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1. INTRODUCTION

Flow separation introduces major complications for the designer of

high-speed flight vehicles. Separation can result in increased drag, loss of

lift, buffeting, reduced control surface effectiveness, and very high heating

in the reattachment zone. These effects are most pronounced at high Reynolds

numbers, where the boundary layer is turbulent. Computing a separated flow

is, of course, a much more difficult task than computing an attached boundary

layer. Modeling the turbulence behavior is the other major problem.

Separated two-dimensional (2-D) flows have been studied extensively. The

more recent works have concentrated on numerical solutions to the Navier-

Stokes equations. Shang and Hankeyl used a parabolized Navier-Stokes (PNS)

method for shock-separated flows; they found that a lag method is required to

achieve decent agreement with observed pressure distributions in separation

zones. In a series of papers, Horstman2 and co-workers investigated several

turbulence models in Navier-Stokes solutions for shock-separated flows. The

turbulence models include an algebraic eddy viscosity model, a one-equation

model consisting of an additional partial differential equation for the turbu-

lent kinetic energy, and a two-equation model (pde's for turbulent kinetic

energy and length scale). They found that the more sophisticated models

(i.e., the one- and two-equation turbulence models) yield somewhat better

agreement with detailed measurements of shock-separated flows. However, none

of the models were entirely satisfactory.

This report summarizes the results of a study to develop an improved

engineering method for predicting separated supersonic turbulent flows. The

approach is based on the use of an inverse boundary layer method, coupled with

Ile, a five-equation Reynolds stress turbulence model. The inverse method promises

to permit meaningful solutions to the boundary layer equations for separated

* flows, with much less numerical effort than would be required to solve the

Navier-Stokes equations. The Reynolds stress modeling should be able to

account for the important effects of adverse pressure gradients. Pressure

YM1



gradients significantly alter the distribution of energy between turbulence

components, an effect that is not readily incorporated into simpler one- or

two-equation models. The goal, then, is to obtain an accurate description of

turbulence behavior in supersonic separated flows, at a computational effort

appropriate to engineering applications.

All of the discussion here will be restricted to 2-D separated flows.

Three-dimensional separation may be more important for real applications, and F

the 2-D idealization may represent a singular limit to the more general 3-D

situation. Nevertheless, there is good experimental data on 2-D separation

and it seems appropriate to attempt to understand the simpler case first. As

will be discussed, there are several unresolved challenges to the 2-D case.

2



2. SECOND-ORDER CLOSURE MODEL

The development of the model used in this study has been described in

detail elsewhere,3, 4 and only the results shall be presented here. Our treat-

ment of closure draws upon aspects of various previous work, most notably

Rotta's treatment of low Reynolds number effects5 and the description by

Hanjalic and Launder6 of the triple fluctuation and pressure fluctuation

terms. Wherever possible, closure approximations have been evaluated against

basic laboratory experiments (e.g., grid turbulence), the types of experiments

being chosen to attempt to isolate individual terms.

The formulation accounts for both mean and fluctuating velocity and tem-

V[ perature quantities. The dependent velocity variables are the mean velocity
vector Ui, the Reynolds stress tensor uiuj, and the isotropic dissipation rate

4'; under the boundary layer approximation, this set of variables reduces to

u 7 7 , -72uv , and 4P. In practice, it is convenient to replace

u- 7- , 'v , =w by the kinetic energy q2  (ur+ =v + w)/2 and two measures

of the degree of anisotropy S 1 1 = - 2/3 q 2, S22 = v - 2/3 q2 .

V For steady flow, the governing equations include continuity:

5(PUi) = 0()
ai

the mean momentum equation:

U v .p-a a (2),- k axk  -ax - ( u v +a auIJY

and, for the five second-order quantities:

PU ac2 [Pq2 , 2 2 s,k  -pu v~v I -U .p + 0.15 - 2 3 (q]
Pk ak _u ay ay 1 y(

a 3q + ($2S 1  aU

+ Ty ' ay -22 11) x

i3



as11  1 4 - - - C 2 v a D 2 2,' p S + 0. 15 P v
Pik axk 33 puvy CEP 2 11 ay 11 -

q

(4)

a as11 
8  q2 2 1 au

ay ay - P[- 33 $11 33 22 ax

as 2 2

s22 13 -- au .s q v a 4 2]

PU axk = 3- puv - CEP a2 + 0.15 ya s22 - v

(5)

a as22 8 2 1 2 au
ay -y * 15 33 11 33 22] ax

PU auv -q2 2 + +uL -

k 5 1 11 22 22] ty - CEP -Uaxk q

(6)

a 22- au
+ 0.30 .3y[p q v  UVl + a

au 2+

SJ - 1.25 p 214.8 p
ka q q 2Y

~(7)
2 2 2

+ a[pq2 a a u au
. ay D ay ay ay q 2 ax

22
1.2 + 12.5 IT/Re A  0.288 + 6.6 1T/ReA + 35 i2 /ReA

where C = , 2. 2C
whr E I + 12.5 n/ReA  (D(. +57/Re A ) 2(0.4 + 5
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and Re is the turbulent Reynolds number q /v, with being related to the

dissipation rate by

3 2 3
0.4 + 5iv = 0.4 -- (i + 12.5 it/Re ) (8)

It may be noted that, in the limit Re + -, Eqs. (1) through (7) are

Psomewhat similar to those derived by Launder et al. 6 7 However, low Reynolds

number effects are also included here, in the molecular diffusion terms and in

the Re dependence of the sink terms involving CE and C$. The term

14.8 pvq 2/(ty 2 ) is a "wall term," required to obtain a well-behaved solution

in the viscous sublayer, y + 0.

For the high-speed flows, it is also necessary to describe the tempera-

ture or enthalpy field. The mean temperature is required to determine density

and the Reynolds heat flux v is of primary interest for heat transfer con-

siderations. To accomplish this, we include as additional aependent variables

the mean static enthalpy h, the mean-square fluctuating enthalpy -7'2, and the

transverse and axial components of the Reynolds heat flux 7 and u-r.

Required closure approximations have been carried out in a manner analogous to

those leading to the velocity equations above, although the paucity of meas-

urements of fluctuating temperatures has made it difficult to completely

verify closure approximations against basic laboratory data. The resulting

-thalpy equations are:

pv h + + 1(U) + pD (9)th a y Th a a
~ t ax ayi" aI+ -Y(I-- ay~) p

22 1,
Dt---r= - 2 p v h - P  =-h + 0.40 a q v -SPDt a y CT1  q -2 aP @ y .

q

(10)

+ -- a .1 r-

Pray ay

5



;f D~v-h v2 3R¢V%
Dt pv + 0.09835 u CT 2 vh

Dt 22 aa vh

+ 0.80 

( 1v 
1 

)___h_

D-rh-r - 038p' U au h CT (D _77

-- 0.3989 h -- C -
Dt 3y ay T 2q2q

(12)

i,'J."2 2
+ 0.40 L -(p a v _ __W _

uh D aa)r 3

Chr 1.32 + 7.5 n/ReA  CT 1.165 + 12.5 Tr/ReA

CT 1 1 + 12.5 7/ReA ' T + 12.5 n/ReA

It should be noted that terms involving fluctuating densities (p') have

been dropped in deriving Eqs. (1) through (12). This is generally permissible

if the edge Mach number is below 4 or 5. However, if need be, the dominant

effects of density fluctuations can be included by defining a generalized
___r- -r-r r7-r-r-

Reynolds stress Rij = Puiuj/P = uiuj + p uiuj/p. Once this is done, the pri-

mary effect of density fluctuations is contained in a relatively unimportant

diffusional term involving p v , which can be related to vr. The resulting

formulation yielded good comparisons 8 with the measurements of Hcrstman et

al.9 in a boundary layer at Me = 7.

Boundary conditions to Eqs. (1) through (12) are generally obvious:

fluctuating quantities are zero at a sold wall or at the outer edge (if there

is no free-stream turbulence).

6
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3. INVERSE BOUNDARY LAYER CALCULATIONS

The inverse boundary approach offers an attractive approach for solving

separated boundary layer flows. For most hypersonic flows, separation zones

are relatively thin. Normal pressure variations are small, and boundary layer

theory should provide a useful approximation. Reyhner and Flugge-LotzI0

pioneered the use of boundary layer methods for separated regions, by

neglecting streamwise convection terms in reverse flow zones.

The major challenge to calculating separated flows is to couple the

inner, viscous solution to the outer, inviscid solution. The conventional

direct boundary layer approach (pressure or edge velocity specified as a func-

tion of streamwise distance) is singular at a separation point. This singu-

larity precludes coupling the viscous and inviscid solution. However, as

originally pointed out by Catherall and and Mangler, 1 1 an inverse calculation

(wherein the boundary layer thickness or wall shear is prescribed vs. dis-

tance) is regular at separation points. Thus, it should be possible to couple

the viscous and inviscid solutions. Of course, the displacement thickness 6*

would be the appropriate boundary layer thickness to specify for this coupling

process.

Wigton and Holt 12 have outlined how this coupling should be carried out.

One first computes the inverse boundary layer flow given an approximate 6*

consistent with the flow configuration. Then one computes the inviscid flow

past the shape that includes the same 6*. In general, these two calculations

will yield different pressure distributions. Then, based on some knowledge of

the viscous and inviscid flow characteristics, a revised 5* is selected to

yield a better pressure match. The iteration continues until both viscous and

inviscid solutions yield essentially the same pressure fields.

Several inverse boundary layer methods have been developed in recent

years. Cebeci13 used an inverse approach to compute attached compressible S
boundary layers, both laminar and turbulent, with either cf(x) or 6*(x)

ZNi
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prescribed. A Newton's method was used to determine the unknown edge pres-

sure at each station, which involved inverting a matrix of derivatives of the

finite-difference equations with respect to the unknown pressure. While quite

sound, this matrix inversion would be cumbersome to apply to the present

Reynolds stress formulation. It would be necessary to differentiate all of

our equations for turbulent variables with respect to the pressure; this would

greatly expand the required matrix inversion process, which is already compli-

* cated by the stiff nature of the governing equations for the Reynolds stress

variables.

Cebeci, Keller, and Williams14 (see also Cebeci and Stewartson15 )
A

obtained inverse boundary layer solutions of separated, incompressible laminar

*flows. The velocity components are transformed to the standard stream func-

tion as the dependent variable. Specification of the displacement thickness
5 * (x) yields an outer boundary condition on the stream function:

T(x,ye) - PUe(x)(Ye - 6*(x)) for y - Ye - (13)

This follows directly from the definitions of stream function and displacement

thickness, and provides an additional boundary condition to the usual ones

(U-V=0 at y-0, U-Ue at Y-Ye). Thus the boundary conditions are overspecified,

and the edge velocity Ue(x) is obtained as an eigenvalue. Cebeci, Keller and

Williams showed good agreement with earlier results of Carter (to be discussed

shortly), with far fewer iterations than required by Carter's methods.

While quite sound, the Cebeci, Keller and Williams method is not easily

extended to compressible flows. Equation (13) still holds, with p replaced by

Pe(x). But, use of the streamfunction as the dependent variable results in

the appearance of partial derivatives of the density in the momentum equation.

These derivatives could be eliminated by use of a density-transformed y

coordinate

Y -f a-dy (14)

o e

8
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but then it would be necessary to perform an integral to obtain Ye in

Eq. (13):

e
2-e dY (15)e Pe

Such terms involving density variations are quite significant in hypersonic

flows, where the density can vary by large factors across the boundary layer

or in the streamwise distance. Of course, an energy equation must be solved

simultaneously, which provides the required thermodynamic information to

determine the density. However, the density variations make it difficult to

apply the inverse calculations with this method. For example, suppose the

4 integral of Eq. (15) is inserted in Eq. (13) for Ye. The variation of the

integral of fp-1 dY with downstream distance can be as large as changes in 6*,

at least over certain regions. This makes it very difficult in practice to

obtain reliable, accurate inverse solutions for high-speed flows with such an

approach.

In a series of papers, Carter (see Ref. 16) has pursued a somewhat

different approach to inverse calculations, which he has successfully extended

to compressible laminar and turbulent (with an eddy viscosity model) applica-

tions. Carter uses the density-transformed normal coordinate (Eq. (14)) and

the standard streamfunction

_Y - pU; a PV (16)

With these definitions, the convective operator becomes
a a a a'i (7

pUax axaY (17)

Carter then introduces a perturbation streamfunction:

e e (

T -PeLJ - dY (18)

9tIo
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or, rearranging,

IF - ' - p U6 (n - I + t) (19)

n * t f- - 1) dn

0

The perturbation streamfunction obeys the following differential equation:

a , , a (UIU )
-PeUe6( - 1 + t* a e (20)

an -1 te an

and satisfies the outer boundary condition

T + 0 as n c c (21)

The major advantage of the perturbation streamfunction is that the pre-

scribed displacement thickness 6*(x) is automatically achieved; this may be

seen by comparing Eqs. (18) and (21) with Eqs. (13) and (15) above. Thus the

specified boundary layer growth is basically satisfied through a boundary con-

dition (Eq. (21)), at the expense of an additional first-order partial differ-

ential equation (Eq. (20)). Also, Eq. (17) requires a'/ax, which may be

related to ; and 6* through Eq. (19).

In the initial stages of this program, we implemented Carter's method for

laminar boundary layers and reproduced some of his earlier results. Figures 1

and 2 show calculations for a separated laminar boundary layer, compared to

Carter's solution and the Navier-Stokes computation by Briley.17 Not only was

Carter's calculation reproduced, but also the good agreement with the more

exact Navier-Stokes solution indicates the utility of the boundary layer

approach for flows with thin separation zones.

As already mentioned, Carter extended his method to turbulent flows,

using an eddy viscosity formulation. However, we found the method to be

difficult to apply to the more sophisticated Reynolds stress turbulence

10
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formulation. The complications arise from some of the numerical constraints

associated with the solution of the five simultaneous turbulence variables. U
These equations are nonlinear, strongly coupled, and often "stiff" (i.e., the

right sides are dominated by production and dissipation terms, which nearly

cancel).

The normal velocity convective term involves aT/ax, which is related to

the perturbation streamfunction by

ay*- adt -d
Tx - - ax + Pe Ue6 u-dx + U i + t* dx PeUe6

+ PeU - 1 + t*) LU (22)

In solving the Reynolds stress equation, it is frequently necessary to take

very small steps in the streamwise direction. This is required for successful

use of Newton's method for solving the turbulence equations. Typically, the

step size Ax is chosen so that none of the dependent variables changes by more

than a specified percentage (e.g., 10 or 20 percent) from one step to the

next. In the start-up process, the initial step sizes are no larger than the

smallest Ay values, to allow a smooth adjustment of the unknown values to

their "stiff" solutions. For a high Reynolds number turbulent boundary layer,

the smallest Ay in the viscous sublayer can be several orders of magnitude

less than the boundary layer thickness. Of course, the step size Ax subse-

quently grows exponentially to reasonably large values. But, when taking

small steps, the terms a;/ax and aU/ax in Eq. (22) can have quite large

values. Physically, aT/ax should be well behaved, which means that the right

side of Eq. (22) can be expected to involve small differences of large num-

bers. Thus, with small Ax steps the convective operator, the left side of the

governing equations, is stiff. We were not successful in developing a reli-

able numerical method for solving such a "doubly-stiff" set of equations. The

difficulty does not arise if small steps are avoided, as Carter was able to

do with an eddy viscosity formulation. However, the perturbation stream-

function approach implies a minimum acceptable step size, whereas the Reynolds

stress equations require a maximum step size value, and these two requirements

are incompatible.

12



A streamfunction formulation was developed to avoid the difficult

numerical aspects of Carter's perturbation streamfunction, as well as the com-

plications associated with use of the Cebeci, Keller and Williams 14 boundary

condition, Eq. (13). A normalized incompressible normal coordinate is used:

dn- - ; n = P -- dy (23)P. e 0o e
and the normal velocity is eliminated in favor of the standard streamfunction.

The convective operator becomes

pU + pva-y ax P x  (24)

If the dependent variables and density are normalized by Pe(X) and Ue(x)

SU/U (x) (25)
e

P P/ (x)

-2 2 2
q q /U e (x)

I I = iu3(x)
e

etc.

then the governing equations for velocity and turbulent kinetic energy take

the following form

ax U ax U ana n (

e e

13
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aq2 1 aT 2q ai a 1a
SPeUe6 aeUe*

(27)

2 - du --
1 a 2 a 2 1 de 2u q2+ *2 aTLI -q + v2)] U dx

P eUe6  e

The corresponding equations for the other Reynolds stress variables and for

the enthalpy unknowns take similar forms. In addition, since the stream-

function is included as an unknown variable in Eqs. (26) and (27), an addi-

tional partial differential equation must be included, which is simply derived

from its definition:

PU6 a. a (28)e e an

SY- 0 at = 0

This formulation, as explained thus far, does not provide a method for

performing an inverse calculation. Both Ue(x) and 6*(x) are included as

coefficients. If 6*(x) is to be specified, then a technique must be provided

for determining Ue(x). To this end, a rather straightforward approach was

taken, employing what is basically a secant method. At each new station, the

solutions are obtained at successive values of Ue in an iterative fashion

until the prescribed 6* is obtained. With a secant method, two values of Ue

are selected at the new (unknown) station. The governing equations are solved

for each value, and the resulting 6* values are computed. From these two

values, one interpolates to a new Ue value corresponding to the desired 6*.

The equations are solved again for this new 6*, and subsequent iterations per-

formed until the prescribed 6* value is achieved to an acceptable tolerance.

In practice, after the first step, it is possible to retain the slope of the

curve in Figure 3 from one step to the next, so as to avoid wasting two

initial solutions before interpolating to the desired 6*. Note that for very

small steps when the turbulence variables are changing rapidly, 6* and Ue

14
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Figure 3. Sketch of secant method for inverse boundary layer solution

change only slightly from one step to the next and the secant method converges

quickly. Note also that this approach is a straightforward (and perhaps less

elegant) alternative to Cebeci's method. 13 In essence, he obtained the slope

on Figure 3 by an elaborate matrix inversion. His technique might be more

efficient numerically than that used there, but would certainly entail5 significantly greater analytical and programming effort.

In Figure 4 we compare the direct and inverse solutions for a Mach 7 cold

wall boundary layer. The direct calculation was first performed for a flat

plate, with no pressure gradient. Using the displacement thickness from this

direct calculation as input, the inverse solution was then obtained according

to the method just outlined. The skin friction coefficients are in good

agreemert, but the momentum thickness values differed by 10 to 20 percent. Of

course, the displacement thickness is forced to be identical for the two

calculations, so the shape factors are different. This difference undoubtedly

reflects the numerical accuracy of these calculations, which involved rela-

tively coarse grids (39 points across the boundary layer). A finer mesh

appears to be necessary for accurate values of the momentum thickness.
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4. ADVERSE PRESSURE GRADIENTS EFFECTS

A major issue that seems particularly critical is the ability of present

models to describe the detailed development of boundary layer turbulence in

the presence of strong adverse pressure gradients. Pressure gradients cause

significant redistributions of energy between the various components of the

fluctuating turbulent energy. The "five-equation" Reynolds stress model used

in this study should be superior to simpler models and, hopefully, should pro-

p; vide an accurate description of turbulence behavior in separating boundary

layers. The closure model obeys required tensor rules, with the closure con-

stants based on data from experiments on grid turbulence in the presence of

mean shear and strain. Figure 5 is an example of a comparison between the

model and measurements on grid turbulence subjected to plane strain. 18 We

also examined experimental results on low-speed boundary layers in favorable

pressure gradients, including the "relaminarization" effect, with reasonable

success. However, in view of the importance of the turbulence behavior, we

have examined several laboratory experiments on attached boundary layers in

adverse pressure gradients.

Bradshaw Case C

Bradshaw's experiment 19 consisted of a low-speed boundary layer on a flat

W plate, artifically tripped well upstream of the region of interest. Reynolds

numbers were in the range Ree- 10,000 to 20,000, so the turbulent boundary

layer should be well developed. The inviscid velocity decreased from

128 ft/sec to about 90 ft/sec over a distance of 60 in. Figure 6 shows the

variation of skin friction and displacement thickness over the range of the

adverse pressure gradient, and Figures 7 through 9 show the profiles of mean

velocity, Reynolds stress and fluctuating velocity components at the 84 in.

station, at the end of the adverse pressure gradient. The most dissappointing

result is the computed Reynolds stress, which seems to be "amplified" too much

by the pressure gradient. Correspondingly, the computed wall shear is high,

the boundary layer becomes thicker than observed, and the mean velocity

profile shape is not in detailed agreement with Bradshaw's measurements.
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Samuel and Joubert Experiment

Another experiment on an attached incompressible boundary layer in an

-' adverse pressure was conducted by Samuel and Joubert.2 0  In Figure 10 we show

the variation of skin friction and displacement thickness. Profiles of mean

* velocity and Reynolds stress at three stations (at the onset, in the middle,

and near the end of the adverse pressure gradient) are shown in Figures 11

and 12. Here again, the turbulent shear is significantly over-predicted near

the end of the adverse pressure gradient. However, the computed boundary

layer thickness and velocity profiles are in better agreement with the

measured values.

N.o

Lewis, Gran, and Kubota

This experiment 21 involved an attached turbulent boundary layer in an

adverse pressure gradient, at supersonic speeds. The boundary layer edge Mach

number decreased from 4.0 to 3.0, followed by a region of favorable pressure

gradient. Figures 13 through 15 show the streamwise variations of skin

friction, displacement thickness and momentum thickness. In this case, in the

more downstream region, the skin friction is underpredicted and the boundary

layer thicknesses are overpredicted.
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5. ATTEMPTS AT CALCULATING SEPARATED FLOWS

The most difficult aspect of this work, as one might expect, is the

application of the inverse method to separated turbulent flows. As a first

test case, we selected an incompressible, adiabatic case at a Reynolds number

of 106, as calculated already by Carter. 16 Although no experimental data are

available at the precise conditions, reproducing Carter's results with the

rather different present model would seem to be a useful goal. I
Carter's published displacement thickness was specified as input

(Figure 16). The initial boundary layer was taken to be a classical flat

plate boundary layer developed in the absence of a pressure gradient. The

surprising result of our inverse calculations was that the present model does

not predict separation at any point during the substantial increase of

boundary layer thickness. Figure 17 shows the computed skin friction, com-

pared to Carter's published values. Whereas the solution obtained by Carter

showed separation at an X value slightly greater than 1.1, no such result

occurs with our calculation. In Figure 18 we show the edge velocity derived

from the solution. For the present solution, a rather more gradual adverse

pressure gradient is implied.

The significant characteristic of our solution in the region where

separation would be expected is the behavior of the mean velocity profile and

of the Reynolds stress. Figure 19 shows the mean velocity profiles at two

selected stations, along with the corresponding Reynolds stresses in

Figure 20. The relative Reynolds stress is amplified by the adverse pressure

gradients. At the same time, the mean velocity develops steep gradients at

the wall (supporting the sustained high shear) and a "plateau" with even a

mild "valley".

The mean velocity and Reynolds stress development are certainly coupled

in a complex manner, and could easily be an anomolous consequence of the

Reynolds stress model employed here. The development of the Reynolds stress

is reminescent of the behavior in the attached adverse pressure gradient

29
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experiments of Bradshaw 19 and Samuel and Joubert,20 discussed above. An

obvious issue is the sensitivity of these results to the turbulence modeling

closure assumptions and approximations.

The most surprising aspect of our turbulence solutions in adverse pres-

sure gradients is the amplification of the Reynolds stress that was discussed

* above in connection with the Bradshaw and Samuel and Joubert experiments, and

with the present attempt to reproduce Carter's separated flow solution. This

suggests a shortcoming in the turbulence closure modeling. However, it is not

obvious where the difficulty lies. Note that there is no direct pressure

gradient (U/3x) term in the equation for the Reynolds stress equation (u v),

in contrast to the equations for the components of the turbulent kinetic

energy and the dissipation function. This is a direct result of the tensor

n form assumed for the so-called pressure-strain terms (same form introduced by

Hanjalic and Launder 6 ). One could arbitrarily introduce a term in the equation

governing u v to damp turbulence in regions of adverse pressure gradients

(i.e., a term that would reduce the magnitude of u v when 3U/3x is nega-

Utive). But that would violate the desired tensor character of the pressure-

strain term and there is no rational basis for such as approach. The primary

.' role of such terms is dictated by kinematic considerations, and can be derived

without recourse to "closure" approximations. We investigated the effect of

variations in closure constants appearing in other terms in the five-equation

model. Changing the wall term in the dissipation equation, or the turbulent

diffusion terms, does not resolve the discrepancies, and would jeopardize

agreement with other, more basic data upon which the closure constants are

based. Arbitrarily increasing the 3U/ax term in the dissipation equation

removes the anomolous velocity profile shown in Figure 19, but this again

violates a required tensor variation. However, none of our attempts at vary-

ing closure approximations produced results that are qualitatively similar to

those obtained by Carter,16 or even produced a well-defined separation zone.
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6. RECOMMENDATIONS FOR FUTURE WORK

It should be clear from the results of this study that the implementation

of an inverse boundary layer method for high-speed turbulent separated flows

is a more ambitious goal than could be accomplished in this program. We

firmly believe that an inverse method can be developed as a useful engineering

tool. However, three key areas remain where advances are clearly required.

Turbulence Model - The type of Reynolds stress model employed here should

provide a good description of turbulence behavior in the presence of pressure

gradients. The use of a five-equation model should account for the influence

of pressure gradients on the degree of isotropy, the distribution of energy

between the different velocity components, and the Reynolds stress; the

simpler two-equation (k-e) approaches inherently assume an unvarying degree of

isotropy and should be less accurate. However, comparisons of results of the

present five-equation formulation with measurements on attached boundary

layers in adverse pressure gradients are very dissappointing. More experi-

ments, particularly on supersonic boundary layers, are clearly in order.

Also, some rethinking of the basic formulation of current Reynolds stress

modeling is needed. For example, it may be necessary to account for

anisotropic dissipation effects and/or varying turbulence length scales in

different directions in the presence of strong pressure gradients.

Inverse Boundary Layer Methods - A truly acceptable method for performing

inverse boundary layer computations has yet to be developed. The current

methods (at least for specified displacement thickess) require several times

as much computational effort as the corresponding direct calculation. More

iterations are required, and there are various step size constraints. In our

experience, the inverse computation is not very "robust".

The primary complication with the inverse approach lies with the

displacement thickness. This quantity controls the interaction between the

inner viscous region and the outer inviscid region, so the displacement
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thickness is the input of interest for the inverse solution, rather than skin

friction or mass flux within the boundary layer. Unfortunately, 6* is defined

by an integral across the boundary layer. It does not naturally appear as a

boundary condition or as a coefficient in the boundary layer equations.

Carter's approach introduces 6* into the pde's, but in the form of a small

*difference of large numbers. Cebeci's 13 formulation involves a complex

iterative Newton's method (matrix inversion), and our method requires an addi-

tional (brute force) iteration. The approach of Cebeci, Keller and Williams
14

is difficult to extend to compressible flows. Clearly, an improved approach

is necessary if the inverse method is to find wide application.

Iteration Between Viscous/Inviscid Flows - A final requirement is a

Vreliable algorithm for matching the boundary layer solution to the outer

inviscid flow. Existing coupled solutions to date have been for transonic

flows, and have been obtained by trial and error iterations. Wigton and

Holt 12 have established the theoretical foundation for a method to couple the

inner and outer flows, but no algorithms have been developed for hypersonic

flows. We had so much difficulty with the inverse method that it was not

possible to even address this issue in this effort. Since the Newtonian

approximation (pressure proportional to the square of the sine of the local

body angle) should be accurate for most hypersonic conditions, it is tempting

to expect that an algorithm based on the local derivative of 6* can be devel-

oped. On the other hand, upstream influence transmitted through the separa-

tion zone may necessitate a more complex algorithm. If a relatively straight-

forward algorithm is not possible, then boundary layer methods will not prove

to be useful for thin separated flows.

Our experience with the coupling schemes found in the literature

(Carter16 , Wigton and Holt1 2 ) was not very satisfying for our hypersonic

boundary-layer interactions. The initial attempts at utilizing the rational

Wigton and Holt scheme have proved to be inadequate. Wigton2 2 himself

abandoned his scheme in favor of Carter's1 6 simpler method when solving three-

dimensional transonic-wing viscous-inviscid interaction problems. These

calculations necessitated hundreds of iterations to convergence; some even
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took 103 cycles to obtain acceptable answers. The methods indicated above are

local coupling schemes. What is needed to tame the iteration cycles is a

global scheme wherein changes in the displacement thickness (or boundary-layer

mass transpiration pu6*) influence changes along the entire boundary layer.

Local coupling schemes may encounter difficulties due to their inability to

enforce a downstream boundary condition (Wigton2 3 ). Werle and Vatsa 2 4 have

anticipated these difficulties and specified a downstream boundary condition

in order to compute interacting supersonic laminar boundary-layer separations

with a time-dependent ADI technique. New coupling algorithms must face the

global nature of these interaction problems before inverse methods will prove

to be useful for separated turbulent flows.

3.4.
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