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I. INTRODUCTION

Ongoing work at the US Army Ballistic Research Laboratory (BRL) is
aimed at predicting the effectiveness of air-defense gun systems. Computer-
ized methodologies are used to solve representative end game problems.
One such methodology, illustrated by the MGEM,Monte Carlo computer
program,!’is currently used at BRL to calculate the expected value of kill
for aircraft exposed to point detonation{PD) ‘bullets fired from gun systems
located on the ground. However, the procedures used in MGEM are not
adequate for predicting the effectiveness of proximity fuzed (PX) bullets
and need to be extended to obtain a methodology with such a capability.
Additionally, the need for even more comgﬂex methodologies is anticipated
in the future when the feasibility of using “smart”” PX bullets, that is bul-
lets whose trajectories can be changed during flight in order to take advan-
tage of radar fixes of target location at times subsequent to the firing of the
bullet, i1s investigated. The objectives of this study are to formalize the
MGEM methodology, and to de-elop alternative Monte Carlo methods of
solution which may be adv antageously used in the future 1n the construc-

tion of PX and “smart bullet methodolo ies. T s T
,L/ g N # !
[ I RSP [. N .
I I / . ¥ - \_ 7 -

The expected eﬁectlveness of a gun system dep)ends upon the accumula-
tion of the uncertainties associated with target detection and prediction of
its future locations, the prediction of the bullet flight toward a target inter-
ception, and the incapacitation of the aircraft by a hit. For the purpose of
our discussion, we have lumped these uncertainties into nine general
categories which are tabulated below. In this tabulation and in the follow-
ing discussion, we will use the standard conventions of probability as
described by C. Eisenhart and M. Zelen? whercby a random variable is
identified by using an upper case letter and its values are identified by
using the associated lower case letter.
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In no particular order, the uncertainties and the random variables used
to define these uncertainties along with other necessary variables and nota-
tional conventions are tabulated below:

IR A. Scheder, *‘Modern Fire Control Analysis Using the Modern Gun Effectiveness
Model (MGEM),” U.S. Army Materiel Systems Analysis Activity Technical Report No.

180, October 1976.

2C. Eisenhart, and M. Zelen, “Elements of Probability,”” Handbook of Physics, E.U.
Condon, and H. Odishaw, Editors, McGraw-Hill Book Cor »any, Inc., New York, 1958,
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1. Variation between Rounds. One result of unavoidable differences
between individual rounds of ammunition is a spread in the muzzle veloci-
ties V,, of the associated bullets.

2. Bore-Sight Error in the Gun. This error causes an uncertainty in
the direction (elevation angle 8, and azimuth angle ¥,) of the bullet as it
leaves the gun. The subscript 0 is used here and elsewhere to identify vari-
ables associated with the birth of a bullet, taken to be the muzzle of the
gun. Associated with these firing angles, we will also identify here the line-
of-sight (LOS) range ! which is taken to be the distance s some flight time
t; that a bullet would travel in still air with no gravity (Figure 1). The
values of (6,,¥,) are assembled with Xt) to obtain the LOS range vector
(80, %0./t)] Which is used to calculate the location of a bullet during its flyout.

The reader in referring to Reference 1 should note that our ““I"" is the
same as his “r’. We have reserved the bold face letter “r with an
appropriate subscript to identify position vectors, while as noted at the
time of use, the non-bold face letter “r’ is the range of the bullet in the

spherical coordinate system of the gun.

Depending on analytical convenience, a bullet can be located in either a
Gun Coordinate System (GCS) or a Target Coordinate System (TCS). The
GCS is located with its origin at the center of the gun muzzle which is also
taken to be the birth site of bullets. Depending on the analytical conveni-
ence of the moment, either spherical coordinates (6,¢,r) or Cartesian coordi-
nates (z,y,2) will be used. The polar angle ¢ is measured from the positive z-
axis and the azimuthal angle ¢y is measured from the positive x-axis. In
compact notation, a bullet is located in the GCS by the position vector r,
and the reference point in the target aircraft is located by the position vec-
tor r,. The TCS will be defined when needed in Section Il of this report.

3. Dispersion between Shots in a Burst. The servo controlled return of
the gun to a ready-to-fire state between shots in a burst is not precise.
Consequently, an additional uncertainty in the initial direction of motion of
a bullet is added to Item 2 where the uncertainty is expected to increase
with successive firings in a burst.

4. Variation in Air Resistance to the Flight of a Bullet. Diferent
orientations of a bullet with respect to its trajectory will cause the resis-
tance by air to vary. This effect is quantified as an uncertainty in the drag
coefficient C; In both MGEM and the present study, thc uncertainty is
taken to be Gaussian where C, is assumed to have the same value over the
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total trajectory of a bullet.

5. Variations in Wind. The effect of wind on a trajectory may differ
from the wind corrections used to calculate aiming angles. This effect, (W,
and W,), is assumed to be appreciable only in the horizontal plane. In both
MGEM and the present study, this uncertainty is also taken to be Gaussian
where W, and W, are taken to have the same sets of values over the total
trajectory of a bullet.

6. Time of Firing. We allow in our formulation for an uncertainty in
the time of firing 7T, although this random variable is assumed to be pre-
cisely known in the MGEM methodology.

7. Target Maneuver. The path of a target aircraft from the time of
firing of a bullet to its anticipated interception by the bullet can not be
predicted by the gun system with absolute certainty. In common with
MGEM, we will assume that some method of optimal estimation such as
the Kalman filter® is used to predict the most probable point of intercep-
tion derived from earlier radar fixes of target location and velocity. In
Monte Carlo calculations, a target maneuver is selected from a collection of
standard maneuver paths where each path is composed of the aircraft posi-
tion, velocity, acceleration, and orientation at regular time intervals, usu-
ally 0.05 seconds.

8. Errors in the Radar Fixing of a Target Location. The true location
and velocity of a target aircraft may differ from that determined by a fire-
control radar. This will lead to an additional uncertainty in the predicted
future locations of the target with a resultant uncertainty in the calculated
aiming angles for the gun. We identify the estimated aiming angles which
are derived from an optimal estimation of future target locations based on
a particular set of radar fixes as (8,,¥,). The values for this pair of random
variables are taken to be the mean values of the firing angles described ear-
lier in Item 2. In the present study, we assume that all of this uncertainty
is acquired during the detection and analysis of the radar signals, and that
the relative location of the radar in the GCS is precisely known.

3A. Gelb, JF. Kasper, Jr., R.A. Nash, Jr., CF. Price, and A.A. Sutherland, Applied
Qptimal Estimatjon, A. Gelb, Editor, The MIT. Press, Massac.usetts Institute of
Technology, Cambridge, Massachusetts, and London, England, 1974.
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9. The Kill Probability of a Critical Component in the Target Aireraft
by a Bullet. In general, the causal prediction of some specified loss of capa-
bility by a component due to a bullet is a huge task which would require an
impractical, if not impossible, detailed calculation of the bullet-target
interaction. The description of all aspects of this phenomena would require
a large number of random variables; for example, the generation of metal
fragments from a detonating PX round and the penetration of these metal
fragments into the target aircraft may require a number of random vari-
ables approaching Avagodro’s number since the crystalline structure of the
bullet and the target are involved. Instead, attempts have been made in
ballistic-vulnerability methodologies to characterize the behavior of a large
aggregate of similar rounds of a type by a small, menageable number of
random variables and hope that the true expected-value-of-capability loss is
adequately approximated by a function of these used random variables.
For example, according to Kruse and Brizzolara*, the Py (probability of a
kill given a hit) function for a component is generally given in ternis of the
mass and velocity of a metal fragment as it impacts the outer surface of a
critical component. An attempt to improve the mass-velocity characteriza-
tion of metal fragments is also mentioned in this reférence.

Item 9 completes the tabulation of the lumped uncertainties associated
with air-defense end-game problems. In general, the probability density of
random-variable values associated with an uncertainty is not known, but in
practice is assumed to be adequately approximated by some probability
density function which is tractable to mathematical analysis. In the Monte
Carlo simulation of engagements by the current MGEM, uncertainties Nos.
1-5 are assumed to be described by independent Gaussian distributions. We
include uncertainty No. 6 in the tabulation even though the firing time is
assumed to be precisely executed in the present version of MGEM. Such a
causal (or unitary) PDF is described in the mathematical formulation by a
Dirac delta function (Reference 2). Uncertainty No. 7 is usually taken into
account in end-game methodologies by using prediction algorithms based
on noisy estimates of the target state. These latter result from uncertainty
No. 8, and are generated in the code by imposing appropriate sensor errors
on a predetermined precisely known flight path which is representative of a
selected aircraft maneuver.

‘L. Kruse, and P. Brizzolara, “An Analytical Model for Deriving Conditional
Probabilities of Kill for Target Components,” U.S. Army Ballistic Research Laboratories

Report No. 1563, December, 1971, (UNCLASSIFIED).

------



We will now outline a brief summary of a typical MGEM calculation
where the firing doctrine for a total engagement with a target aircraft is
simulated. This outline is non-mathematical and is used to introduce the
random variables in the context of which they will be used later to con-
struct the expected-value-of-kill integrals for a selected set of conditions in
an engagement.

1. Select the type of aircraft maneuver for which the expected value of

o kill is desired, and retrieve the predetermined flight path for this type of
KR maneuver.
;:: 2. Simulate radar fixes on the target aircraft at selected times. The

o location, velocity, and acceleration of the target are either measured or cal-
3 *: culated for these times.

»'*'-.'

"‘:: 3. Using the data derived in Step 2, calculate an optimal prediction of
b future target locations. Based on the chosen firing doctrine, select a value
- for the firing time T, of the first bullet in the engagement.

._f_ 4. The location r, of a bullet at any time ¢ is assumed to be adequately
oo approximated by the bullet flyout equations given in the next section of
o this report. Using the data derived in Step 3 and the mean values of V,,, C,,

W, W, and T, determine an estimated interception point (r,), and inter-
_).‘;'::I ception time ¢, for the target aircraft by the bullet. Values for the polar
. 1:_§3 aiming angles (8,,¥,) are also derived in this calculation.

AN
- 5. Pick a set of values for the initial direction (6,,¥%,) of the bullet as it
S leaves the gun by sampling the PDF which describes the uncertainties asso-
‘-'f-:; ciated with implementing the aiming angles calculated in Step 4. In

:E'.;: MGEM, this PDF is taken to be Gaussian where the values of the aiming

) angles (8,,¥,) are taken to be the mean values of (6y,¥,). Additionally, an

o error bias is added which systematically increases the aiming angle uncer-

o tainty for later bullets in a burst. These sample values are identified as

oy [(65),;,(¥0);] where i is the running index over bullets in an engagement and ;

fl:ﬁ is the running index over engagements. The number of bullets fired in an
engagement is taken to be 7 and the number of engagement replications in

i the Monte Carlo calculation is taken to be J.

jiﬁ* 6. Pick a value for each of the random variables (V,,,C, W, W,) by sam-

o pling the appropriate Gaussian PDF. These sample values are identified as

X [(vm)in(€diji(w,)ip(w,);]. These values are used below to calculate the necessary

‘34 points on the trajectory of the sample bullet.

- 0 . L s ".,-‘,u-'f-".}‘ﬂ'ni‘% W H & Tt e S
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7. Simulate the firing of the sample bullet and calculate its true loca-
tion (r,), at the predicted time of interception ¢,. The location of the bullet
which has been in flight for a time (¢), is calculated by applying a
differential correction for the effect of gravity and wind to the line of sight
(LOS) range vector |(8p);:(¥o)i» (Figures 1 and 2).

8. Determine the true location (r,), of a reference point in the target
aircraft at time ¢, and calculate the distance between (r,), and (r}),.

9. Calculate the distance between the bullet and the target at intervals
of At about ¢, until a minimum distance is obtained.

10. Using the two calculated distances adjacent to the calculated
minimum distance, interpolate to obtain an approximation of the distance
of closest approach (miss distance) between the target and the bullet. The
location of the bullet at its point of closest approach is identified as (r}),,
and the associated time is identified as ¢,

11. The orientation of the target aircraft in the GCS can be fixed by
either locating three points (the aforementi~ned reference point plus two
additional points in the aircraft), or by two vectors emanating from the
reference point (Figure 2). Without further specification, identify these two
vectors as w, Determine the orientation (w,), of the target at time ¢,. Cal-
culate the area of the target presented to the incoming bullet. Represent-
ing this presented area as a circle, determine if the bullet impacts the tar-
get. Go to Step 14 if the bullet misses the target.

12. Determine if the aircraft is killed by comparing a random number
with the ratio of the vulnerability area to the presented area of the aircraft.

13. Provision is also made to treat multiply-vulnerable components,
the destruction of any one of which will not by itself result in target kill. If
single-hit kill is not found in Step 12, determine by random number draw
whether one of these components was destroyed and whether this in con-
junction with previous damage results in target kill.

14. Reiterate Steps 1-13 for the remaining bullets in the burst as dic-
tated by the firing doctrine. If target kill is achieved, terminate the
engagement. Otherwise, reiterate burst firing until the firing doctrine dic-
tates engagement termination.

S P o I -~
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The Vectors (Gun-Coordinate System) Associated with an Air-Defense
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15. Reiterate Steps 1-14 until a total of J replications of the engage-
ment have been obtained.

16. Calculate the expected value of kill E{K} for the engagement as the
average Kkill probability of the J replications, that is

Number of Kills
EKy= Number of Replications (1)

Step 16 completes the outline of a typical Monte Carlo calculation by
MGEM. We have discussed it in some detail to provide a concrete example
of Monte Carlo methodology, before turning to more general mathematical
formulations. In the next section of this report, we will first use the uncer-
tainties tabulated earlier in this section to construct the expected-value-of-
kill integral for a single critical component for a single set of firing condi-
tions in an engagement. We will then restructure the integrand in this
integral by changing the variables of integration (6p,v,,¢,) to a new set which
permits the picking of sample bullets which will with a higher probability
interact with the target aircraft. Then, in Section III, we will outline in
turn Monte Carlo procedures which can be used to calculate a forward esti-
mate of the original “natural”’ expected-value-of-kill integral and an
adjoint, or backward, estimate of its restructured form. The term “for-
ward estimate” is used here to describe a calculation where each sample
bullet is picked at the gun and then transported toward the target while
the term ‘‘adjoint or backward estimate’ is used to describe a calculation
where each sample bullet is picked at a point on its trajectory near its tar-
get and then transported back to the gun. Finally, in Section IV, we devise
an example, two-dimensional problem and outline its solution by using, in
turn, forward and adjoint Monte Carlo sampling. The calculational
efficiency of forward vs. adjoint estimation is compared for different target
sizes. A simplified outline of the Monte Carlo evaluation of expected-value
integrals is given in the appendix at the end of this report, and should be
read before proceeding to the next section.
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II. THE CONSTRUCTION OF EXPECTED-VALUE-OF-KILL INTEGRALS |

Qur main interest in this study is to pick sample bullets for Monte
Carlo simulation calculations which have a high probability of interacting
with the target aircraft. This interaction for a PD bullet will require a
direct hit on the target, while a possible interaction for a PX bullet will
merely require that the bullet pass into the fuzing region which surrounds
the target. We will first formulate a “natural” form of the expected-value-
of-kill integral and then change three of its variables of integration so that
the transformed (adjoint) integral is in a form which is amenable to picking
sample bullets which will interact with a high probability with the target.

Since our principal interest here is the development of alternate formu-
lations of the expected-value-of-kill integrals and a comparison of the
expected efficiencies of the Monte Carlo evaluation of these different formu-
lations, we will not describe the detail associated with locating a target and
firing a bullet to obtain its kill, but will merely identify the various associ-
ated uncertainties and represent them by probability density functions
(PDF’s). The general form of the expected value of kill E{K} of a critical
component in a target aircraft by a bullet fired from a gun at time ¢, is
given by the integral of the product of the various PDF’s used to predict
the uncertainties associated with locating the target, aiming the gun, firing
the bullet, transporting the bullet toward its aircraft target, and a kill
function which approximates the effect of a bullet on the operation of a
critical component in the aircraft. In order to provide a similar form for
both the natural and adjoint formulation of both PD and PX munitions,
we define a region R, which for a PD bullet barely encloses the volume of
the target and for a PX bullet barely encloses the volume of the target plus
the associated region about the target in which a fuzing action by the bul-
let can occur. We will choose a sphere which seems to be the most con-
venient form for calculations (Figure 3). In each case, an associated surface
S, is identified which is that part of the boundary of R, which can be inter-
sected by bullet trajectories.

We assume that the lumping of the various uncertainties associated
with an air-defense system into the form described earlier in Section I of
this report will permit the expected-value-of-kill integral to be formulated
as
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Figure 3. An Illustration of a Bullet-Trajectory Impact with an Example
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E{K(T0,80,%(,80,%¢, Vi, Co Wo W)} =
f N R.°. f -4(10)3(30,;50)qaorif’oro.o@o) Sinby F{v,,) G(¢,) U(“’z,'”y) X

“ — -—
Q;g[(ra)p(;a)p(wc)p(rb)p(ib)p(wb);] dw: dwy dvm dC‘ d”o d¢o d00 d¢’0 dtO . (2)

The quantity R§ is the region in (f,00,%0.90,Y0 Vmco®sw;) Space which
includes all possible firing events where the bullet trajectories will intersect
S.. In practice, since the commonly used Gaussian PDF’s are truncated so
as to include only a reasonable region about their mean value, we will take
R§ to include only those points where all of the various PDF’s are non-zero.

This integral can be evaluated when the physics describing the bullet
flyout is sufficiently well understood so that a description of all bullet-
trajectory intersections of S, is calculable to an adequate accuracy. For
example, in an end game methodology developed by Ford®, the bullet flyout
to target impact is calculated by using iterative procedures to solve the
differential equation constructed from the forces acting on a bullet in flight.
In the present study, after defining the quantities used above, we will apply
the analytic functions used by Reference 1 to predict the fiyout of bullets.

The order of integration of the integrals used in this study is assumed
to start at the innermost integral and proceed toward the outer integrals.
In general, we express the arguments of functions in terms of their most
convenient variable association without regard to whether the variables
used are variables of integration. Needless to say, before conducting an
integration, all functions must be given in terms of the variables of integra-
tion.

In Equation 2, we have allocated the representation of the various
uncertainties to six probability density functions where each function
describes a particular aspect of the total problem. The uncertainties associ-
ated with the firing time are described by the PDF A(¢). If, as presently
assumed in MGEM, a precisely known firing time is assumed, its PDF is a
Dirac delta function, that is

A(to)=5(ty-b), (3A)

5«DIVAD Contract Data Requirement No. A00101, System Simulation Analyst Manual,
Revision A,” Ford Aerospace and Communication Corporation, Aeronutronic Division,

Newport Beach, California 92663, November 1980, (Competition Sensitive).




where b is the precisely known firing time. The remaining temporal vari-
ables, which will be explicitly used in the adjoint formulation later in this
section, are related by

t=ty+ ¢t (3B)

where t; is the time of flight of a bullet and ¢ is the target time. For a
given value of T,, the associated infinitesimal times are related by

The uncertainties associated with locating the target, predicting its
future locations, and calculating the aiming angles for the gun are described
by the joint PDF B(6,,9¥,). In practice, the calculated values (,y,) of the
aiming angles are derived from an optimal estimate of future target locu-
tions based on a sequence of radar fixes obtained prior to the firing of the
bullet. An uncertainty is associated with each radar fix so that an estimate
of future locations of the same target derived individually from two alter-
nate sequences of radar fixes will not in general be the same. Consequently,
(89,4,) is generally some function of the radar uncertainties and the target
maneuver whose analytic form would probably be very difficult to derive
and very cumbersome to write.

In addition to the aiming uncertainties associated with (8;,¥,), the accu-
racy of the true firing direction (6y,9,) of bullets is further degraded by
uncertainties associated with positioning the gun for firing. We assume
here that the conditional probability density 16p,¥0!6,¥) of real firing
angles is the probability density per unit solid angle Q. If the air-defense
system has a non-zero probability for firing into the upper hemisphere
(atmosphere) and is zero elsewhere, then its normalization is given by

x
2«2

f 185,910, ¥0) Y = ff QlBo,v0l00, o) Sinfy diy dipy = 1, (3D)
for any gnver_l_ set of values for (6,,v,). For example, a constant value of 1/2x
for C\6p,%/00,V) Would correspond to firing isotropically into the upper hem-
isphere.

The variation in muzzle velocities among the bullets is described by the
PDF Rv,). The value for the drag coefficient C, is taken to be constant
during the flyout of a bullet, and its values for an aggregate of bullets is
predicted by the PDF G(e¢,). The values for the components of force due to
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wind are predicted by the joint PDF Uuw,w) where U in MGEM! is ‘
assumed to be separable into the two functions ‘

Uw,w) = fi(w,) f{w,). (3E)

A set of values when picked for W, and W, is also taken to remain constant
for each bullet during its flyout.

As noted earlier!, the loss of capability by a target component due to
the interaction of a bullet is generally approximated as a kill-probability
function of certain random variables which can be used to characterize an
aggregate of bullets or metal fragments as they impact the outer surface of
a critical component. The formulation used in Equation 2 differs from the
definition given by Reference 4 in that the arguments of

‘G[(r,)f,(1'-,);,(w,)(,(rb),,(i-,,)f,(w,,)f] are the values in the GCS of the random vari-
ables at the time when a bullet or fragment impacis a hypothetical surface
S; instead of the real exterior surface of a targ:c! component. As noted ear-
lier in Section 1, the position vectors r, and r, are used to locate a reference
point in the target aircraft and bullet, respectively, and the vectors #, and
F, are the velocities of these reference points in the target and bullet,
respectively. The vector pairs, w, and w,, define the orientation of the bul-
let and target, respectively, where all vectors are defined in the GCS. The
subscript ¢ is used to identify the associated vector at the intersection of
the bullet with ..

The quantity QF is itself the expected value of kill of the bullet at its
intersection of S, and, in principle, assuming that the location and velocity
vectors provide an adequate characterization in a stochastic formulation of
bullet fiyout, could have been described in Equation 2 by increasing the
dimensionality of the multiple integrals to include the appropriate functions
which describe the further transport of the bullet into ¢ and its interaction
with the target aircraft. In practice during current Monte Carlo calcula-
tions for PD bullets, the kill function is approximated at the surface of the
aircraft for damage due to both the penetration of detonation fragments
into the target and the transmission of shock to components distant from
the point of impact. In practice for a PX bullet in forward Monte Carlo
calculations, an estimate of QfF would be obtained for each firing event by
transporting the bullet into R, simulating its detonation or non-detonation,
and then deriving the kill probability from a kill function such as that
described in Reference 4.
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We will assume here that the mathematical relations used by Reference
1 can be used to adequately predict the flight of bullets toward a target air-
craft. According to Reference 1, McShane, Kelley, and Reno® have derived
the LOS range ! to be given by the Siacci formula,

v t/
| = — 20—, 4A
l+cd\/vm l! ( )
where ¢ is the time that a bullet has been in flight. The effect of wind and
gravity are assumed to be differential corrections to the predicted LOS
range vector (6p,v,./) which are given in Cartesian coordinates by:

Az = w,[t/— -t;l—], (4B)
Ay = w,[:,_ 7"] (4C)
Ar = gp| /il (4D)

o 6(1+¢\/vp &) |

The quantities, Az, Ay, and Az, are the differential corrections, and ¢ is the
acceleration due to gravity. -

As outlined in the next section of this report, a forward, or “natural”,
Monte Carlo evaluation of the multiple integrals in Equation 2 can be con-
ducted by picking values for each of the random variables of integration by
sampling the appropriate PDF’s to obtain sample bullet trajectories. Each
sample bullet is then transported along its trajectory using the preceding
relations to determine if it interacts with the target aircraft. The effect of
each interaction is determined and the expected value of kill is calculated
as the mean of a large number of similar events. However, using calcula-
tional procedures such as these for cases where the target is at a large dis-
tance from the gun, a large fraction of the bullets will miss the target and
contribute only zeroes to the expected value of kill probability. Conse-
quently, the efficiency of the forward mode decreases as the hit probability
decreases until, for very low hit probabilities, a prohibitive number of sam-
ple histories would be required to obtain an acceptable fractional

8E.J. McShane, J.L. Kelley, and F.V. Reno, Exterior Ballistics, University of Denver
Press, 1953.
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uncertainty —F-ﬂ (where 6Py is the standard deviation of a hit-probability
H

estimate Pp).

We will now attempt to transform the “natural” expected-value-of-kill
integral (Equation 2) to a form such that only bullets which have a high
probability of interacting with the target can be picked. As a first step, we
note that the region R, is the smallest sphere which just encloses the target
aircraft when the bullets are PD and which just encloses the target aircraft
plus its associated fuzing region when the bullets are PX. The radius of the
sphere in each case is taken to be the constant a. We construct a Target
Coordinate System (TCS) (Figure 4) whose origin is at the center of R, and
whose orientation is such that the Cartesian coordinates of each point in
the TCS is related to the same point in the GCS by a simple, time-
dependent translation of the center (z,y,z,) of R, in the GCS; that is, the
(z' ,y' ,z' ) axes in the TCS are parallel to and have the same orientation
as the (z,y,z) axes in the GCS (Figure 5). Similarly, the spherical coordi-
nates (¢,€,8) in the TCS are similar to and have the same orientation as the
spherical coordinates (,%,r) which are used in the GCS. The surface S,
which bounds R, is in the TCS just that part of s=a which can be
impacted by bullets fired at the origin of the GCS.

We next note that a large fraction of the bullet trajectories which inter-
sect S, will interact with the target aircraft; in fact, this fraction is rela-
tively insensitive to factors affecting the hit probability such as target size
and range. If we could change some of the variables of integration used in
Equation 2 to a new set of variables such that all sample trajectories will
intersect S, then we should expect that more efficient calculations of esti-
mates than are currently being made could be developed for air-defense
problems where the expected value of hit is small.

To accomplish this change of variables, we note that the location
[(23)a(95)0(2)] in the GCS of the bullet intersection of S, is related to its loca-
tion [(z )a(y' )a(2' )J in the TCS by:

(zb); = (zb' )( + 2'.(1), (5A)
(yb)g = (yb' ); + ya(t)) (5B)
(zb); = (zb, ); + Z‘( t), ('SC)

where [2,(0),y,(1).z(1)] is the time-dependent location of the center of R, in the
GCS. These relations become in spherical coordinates:

...........................................................
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) Figure 5. The Orientation of the Gun-Coordinate Systern and the Target-
X A Coordinate System When the Bullet Intersects S, (r = (r}),)
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I sin 6y cos ¢ + w,[(t,)f - -t-’f—] = asing, cos, + z,(t), (SA)
l

I, sin f sin 9, + w,{(t,), - —v‘-] = asing, siné; + y,(t), (6B)

dtp2 {3+ ci(8) V/Vm
The quantities /. and (¢), are the LOS range and “the bullet time-of-flight,

respectively, for trajectory intersections of S. Further noting that I is given
by the Siacci equation,

= a cosd, + 2,(t). | (6C)

I, cos 6 -

= —tm U (4A)

(_1+Cd(tf)§\/l:’
and the temporal variables are related by,
E= o+ (1), (3B)

Equations 6A-6C provide three independent equations relating three of the
original variables of integration, namely the spatial variables (6,4, and
either v, or ¢, and the TCS spatial variables (¢,6) and the temporal vari-
able ¢.

We will arbitrarily select ¢, to participate in the transformation so that
the sought change of variables is from (6g,94,¢4 to (¢,€,t). Assuming that all
points in R§ will transform one-to-one to a region R in (to,05,%0..€, vt v, w,)
space, we can write the transformed expected-value-of-kill integral as

E{ K( To,.éo,Wo,eo,q,o, me C‘) Wzv Wt)} =
E{K|T;,8, ¥y, E,T,V,, W, W]} =

o R‘,'f Alto) B8y, %) QBo,%0180,%5) Sin 0y Flv,,) Gle,) Nw,,w,) X
(6,69 Q]l(r)o(F(w)] du, dw, dv dv,, dt dp & dBy dyy dty . (7A)

In this formulation, we have assumed that the component kill function Q.7
is given in the TCS. The quantity T is taken to be the random variable
whose values are t. The Jacobian J{¢,£¢) is the absolute value of the deter-
minant of the indicated partial derivatives at the time when the bullet tra-
jectory intersects S, that is
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As is always the case, all functions in the integrand must be given in terms
of the variables of integration before conducting an integration.

Equation 7A is in a form where our sampling objectives can be
attained. A point on S, at some particular target time in conjunction with
the known location of the gun and a set of sample values for the remaining
variables of integration, unchanged from the forward formulation (Equation
2 ), will completely determine a bullet trajectory. A Monte Carlo evalua-
tion will be developed in the next section of this report where sample tra-
jectories are picked using these changed variables of integration.

However, we will note here that the calculational efficiency may be
improved by picking the sample points (r). directly from S, instead of first

picking values for the angles (¢,2) and then locating the associated point on
S, The relevant quantities are related by

dS, = asing dg d¢. (8)
Procedures for conducting such sampling as well as an analysis of their cal-

culational efficiency should be investigated. However, we will not expand
further on this line of development in the present study.
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III. A GENERAL MONTE CARLO EVALUATION OF THE NATURAL
AND THE TRANSFORMED EXPECTED-VALUE-OF-KILL INTEGRAL

A Monte Carlo procedure for evaluating the multiple integrals in equa-
tion 2 is outlined below and illustrated in Figure 6. In order to keep the fol-
lowing outline as general as possible, we will neither describe the sampling
procedures used to pick variable values from the various PDF’s nor
attempt to develop optimum procedures for picking values for the new
variables (¢,¢,€). This procedure is composed of the following steps:

1. Select the type of aircraft maneuver for which the expected value of
kill is desired, and retrieve the predetermined flight path for this type of
maneuver.

2. Simulate radar fixes on the target aircraft at selected times. The
location, velocity, and acceleration of the target are either measured or cal-
culated for these times.

3. Use the data just derived in Step 2 to calculate an optima! predic-
tion of future target locations. Applying some preselected firing doctrine,
pick a value for the firing time T, by sampling A(%). This sample firing time
is identified as (),

4. The location r, of a bullet at time ¢ is assumed to be adequately
approximated by the flyout relations (Equations 4A-4D) given in Section II
of this report. Use the data derived in Step 3 and the mean values of
(Ve Ce, W, W) to determine an estimated interception point (r,),, intercep-
tlon time t,, and aiming angles ((6,),(¥)d. The reader should note that this
picking of a set of sample values for the aiming angles is accomplished
without ever knowing the explicit form of the PDF B(6,,¥,)-

5. Pick a set of values for the initial direction (©,,¥,) of the bullet as it
leaves the gun by sampling C165,%|(8),(¥,)] sin 6, . These sample values are
identified as [(6,),(vo)]- Procedures for picking sample values for a random
variable from its PDF are discussed by Shreider.? These sample values plus
the fact that the birth site of each bullet is located at the origin of the GCS

’N.P. Buslenko, D.I. Golenko, Yu.A. Shreider, LM. Sobol', and V.G. Sragovich, The

Monte Carlo Method, IhL.MS&hSLd_QLSl&LE_IS.ﬂ_Iu&b Yu.A. Shreider, Editor,
Translated from the Russian by G.J. Tee, Translation edited by D.M. Parkyn,

Pergamon Press, Aylesbury, Bucks, Great Britain, 1967.
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provides the initial conditions for the bullet flyout.

6. Pick a value for each of the random variables (V,,,Cy, W,,W,) by sam-
pling the appropriate PDF. These sample values are identified as
[(vm)iedi(w,)i(w,)]. These values are used below to calculate the necessary
points on the trajectory of the sample bullet.

7. Simulate the firing of the sample bullet and calculate its true loca-
tion (r,), at the predicted time of interception t,. The location of a bullet
which has been in flight for a time (t), is calculated by applying the
differential corrections (Equations 4B-4D) to the line of sight (LOS) range
vector [(6p)a(¥o)il] (Equation 4A).

8. Determine the true location (r,), and orientation (w,), (Figure 2) of
the target aircraft at time ¢,.

9. Reiterate Step 8 at selected intervals of At about ¢, until an intersec-
tion with S, is bracketed (if such occurs). Set the kill-probability score to 0
and go to Step 14 if the bullet does not impact S,

10. Using the bracketing data acquired in Step 9, interpolate to find an
adequate approximation of the bullet intersection of S, The location of the
bullet at this point in its trajectory is identified by the position vector (r,),
and the associated time is t. The bracketing data acquired in Step 9 can
also be used to calculate an adequate approximation of the bullet velocity
at time ¢ if this quantity is needed for the calculation of kill probabilities.
Continue to Step 11 for a PD bullet, otheiwise go to Step 12 for a PX bul-
let.

11. Calculate the kill probability for each critical component and then
go to Step 13. Each kill-probability score is identified as X, where j is the
’ running index over critical components and J is the number of critical com-
ponents in the target aircraft.

I 12. Determine the time when a PX bullet impacts the fuzing region,
' and start transporting the bullet into this region. Track the bullet until
either a fuzing action occurs, the bullet impacts the target aircraft, or the
bullet leaves the fuzing region. The burst of metal fragments produced by a
detonation, if such an event occurs, must then be transported into the tar-
get and the kill probabilities of impacted critical components must be
determined. A detailed description of such calculations is beyond the intent
of this study and will not be addressed here. A possible approach is to
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‘t;‘)_:‘ extend the stochastic description of the vulnerability process suggested by

M Beverly®® for critical components exposed to spall fragments in heavily
' armored land vehicles (tanks) to include the higher target velocities associ-

S ated with fixed-wing aircraft. We have not attempted to specify the detail

R with which the target aircraft is described but have merely assumed here

and in Step 11 that it is adequately described.

13. Accumulate each score in a bin reserved for the associated com-
ponent. Square each score and accumulate each squared score in another
bin reserved for the associated component.

14. Reiterate Steps 1-13 until the histories for a total of I sample bul-
lets have been simulated.

15. Applying the Law of Large Numbers?, calculate the expected value
of kill for each critical component as

I -~
E{K}; = E‘x,.,- = X, (9A)

1
Ii

16. Calculate an estimate 6E{K}; of the standard deviation of the
estimated expected value of kill for each component as!®

I -1
YN -IN )2
— _ - 1
SR = | - (9B)
Applying the Central Limit Theorem?, this standard deviation can be inter-
preted as implying that approximately 68 percent of a large number of
similar expected-value-of-kill estimates will fall within one standard devia-
tion of the associated universe expected value.

8W.B. Beverly, “A Stochastic Representation of the Yulnerability of a Critical
Component in a Military Vehicle to Metal Fragments,” Journal of Ballistics, Vol. 5, No.
4, October, 1981.

W.B. Beverly, “The Application of the Monte Carlo Method to the Solution of the
Internal Point Burst Vehicle Ballistic Model,” Ballistic Research Laboratory 7 .nical

Report No. 02353, August 1981, (UNCLASSIFIED).

10y Beers, Introduction to the Theory of Error, Addison-Wesley Publishing Company,
Inc., Reading, Mass., 1962.

e - O S AR
T LA AN o B RtV A AT SN SN G e s e e e e
3T 'ﬁ:"':'"-" B N I N PR & L NG W AT T4 W V.




R Tewe W ww & Bad -
N W T T W N W W N o O T N W T W~ W s W Y rrw

START

Retrieve Flight Path Data for
Desired Target Maneuver

hadb bt e BAs At Ga. sa. ga- Bai Bac g 4 oo ]

i=1
Simulate Radar Fix, Pick Firing Time, T
and Calculate Optimal Interception

Point for an Average Bullet and Firing
Conditions .

Determine Time Range for Sampling

!

Pick Sample Time t,

!
Pick Values for Target Polar —
Angles ¢ and § . : -Al +1
A

Calculate Associated Point on S;

1
Pick Values for

Wy, Wy and Vp, .
K1
Calculate Values for -
Variables ®g¥p,and Cq . Calculate E{K}j
‘ . —
Calculate Jacobian Calcuiate SE{K}j
[’ ¥
Calculate Component Scores . Print Results
Caiculate Squared Scores,
' @
Accumulate Component Scores.,

Accumulate Squared Scores.

Figure 7. The Adjoint Monte Carlo Estimation of the Expected-Value-of-
Kill of a Critical Component in a Target Aircraft
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Step 16 completes the outline of a forward Monte Carlo solution of the
expected-value-of-kill integral used in Equation 2. The alternate adjoint for-
mulation given by Equation 7A is in a form such that sample bullets which
usually impact S can be easily picked. A general Monte Carlo procedure for

evaluating the adjoint integral is composed of the following steps (Figure
7).

1. Select the type of aircraft maneuver for which the expected value of

kill is desired, and retrieve the predetermined flight path for this type of
maneuver.

2. Simulate radar fixes on the target aircraft at selected times. The
location, velocity, and acceleration of the target are either measured or cal-
culated at each of these times.

3. Use the data derived in Step 2 to calculate optimal predictions of
future target locations. Applying some preselected firing doctrine, pick a
value for the firing time T, by sampling A(4). This firing time is identified
as (f,); where 1 is the sample index, and /is the number of sample histories
to be used in the Monte Carlo calculation.

4. Using the data derived in Step 3 and the mean values of
(VG W, W), calculate values for the aiming angles (6,,¥,). These calcu-
lated \alues are identified as [(00),,(1,0)]

5. Pick a set of sample values [(v,,),.(w,),(w,)] for (V,, W, W,) by sampling
the associated PDF'’s.

6. We now introduce the first step in the adjoint evaluation which
differs from the forward evaluation just outlined. The range of ¢, and
correspondingly (), over which the major fraction of the bullets will
impact S, must be estimated by using the data derived in the first five
steps. If Gaussian distributions are used to predict the uncertainties, non-
zero probability tails will extend out to infinite values so that small, but
non-zero, probabilities will exist for implausible firing or bullet-flyout condi-
tions. In practice, these tails should be truncated and a reasonable target-
time range (R,); be determined which will include only plausible events. The
width of this sampling time range is identified at (AT);, and will be used as
a factor in the calculation of the event score.

P




7. Pick a sample value ¢, for the target time. We will assume here that
the sample value is picked with equal probability at any point on (R)..
Using the notational convention adopted earlier, the associated time of
flight to a bullet impact with S, would be identified as [(¢)];, However, for
the sake of simplicity, we will take the quantity (¢), in the remainder of the
adjoint procedure to be the time of flight of the ** sample bullet to its
impact with S,

8. Locate the target aircraft at ¢, and determine in the gun coordinate
system its velocity r(t) and orientation w(t). Use this data to locate the
spherical region (R); and its associated center [(z,).(y,).(2,)]; in the GCS. If
practical, determine the boundary of the associated S, as that part of the
outer boundary of (R,); which can be impacted by any plausible bullet tra-
jectories having the variable sample values just picked in Steps 1-8.

9. We are now ready to pick a sample set of values for the target-
coordinate-system angles (#,£). If, as anticipated, the exact boundary of (S))
is difficult to derive or its shape introduces sampling difficulties, then the
following procedure may be used:

(a) Determine the range (R,); of ¢-values and the range (Re¢); of &-values
where these ranges include all possible target hits.

(b) Using these ranges, calculate the associated widths (4,); and (&),
These widths will be used as factors in the calculation of the event score.
(c) Pick a sample value for & with equal probability at any point on (R,),.
Similarly, pick a sample value for & with equal probability at any point on
(R¢);- This set of values is identified as (¢,,¢,).

(d) Convert the sample angles just picked to the associated point
(2 )o(3' )olz' ))i (TCS) on the surface of (R))..

(e) Determine if this point is located at the entrance or exit of the sample
bullet trajectory into (R));.

(f) Set the score to 0 and go to Step 17 if the point is a trajectory exit.
Proceed to Step 10 if the point is a trajectory entrance into (R);. By
definition, (S); includes only trajectory entrance points into (R);.

10. Calculate the associated set of values for (8,,¥%,,C,) by inserting the
Siacci Equation
(vm)i (&);

1+ e /(vn)i (1)

and the relation,

=

(4A)
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A between temporal variables into Equations 6B-6D:
el
e Lsindy coso + (w,); (49 = 7= = [(2! Wi+ 28) (6A)
t (vm)i
:!‘Q l '
" I'sinfy sinyy + (w)); [U/).' - (TT] = [(y' )i + vt (6B)
I m’s
& , o
- t s 3 + l s mls
s ! cosfly - AV a{b Vien): = [(z' )i + 2dt) - (6C)
" 6 11+ ci(t) Vivmk
»“' The resulting set of simultaneous equations can be solved by using an itera-
v tive procedure such as Newton’s method.!! This set of values is identified
o s [(80)i(vo)al ).
" 11. Calculate the killing probability of the sample event as described
3 _‘3 earlier in this Section in the outline of the forward Monte Carlo solution. If
.Q} the bullet velocity is needed to perform this calculation, then an adequate
":r'I approximation can be obtained from the change in the bullet coordinates
for a small increase (or decrease) in the time of flight (t). This quantity for
n-;! either case is identified as @;, and will be used as a factor in the calculation
:3:: of the event score.
o 12. Calculate the quantity Cf(6p),(v)d(8o)i(¥o)] Sin(6p);. This quantity is

, identified as C;sin(6,);, and will be used as a factor in the calculation of the
s event score.

P

E:. 13. Calculate the value of the Jacobian Jj¢,&.(t)] (Equation 7B) for
= the event where the necessary derivatives are derived from Equations 6A-
e 6C. The time dependence of r, is derived for the particular target
{: maneuver used. This quantity is identified as J, and will be used as a factor
P in the calculation of the event score.

14. Calculate the value of the PDF Gj(c,),] for the event. This quantity
is identified as G, and will be used as a factor in the calculation of the
event score.

o Hpeter Henrici, KElements of Numerical Apnalysis, John Wiley and Sons, New York.
b N.Y., 1964.
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15. Calculate an event score for each critical component. These scores,
identified as X,;, are given by

N = A, T AW Ak C;sin (6); G; J; Q. (11)

16. Square each component score. Accumulate each score and each
squared score in bins reserved for these operations.

17. Calculate the scores for a total of 1 similar sample events by
reiterating Steps 1-16.

18. Applying the Law of Large Numbers?, calculate an estimate of the
expected value of kill for each critical component as the mean of the associ-
ated scores, that is

/ -
ER -=11§; =X, (12A)

J
A bar is placed over a quantity to identify its mean estimate.

19. Calculate an estimate 6E{K}; of the standard deviation of the
ostimated expected value of kill for each component as!®

! 1
=2 |-

SE(R}, = -:—l‘(-IT . (12B)

Applying the Central Limit Theorem?, this standard deviation can be inter-
preted as implying that approximately 68 percent of a large number of
similar estimates will fall within one standard deviation of the associated
universe expected value.

hl‘

Step 19 completes an outline of an adjoint Monte Carlo evaluation of
the adjoint expected-value-of-kill integral. An example two-dimensional
problem is described in the next section of this report and its forward- and
adjoint-calculated answers are compared.

*?
E

i
|
3
:
1
:
|

«35-

~ "y m T r o H »
- ! LA, M . ‘n.(-w

I3 J 7 A I I - -
. ‘.\.{\"\.f .p (’\ . N"._'.I\- o ‘F. T ‘A f. ," /_ o . n \'1 \- ’- ,-- _'-‘.'- DA RN 1
Yallal ., p O T o \



WYY
L e o nie s B Sk Aok Al Sl

3 a2 oa wan aui 2o Sl et Bl ll

L caa o am Sad e d el 4ol Mt ol

IV. THE SOLUTION OF A PEDAGOGICAL EXAMPLE AIR-DEFENSE-
END-GAME PROBLEM USING FORWARD AND ADJOINT SAMPLING
PROCEDURES

A. The Problem-Set Description

We have devised a two-dimensional problem (Figure 8) whose Monte
Carlo solution illustrates in a simple manner the procedures outlined in the
preceding section of this report. This problem is composed of the following
parts:

1. A Gun Coordinate System (GCS) is defined for a gun and radar-
tracking system where the muzzle of the gun is taken to be the origin. The
location of the gun muzzle is assumed to be precisely known with respect to
the radar so that all uncertainties associated with locating the target in the
GCS are due to inaccuracies in the radar fixes. We will, depending on
analytical convenience, use either the Cartesian variables (z,y) or the polar
variables (6,s) (Figure 9) as the coordinates of the bullet position vector r,
and the target-circle-center position vector r, in the GCS.

2. A circular, two-dimensional target of radius a is moving in the posi-
tive y direction along the line z, = 2v3b with a constant velocity of
= b/sec where b is a length (Figure 8). The target center is located at
(z, = 2V3b, y, = 0) at time t=0. A Target Coordinate System (TCS) is
defined whose origin is the the center of the target circle and whose vari-
ables are taken to be the polar coordinates (¢,s) (Figure 10).

3. The radar detection and tracking of the target is assumed to begin
at y, =0 and to continue until a bullet is fired. These radar measured tar-
get locations and velocities are presumed to be used in some unspecified
manner to predict future target locations which in turn are used to calcu-
late the aiming angle for a time of firing ¢. In these calculations, the x-
coordinate of the target location and the x-component of the target velocity
are assumed to be precisely measured so that all radar predictions place the
target center on the line z, = 2v3b. Similarly, during the calculation, the
acceleration of the target along its path is taken to be precisely zero.

4. A bullet is fired at some time ¢ between ¢t =1 sec and t =2 sec
where the PDF of firing times is given by the triangular distribution f(t,)
(Figure 11a). The target center, y, at the time of firing is located at
(Yo = % = v, tp. The uncertainty in the y-direction associated with the

i Gy dh B R SEE At A
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radar measured (rm) target-center location, y,,, is identified at the time of
firing, t, by the triangular conditional PDF, fy(y,.l%) (Figure 11b), and the
uncertainty in the y-direction associated with the radar measured target
velocity v,,, is described by a similar triangular PDF fy(v,,) (Figure 11c).

5. The aiming angle §, used for a firing event is derived from the meas-
ured values for target velocity and location and the mean value, ¥, of the
bullet muzzle velocity.

6. The true firing angle 6, due to the various uncertainties associated
with positioning and firing the gun is predicted by the triangular condi-
tional PDF f,(6,/6,) (Figure 11d).

7. The true muzzle velocity v, of the fired bullet has an uncertainty
which is predicted by the triangular PDF fy(v,) (Figure 11e). The quantity
7,, is the mean muzzle velocity for a large number of similar firing events.

8. The bullet travels in a straight line with a velocity which decreases
at a constant rate given by

vy = v, (1-02t), (13A)

where # is the time that the bullet has been in flight. The distance |r,| trav-
eled by a bullet at a time of flight ¢/ is derived from Equation 12A as

vyl = v, (1 -0.1¢) (13B)

9. Associated with the target is a response function @ which in air-
defense studies would quantify some specified loss of capability by a target
comporent due to a hit. In this example problem, we assume that the loss
of capability is a function only of the location of a hit on the target circle.
This response function has the form, Q(r,)y(r,)d, in the GCS and the
simpler form, Q4{(¢,9)], in the TCS. We identify the position vectors associ-
ated with target hits by affixing the subscript H. If @; and Qg are unity for
all hits, then the expected-value integral constructed below is merely the
expected value of hit for the specified firing events.

Item 9 completes the description of the example problem. The
“natural” formulation of the expected value E{Target Response} of target
response is given by the multiple integral
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N Qul(Fy)ss(x )il dog, dBy vy d iy (14)
* where RY is the region in the GCS space (ly,¥,m, vymi0,m) Where bullets will
s hit the target circle.

) ,)-"

o

"5 B. The Forward Monte Carlo Estimation Procedures

o

‘ The multiple integrals in Equation 14 can easily be evaluated using a
BN

X “natural” Monte Carlo procedure by simulating a large number of firing
: events using the given PDF’s and then calculating the mean target

s response. We outline below (Figure 12) such a procedure for calculating the
?.*-. expected value of hit E{H} by taking Q[(r,)y,(r,);] to be 1 for all hits:
V2o 1. Pick a value for the firing time of the bullet by sampling the PDF
i /i(ty). This sample value is identified as (t,); where i is the sample index and
o Iis the number of Monte Carlo histories to be used in the calculation. Cal-
N culate the true target location at (&), as (), = v, (f);

e
a9 2. Pick a value for the radar measurement of the target location at the

time of firing by sampling the PDF fyy,.l(%)]. As noted earlier, this sample
f U Xy . " .
e value of the measured target location is always taken to lie on the true
’3’. flight path with an uncertainty only in the y-coordinate. This sample value
e is identified as (y,,,);.
-2
e 3. Pick a value for the measured target velocity by sampling the PDF
o fs(v,m)- This sample value is identified as (v,,,);. As noted earlier, this sample
3 value of the measured velocity is always taken TG be in the positive y-
-::: direction.

e 4. Assuming that target locations at future times are derived from the

B sample values (y,,); and (v,,);, calculate the aiming angle for which a bullet
?;} having the mean muzzle velocity 7, will hit the center of the target. This
s can be accomplished by inserting these sample values into the relation

1
o 2 22
R t] — [12b f (yrm + Uy t/) ] —_ 0(‘,)’ (15)
Y (l - 0.1 ‘/)
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Figure 12. The Forward Monte Carlo Estimation of the Expected-Value-
of-Hit for the Example Problem
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derived from the time-of-flight analytic right triangle (Figure 13), and then
iteratively locating the time of flight, ()y, to a hit as the fixed point!! of
g(t). An aiming angle (), is then derived for the anticipated location of the
target at the time of hit.

5. Pick a value for the true firing angle by sampling the conditional
PDF /,16,/(%)]. This sample value is identified as (6,),, As noted earlier, the
birth site of each bullet is taken to be the origin of the GCS.

6. Pick a value for the muzzle velocity of the fired bullet by sampling
the PDF f,(v,). This sample value is identified as (v,);.

7. The determination of whether a bullet hits the target is not as easy
as might be expected since both the target circle and bullet are moving. In
the method used here, we first note that the square of the distance M¢)
between the bullet and the target-circle center is given by

Mty = [zy(t) - 2V3 82 + [u(t) - w0, (16)
where the bullet time of flight ¢, is related to the target time ¢ by

t=1ly+ . (17)
The time of flight at the distance of closest approath is given by setting the
time derivative

My _

=0 (18A)

and solving the resulting equation for its zero. Performing the indicated
differentiation and grouping terms for convenience, the function g¢) is
derived such that
, 2V3 b - Ht)
7™ v, (1- 0.1 sing,

[vs(t) - yolt))] [vp (1 - 0.2¢)) cosby - v,]

vy, (1 - 0.2¢)) sinf, (18C)

Ht) =

The function «t) was determined by trial to be an acceptable iteration
function for finding the fixed point of Equation 18B where the fixed point,
(t)m, is the time of flight at which the miss distance is a minimum.
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8. Calculate the location of the bullet and the target at time (t),,.
Assign a score of one to the sample event if the bullet is inside the target
circle, otherwise assign a score of zero. The score is identified as Q,.

9. Reiterate Steps 1-8 for a total of I histories.

10. Calculate the expected value for hitting the target as

Em =P =Ly (19A)

fem ]

11. Calculate the standard deviation 6P, of Py as

6FH = =1 . (lgB)

C. The Adjoint Monte Carlo Estimation Procedures

We will now attempt to change some of the variables of integration
used in Equation 14 to obtain a form such that bullets which hit the target
can always be picked as samples.

To accomplish this objective, we first derive a second analytic right tri-
angle (Figure 14) which describes bullet intersections of the target circle.
We then note that the pair of independent equations,

__ 2V3b-asing _ 2vV3b-asin g
tan fp = y{t)-acosd  wvt-acosd ' (204)
1
el [(2v3b - asing)? + (v, t - acosg)?)? J
m=-oat) t(1-0.1t) ’ (208)

can be derived which relate (6,,v,) in the GCS to (¢,t) in the TCS. The 1
quantity, |r,|y, in Equation 20B is the distance traveled by a bullet to a hit.

We assume that each realistic bullet trajectory (and target maneuver)
for a particular set of values for (4,6,) can be uniquely determined by either
(,v,,) OF (8,f), so that all points in R§ space (&,Yrm: rmbo.v,) Will transform
one-to-one to points in R} space, (f,YrmVm®f). When this condition is

-46-
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satisfied, the expected-value-of-target-response integral will also be given by

E{TargetResponse} =

f.R.T .ffl(tO) f'.!(yrmlyO) f3(vrm) f((00‘50) fS(vm) ‘R¢vt) Q](¢,0) d¢ dt dvrm dyrm ‘"o (21)

We have now described the target response in the target coordinate system
by the new function Qg¢,a). The Jacobian of the transformation is the

absolute value of the determinant of the indicated partial derivatives, that
is

28, a6,
_ 3(00vvm) _ _6? -‘BT
a¢ ot

The 6, partial derivatives in the preceding determinant can be derived from
Equation 20A to be

86, _ a {y(t) cos ¢ + 2v3 sin ¢ - a) Sin290 ’ (23A)
3¢ [¥,(8) - a cos ¢]®
a9, v, [2V3 b - asin ¢] sin®d,

ot [ya(t) — 6 COs ¢12

(23B)

Similarly, the v, partial derivatives can be derived from from Equation 20B
to obtain

dv, _a ly,(¢) sin ¢ - 2v/3b cos é)
0 (ros (1 -0.11) ’ (23C)

and

8v, v, [1-0.14 [y,(t) - a cos ] - [(r,)}] [1 - 0.24]
ot [(rs)d 21 - 0.142 '

(23D)

The integrals in Equation 21 can also be evaluated by using the Monte
Carlo method where sample events are now in part determined by the sam-
ple values picked for the new variables of integration ¢ and . Such a pro-
cedure, where the first four steps are identical to those used earlier in the
“natural” evaluation, is given below (Figure 15):

1. Pick a value for the firing time of the bullet by sampling the PDF
/i(t). This sample value is identified as (,); Ca!~ulate the location (%), of
the target center at the sample firing time.
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Figure 15. The Adjoint Monte Carlo Estimation of the Expected-Value-
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2. Pick a value for the radar measurement of the target location at the
time of firing by sampling the PDF fy,.l(%)]. This sample value is
identified as (y,,); where ¢ is the sample index and 7 is the number of his-
tories to be used in the calculation.

3. Pick a value for the measured target velocity by samplmg the PDF
f(v,,). This sample value is identified as (v,,),.

4. Assuming that target locations at future times are derived from the
sample values (y,,); and (v,,);, calculate the aiming angle for which a bullet
having the mean muzzle velocity 7, will hit the center of the target. This
can be accomplished by inserting these sample values into the relation

1

128 + (Yo + Ot
" = 7 (l-o.u;)! = Ay 1s)

derived from the time-of-flight analytic right triangle (Figure 13), and then
iteratively locating the time of flight, (t)y, to a hit as the fixed point!! of
g(t). An aiming angle (8,), is then derived for the antncnpated location of the
target at the time of hit.

5. Step 4 is the last step in the adjoint-evaluation procedure which is
the same as the forward-evaluation procedure described earlier in this Sec-
tion. At this stage, the determination of the # evcnt score, X, could be
regarded as the evaluation of the integral,

Xl. = f f/4[00 ' (50)1'] ,5(vm) ‘4¢vt) Q7(¢,a) d¢ dt ' (24A)

where [R{,]'_ is the region in the (4,t) subspace which includes all points

[(%)i(9em)ir(¥+m).8,8] contained in RJ If one wished, the integral could be
evaluated using Monte Carlo procedures to a high precision as

N -
5= Ao 7 L A0 )] Glemlel A0ute) @rféna). (24B)

-]

where (¢,,t,) are picked with equal probability over RI, and (6,), and (v,),
are calculated using (¢,,t,). The quantities n and N are introduced as a new
running index and the number of associated samples, respectively, and

A[Rq is the area of [RI,] p However, applying the Law of Large Numbers?,

an acceptable  score can be derived using a single sample from the
integral in Equation 24A, that is
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A= [Arg] All00): | @)i ] fllemh] Aduta) @uidsc) (24€)

where we have dropped the temporary index n and reintroduced the index
i. We will describe the latter method although the average of five sample
values was used in our actual calculations.

We would prefer to pick sample values for (¢,f) with equal probability
at any point in [RI,] » but its boundary may present calculational
difficulties. Consequently, we will pick from a larger region, probably
extending outside TRI,] » Which presents no calculational difficulty, and then

discard all sample points [(t);{¥m)i{¥em)in®it] Which lie outside [RI,]‘, by the

simple expedient of setting to zero an appropriate factor which is used later
to calculate the event score.

For the sample values [(&)(¥,m):(v,m)], Just picked and the associated
calculated aiming angle (6,); determine the range (R); of values for the tar-
get time which include all bullet-target intercepts associated with non-zero
values for the PDF’s f,(6,l(6,)] and f[(v,)]. The width of this range is
identified as At, and will be used as a factor in the calculation of the event
score.

6. Pick a sample value of ¢ with equal probability on the sampling
range defined in Step 5. This sample time is identified as t,.

7. Locate the target circle at ¢; and calculate the range, (R,);, (Figure
16) subtended by that part of the target circle which can be impacted by a
bullet. The width of this range is identified as A¢, and will be used as a fac-
tor in the calculation of the event score.

8. Pick a value for ¢ over the range calculated in Step 7. This sample
value is identified as ¢,.

9. Calculate in the GCS the location of the target center at time ¢,
Calculate the location of the point on the target circle associated with (¢,.t,).
The Cartesian coordinates of this point are identified as |(zp).(yy)]. Since all
bullet trajectories intersect the target circle, the quantity, Q(¢,).d.
identified later as @, is set to 1 for all events.

10. Calculate the value of 6, associated with [(zy).(yg)]. This value is
identified as (6,),.




0 2v3b X

¢h = Maximum ¢ For a Hit
¢L = Minimum ¢ For a Hit

Figure 16. An Illustration of the Limits Associated with the Target Polar
Angle ¢ (Not to Scale)
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11. Calculate the value of the PDF f£,[(6,)(%);]. This value is identified
as p{6,) and will be used as a factor in the calculation of the event score. A
zero value implies that the sample firing event lies outside R} and should be
discarded. Jump to Step 17 if p{6,) = 0; otherwise, proceed to Step 12.

12. Calculate the value of v, such that the sample firing will deliver a
bullet at [(zz):(yx)d at time ¢;. This value is identified as (v,);.

13. Calculate the value of the PDF f[(v,)]. This value is identified as
p{v,) and will be used as a factor in the calculation of the event score. A
zero value implies that the sample firing event lies outside R} and should be
discarded. Proceed to Step 17 if p{v,) = 0; otherwise, proceed to Step 14.

14. Calculate the Jacobian for the history. This quantity is identified
as J.

15. Calculate the event score X; as

N = At Ag; piby) plvy) i Q: (25)

Accumulate the score in a bin reserved for this operation.

16. Square the event score X; and accumulate the result in another bin
reserved for this operation.

17. Reiterate Steps 1-16 for a total of I histories.
18. Applying the Law of Large Numbers?, calculate an estimate of the
probability of hitting the target as
_ I
P, = ll A, (26A)

1=1

19. Calculate an estimate 6Py of the standard deviation of the hit-
probability estimate as!®

! —,11
VN - TPy

5 _ |i=1
Py =TT . (26B)

Step 19 completes a general outline of the Monte Carlo evaluation of
the multiple integrals used to formulate the expected value of hit for the
example problem. We will discuss the answers to this problem below in
Section 1V.B.

,,,,,,,,,,,,
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C. The Problem Results

The FORTRAN computer programs FORWARD and BACK were con-
structed and used to calculate in turn forward and adjoint estimates of the
expected-value-of-hit integrals given earlier in this section. A sufficient
number of sample histories (5000) to obtain an acceptable standard devia-
tion for the set of problems described below was used. In fact, the stan-
dard deviations obtained using this large number of sample histories are
generally much smaller than those obtained in most air-defense end-game
calculations. The calculational time needed by BACK was estimated to be
approximately twice that of FORWARD for an equal number of sample
histories.

Using each computer program, we calculated the expected value of hit
for a set of targets whose radii varied systematically from ¢ = 0.01056 to
a = 0.00015 where b is taken to be 1000 (arbitrary units). The target velo-
city, v,, was taken to be b/sec, and the mean bullet velocity ©,, was taken

to be 3b/sec. The fractional standard deviation percentage 1001517.’;ﬁ

H
remained approximately constant for the set of answers calculated using
BACK; while the fractional standard deviation percentage calculated using
FORWARD increased with decreasing target-circle radius (and conse-
quently decreasing Py). This result was expected since a large fraction of
the scores in the adjoint calculation have intermediate values while only 0’s
and 1’s are scored in the forward mode. These answers are tabulated below
in Table 1.

The desirability of using the adjoint method to calculate the expected
value of hit where this value is small can be demonstrated by graphing the

o 6P :
weighted standard deviations W—== vs. a for the two calculational methods
H
(Figure 17). The weight (calculational-time ratio) is taken to be 2 for the
BACK computer program and 1 for the FORWARD computer program.
The crossover point at a = 3.4 defines the point at which one should con-
sider using adjoint sampling procedures.
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a ﬁH SEH 00 8Py / PH !
z 10.5 0.61640  0.00688 1,116 3
= 8.5 050660  0.00707  1.396
= 6.5 0.40760  0.00695 1,705 3
= 4.5 0.27840 - 0.00634  2.277 ;
< 2.5 0.16540 000525  3.177 2
= 2.0 0.12560 0.00469  3.732 3
= 1.5 0.10820 0.00432 4,147 -
e 1.0 0.06420  0.00347  5.400
w 0.5 0.03400  0.00256  7.539
= 0.4 0.02520  0.00222  8.797
= 0.3 0.02140 000205  9.564
= 0.2 0.01320 0.00161 12,229
= 0.1 0.00560  0.00106  18.847
_ 10.5 0.62371  0.00926  1.484
S 8.5 053351 000753  1.412
= 6.5 0.41915  0.00584 1,392
= 4.5 0.29440  0.00400 1,359
= 2.5 016662  0.00223 1,339
= 2.0 0.13252  0.00180  1.356
= 1.5 0.09870 - 0.00135  1.372
3 1.9 0.06539  0.00090  1.372
< 0.5 003222 0.00044 1,378
= 0.4 0.02532  0.00035  1.396
< 0.3 0.01977 0.00027 1,377
- 0.2 0.01315  0.00018 1,351
= 0.1 0.00640  0,00009 1,382
[

Table 1. The Example-Problem Answers Calculated Using Both Forward
and Adjoint Procedures
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V. CONCLUSIONS AND PROGNOSIS

We have constructed an integral representation of the expected value of
kill of a critical component in an aircraft by a bullet fired from a gun
located on the ground, and have outlined a Monte Carlo evaluation of this
integral where sample events are picked from their “natural” distributions.
We then changed the variables of integration (8p,v,¢,) (firing angles and
air-drag coefficient) used in the “natural” form of the expected-value-of-kill
integral to (¢,6,t) (polar and azimuth angle in the target spherical coordinate
system plus the target time), and outlined the Monte Carlo evaluation of
the transformed integral. The necessary probability density functions for
picking sample values for the variables of integration are identified and the
bullet flyout is described by equations given in Reference 1. However, the
outlined procedures are not restricted to any particular description of bullet
flyout, but should be applicable to other methods of predicting the bullet
flyout.

A quantitative comparison of the calculational efficiency of the two
methods for a particular air-defense problem can only be obtained by trial
calculations. In conducting a calculation, the effort of promenading a bullet
near the target to obtain the interaction point would be expected to com-
pare with the effort needed to calculate the values of the changed variables
of integration by solving three simultaneous equations. However, as illus-
trated for the set of example problems in Section IV, the fractional stan-
dard deviation of a hit (or kill) probability estimate would be expected to
increase with decreasing hit probability when forward sampling is used, and
to remain approximately constant with decreasing hit probability when
adjoint sampling is used. If the forward method is more efficient for prob-
lems having a hit probability near one, then a crossover exists at some hit
probability beyond which the adjoint method would become the more
efficient method. To determine when adjoint sampling is the more efficient
method, the answers should be calculated for a set of representative air-
defense-end-game problems similar to the example set described in Section
Iv.

Our complete omission of geometrical detail in the target when describ-
ing the interaction of bullets or shrapnel with its critical components has
been deliberate. A combinatorial geometry!? description of military

12W. Guber, R. Nagel, R. Goldstein, P.S. Mittelman, and M. Kalos, “A Geometric
Description Technique for Computer Analysis of Both the Nuclear and Conventional
Vulnerability of Armored Military Vehicles,”” Mathematical Applications Group, Inc.,

Report No. MAGI-6701, August 1967.
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Y vehicles can be constructed to a high precision,!3 ¢ but the validity of the

fﬁ" present procedures'® being used to transport penetrators into surface tar-

09 gets and the prediction® of the incapacitation of an impact with a critical

' component have not, to the knowledge of the author, been rigorously )
NN verified. In the meantime, we expect that greatly simplified target descrip- i
,‘_f;.‘_ tions, such as those used by the current MGEM! computer program pro-

e vide all the target detail that is warranted.

A

A causal description of the detonation of a PX bullet and the transport
of the resulting shrapnel into the target aircraft to possible impacts with
critical components would require a prohibitive effort. A stochastic
approach has been suggested in Reference 8 whereby the behavior of a large
aggregate of similar ballistic events may be adequately describable by pro-
bability density functions of properly selected random variables. The
existence of such a set of random variables has not been verified, but the
adequacy criterion would not be expected to be very severe if the majority
of the metal fragments impacting a critical component have perforated only
one or two solid barriers. In any event, the adequate description of such
ballistic effects is essential to vulnerability analysises, and a serious attempt
should be made to develop and verify such a predictive model.

If such a stochastic description of ballistic events is developed and
verified, then calculational methods developed for radiation transport!®?!?

131,. Bain, and M. Reisinger, “The GIFT Code User Manual; Vol. I, Introduction and
Input Requirements,” Ballistic Research Laboratory Technical Report No. 1902, July
1975, (UNCLASSIFIED).

14G. Kuehl, M. Reisinger, and L. Bain, “The GIFT Code User Manual; Vol. II, The
Output Options,” Ballistic Research Laboratory Technical Report No. 02189, September
1979, (UNCLASSIFIED).

15T S. Hafer and A.S. Hafer, ‘“Vulnerability Analysis for Surface Targets (VAST): An
Internal Point Burst Model,”” Ballistic Research Laboratory Technical Report No. 02154,

April 1979, (UNCLASSIFIED).

18], Spanier and EM. Gelbard, Monte Carlo Principles and Neutron Transport
Broblems, Addison-Wesley Publishing Company, Reading, Massachusetts, Menlo Park,

California, London, Don Mills, Ontario.

1TW.C. Roesch, ‘“Mathematical Theory of Radiation Fields,”
Dosimetry, F.H. Attix and W.C. Roesch, Editors, Volume I, Fundamentals, Second

Edition, Academic Press, New York, San Francisco, and London, (968.
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may be advantageously applied to ballistic vulnerability studies. For exam-
ple, looking at the shrapnel generated during the detonation of a PX bul! t,
we would expect that the formulation of the expected-value-of-kill integral
would permit the calculation of the adjoint fragment fluence, ¢(rg,wg,by),
over the fuzing region, R, for each critical component in the aircraft. The
kill probability per fragment, Py, would then be given as

PK = f;{fs,(fo"’o»bo) ¢(ro"'o,bo) hohod’o, (27A)
/

Where S{rq,wg,by) is the probability density of shrapnel fragments produced
during a fuzing action. The quantities, (ry,wo), are the position vector and
direction of motion, respectively, of a fragment in a target coordinate sys-
tem, and b, is a generalized set of variables which can be used to character-
ize fragments. In practice, ¢(ry,wo,b,) would be evaluated in bins over the
fuzing region, R, during a one-time calculation, and Py would then be cal-
culated as the sum of the products, (S); ¢,. that is,

I

Py= 3 (S);¢;. (27B)
The quantity s is the running index over bins in the fuzing region about the
target, and I is the total number of such bins.

The advantage of this method is that the adjoint fluence can be
evaluated over the fuzing region of a plane in a one-time calculation and
then be reused for any number of specific problems. A possible disadvan-
tage in using the adjoint fluence is that its evaluation may be laborious and
the dimensionality of the mesh needed for its description over the fuzing
region may be large. In any event, the feasibility of such a procedure
should be investigated.
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APPENDIX

THE MONTE CARLO EVALUATION OF EXPECTED-VALUE INTEGRALS
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THE MONTE CARLO EVALUATION OF EXPECTED-VALUE INTEGRALS

The general features of a Monte Carlo evaluation of the expected-
value-of-kill integrals used to describe the efficiency of air-defense gun sys-
tems are illustrated below by the triple integral

E(QUXY.2)=] | | Sed Qune) de dy de=
] Rf [ Sz9.9 Qu(zy,2,92,9,2),w(zy,2)] dz dy d-. (A1)

The quantity z,y,2) is the joint probability density of values for the set of
random variables (X,Y,2) in a region of interest R,,, of zyz space, and Q(v,v,v)
is any well-behaved function with a finite maximum value. In certain physi-
cal problems, §z,y,2) is often identified as the source term, and Q(u,v,w) is
identified as a pay-off function or detector-response function. For example,
S z,y,2) could describe the probability density of particles generated by some
physical process, and Q(u,v,w) could describe the interaction of these parti-
cles with a detector after their passage through an interactive medium. In
our air-defense end games, the source term is taken to include the uncer-
tainities associated with detecting and tracking a target, aiming the gun
and firing the bullet, and transporting the bullet toward the target; and the
pay-off function is the kill probability of a critical component in the target
by the bullet. The source term will have its largest values in some known
region and will become vanishingly small at known distances from this
region. Therefore, the region R,,, is generally taken to include all points in
zyz space whose inclusion in an expected-value integral will make a
significant contribution to the expected value. A source term is generally
assumed to be normalized to unity unless otherwise noted, that is

[f [ Szy2)dzdydz=1. (A2)

3

According to Kaplan!® the functions
u= u(z,y,2), (A3)
v=vz,9,2), (A4)
and

18W. Kaplan, Advanced Calculys, Addison-Wesley Publishing Company, Inc.,
Cambridge 42, Mass, 1953.
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i " w = u(z,y,2), (AS5) |
?.j are assumed to be defined and continuous in the region R,, of zy: space.
¥ The corresponding points (u,v,w) lie in the region R,,, of wvw space, and it is
iy assumed that the inverse relations
".-_f'.:“: z = 7(u,v,0), (AS6)
"{"a' y= S(“vvvw)! (A7)
,‘; and
S 2= Au,v,w), (A8)
14 are defined and continuous in the region R,,, of www space, so that the
» correspondence between R,,, and R,,, is one-to-one. As used in Equation
K Yy Al, Equations A3-A5 causally describe some physical process. In our parti-
;";EZ cle example, (X,Y,2) are taken to quantify the essential features of particles
k0 at their generation (birth particles), and (U,V,W) describe these same parti-
o cles (residual particles) at their interaction with the detector after passing
s through an interactive medium.
1:\‘1: . . . . .
N In practice, the expected-value integrals used in air-defense studies are
Ao often of much higher dimensionality than that used in the example triple
' integral. In such cases where a confidence level of 5% or so is acceptable,
n the Monte Carlo method is quite often the most efficient method of evalua-
ol tion since convergence toward the true value always goes as 1/VN where N
‘ () . . . .
ey is the number of sample histories. An outline of a general Monte Carlo
" evaluation of the integral used in Equation 1 is given below:
, 1. Pick a set of values for (z,y,2) by sampling z,9,2). This set of values
oy is identified as (z,y,2) where i is the running index over sample events.
A
W INY
oL 2. Calculate the associated values of (v,v,w) by using Equations A3-A5.
= This set of values is identified as (w,v,w). In a physical problem, this
2. operation is often interpreted as the simulation of a physical event such as
Wy . . . .
‘-§-:- ' the transport of a particle through an interactive medium.
b
' 3. Calculate the score for the event as Q(v;v,w). This quantity is
o identified as Q;. s
Sl
B
": 4. Accumulate @; in a bin reserved for this operation. Square the score
W and similarly accumulate the squared score in a second bin.
i
l‘|
7'::““:
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5. Reiterate Steps 1-4 until a total of I sample events have been simu-
lated.

6. Applying the Law of Large Numbers?, calculate an estimate of the
triple integral in Equation Al as the mean of the sample scores, that is

. — !
- RQUVM =Q3=3% & - (A9)
1o
The mean estimate of an integral is identified by placing a bar over its
symbol.

7. Calculate an estimate of the confidence level of the preceding esti-
mate as the standard deviation of the mean estimate, that is

! 11
E ch—IQ 2 2

T W B AR VAT -y tem]
SE{QUV. I = 60 = | = r—

Applying the Central Limit Theorem?, this estimate of the confidence level
of the calculation can be interpreted as implying that approximately 68%
of a large number of similar estimates will fall within one standard devia-
tion of the true value of the triple integral.

(A10)

Step 7 completes the outline of a general solution of the triple integral
in Equation Al. This triple integral can be reformulated as

E{QU,V\W)} = CE{(8X,Y,2)} =

-

cff f.S'[:::(u,v,w),;‘(u,v,w),;(u,v,w)].(u,v,w)-gf’c—v’ﬂ du dv dw (A11)
RI"
by changing the variables of integration from (z,y,2) to (v,v,w). The quantity
JAu,v,w) is the Jacobian of the transformation, that is
__ | 02,0y,02
Au,v,w) = [——_Bu,av,aw]' (A12)
. The quantity C is used to normalize the function @w,v,u) to unity over this
region, that is
[ | | QAu,v,v) dudvdw=C. (A13)
RI"
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The transformed triple integral of Equation All can also be evaluated
using the Monte Carlo method by interchanging the roles played by the

i functions Sz,y,2) and -ﬂf’c—?ﬂ in the Monte Carlo simulation procedure.
| Such a procedure is composed of the following steps:
E: 1. Pick a set of values for (v,v,w) by sampling -q——-l over the region

R,,.- This set of values is identified as (u;,v,w) where i 1s the running index
over sample events.

2. Calculate the associated values of (z,9,2) by using the set of inverse
equations derived from Equations A3-A5. This set of values is identified as
(z,9,2). In a physical problem, this operation can often be interpreted as

the adjoint simulation of a physncal event such as the transport of a parti-
cle from a detector back to its origin. -

3. Calculate the score for the event as CXu, v, w)z,y,2). This quantity
is identified as CJ;S; or O\,

4. Accumulate C); in a bin reserved for this operation. Square the
score and similarly accumulate the squared score in a second bin.

5. Reiterate Steps 1-4 until a total of I sample events have been simu-
lated.

6. Applying the Law of Large Numbers?, calculate an estimate of the

triple integral in Equation A1l (and Equation A1) as the mean of the sam-
ple scores, that is

E{UV, W} = %é J; ;= CX (A14)

where

N= 5'; J;S:. (A15)
L |

7. Calculate an estimate of the confidence level of the preceding esti- -
mate as the standard deviation of the mean estimate, that is

! =211
Y CiaE-102N2)2

SE(QUV, WY = | =5 : (A16)




Applying the Central Limit Theorem?, this est
of the calculation can be interpreted as imply
of a large number of similar estimates will fal
tion of the true value of the triple integral.

imate of the confidence level
ing that approximately 680
1 within one standard devia-
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