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¥ 1. INTRODUCTION

The fac{ that "Poisson Arrivals See Time Averages' (PASTA) has been used repeatedly
in the analy§is of queueing systems. Various authors provided proofs of PASTA un(_ieﬁ
varying assunjptions on the observed process and its relationship to the Poisson arrivals/[6]3

g In {10} it was shown that PASTA is essentially a sample path property. The basic
~ condition is that the observed ;process cannot anticipate future jumps of the Poisson process.
-In- this paper weconsidersdiscrete-time systems. These systems arise naturally in the study
" of synchronized communic&t}on networks and can also be considered as approximations of
continuous-time systems. assumed that the statistics of the arrival process are governed
by an underlying denumerable Markov chain and that the observed process canngQt anticipate
future arrivals if the current state of the Markov chain is known. $We derive the relation
between the time average of the observed process and the average of the process as
observed by the arrivals, . The states of the underlying Markov chain are involved _in this
relation. Examples are given to illustrate the applicability of the results. s in [10] the
results can be applied even if the observing process has a role different thanYarrival.™

r
.S (i?r'\”l“ .
2. MAIN RESULTS

On a probability space (Q.7,P) consider:
i) An increasing family of o-fields, 7,,n=0.1....

YR === R

ii) A sequence U,, n=0.1...., of random variables adapted to ¥, (i.e. U, is ¥, measurable
= for every n).
(';} iii) A sequence ©,,n=12...., of nonnegative, integer valued random variables adapted to %,
ek iv) A sequence X,,n=0,1.... of random variables adapted to 7,, such that:
i E{6,41/7,}=E{6,41/X,} ae..n=0.1.... (1)
Let I{A). A €7, denote the indicator function of the event A.
. The interpretation of the quantities defined above is the following:
E’; i) 7, is the history of the system up to time n.
“ ii) U, is the observed process. U, is usually an indicator function. The process of interest
is, say, D, n=0.1...., and U,=I(D, €B), where B is an event in the state space of D,.
iii) ©, represents bulk arrivals. :
! iv) X, is the process governing the evolution of the arrival process.
Let us define:
0y $u
W, = (2.2)
T,=
n
l
;:r' n
-~ LU,
=0
of="— (2.b)
) 6,
n
. T U6,
‘.: Ob_l=l (2
~ AT n )
P
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FUI(X,=i)
Sta="% 2
TI(X;=i)
=0

iUz—ll (X;=i)
s‘b" ==t - Q2.e)
TI(X;=i)
=1

T, is the time average of the observed process up to time n.

O; is the average value of U, that arrivals up to time n see, just after they arrive.

0% is the average value of the process U, that arrivals up to time n see, at the last slot
before they arrive.

S¢,..SP,. have the same interpretations as O2, O2 respectively, if we consider that an arrival

occurs whenever X,=i,i fixed.

An example where the arrivals have the structure described above is the output of the
finite population slotted ALOHA system ([4). chapter 8). In this case,

1 if a successful transmission occurs in slot n
6, = 0 otherwise

and X, is the number of blocked users in the beginning of slot n. The output of Tree,
Window or Stack type Random Access Algorithms can be put in this framework as well.
The same is true for the output of other discrete-time queues. The process D, can be, for
example, the length of a queue whose input is the output of a Random Access Algorithm.
We are interested in the relationship between the quantities defined in (2), as n increases to
infinity.

The following Theorem is the basis for the subsequent derivations,

Theorem 1. Let |U, | <B <o, n=12....and ¥ —z E{82}<co. Then,
a=t N
n n
l 2Ui,8 FULE(6,/X; 4}
lim =1 =1

n—o n n

=0 a.e.

Proof. The proof is similar to the martingale proof of the Strong Law of Large
Numbers. We include it here for completeness.

Let
Cn=Up-10,~UpE {eu /X —l} =12,
and

The random variables C,, n=1.2.... are integrable:
E(IC,1}€2B(E{82})*<0co.

It follows that G, is integrable for n=12... It can also be seen that {G,.F, n=12..]} is
a martingale. Moreover,
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1
(n+1)

1
(n+1)?
2B2
(n+1)?

E{G2.,/7,}=G2+

E{C2.1/%,}4+2G, anlE (Casi/F.)

<G2+ B2E{(10,411+E(10, 4, 1/X, })?/7,)

<Gn2+ (E{piﬂ/?n }+E{er?+l/xn })

Therefore,
* 1
E{GH<SE{G}}+4B%Y ————E{02,} <0, n=12....
(GZY<E(GE) ,§1(1+1)2) {8f1} <o, n

It follows ([1]. Th. 7.6.10, p301) that G, is uniformly integrable and converges almost
everywhere (and in L2) to a finite limit G(). Therefore,

E %Cl =G (c0)<oo gee.
=1

The theorem now follows by an application of Kronecker's Lemma ([1], Th 7.1.3, p270). O

The following Corollary is the counterpart of the corresponding Theorem for Poisson
arrivals in continous time [10].

Corollary 1. Let ©,.n=12.... be a sequence of random variables such that ©, is indepen-
dent of Fo_y.n=12..., E{8,}=)\,.and zlle{e,z}«o. If
=1

n
N
lim = —=) <o,
n =00 n
then
n
YU\

08=0%, ae. iff -’i‘n——oxoz‘, ae.
Therefore, if \,=\, n=12...., then,
r—=0% ae. iff T,—T,=0% ae.

Proof. In Theorem 1., let X,=6,,n=12,.., Xo=constant. Then

n n n
l LU0, Y6, YU._\
tim |22 =1 i=1

Jim - m ~ =0 ae.
Ze
=1
By Kolmogorov's Strong Law of Large Numbers ([1], Th. 7.2.2, p274),
n n
LO—2\
1=1 =1
n
The rest of the Corollary follows easily. O
Remark. Note that it is not required that the random variables 6, be identically dis-

tributed. On the other hand if the random variables @, are independent identically distri-
buted (i.i.d), the restriction on the second moments is not necessary.

—+0a.e.




Corollary 2. If O, arei.id.random variables with finite mean, then i
' OL—-0%, ae. iff T,—T,=05 ;
Y
. Proof. The proof is entirely analogous to the corresponding proof of the Strong Law b
@ of Large Numbers ([1], Th 7.2.5, p275) and will be omitted. We only note that in the "
proof, instead of refering to the Strong Law of Large Numbers with finite second moments, "
one should refer to Theorem 1. O ]
g We now state the conditions for the main Corollary concerning the nonindependent ;
case. ]
Let X, n=1.2...., be an irreducible, homogeneous, denumerable Markov chain with state ::
‘ space L, and transition probabilities p;;=P(X,. =j/X,=i). Let X be the state space of "
0,. ¥C{0.1.2,..}). Let D;=E(®,.1/X,=i}. independent of n, and M;=E{62,,/X,=i}. indepen- N
dent of n.
Corollary 3. Let 1U,|S$B <o ae..n=12,... Let X, be ergodic with stationary probabilities v
a ;. i € L. If 2
M;SM<o,i€l 3) :e
g and :'_
Sf,—Sfw ae.,. i €L
then ;
& SPn—SP ae.,i €L, O2—05 ae.. Ty~T ae. h
and the following equalities hold: :
0%( Y D;m)=Y D;7;Stx. ae.
ﬁ “iizt i ‘GEL iWiog, (4.&) \
»
i 5} ety= 5"51’:‘1 Sfo. $.j€L. ae. (4.b) "
< i
W
()
To=Y mSte=Y 7S, ae. N
' Brste= g o :
- Proof. From (3) it follows that .
[y
E{62)SM.n=12,.. (5) N
ﬁ Therefore, Theorem 1 applies with U, =1. :‘
v
n n s
36, JE{6,/X,} :
g . |e=1 1=1 6 .
1 - =0 .
u A —sco n n ‘
jﬁ Because of (3), fggD;<oo, and therefore, :
| D;'If < oo
2 ‘5-' i ™ !
& From (7) and Th.2 in [3] p92. it follows that N
. Y
n
L E(6/X—) \
: . 1=1 _ (8) g
lim Y Dim;, ae.
n —*co n i€L

From (6) and (8) we see that

L ‘ '
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lim =Y D;m;.ae.
A R Er
Observe now that E{8,,/X,}=3Y D;I(X,=i). and apply Theorem 1 again:
i€l
n n n .
}:‘,U,-IG, 291 ZZU,_,D;I(X;_F;)
lim =2 = _ sn=t =0 a.e. 10)
n—oml iel n n
=1
Also,
n n . n .
LUAX4=i) FUI(X4=i) TI(X.4=i)
=1 = l=l” =1 —_ i‘,m"ri ae. (11)
n . n n—co
TI(X1=i)
=1
Let A, be an arbitrary finite subset of L. Since
WUy Dy I(X; =i )| SBD; I(X;_4=i), (12)
it can be seen that,
n n L .
=i D; YU I(X;—y=i) L I DiI(X4=i)
iEztlglUl-lDiI(Xl_l i) i€§- il§1 -1 (X1 =y (13)
- LB
I n n n
Exactly as in the proof of (8), we have that,
n
¥ ¥ DI(X4=i)
1=1-€Ac
lim —= = T Dim; ae. (14)
n-vco n iEA;
From (11), (13), (14). (7) and the arbitrariness of A,, we conclude that.
n
U1 I(Xy—1=i)
. i€2£l§l ot _ " @15
lim ED,'W,'S,'» ae.
n —vco n i€l ’

Formula (4.a) is established by combining (9), (10) and (15). Formula (4.b) follows
immediately by setting ©,=/(X,=j). To prove formula (4.c) observe that

Up=Y U I( Xy 4=i)= T U, I(X,=i) ae.
i€l i€l

and apply the arguments used to prove (15). O

Remarks. i) If D; is constant, it follows from (4.a) and (4.c) that T.=02% . Therefore,
in this case arrivals see time averages. Note that independence is not n .
i) A (particularly simple relation holds if £={0,1} and ©,=1(X,=1). In this case we have
from (4.b),

020 7’1=S’{.°° mI=m1p uS‘i,e. +"0P01S8.°°

=119110% 00 +ToP 0153 0 a.e.
Also, from (4.c),

! o5 3!
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Tm="10‘i,oo +"Os?),m ae.

Therefore,
04— (p11—P01)0% =%Too ae. (16)

Formula (16) involves only the quantities seen by arrivals and the time average of the pro-
cess. It will be used in Section 3.2.

iii) The quantities OF, O, represent the averages of the process observed by bulk arrivals.
In practice the average of the process observed by a particular user is of interest.
Specifically. for ! arrivals, the quantities of interest are:

1 1
LU, 2Ur 1
m=1 m=1
ola:_T_ R ol =—l_

where T, is the time of the Ith arrival.
Under the conditions of Corollary 3, it can be shown using standard ratio limit arguments,
that,

limOf=0%, ae. if zl 0f=03=0%, a.e.

n=*on
and

lim0%=0%, ae. iff llimO, =0.=0%, ae.
n—vco —too

If the ©, are i.i.d.. the restriction on the second moments is not necessary.

iv) The formulation in this section was in terms of sample averages. Results can also be

obtained in terms of limiting probabilities. Consider the following example, useful in appli-

cations. let T,,m=1.2... be a sequence of random variables taking positive, integer values.

Let T,.m=1.2.... be independent of D, n=12..... If lim T,,=o0 ae. and

m=+co

lim P(D, =1)=P,

n —oo

then
lim P(DT’ =l )=P1
m—sco

The result follows by observing that
P(Dr_=)= § P(D,=l (| Tu=n)=3 P(D,=)P(T,=n)

n=1 n=1

and
lim P(T,,=n)=0.n=1.2,...

m=*co

Let now D,,n=1.2,.. be independent of 8,.n=12,... and let T,, be the time of the

mth arrival. Then Dr_ is the value of D, observed by the mth arrival. If lim7,,=c ae., ;ﬂ
m=—+co .

which is usually the case in practical systems, then the limiting probabilities of Dr and ..-,

D, are the same. Note that no assumptions on the statistics of the two processes are ~

required. o

N

3. APPLICATIONS ~

3.1 The discrete-time GIIGlc queue.

Consider a communication node consisting of ¢ servers. Time is divided in intervals of
constant length, called slots. The unit of time is the length of a slot. Slot n,n=12...

AR
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occupies the time interval [n—1,n). During a time slot n. a number of messages 6, an:iyes
in the node. The length of message i is Z; slots. The processes ©, and Z; consist of i.i.d.
random variables, and are independent.

Define:
N,: The size of the queue at the beginning of slot n (just after the arrivals 6,).
I,: The number of messages whose service is completed in slot n.
N%: The value of N, in the slot just prior to the mth arrival.
M} The value of M,=N,—I, in the slot just prior to the mth arrival.
Let

7, =%(0,,0SI<n. Z;, 1<l <00, Ny) a7

If E{6,}<cE{Z;}™!, ergodic conditions hold. Considering the system in steady state, we
Lkave from Corollary 2

=5

fY P(NL=U)=P(N,=1),1=0.1,... (18)
and
g P(M:=0)=P(M,=1),1=0.1,... (19)
Since M, 2N, ., we have that
ﬁ P(M, SU)SP(N, <), 1=0.1.... (20)
| Also, N,.1=M,+0, 2M,. Therefore,
P(N, 41$1)=P(N, S1)SP(M, 1), 1=0.1.... (21)
i From (20) and (21) we conclude that
P(M,=l)=P(N,=0),1=0.1.... (22)
%'.: Therefore,
P(M}=1)=P(N,=l),1=0,1... (23)
! Property (23) was used in [2] for the analysis of the GIIGl1 discrete-time queue. It
: seems that in [2]. M, was confused with N,, but as formula (22) shows, this does not
alter the final result.
:?_Z 3.2 Star network with Markovian inputs.

This system was studied in [8]. An infinite buffer in a node accepts messages from K
links. Time is slotted. In slot n, link i generates one or zero messages. The length of a
message is constant, equal to one slot. One message is processed per slot by the node.

- Let

<, ; _ |1 if one message is generated at link i in slot n
n ©: = 10 otherwise

The sequences {6;,n=1.2...} are homogeneous Markov chains for 1<i <X. and independent.
Let
N

| Pl =P(8},1=5/0i=r)>0

Yi=pi1—ph

e
'\!'. "

= vy
T I’p’t‘s?‘. "'.
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We define
N,: The size of the queue at the beginning of slot n (just after the arrivals).
N},:The value of N, in the slot just prior to the mth arrival at link i.
N{,:The value of N, in the slot of the mth arrival at link i.
©/,n: The number of arrivals at link j, in the slot of the mth arrival at link i,i=j.
I; ,: The number of messages completing service in the slot of the mth arrival at link i.
Wim

X = .

The delay of the mth arrival at link i.
N,: The number of messages from link i in the queue, at slot n.

We will provide the formula for the mean queue lenght and, consequently, the average
waiting time of a message. This formula was derived in [8]. The procedure followed in [8]
relies on the computation of the characteristic function of the queue length. We present
here a simplified proof that is based on probabilistic arguments. In addition, the average
waiting time of a message at a particular link. and the probability of zero queue lenght in
the slot just prior to the arrival of this message, are derived during the proof.

The queue discipline is first-come first-served. Let us assume for simplicity that if

| S |

3 links i, ip i;<i; generate messages at the same slot, link i, is served first.
as If fla,- <1, ergodic conditions hold. We consider the system in steady state. Let
i=
ﬁ =70}, 0<i<n, 1<i <K, Ny)
From formula (16) we have that
K P(N}p=U)—y; P(N£=l)=(1—y;)P(N,=l),1=0,1...., 1<i $K (24)
b Therefore

E{N! )=y E{N¢,}=(1—y,)E{N, ). 1<i <K (25)

Observe now, that

N?M=Nib;n+ 2 e;’;n"'l—I(,n. ISlSK
1152 (26)

LA

From Remark iv) in Section 2, we easily conclude that

_\,_E Therefore, from (26) we have that ‘
.9 ]
R‘\' E{N{,}=E{Nl,}+ Y a;—a; +P(N?,,=0) (28) i
/=2
& From (24 ) we see that
. P(N?,=0)—y; P(N?,=0)=(1—y;)P(N, =0) (29)
3 x
" But N7,>1 and therefore, P(N{,=0)=0 Also, P(N,=0)=1—Y ;. This can be proved as in
=
example 11-8, p400, in [5]. Although the GIiGk queue is treated in [5). the proof goes
% through in our case. Therefore,
x .
P(N;",,.=0)=(l—'y; JP(N; =0)=(1_‘)'.' X1- )3 o ) (30) \
g J=1 0
' 8

.....
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Combining (28) and (30) we get

X X
E{NR}=E(NP I T o= +(1—y; (1= T« (31)
1= )=t
Next, observe that! _
i-1
Win=Nlo+ T 0/ ,+1—1; , (32)
)=t
Therefore,
i-1 X
)=1 j=1
By Little’s formula applied to each link separately, we have that
aGE\W; ,}=E{N;}. 1Si <K (34)
Therefore
X X .
i=1 i=1

From (25), (31) and (33) we find that

Yi £
E{W, ,}=E{(N,}+ (ZoyyH1-F o
im r— ))=31 J ,E.- J (36)
Finally, from (35) and (36) we conclude after some simple algebra, that
L Yot lz'y- +17—j x
E{N,}=—L et £ W (37)
I—Zai i=1
e}

Formula (37) is derived in [8]. Formula (36) provides the expected delay of a message
arriving at link i. Formula (30) provides the probability that a message arriving at link i
will find the queue at the previous slot empty.

3.3 Queues with Input Controlled by a Markov Chain,

Consider a discrete-time (slotted) queue. Let 8,,n=0,1,..., be the number of messages
generated in a slot. Let X,,n=0.,1.... be a process with denumerable state space L, such

that for any nonnegative integers n,h,r.ry,...,r,, and any j.i.ij, ..., i, from the
state space L, the following equality holds:
P(e"+l=h, Xn+l=j / Xu=i . X,‘_l=i 130+ v s X°=in. 9n=r. 9,,_1=r 1+ v oy 90=r,,) (38)

=P(8, 1=h. X, 1=Jj | Xa=i)=q;( p)

The length of message i is Z; slots. The sequence Z;,i=1,2,..., consists of i.i.d. random
variables and is independent of the sequences ©, and X,. The output of many Random
Access Algorithms as well as the output of other discrete-time queues, has the statistical
structure of 6,.

]
'We adopt the notation, 3 =0 if a >b.

i=a
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A complete study of queues of the type described in the previous paragraph is outside
the scope of the present paper. We will illustrate here how the steady state distribution of
the delay is related to the steady state distribution of the queue length in the case where
Z; are geometrically distributed with parameter ..

P(Z;=k)=p(1-p)71, k=12,... (39)

We will also assume that @, is either zero or one. The process X, is a Markov chain
with transition probabilities

P(X, 41=j/Xa=i)=py=¢:( 1)+2:( 0) (40)

We assume that X, is irreducible, aperiodic and ergodic. The process (X,.8,). is also a
Markov chain with transition probabilities

ET

P(Xo41=j.8ns1=h | Xp=i. 8,=r)=p(i, )4 1)=9i.0») (41)

We assume that (X,,®,) is irreducible and aperiodic. Since X, is ergodic, it follows that
(X,.8,) is ergodic with stationary transition probabilities

"u:-)=‘_§:q:o;.)1r.-. j€EL,R=1,0 )

Formula (42) follows easily by noting that the nun%bers 7y ») satisfy the equilibrium equa-
tions for the Markov chain (X,,8,), and that ¥ ¥ w(j.h)=3 m =1
J€L

JELA=1
Let N,.N5=N}%,.N2i=N$, be as defined in Section 3.2. Let also,
Nerym:
The number of messages in the queue, in the slot of the mth occurrence of state
(ir) (ie.. the mth time that X,=i, 8,=r for some n.)
N&r)m:
'(I‘he)number of messages in the queue, in the slot before the mth occurrence of state
ir).
08, )m:
The number of arrivals in the slot of the mth occurrence of state (i.r).
JGir)m:
’(I‘he)number of messages completing service in the slot of the mth occurrence of state
ir).

W,: The delay of the mth arrival in the system.

To simplify the notation we will omit the indices m,n whenever there is no danger
for confusion. We consider that (X,.©,) is the underlying Markov chain. Then,

D, ==E{0,4/X,=i.8,=r]= echi(j,l) (43)
J
We assume that
2
LYXDimir=) LaignTi<e (44)
i€Llr=1 i€LjEL
Under (44), the system can be considered in steady state.? From Corollary 3, we obtain
2 w
PIN*=D)F T qigymi= L L Dy »PNG=1) (45.a) 33
i€L)€L i€Lr=1 3

p.

l“‘
LA

s a2
X

2 The existence of steady state can be established, for example, by the methods of Ch.l in: Borovkov, A. A.
i Stochastic Processes in Queusing Theory. New York: Springer-Verlag 1976.
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PG m=IX L gionm)= T ¥ w0 PN y=1). JEL h=0,1 (451)
i i€Llr=1

PV==3 ilﬂ(i,)P(N&-,)=l) (45.)

Observe that
N(,-,)=N&,)—-J(,-,)+r. i GE. r=0,1 (46)

Therefore,

P(NG =) = P(N 1y=L—1) (1=p) + P(N§ 1y=1) p. I1=12...i €L (47.2)
P(NG1=0)=0,i€l (47.v)
P(Ng oy=t) = P(Ng 0)=l) (1—p) + P(NE 0p=L+1) p, 1=12....i €L (47.c)
P(NG 0y=0) = P(N{ 0y=0) + P(NE oy=1) p. i €L (47.4)

Equations (45) and (47) relate the steady state distribution of N5 to the steady state
distribution of N,. Since

z. if N&=0
Wn = {ns if Nb=12... (48)
2 Z,' +Zm-1
=1

where the random variables Z; are independent geometrically distributed, the steady state
distribution of W,, can be determined from the distribution of N2

4. CONCLUSIONS

We presented the relation between the time average of a process and the average of
the same process as observed by arrivals, in discrete time. The observing process is con-
trolled by an underlying Markov chain and is usually identified with the arrival process,
but the derived relations are independent of this identification. The results were applied to
the study of certain discrete-time systems. It is believed that the results will facilitate the

analysis of other discrete-time systems, and that they have counterparts in continuous-time
systems.
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