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1. RESEARCH OBJECTIVES

The overall objective of the research is to develop and verify
mathematical models of delamination and transverse fracture which account
for local (crack tip) and global damage distributions. One specific
objective is to demonstrate theoretically and experimentally that "work
potentials" (which are analogous to s.train energy) exist for composites
with constant and changing damage and with viscoelastic behavior. The
second objective is to develop and verify methods of analysis for
predicting crack growth in elastic and viscoelastic composites with
distributed damage; whenever they are justified, work potentials will be
used to characterize material behavior in order to simplify fracture

analysis.

2. STATUS OF THE RESEARCH

2.1 Overview

Methods of deformation and fracture characterization and prediction
are simplifed when strain energy-like potentials based on mechanical work
can be used, as described in the first paper in the Appendix, "Deformation
and Fracture Characterization of Inelastic Composite Materials Using
Potentials". With these so-called work potentials, important theoretical
and experimental methods using the J integral and energy release rate
(originally developed for fracture of elastic media and fracture initiation
in metals with plastic deformations) may be extended to fracture initiation
and crack propagation in monolithic and composite materials.,

The second paper in the Appendix, "Delamination Analysis of Composites
with Distributed Damage Using a J Integral", describes an experimental

study made during the project year on delamination of composites with
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multiple fiber orientations. The J integral was used to determine the
fracture energy. Considering the theoretical basis for this method (which
is given in the first paper in the Appendix) and the consistency of
fracture energies obtained, it is believed thé J integral method is more
appropriate for determining fracture energy than other existing techniques
when there are significant effects of distributed damage on specimen
deformations. A new Ph.D. student, Mr. Douglas Goetz, (who is supported
jointly by the subject grant and Dr. W.L. Bradley's AFOSR grant) plans to
continue the work on the J integral through additional investigations of
delamination. Effects of multiple loads or deformatioﬁ states, such as
combined bending and stretching or compression, as well as various layups
(including different thicknesses) and specimen types, will be studied to
determine, in part, whether or not the J-determined fracture energy is
sensitive to geometry and loading conditions.

Another Ph.D. student, Mr. Mark Lamborn, is studying flat angle-ply
bars under combined axial and torsional loading. Some of his early work is
discussed in the first paper in the Appendix. This investigation is
concerned primarily with (i) the determination of work potentials for
specimens with significant amounts of distributed damage and (ii) use of
the J integral to characterize and predict edge delamination when
distributed damage and the mode III (antiplane) component of energy release
rate are relatively large. He summarizes the status of this effort in
Section 2.2, Studies to-date indicate that a work potential exists; but
much more effort is needed to establish its range of existence and to
obtain a detailed characterization.

A third graduate student, Richard Tonda, describes in Section 23 his

work on determining work potentials for a graphite/epoxy composite using




circular tubes and flat bars, The computer, computer programs, and reduced
data were all lost in a fire on December 31, 1984. This study was
discontinued for a year and thus was only recently restarted.

Graduate student Randy Weatherby completed a Ph.D. dissertation in
January 1986, It describes the development and application of a new finite
element model for analyzing crack growth in materials which are
characterized by work potentials: It is believed that both the use of the
crack tip "failure zone" in a finite element model and the study of path
independence of the J integral with macro-crack propagation and distributed
micro-damage are new. The abstract of the dissertation is included at the

end of the Appendix.

2.2 Studies of Flat Laminates Under Axial and Torsional Loading

Various layups were tested under the conditions of combined axial and
torsional loads to obtain some insight on work potentials and on which
layups would result in significant coupling effect of rotation and axial
deformation on loads. The tests were performed for conditions of
proportional and non-proportional straining. The axial displacement and
rotation were controlled during each test. All test specimens were
rectangular bars consisting of 24 plies, and either balanced angle-ply or
balanced symmetric laminates., Test specimens were relatively long bars of
various lengths and widths. The test results indicate that of the
laminates tested, a [tzou] S with a length to width ratio of 6 displayed
the most coupling. All test specimens failed at significantly lower torque
levels than the torque capacity of the load cell. A new load cell which
will be more sensitive to low torque levels has been ordered and shipment

is expected in the early summer,
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A computer program has been developed which takes the measurements
from a series of proportional straining tests and checks for the existence
of a potential. A series of data was generated using a nonlinear material
model for which the analytical expression for the potential was known The
computer program showed the existence of this potential thus verifying the
procedure. The program has been used to study proportional straining tests
to determine the type and number of tests required to verify the existence
of a potential. These studies indicated that several of the specimens in a
series of tests should be tested at relatively low ratios of axial
displacement to rotation. Work is underway to modify this program to
permit checking for the existence of a potential between specific levels of
the axial displacement and rotation. Checl;ing for the existence of a
potential in this manner will allow fewer experimental tests.

A MTS tension-torsion testing machine was used to perform all tests.
It was determined t:.hat the axial displacement as measured by this machine
may be in error in some cases due to displacements in the grip mechanism.
To determine the magnitude of this error aluminum test specimens,
corresponding to AST™ standard tensile specimens, were mounted with strain
gages. These specimens were tested under combined axial and torsional
loads in a series of proportional straining tests. The axial displacement
was determined from measurements ‘by strain gages, a LVDT, and the crosshead
movement. Good agreement was found between the axial displacements
measured by the strain gages and the LVDT. These measurements were
different than those from crosshead movement. The LVDT measurements were
used in calculations to determine the existence of a potential with

elastic-plastic deformation of aluminum test specimens; the calculations

showed that a potential did exist, as expected. The LVDT will be used in




future tests to measure the axial displacement.

2.3 Studies of Tubes Under Axial and Torsional Loading

The 1985 annual report documented progress in this area of the
research effort and indicated that the effort was brought to a stand-still
as a result of a fire which destroyed the Texas AsM facility being used to
store, process and analyze these data. Funding and legislative
considerations led to a delay in the acquisition and installation of the
necessary hardware until early October, 1985. Work was recently initiated
to restore the software and data which was previously lost.

Our earlier analysis indicated that it was useful to conduct an
experimental and analytical study of angle-ply laminates under multiaxial
loading in order to verify the existence and use of a wo;k potential for
modelling realistic amounts of distributed damage. This laminate/loading
condition combination undergoes significantly more damage prior to global
fracture than the unidirectional off-axis tensile samples tested earlier,
and therefore provides data which enable a more critical evaluation of the
work potential theory. The unidirectional studies provided baseline
elastic and viscoelastic property data in the absence of the residual
stresses which exist in angle-ply laminates, and thus can be used to
predict baseline angle-ply response with no significant damage.

Prior to the fire mentioned earlier, the decision was made to conduct
cylindrical tube tests under combined axial and torsional loading. This
test technique offered two features necessary to expand on the work already
completed, First, angle-ply laminates of arbitrary construction could be
tested, and second this testing could be accomplished under a truly
independent, bi-axial state of stress. Hercules, Inc., of Magna, Utah,

provided four (4) cylindrical specimens of angle-ply laminates constructed
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from the same material and production line as that used for the off-axis

tests conducted earlier. These four tubes were carefully constructed and
layed-up by hand, and as such represent high-quality structures to be used
in the final phase of testing. This set of specimens consists of two
#30] 25 and two (60} 2g tubes, all 2 inch dia x 20 inches long. Because of
the considerable value of these tubes, and to better ‘understand and
characterize the phenomena being observed, we obtained and validated a
finite-element routine which allowed for careful and optimized use of the
four tubes available, The NISA program for the HP 1000 computer was made
available at very low cost, ard since it was highly capable in the area of
composites, was chosen for this analysis. The fire mentioned earlier put a
complete halt to this process as well.

A new copy of NISA was obtained in late December of 1985 and was
installed and checked out in January of 1986. Work is now underway to
validate the models of both tube and off-axis specimens. Preliminary
analysis with NISA and our prior experience with composites testing has
indicated a need for more test samples. Due to the high cost and long lead
time for preparation and acquisition of additional tubes like those already
supplied, discussions have continued with Hercules to have a number of
additional specimens fabricated. Those specimens will be eight-ply, 2 inch
dia X 20 inch long tubes like the more costly hand layed-up tubes already
on hand. Instead of hand lay-up however, these tubes will be rolled from
prepreg tape in an assembly line fashion. It is anticipated that specimen
quality and consistency will be more variable in comparison to the hand
lay-up technique, but a number of these tubes will be used to develop
experimental and dat; reduction techniques and to provide baseline laminate
performance and behavior. A quotation has been requested from Hercules for

18 tubes total: 6[30],g, 6(%60] 55, and 6[+20] 55 We anticipate placing




an order for these items shortly so that the tubes will be delivered in
April.

Current efforts are concentrating on NISA simulations which examine
the effect of grip technique on specimen response and on developing a test
matrix to maximize the efficient use of the number of specimens we hope to
have available. If all proceeds according to plan, tube testing will start

in late April.
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DEFORMATION AND FRACTURE CHARACTERIZATION
OF INELASTIC COMPOSITE MATERIALS

*
USING POTENTIALS

R.A. Schapery
Mechanics and Materials Center
Department of Civil Engineering

Texas A&M University, College Station, Texas 77843

ABSTRACT

An approach using strain energy-like potentials to characterize
deformation and fracture of inelastic, nonlinear composite materials is
described. The inelasticity may be due to various causes, including
microcracking, microslipping, and rate processes responsible for fading memory
(viscoelasticity). The concept of work potentials is introduced first, and
then arguments are given for their existence for inelastic materials.
Emphasis in the paper is on elastic composite materials with changing or
constant states of distributed damage. Experimental results on polymeric
composites are subsequently presented to illustrate this approach to
deformation and fracture characterization Finally, extension to viscoelastic

behavior is discussed.

*Presented at the International Symposium on Non-Linear Deformation, Fracture
and Fatique of Polymeric Materials, National Meeting of the American Chemical

Society, Chicago, September 1985,
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1. Introduction

Many important results on the deformation and fracture of linear and
nonlinear elastic materials have been obtained by using strain energy
functions or potentials to characterize material response. The thermodynamics
of reversible processes provides theoretical support for the existence of
these potentials and identifies them as free energy and internal energy for
isothermal and adiabatic processes, respectively (e.g., Fung (1)). Besides
serving as the basis for powerful methods of exact and approximate structural
analysis, strain energy functions have been used in the prediction of
effective or average constitutive properties (or their upper and lower bounds)
of linear multiphase media in terms of properties and geometry of the phases,
as reviewed by Hashin (2). Included in the many publications in this area are
studies of the influence of small distributed cracks on the effective stress-
strain behavior of monolithic and composite materials, like those described by
Hashin (2) and Kachanov (3).

Methods of characterization and analysis using local and global strain
energy-like potentials for certain inelastic materials, namely viscous,
plastic, and elementary types of viscoelastic bodies, have been discussed in
an early work by Hill (4). Constitutive equations normally employed for
linear and nonlinear viscous bodies are fully analogous to those for elastic
media, in which strain rate replaces strain (4). For the linear viscous and
viscoelastic cases one may use irreversible thermodynamics (5) or special
types of material symmetry, i.e. cubic and isotropic (6), to argue for the
existence of strain energy-like constitutive potentials in terms of physical
or Laplace-transformed variables (7). While experimental data on multiaxial

nonlinear viscous behavior of metals (corresponding to the secondary creep
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stage) may be characterized analytically through a potential, a general
theoretical basis for this constitutive potential does not appear to exist in
either irreversible thermodynamics or in models of micromechanisms; Rice (8)
concluded that there is no sufficiently general physical model of slip which
is capable of providing a firm basis for the existence of a creep potential.
Duva and Hutchinson (9) give a good illustration on the use of potentials to
construct approximate effective constitutive equations of nonlinear viscous
composites; in this analysis the composite is a homogeneous, isotropic,
incompressible, power-law nonlinear material with a given dilute concentration
and size of spherical voids or penny-shaped cracks,

In using a potential to characterize constitutive equations it is often
sufficient to account explicitly for only a dependence of the potential on the
stress or strain (or strain rate) tensor. If the effect of different
temperatures or other parameters, such as microvoid or microcrack fractions
and sizes, are of interest, then one would of course have to consider how
these quantities affect the constitutive potential. An example of such a

potential for an elastic material with damage is the volume-averaged strain

energy density of a material specimen, W(eij' Dy), where ejy are components of

a suitably defined volume-averaged strain tensor and Dy represents a set of
"damage" parameters which defines the current damage state (e.g. microcrack
sizes). The stresses for this material are then obtained by differentiating W
with D, fixed,

Sj§ = BW/Beij (1)
In references (2), (3), and (9), the effects due to specified sizes and
concentrations, Dy, of microcracks are considered. If it is further desired

to characterize the effective constitutive behavior when the D, change with
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time as a result of straining, then relationships governing these changes must
be determined Su.ppose for discussion purposes that these relationships are
known and that one may solve the equations so as to express the damage
parameters Dy in terms of the instantaneous strains ej 4

may then be possible to find a strain energy-like potential W (‘313)' say, from

For some cases, it

which the effective constitutive equations can be derived by differentiation,

Sjy = a—ﬁ/ae,;j (2)

This constitutive potential would depend on only the instantaneous strains but
yet account for changing damage, If such a potential could be found, it would
be like that used to characterize elasto-plastic behavior of metals by the
Hencky deformation theory (10). Similarly, it would be analogous to the
potential for metals discussed by Rice (8) for stationary creep; in his case
the "damage" is an idealized set of internal slips which contribute to the
average strain rate but do not appear explicitly in the effective stress-
strain rate equations for the metal.

The present paper deals in large part with the question of whether or not
potentials analogous toW(e ) exist for elastic, viscous, and viscoelastic
composites with changing damage (or, more generally, changing microstructure);
emphasis is on elastic behavior with damage. Theory (Sections 2 and 3) and
related experimental work using data on a particle-filled rubber and fiber-
reinforced plastics (Sections 4-6) are discussed.

We should add that there are already many publications on the
thermodynamic and micromechanistic bases for constitutive potentials for
different types of inelastic materials; see, for example, Rice (8,11), Coleman

and Gurtin (12), and Schapery (13-15). However, these potentials depend
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explicitly on "internal" parameters which reflect the microstructure state,
and are thus 1ikeW(eij, Dy) in Eg. (1). They do not necessarily lead to the
simplified form ﬁ(eij) of particular interest here,

Strain energy potentials have been used widely in fracture mechanics
{(e.g., Broek (16)). For fully elastic materials, the mechanical work
available at a crack tip for producing an increment of crack growth is equal
to the decrease in potential energy (consisting of global strain energy and
the boundary-work potential). Use of this relationship has resulted in
remarkably successful investigations of fracture of rubber in its nonlinear
range of behavior, which are reviewed by Lake (17), as well as fracture of
linear elastic materials (16). Andrews (18) assumed a strain energy-like
potential exists for rubber with hysteresis, and suggested how the hysteresis
would affect crack growth. When a potential exists it is often possible to
use Rice's J integral theory (19) to simplify fracture analysis, Schapery
(20) recently extended the potential energy and J integral theories to elastic
and viscoelastic materials with damage.

Concepts from fracture mechanics are used in Section 3 to obtain the
equations needed to predict microcrack growth, and thus help provide the basis
for potentials, such as %(eij) in Eq. (2). Also, potentials are used in
Section 6 to account for the effect of inelastic material behavior (which may
be due to microcracking) on the growth of a macrocrack in the form of a
delamination.

In most of this paper (Sections 2-6) it is assumed the materials are
elastic when the damage is constant. In Section 7 a special representation of
viscoelastic behavior proposed by Schapery (15,20) is used to extend the

elastic theory with damage to linear and nonlinear viscoelasticity; viscous
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behavior appears as a special case,

Finally, it should be mentioned that for lack of a better term we are
using "damage" when referring to characteristics of the microstructure or ]
fabric of a material which affect constitutive behavior but are not accounted i
for in elastic or fading-memory viscoelastic characterizations of continua.

Furthermore, a damaging process, such as considered here, could be associated

s o
A ¥

B
,& .

: with crack growth, crack healing, dislocation creation and motion, breaking or

e
LN

reforming entanglement points along polymer chains in rubber, etc., and
X therefore may be structurally detrimental or beneficial. X
¢

: 2. One-Dimensional Theory

The definition of a potential for elastic materials with damage may be
explicitly introduced through the uniaxial stress-strain curve in Fig. L Let 0'\;
us suppose that a previously unloaded specimen is strained monotonically until 0

the strain is ep. (By definition, the initial state is "undamaged".) The

N strain is then reduced, as shown 1n Fig. L Assuming that the bar is elastic .:‘
¥ ()
A . . . . . ¢
. and has constant damage during the unloading period, with instantaneous stress :t

sU, and using the same idealization as Gurtin and Francis (21) in which the

maximm strain e serves to define the amount and effect of damage, :;::
‘ U ‘:'.
. s” = f(e,gp) (3) X

On the loading curve, the maximum strain is the current strain. Hence,

viewing the loading stress as a point at the upper end of an unloading curve,

we may write .’
N s
sk = f(e,o) (4) -

i‘ The mechanical work (per unit initial volume) during loading to an arbitrary by
. strain is %
: wk = al(e) =fe sk de’=fef(e‘ e”)de” (5) |
o o} o
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where the prime denotes a dummy variable of integration. The net work input

to the sample at any time during unloading is the shaded area in Fig. 1,

WY = wY(e,qp)

e
WL(em) +f sV de-
©m

Wl(e) +/ef<e'.em)de' (6)
€m
Observe that during loading and unloading, respectively, -

sk = dNL/de, sU = awlU/%e (7)

It is convenient to let W denote a continuous quantity which equals wk during

- loading (e, = e) and equals wU during unloading (e< eyn). Then, we may write '
for botn loading and unloading processes, &
s = 30/ (8) ;

The strain energy-like quantity W is actually the net work to the :

s material at any stage of loading or unloading, and thus it will be called a

work potential. It becomes the usual strain energy density when the loading -

and unloading curves are identical. Obviously, a work potential W can always 0
K be constructed, given the uniaxial stress-strain behavior, Egs. (3) and (4).
Derivatives of multidimensional equations are needed in the next
k) section. The one-dimensional model, Egs. (3) and (4), is useful for G
clarifying some of the analysis ahead of time. In particular, observe that

the slope of the unloading curve is,

\ 8
‘i _B_SE = .?i = 9 M (9) l
: de ~ oe el K]

d The loading curve sl is a function of only e. However, when using the upper




end of the unloading curve to define sL, both arguments in f(e, eny) must be

considered in computing the derivative,

as® _af, of o _ af  of 10)
de e 3¢ e se * de_

where we have used the fact that e = e on the loading curve, (The last term
in EQ. (10) 1s the difference in slopes of the two curves at e = e.) We may

rewrite EQ. (10) using Eq. (3) and the second expression in Eq. (7) to obtain

dsL _ BZWU + asz

= (11)
2
de Je aeaem
where the derivatives of WY are to be evaluated at eqm = © after
differentiation,

3. Multidimensional Theory

For characterization of multiaxial stress-strain behavior, or for other
responses which depend on more than one independent input, a work potential
does not necessarily exist., However, that it can be expected to exist for
some realistic situations will be discussed here, For the sake of generality
let us use as independent inputs the generalized displacements
9 (3j=1,2,...J). The responses are the generalized forces Qj, which are
defined in the usual way by the condition that, for each j,

S(AK) = Q3 84 (12)
wherea SWk) is the virtual work input associated with the virtual displacement
qu. Suppose, for example, that we let each 5 represent a gradient, duy/3x,
(m,n=1,2,3) of a three-dimensional displacement field, Uy, and let §(dk) be
virtual work per unit initial volume. Then J =9, and Eq. (12) implies the

say (for large or small

Qj are the components of a stress tensor Smn’

strains, Fung (1)). In order to characterize the behavior of laminates using
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classical plate theory (22) one may want to associate the set 95 with tne
middle surface curvatures and strains. In this case, the Qj would correspond
to moments and in-plane forces per unit length, and §(Wk) would be virtual
work per unit area.

As in the uniaxial example, we assume that when the damage is constant
the body (material element, test specimen, or complete structure) is elastic
in the usual sense; namely, a work potential W® exists with the property that

Q4 =30 /3y (13)
(Rather than using the terms "loading" and "unloading" we shall instead now
refer to "damaging processes" and "constant damage processes", since we do not
want to imply that the damage is always constant when the magnitude of one or
more loads or displacements decreases with time.) The effect of damage on Qj
is assumed to be fully represented by a set of "damage parameters"
Fop (051,2,....N} in the next subsection.

A Special Case: Following Schapery's (20) arguments, it will be shown

that for a suitably chosen W€ a work potential WD exists during damaging
processes such that
.= 3\ D .
QJ W /an (14)
where WP is a function of only the current values of qj. One special N €

discussed in (20) is,
N

WC = wo(qj) +an(E‘n, Fen) (15)
n=1

where A, is a work potential without damage effects. It is assumed that all

of the functions F, = Fj(q4) are such that the N conditions Fon = F,, are

satisfied simultaneously during all damaging processes. (The uniaxial case,
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Egs. (3) and (4), is recovered when we set N=1 and take Ao=0, Fy =q; = ¢,
F.y1 = eye) To prove that WD exists, it is necessary and sutficient to show
that the generalized forces during damaging processes satisfy

3Q5/9q; = 30Q;/5qy (i, = 1,2,..9 (16)
assuming the derivatives in Eq. (16) are continuous (e.g., Greenberg (23)).
The forces during a damaging process are taken equal to those in BEq (13) when
F.n = Fy (which is analogous to saying a stress onthe loading curve in Fig.
1 is at the upper end of an unloading curve). Consequently, we may

evaluate the derivatives in Eq. (16) by first substituting Ea. (15) into (13),

' W N M oF
Q= 5t Z 3F_ 3q; (17)
J n=1 J

and then setting F, = Fp and differentiating Eq. (17) (cf. Eq. (11)),

0. 3

— =2
aqi aqj aqi

N row o%F 3% 5% OF OF
ol i ey ) w09
=1 n qj 3 3Fn n’‘cn q]' 93

Clearly, the right-hand side of Eq. (18) is the same when i and j are
interchanged, and therefore Eq. (16) is satisfied.

Generalizations: Extensions of W€ for which WD exists are discussed in

(20), and WD itself is given. For example, at any given time some of the
terms W, in Eq (15) may be for constant damage processes while others are for

damaging processes. Also, the potentials may depend explicitly on time, and
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4 ettects Of aging or changing physical environments. (The
, ~0lon a.iows for large deformations, uses displacement
aal ol o3 otresses Instzad of generalized displacements and forces,
weol, Uhe var.ler formulation, including its extension to viscoelastic
ot. Zection 7), carrys over fully in terms of the generalized
Jariadbies used here.) Thus, as in Eq. (8), we may introduce a continuous work
potantial W for wnich
Qj = 3.~J/"qj (19)
even 1f the damage parameters in some components W, are constant while others
vary 1n time,
Regardless of the process,
Q3734 - 3Qi/3qj =0 (1,3 = 1,2,...J) (20)
except at the points of change from one process to another, considering all
W The derivatives in Eg. (20) are, in general, discontinuous at these
transition points (cf. Fig. 1 at e = e,) and thus Eq. (20) does not apply
there. Evidence of transition points may appear in experimental data as
significant but somewhat random non-zero values of this difference of

derivatives (for i#j) over short time intervals; this experimental behavior
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would indicate thata process has changed from one type to another, damaging to

constant damage or vice versa.

It is not the goal here to develop spacific physical models which give

=

rise to the form for W€ in Eqg. (15). We only mention that one based on a

@ simple microcracking model 1is given by Schapery (20). Also, for

characterizing laminates using classical plate theory, each Fcnmight be
proportional to a ply or ply-pair failure surface (such as represented by the

Tsai-Wwu theory, e.g. (2), expressed in terms of the local ply strains) or be
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o 3 J by '. \. ' Fo Lt L) A
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other local invariant. Since the local strains are (linear) functions of the
mid-plane strains and curvatures, one obtains F, = F,(q;) if the latter
strains and curvatures are included in the set q;; the summation in Eq. (15)
would extend over all plies.

It is not necessary for the constant-damage potential to have the form in
Eq. (15) for the work potential in Eg. (19) to exist. For example, a
different form for W€ was given in (20) which contains the Henky deformation
theory of plasticity (with elastic unloading). Another example is given in
the next subsection

Micro- and Macrocracking: The work potential W in Eq. (19) may be a

constitutive potential 1in the sense that this equation could be a stress-
strain equation for a composite or monolithic mat=rial. Alternatively, W may
be the total work input to a structure under a general set of boundary
displacements g; whose constitutive response is defined by a work potential
density. In either case, the constitutive potential may account for some
effects of microcracking, microvoiding, slipping, etc., through the damage
parameters F., However, the form of the underlying potential W€ for constant
damage which has been discussed so far is not completely general. Also,
effects of macrocracking (such as large-scale delamination) have not yet been
explicitly introduced. Thus, it is of interest to know if a work potential
exists when there is macrocracking amd a relatively general distribution of
growing microcracks. This question will now be examined by embedding
additional cracks in the body characterized by W; the index k will be used to
indentify each of these cracks, assumed to be K in number. The cracks may
have a wide range of sizes, but it is assumed that the scale of the crack tip

failure process zone (which determines the work required for increments of

growth) is such that the local material surrounding the failure 2zone can be
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approximated as a continuum, and that the effect of the failure zone on the
continuum can be represented by tractions acting along the local crack plane.
Then, the virtual work equation with crack growth (see Eq. (13) in (20)),
which applies with or without changing damage in the continuum and regardless
of whether or not growth is self-similar, gives the available crack tip work
per unit of new surface area as -5W/6Ak; SW is the change in the work
potential for the total body due to the increase in area 67, of the kth crack
with all q; fixed. Denoting the available work as Gy, we may thus write
G = —3W/ Ay (21)

where k = 1,2,..K; also, W is consider=sd to be a function of generalized
displacements q; and oriented crack areas Ay. The quantity Gy is commonly

called the energy release rats, The work potental may also depend on damage

parameters F_, in that it is the W in Eq. (19) except for the fact that the
body now has K additional cracks; the virtual work (Eq. (13) in (20)) from
which Egs. (19) and (21) follow, is shown in (20, p. 222) to be valid with
crack growth in bodies with other distributed damage,

In order to predict this growth we also need to specify the work required
Gokr say, for a unit of new area of the kP crack area; this quantity is the

so-called critical energy release rate, It is not necessary to assume Gk is

constant or is the same for all cracks. However, we do assume it can be
derived from a fracture wcrk potential We(Ag), where

Gk = oW g/0RAy (22)
If for example the critical energy release rate for all cracks is constant,

but not necessarily the same,
K

We =g Gk Px (23)
=1

" " 0 For P
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Stable (quasi-static) growch of any one of the K cracks is specified by

-he cendition that requirad work equals available work, Gog = Ggi thus,

ZE B =5 B

N f/ aAk = -BW/BAK (24)
If
BNf/ aAk < —SW/aAk (25)

unstable growth occurs, whereas if

= BRR Sl

Mg/ opy > =34 /3n, (28)

-

there is no growth.

Returning now to the question of whether or not a work potential exists

with crack growth, we shall see that it does for the model defined above if

| £33

K the growtn is stable. The potental is denoted as Wp, and it will be shown

that it is simply the work of fracture plus the work of deformation of the

¥ elastic or inelastic continuum W; namely,

Qj = aWT/qu (27)
where

The proof is made by first evaluating the derivatives of W, while allowing for

B -

the stable growth of an arbitrary number of the cracks; hence

228

E oW, _ (awf , oA, N 29
3. E: 3 3 3. | 3q. “
| qj T A A qj qj

e

For those cracks which do not grow, aAk/aqj = 0. Inview of Eg. (19) as well
as Eq. (24) for the growing cracks, Eq. (29) reduces to Eq. (27), which was to
be shown.

Equation (24) is a set of K~ (0< K’°<K) equations whose solution gives the

areas Ak(qj) of K” growing cracks in terms of the generalized displacements.
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If we assume a unique solution exists (at least for small changes in qj)

then the areas (or their changes) could be substituted into We and ¥ in Eq.
(28). In this form W, would be a function of 95 and only those Ay which are
constant.

Pursuing this representation further, let us suppose for simplicity that
all areas Ay are simultaneously either constant or vary; denote the constant
values by A,.. Then for a constant damage process (apart from possible
effects of F, and Fp),

Ap = dp(age Agg) (30)
and for a damaging process, Ay~ Ak(qj) '

ag = wp(ay, Blgy) (31)
Equation (30) does not necessarily have the special form of Eq (15), but yet
a work potential exists for constant and changing damage; the limitation is
instead in the form of the relationship governing Ay (q;), viz Bq (24).

Unstable Crack Growth: Unstable crack growth occurs when Gy > G,. The

excess work predicted from quasi-static analysis 1s then modifed by dynamic
effects, and the quantity W, in Eq (28) is not equal to the work input to the
body. This does not necessarily mean a work potential does not exist. 1In
fact, the assumption of quasi-static crack growth was not used to arrive at
Eq. (19). ‘'fhe functions Fn(qj) may reflect, at least in part, an average
effect of unstable rapid steps of microcrack growth

Significance of the Areas Ay : Through principles of fracture mechanics

we obtained a work potential Wp, and furthermore related it to physically
identifiable parameters A, and material-related functions Wg and W.
Conceptually, all cracks are considered to pre-exist with given initial sizes

and orientations; but many or all may be so small initially that they have no
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real effect on the work potential. In principle, as many Ay are to be used as
are needed to fully define the instantaneous location and orientation of all
crack surfaces and their growth. For example, a crack edge that advances
nonuniformly along its length may require the use of many small areas or

parameters Ay to define the changing geometry. With complex arrays of cracks
this formulation is not practical unless idealizations, such as periodicity
and regular shapes, or statistical representations are introduced. Non-unique
solutions Ak(qj) would further complicate the problem, giving rise to effects
of the history g;(t). In such a case, one may have to solve for changes in Ay
using small changes in gj. Of course, our purpose was simply to argue that a
work potential exists; nevertheless, it should be recognized that even with a
work potential, there could be effects of the displacement history.
Additional complications could arise with friction between adjacent crack
faces, in that a work potential does not always exist if there is appreciable
energy dissipation through sliding processes; however, it should be recalled
that significant plastic deformation (slip) processes may occur in metals and
yet a potential exists for some histories, as modeled by the deformation
theory of plasticity.

One could think of the parameters Ay as "internal variables", such as
used in irreversible thermodynamic formulations; they need not be areas as
long as they fit the above mathematical model. Although it is not necessary
here, we may write the equations which govern their growth, Eg. (24) or
equivalently G, = G, in a rate form similar to that used in thermodynamic

models. First differentiate G, = G, with respect to time,

E

Z S P S S B % 9 62
3A_ at 3 at . a

m m m j 3

where, for simplicity, explicit time-dependence (e.g. aging) in G, and Gy is

omitted.
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Solve for d4a n/dt,

] dq
Z mk — Gk = (33)

CJ.

where Hok is the inverse of the matrix Gy

Gim = 3G/ By = 3G/ 9y (34)

Complementary Work Potential: 1In many problems it is desirable to use

the Qj instead of qy as the independent variables. All of the preceding
theory could have been formulated in this way, in which a complementary work

potential W., say, would be used, where

q] = QNC/BQj (35)
For the one-dimensional case in Fig. 1, W, is the area to the left of the
curves,
. S -
We = f e ds (36)
o

where e = f(s‘,sm) or e = £(s,s”), depending on the curve to be used, and S,

is the maximum stress. The relationship between W and Wy is

J
Wp+ W =Z Q3 94 (37)

Observe that we may start with Eq. (27) and then define W by Eq. (37);
differentiation of the latter equation yields Eq. (35). Alternatively, we
could reverse the process. Thus, if wTexists so does W, and vice-versa. It
should be noted that these potentials aremultivalued, and therefore one has
to interpret their interrelationships on a process-by-process basis. For
instance, in identifying a particular (s,e) pair for the example in Fig. 1, it
is obviously necessary to specify whether the loading or unloading curve is to
be used.

4. Angie-Ply Composite Bars under Axial and Torsional Loading

The theory in Section 3 provides support for using work potentials

OO
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,.lv l‘ﬂ,;‘t?g,n “'b?\,l"!‘l ¢:| ;‘!“.fi*. W “1‘ a i" L’




P B 58

e
L

17

to characterize the behavior of materials and structures with damage. In
this and the next two Sections we describe studies of polymeric composite
materials which give preliminary experimental confirmation of this
characterization for damaging processes,

Work using laminates of graphite fiber-reinforced epoxy under axial and
torsional loading is described in this Section. The tests specimens are flat
bars, as illustrated in Fig. 2, which consist of several plies or layers, each
being a relatively brittle, elastic composite with continuous, unidirectional
fibers having an angle 6 with respect to the bar's axis; 8 = *30° are used in
the specimens discussed here, The unidirectional material was supplied in
pre-preg form by Hercules, Inc,, and is designated as AS4/3502. It should be
emphasized that even though there are strain gradients and consequent
nonuniform damage (primarily in the form of distributed microcracks and, at
hign loads, edge delaminations) the theory in Section 3 may be used. (Basic
stress-strain behavior using thin-walled tubes will be studied in the n=sar
future after acquiring additional laboratory equipment.)

The generalized variables of Section 3 will be identified with the

specific mechanical variables for the bar as follows: axial elongation, u

dy; rotation angle between ends, = dy; axial load, F = Qy; and torque, T

Qo The total work potential Aqr EQ. (28), is the work input to the entire
bar through the relatively rigid grips

The necessary and sufficient conditions for existence of a potential, Eq.
(16), for the present problem reduce to the single equation,

3F /30 = 3T/ (38)

Before using Eq. (38) with expermental data, it is helpful to replace the

variables by measures of stress and strain. This normalization process
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eliminates first-order effacts of specimen-to-specimen dimension differances,
Specifically, we shall use "nominal" stresses and strains defined as -
37/bc? :

cqQ /L (39)

s = F/bc T

e = u/lL Y

i where b = width , ¢ = thickness, and L = length (between grips). For the i
special case of long, thin homogeneous specimens (L>>b>>c) s and e are the
uniform axial stress and strain respectively, and 1 and y are the in-plane
shear stress and strain respectively at the surface. This is shown by 5
Timoshenko (24) for linear isotropic materials; for orthotropic materials
N whose planes of symmetry are parallel to the specimen surfaces, it can be
shown that the same formulas apply except the width is modified by a ratio of
moduli. The shear strain magnitude is zero at the mid-plane and increases
linearly to the specimen faces (L x b) in Fig. 2. Whether or not the stated i
¥ conditions apply the variables in Eq. (39) are useful for normalizing data. Q‘
Equation (38) becomes _
s/ 3y = d(t/3)/%e (40) +
';f; This equation has been used to analyze the data in Figs. 3 and 4 by first N
writing

o /3 = 1 /3 +g (41) )

T

where 1, = 14 () is the shear stress for e=0; also g=g(e,Y) in which g(o,y) =

poar

o

O. Next, integration of Eq. (40) with respect to Y yields

zi Y
:, s = %;_f gle,y)dvy” + sy (42) .;
.l
¥ .
M
) where s, = s (e) is the axial stress wheny=0. Thus, the guantity R
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oe

3 Y
As = [ gle,y")dy” (43)
is the change in axial stress due to the twist induced shear strain. This
integrated form is to be preferred over the original Eq. (40) because of the
inaccuracy resulting from differentiation of expermental data, considering
especially the small amount of data available,

The procedure used to check for the existence of a work potential was to
cross-plot the data in Fig, 3 so as to obtain g (which is proportional to the
change in shear stress due to axial strain) as a function of Y, for fixed
values of e, and then predict the modification to axial stress, Eq. (43).
Considering the limited amount of data available, it is desirable to curve fit
analytical expressions to the data to aid the needed interpolations and

extrapolations, It was found for a wide range of strains that

v
f glen )ay” = ay255 BN
[¢]

where A,B, and C are constants. Using this expression in Eq (43) yields the

(44)

change in axial stress due to twist, Only for e/y = 0.92 is there a
significant effect of twist prior to fracture; the prediction is drawn in Fig.
4, The agreement between theory and experiment is relatively good,

In the series of tests shown in Figs. 3 and 4 there is only one specimen
for each deformation history, and thus the small differences between most
curves in Fig. 4 could be as large as specimen-to-specimen differences,
Nevertheless, it is encouraging that all of the predictions from Eg. (43)
turned out to be of the same order as the obscrved differences in axial
stress. Axial stress for ¥=0 is not shown, but it was essentially the same as
for e/v = L78 in Fig. 4 until premature failure occurrad; the latter results
were used in the theoretical predictions. Although not needed to check for

the existence of a potential, it is of interest to observe that when there is

little or no coupling effect of twist and axial deformation, the stress-strain




curves obey power laws over a wide range of strains; this is shown in Fig. 5

where

snvet and T'\,yn (45)

We have conducted additional exploratory tests using proportional
straining of laminates with various widths, thicknesses, and fiber angles, all
of the angle-ply design (+6) with balanced, symmetric layups. The behavior
is similar to that already discussed, with comparable verification of Eq.
(43), Close to the end point of the curves, where large scale delamination or
failure at the grips occurs, theoretical and experimental curves tand to
separate, as seen in Fig., 4. This difference may possibly be due %o
inaccuracy in the extrapolations needed for Eq (43) (considering the small
number of specimens used), a change from damaging to constant damage processes
and vice versa (cf. discussion of Eq. (20)), or an inability to use a
potential in a highly damaged state. Future studies using proportional and
nonproportional straining should help to explain this behavior.

For some layups with sufficient twist, mode III edge delamination occurs
prior to significant material fracture near the grips. As a result, properly
designed bar specimens with and without initial delaminations may be useful
for studies of this type of delamination. When a work potential exists, one
often can use the J integral theory or energy release rates to account for the
effect of distributed damage on the delamination growth.

5. A Highly-Filled Elastomer under Axial Loading and Pressure

Several years ago Farris (25) described large deformation studies of
crosslinked rubber containing 65 volume percent of relatively hard particles.
Specimens in the shape of slender rectangular bars were subjected to <onfining

pressure and uniaxial loading. He used reversible thermodynamics as a basis
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for predicting the effect of pressure on the axial stress-strain behavior.
These predictions were in quite good agreement with the measurements, in spite
of strong effects from the irreversible processes of microcracking and void
qfowth. Here we re-examine the behavior and use the present work potential
tﬁeory as a basis for making similar predictions.

The specimen and relatively rigid grips are shown schematically in Fig.
6. This assembly was placed in a chamber, where it was first pressurized to a
constant value p and then stretched axially at a constant crosshead rate; the
axial force acting on the grips is F. Representative stress-strain and
dilatation-strain data are in Fig. 7.

In order to select the generalized variables in Eq. (12), we use for

§(Nk) a virtual work per unit initial specimen volume,
SMk) = v_l_fToSudA (46)
° 2

where P and S are the surface traction and virtual surface displacement
vectors, respectively, and Vo, is the initial specimen volume; the integration
is over the instantaneous area A of the specimen and rigid grips. On all
surfaces except on the grip ends where F is applied,

T= -ph (47)
in whichn is the outer unit normal to the surface. It is helpful to write
the normal traction on the grip ends in the form

Ta=Ty-p (48)
where T, is defined by this equation. Integrating T,dA over the grip ends
with area Agr regardless of whether or not T, is uniformly distributed, gives

the axial force as

E‘=E‘l-pAg (49)

e ¥
O

OO Wop 075 87, 879 (%5 4% %y A%, 4% 17, DO A7) SN y
DM NN X S GOOUOCOREIMIOR B WS T (R RN T R L P

Y

> A Qe
RS OO R SO £ A1



oy PN WY T T E T T ﬂwvm“m"j

22

whera

Fy sf T, dA (50)
A
g

is the axial force above that due to the pressure. Equations (47), (48), and

(50), along with the assumption of purely axial movement of the grips, r=duce
Eq. (46) to

\Y (51)

e an

Fy
§(Wk) = T su, - P
o

where éul and &V are the virtual axial elongation and volume change of tha

=3

specimen, raspectively. Let us now choosa for gzsneralized displacements the

nominal axial strain, e, and dilatation, V, defined in the usual way,

==

q =e =u/Ly, dy=v = VNV, (52)

s

where u; and V are the increases in specimen length and volume from the
initial unstrained state (in which the length is Lo and volume is Vo).
Comparing Egs. (12) and (51) we see that the generalized forces are

Qg =5, Q=-p (53)

where s = E‘l/AO, the "nominal stress".
As in Section 4, we shall use Egq (16) (with i=2, j=1) in integrated form
to determine if a potential exists. Namely, substitute the variables from

Egs. (52) and (53) and integrate with respect to v,

v
s(e,v) = - —a?é' (f pdv) + s(e,vo) (54)
\Y
o]
where v, is a constant reference value of dilatation. This result is

o

equivalent to that used by Farris except for an additional term arising from

5K

surface or fracture energy, which he attributed to the formation of vacuoles,
However, he subsequently neglected this term and then used the theory and

crossplots constructed from data in Fig. 7 to make the predictions in Fig. 8.

- e =<

L 3 ~
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For s(e, v,) the curve for p = 500 psi was used; although the dilatation is
not constant in this case, it is very nearly so (cf. Fig. 7).

It should be noted that Eq ({(54) is corrasct as it stands, in that surface

§
g
°
g

or fracture energy changes are taken into account implicitly when one uses
data for damaging processes. The underlying potential is Wop, Bq (28), which
consists of the work of fractura We plus the deformation work W. Furthermore,
no restriction has been imposed on the magnitude of the strain or its

uniformity; the strains are in fact quite large, and are nonuniform at l=ast

e 2 -

close to the grips
The agreement between results from experiment and potential theory is

seen in Fig. 8 to be quite good The discrepancy is relatively small compared

=2 B2

to the differences between the various stress-strain curves and that at 500
psi; the error that does exist may be largely due to the moderate amount of
viscoelasticity exhibited by this material. Note that the extent of damage is
large at the low pressures, in the sense that without microcracking and the
subsequent development of microcavities the dilatation would be negligible
compared to the values in Fig. 7; also, the uniaxial stress-strain curves

would be pressure-insensitive since, with increasing pressures, the curves

approach that for essentially zero dilatation

The results in Figs. 7 and 8 are from tests conductaed at constant

A3

P
ot 2

pressure., Farris also gave the results in Fig. 9, which include a test in

o

which the pressure was initially at 500 psi, and then, while the sampla was

being strained, the pressure was suddently lowered to 40 psi; following

v:(;:
.'F' : . . . .
additional straining, it was increasad to 500 psi. It is seen that after a
F" short period of time following each pressure change, the stress-strain curve

tends to approach the one for which the pressure was constant during the :
: I
o ;
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entire straining period. In other words, there is not a strong effact of

. . . '
pressure history in this case.

6. Delamination in Double Cantilevered Beams

The symmetric split bean test depicted in Fig. 10 is now commoaly used to
determine the critical =nergy release G. for the opening mode of delamination
of fiber-reinforced plastics. When there is a significant volume fracticn of
fibers which are not parallel to the beam axis the two legs may be hignhly
inelastic, thus invalidating the standard elastic methods used to obtain G,
from experimental data on load, deflection, and crack length. AsS an
illustration of the use of the potential theory in Section 3 for fracture
analysis, we shall derive an equation for determining G, in inelastic beams.

It turns out that the complementary work potential W., Eg (35), is used
more conveniently for this problem than the work potential. In the
formulation we shall employ, the potential Wq in Eq. (37) will include the
fracture workx of all microcracks but not that of the delamination. For this
case the work that becomes available at the delamination crack tip for a unit
of new area of surface A (projected onto the delamination plane), is given by

G = SWC/BA (55)
where the derivative is taken with generalized forces held constant, This
formula can be derived by first observing that the total variation of Eq (37)
may be written in the form

J o
W oW W oW
__T_ _S = - T N - !___.c g
(3“ @ )6A 2 [(Qj *9 ) “-’j+<q3' °0; )ij] oo

j=1

The right side vanishes by virtue of Egs. (27) and (35), and therefore
oW /A = -3Wqp/0A. Equation (21) then yields Eq. (55) since we may use Eq.

(21) for the delamination crack in which the work potential is W, instead of

‘”h?"!A"' ".. (o Y . - = f J{ .‘n"“ '{-,'.',‘.'-.;.‘.. - -1_- -ﬁ-l_-_.. BRI TS T
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W, allowing for the work of microcrack extension introduced in Eg. (28).

For the DCB specimen in Fig. 10, let F = Q and 2u = qy - Use a
and b to define the instantaneous crack length and specimen width referred to
the unstrained (flat beam) geometry and then take A = ab. The complementary

work for the total test specimen is

~

a
W, =W,(F,a) = Zf Wo dxl + Wc (57)
o}

where X1 is a coordinate axis along the specimen centerline (which defines tha
location of material points in the unstrained geometry) and x=0 is at the

initial line of load application. The quantity w. is defined as the

c
complementary work density (based on unit length) for each leg from classical
beam theory: namely, the theory based on the assumption that material planes

which are initially normal to the beam axis remain plane and normal when the

beam is deformed. The correction to beam theory is denotad by:@é The enzray

release rate becomes

W a ow
_ 1 c _ 2 2 c
€C=fm “p @ bf = 9% (58)

(e}

after neglecting @Né/aa. For long beamsaﬂé is primarily from distortion of
the beam immediately to the right of the delamination crack tip, and SN;/?a
can be shown to vanish if the beam is long enough that the crack tip is
essentially isolated from the ends.

Equation (58) is not restricted to small strains and rotations. As such,

the horizontal distance a” in Fig. 10 may be significantly less than the

actual length of the crack surface a However, we shall simplify the analysis
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by assuming small strains and rotations and further assume both legs are
symmetric and balanced laminates in the undamaged and damaged states., With
these conditions there is no mid-plane stretching or twisting, and beam theory
gives the simple result

M
W =f kdM” (59)

o]

where k = k(M”) is the curvature as a function of the moment, A moment-
curvature diagram for inelastic material would be similar to the stress-strain
diagram in Fig. 1; the complementary work, Eg. (59), is thus to be evaluated
taking into account the multivalued relationship, as discussed in Section 2
The local beam moment is

M = Fx; (60)

and thererore the integral in Eq. (58) vanishes as w. is independent of a.

C

Thus, we obtain

M

_ 2 _ 2 a
G =5 W@ = Bf k() am (61)

o
where M = Fa is the crack tip moment.

This result has been used by Jordan (26) to analyze delamination of two
different graphite/epoxy material systems with plies having various fiber
orientations; one system had a rubber-toughened resin and the other a brittle
resin system. Figure 11 gives a typical load-displacement diagram for the
latter one. The short inclined lines represent periods of no crack growth
following sudden jumping at loads along the dashed line, Measurement of crack
length and corresponding loads indicated that the crack tip moment at the
beginning of each jump in crack length was approximately constant for all

tests in the series. Four-point bend tests were used to develop the moment-
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curvature diagram of beams with the layup of one-half of the DCB specimen i
(i.e. for one leg). Knowing the moment for crack growth from the DCB tests
' and the momant-curvature diagram from the four-point bend tests made it !
possible to derive the critical energy release rate from Eq (6l); the average -
moment at which crack jumping occured for 2ach DCB specimen was used for Mg v
This calculation, which is illustrated in Fig. 12, gave values for G, which X
were practically the same for all layups of each of the two graphite/epoxy
systems. Indeed, cthe G, for unidirectional (6=0°) laminates was close to &
that .. = layup with multiple fiber orientations, In contrast, standard
data analysis based on beam deflection and load gave G, values which differed
considerably for the several layups; some multiple-fiber angle layups had "
apparent G_. values over twice that for 8=0.
These findings not only help to support the underlying potential theory,

but also reveal surprisingly simple behavior, considering especially how much &

e
-

, microcracking develops in the specimens whose bending is not fiber-dominatad.
The layup insensitivity of G, seems to indicate that the local normal =
interface stress, rather than local layup-induced shear stress, is the primary ey

& factor in delamination. Of course, the findings are fram a limited set of r

tests on only two composite systems, and therefore one should be cautious =

<
about extrapolating the findings to other laminates. :ft
(3
0t
Finally, it is of interest to consider the relationship of the above ::;
R g
4 results to Rice's J integral (19), as extended to crack growth in inelastic o
0 media with large deformations by Schapery (20). The quantity J is defined by }
4 (
‘4 ) . , i
a contour integral, which becomes for the beam problem in Fig, 13, a‘
! aul du, ,
J=f [WodX2 - (T —3—1+T2-5-—)dL] (62) “

N C "
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]
-

where w, is the work potential density, T, and T, are tractions along C, and

. .

L

)

u; and u, are displacements; the indices indicate components in the Xy and x5 2
directions. This equation is valid for large strains and rotations as lcag as :
¥ we interpret x; and x, to be coordinates of the undeformed geometry. The ]
integration is counterclockwise along the curve C in Fig. 13, which includes

v top and bottom beam surfaces and vertical segments. The right vertical ¢!
segment is taken farencugh from the crack tip that the material is unstressed,

and thus gives no contribution. For the top and bottom segments, dxgy =Ty =

S e

4 T, = O, and thus the only contribution comes from the left segment. Assuming
small strains ard that the left segment is close enough to the crack tip that

) we can use small rotation beam theory, yields,
i
M du ot
v J = %,/ KM)am’ - 2 § gt (63) ’
1
o

oy where M and du,/dx; are the moment and slope, respectively, at the left vertical

gy

» oy o
Ne

y,

seqment. Integrate k = dzuz/dxi to obtain the slope, and Eg. (63) reduces to

~

4 My
f k(M)d M (64)

) ©

(&)
it
ol

afFnili -,
S -y

Lt where M, 1s the crack tip moment; this is the same result derived by Rice (19)
s for a split beam under end moments M, It is seen that the result is

independent of the location of the left integration segment and, in fact, is

e o

) that in Eq. (63) when the segment is located at the crack tip (where duz/dxl =
0). It should be mentioned, however, to obtain this path independence (i.e. N
derive Eq, (64) from (63)) it was necessary to assume if k(M) is ¢

i multivalued (cf. Fig. 1) that the unloading curve is the same for all left 3

vertical segments used. This latter condition will be met for all material

LA A

) (to the left of the current tip) which had experienced the same maximum moment

()

R . , v - , L ' o O o 10 i
AR M T m{mt L N e, Ve 8ot s Sa s A it M St Bis .i IR



29

when the crack tip passed by. Inasmuch as the experimental results discussed
above indicate the maximum moment is constant (and recognizing that the moment
decays with distance from the tip) this condition is met all of the way to the
location of the initial crack tip. To the left of the initial tip, the
maximum moment is less than M, and one finds J depends on the location of the
left segment. This path dependence in beam theory is fully consistent with

that predictad from the exact J integral for a continuum with variable damage

in the regions of unloading (20). Some unloading may occur in the continuum
very clecse to the crack tip, possibly causing path dependence and thus

affecting Eq. (64). Weatherby (27) used a finite element analysis to study

B 2 B S = 8N B

this dependence for a strongly nonlinear isotropic beam and found that the
X effect on J is negligible; his analysis predicted a J value very close to that
in Eq., (64).

For a crack propagating at a constant moment in a long laminate which is

initially homogeneous in the X1 direction, the state of stress and strain in

=7

the neighborhood of the tip is constant in time. This is a type of "self-
similar" growth and therefore (19,20)
G=J (65)

Equations (61) and (64) agree with this general result. Equally important,
EqQ. (64) was derived without assuming small rotations (except for the
neighborhood of the tip). Therefore, in view of Eg. (65), we may conclude
that the formula for work available at the crack tip, E3. (6l), is valid even
when the DCB legs undergo large rotations and possibly high axial tensile
strains from the axial component of F. When this geometric nonlinearity
exists one should use a” (cf. Fig. 10) instead of a to determine the crack
tip moment

7. Viscoelastic Behavior

For some types of linear and nonlinear viscoelastic materials the theory

B R B v &= 23 2 38
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in Section 3 may be used by simply replacing the generalized displacements ;

with "pseudo generalized displacements," qJ , where t

ol =

t
R _ -1 q;
qj = ERf E(t-T, t) 'gf']‘d'f (66)
o]

-
-]

Here qj is the physical generalized displacement in terms of the dummy time

-
g
-

variable of integration T and other relevant quantities such as coordinates
Xj» The quantity E = E(t-T, t) is a relaxation modulus, which imparts ;
hereditary characteristics to the deformation behavior. The second t argument
in E allows for aging and other kinds of time-dependence, such as may be due
to transient temperaturea, The coefficient Eg is a "reference modulus", which
is an arbitrarily selected constant that is introduced so that qu and qj have y
the same units. The basis for using Eq. (66) to extend deformation and crack
growth theory to viscoelastic behavior has been given by Schapery (15,20). '
Here we mention only that it is an exact approach for linear isotropic X
viscoelastic materials with a Poisson's ratio which is constant in the

undamaged state and for nonlinear viscous materials. The latter case is

o

easily deduced by noting that if the relaxation modulus is proportional to a

Dirac delta function, ie. E = Eptp 8(t=t), where t, is a time constant, then

=5

Eq. (66) reduces to

R

. = tgdq./dt 67

qj R qJ/ (67)

Namely, the pseudo displacement is proportional to velocity with this modulus
R

choice. Replacement of qj by this qj in Egs. (19), (27), and (35) converts

them to equations for viscous media g

Elastic-viscoelastic correspondence principles were developed (15,20

which then lead to the development of the theories for effective properties of

g = N ==
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composites (15) and crack and damage growth (20). To date only limited, but

encouraging, experimental work on nonlinear viscoelastic materials has been
done to verify this approach based on pseudo displacements (Schapery (28,29)). !‘,‘
3 In study (29), a highly-filled elastomer was subjected to complex uniaxial
loading histories. The experimentally measured axial displacement u of
tensile coupons was converted to nominal strain e and then to pseudo strain eR %
- using Eq. (66), and the axial stress was plotted against eR for constant ;
. L
:r damage states. It was found that this method of plotting data essentially
eliminated viscoelastic effects, thus confirming the approach. For damaging <
processes, the material behaved as a nonlinear elastic material with history-

dependent damage when represented in terms of eR  Guided by simpla models for

damage and some test data, the nonlinear viscoelastic stress-strain equation o

[N
2] P , . . . R !,
0 was developed and then verified experimentally using loading histories not f
¥
¥ included in the characterization process, &
Besides employing the maximum value eﬁ to account for damage, as e 1is s
«:‘ used in Eq. (3), a so-called Lebesgue norm was used in (29), f:
, N
t 1/q L
q :

L = [ [ | e dt] (68)
N a “
(o] 1
i * | denotes absolute value and q is a positive constant; the damage K
1) ¥

parameter Lq arises from viscoelastic crack growth theory. If q is

sufficiently large, Lq (and it generalization to multidimensional problems)

-
PG ]
PRt

may often lead to constitutive equations which are analogous to those

t‘ z?
‘ discussed in Sections 2 and 3; but there may be explicit dependence of the :‘
4 potentials W, Wey and We on time, and thus they would be like those for :i
b hY
aging elastic materials with damage, For example, eR >0and q = 6.5 in (29), §:

" (
< and in this case, M
"

P L, = eR /9 yhen ae®/at > 0 (69) 2

q
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1
Lq = emR t /a when deR/dt =0 (70)

T~

7

,
e
TR i - -~

1f eR reaches a maximum at t=t, and then decreases,

. R 1/
Lg * en tm (71)

Behavior like that in Egs. (69) and (70) reflects the growth of microcracks

T L

until the "driving force" eR falls below its maximum value.

- ‘

® 8. Conclusions

"

An approach using work potentials to characterizing deformation and

fracture behavior of inelastic materials has been described. Some

experimental results on polymeric composites were presented to illustrate it

+
o At

and give a preliminary verification of the theory. If the use of work

E2

-2

potentials to account for the effect of damage and other types of inelasticity

is further substantiated in future studies, one may take advantage of the

LA X

simplifications that come from this approach in the mathematical modeling of

S S N N

both deformation and fracture behavior. When pseudo displacements, Eq (66),

can be used to extend the time-independent characterization to nonlinear

Srw

4

viscoelastic behavior, additional experimental requirements and mathematical
model complexity are not much more than what is needed for linear viscoelastic :

5 behavior.

L ol
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NOMENCLATURE

crack length

crack areas

beam width

nominal strain (axial extension/initial length)
strain tensor

relaxation modulus

force

damage function

damage parameter

energy release rates

critical energy release rates
J integral

curvature

beam length

Lebesgue norm

moment

pressure

generalized displacement
generalized force

nominal stress (axial stress/initial cross sectional area)
stress tensor

time

torque

displacement

dilatation
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v increase in volume

Vo initial volume

W complementary work density
We complementary work potential
W, Wp work potentials

W fracture work potential

X§ Cartesian coordinates

Y nominal shear strain

T nominal shear stress

Q angle of twist

Ny R B ==




increase in volume

initial volume
complementary work density
complementary work potential
work potentials

fracture work potential
Cartesian coordinates
nominal shear strain
nominal shear stress

angle of twist
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Figure 1., Uniaxial stress-strain curve for material with increasing
damage during loading and constant damage during unloading.
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Figure 2, Laminate specimen used in axial-torsional tests. 4
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Figure 9. Stress-strain curve for highly-filled elastomer
subjected to changes in the pressure level.
After Farris (25).
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Figure 10. Double cantilevered beam (DCB) for delamination
fracture studies,
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Figure 11. A typical load-displacement record for opening mode

loading of a double cantilevered beam with off-axis
plies at the center interface. Hercules AS4/3502
graphite/epoxy. After Jordan (26).
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Figure 12. Moment-curvature diagram for loading, showing energy
release rate, G,
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Delamination Analysis of Composites with
Distributed Damage using a J integral
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ABSTRACT

The J integral theory for fracture analysis of materials with
distributed damage is discussed and then specialized to a form that is
useful for analyzing opening-mode delamination crack growth. Tests on
double-cantilevered beam specimens of two different graphite/epoxy material
systems and three different layups are described and then analyzed.

1. Introduction

Fiber-reinforced plastic laminates may sustain an appreciable amount
of microcracking and other types of damage before global structural failure
occurs. 1In order to characterize the resistance to delamination and to
predict delamination when there is globally distributed damage such as
microcracking, it may be necessary to account for the nonlinear inelastic
behavior produced by this distributed damage. In this Section we briefly
give some background on the J integral. The theory is then specialized in
Section 2 to opening-mode delamination of double-cantilevered beams (DCB)
and illustrated in Section 3 using experimental data from tests of two
different graphite/epoxy laminates,

A two-dimensional version of the J integral was introduced by Rice
[1], and was shown to be especially useful in nonlinear elastic fracture
mechanics, 1ts primary usefulness comes from its path independence and its
relationship to the crack tip stress field and work input to the crack tip
Numerous generalizations (including extension to three-dimensions and large
straine) and applications have since appeared, such as discussed in a
recent book by Kanninen and Popelar [2]. Except for steady-state
conditions [3], the properties of the J integral are usually considered to

depend on the existence of strain energy potential W=W (eij)' where

Sij = BW/aeij (1)

in which s;; and e;; are components of the stress and strain tensors.

Schapery exgended éﬂe J integral to nonlinear viscoelastic materials ([4]
and further showed that important characteristics of the J integral carry
over to other types of inelasticity, including that due to distributed

*prepared for International Symposium on Composite Materials and
Structures, Beijing,China, June 1986.

RA.S. and D.P.G., Professor, Civil and Aerospace Engineering and
Graduate Research Assistant, Mechanical Engineering, respectively, Texas
A&M University, College Station, TX 77843. W.M.J., Assistant Professor,
Mechanical Engineering, Louisiana Tech University, Ruston, Louisiana 71272
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E microcracking and other types of damage (4,5). These generalizations "
depend on the existence of a potential which is analogous to strain energy, "
Eq. (1), but which may be multivalued. Figure 1 illustrates such a g

potential for uniaxial stressing. The net work input to the sample at any
time in the loading or unloading history is the so-called work-potential,

e
- WEfsde (2)
K

In general, s and Woare multivalued functions of e since they depend on :
whether s is the loading or on the unloading curve. Arguments for the -
existence of multivalued work potentials in three dimensions which satisfy :T
Eq. (1) were given by Schapery (4,5]. '
Here we shall assume a work potential exists and use it in a J
. integral to analyze delamination fracture. For the materials and
' conditions studied experimentally viscoelastic effects were very small, and
these effects are therefore neglected in the theory.
2. J Integral for the DCB Specimen

For” RN
AR

w e om ap o <

Ky Figure 2 shows a DCB specimen. In the cases studied here, the beam is N
- a laminate, and applied force F causes the crack to propagate in a plane L

parallel to the plane of lamination (which is perpendicular to the plane of N
i: the page). We assume a' is long enough for the legs to be in plane stress ‘

over a significant portion of their length.
The J integral for the DCB specimen is ,
% u ou
N . 1 2
. J = [dez - (Tl sx—l + T2 '5% ydL] (3)

£

- ‘ ‘
.

where W is the work-potential per unit volume, Ty and T, are tractions
along C, Fig. 3, and vy and u, are displacements; the indices indicate

components in x, and x, directions. This equation is valid for large
strains and rota%lons as long as we 1nterpret Xy and x4 to be coordinates
of the undeformed geometry. The integration is counterc%ockwise along the
curve C in Fig. 3, which includes top and bottom beam surfaces and vertical
segments, The right vertical segment is taken far enough from the crack '+
tip that the material is unstressed, and thus gives no contribution. -
Assuming small strains and that the left segment is close enough to the )

& - -
: - -
oA A

crack tip that we can use small rotation beam theory (but far enough to the 0
left of the tip for plane stress conditions to apply) yields,
i 2 M F W '
- _ ] ' . — «l.
J = f k(M')aMm 2 5 a}-q (4) :

where M and du%:/dx are the moment and slope, 1:espect1vely2 at the left

4

8 vertical segment; B is the beam width. Integrate k = d2u 2/dx< to the tip :

(assuming plane stress) to obtain the slope, use dM = Fdxl and Eq. (4) t.

reduces to M N

a (o

5= 2 [ 7 xwan (s) :
(e}

: where M, is the crack tip moment; this is the same result derived by Rice
. [1] for a split beam under pure end moments M_. It is seen that the result
is independent of the location of the left integration segment and, in
fact, is that in Eg. (4) when the segment is located at the crack tip
(where duz/dxl = 0). It should be mentioned, however, to obtain this path
independence (i.e. derive Eq. (5) from (4)) it was necessary to assume if =
k(M) is multivalued (similar to the s-e curve in Fig. 1) that the unloading
curve is the same for all left vertical segments used. This latter

o e
- -

PN
-l e
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N N s = B N B B s

condition will be met for all material (to the left of the current tip)
which had experienced the same maximum moment when the crack tip pasred by.
Inasmuch as the experimental results discussed later indicate the maximum
moment is constant (and recognizing that the moment decays with distance
from the tip) this condition is met all of the way to the location of the
initial crack tip. To the left of the initial tip the maximum moment is
less than M, and one finds J depends on the location of the left segment.
This path dependence in beam theory is fully consistent with that predicted
from the exact J integral for a continuum with variable damage in the
regions of unloading [4].

Strictly speaking one should consider the effect of the three-
dimensional state of stress around the crack tip in developing the J
integral for the DCB specimen. If indeed one does this starting with the
theory in [4], one still arrives at Eq. (5) if the maximum amount of damage
is essentiaily that defined by the beam theory and the slope is adequately
predicted by plane stress theory. Weatherby [6] studied this problem using
the finite element method for two dimensional deformation of a highly
inelastic isotropic beam and found that Eq. (5) is an excellent
approximation.

Finally, we observe that for a delamination propagating at a constant
tip moment in a long laminate which is homogeneous in the x, direction in
its initial state, the state of stress and strain in the neighborhood of
the tip is constant in time if effects of shear force changes are
neglected. This is a type of "self-similar" growth and therefore J is the
work input to the crack tip [4] (per unit of new area projected onto the
delamination plane).

3. Experimental Study of DCB Specimens

Materials and Test Procedure: Two commercially available graphite/
epoxy composites were tested: T6T145/F155 (Hexcel Corporation) and
AS4/3502 (Hercules, Incorporated). The epoxy in the former system is
toughened with 6 vol. % rubber particles. Several layups were tested as
reported by Jordan ([7]. Here we report on four different layups with some
of the data coming from [7], but most data are from more recent tests.

Prepreg was used to make plates which were cured in the Texas AsM
University air-cavity press using the manufacturer's recommended
temperature cycle. A thin 3.5 cm wide teflon strip was inserted in the
midplane along one edge of each plate during the layup step in order to
provide a 3.5 cm long starter crack in the beams cut from the plates; each
beam was approximately 25 cm wide by 30 cm long. Those layups with off-
axis fiber orientations are listed in Table 1. Besides these laminates,
unidirectional beams with 0° fiber orientation (fibers parallel to the beam
axis) for both systems were tested.

Table 1
Laminates with Off-axis Fibers
Laminate Material Layup
Designation System (fiber orientations)
A T6T145/F155 {+45/0(8) /F45(2) /O0(8) / £45] (24 plies)
B T6T145/F155 [+45/F45(2) /F45(2) F45(2) / +45] (16 plies)
C AS4/3502 [+45/0(4) /¥45(2) /O (4) £45] (16 plies)

In all three cases, the delamination crack was in the middle plane of
the beam, between a +45 and -45 ply. For A and C layups the beam legs
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above and below the delamination are balanced and symmetric in the
undamaged state. These designs were used to minimize twist and bending-
stretching coupling to simplify specimen analysis in this exploratory
investigation.

At least two samples of each laminate were delaminated in stroke
control in a servohydraulic test machine. The test was stopped several
times and the beam unloaded to measure the moment arm to the crack tip
(loaded state) and length of the delamination (unloaded state), and to
determine the force-displacement curve with loading and unloading for use
in an energy-based data analysis method.

Additional tests were conducted on single cantilevered beams to obtain
the moment-curvature relationship for use in the J integral analysis.
These beams were made with fiber orientations corresponding to the layup
above the middle surface in the beams used for delamination tests. Strain
gages were mounted above and below the beam near the clamped end in order
to determine the curvature k from the equation k = Ae/t where Ae is the
difference in strain readings on the top and bottom surfaces and t is the
beam thickness. The beam support at the clamped end was mounted on
bearings to provide free axial movement. In these tests and the
delamination tests, the external load was applied vertically through
bearing-supported pins.

Discussion of Results: Figures 4 and 5 show the force-displacement
diagram for two layups in Table l. Figure 6 shows results from one of the
cantilevered beam tests used to obtain the moment-curvature relationship;
specimen type B exhibited the most hysteresis. The maximum moment is the
crack-tip value determined from the delamination test. According to Eq.
(5), J is the area to the left of the loading curve multiplied by 2/B.
Table 2 summarizes the results. Two numbers are given in most cases, each
coming from different specimens.

Table 2
Summary of Results on | Fracture Toughness
(in J/m )
Laminate Je N Ge Go
Designation (Edq. (5)) (Eq. (5)) (area) (stiffness [8])
A 615/510 - 601/557 588
B 522 - 725/725 1333
C 538/525 389/380 440/434 383 (arrest value)

The values in the column in Table 2 labeled G, (area) were obtained by
determining the area between successive loadmg-crack growth-unloading
curves (as in Figs 4 and 5). Assuming the specimens are linearly or
nonlinearly elastic, this area divided by the new crack surface area is the
G, value required for propagation. The last column is based on the method
descrlbed by Devitt el al. [8]. It uses load-deflection-crack length data
to obtain G_; it is based on the assumptions of linear elastic behavior and
no m1dplane strain, but it allows for large rotations, (The beam rotation
at the load-point was as high as 40 in layup C; only for layup A was the
geometric nonlinearity negligible,) It should be added that all three
methods used to develop the values in Table 2 allow for geometric
nonlinearities. Material nonlinearities and midplane strains (due here to
nonlinearity) are not neglected in the methods used except for that in [8].

For the specimen type C, delamination occurred usually in distinct




steps, as illustrated in Fig. 5. When growth initiated there was a
significant and sudden jump in crack length; the loads used in data
analysis at each pair of initiation and arrest points are connectad by
dashed lines, The corresponding moments were used with moment-curvature
results to predict J. (initiation) and J, (arrest) values. Specimen types
A and B delaminated quite smoothly in most cases.

The momeiit at which propagation occurred was essentially constant for
each specimen with the variation being no larger than *5% from the average.
Once or twice during the delamination test of most beams an exceptionally
high or small moment was obtained, but these values were not used in
calculating the averages in Table 2. (These unusual values did not
necessarily occur at either the shortest or longest cracks.) The arrest
moment in specimen type C exhibited scatter similar to that for initiation
moments.

It is of interest to compare the fracture toughness values in Table 2
with those for the same systems but with all 0° fiber angles. Jordan found
that for the Hexcel system G, varied from 40Q to 650 J/mz and for the
Hercules system G. varied from 180 to 200 J/m“ The former values are
consistent with the Jo values in Table 2 (specimen types A and B), whereas
the latter values are less than one-half those reported in Table 2
(specimen type C). These low values are consistent with observation of
fracture surface roughness, in that the surface of the O fiber specimen
was very smooth, whereas many microcracks running parallel to fibers could
be seen on C type specimens.

The B specimens do not have any 0° fibers, and therefore the effect of
distributed damage in the legs should be the largest. It is believed the
high G, values reported for this layup using the deflection-based methods,
compared to J,, reflect this fact. For example, the area method gives a
G, which includes the work of both distributed damage and delamination.

4, Conclusions

A relatively simple expression, Eg (5), was developed for determining
the J integral. Only the work of bending was considered for the beam near
the delamination tip; however, the analysis could be readily generalized to
allow for shear and axial deformation work when appropriate, The
preliminary assessment of the approach using double-cantilevered beam
specimens is very encouraging. As predicted by the theory, it was found
that the delamination propagated at essentially a constant crack-tip
moment. Also, for one material system it yielded fracture toughness values
which are essentially the same for three different layups. In contrast,
the other deflection-based methods typically yielded higher toughness
values when distributed damage was significant.
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Finite Element Analysis of Crack Growth in Inelastic Medialr?

J. R, Weatherby
Sandia National Laboratories, Division 1521
R.A. Schapery
l Texas AsM University

In most materials, macrocrack extension is accompanied by inelastic
phenomena (such as microcracking or plastic deformation) throughout a
region surrounding the crack tip. Immediately ahead of the crack tip,
strain localization occurs in a small volume of heavily damaged material
referred to as the failure zone or fracture process zone. In this study,
the failure zone and the surrounding zone of inelastic material are treated
as two distinct regions. The failure zone is assumed to be thin relative
to its length and is represented in a two-dimensional finite element model
as tractions which act across the crack faces near the tip. An opening
mode of crack tip deformation is assumed. The normal traction at any point
on the crack surface in the failure zone is specified as a decreasing
function of the crack opening displacement which vanishes after a critical
value of displacement 1is reached. Two different rate-independent,
inelastic continuum characterizations basad on multivalued work--potentials
are used; one models metal plasticity and another represents microcracking

in brittle materials. Both constitutive models allow for the definition of

lthis abstract was prepared for publication in the Proceedings of the 10th
LS National Congress of Applied Mechanics, June 1986.

2Based on the first author's Ph.0. dissertation, "Finite Element Analysis
of Crack Growth in Inelastic Media," Mechanical Engineering, Texas A&M
University, (May, 1986). I




a generalized J-integral deve;oped by Schapery3'4, which has the same value
for most paths around the crack tip for realistic distributions of
plasticity or damage in the material surrounding a stationary or
propagating crack. This path independence and the equivalence between J
and the work input to the last ligament of material in the failure zone are
verified numerically in a transient crack growth problem; both initiation
and propagation are studied under conditions of small-scale inelasticity.
Steady-state crack growth is studied in two different specimen geometries.
Simplified J~integral analyses are used to estimate the work input to the
failure zone for these steady-state problems. The J-integral estimations
are comparad with finite element results to determine the accuracy of the

simplified analyses.

3ra Schapery, "Correspondence Principles and a Generalized J-Integral for
Large Deformation and Fracture Analysis of Viscoelastic Media,"
International Journal of Fracture, 25 (1984) 195.

4pa. Schapery, "Deformation and Fracture Characterization of Inelastic
Composite Materials Using Potentials," Texas A&M Report No. 5034-85-22,
198s.







