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1. RESEARCH OBJECTIVES

The overall objective of the research is to develop and verify

mathematical models of delamination and transverse fracture which account

3 for local (crack tip) and global damage distributions. One specific

objective is to demonstrate theoretically and experimentally that "work

I potentials" (which are analogous to strain energy) exist for composites

3with constant and changing damage and with viscoelastic behavior. The

second objective is to develop and verify methods of analysis for

predicting crack growth in elastic and viscoelastic composites with

distributed damage; whenever they are justified, work potentials will be

used to characterize material behavior in order to simplify fracture

analysis.

2. STATUS OF THE RESEARCH

2.1 Overview

Methods of deformation and fracture characterization and prediction

are simplifed when strain energy-like potentials based on mechanical work

can be used, as described in the first paper in the Appendix, "Deformation

and Fracture Characterization of Inelastic Composite Materials Using

IPotentials". With these so-called work potentials, important theoretical

and experimental methods using the J integral and energy release rate

(originally developed for fracture of elastic media and fracture initiation

5 in metals with plastic deformations) may be extended to fracture initiation

and crack propagation in monolithic and composite materials.

5The second paper in the Appendix, "Delamination Analysis of Composites

with Distributed Damage Using a J Integral", describes an experimental

* study made during the project year on delamination of composites with

I
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5 multiple fiber orientations. The J integral was used to determine the

fracture energy. Considering the theoretical basis for this method (which

is given in the first paper in the Appendix) and the consistency of

fracture energies obtained, it is believed the J integral method is more

U appropriate for determining fracture energy than other existing techniques

when there are significant effects of distributed damage on specimen

deformations. A new Ph.D. student, Mr. Douglas Goetz, (who is supported

5 jointly by the subject grant and Dr. W.L. Bradley's AFOSR grant) plans to

continue the work on the J integral through additional investigations of

delamination. Effects of multiple loads or deformation states, such as

combined bending and stretching or compression, as well as various layups

(including different thicknesses) and specimen types, will be studied to

determine, in part, whether or not the J-determined fracture energy is

sensitive to geometry and loading conditions.

Another Ph.D. student, Mr. Mark Lamborn, is studying flat angle-ply

bars under combined axial and torsional loading. Some of his early work is

i discussed in the first paper in the Appendix. This investigation is

concerned primarily with (i) the determination of work potentials for

specimens with significant amounts of distributed damage and (ii) use of

the J integral to characterize and predict edge delamination when

distributed damage and the mode III (antiplane) component of energy release

rate are relatively large. He summarizes the status of this effort in

Section 2.2. Studies to-date indicate that a work potential exists; but

much more effort is needed to establish its range of existence and to

obtain a detailed characterization.

A third graduate student, Richard Tonda, describes in Section 2.3 his

work on determining work potentials for a graphite/epoxy composite using

I
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circular tubes and flat bars. The computer, computer programs, and reduced

data were all lost in a fire on December 31, 1984. This study was

discontinued for a year and thus was only recently restarted.

Graduate student Randy Weatherby completed a Ph.D. dissertation in

January 1986. It describes the development and application of a new finite

element model for analyzing crack growth in materials which are

characterized by work potentials. It is believed that both the use of the

crack tip "failure zone" in a finite element model and the study of path

independence of the J integral with macro-crack propagation and distributed

micro-damage are new. The abstract of the dissertation is included at the

end of the Appendix.

2.2 Studies of Flat Laminates Under Axial and Torsional Loading

Various layups were tested under the conditions of combined axial and

torsional loads to obtain some insight on work potentials and on which

layups would result in significant coupling effect of rotation and axial

deformation on loads. The tests were performed for conditions of

proportional and non-proportional straining. The axial displacement and

rotation were controlled during each test. All test specimens were

rectangular bars consisting of 24 plies, and either balanced angle-ply or

balanced symmetric laminates. Test specimens were relatively long bars of

various lengths and widths. The test results indicate that of the

laminates tcsted, a [±20121 S with a length to width ratio of 6 displayed

the most coupling. All test specimens failed at significantly lower torque

levels than the torque capacity of the load cell. A new load cell which

will be more sensitive to low torque levels has been ordered and shipment

is expected in the early summer.

PI
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A computer program has been developed which takes the measurements

from a series of proportional straining tests and checks for the existence

of a potential A series of data was generated using a nonlinear material

model for which the analytical expression for the potential was known. The

computer program showed the existence of this potential thus verifying the

procedure. The program has been used to study proportional straining tests

to determine the type and number of tests required to verify the existence

of a potential. These studies indicated that several of the specimens in a

series of tests should be tested at relatively low ratios of axial

displacement to rotation. Work is underway to modify this program to

permit checking for the existence of a potential between specific levels of

the axial displacement and rotation. Checking for the existence of a

potential in this manner will allow fewer experimental tests.

A MTS tension-torsion testing machine was used to perform all tests.

It was determined that the axial displacement as measured by this machine

may be in error in some cases due to displacements in the grip mechanism.

*To determine the magnitude of this error aluminum test specimens,

corresponding to ASIM standard tensile specimens, were mounted with strain

gages. These specimens were tested under combined axial and torsional

loads in a series of proportional straining tests. The axial displacement

was determined from measurements by strain gages, a LVDT, and the crosshead

movement. Good agreement was found between the axial displacements

measured by the strain gages and the LVDT. These measurements were

different than those from crosshead movement. The LVDT measurements were

used in calculations to determine the existence of a potential with

U elastic-plastic deformation of aluminum test specimens; the calculations

showed that a potential did exist, as expected. The LVDT will be used in

U
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future tests to measure the axial displacement.

2.3 Studies of Tubes Under Axial and Torsional Loading

The 1985 annual report documented progress in this area of the

research effort and indicated that the effort was brought to a stand-still

as a result of a fire which destroyed the Texas A&M facility being used to

store, process and analyze these data. Funding and legislative

considerations led to a delay in the acquisition and installation of the

necessary hardware until early October, 1985. Work was recently initiated

to restore the software and data which was previously lost.

Our earlier analysis indicated that it was useful to conduct an

experimental and analytical study of angle-ply laminates under multiaxial

loading in order to verify the existence and use of a work potential for

modelling realistic amounts of distributed damage. This laminate/loading

condition combination undergoes significantly more damage prior to global

fracture than the unidirectional off-axis tensile samples tested earlier,

and therefore provides data which enable a more critical evaluation of the

work potential theory. The unidirectional studies provided baseline

elastic and viscoelastic property data in the absence of the residual

stresses which exist in angle-ply laminates, and thus can be used to

predict baseline angle-ply response with no significant damage.

Prior to the fire mentioned earlier, the decision was made to conduct

cylindrical tube tests under combined axial and torsional loading. This

test technique offered two features necessary to expand on the work already

completed. First, angle-ply laminates of arbitrary construction could be

tested, and second this testing could be accomplished under a truly

independent, bi-axial state of stress. Hercules, Inc., of Magna, Utah,

provided four (4) cylindrical specimens of angle-ply laminates constructed

.'._
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from the same material and production line as that used for the off-axis

tests conducted earlier. These four tubes were carefully constructed and

layed-up by hand, and as such represent high-quality structures to be used

in the final phase of testing. This set of specimens consists of two

30] 2S and two [±60] 2S tubes, all 2 inch dia x 20 inches long. Because of

the considerable value of these tubes, and to better -understand and

characterize the phenomena being observed, we obtained and validated a

finite-element routine which allowed for careful and optimized use of the

four tubes available. The NISA program for the HP 1000 computer was made

available at very low cost, and since it was highly capable in the area of

composites, was chosen for this analysis. The fire mentioned earlier put a

complete halt to this process as well.

A new copy of NISA was obtained in late December of 1985 and was

installed and checked out in January of 1986. Work is now underway to

validate the models of both tube and off-axis specimens. Preliminary

analysis with NISA and our prior experience with composites testing has

indicated a need for more test samples. Due to the high cost and long lead

time for preparation and acquisition of additional tubes like those already

supplied, discussions have continued with Hercules to have a number of

additional specimens fabricated. Those specimens will be eight-ply, 2 inch

dia X 20 inch long tubes like the more costly hand layed-up tubes already

on hand. Instead of hand lay-up however, these tubes will be rolled from

prepreg tape in an assembly line fashion. It is anticipated that specimen

quality and consistency will be more variable in comparison to the hand

lay-up technique, but a number of these tubes will be used to develop

experimental and data reduction techniques and to provide baseline laminate

performance and behavior. A quotation has been requested from Hercules for

18 tubes total: 6[-3012S , 6[_6012S, and 6 [±20 1 2S' e anticipate placing

W
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an order for these items shortly so that the tubes will be delivered in

April.

Current efforts are concentrating on NISA simulations which examine

the effect of grip technique on specimen response and on developing a test

matrix to maximize the efficient use of the number of specimens we hope to

have available. If all proceeds according to plan, tube testing will start

in late April.

I4
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3. LIST OF AFOSR SPONSORED PUBLICATIONS

I R.A. Schapery, "Deformation and Fracture Characterization of Inelastic

3Composite Materials Using Potentials". To be published in Polymer

Engineering and Science.

L.A. Schapery, W.M. Jordan, and D.P. Goetz, "Delamination Analysis of

Composites with Distributed Damage Using a J Integral". To be

published in the proceedings of the International Symposium on

Composite Materials and Structures, Beijing, June 1986.

J.R. Weatherby, "Finite Element Analysis of Crack Growth in Inelastic

Media". Ph.D. dissertation, Texas A&M Univ., completed and approved

Jan. 1986. Papers based on this dissertation will be prepared during

5the year.
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were completed Jan. 1986)
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7. Carl Fredericksen, Electronics Technician, (Laboratory Staff
Member)
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5 4.2 Spoken Papers (Principal Investigator's Activities)

1. "Fracture Analysis of Nonlinear Viscoelastic Materials",

Mechanics Seminar, Tel-Aviv Univ., Tel-Aviv, Feb. 1985.

2. "Fracture Analysis of Composite Materials", Composites Group at

Israel Aircraft Industries, Tel-Aviv, Feb. 1985.

3. "Recent Developments on Damage Growth and Fracture of Composite

5Materials", Plenary lecture at Israel Aeronautics Conference,
Haifa, March 1935.

4. "Deformation and Fracture Characterization of Inelastic Nonlinear

Materials Using Potentials", Mechanics Seminar, Univ. of

Texas, Austin, April 1985.

5. "A Micromechanics Model for Nonlinear Viscoelastic Behavior of

Particle-Reinforced Rubber with Distributed Damage", Int.

Union of Theoretical and Applied Mechanics Conf. on Fatigue

and Damage, Technion, Haifa, July 1985.

3 6. "Deformation and Fracture Characterization of Inelastic Composite

Materials Using Potentials", International Symposium on

Nonlinear Deformation, Fracture and Fatigue of Polymeric

Materials, National Meeting of the American Chemical Society,

Chicago, Sept. 1985.
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5. APPENDIX
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AFOSR Project:

3 1. "Deformation and Fracture Characterization of Inelastic Composite

Materials Using Potentials"

2. "Delamination Analysis of Composites with Distributed Damage using a J

Integral"

I3. "Finite Element Analysis of Crack Growth in Inelastic Media" (Abstract)
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3 DEFORMATION AND FRACTURE CHARACTERIZATION

OF INELASTIC CCMPOSITE MATERIALSI *

USING POTENTIALS

I
R.A. Schapery

Mechanics and Materials Center

D Department of Civil Engineering

3 Texas A&M University, College Station, Texas 77843

ABSTRACT

An approach using strain energy-like potentials to characterize

deformation and fracture of inelastic, nonlinear composite materials is

described. The inelasticity may be due to various causes, including

microcracking, microslipping, and rate processes responsible for fading memory

3 (viscoelasticity). The concept of work potentials is introduced first, and

then arguments are given for their existence for inelastic materials.

IEmphasis in the paper is on elastic composite materials with changing or

constant states of distributed damage. Experimental results on polymeric

composites are subsequently presented to illustrate this approach to

5 deformation and fracture characterization. Finally, extension to viscoelastic

behavior is discussed.

*Presented at the International Symposium on Non-Linear Deformation, Fracture

and Fatique of Polymeric Materials, National Meeting of the American Chemical

3Society, Chicago, September 1985.
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1. Introduction

Many important results on the deformation and fracture of linear and

nonlinear elastic materials have been obtained by using strain energy

functions or potentials to characterize material response The thermodynamics

of reversible processes provides theoretical support for the existence of

these potentials and identifies them as free energy and internal energy for

isothermal and adiabatic processes, respectively (e.g., Fung (1)). Besides

serving as the basis for powerful methods of exact and approximate structural

analysis, strain energy functions have been used in the prediction of

effective or average constitutive properties (or their upper and lower bounds)

of linear multiphase media in terms of properties and geometry of the phases,

as reviewed by Hashin (2). Included in the many publications in this area are

studies of the influence of small distributed cracks on the effective stress-

strain behavior of monolithic and composite materials, like those described by

Hashin (2) and Kachanov (3).

Methods of characterization and analysis using local and global strain

energy-like potentials for certain inelastic materials, namely viscous,

plastic, and elementary types of viscoelastic bodies, have been discussed in

an early work by Hill (4). Constitutive equations normally employed for

linear and nonlinear viscous bodies are fully analogous to those for elastic

media, in which strain rate replaces strain (4). For the linear viscous and

viscoelastic cases one may use irreversible thermodynamics (5) or special

types of material symmetry, i.e. cubic and isotropic (6), to argue for the

existence of strain energy-like constitutive potentials in terms of physical

or Laplace-transformed variables (7). While experimental data on multiaxial

nonlinear viscous behavior of metals (corresponding to the secondary creep

* 2~Pi
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stage) may be characterized analytically through a potential, a general

theoretical basis for this constitutive potential does not appear to exist in

either irreversible thermodynamics or in models of micromechanisms; Rice (8)

concluded that there is no sufficiently general physical model of slip which

is capable of providing a firm basis for the existence of a creep potential.

Duva and Hutchinson (9) give a good illustration on the use of potentials to

construct approximate effective constitutive equations of nonlinear viscous

composites; in this analysis the composite is a homogeneous, isotropic,

incompressible, power-law nonlinear material with a given dilute concentration

and size of spherical voids or penny-shaped cracks.

In using a potential to characterize constitutive equations it is often

sufficient to account explicitly for only a dependence of the potential on the

stress or strain (or strain rate) tensor. If the effect of different

temperatures or other parameters, such as microvoid or microcrack fractions

and sizes, are of interest, then one would of course have to consider how

these quantities affect the constitutive potential. An example of such a

potential for an elastic material with damage is the volume-averaged strain

energy density of a material specimen, W(eij , Dk), where eij are components of

a suitably defined volume-averaged strain tensor and Dk represents a set of

"damage" parameters which defines the current damage state (e.g. microcrack

sizes). The stresses for this material are then obtained by differentiating W

with Dk fixed,

sij = W/eij (1)

In references (2), (3), and (9), the effects due to specified sizes and

concentrations, Dk, of microcracks are considered. If it is further desired

to characterize the effective constitutive behavior when the Dk change with

MW1
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time as a result of straining, then relationships governing these changes must

be determined. Suppose for discussion purposes that these relationships are

known and that one may solve the equations so as to express the damage

parameters Dk in terms of the instantaneous strains eij. For some cases, it

may then be possible to find a strain energy-like potential W (eij), say, from

which the effective constitutive equations can be derived by differentiation,

sij W/ej (2)

This constitutive potential would depend on only the instantaneous strains but

yet account for changing damage. If such a potential could be found, it would

be like that used to characterize elasto-plastic behavior of metals by the

Hencky deformation theory (10). Similarly, it would be analogous to the

potential for metals discussed by Rice (8) for stationary creep; in his case

the "damage" is an idealized set of internal slips which contribute to the

average strain rate but do not appear explicitly in the effective stress-

strain rate equations for the metal.

The present paper deals in large part with the question of whether or not

potentials analogous toW(eij) exist for elastic, viscous, and viscoelastic

composites with changing damage (or, more generally, changing microstructure);

emphasis is on elastic behavior with damage. Theory (Sections 2 and 3) and

related experimental work using data on a particle-filled rubber and fiber-

reinforced plastics (Sections 4-6) are discussed.

We should add that there are already many publications on the

thermodynamic and micromechanistic bases for constitutive potentials for

different types of inelastic materials; see, for example, Rice (8,11), Coleman

and Gurtin (12), and Schapery (13-15). However, these potentials depend

, .'
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explicitly on "internal" parameters which reflect the microstructure state,

and are thus likeW(eij , Dk) in Eq. (1). They do not necessarily lead to the

simplified form W(eij) of particular interest here.

Strain energy potentials have been used widely in fracture mechanics

3 (e.g., Brock (16)). For fully elastic materials, the mechanical work

available at a crack tip for producing an increment of crack growth is equal

I to the decrease in potential energy (consisting of global strain energy and

the boundary-work potential). Use of this relationship has resulted in

remarkably successful investigations of fracture of rubber in its nonlinear

range of behavior, which are reviewed by Lake (17), as well as fracture of

linear elastic materials (16). Andrews (18) assumed a strain energy-like

potential exists for rubber with hysteresis, and suggested how the hysteresis

would affect crack growth. When a potential exists it is often possible toI
use Rice's J integral theory (19) to simplify fracture analysis. Schapery

(20) recently extended the potential energy and J integral theories to elastic

and viscoelastic materials with damage.

IConcepts from fracture mechanics are used in Section 3 to obtain the
equations needed to predict microcrack growth, and thus help provide the basis

for potentials, such as W(eij) in Eq. (2). Also, potentials are used in

5Section 6 to account for the effect of inelastic material behavior (which may

be due to microcracking) on the growth of a macrocrack in the form of a

delamination.

In most of this paper (Sections 2-6) it is assumed the materials are

elastic when the damage is constant. In Section 7 a special representation of

3 viscoelastic behavior proposed by Schapery (15,20) is used to extend the

elastic theory with damage to linear and nonlinear viscoelasticity; viscous

U11111M1 1
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behavior appears as a special case.

Finally, it should be mentioned that for lack of a better term we are

using "damage" when referring to characteristics of the microstructure or

fabric of a material which affect constitutive behavior but are not accounted

for in elastic or fading-memory viscoelastic characterizations of continua.

Furthermore, a damaging process, such as considered here, could be associated

with crack growth, crack healing, dislocation creation and motion, breaking or

reforming entanglement points along polymer chains in rubber, etc., and

therefore may be structurally detrimental or beneficial

2. One-Dimensional Theory

The definition of a potential for elastic materials with damage may be

explicitly introduced through the uniaxial stress-strain curve in Fig. I Let

us suppose that a previously unloaded specimen is strained monotonically until

the strain is em. (By definition, the initial state is "undamaged".) The

strain is then reduced, as shown in Fig. L Assuming that the bar is elastic

and has constant damage during the unloading period, with instantaneous stress

sU, and using the same idealization as Gurtin and Francis (21) in which the

maximum strain em serves to define the amount and effect of damage,

SU = f(e,em) (3)

On the loading curve, the maximum strain is the current strain. Hence,

viewing the loading stress as a point at the upper end of an unloading curve,

we may write

s L = f(e,e) (4)

The mechanical work (per unit initial volume) during loading to an arbitrary

strain is

wL = AL(M) =PsL de'=fef(e',e')de. (5)
o 0
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where the prime denotes a dummy variable of integration. The net work input

to the sample at any time during unloading is the snaded area in Fig. 1,

' = WU(e,em) = WL(em) + s U de-

emn

=WL(em) +ff(e',em)de" (6)

em

Observe that during loading and unloading, respectively,

SL = dqL/de, sU = aWU/;e (7)

It is convenient to let W denote a continuous quantity which equals WL during

loading (em = e) and equalsWU during unloading (e< em). Then, we may write

for both loading and unloading processes,

s = aw/ae (8)

The strain energy-like quantity W is actually the net work to the

material at any stage of loading or unloading, and thus it will be called a

work potential. It becomes the usual strain energy density when the loading

and unloading curves are identical Obviously, a work potential W can always

be constructed, given the uniaxial stress-strain behavior, Eqs. (3) and (4).

Derivatives of multidimensional equations are needed in the next

section. The one-dimensional model, Eqs. (3) and (4), is useful for

clarifying some of the analysis ahead of time. In particular, observe that

the slope of the unloading curve is,

as -af ": 3e(9
ae 3e

The loading curve s L is a function of only e. However, when using the upper
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3 end of the unloading curve to define sL, both arguments in f(e, em) must be

considered in computing the derivative,

ds L  f + f eM  af + f
e -e e(10)

wnere we have used the fact that em = e on the loading curve. (The last term

in Eq. (10) is the difference in slopes of the two curves at em = e.) We may

rewrite Eq. (10) using Eq. (3) and the second expression in Eq. (7) to obtain

dsL a 2wO a2wO
T e - +eae(

U where the derivatives of Wu are to be evaluated at em = e after

differentiation.

3. Multidimensional Theory

5 For characterization of multiaxial stress-strain behavior, or for other

responses which depend on more than one independent input, a work potential

does not necessarily exist. However, that it can be expected to exist for

some realistic situations will be discussed here. For the sake of generality

let us use as independent inputs the generalized displacements

qj (j=l,2,...J). The responses are the generalized forces Qj, which are

defined in the usual way by the condition that, for each j,

6(Ak) = Qj 6 qj (12)

where 5Wk) is the virtual work input associated with the virtual displacement

6qj. Suppose, for example, that we let each qj represent a gradient, aum/axn

(m,n=l,2,3) of a three-dimensional displacement field, urn, and let 6 (Wk) be

virtual work per unit initial volume. Then J = 9, and Eq. (12) implies the

IQj are the components of a stress tensor Smn, say (for large or small

strains, Fung (1)). In order to characterize the behavior of laminates using

I
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classical plate theory (22) one may want to associate the set qj with tne

middle surface curvatures and strains. In this case, the Qj would correspond

to moments and in-plane forces per unit length, and 6(Wk) would be virtual I
work per unit area.

As in the uniaxial example, we assume that when the damage is constant

the body (material element, test specimen, or complete structure) is elastic

in the usual sense; namely, a work potential Wc exists with the property that

Qj = 3wC/,qj (13)

(Rather than using the terms "loading" and "unloading" we shall instead now

refer to "damaging processes" and "constant damage processes", since we do not

want to imply that the damage is always constant when the magnitude of one or

more loads or displacements decreases with time.) The effect of damage on Qj

is assumed to be fully represented by a set of "damage parameters"

Fcn (n=1,2,....N) in the next subsection.

A Special Case: Following Schapery's (20) arguments, it will be shown

that tor a suitably chosen Wc a work potential WD exists during damaging

processes such that

Qj = j (14)

where WD is a function of only the current values of qj. One special c-

discussed in (20)is,

N

Wc = Wo(qj) + Wn(Fn, Fcn) (15)

where -O is a work potential without damage effects. It is assumed that all

of the functions Fn = Fn(qj) are such that the N conditions Fcn = Fn are

satisfied simultaneously during all damaging processes. (The uniaxial case,
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Eqs. (3) and (4), is recovered when we set N=1 and take 90=0 , F 1 =q 1 = e,

Fci = em.) To prove that WD exists, it is necessary and sufficient to show

that the generalized forces during damaging processes satisfy

3Qj/aqi = aQi/aqj (i,j = 1,2,..J) (16)

assuming the derivatives in Eq. (16) are continuous (e.g., Greenberg (23)).

The forces during a damaging process are taken equal to those in Eq. (13) when

Fcn = Fn (which is analogous to saying a stress on the loading curve in Fig.

1 is at the upper end of an unloading curve). Consequently, we may

evaluate the derivatives in Eq. (16) by first substituting Eq. (15) into (13),

aw N 3W
Q 0 +n n(17)J= 3qJ nl n j

and then setting Fcn = Fn and differentiating Eq. (17) (cf. Eq. (11)),

qi Dqj qi

aw a F n a 7na 2  W aFn F n
+ W+ F Wn+ Wn FnFnl

n[xh - n +  + Fcn (18)

Clearly, the right-hand side of Eq. (18) is the same when i and j are

interchanged, and therefore Eq. (16) is satisfied.

Generalizations: Extensions of wc for which AD exists are discussed in

(20), and WD itself is given. For example, at any given time some of the

terms Wn in Eq. (15) may be for constant damage processes while others are for

damaging processes. Also, the potentials may depend explicitly on time, and

Im
pu
I£
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t -tt &ts it giyng or changing physical environments. (The

.: .n iows for large deformations, uses displacement

tress_-s instead of generalized displacements and forces.

.. .r- CL i.r formulation, including its extension to viscoelastic

-t,. S -t on "), carrys over fully in terms of the generalized

.'ariDs asWd here.) Thus, as in Eq. (8), we may introduce a continuous work

potentlni ,q for wnich

Q= 3 .=/,qj (19)

even if the damage parameters in some components Wn are constant while others

vary in time.

Regardless of the process,

3Qj/ qi - 3Qi/ q. = 0 (i,j = 1,2,...j) (20)

except at the points of change from one process to another, considering all

W n The derivatives in Eq. (20) are, in general, discontinuous at these

transition points (cf. Fig. 1 at e = em) and thus Eq. (20) does not apply

there. Evidence of transition points may appear in experimental data as

significant but somewhat random non-zero values of this difference of

derivatives (for i/j) over short time intervals; this experimental behavior

would irdicate that a process has changed from one type to another, damaging to

constant damage or vice versa.

It is not the goal here to develop specific physical models which give

rise to the form for Wc in Eq. (15). We only mention that one based on a

simple microcracking model is given by Scnapery (20). Also, for

characterizing laminates using classical plate theory, each F might be
cn

proportional to a ply or ply-pair failure surface (such as represented by the

Tsai-Wu theory, e.g. (2), expressed in terms of the local ply strains) or
0%



other local invariant. Since the local strains are (linear) functions of the

3 mid-plane strains and curvatures, one obtains Fn = Fn(qi) if the latter

LIM strains and curvatures are included in the set qi; the summation in Eq. (15)

would extend over all plies.

It is not necessary for the constant-damage potential to have the form in

Eq. (15) for the work potential in Eq. (19) to exist. For example, a

different form for Wc was given in (20) which contains the Henky deformation

theory of plasticity (with elastic unloading). Another example is given in

the next subsection.

Micro- and Macrocracking: The work potential W in Eq. (19) may be a

constitutive potential in the sense that this equation could be a stress-

strain equation for a composite or monolithic material. Alternatively, W may

be the total work input to a structure under a general set of boundary

displacements qi whose constitutive response is defined by a work potential

density. In either case, the constitutive potential may account for some

effects of microcracking, microvoiding, slipping, etc., through the damage

parameters Fcr However, the form of the underlying potential Wc for constant

damage which has been discussed so far is not completely general. Also,

effects of macrocracking (such as large-scale delamination) have not yet been

explicitly introduced. Thus, it is of interest to know if a work potential

exists when there is macrocracking and a relatively general distribution of

growing microcracks. This question will now be examined by embedding

additional cracks in the body characterized by W; the index k will be used to

indentify each of these cracks, assumed to be K in number. The cracks may

have a wide range of sizes, but it is assumed that the scale of the crack tip

failure process zone (which determines the work required for increments of

growth) is such that the local material surrounding the failure zone can be

q I



12

approximated as a continuum, and that the effect of the failure zone on the

continuum can be represented by tractions acting along the local crack plane

Then, the virtual work equation with crack growth (see Eq. (13) in (20)),

which applies with or without changing damage in the continuum and regardless

of whether or not growth is self-similar, gives the available crack tip work

per unit of new surface area as - 6 W/ 6 Ak; 6W is the change in the work

potential for the total body due to the increase in area 6Ak of the kth crack

with all qi fixed. Denoting the available work as Gk, we may thus write

Gk = -W/Ak (21)

where k = 1,2,..K; also, W is considered to be a function of generalized

displacements qi and oriented crack areas Ak. The quantity Gk is commonly

called the energy release rate. The work potental may also depend on damage

parameters Fcn in that it is the W in Eq. (19) except for the fact that the

body now has K additional cracks; the virtual work (Eq. (13) in (20)) from

which Eqs. (19) and (21) follow, is shown in (20, p. 222) to be valid with

crack growth in bodies with other distributed damage.

In order to predict this growth we also need to specify the work required

Gck, say, for a unit of new area of the kth crack area; this quantity is the

so-called critical energy release rate. It is not necessary to assume Gck is

constant or is the same for all cracks. However, we do assume it can be

derived from a fracture work potential W f(Ak), where

Gck = Wf/;Ak (22)

If for example the critical energy release rate for all cracks is constant,

but not necessarily the same,

K
Wf = Gck Ak (23)
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SStable (quasi-static) growcn of any one of the K cracks is specified by

-he condition that requi3ced work equals available work, Gck = Gk; thus,

ifwf/OAk = "3W/Ak (24)

If

Wf/ Ak < -9W/3Ak (25)

unstable growth occurs, whereas if

9Wf/Ak > -;WIM k  (26)

there is no growth.

Returning now to the question of whether or not a work potential exists

with crack growth, we shall see that it does for the model defined above if

the growth is stable. The potental is denoted as WT, and it will be shown

that it is simply the work of fracture plus the work of deformation of the

elastic or inelastic continuum 4; namely,

w Q = WT/q j  (27)

* where

WT = Wf + W (28)

The proof is made by first evaluating the derivatives of WT while allowing for

the stable growth of an arbitrary number of the cracks; hence

3W T _W f W k2 9- (-+ -)-- -- 2
j k aqJk a qJ aqJ

For those cracks which do not grow, 3Ak/Dqj = 0. In view of Eq. (19) as well

as Eq. (24) for the growing cracks, Eq. (29) reduces to Eq. (27), which was to

be shown.

Equation (24) is a set of K" (0< K <K) equations whose solution gives the

areas Ak(qj) of K' growing cracks in terms of the generalized displacements.

I
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If we assume a unique solution exists (at least for small changes in qi )

then the areas (or their changes) could be substituted intoWf and W in Eq.

(28). In this form WT would be a function of qj and only those Ak which are

constant.

Pursuing this representation further, let us suppose for simplicity that

all areas Ak are simultaneously either constant or vary; denote the constant

values by Ack. Then for a constant damage process (apart from possible

effects of Fcn and Fn) ,

T T (qj, Ack) (30)

and for a damaging process, Ack- Ak(qj),

D (1
DWT = WT(q j , Ak(qj)) (31)

Equation (30) does not necessarily have the special form of Eq. (15), but yet

a work potential exists for constant and changing damage; the limitation is

instead in the form of the relationship governing Ak(qi), viz. Eq. (24).

Unstable Crack Growth: Unstable crack growth occurs when Gk > Gck The

excess work predicted from quasi-static analysis is then modifed by dynamic

effects, and the quantity WT in Eq (28) is not equal to the work input to the

body. This does not necessarily mean a work potential does not exist. In

fact, the assumption of quasi-static crack growth was not used to arrive at

Eq. (19). The functions Fn(qj) may reflect, at least in part, an average

effect of unstable rapid steps of microcrack growth.

Significance of the Areas Ak: Through principles of fracture mechanics

we obtained a work potential WT' and furthermore related it to physically

identifiable parameters Ak and material-related functions Wf and w.

Conceptually, all cracks are considered to pre-exist with given initial sizes

and orientations; but many or all may be so small initially that they have no
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real effect on the work potential. In principle, as many Ak are to be used as

are needed to fully define the instantaneous location and orientation of all

crack surfaces and their growth. For example, a crack edge that advances

nonuniformly along its length may require the use of many small areas or

parameters Ak to define the changing geometry. With complex arrays of cracks

this formulation is not practical unless idealizations, such as periodicity

and regular shapes, or statistical representations are introduced. Non-unique

solutions Ak(qj) would further complicate the problem, giving rise to effects

of the history qi(t). In such a case, one may have to solve for changes in AK

using small changes in qi. Of course, our purpose was simply to argue that a

work potential exists; nevertheless, it should be recognized that even with a

work potential, there could be effects of the displacement history.

Additional complications could arise with friction between adjacent crack

faces, in that a work potential does not always exist if there is appreciable

energy dissipation through sliding processes; however, it should be recalled

that significant plastic deformation (slip) processes may occur in metals and

yet a potential exists for some histories, as modeled by the deformation

Utheory of plasticity.
One could think of the parameters Ak as "internal variables", such as

used in irreversible thermodynamic formulations; they need not be areas as

long as they fit the above mathematical model. Although it is not necessary

here, we may write the equations which govern their growth, Eq. (24) or

equivalently Gck = Gk, in a rate form similar to that used in thermodynamic

models. First differentiate Gck = Gk with respect to time,

G dA D Gk dA DG.k dq.

Mc tm ~ k M+t_ (32)

where, for simplicity, explicit time-dependence (eg. aging) in Gck and Gk is

omitted.

I
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Solve for dAm/dt,

dA dq
.q _dtHm G (33)k,jj

where Hmk is the inverse of the matrix Gkm,

Gkm ck/lm - 1_k/am (34)

Complementary Work Potential: In many problems it is desirable to use

the Qj instead of qj as the independent variables. All of the preceding

theory could have been formulated in this way, in which a complementary work

potential Wc, say, would be used, where

qj = awc/ I (35)

For the one-dimensional case in Fig. 1, Wc is the area to the left of the

curves,

Wc = fSe ds (36)

* 0

where e = f (ss m ) or e = f(ss'), depending on the curve to be used, and s

is the maximum stress. The relationship between WT and Wc is

J

W+ W e =Z Qj qj  (37)
j=l

Observe that we may start with Eq. (27) and then define Wc by Eq. (37);

differentiation of the latter equation yields Eq. (35). Alternatively, we

3 could reverse the process. Thus, if "Arexists so does Wc , and vice-versa. It

should be noted that these potentials are multivalued, and therefore one has

to interpret their interrelationships on a process-by-process basis. For

instance, in identifying a particular (s,e) pair for the example in Fig. 1, it

is obviously necessary to specify whether the loading or unloading curve is to

3 be used.

4. Angle-Ply Composite Bars under Axial and Torsional Loading

The theory in Section 3 provides support for using work potentials

I
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3 to characterize the behavior of materials and structures with damage. In

this and the next two Sections we describe studies of polymeric composite

materials which give preliminary experimental confirmation of this

characterization for damaging processes.

Work using laminates of graphite fiber-reinforced epoxy under axial and

torsional loading is described in this Sectior The tests specimens are flat

bars, as illustrated in Fig. 2, which consist of several plies or layers, each

being a relatively brittle, elastic composite with continuous, unidirectional

fibers having an angle e with respect to the bar's axis; e = ±-30Y are used in

the specimens discussed here. The unidirectional material was supplied in

pre-preg form by Hercules, Inc., and is designated as AS4/3502. It should be

emphasized that even though there are strain gradients and consequent

nonuniform damage (primarily in the form of distributed microcracks and, at

high loads, edge delaminations) the theory in Section 3 may be used. (Basic

stress-strain behavior using thin-walled tubes will be studied in the near

future after acquiring additional laboratory equipment.)

The generalized variables of Section 3 will be identified with the

specific mechanical variables for the bar as follows: axial elongation, u =

ql; rotation angle between ends, S = q2; axial load, F = QI; and torque, T =

Q2 The total work potential 4T, Eq. (28), is the work input to the entire

bar through the relatively rigid grips.

The necessary and sufficient conditions for existence of a potential, Eq.

(16), for the present problam reduce to the single equation,

aF/Q = T/@u (38)

Before using Eq. (38) with expermental data, it is helpful to replace the

variables by measures of stress and strain. This normalization process

I
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eliminates first-order effects of specimen-to-specimen dimension differences.

Specifically, we shall use "nominal" stresses and strains defined as

s F/bc T - 3T/bc2

e u/L y c Q/L (39)

where b = width , c = thickness, and L = length (between grips). For the

special case of long, thin homogeneous specimens (L>>b>>c) s and e are the

uniform axial stress and strain respectively, and T and y are the in-plane

shear stress and strain respectively at the surface. This is shown by

Timoshenko (24) for linear isotropic materials; for orthotropic materials

whose planes of symmetry are parallel to the specimen surfaces, it can be

shown that the same formulas apply except the width is modified by a ratio of

moduli. The shear strain magnitude is zero at the mid-plane and increases

linearly to the specimen faces (L x b) in Fig. 2. Whether or not the stated

conditions apply the variables in Eq. (39) are useful for normalizing data.

Equation (38) becomes

Ds/ay = ;(T/3)/3e (40)

This equation has been used to analyze the data in Figs. 3 and 4 by first

writing

T/3 = T3 + g (41)

where To = To (y) is the shear stress for e=0; also g=g(e,Y) in which g(o,Y) =

O. Next, integration of Eq. (40) with respect to Y yields

s = a g(e,y')dy'+ so (42)

0

where so = so(e) is the axial stress when y=O. Thus, the quantity I'! IV
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As e g (e,-y') dy (43)

is the change in axial stress due to the twist induced shear strain. This

integrated form is to be preferred over the original Eq. (40) because of the

inaccuracy resulting from differentiation of expermental data, considering

especially the small amount of data available.

3 The procedure used to check for the existence of a work potential was to

cross-plot the data in Fig. 3 so as to obtain g (which is proportional to the

change in shear stress due to axial strain) as a function of Y, for fixed

values of e, and then predict the modification to axial stress, Eq. (43).

Considering the limited amount of data available, it is desirable to curve fit

* analytical expressions to the data to aid the needed interpolations and

extrapolations. It was found for a wide range of strains that

f g(ey')d< = Ay2 .55 e (B+Cy)
0

where A,B, and C are constants. Using this expression in Eq. (43) yields the

change in axial stress due to twist. Only for e/y = 0.92 is there a

significant effect of twist prior to fracture; the prediction is drawn in Fig.

3 4. The agreement between theory and experiment is relatively good.

In the series of tests shown in Figs. 3 and 4 there is only one specimen

for each deformation history, and thus the small differences between most

curves in Fig. 4 could be as large as specimen-to-specimen differences.

Nevertheless, it is encouraging that all of the predictions from Eq. (43)

2 turned out to be of the same order as the observed differences in axial

stress. Axial stress for 'f=O is not shown, but it was essentially the same as

N for e/y = 1.78 in Fig. 4 until premature failure occurred; the latter results

were used in the theoretical predictions. Although not needed to check for

the existence of a potential, it is of interest to observe that when there is

little or no coupling effect of twist and axial deformation, the stress-strain

I
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curves obey power laws over a wide range of strains; this is shown in Fig. 5

where
m n

s - e and T y Y (45)

We have conducted additional exploratory tests using proportional

straining of laminates with various widths, thicknesses, and fiber angles, all

of the angle-ply design (± e) with balanced, symmetric layups. The behavior

is similar to that already discussed, with comparable verification of Eq.

(43). Close to the end point of the curves, where large scale delamination or

failure at the grips occurs, theoretical and experimental curves tend to

separate, as seen in Fig. 4. This difference may possibly be due to

inaccuracy in the extrapolations needed for Eq (43) (considering the small

number of specimens used), a change from damaging to constant damage processes

and vice versa (cf. discussion of Eq. (20)), or an inability to use a

potential in a highly damaged state. Future studies using proportional and

nonproportional straining should help to explain this behavior.

For some layups with sufficient twist, mode III edge delamination occurs

prior to significant material fracture near the grips. As a result, properly

designed bar specimens with and without initial delaminations may be useful

for studies of this type of delamination. When a work potential exists, one

often can use the J integral theory or energy release rates to account for the

effect of distributed damage on the delamination growth.

5. A Highly-Filled Elastomer under Axial Loading and Pressure

Several years ago Farris (25) described large deformation studies of

crosslinked rubber containing 65 volume percent of relatively hard particles.

Specimens in the shape of slender rectangular bars were subjected to confining

pressure and uniaxial loading. He used reversible thermodynamics as a basis

Ii
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for predicting the effect of pressure on the axial stress-strain behavior.

These predictions were in quite good agreement with the measurements, in spite

of strong effects from the irreversible processes of microcracking and void

( rowth. Here we re-examine the behavior and use the present work potential

theory as a basis for making similar predictions.

The specimen and relatively rigid grips are shown schematically in Fig.

6. This assembly was placed in a chamber, where it was first pressurized to a

constant value p and then stretched axially at a constant crosshead rate; the

axial force acting on the grips is F. Representative stress-strain and

dilatation-strain data are in Fig. 7.

In order to select the generalized variables in Eq. (12), we use for

6(Ak) a virtual work per unit initial specimen volume,

6(Wk) - 1 f ToS u dA (46)
0 A

where'T and 6% are the surface traction and virtual surface displacement

3 vectors, respectively, and Vo is the initial specimen volume; the integration

is over the instantaneous area A of the specimen and rigid grips. On all

surfaces except on the grip ends where F is applied,

T = -p n (47)

in whichv is the outer unit normal to the surface. It is helpful to write

ithe normal traction on the grip ends in the form

Tn = T1 - p (48)

where T1 is defined by this equation. Integrating TndA over the grip ends

with area Ag, regardless of whether or not Tn is uniformly distributed, gives

the axial force as

F = F1 - p Ag (49)

U
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where

e F, -j TldA (50)

A
g

is the axial force above that due to the pressure. Equations (47), (48), and

(50), along with the assumption of purely axial movement of the grips, reduce

Eq. (46) to F 6!

6 (Wk) 1 V u I - Po (51)
0 0

where 6u, and 6V are the virtual axial elongation and volume change of the

specimen, respectively. Let us now choose for generalized displacements the

Anominal axial strain, e, and dilatation, v, defined in the usual way,

ql = e £ ul/Lo, q2 = v - V/Vo  (52)

where u, and V are the increases in specimen length and volume from the

initial unstrained state (in which the length is Lo and volume is V.).

Comparing Eqs. (12) and (51) we see that the generalized forces are

Q1 
= s , Q2 

= -P (53)

where s = FI/A o , the "nominal stress".

As in Section 4, we shall use Eq (16) (with i=2, j=l) in integrated form

to determine if a potential exists. Namely, substitute the variables from

Eqs. (52) and (53) and integrate with respect to v,

s(e,V) = - --2 (f pdv) + s(e,v o) (54)
V

0

where vo is a constant reference value of dilatation. This result is

equivalent to that used by Farris except for an additional term arising from

surface or fracture energy, which he attributed to the formation of vacuoles.

3 However, he subsequently neglected this term and then used the theory and

crossplots constructed from data in Fig. 7 to make the predictions in Fig. 8.

0
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For s(e, v o) the curve for p = 500 psi was used; although the dilatation is

U not constant in this case, it is very nearly so (cf. Fig. 7).

It chould be noted that Eq. (54) is correct as it stands, in that surface

or fracture energy changes are taken into account implicitly when one uses

data for damaging processes. The underlying potential is WT, E<. (28), which

consists of the work of fracture Wf plus the deformation work W. Furthermore,

no restriction has been imposed on the magnitude of the strain or its

uniformity; the strains are in fact quite large, and are nonuniform at least

close to the grips.

The agreement between results from experiment and potential theory is

seen in Fig. 8 to be quite good. The discrepancy is relatively small compared

to the differences between the various stress-strain curves and that at 500

psi; the error that does exist may be largely due to the moderate amount of

viscoelasticity exhibited by this material. Note that the extent of damage is

large at the low pressures, in the sense that without microcracking and the

subsequent development of microcavities the dilatation would be negligible

compared to the values in Fig. 7; also, the uniaxial stress-strain curves

would be pressure-insensitive since, with increasing pressures, the curves

approach that for essentially zero dilatation.

The results in Figs. 7 and 8 are from tests conducted at constant

pressure. Farris also gave the results in Fig. 9, which include a test in

which the pressure was initially at 500 psi, and then, while the sampla was

being strained, the pressure was suddently lowered to 40 psi; following

additional straining, it was increased to 500 psi. It is seen that after a

short period of time following each pressure change, the stress-strain curve

tends to approach the one for which the pressure was constant during the

U



entire straining period. In other words, there is not a strong effect of

pressure history in this case.

6. Delamination in Double Cantilevered Beams

The symmetric split bean test depicted in Fig. 10 is now commonly used to

determine the critical energy release Gc for the opening mode of delamination

of fiber-reinforced plastics. When there is a significant volume fraction of

fibers which are not parallel to the beam axis the two legs may be highly

inelastic, thus invalidating the standard elastic methods used to obtain G_I
from experimental data on load, deflection, and crack length. As an

0illustration of the use of the potential theory in Section 3 for fracture

analysis, we shall derive an equation for determining Gc in inelastic beams.

* It turns out that the complementary work potential Wc , Eq (35), is used

more conveniently for this problem than the work potential. In the

formulatior we shall employ, the potential 4T in Eq. (37) will include the

fracture work of all microcracks but not that of the delamination. For this

case the work that becomes available at the delamination crack tip for a unit

3 of new area of surface A (projected onto the delamination plane), is given by

ew =e /ocA (55)

where the derivative is taken with generalized forces held constant. This

formula can be derived by first observing that the total variation of Eq. (37)

may be written in the form

+ -6A Q rj - j j - (56)
VA_ 7 ) ~j=lR q -- C

The right side vanishes by virtue of Eqs. (27) and (35), and therefore

WcA = -dT/oA. Equation (21) then yields Eq. (55) since we may use Eq.

(21) for the delamination crack in which the work potential is WT instead of



25

W, allowing for the work of microcrack extension introduced in Eq. (28).

For the DCB specimen in Fig. 10, let F = Q, and 2u = ql. Use a

and b to define the instantaneous crack length and specimen width referred to

the unstrained (flat beam) geometry and then take A = ab. The complementary

work for the total test specimen is

a dl

W = Wc(F,a) = 2J wc  + W (57)

0

where x, is a coordinate axis along the specimen centerline (which defines the

location of material points in the unstrained geometry) and x=O is at the

initial line of load application. The quantity wc is defined as the

complementary work density (based on unit length) for each leg from classical

U beam theory: namely, the theory based on the assumption that material planes

which are initially normal to the beam axis remain plane and normal when the

beam is deformed. The correction to beam theory is denoted by -4 The energy

3release rate becomes
=13C 2a c 2

LIT b W - W(a) + 2 s  cdx I  (58)

0

after neglecting 3W/3a. For long beams Wc is primarily from distortion of

the beam immediately to the right of the delamination crack tip, and : c/-a

can be shown to vanish if the beam is long enough that the crack tip is

essentially isolated from the ends.

Equation (58) is not restricted to small strains and rotations. As such,

the horizontal distance a' in Fig. 10 may be significantly less than the

actual length of the crack surface a. However, we shall simplify the analysis

IU
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5! by assuming small strains and rotations and further assume both legs are

symmetric and balanced laminates in the undamaged and damaged states. With

these conditions there is no mid-plane stretching or twisting, and beam theory

gives the simple result

M

wc =f kdM" (59)

0

where k = k(M') is the curvature as a function of the moment. A moment-

curvature diagram for inelastic material would be similar to the stress-strain

diagram in Fig. 1; the complementary work, Eq. (59), is thus to be evaluated

taking into account the multivalued relationship, as discussed in Section 2.

The local beam moment is

M = Fx I  (60)

5and thereLore the integral in Eq. (58) vanishes as wc is independent of a.
Thus, we obtain

G w (a) k(M) dM
b c bJ (61)3 0

where Ma = Fa is the crack tip moment.

This result has been used by Jordan (26) to analyze delamination of two

different graphite/epoxy material systems with plies having various fiber

orientations; one system had a rubber-toughened resin and the other a brittle

resin system. Figure 11 gives a typical load-displacement diagram for the

latter one. The short inclined lines represent periods of no crack growth

following sudden jumping at loads along the dashed line. Measurement of crack

length and corresponding loads indicated that the crack tip moment at the

beginning of each jump in crack length was approximately constant for all

tests in the series. Four-point bend tests were used to develop the moment-

U
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curvature diagram of beams with the layup of one-half of the DCB specimen

(i.e. for one leg). Knowing the moment for crack growth from the DCB tests

and the moment-curvature diagram from the four-point bend tests made it

possible to derive the critical energy release rate from Eq. (61); the average

moment at which crack jumping occured for each DCB specimen was used for ma -

This calculation, which is illustrated in Fig. 12, gave values for Gc which

were practically the same for all layups of each of the two graphite/epoxy

systems. Indeed, the Gc for unidirectional (6=O) laminates was close to

that layup with multiple fiber orientations. In contrast, standard

data analysis based on beam deflection and load gave Gc values which differed

considerably for the several layups; some multiple-fiber angle layups had

apparent Gc values over twice that for e =0.

These findings not only help to support the underlying potential theory,

but also reveal surprisingly simple behavior, considering especially how much

microcracking develops in the specimens whose bending is not fiber-dominated.

The layup insensitivity of Gc seems to indicate that the local normal

interface stress, rather than local layup-induced shear stress, is the primary

factor in delamination. Of course, the findings are from a limited set of

tests on only two composite systems, and therefore one should be cautious

about extrapolating the findings to other laminates.

Finally, it is of interest to consider the relationship of the above

results to Rice's J integral (19), as extended to crack growth in inelastic

media with large deformations by Schapery (20). The quantity J is defined by

a contour integral, which becomes for the beam problem in Fig. 13,

J= [w dx2 - (T -+ T2  ) d] (62)
C

RD6
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where wo is the work potential density, Tland T2 are tractions along C, and

uI and u2 are displacements; the indices indicate components in the x, and x2

direction-  This equation is valid for large strains and rotations as lcng as

we interpret x, and x2 to be coordinates of the undeformed geometry. The

integration is counterclockwise along the curve C in Fig. 13, which includes

top and bottom beam surfaces and vertical segments. The right vertical

segment is taken far encig from the crack tip that the material is unstressed,

and thus gives no contribution. For the top and bottom segments, dx2 = T1 =

T2 = 0, and thus the only contribution comes from the left segment. Assuming

small strains and that the left segment is close enough to the crack tip that

we can use small rotation beam theory, yields,

2 2 F du2
J= k(W)dM' - 2 B I (63)

0

where M and du2/dxI are the moment and slope, respectively, at the left vertical2 2 i

segment. Integrate k = d u2/dxI to obtain the slope, and Eq. (63) reduces to2 1

J=2 k(M)dM (64)

0

where Ma is the crack tip moment; this is the same result derived by Rice (19)

for a split beam under end moments Ma. It is seen that the result is

independent of the location of the left integration segment and, in fact, is

that in Eq. (63) when the segment is located at the crack tip (where du2/dxI =

0). It should be mentioned, however, to obtain this path independence (i.e.

derive Eq. (64) from (63)) it was necessary to assume if k(M) is

multivalued (cf. Fig. 1) that the unloading curve is the same for all left

vertical segments used. This latter condition will be met for all material

(to the left of the current tip) which had experienced the same maximum moment
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when the crack tip passed by. Inasmuch as the experimental results discussed

above indicate the maximum moment is constant (and recognizing that the moment

decays with distance from the tip) this condition is met all of the way to the

location of the initial crack tip. To the left of the initial tip, the

maximum moment is less than Ma and one finds J depends on the location of the

left segment. This path dependence in beam theory is fully consistent with

that predicted from the exact J integral for a continuum with variable damage

in the regions of unloading (20). Some unloading may occur in the continuum

very close to the crack tip, possibly causing path dependence and thus

affecting Eq. (64). weatherby (27) used a finite element analysis to study

this dependence for a strongly nonlinear isotropic beam and found that the

effect on J is negligible; his analysis predicted a J value very close to that

in Eq. (64).

For a crack propagating at a constant moment in a long laminate which is

initially homogeneous in the x, direction, the state of stress and strain in

the neighborhood of the tip is constant in time. This is a type of "self-

similar" growth and therefore (19,20)

G = J (65)

Equations (61) and (64) agree with this general result. Equally important,

Eq. (64) was derived without assuming small rotations (except for the

neighborhood of the tip). Therefore, in view of Eq. (65), we may conclude

that the formula for work available at the crack tip, Eq. (61), is valid even

when the DCB legs undergo large rotations and possibly high axial tensile

strains from the axial component of F. When this geometric nonlinearity

exists one should use a- (cf. Fig. 10) instead of a to determine the crack

tip moment.

7. Viscoelastic Behavior

For some types of linear and nonlinear viscoelastic materials the theory

I
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in Section 3 may be used by simply replacing the generalized displacements

with "pseudo generalized displacements," q , where

- E (t -T, t) dT (66)

0

Here q. is the physical generalized displacement in terms of the dummy time
variable of integration T and other relevant quantities such as coordinates

xi. The quantity E = E(t-T, t) is a relaxation modulus, which imparts

hereditary characteristics to the deformation behavior. The second t argument

in E allows for aging and other kinds of time-dependence, such as may be due

to transient temperature. The coefficient ER is a "reference modulus", whichRR

is an arbitrarily selected constant that is introduced so that q3R and % have

the same units. The basis for using Eq. (66) to extend deformation and crack

growth theory to viscoelastic behavior has been given by Schapery (15,20).

Here we mention only that it is an exact approach for linear isotropic

viscoelastic materials with a Poisson's ratio which is constant in the

undamaged state and for nonlinear viscous materials. The latter case is

easily deduced by noting that if the relaxation modulus is proportional to a

Dirac delta function, ie. E = ERtR 6(t-T), where tr is a time constant, then

Eq. (66) reduces to

R
q. = t R dqj/dt (67)

Namely, the pseudo displacement is proportional to velocity with this modulus
R

choice. Replacement of q. by this qj in Eqs. (19), (27), and (35) converts

I them to equations for viscous media.

Elastic-viscoelastic correspondence principles were developed (15,2s

which then lead to the development of the theories for effective properties of
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composites (15) and crack and damage growth (20). To date only limited, but

encouraging, experimental work on nonlinear viscoelastic materials has been

done to verify this approach based on pseudo displacements (Schapery (28,29)).

In study (29), a highly-filled elastomer was subjected to complex uniaxial

loading histories. The experimentally measured axial displacement u of

tensile coupons was converted to nominal strain e and then to pseudo strain eR

using Eq. (66), and the axial stress was plotted against eR for constant

damage states. It was found that this method of plotting data essentially

eliminated viscoelastic effects, thus confirming the approach. For damaging

processes, the material behaved as a nonlinear elastic material with history-

dependent damage when represented in terms of e Guided by simple models for

damage and some test data, the nonlinear viscoelastic stress-strain equation

was developed and then verified experimentally using loading histories not

included in the characterization process.

Besides employing the maximum value eR to account for damage, as em is

used in Eq. (3), a so-called Lebesgue norm was used in (29),
• [ fte~lq ]/q

L q I dtj (68)

0

where I I denotes absolute value and q is a positive constant; the damage

parameter Lq arises from viscoelastic crack growth theory. If q is

sufficiently large, Lq (and it generalization to multidimensional problems)

may often lead to constitutive equations which are analogous to those

discussed in Sections 2 and 3; but there may be explicit dependence of the

potentials W, Wf, and W c on time, and thus they would be like those for

aging elastic materials with damage. For example, eR > 0 and q = 6.5 in (29),

and in this case,

L e t when deR/dt >0 (69)Lq
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and

em t/q when deR/dt = 0 (70)

If eR reaches a maximum at t=tm and then decreases,

R 1/q

Lq = em tm (71)

Behavior like that in Eqs. (69) and (70) reflects the growth of microcracks

until the "driving force" eR falls below its maximum value.

8. Conclusions

An approach using work potentials to characterizing deformation and

fracture behavior of inelastic materials has been described. Some

experimental results on polymeric composites were presented to illustrate it

and give a preliminary verification of the theory. If the use of work

potentials to account for the effect of damage and other types of inelasticity

is further substantiated in future studies, one may take advantage of the

simplifications that come from this approach in the mathematical modeling of

both deformation and fracture behavior. When pseudo displacements, Eq. (66),

can be used to extend the time-independent characterization to nonlinear

viscoelastic behavior, additional experimental requirements and mathematical

model complexity are not much more than what is needed for linear viscoelastic

behavior.
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N(MENCLATURE

a crack length

A,Ak crack areas

b beam width

e nominal strain (axial extension/initial length)

eij strain tensor

E(t-T,t) relaxation modulus

F force

Fn  damage function

Fcn damage parameter

G, Gk energy release rates

Gc, Gck critical energy release rates

J J integral

k curvature

L beam length

Lq Lebesgue norm

M moment

p pressure

qj generalized displacement

Qj generalized force

s nominal stress (axial stress/initial cross sectional area)

sij stress tensor

t time

T torque I
u displacement

v dilatation

uV%
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V increase in volume

Vo  initial volue

wc  complementary work density

-dc complementary work potential

W, WT  work potentials

W f fracture work potential
xi Cartesian coordinates

nominal shear strain

T nominal shear stress

Q angle of twist

I

I

I

I

I
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V increase in volume

Vo  initial volume

W wc  complementary work density

Wc  complementary work potential

W, WT  work potentials

W f fracture work potential

xi  Cartesian coordinates

Y nominal shear strain

T nominal shear stress

angle of twist
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Figure 1. Uniaxial stress-strain curve for material with increasing
damage during loading and constant damage during unloading.
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U,?F

Figure 2. Laminate specimen used in axial-torsional tests.
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Figure 6. Particle-filled elastomer under pressure and axial loading.
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Figure 9. Stress-strain curve for highly-filled elastomer

subjected to changes in the pressure level.
After Farris (25).I
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Figure 10. Double cantilevered beam (DCB) for delamination
fracture studies.
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3.6 CRACK PROPAGATION. THE CRACK
TIP MOMENT IS APPROXIMATELY
CONSTANT
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OPENING DISPLACEMENT, 2u (IN.)

U
Figure 11. A typical load-displacement record for opening mode

loading of a double cantilevered beam with off-axis

plies at the center interface. Hercules AS4/3502
graphite/epoxy. After Jordan (26).
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Figure 12. Moment-curvature diagram for loading, showing energy

release rate, G.
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ABSTRACT

I The J integral theory for fracture analysis of materials with
distributed damage is discussed and then specialized to a form that is
useful for analyzing opening-mode delamination crack growth. Tests on
double-cantilevered beam specimens of two different graphite/epoxy material
systems and three different layups are described and then analyzed.
1. Introduction

Fiber-reinforced plastic laminates may sustain an appreciable amount
of microcracking and other types of damage before global structural failure
occurs. In order to characterize the resistance to delamination and to
predict delamination when there is globally distributed damage such as
microcracking, it may be necessary to account for the nonlinear inelastic
behavior produced by this distributed damage. In this Section we briefly
give some background on the J integral The theory is then specialized in
Section 2 to opening-mode delamination of double-cantilevered beams (DCB)
and illustrated in Section 3 using experimental data from tests of two
different graphite/epoxy laminates.

A two-dimensional version of the J integral was introduced by Rice
[1], and was shown to be especially useful in nonlinear elastic fracture
mechanics. Its primary usefulness comes from its path independence and its
relationship to the crack tip stress field and work input to the crack tip6
Numerous generalizations (including extension to three-dimensions and large
strains) and applications have since appeared, such as discussed in a
recent book by Kanninen and Popelar [2]. Except for steady-state
conditions [3], the properties of the J integral are usually considered to
depend on the existence of strain energy potential W=W(eij), where

3 sij = DW/eij (1)

in which si. and e., are components of the stress and strain tensors.
Schapery exended te J integral to nonlinear viscoelastic materials [4]
and further showed that important characteristics of the J integral carry
over to other types of inelasticity, including that due to distributed

*Prepared for International Symposium on Composite Materials and

Structures, Beijing,China, June 1986.
R.A.S. and D.P.G., Professor, Civil and Aerospace Engineering and

Graduate Research Assistant, Mechanical Engineering, respectively, Texas
A&M University, College Station, TX 77843. W.M.J., Assistant Professor,
Mechanical Engineering, Louisiana Tech University, Ruston, Louisiana 71272.I
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microcracking and other types of damage [4,5]. These generalizations
depend on the existence of a potential which is analogous to strain energy,
Eq. (1), but which may be multivalued. Figure 1 illustrates such a
potential for uniaxial stressing. The net work input to the sample at any
time in the loading or unloading history is the so-called work-potential,/e

W f s d e (2)
0

In general, s and W are multivalued functions of e since they depend on
whether s is the loading or on the unloading curve. Arguments for the
existence of multivalued work potentials in three dimensions which satisfy
Eq. (1) were given by Schapery [4,5].

Here we shall assume a work potential exists and use it in a 3
integral to analyze delamination fracture. For the materials and
conditions studied experimentally viscoelastic effects were very small, and
these effects are therefore neglected in the theory.
2. J Integral for the DCB Specimen

Figure 2 shows a DCB specimen. In the cases studied here, the beam is
a laminate, and applied force F causes the crack to propagate in a plane
parallel to the plane of lamination (which is perpendicular to the plane of
the page). We assume a' is long enough for the legs to be in plane stress
over a significant portion of their length.

The J integral for the DCB specimen is

S M[Wdx 2 - (T 1 + T2  )dL] (3)

where W is the work-potential per unit volume, T1 and T2 are tractions
along C, Fig. 3, and ul and u2 are displacements; the indices indicate
components in x and x2 directions. This equation is valid for large
strains and rota ions as long as we interpret x, and x to be coordinates
of the undeformed geometry. The integration is counterc lockwise along the
curve C in Fig. 3, which includes top and bottom beam surfaces and vertical
segments. The right vertical segment is taken far enough from the crack
tip that the material is unstressed, and thus gives no contribution.
Assuming small strains and that the left segment is close enough to the
crack tip that we can use small rotation beam theory (but far enough to the
left of the tip for plane stress conditions to apply) yields,

2 M F d2

J = ] fmk(M')dM' - 2 B du2 (4)

01
where M and du2/dx I are the moment and slope, respect ivelyL at the left
vertical segmenl; B is the beam width. Integrate k = d2u2/dx2 to the tip
(assuming plane stress) to obtain the slope, use dM = Fdx I and Eq. (4)
reduces to M

2 Jaf k") dM (5)
0

where Ma is the crack tip moment; this is the same result derived by Rice
[1] for a split beam under pure end moments M . It is seen that the result
is independent of the location of the left integration segment and, in
fact, is that in Eq. (4) when the segment is located at the crack tip
(where du2/dxj = 0). It should be mentioned, however, to obtain this path
independence (i.e. derive Eq. (5) from (4)) it was necessary to assume if
k(M) is multivalued (similar to the s-e curve in Fig. 1) that the unloading
curve is the same for all left vertical segments used. This latter
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condition will be met for all material (to the left of the current tip)
which had experienced the same maximum moment when the crack tip pasred by.
Inasmuch as the experimental results discussed later indicate the maximum
moment is constant (and recognizing that the moment decays with distance
from the tip) this condition is met all of the way to the location of the
initial crack tip. To the left of the initial tip the maximum moment is

less than Ma and one finds J depends on the location of the left segment.
This path dependence in beam theory is fully consistent with that predicted
from the exact J integral for a continuum with variable damage in the
regions of unloading [4].

Strictly speaking one should consider the effect of the three-
dimensional state of stress around the crack tip in developing the J
integral for the DCB specimen. If indeed one does this starting with the
theory in [4], one still arrives at Eq. (5) if the maximum amount of damage
is essentially that defined by the beam theory and the slope is adequately
predicted by plane stress theory. Weatherby [6] studied this problem using
the finite element method for two dimensional deformation of a highly
inelastic isotropic beam and found that Eq. (5) is an excellent
approximation.

Finally, we observe that for a delamination propagating at a constant
tip moment in a long laminate which is homogeneous in the xl direction in
its initial state, the Ltate of stress and strain in the neighborhood of
the tip is constant in time if effects of shear force changes are
neglected. This is a type of "self-similar" growth and therefore J is the
work input to the crack tip [4] (per unit of new area projected onto the
delamination plane).
3. Experimental Study of DCB Specimens

Materials and Test Procedure: Two commercially available graphite/
epoxy composites were tested: T6T145/F155 (Hexcel Corporation) and
AS4/3502 (Hercules, Incorporated). The epoxy in the former system is
toughened with 6 vol. % rubber particles. Several layups were tested as
reported by Jordan [7]. Here we report on four different layups with some
of the data coming from [7], but most data are from more recent tests.

Prepreg was used to make plates which were cured in the Texas A&M
University air-cavity press using the manufacturer's recommended
temperature cycle. A thin 3.5 cm wide teflon strip was inserted in the
midplane along one edge of each plate during the layup step in order to
provide a 3.5 cm long starter crack in the beams cut from the plates; each
beam was approximately 2.5 cm wide by 30 cm long. Those layups with off-
axis fiber orientations are listed in Table 1. Besides these laminates,
unidirectional beams with 0' fiber orientation (fibers parallel to the beam
axis) for both systems were tested.

Table I
Laminates with Off-axis Fibers

Laminate Material Layup
Designation System (fiber orientations)

A T6TI45/F155 [±45/0(8)/-45(2)/0(8)/±45] (24 plies)
B T6TI45/F155 [±45/-45(2)/T45(2) T45(2)/±45] (16 plies)
C AS4/3502 [±45/0(4)/r45(2)/0(4)±45] (16 plies)

In all three cases, the delamination crack was in the middle plane of
the beam, between a +45 and -45 ply. For A and C layups the beam legs
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above and below the delamination are balanced and symmetric in the
undamaged state. These designs were used to minimize twist and bending-
stretching coupling to simplify specimen analysis in this exploratory
investigation.

At least two samples of each laminate were delaminated in stroke
control in a servonydraulic test machine. The test was stopped several
times and the beam unloaded to measure the moment arm to the crack tip
(loaded state) and length of the delamination (unloaded state), and to
determine the force-displacement curve with loading and unloading for use
in an energy-based data analysis method.

Additional tests were conducted on single cantilevered beams to obtain
the moment-curvature relationship for use in the J integral analysis.
These beams were made with fiber orientations corresponding to the layup
above the middle surface in the beams used for delamination tests. Strain
gages were mounted above and below the beam near the clamped end in order
to determine the curvature k from the equation k = Ae/t where Ae is the
difference in strain readings on the top and bottom surfaces and t is the
beam thickness. The beam support at the clamped end was mounted on
bearings to provide free axial movement. In these tests and the
delamination tests, the external load was applied vertically through
bearing-supported pins.

Discussion of Results: Figures 4 and 5 show the force-displacement
diagram for two layups in Table L Figure 6 shows results from one of the
cantilevered beam tests used to obtain the moment-curvature relationship;
specimen type B exhibited the most hysteresis. The maximum moment is the
crack-tip value determined from the delamination test. According to Eq.
(5), J is the area to the left of the loading curve multiplied by 2/B.
Table 2 summarizes the results. Two numbers are given in most cases, each
coming from different specimens.

Table 2
Sumiary of Results on Fracture Toughness

(in J/m2 )

Laminate Gc Gc
Designation (Eq. (5)) (Eq. (5)) (area) (stiffness [8])

A 615/510 - 601/557 588
B 522 - 725/725 1333
C 538/525 389/380 440/434 383 (arrest value)

The values in the column in Table 2 labeled Gc (area) were obtained by
determining the area between successive loading-crack growth-unloading
curves (as in Figs 4 and 5). Assuming the specimens are linearly or
nonlinearly elastic, this area divided by the new crack surface area is the
Gc value required for propagation. The last column is based on the method
described by Devitt el al. [8]. It uses load-deflection-crack length data
to obtain Gc; it is based on the assumptions of linear elastic behavior and
no midplane strain, but it allows for large rotations. (The beam rotation
at the load-point was as high as 40 in layup C; only for layup A was the
geometric nonlinearity negligible.) It should be added that all three
methods used to develop the values in Table 2 allow for geometric
nonlinearities. Material nonlinearities and midplane strains (due here to
nonlinearity) are not neglected in the methods used except for that in [8].3 For the specimen type C, delamination occurred usually in distinct
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steps, as illustrated in Fig. 5. When growth initiated there was a
significant and sudden jump in crack length; the loads used in data
analysis at each pair of initiation and arrest points are connected by
dashed lines. The corresponding moments were used with moment-curvature
results to predict Jc (initiation) and Ja (arrest) values. Specimen types
A and B delaminated quite smoothly in most cases.

The momeiit at which propagation occurred was essentially constant for
each specimen with the variation being no larger than ±5% from the average.
Once or twice during the delamination test of most beams an exceptionally
high or small moment was obtained, but these values were not used in
calculating the averages in Table 2. (These unusual values did not
necessarily occur at either the shortest or longest cracks.) The arrest
moment in specimen type C exhibited scatter similar to that for initiation
moments.

It is of interest to compare the fracture toughness values in Table 2
with those for the same systems but with all 00 fiber angles. Jordan found
that for the Hexcel system Gc varied from 400 to 650 J/m2 and for the
Hercules system Gc varied from 180 to 200 J/m 2. The former values are
consistent with the Jc values in Table 2 (specimen types A and B), whereas
the latter values are less than one-half those reported in Table 2
(specimen type C). These low values are consistent with observation of
fracture surface roughness, in that the surface of the 00 fiber specimen
was very smooth, whereas many microcracks running parallel to fibers could
be seen on C type specimens.

The B specimens do not have any 00 fibers, and therefore the effect of
distributed damage in the legs should be the largest. It is believed the
high Gc values reported for this layup using the deflection-based methods,
compared to Jc' reflect this fact. For example, the area method gives a
Gc which includes the work of both distributed damage and delamination.
4. Conclusions

A relatively simple expression, Eq. (5), was developed for determining
the J integral. Only the work of bending was considered for the beam near
the delamination tip; however, the analysis could be readily generalized to
allow for shear and axial deformation work when appropriate. The
preliminary assessment of the approach using double-cantilevered beam
specimens is very encouraging. As predicted by the theory, it was found
that the delamination propagated at essentially a constant crack-tip
moment. Also, for one material system it yielded fracture toughness values
which are essentially the same for three different layups. In contrast,
the other deflection-based methods typically yielded higher toughness
values when distributed damage was significant.
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Finite Element Analysis of Crack Growth in Inelastic Media
1,2

J.R. Weatherby
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In most materials, macrocrack extension is accompanied by inelastic

phenomena (such as microcracking or plastic deformation) throughout a

region surrounding the crack tip. Immediately ahead of the crack tip,

strain localization occurs in a small volume of heavily damaged material

referred to as the failure zone or fracture process zone. In this study,

the failure zone and the surrounding zone of inelastic material are treated

as two distinct regions. The failure zone is assumed to be thin relative

to its length and is represented in a two-dimensional finite element model

as tractions which act across the crack faces near the tip. An opening

mode of crack tip deformation is assumed. The normal traction at any point

on the crack surface in the failure zone is specified as a decreasing

function of the crack opening displacement which vanishes after a critical

value of displacement is reached. Two different rate-independent,

inelastic continuum characterizations based on multivalued work-potentials

are used; one models metal plasticity and another represents microcracking

in brittle materials. Both constitutive models allow for the definition of

iThis abstract was prepared for publication in the Proceedings of the 10th

U.S. National Congress of Applied Mechanics, June 1986.

2 Based on the first author's Ph.D. dissertation, "Finite Element Analysis
of Crack Growth in Inelastic Media," Mechanical Engineering, Texas A&M
University, (May, 1986).
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i a generalized J-integral developed by Schapery3'4 , which has the same value

for most paths arouna the crack tip for realistic distributions of

plasticity or damage in the material surrounding a stationary or

3 propagating crack. This path independence and the equivalence between J

and the work input to the last ligament of material in the failure zone are

verified numerically in a transient crack growth problem; both initiation

and propagation are studied under conditions of small-scale inelasticity.

Steady-state crack growth is studied in two different specimen geometries.

Simplified J-integral analyses are used to estimate the work input to the

failure zone for these steady-state problems. The J-integral estimations

are compared with finite element results to determine the accuracy of the

simplified analyses.

i

3R.A. Schapery, "Correspondence Principles and a Generalized J-Integral for
Large Deformation and Fracture Analysis of Viscoelastic Media,"
International Journal of Fracture, 25 (1984) 195.

4 R.A. Schapery, "Deformation and Fracture Characterization of Inelastic
Composite Materials Using Potentials," Texas A&M Report No. 5034-85-22,
1985.
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