extent to

which any particular number of ships qualifies as being "many ships" in the spe-

cific context of an all-out attack. These criteria curves may be interpreted as

fuzzy set membership functions in the set "many ships". In these experiments,

subjective feature assessment scores range from one to ten with a score of ten
~indicating a feature chacteristic of a very strong attack or barrier and a score

of one indicating a feature characteristic of a very weak attack or barrier.

For the attacks in our first experiment, a picture with only a single ship would

score about a on on the feature "many ships"; one with seven ships would score

about ten on this feature.

The second layer also contains a rule for assigning feature weights.

These weights reflect the relative importance of each feature in assessing

overall attack or barrier effectiveness. Examples of weighting rules could

3 8- , - - r -.. !~,



include "assign equal weights", "assign each feature a weight equal to its

feature assessment score", or for a two feature schema "weight the higher

feature .25 and the lower feature .75".

The third schema layer specifies the actions to be taken and inferences

to be made given various levels of schema activation. Such actions and inferen-

ces are retrieved as if by a table look-up within the schema. Examples of actions

to be taken are "attempt to pass through barriers of quality less than "5" (as

rated by the schema)" and "do not pass through barriers rated of higher quality".

This level plays no role in the present situation assessment model, and is not

examined in these experiments. The inference and action level is expected to be

important in models that address decision making based on situation assessment.

Schema acquistion

People are assumed to acquire schema by abstracting (usally sub-

consciously) a general model from specific instances. In acquiring the schema

described previously, people must identify 1) a set of situation features

corresponding to the schema slots, 2) a set of feature criteria curves, and 3) a

feature weight assignment rule. In the present experiments, subjects acquired

schema by being shown a set of examples, each associated with an attack or

barrier effectiveness score and a qualitative statement about the strength of

individual features. Subjects were not told the feature criteria curves or

feature weighting rules, but were expected to infer these as they acquired the

schema.

Figure 3 summarizes the overall schema acquisition environment in the

experiments. The experimenters developed a "schema-like" situation assessment

model containing feature assessment curves and a weighting rule for a specified

9
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set of features. Subjects were then trained by being shown examples constructed

from this model. It is proposed that the subjects develop the schema by

abstracting the relevant features, feature criteria curves, and feature

weighting rule from these examples.

Information processing steps

Figure 4 outlines seven information processing steps proposed to

account for subjects' ratings of situation quality. These steps process

information derived from the presented pictures by using reference data that is

developed during training and stored within the network of schema.

1. Initial selection of schema. Presentation of a task will cause selection of

schema related to the task. Thus, the task "evaluate the following all-out

attacks" will cause schema related to attack evaluation to be made available.

This step is not examined in these experiments, and is not discussed further.

2. Object classification. Subjects classify the familiar objects within each

picture of an attack or barrier. It is at this point that ships are recognized

as ships and not as blotches caused by a dirty copying machine. The present

experiments do not examine how objects are classified, and it is not discussed

further.

3. Assessment of feature relevance and functional substitution. This step exa-

mines the objects and relationships among objects classified in the previous

step, attempts to find relevant features, and converts relevant features into

standard physical units. This step uses information in the slot layer of the

schema which specifies functional and physical properties of objects relevant to

the schema. In this step all objects able to fill a schema slot are converted

into the standard physical units used by the schema criteria curves for feature

1 11,1III 1111 Pl11
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assessment. In the experiment 3 barrier evaluations, islands are converted into

ship equivalents in this step.

4. Feature assessment. In this step, the physical units filling the feature

slots are converted into schema-specific feature assessment scores. In experi-

ment 1, for example, the feature "many aircraft" would receive a score of about

seven in any attack having eight aircraft. This and the following two steps use

data stored in the criteria layer.

5. Feature weighting. Each scored feature is assigned a weight generated by

the schema weight assignment rule.

6. Feature combining. Features are combined using some weighting scheme for

the assessed and scored features. The geometric mean was used in the experi-

ments reported here and it worked well, but the specific combination rule used

is not important to the model. A weighted arithmetic mean would probably work

about as well. The geometric rather than arithmetic mean was selected for this

model because the geometric mean allows a single situation feature, which is

completely inconsistent with a particular schema, to prevent that schema from

being used as the situation model.

7. Iteration of steps five and six at higher schema levels. In the all-out

attack example, steps four through six assessed, weighted and combined three

pairs of features: many ships and ship multi-axis assessed and combined into

overall ship threat; many aircraft and aircraft multi-axis assessed and combined

into overall air threat; and many submarines and submarine multi-axis assessed

and combined into overall submarine threat. In the iteration of steps five and

six at a higher level, the overall ship, air, and submarine threats will be

3 13



weighted and combined. The result of this feature combination is the score for

the attack quality. This score is the overall assessment of the attack.

Critical model issues

Experiments 1 through 3 test the the adequacy of the proposed model for

mapping the connection between presented information and assessed all-out attack

and barrier quality. These tests address specific information processing issues

in the third through seventh steps described above; they also address the abi-

lity of subjects to acquire stable and accurate schema from a sequence of

examples.

Stability, accuracy, and ease of learning of schema abstracted from

examples. The training is intended to install schema for all-out attacks and

barriers in a way that is consistent with the natural acquisition of schema

through everyday experi.nces. In this training, subjects are shown ten to

twelve examples of attacks or barriers. For each example, they are given a

numerical rating for the quality of the barrier or attack, and told the features

3that contribute to its strength and weakness. They are not given numbers for

feature strength, nor are they told the relative importance of the different

features.

The experiments test the ease with which schema can be learned from

information presented this way. They test the "accuracy" of the subjects'

schema, as measured by the extent to which the subjects' assessments match the

assessments predicted by the schema-like model used to develop the training pic-

tures. In addition they test the "stability" of schema, as measured by the con-

sistency of subjects' assessments over time. Data for ease of learning,

stability, and accuracy test whether subjects attain and use a relatively per-

manement cognitive model for their assessments.

1 14
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Ease of learning is measured by the time it takes for a subject to learn

to rate a set of training pictures consistently (within one point of a standard

rating for that picture). It is hypothesized that if situation evaluation is

naturally mediated by data organized within schema having the structure

described previously, then training material- designed to fit these structures

should be easy to learn. If nearly all subjects can learn the material within

two or three presentations of the set, then it seems likely that the training is

taking advantage of readily developed cognitive structures.

Stability implies that people are basing their assessments on a cognitive

model that is not changing through the duration of the experiment. In the all-

out attack experiments subjects are presented with each test picture twice,

separated by about an hour. During this hour the subjects first performed a

distraction task, and then rated features in pictures of all-out attacks.

Because the number of test pictures exceeds the capacity of episodic memory, and

because the time interval between successive estimates of the same attacks

exceeds item retention in episodic memory, stability also implies that this

cognitive model is in semantic memory.

Like ease of learning and stability, accuracy implies the use of schema

for the subjects' assessments. In these experiments, the training picture

* ratings were derived using a model that computes barrier or all-out attack

quality from the feature characteristics. An accurate schema captures this

model. It enables subjects to rate each picture approximately the same as the

model would.

In these experiments subjects' assessments are compared to the ratings

produced by the model. Accurate assessments of attacks or barriers not seen in

15



the training implies that these assessments are based on the model. This impli-

M cation is tested directly in the barrier experiments. The ten test pictures in

this experiment included five from the training set and five new pictures. If

the subjects' assessments of situation quality for the new pictures were as

close to the standard as were their assessments for the pictures seen previously

in the training, then it may be concluded that the pictures are being evaluated

using schema rather than by remembering the actual pictures presented in

training.

Assessment of feature relevance and functional substitution. (Step 3 in

the information processing model. The first and second steps are not examined

in these experiments.) Data in schema enable relevant features to be identified

and used for assessment. These data should enable people to identify and use

features composed of objects physically different from, but functionally equiva-

lent to, the objects included in the training materials. Functional substitu-

tion is this ability to use functionally equivalent objects in the schema-based

assessments.

Two different mechanisms for functional substitution seem plausible.

The first possibility proposed was that the functional substitution occurs very

early in the processing. Objects such as ships or islands are first classified.

Their relevance to the schema is then determined by comparing the physical and

functional properties of the objects with the properties specified by the schema

Lslots. If an object is determined to be relevant, then it will be used in the

* sitution evaluation. Since the feature criteria curves used in step four are

unlikely to have been developed for objects not included in the training

material, a mechanism must exist to enable existing feature criteria curves to

16



accommodate these objects. It is proposed that this mechanism is to substi-

tute a functionally equivalent number of old objects for the new objects, and

then to use the existing criteria curves with the old objects. Thus, in the

island part of experiment 3, an island would be converted into a certain, func-

tionally equivalent, number of ships, and then the criteria curve developed to

evaluate ships is used to evaluate the effect of the islands.

S

A second possibility for functional substitution is that it occurs later

in the evaluation process. In this case, the schema will cause each object to

be evaluated according to the physical criteria developed in the training

material. For example, the feature "barrier length" might be judged from the

distance between the two ships at the ends of the barrier. A barrier with the

two end ships far apart would be evaluated high on this feature; one with the

two end ships near together would be evaluated low. If functional substitution

occurs late in the process, then a barrier with two ships near one another would

initially be rated the same on the "barrier length" feature whether or not there

exist other objects in the picture that function as blockading ships beyond the

two end ships. Thus, a short barrier completely blocking a channel inlet would

score low. The late substitution alternative proposes that low scoring pictures

with unusual objects would be re-evaluated. This second evaluation would not

use the physical properties of the objects in the picture (ship distances, for

example) but rather would use the functional properties of these objects

(ability to block passage).

Both of these alternatives for functional substitution seem plausible,

and each offers some advantages in information processing. The former, with

early functional substitution, does not require that pictures that score poorly

be reevaluated using a second set of features concerned with functionality. The

17
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latter, which uses functional properties only when necessary, allows evaluations

3I for most cases to be made without requiring that object functionality be con-

sidered at all.

Experiment 3 is designed to discriminate between these two alternatives.

It presents pictures with objects not seen in the training pictures, and elicits

overall s!.ores and scores for "physical" (distance between ships) and

"functional" (barrier is hard to go around) features. If the subjects' overall

evaluation can be predicted only from the functional features, and not from the

physical features, then the second alternative proposing separate functional

and physical tests is supported. If the subjects' overall evaluation is pre-

dicted equally well from the physical or functional features, then the first

alternative, early functional substitution, would be favored.

|& Feature assessment. (Step 4 in the model). In the feature assessment

step, physical features, which are measureable quantities, such as the number of

ships in a picture or the distance between two ships, are converted to a related

subjective assessments, such as "many ships" or "barrier length". These

assessments are schema specific, and actually mean "many ships for the purpose

of all-out attacks", or "barrier length sufficient for barrier to be effective".

The model proposes that feature critieria curves are used to assess and

score features as needed for situation assessment. If this is the case, then

it is expected that the feature score would be related to an underlying physical

variable in a simple monotonic way and that this relationship would not depend

on the values of other features in the picture. It is also expected that the

criteria curve, being schema specific, would closely reflect the training

materials.

* 18
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All experiments address the use of feature criteria curves. Experiments

31 and 2, however, are designed to examine these issues critically. These two

experiments differ only in the number of objects in each training and test pic-

ture. Every picture in experiment 2 has 50% more hostile ships, submarines, and

aircraft than the corresponding picture in experiment 1.

It is expected that if the criteria curves are determined entirely by

the training pictures, then the curves from the two experiments would differ

only by a 50% scaling factor. Thus, if six ships in experiment 1 receives a

score of 7 for the feature "many ships", then nine ships in experiment 2 would

receive a score of 7 for that feature. If this relationship is not true, then

the curves must be determined both by the training material and also by general

concepts related to feature evaluations. For example, nine ships in the second

experiment might be scored higher than six ships in the first experiment because

nine scores higher in the general category "many" than does six.

During training subjects were never given any numerical ratings for

feature quality. Instead they were given only the overall picture rating and

qualitative feature assessments. Because of this and the fact that there are

many different ways to combine two feature scores to yield an overall rating, it

is not expected that the feature criteria curves inferred by the subjects would

match the criteria curves used in the model to develop the training and test

materials. These experiments offer an opportunity to observe discrepencies bet-

ween the model criteria curves and the curves inferred by subjects.

Feature weighting (step 5 in the model). The model proposes that

overall picture assessments are the weighted geometric mean of the feature

scores. It is expected that in each picture some features contribute more to
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the overall assessment than do other features. For example, in these experi-

ments barrier quality depends only on two features: barrier length and barrier

solidity. In the model used to develop the experiment materials overall barrier

quality depended primarily on the quality of the weaker feature. For instance,

a barrier that is very long but has big holes would be rated low because it is

easy to pass through. On the other hand, it is expected that a barrier that is

very solid but quite short would also be rated low, because it is easy to pass

around.

The experiments test several issues concerned with weighting. They test

whether or not people do weight features differently for different examples of

all-out attack or barrier. They test whether these weightings can be derived

from a simple weighting rule for all pictures corresponding to a siigle schema,

and whether different schema have different rules.

There are two different ways for the experimenters to infer subjects'

feature weights. One way is from the feature importance ratings provided by the

subjects. If the feature weights are the same as the importance scores, then

feature weights can be obtained directly from these ratings. Feature weights

can also be attained indirectly, however, by finding a weight assignment rule

that produces weighted geometric means close to the picture ratings. By com-

paring the weights obtained by these two methods it is possible to determine how

importance ratings relate to feature weights.

Feature combination. (step 6 in model). The key prediction of this

model is that the weighted geometric means of subjects' feature assessments

approximate their assessments of the overall attack or barrier quality. This
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prediction is tested directly in each of the three experiments. Poor correla-

tion between these weighted means and the assessments would invalidate the

model. Good correlation would suggest its utility for modeling the information

processing for situation assessment.
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Experiments

In this research program, three related experiments were conducted to

address the issues suggested by our model of schema-based information pro-

cessing. All three experiments provided data to test our hypotheses regarding

the relationship between situation assessment and feature assessment, feature

weighting and feature combination. These data also address the extent to which

subjects are able to infer and use the model used to develop the experimental

materials. In addition, each experiment provided some data on particular

aspects of the model.

Experiment 1: All-Out Attack, Low Density

This experiment was designed to test several properties of schema as

used for situation assessment. Specifically, this experiment provides infor-

mation about criteria curves for feature assessment and scoring, about rules for

feature weighting, and about the relationship between weighted features and

overall effectiveness ratings. The experiment also provides data for comparing

the subjects' curves with the curves extracted from our expert and used to

develop the training and test pictures. In addition, this experiment assesses

the stability of the schema generated through the training procedure.

4

Methods

Materials. The materials for this experiment consisted of a set of 12

training pictures, 10 test pictures, a set of feature evaluation sheets, and the

Raven Progressive Matrices Test (1958), which was used as a distractor task.

q,

1N
'A retired Navy commander
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The training and test pictures illustrated threats capable of mounting

all-out attacks of different effectiveness. These pictures were developed using

a schema-like model of attack effectiveness. This model represented an expert's

schema, and was developed by working with this expert. In developing this model,

a set of pictures of all-out attacks and a set of features thought to be the

basis of the effectiveness ratings for the attacks were developed. The expert

was then asked to rate 1) the overall effectiveness of the attack shown in each

picture, and 2) how characteristic each feature in the attack is of a very

effective attack. The feature criteria curves that the expert was using were

determined from these ratings; that is, the relationships between the physical

properties of the picture (e.g., number of ships, submarines) and the subjective

ratings for those features (e.g., many ships, submarines) was plotted. These

curves were used to generate a new set of pictures. For each of these new pic-

tures the overall assessment expected from the expert was predicted by con-

verting the physical properties of the picture into subjective feature ratings

and combining them using the geometric mean rule. The expert was again asked to

prate the overall effectiveness of the picture. When discrepancies occurred bet-

ween the predicted and actual ratings, the expert was queried for the cause of

the discrepancies. The set of features and feature criteria curves were then

modified based on that feedback. The entire process was repeated until the

overall assessments given by the expert were predicted accurately from a

weighted combination of the feature scores as calculated from our previously

01 extracted feature criteria curves. It is important to note here that the who-

listic preferences of the expert were never subject to question -- in each case

the weights and criteria were changed, or identified, such that they matched

these. Through this process three main features were finally identified as

being important in determining the effectiveness of an all-out attack. These
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were the overall ship strength, overall submarine strength, and the overall

aircraft strength. For each of these features, the overall strength was a

function of the number of platforms and of the number directions from which the

platforms were able to attack. Any given picture depicts each of these

features; each feature could be rated on a scale of one to ten in terms of how

characteristic it is of an effective attack. The overall effectiveness of the

attack results from a weighted geometric mean of the individual feature ratings.

The feature criteria curves used to develop the materials for the low density

attack (experiment 1) are shown in Table A-1 in Appendix 1.

The training and test pictures developed from this model illustrated

the full range of possible attack effectiveness. Each picture was generated by

choosing a level (high, medium, or low) for each feature and creating an attack

representing these feature levels. The set of pictures was generated by varying

the levels in a systematic way. The set of pictures included some where all the

features were rated low, some where all the features were rated high, and some

where the features represented a range from low to high. This process yielded a

set of training and test pictures that had predicted overall effectiveness

ratings throughout the full range, from one to ten. An example of a training

picture, with its effectiveness rating and explanation for the rating, is shown

in Figure 1. Table A-2 shows the design criteria for each test picture in the

all-out attack experiment.

The feature evaluation sheets contained a list of the features relevant

to determining the effectiveness of an all-out attack. For this feature, there

were blanks to be completed regarding a) the extent to which each feature in

the accompanying picture is characteristic of a very good attack (score 10), a

very poor attack (score 1) or an intermediate attack (intermediate score); b)
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how important that feature would be to an overall estimate of the effectiveness

of the threat, and c) how confident the subjects were of the ratings they had

just assigned for that feature. Each feature evaluation sheet was accompanied

by one of the test pictures.

Procedure. The experiment began with a training session. In this

session, subjects were provided with background material explaining the basic

Battle Group scenario with which they would be working. Subjects were trained

to recognize signs of all-out attacks by first instructing them on the signs of

an impending attack and then by showing them six examples of all-out attacks.

They were told how good each picture had been rated by an expert using a

10-point scale. They were also told which situation features were responsible

for each example's rating. (See Figure 1 for an example.) Following this, they

were shown an additional six pictures and asked to predict what each picture's

rating would be. The actual expert's rating for each picture was then pre-

sented, along with an explanation of which situation features were responsible

for the rating. After they had seen all twelve training pictures, they were

asked to go back through all twelve pictures and predict the expert's rating

until they could predict 9 of the 12 scores within one point on one pass through

the pictures. Data from subjects who could not achieve this level of perfor-

mance after three trials were not used in further analyses.

After the training session, subjects were shown ten test pictures.

For each picture, they were asked to rate how effective the all-out attack pic-

tured was and how conf1ident they were that their effectiveness rating would

match our expert's rating within one point. Each of these judgments was made

on a 10-point scale.
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When the ratings had been completed, subjects were asked to work on a

series of puzzles, which were designed to serve as a distractor task. After

working on these puzzles for twenty minutes, the subjects were given the feature

rating sheets for the ten test pictures. For each feature in each picture, they

were asked to rate a) to what extent the feature shown in the picture was

characteristic of a very good attack; b) how important the feature would be to

an overall assessment of the effectiveness of an all-out attack; and c) how con-

fident they were of their ratings.

After all the feature sheets had been completed, the subjects were

asked to make a new set of effectiveness and confidence ratings for the set of

ten test pictures.

Subjects. The subjects were 25 undergraduate students at George Mason

University in Fairfax, Virginia. Five of these subjects were unable to

accurately predict the overall effectiveness ratings for the training pictures

after three trials; their data were not analyzed further. The students received

either course credit or payment for their participation in the study.

Results and Discussion

Our model assumes that schema are stable structures which are easily

developed abstractions of examples. The data support this hypothesis. The

mean number of trials required to reach criterion on the practice materials was

1.72, which suggests that the schema are easily learned, although there were

five participants in this experiment who did not reach criterion by the third

trial.

The stability of the schema can be seen in the stability of the overall

effectiveness ratings, which were made independently, 60 minutes apart. These
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ratings averaged over subjects can be seen in Table 1. The test-retest correla-

tion for these ratings is extremely high (r (8) = 0.986, p < .01), suggesting

that the average rating for each picture is consistent over the 60-minute time

span between the initial and final ratings. The stability of the ratings within

individuals is also remarkable. Table 2 shows the frequency distribution of

the difference between the first an, second estimates of overall effectiveness

for the first two experiments. Roughly one-third of the responses were iden-

tical on the two trials, 71% of the ratings on the second trial were within plus

or minus one of the original rating; and 88% of the ratings on the second trial

were within two points of the original response.

Another aspect of the data concerned the development of feature cri-

teria curves for feature assessment and scoring. These curves relate the physi-

cal features of the picture (e.g., the number of ships) to the subjective

ratings for that feature. Figure 5 shows the observed relationships between the

actual number of platforms (ships, aircraft, and submarines) and the features

"many ships/aircraft/submarines." Also shown are the curves used in the model

to generate the experiment materials (labeled "target rating"). The curves

monotonically increasing, (except for one point), with a consistent underestima-

tion of the number of platforms relative to the curve used in the model.

The model also predicts that subjects' overall attack effectiveness

ratings are approximated by the weighted geometric mean of the individual

feature scores. We proposed that the weight assigned to each feature will be

related to that feature's importance rating and that the geometric mean of the

features so weighted will predict overall attack effectiveness more accurately

than will the geometric means weighted in other ways. If these properties are

true, then a) the coyrelation between the overall assessments and the geometric
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LOW ATTACK CONDITION HIGH ATTACK CONDITION

FIRST SECOND FIRST SECOND
PICTURE EVALUATION EVALUATION EVALUATION EVALUATION

1 9.7 9.6 9.9 9.9

2 7.9 7.5 8.2 7.2

3 6.7 6.8 6.25 6.5

4 8.1 8.35 7.85 8.1

5 6.25 6.05 5.5 6.4

6 5.2 5.4 4.85 5.55

7 4.6 5.1 4.1 5.4

8 5.4 5.85 4.7 5.45

9 9 3.15 3.8 2.15 3.3

10 1.65 2.45 1.65 2.26

Average 5.86 6.09 5.56 6.05

TABLE 1. Average all-out attack effectiveness ratings for first and
second evaluations of all-out attacks, low density case Expt
1 and high density case Expt 2.
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1

Difference between first and
second attack estimates # Responses Frec. Responses

-5 or 6 4 .01

-4 2 .005

-3 8 .02

-2 26 .06

-1 63 .16

0 130 .32

1 94 .23

2 44 .11

3 19 .05

4 10 .025

5 4 .01

TABLE 2. Frequency distribution for the difference in individual scores
between the first and second "all out attack" effectiveness
ratings. There are 400 responses from 40 subjects, each
judging 10 test pictures.
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Figure 5a. Feature Scaling Curves Relating Subjects' Ratings "Many Ships" To Number Of Ships In Test Pictures.
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Figure 5b. Feature Scaling Curves Relating Subjects' Ratings "Many Aircraft" To Number Of Aircraft In Test Pictures.
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mean of the individual feature ratings should account for a significant propor-

3 tion of the variance in the overall ratings; and b) this relationship should be

improved by weighting the individual features by their importance rating before

calculating the geometric mean.

In this experiment, subjects rated the features, their importance, and

the overall effectiveness of the pictures independently. They rated overall

effectiveness at a different time from their other ratings, and did not have

available a record of their ratings made at different times. We calculated

unweighted and weighted geometric means of the individual feature ratings. The

weights were attained from the importance ratings by converting each rating of

high, medium, and low to 3, 2, and 1, respectively, and then squaring this

number (a feature rated high counts nine times as much as one rated low). The

unweighted and weighted geometric means accounted for 92 and 97 percent of the

variance in the overall assessments (r (8) = 0.960 and 0.983 P < .01). The

relationship between the weighted features and the overall assessments for

experiments I and 2 can be seen graphically in Figure 6. Table 3 presents the

correlations and regression lines for each individual subject in experiments 1

and 2. This table shows that the relationship shown in Figure 6 for data

averaged over subjects is also observed for individuals.

While the weighting did not increase by much the already high variance

accounted for by the unweighted geometric means of features, weighting did

significantly reduce the absolute difference between the overall effectiveness

ratings and the feature geometric means. Table 4 shows the average overall

effectiveness rating for each picture and the predicted overall effectiveness

rating using: a) the unweighted geometric mean, b) the geometric mean weighted

by the squares of the importance ratings, and c) the geometric mean weighted by

* 32
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LOW ATTACK CONDITION HIGH ATTACK CONDITION

WEIGHTED LEAST SQUARES WEIGHTED LEAST SQUARES
SUBJECT CORRELATION COEFFICIENTS SUBJECT CORRELATION COEFFICIENTS

a b a b

1 0.89 1.11 0.29 1 0.90 0.95 1.03

2 0.80 0.92 0.56 2 0.93 0.75 1.55

3 0.82 1.04 1.33 3 0.63 0.71 1.77

4 0.88 0.95 0.12 4 0.96 0.99 0.59

5 0.77 0.92 0.08 5 0.81 0.63 1.68

6 0.83 0.69 1.97 6 0.87 1.04 1.00

7 0.9 1.21 0.40 7 0.89 0.94 1.62

8 0.92 1.06 -0.11 8 0.95 1.09 -1.32

9 0.87 0.92 1.16 9 0.78 0.84 0.61

10 0.82 0.88 2.28 10 0.86 0.81 0.71

11 0.82 0.62 3.43 11 0.92 0.87 0.92

12 0.87 0.98 0.51 12 0.87 0.99 0.02

13 0.90 0.99 1.26 13 0.91 0.92 0.68

14 0.84 0.77 0.29 14 0.65 0.67 2.75

15 0.88 0.62 2.25 15 0.92 1.17 1.26

16 0.81 0.88 0.26 16 0.83 0.68 2.36

17 0.46 0.54 2.68 17 0.80 0.86 0.44

18 0.85 1.01 2.19 18 0.93 0.84 0.91

19 0.81 0.69 2.13 19 0.91 0.84 1.10

20 0.95 0.93 0.92 20 0.94 1.13 -1.50

Average 0.83 0.89 1.20 Average 0.86 0.89 0.96

S.D. 0.10 0.18 1.03 S.D. 0.09 0.15 0.92

TABLE 3. Individual correlation coefficients and least squares coefficients on
all-out attack. Correlation is between assessment of attack effectiveness
and geometric means weighted by squares of importance rating. Least
squares fits line:
Average attack effectiveness = a x geometric mean of features + b.
Subject pools for "low" and high cases are different.
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EXPERIMENT 1: LOW DENSITY

Wgted by
Avg Sq of Wgted by Avg. Eff.- Avg. Eff.- Avg. Eff-

PICTURE Eff Unw ted Importance Feature Ratinq Unwgted Wgted by Sq. Wgted By Rating

1 1 9.65 8.93 9.1 9.06 .72 .55 .59

2 7.70 6.27 6.44 6.43 1.43 1.36 1.37

3* 6.75 6.03 6.33 6.36 .72 .42 .39

4* 8.23 6.06 7.45 7.22 2.17 .78 1.01

5* 6.15 3.97 5.26 5.57 2.18 .89 .58

6 5.30 3.85 4.42 4.37 1.45 .88 .93

7* 4.85 4.02 5.13 5.37 .83 -.28 -.52

8 5.62 4.07 5.04 5.10 1.55 .58 .52

9 3.47 2.46 2.83 3.2 1.01 .64 .27

10 2.05 1.79 1.94 1.98 .26 .11 .07

Avg. 5.97 4.74 5.39 5.46 1.23 .56 .51

EXPERIMENT 2: HIGH DENSITY

1 9.9 9.44 9.56 9.5 5.6 .34 .4

~ 2 7.7 6.91 6.98 7.19 .79 .72 .51

3* 6.38 5.62 5.74 5.95 .76 .64 .43

4* 7.97 6.94 7.65 7.82 1.03 .32 .15

5* 5.95 4.57 5.30 6.29 1.38 .65 -.34

6 5.2 4.85 4.95 5.42 .35 .25 -.22

7* 4.75 4.26 4.82 5.90 .50 -.07 -.85

8 5.02 4.11 4.47 5.33 .91 .45 -.31

9 2.97 2.64 2.74 3.22 .33 .23 -.25

10 1.95 2.15 2.20 2.38 -.20 -25 -.23

Avg. 5.74 5.15 5.45 5.9 .59 .29 -.16

TABLE 4. Geometric means of all-out attack feature scores, unweighted, weighted by square
of importance, and weighted by feature rating. *Pictures with ship, submarines,
and aircraft that differ most in strength.
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the actual feature assessment ratings. The remaining columns show the dif-

ference between the overall effectiveness ratings and the ratings predicted by

each weighting process. It can be seen that using a mean weighted by importance

reduced the average error from 1.23 rating points (on 10-point scale) to 0.56

rating points, a 54% reduction in average error.

Another interesting result is the similarity between the means weighted

by importance versus the means weighted by the actual feature score. These two

weighting procedures give virtually the same predicted overall rating. This

result suggests that importance ratings for these features are derived from the

assessed effectiveness of the feature; that is, features rated more charac-

teristic of effective attacks were rated more important than were features

regarded as less characteristic of effective attacks. Because in this experi-

ment rated importance seems related to feature weight, this result also suggests

that the criteria curves used to generate feature scores were also used to

generate feature weights.

The data in this experiment indicates that the subjects' schema are

reasonably accurate. These data show that subjects' estimates of overall attack

effectiveness approximate the ratings predicted for the test pictures based on

our model of the expert's knowledge. Table 5 compares for each picture the

target ratings calculated from the model with the observed attack rating

averaged over subjects and trials for each experiment for each picture. The

correlation between the targets and observed ratings was significant (r (8) =

0.942, p < .01).
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ALL-OUT ATTACKS BARRIERS

PICTURE MODEL ACTUAL LOW ACTUAL HIGH MODEL ACTUAL

1 9 9.65 9.90 3 4.15

2 7.95 7.7 7.7 5.21 4.9

3 7.25 6.75 6.38 5.6 5.55

4 6.8 8.23 7.97 8.4 8.65

5 5.85 6.15 5.95 3.56 4.25

6 4.95 5.30 5.20 1.7 2.30*

7 4 4.85 4.75 7.6 7.85*

8 4 5.62 5.02 10 9.70*

9 3.1 3.47 2.97 1.8 2.9*

10 2 2.05 1.95 6.8 8.10*

Average 5.5 5.97 5.74 5.36 5.83

* also in training set

TABLE 5. Comparison of subjects' Effectiveness Ratings with ratings produced by
model of the expert's knowledge. "Actual low" and "actual high"
refer to the low density and high density attack experimental conditions.
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Experiment 2: All-Out Attack, High Density

This experiment was designed to provide data on the feature criteria

curves used for feature assessment. The model proposes that such curves will be

inferred from the examples provided during training. To test this proposition,

each training and test picture in experiment 1 was modified to contain 50% more

ships, aircraft and submarines, and then used in this experiment. If the

feature assessment curves are derived solely from the examples provided in

training, then the feature scaling curves derived from experiments 1 and 2

should be the same except for an x-axis scaling factor of 50%.

In addition, since the procedure was identical to that used in experi-

ment 1, the experiment provides a replication of the data collected on feature

scaling, weighting and combination rules, on the extent to which subjects learn

the model we used to develop the pictures, and on the stability of these schema.

Method

Materials. The materials for this experiment were the same as those

used in experiment 1 except that each of the training and test pictures in

experiment 2 contained 50% more platforms (ships, submarines, aircraft) than the

iM2 corresponding picture in experiment 1. The additional platforms were placed

Fclose to the original platforms in order to minimize any effect on the perceived

number of attack axes.

Procedure. The procedure for this experiment was identical to that

described for experiment 1.

Subjects. The subjects were 20 undergraduate students at George Mason

University in Fairfax, Virginia. The students received either course credit or

payment for their participation in the study.
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Results and Discussion

This experiment was designed to work with experiment 1 in order to test

the properties of the feature criteria curves used for feature assessment.

The experiment also provided data that independently supports many of the

hypotheses examined in the first experiment.

In this experiment, all subjects reached criterion. The mean number of

trials required to reach criterion was 1.50. The schema stability results of

this experiment resemble those of the first. The average effectiveness ratings

for each picture on each trial are shown in Table 1. The test/retest correla-

tion between these ratings is significant (r (8) = 0.977, p < .01), and indica-

tes that the ratings are stable over time.
II

The data pertaining to feature weights and the relationship between the

assessed attack effectiveness and feature geometric means also resembled those

from the first experiment. We again found that both the unweighted and weighted

geometric means accounted for more than 90% of the variance in the overall

effectiveness ratings and that the weighted geometric means accounted for

somewhat more variance than did the unweighted. The geometric mean of the

weighted individual feature rating is plotted against the overall effectiveness

*ratings in Figure 6. Again, the importance of weighting is shown by the data in

Table 4, as discussed in the results section for experiment 1.

Table 5 compares the target ratings calculated for each picture from

the model with the observed attack effectiveness ratings averaged over subjects

and trials for each experiment. Again, the correlation between the targets and

observed ratings for this experiment was significant (r (8) = 0.949 p < .01).
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Data collected in this experiment reveal how the training pictures

interact with "commonsense" knowledge to affect the feature criteria curves used

for feature assessment. Our initial hypothesis was that feature criteria curves

are abstracted solely from the examples given. If subjects' criteria curves

derive only from the examples given in training, then the overall assessments

for the feature "many platforms" should be the same for corresponding pictures

in experiments 1 and 2 even though the number of platforms has changed. If this

were the case, then the criteria curves inferred from the pictures used in

experiment 2 (with 50 percent more platforms) would differ from the curves

inferred from the pictures used in experiment 1 only by a 50% scaling factor on

the x-axis. The results suggest that this was not the case. The curves from

experiment 2 (Figure 5) reflected only part of the 50% increase expected.

Although the feature criteria curves depend only in part on the

training pictures, the overall attack assessments seem to depend solely on the

training. The attack evaluation scores for corresponding pictures in experi-

ments 1 and 2 are virtually the same.

Experiment 3: Barriers

This experiment served several functions. First, it reexamined several

issues in experiments 1 and 2, providing a second example of feature criteria

curves, feature weighting rules, and feature combination for situation and

assessment. Second, it examined several new issues, providing data to determine

whether people use functional as well as physical properties of objects to make

their judgments, and to determine whether people would apply their everyday

knowledge of objects to existing schema. In addition, it was designed to exa-

mine the relationship between similarity assessments of pairs of situations and

their constituent feature ratings.
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Methods

3t Materials. The materials for this experiment consisted of a set of ten

training pictures, seventeen test pictures, the feature evaluation sheets,

feature comparison sheets, and the Raven Progressive Matrices Test (1958), which

was used as a distractor task.

The set of training pictures and one set of test pictures were

constructed from a model of barrier goodness that specified feature criteria

,r curves and a feature weighting rule. Unlike experiment 1, this model was not

developed from an expert's model for barrier evaluation. This model specifies

two features relevant for barrier effectiveness assessment, the length of the

barrier and the solidity of the weakest part of the barrier. Two feature cri-

teria curves relate the measurable properties of the picture's features

(distance between two end ships/subs, distance between two platforms on either

side of the largest internal gap) to subjective feature scores (barrier length

and solidity). These relationships are shown in Table A-3. Overall barrier

effectiveness is calculated from the weighted geometric mean of feature scores

3attained from these criteria curves. Since in our model of barrier effec-

tiveness a barrier was only as strong as its weakest link, the weaker feature is

weighted by .75 and the stronger by .25.

For the first part of this experiment, 15 pictures were developed; five

pictures were shown during training only, five were shown during test only, and

five were shown both as training and test pictures. The overall ratings ranged

from two to ten for both the training and test pictures. An example of a test

picture is shown in Figure 7. Table A-4 shows the overall design for the

barrier pictures.
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Figure 7. An example of a training picture for experiment 3, Barriers.
~During training subjects were told:

Picture 1: Effectiveness = 10. The barrier is both long and solid. The
ships at the two ends are sufficiently far apart to make the barrier dif-

ficult to go around. The platforms are close enough together throughout
its entire length to make passage through the barrier very difficult.
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Seven pictures were developed for the second part of the test. These

pictures were modifications of pictures shown in the first part. Five of the

pictures were modified by adding either an island or peninsulae to the picture.

This procedure created pictures which physically matched one of the original

test pictures in terms of number and location of platforms, but functionally

matched a second original test picture, in terms of length and solidity of the

barrier. An example of a test picture from this set and the physically and

functionally equivalent pictures is shown in Figure 8. Two other new test pic-

tures were created by taking two of the original test pictures and moving the

platforms to one side, so that they were no longer centered in front of the

battle group. Again, this created pictures which were physically similar to the

one of the original test pictures, but functionally similar to another original

test picture.

The feature evaluation sheets for this experiment were similar to those

used for the all-out attacks. This sheet listed six features intended as

"physical", "intermediate" and "functional" representations of the barrier

length and solidness. The functional features are "barrier is hard to go

around" and "barrier is hard to go through". The intermediate features are

"barrier length" and "barrier solidness". The physical features are "distance

between end ships/subs" and "distance between ships/subs on either side of the

largest internal gap".

Feature comparison sheets were used to assess the similarity between

features depicted in pairs of test pictures. Each page contained two pictures

of barriers, one from the original test set and one from the second test set.

Below the pictures was a list of the six features relevant to determining the
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effectiveness of a barrier. Subjects were asked to rate how similar the first

barrier was to the second with respect to each of these features.

Procedure. The procedure for this experiment was the same as that

described for Experiment 1 with the following exceptions. Subjects in this

experiment saw only 10 training pictures and worked on the puzzles which served

as a distractor for only 10 minutes. After completing the feature ratings for

the test pictures, the subjects were asked to make effectiveness and confidence

ratings on seventeen additional pictures, and later were asked to complete

feature evaluation sheets on each of the new test pictures. Finally, they were

presented with pairs of barrier pictures and were asked to rate the similarity

of the each of the features presented in the two barriers.

Subjects. The subjects were 20 undergraduate students at George Mason

University in Fairfax, Virginia. The students received either course credit or

payment for their participation in the study.

Results and Discussion

Again in this experiment, all of the subjects reached criterion. The

mean number of trials require to reach criterion was 1.15. In addition, the

data from this experiment suggest that subjects abstracted from the examples the

model used to develop the pictures. The geometric mean of the features' scores,

weighted according to the weighting rule used to construct the pictures,

* accounted for 88 percent of the variance in the overall effectiveness ratings (r

(8) = 0.9379 p < .01). Figures 9 and 10 depict this relationship for each of

the two test sets. The subjects' assessments of barrier quality for test pic-

tues seen earliwe in training and the new test pictures not seen in training

both approximated the model's assessments equally well. This result suggests
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that subjects have internalized a barrier assessment process and are not just

remembering the pictures that they saw during the training period.

The data on functional substitution indicate that newly formed schema

interact closely with other knowledge in memory. During the training for this

experiment, subjects never saw islands or peninsulae as part of the barrier.

The data from the ratings, however, suggest that subjects incorporated their

existing knowledge of the properties of land masses into their overall effec-

tiveness ratings.

Table 6 shows a schematic representation of each test picture, and the

effectiveness ratings given to that picture and to its physical and functional

equivalents. It can be seen from the table that in the island/peninsula group

the functionally equivalent pictures provided a better match to the initial

ratings than did the physically equivalent pictures, except for one picture. A

closer examination of this picture suggests that the functional equivalent cho-

sen for this picture was not appropriate because the new test item allows safe

passage through the internal gap, while such safe passage is not provided by the

proposed functional equivalent for this picture.

The "off-center" test pictures, where the ships were displaced to the

side, did not produce as clear results on this functional/physical equivalency.

For those pictures the barrier ratings do not match the ratings of the func-

tional equivalents better than do the ratings of the "look alikes".

A comparison of the subjects' responses for physical, intermediate, and

functional features suggests the point in the information processing sequence

at which subjects use the functional properties of land masses in their barrier

assessments. Table 7 shows that the weighted geometric means of the physical,
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RATING OF RATING OF
PICTURE IT PICTURE IT

PICTURE DESCRIPTION RATING "LOOKS LIKE" "FUNCTIONS AS"

11 - 7 4.9 8.1

12 7.1 4.15 8.1

13 0 C)- 3.75 2.3 7.85

14 - 8.25 5.6 8.65

15 2 -_ 8.7 2.9 9.7

16 6.25 8.1 4.15

17 - - 4.8 4.9 2.9

TABLE 6. Comparison of ratings of off-center, island, and peninsula barriers
with their functional and "looks like" counterparts. Pictures 11
through 15 have islands and peninsulae added. In pictures 16 and 17
the barriers are displaced off-center.
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AVERAGE WEIGHTED GEOMETRIC
PICTURE MEANS OF FEATURES

ASSESSMENT _____PHYSICAL INTERMEDIATE FUNCTIONAL

AVERAGE
ASSESSMENT 5.83 5.82 5.74 5.77

CENTERED BARRIERS
WITH ONLY DEVIATION
SUBMARINES FROM .49 .66 .78
AND SHIPS ASSESSMENT

AVERAGE
ASSESSMENT 6.55 6.68 6.67 6.62

OFF CENTER
BARRIERS, DEVIATION
BARRIERS WITH FROM .59 .48 .61
ISLANDS AND ASSESSMENT _

PENINSULAE

!
TABLE 7. Physical, Intermediate, and functional features as predictors of sub-

ject's assessments of barrier effectiveness. Average is average over
test pictures. Geometric mean weights are .75 for weaker feature and
.25 for stronger feature.
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intermediate, and functional features predict the overall effectiveness ratings

about equally well. Because the physical features predicted overall assessments

as well as did the functional assessments, subjects must have taken the islands

and peninsulae into account when rating the distances between the two end

ships/subs or the two platforms on either side of the largest internal gap. This

result implies that the conversion of land masses to ship equivalents occurs

before the criteria curves were applied to the measureable feature properties.

The actual feature criteria curves used by the subjects are shown in

Figure 11. The figure shows that the subjects' curves do not replicate curves

used in the model. The curves for barrier length are generally too high, while

the curves for barrier solidness are generally too low. This lack of agreement

with the model is not surprising. During the training session, the subjects are

not told how much each feature contributes to the overall effectiveness rating.

Since there are many combinations of length and solidness ratings whose

geometric mean aproximates the overall effectiveness ratings, it is not possible

for the subjects to infer the combination used by the model.

As in experments 1 and 2, the weighted geometric means accounted for

most of the variance in. the barrier effectiveness assessments. Here they

accounted for 93 percent of the variance (r (8) = 0.965 p < .01) in the target

ratings. Again, the weighted means more accurately predict the overall effec-

tiveness ratings than the unweighted means. As shown in Table 8, the unweighted

mean overestimates the effectiveness ratings by 0.44 for the standard test pic- N

tures and 0.6 for the island/off-center test pictures. Using the weighting pro-

cedure reduces the error to -0.09 for the standard test pictures and to 0.12 for

the island/off-center test pictures.
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Figure 11. Feature Criteria Curves Relating Physical, Intermediate And Functional Feature

Assessments To Measurable Properties Of The Barrier Features.
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FEATURE: LENGTH AND SOLIDITY

UNWEIGHTED
PICTURE GEOMETRIC WEIGHTED GEOMETRIC MEANS
RATING MEAN By IMPORTANCE By STRENGTH By 75-25 rule

PICTURES 1-10 5.83 6.27 6.45 7.3 5.74
STANDARD

PICTURES 11-17 6.55 7.15 7.23 7.64 6.67
OFF CENTERS/
ISLANDS/3i PENINSULAE

TABLE 8. Average ratings compared with unweighted and weighted geometric means
of feature ratings.
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Table 8 also shows that in the barrier pictures importance ratings cannot

be equated with the feature strength as measured by feature assessment scores.

Using importance as a weighting factor in this experiment led to a worse fit bet-

ween feature geometric mean and barrier assessment than using the unweighted mean.

This result suggests that, in general, importance rating is a combination of the

true feature weight and feature strength. In this case, the weighting rule used

to construct the training and test pictures produced the best fit. This result

shows that subjects inferred from the training that barrier quality is primarily

determined by its weaker component.

The analysis of feature similarity data failed to reveal any special

relationship between the ratings of features in test pictures and the similarity

of these features to features in the training pictures. As expected, features

rated similar received similar feature ratings. Those rated dissimilar,

however, could also receive similar ratings. This result presumably reflects

the fact the features rated equally strong can be strong in different ways.

54

o54



General Discussion

The data in these experiments resolved most of the issues described

under "critical model issues". This discussion reviews the data support for the

alternatives described for each of these critical issues.

Ease of learning, stability, and accuracy of schema abstracted from

examples. The data pertaining to these issues confirm the proposed schema model

of situation assessment. In each of the three experiments subjects acquired the

schema easily, as measured by trials to criteria during training. In each, they

retained a stable schema throughout the experimental session, as measured by the

consistency of situation assessments made at different times. In each, their

schema captured the model used to develop the training pictures, as measured by

the similarity of their assessments to the model's ratings. The inclusion of

training pictures in the barrier test set provided additional evidence that sub-

jects had based their assessments on a schema-like model rather than by remem-

bering specific instances. The subjects' estimates of situation quality for the

* pictures not seen in training approximated the model's rating for those pictures

as closely as did their estimates for the pictures seen in training.

Assessment of feature relevance and functional substitution. The model

proposed that subjects, when shown pictures that contain familiar objects not in

the training pictures, would consider these objects in their situation

assessments. The model proposed that people would use genera knowledge about

islands and peninsulae (ships cannot pass over land) and off-centeredness

(easier to go around) in evaluating the quality of barriers. The proposition

jetha sbcsed schemafr ariessens oul acmma-e isdlather an by remem

unusual barrier placement was confirmed. With one exception, people's

thatosujets' schema forwbarier woul accomate iand andia pese nd
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assessments of barrier quality was much closer to the barrier rating of the

functional equivalent than of the look-alike. It is easily argued, however,

that in the one case where their assessment was closer to the look-alike, the

barrier would not in fact function like the presumed tunctional equivalent.

The data do not support the conjecture that people attempt to evaluate

the barriers using physical features, and use functional features only when the

physical features lead to an assessment of low barrier quality. This conjecture

would have been supported had people's assessments of barrier quality been pre-

dicted from the functional features (hard to pass through, hard to go around)

but not from the physical features (distance between ships on either side of

largest internal gap, distance between end ships). Indeed, the data showed no

indication that functional features alone contribute to barrier assessment when

new objects are introduced into the barriers. Rather, physical and functional

features always were equally good predictors of overall assessments. The means

of physical and functional feature scores were extremely close for all pictures.

On the other hand, the data do support the existence of a very early

information processing step in which new objects not seen in training are men-

tally replaced with a functional equivalent of objects seen in the training.

The fact that physical and functional feature scores were so close suggests that

the subjects, when answering questions about ship distances, were already taking

into account the effects of islands and peninsulae, perhaps by treating the

islands and peninsulae as additional ships. The early functional replacement of

"nonstandard" objects with standard ones is attractive, for it seems to increase

the general applicability of schema while minimizing the schema memory require-

ments. If nonstandard units are converted to the units used by the physical

feature criteria curve, then the curve data can be stored more economically than
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if a separate curve is required for every kind of object that can contribute to

barrier length or solidness.

Feature assessment and scoring--use of criteria curves. Feature scoring

is the conversion of measurable picture properties, such as the number of

aircraft in an all-out attack, to a subjective estimate of the contribution of

that feature to a strong all-out attack. The model proposes that feature

scoring is accomplished by evaluating features by means of the criteria curves

stored within the schema.

The data suggest that feature scoring is an important step in situation

assessment. The curves themselves are simple monotonic functions of the

measurable feature property, and the feature values obtained from these curves

seem to be used in the overall assessments.

A comparision of the feature criteria curves attained in the first two

experiments, the low and high density all-out attacks, shows that the feature

criteria curves inferred by the subjects are derived from a combination of the

training materials and general knowledge not part of the training.

The all-out high density and all-out low density experiments differed

only in the numbers of platforms in the pictures. Every test and training pic-

ture in the high set was identical to a corresponding picture in the low set,

except that the high set contained 50% more of each platform type. The words

used to describe the pictures were identical, and the geographic arrangement of

platforms were as similar as possible. In these two experiments the average of

subjects' ratings of corresponding pictures in the two experiments were vir-

tually identical, as were the weighted geometric means of the feature scores.

Because the number of platforms differed, but the subjects' answers were similar
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on corresponding experiment 1 and experiment 2 pictures, the schema formed in

experiments 1 and 2 must be different. There are three places where this dif-

ference could occur: in the criteria curves used for feature assessment and

scoring, in the relative weighting of the "many" and "multi-axis" features, and

in the relative weighting of the ships, subs, and aircraft overall threat

features.

If the difference was solely in the feature criteria curves, then the

score for the features "many ships", "many submarines", and "many aircraft"

assigned to n platforms in the low all-out attack experiments would also be

assigned to 1.5 x n platforms in the high all-out attack experiments. Instead,

n platforms in the low set got the same score as a x n platforms in high set,

with a = 1.22 for ships, 1.28 for air, and 1.34 for submarines. The difference

Kbetween these numbers may reflect a contribution from the usual notion of

"many"; nine ships fits the natural category "many ships" better than does six

ships.

These numbers indicate that while the feature criteria curves account

for much of the difference, feature combination and feature weighting are also

important. In these experiments, the initial feature combination rule, com-

bining "many" with "multi-axis" to yield "overall" for the ships, submarine,

and aircraft features made up half of the difference. The rest was made up by

subjects' weighting features that received high scores more in the low all-

attack cases than in the high all-out attack cases.

The feature criteria curves inferred by the subjects do not replicate

the curves in the model used to construct the training and test pictures, par-

ticularly in the barrier pictures. Such replication is not expected, of course,
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given the amount of information provided in the training about the relative

contribution of different factors. In the training the subjects were told only

the overall picture quality and the names of the features that are weak or strong.

Since they were never given any numerical information relating particular

feature characteristics to corresponding feature scores, and since there are

many combinations of feature scores and combination rules able to produce each

picture value, subjects did not have the information necessary to infer the

actual feature scaling curves used to develop the pictures.

Feature weighting. A comparison of the results in the three experiments

4 shows that weighted geometric means of the features predict attack and barrier

assessments better than do the unweighted means, that subjects use simple

schema-specific rules to attain the weights, and that the feature importance

scores reflect the feature's strength (feature assessment score) as well as its

weight in the geometric mean.

The rule for attaining weights in the all-out and barrier cases were

significantly different. For the all-out attacks, the weights were the feature

assessment scores. For the barriers the weights were .75 for the weaker feature

and .25 for the stronger one. The existence of simple rules for assigning

feature weights avoids a requirement for special criteria curves or complex

information processing methods for weight determination. Using such simple

rules conserves both memory and information processing resources.

When these experiments were designed it was thought that feature weights

would be closely related to subjects' ratings of feature importance. This rela-

tionship was observed in the all-out attack; it was not observed in the barrier

experiments. In fact, what was observed was that "importance" was a confounding
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of two factors: feature assessment score (how characteristic that feature is of

a strong attack or barrier) and feature weight. In the all-out attack, these

two factors correlated and the weight seemed to be derived from the assessment

score. In the barriers, the weighting rule that worked was the one used to

develop the training picture. It rated a barrier's strength mostly from its

weaker component. For barriers, weighting features by assessment score reduced

the correspondence between the weighted geometric mean of features and the

assessments of barrier quality.

Feature combination. All three of the experiments tested the extent to

which the weighted geometric mean of the feature scores predicted subjects'

assessments of attack or barrier quality. In all three cases, the correlation

between the attack and barrier quality assessments and weighted feature

geometric means, averaged over subjects, exceeded 0.97. In addition, the abso-

lute difference between the weighted means and the quality assessments was very

small, averaging about .35 over all experiments.

Conclusions and Further Applications. The proposed schema and information pro-

cessing model provide an excellent explanation of the subjects' performance in

these situation assessment task. The subjects formed the schema from a sequence

of examples described in terms of features. Their assessments of the overall

Osituation appeared to be derived from their assessments of the situation

features, and these seemed to be based on objective measurable properties of the

presented pictures. Further, the schema so formed linked easily with concepts

subjects had obtained previous to the training. Subjects used these concepts in

their situation evaluations.
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While it is not likely that this specific model will be equally useful

N for understanding every kind of situation assessment task, it is possible that

variants will prove useful for a broad range of such tasks. For example,

scripts, which have been shown useful for understanding social situations, are a

variant of the proposed model. The features of scripts are events and the time

relationship among events. Their feature criteria curves address the charac-

teristics of the script events and time arrangements.

It is also possible that the very simple schema presented here will

prove to be important building blocks of more elaborate structures requiring a

more extensive set of related schema. These structures may have several levels

of schema hierarchy, and may include schema composed of more abstract features.

Schema for situation assessment support "intuitive" decision making.

This kind of decision making is bdsed on recognizing that an observed situation

is similar to other situations in which particular decisions or strategies

generally work well. "Intuitive" decision making requires data in memory that

supports the necessary similarity assessment. The schema examined in these

experiments may play an important role in such assessments.
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FEATURE CRITERIA CURVES FOR SHIPS
OBJECTIVE MEASURE SUBJECTIVE SCORE
Number of Ships "Many Ships"

2 2

3 3

4 4-5

5 -6 7

To attain overall strength add 1 or 2 to "many ships" if multi-axis is two.

FEATURE CRITERIA CURVES FOR AIRCRAFT
OBJECTIVE MEASURE SUBJECTIVE SCORE
Number of Aircraft "Many Aircraft"

2 2

3 3

5 5

6 - 9 7

10 8

13 - 15 10

To attain overall strength, subtract 1 or 2 from "many aircraft" if multi-axis
is one.

FEATURE CRITERIA CURVES FOR SUBMARINES
NUMBER SURROUNDEDNESS

OBJECTIVE MEASURE SUBJECTIVE SCORE OBJECTIVE MEASURE SUBJECTIVE SCORE
Number of Submarines "Many Submarines" Number of Quadrants "Multi-axis"

Covered

2 2 1 2

3 6 2 6

4 8 3 8

5 9 4 10

6 10

Overall strength is geometric mean of "many submarines" and "multi-axis."

Table A-1. Construction of test and tralnin9 picturej for all-out attacks:

criteria curve data used for teature scoring
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FEATURE CRITERIA CURVES FOR BARRIERS

OBJECTIVE SUBJECTIVE OBJECTIVE SUBJECTIVE

LENGTH f(L) GAP* g(G)

1" 1 6 1

2 2 5 2

3 3 4 4

4 4 3 5

5 5 2 6

6 7 1 8

7 9 0 10

8 10

*Add 1.5" to gap

to find physical
separation between
platforms bordering
longest internal gap.

SCORE FOR BARRIER EFFECTIVENESS =

f(L) P  g(G)1-P

where P = .75 if f(L) < g(G)

P = .25 otherwise

TABLE A-3. Construction of test and training pictures for barriers; criteria
curve data used for feature scoring.
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