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1. The Objectives of the Research Program

The broad abjective of this research has been to derive
mathematical analysis and design techniques for asynchronous
dynamic systems with hybrid (continuous/discrete) state
spaces, with specific application to the synthesis of
finite-state controllers for continuous state plants. Long
term applications to such application intensive problems as
robotics or manufacturing engineering have formed a
motivating tool for these efforts.

This research program has had a long history and, prior
to this contract, was funded by AFSC under contract number
F49620-80-C-0002. This prior contract focused on
essentially the same issues, but for synchronous systems.
As with the prior contract the current research program has
been characterized by a need to re—-examine certain
fundamental concepts of system theory in a non—-traditional
setting. This has, at times, appeared to have slowed down
the pursuit of its principal research objectives, as well
as hamper the publication of its results. Nonetheless, a
firm theoretical groundwork has been laid +for future
research, and this groundwork comprises a creative fusion of
ideas that is both innovative and significant.

The typical finite-state control environment, often
realized by a microprocessor-based contraller and analog—-to-
digital, and digital—-to—analog converters, is a hybrid
enviranment. The state space of the plant is usually
continuous in nature, and the plant’s state space may indeed
evolve continuously in time as well. The controller, by its
very nature, aperates over a finite state space, with a
discrete evolution of this state in time. When the control
action takes place asynchronously, driven by the occurence
of external events, the times of event occurence themselves
enter into the system modeling problem.

The convenience aof developing software far
microprocessors has led to a proliferation of ad hoc methods
for designing controllers, and, worse, has led to a false
sense of security about correcting easily any problems that
might arise in their performance. Such problems certainly
do exist, ranging from "straightfarward" ones such as
accuracy problems arising from roundoff errors, to more
subtle ones involving pseudo-chaotic behavior and other
cycling phenomena in the plant’‘s state space. This project
has viewed the absence of a fundamental characterization of
the dynamics of these hybrid systems as the underlying cause
for these praoblems. Thus a call for fundamental system-
theagretic research was made.

In broadest terms this research program has thus been
aimed towards modeling and understanding the nature of

2.4
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¥ asynchrongus hybrid feedback systems. It has been :"." \
concerned with addressing three general, related questions: o
~ RQuestion 1: How does one characterize the (hybrid) finite- f‘:_:;
state controller as a dynamic system, aperating :.-:.{;.-
Y asynchronously in time? gl
# .’\.’\
d W
Ruestion 2: How does one model the interfaces between the s
o plant, on the ane hand, and the compensataor, on the other E‘,_-;;‘
o hand? (We term these the coder and the decoder) hale,
h P
- %
.. BQuestion 3: How does one use this acquired understanding to SN,
o effectively design compensateors directly, and naot indirectly ;:;\-;
i as finite appraoximations to more conventional continuous ’.“‘"
compensators? RO
pe
:{ To address these questions new tools for modeling and f._-‘.f::
analysis had to be developed, and were. These tools ,’._“f
involve generalizations of classical automata theory tao real :.,::-L;

T

number alphabets and the application of semigroup theory to

asynchronous dynamics. The results of these endeavors are i‘ ..
- discussed in Section 2. NN
5 As the project unfolded it became apparent that most of -'.‘:-::;C
the effort would of necessity be directed towards addressing :".{:.’-::‘
the first two of these questions. They had to be addressed a‘;
. first, and lack of time prevented substantial progress from o
Y being made on Question 3. T
The research into answering Questions 1 and 2 has :-::.-::)-
N uncovered exciting areas of general research in hybrid MANAYA
:« system theory and in the theory of asynchronous systems. .-;:;-::
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2. Status of the Research Program

2.0 Introduction

The fundamental goals of the research program have been
stated above. It became apparent quite early on that much,
if not all of the time, would of necessity be spent in
developing key concepts as opposed to designing in detail
specific controllers. The research efforts in this respect
must be regarded as being successful. Key structures and
models in the hybrid system environment have been
identified. A firm groundwork for future work in this area
has been laid because of this. Much of this waork has been
published, submitted for publication, or presented at
professional meetings. References to this material replace
substantive discussion below, since copies of this material
have either been sent, or will be sent concurrently with
this document (as Appendices), to the Program Manager.

2.1 Simple Asynchronous Machines

In dealing with asynchronous finite-state caontrollers
it is necessary to understand asynchronaous finite automata
from a viewpoint that is bath fundamental .and general.
Traditional approaches to characterizing asynchronous
finite-state automata have generally been concerned with the
state transitions of such systems (and problems related to
such transitions, such as races), but not with a
fundamental analysis of the evalution of the state as a
finite-valued function in time. These issues were addressed
in a direct manner wherein the role of event occurence time
is explicit, and wherein physical contraints can be imposed
in a direct, manageable way.

2.1.1 The Madel

As detailed in one of our recent papers * the simple
asynchronous machine (SAM) is a particular madel of a mare
general finite automaton based upon semigroup properties
that explicitly deals with the time of an event as well as

its effect on the +future behavior of the machine. It
consists of a finite number of digital function generators
(DFGs) that are called into play as input changes occur.

These generataors model asynchronous patterns of state
values, and play a role in SAM characterization analogous to
the impulse response functions of linear system theory. The
SAM model makes minimal a priori assumptions concerning
temporal spacing between events or continuity of system
state at times of input transition. This generality allows
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us to address fundamental realization issues for SAMs, which L
has been done and documented *-%* , prAaNs
g The key concept in the SAM model is that each input %-.&
transition triggers a "cascade" of subsequent state \ﬂJ?
‘ . transitions which is pre-determined by the machine structure 3?;'
@ —— these cascades are embaodied in the DFGs. The cascades Q.A:.}
may be overwritten by cascades due to subsequent input Y
transitions, so that the output timing reflects a sequence
e of cascades keyed to input transition times. Various
: architectural configurations for generating the fundamental
i state transition sequences were explored and are described
. in the cited references. The ‘“hybrid stack" model of the
o DFG is used in the simulator described in the following
section.
:1;: 2.1.2 The Simulator
-

It was important to validate the utility of the SAM

Y model, for abstraction merely for the sake of abstraction is
E of little value. A simulator was developed for this purpose
and is detailed in the Appendix of this repart. Building

-~ upon an earlier incomplete version written in Pascal, the
-$ working simulator is written in GWBASIC for the AT&T 6300
T Fersonal Computer and exploits the powerful graphics of this
version of Basic to allow meaningful examples of SAMs to be

developed, simulated and displayed. The hybrid stack model

< of the DFG is used in this simulator and it has been run on

a variety of examples. Its use in modeling the behavior of :ﬁ:
n a ripple counter and a UART are reported as representative \fg”
N examples in the Appendix to this report. A copy of the ‘_l'-;
User ‘s Manual, Programmer's Manual, with listings, as well 2
» as a diskette, accompany this report. !
:) The current simulator is 1limited to single input, T
-4 single output systems. Work to extend the simulator’s f?&}
. capabilities to handle multiple input, multiple output SAMs ;?;{
:q is currently under way, as part of a Master's thesis el
& project. This thesis will be completed by June, 19846, and RS
a copy will be sent to AFSC upon its completion. (See N
Y Section 4. for further details.) The multiple input SAM f}ﬁvj
o model opens up the door for some important practical m}ﬁ?
Y questions involving how the SAM is to process transitions on ﬁﬁ};
its several input lines that are nearly, but not exactly, }ﬁ&?
S concurrent. RN N
N 2.1.3 Physical Constraint Modeling ;;E:;Z::';
a TN
The essential strength of the SAM formulation is in g&;:
rg its ability to model the kinds of physical constraints ké;b
o typically present in the discrete-control environment: o
’ minimal signal processing times, minimum intervals between \ﬁpﬁ
.- events, minimal duration for compensator inputs and outputs, ahns,
aj and so on. Through the imposition of such constraints on QQ?'
> individual digital <function generators and on the class of kﬁii
| -

1"\."

‘—\-‘ -“'-“ "'.' \.:
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digital function generators as a whaole, one can begin to
incoporate these constraints explicitly, rather than
implicitly, into the SAM model 3213, Work in this area has
Jjust begun. Current research is underway, as part of the
above referenced Master’'s Thesis project.

It is impaortant that such constraints be explicit
rather than implicit. To understand the maost general
interconnections of S5AMs, including specifically feedback
connections, it is most important that one not 1limit in
advance implicitly the rapid state transition rates that
can arise in such configurations. Rather one must be able
to model them theoretically and then re-examine them in the
light of realistic physical processing constraints.

Once one has addressed the issue of physical constraint
modeling attention can turn to such related significant
issues of how to synthesize SAMs using commercially
available components and how to employ modern techniques of
design automation to expedite such syntheses.

2.1.4 Real-Time Multitasking Systems

The representation of asynchronous multitasking systems
affers a specific example of the phenomena modelled by the
more abstract asynchronous machines considered above. S
Here the interest is in in process synchronization by means
of an appropriate communication channel. Early work in this

research program addressed such issues; they are explored in
more detail in the cited reference. )

2.2 Asynchronous Time Signals

In the asynchronous discrete-control setting it is easy
to see that the coder inputs and outputs are, in effect,
piecewise-constant time signals, with transition times
netween pieces occuring at event-driven times. It was felt
that an understanding of this class of time functions was
essential to characterizing the overall dynamics af the
asynchronous control system.

Research activity in this area assumed several forms,
and ties in with the aforementioned simple asynchronous
machine models, for which signal ranges are assumed to be
finite. In the discussion below the acronym "ATF" stands
for "asynchronous time—-function".

2.2.1 Generative Madels
These efforts here <focused on the development of

generative models faor the class of ATFs. Two approaches to
this modelling problem were pursued. In the first approach,
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when the range space of the functions is a finite set, the
digital function generator (DFG) was proposed as a general
purpose scheme for generating asynchronous functions of
finite range. The role of the DFG in the architecture of
the simple asynchronous machine has already been noted. As
a "stand alone" device its implementation is of particular
interest. The DFG may be implemented by using either a
"hybrid stack" architecture or by wusing a set of
independently recursively generated breakpoints *.

A more .general mechanism for generating ATFs with
arbitrary ranges was developed ®+2° , This scheme consists
architecturally of a value generator, a switching time
generator, and a signal synthesizer. The value generator
praoduces the range values assumed by an ATF; the switching
time generator generates the breakpoints (transition times)
of the function, and the signal synthesizer then outputs the
resulting asynchronous waveform in real—-time. This general
model is a recent one that was created towards the end of
the contract period in an effort to encapsulate under one
umbrella both the various DFG models earlier discussed, and
the more general non-finite-range class of signals, and to
allow for general physically—-impaosed constraints to be
placed upon ATFs. It also 1is general enough to allow for
the generation of stochastic asynchronous time signals.
2.2.2 Recursive Models

Some consideration was given ta the distribution of the
transition points of ATFs, since, particularly in the case
of recursively generated DFGs, there is an ergodic flavor to
this prablem. Previously unfunded wark of Dr. Kaliski was
extenaad to develop more precise notions of orbital behavior
and distributions, notions that might prove useful in
understanding and characterizing transition point
distribution saomewhat better =-4

The key theme of the above developments is that the
transition times may be viewed as generated recursively
under the iterates of an appropriate timing gener.utor.
This ties in as well with the above cited themes of
independently recursively generated breakpoints.

2.2.3 FPhysical Constraint Modeling

The essential problem, from the point-of-view of
modelling realistic plants and controllers, is to identify
and model various physical constraints that fall upon the
plant-coder—-controller—-decoder ensemble. Physical
constraints manifest themselves in a variety of ways,
particularly when the issue o0of asynchronous systems and
transition times are discussed. Physical systems cannot
instantaneously respond to signal changes, nor, it may be
argued, can they recagnize signal changes that occur too
rapidly. They seem to require a minimal "energy content" in
signals to respond to them, and thus not only are signal
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amplitudes, but signal breakpoint distributions, Q
constrained. ey

Efforts have begun to grapple with this problem and
the continuing research efforts of Northeastern graduate LN
students will address these issues. When resolved one may ey
in turn apply such models to the above described generative hﬁ
schemes for ATFs. Qﬁ
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N 2.3 Asynchronous Coders -

N In the asynchraonous control setting plant outputs are Bt
sampled at irregular, event-driven times. A fundamental T
< question of this research program has been to understand how 5
to incorporate such times in the coder (and decoder) models -
successfully developed +Ffor the synchronous case under the
earlier project funding . The general problem of madeling :
v these interface signals has been described above. In what Tad
- follows discussion turns to how the interfaces themselves T
can incorporate time. The view that asynchronous coder N
design is but an extension of synchronous coder design into jb
a higher—-dimensional space is postulated. -
Note that much of this work thus extends the previously X
i developed theory of coder design, particularly the i
decomposition results for such coders 2 and the related .
acceptor madels. Also the viewpoint that coders in effect e
transform sequences of points with real-valued coordinates -
:; into sequences from a finite alphabet still is a valid one.
- The research program did not deal with the issue of
decoders to any great extent. One the one hand, their
o structure is far simpler than that of the coder, since they
map finite spaces into non-denumerable aones; on the other
hand, there are some very interesting practical issues in
" developing decoders that are optimal, accaording to various R
? criteria. oo
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2 2.3.1 Incorporating Time into the Coder Model
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By treating event occurence time as an additional coder C
input —— one which always increases, of course -— one is o
able to madel asynchronous coders as special types of P
partially-specified automata defined oaver real number
- alphabets 2+.4.7.9.12.,13 This viewpoint is a profitable
- one, for it allows the derivation of necessary and
’ sufficient conditions for the finite-state realizability of
asynchronous coders. One terms coders so-realizable as
finitary.

The derived theory is an extension of the previously
developed theory for synchronous coders, as noted, and '
revolves around the concept of tightly structured <
input/output maps. This apens up an exciting new area of
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research, which one can term invariant theory for finite
automata (section 2.3.4) .

2.3.2 Finitary Asynchronous Coders

Finitary coders are important architecturally since
their use augments the complexity of the finite state part
of the control system and not the continuous-state part =,
Such coders are always realizable as a cascade of a
memoryless quantizer (an “ordinary"” analog-to—-digital
converter) and a finite state machine.

It was the recognition that event—-time serves to simply
ir- rease the dimensionality of a coder that forms the
central thearetical accomplishment of this phase of the
research. By using sample—and-hold elements to "capture"
event times the asynchronous coder can be synthesized using
the tools of synchronous coder theory.

2.3.3 Linguistic Models for Coders

Coders, as noted, may be viewed as devices that
transform strings in one alphabet (a non-denumerable aone)
into strings in another alphabet. At a conceptual level,
one is then able to apply generalized tools aof formal
language theory to their characterization 2- This view of
the problem is an interesting oaone in the search for
canonical forms for coders. Time did not permit, however,
its full exploration. By analogy with the 1language
hierarchies of formal language theory, one may define coders
of increasing camplexity and pawer. This, too, remains an
incomplete area of research.

2.3.4 Invariants in Finite-Automata Theory

It was observed that many of the ideas of finite
automata theory do not of necessity depend upon both the
state space and the input alphabet being finite. For
example, the concept of Nerode equivalence 2 can be utilized
to define finite state realizations for coders, although the
input alphabet is non-denumerable. Similarly concepts of
non-determinism in automata, and formal language equivalents
do not depend upon the finiteness of the input alphabet.

This opens the door to some basic research in abstract
automata theorvy. Since many techniques of discrete-
controller design indeed revolve around the concept of one
autaomaton controlling another, the need for such abstraction
is justified. These topics are still being investigated as
of this writing.

2.4 Topics Not Completely Addressed

L
ot
. et

11

R B T T 1, O
v IR o A A SN AN A e A M AL,

Tal ¢V al e

IR

R4
»

"
LS

[
4
2

l'
¢
A

‘e
D.’
¥

¥
t
¥
|
»

”
'l

NS WA e X LA g
. "":"" 2 .'a"{"::'l"f.’ "? .
AN EADAAANS B A
KRS

......[
o '
e

»

D |

oo .



A
KA,

"‘f“f ‘:

AR

N ]

A

3

DA CEN AR A A

Several proposed topic areas were not addressed due to
a lack of time. This was a result of conscious decision on
the part of the principal investigator(s).

2.4.1 Finite-State Controller Design

As already noted, time did not permit a direct saolution
to this problem in the asynchronous case. As discussed in
section 5, an independent activity for designing controllers
in the synchronaus case, for discrete-time plants, is
currently under way. By choosing the route pursued in this
research praogram -—- that of laying fundamental groundwork -
- it is apparent that one principal goal for the future
must be to tie together these separate efforts to effect the
design of meaningful controllers.

2.4.2 Characterizations of Coder Behavior

One interesting area of research praoposed was to try to
develop both qualitative and quantitative schemes for
modeling the behavior of coders and to deal with such issues
as coder similarity, and practical coder realizations.
Certainly the finitary coder madel is a beginning step in
this overall goal. More definitive measures must be
defined, however, to allow one to talk about coders that
satisify various design and implementation criteria.

2.4.3 Feedback Connections of SAMs; Stability

Having explored the SAM model as a stand-~alone device
it is natural to deal with such questions as
interconnections of SAMs. Such structures may be series
connections, parallel connections, or, mare importantly,
feedback connections. When SAMs are connected in feedback
transitions may occur at times that are extremely close
tagether. It has been postulated that the SAM model is
general enough to be closed under feedback connections,
nanetheless. Future research is needed tao resolve this
issue, as well the general issue of stability of SAMs, from
both a definitional and applications point-of-view.

2.4.4 SAMs and Quantized Continuous Systems

One interesting question that naturally evolves out of
this research effort is the following one: look at the
decoder-plant-coder ensemble, in that order, as a dynamic
system. Its inputs and outputs are sequences in a finite
set. Can we view this system as equivalent to a SAM? This,
in part, is tantamount to answering the related question of
under what conditions this mapping from input sequences to
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3. Publications

The following works have been published and/or
submitted for publication during the term of this contract.
The order is in each category is alphabetical, by name of
first author. The list is categarized inta three
categories: papers accepted by or submitted to technical
journals, papers presented at conferences (and appearing in
conference proceedings), and papers written as unpublished
internal research memoranda.

Papers Submitted to/Accepted by Technical Journals

1) Johnson, T.L. and Kaliski, M.E., " Realization of Finite-
State Asynchronaus Machines, " submitted to 1EEE
Transactions on Automatic Control, April, 1983. Currently
under revision. (Abridged version presented at 22nd I[EEE
Conference on Decision and Control, December, 1983, San
Antonio, TX)

2) Kaliski, M.E., " Finitary Coders: The Interfaces in
Finite-State Compensation Schemes, " submitted to IEEE
Transactions on Automatic Control, May, 1985. Currently

under revision.

3) Kaliski, M.E. and Klein, Q.L., "Behavior of a Class of
Nonlinear Discrete-Time Systems, “ Jaournal of Caomputer and
System Sciences, Vol.31, No. 1, August, 1985

4) Kaliski, M.E., Kwankam, S.Y., Halpern, P. and Shulman,
D., "A Theory of Orbital Behavior in a Class of Nonlinear
Systems: Chaos and a Signature-Based Approach, " accepted
for publication by Journal of Computer and System Sciences,
Octaober, 1985. To appear.

Fapers FPresented at Conferences

S5) Jahnson, Teley "Multitask Control of Distributed
Processes," presented at 22nd IEEE Conference on Decision
and Control, December, 1983, San Antoniao, TX.

&) Kaliski, M.E., " On Realizations of Partially-Specified
Input/Output Maps by Finite Automata, " presented at 1984
ACM Computer Science Conference, February, 1984,

Philadelphia, PA.

7) Kaliski, M.E., " Finite Automata Over Real Number
Alphabets: Some Theoretical Results and Applications, "
presented at 1495 ACM Computer Science Conference, March,
1985, New Orlecas, LA.
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8) Kaliski, M.E. and Kwankam, S.Y., " Asynchronous Real-Time
Caders in the Discrete Control Environment: Generative

ﬂ Models for Input/Output Spaces, " presented at 23rd IEEE
- Conference on Decision and Control, December, 1984, Las
Vegas, NV.

4
g

x

?) Kaliski, M.E. and Wimpey, D.G., "Towards a Theory of
Asynchronous , Real-Time Coders and Their Applications to

o Discrete-Cantrol of Continuous Processes, " presented at

§ 1983 American Control Conference, June, 1983, San Francisco,

’ CA- 1‘

. 10) Kwankam, S.Y. and Kaliski, M.E., " A Generative Madel f

- for Asynchronous Finite-Valued Time Signals as Applied to - e
Computer—-Based Process Control, " accepted for presentation -

iy at the IFAC Sympaosium on Microcomputer Application in e
v Process Control, July, 1986, Istanbul, TURKEY. ;;ﬁ_

o 11) Kwankam, S.Y., Kaliski, M.E., and Johnson, T.L., -

[' "Asynchronous Finite State Machines: Simulations with iy ;
' Imposed Processing Constraints, " accepted at 1986 American Eﬁ;
. Control Conference, June, 1984, Seattle, WA. -Sq?t

A il

N Internal Research Memoranda ﬁxgt

R

. P23

- 12) Kaliski, M.E., "Extensions af Partially-Specified !&;-
Automata Incorporating Time as an Input, " Northeastern ROt

- University Internal Memorandum, September, 1983. ’..H
- 13) Kaliski, M.E., " Taowards a Theory of Finitary f:.h.

- Asynchranous Coders, " Northeastern University Internal .

N Memorandum, January, 1983. N
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! 4. Personnel p

LY, *‘:
1) N ~
) ‘$ The following professional personnel have been the ;‘ﬂ
: V2 primary personnel associated with this project since its nQ
beginning in July, 1982: O
RN A

R - ~

§ Dr. Martin E. Kaliski, Professor of Electrical and Computer iﬂf
. ) Engineering, Northeastern University, Baston, MA has been a }ﬁ:
. fj co-principal investigator and, since July 1984, principal i%&

investigator on this research contract. f‘
YRS Dr. Timothy L. Jaohnson, Control Technology Branch, General ;$§
N Electric Corporate Research and Development, Schenectady, NY RSN
: was, while he was still with Bolt, Beranek, and Newman, Inc. f\i
o Cambridge, MA, a co-principal investigator on this project. :fq,
- r: He has remained involved in an unfunded capacity since he i-'

. assumed his duties at General Electric in July, 1984. A

Dr. David G. Wimpey, a former dactoral student of Dr. e
; Johnson’'s (and supported under our previous contract) was X
associated in an unfunded capacity with this project while a
faculty member at Nartheastern University in the Department
of Electrical and Computer Engineering, +From July, 1982
until his return to the Republic of South Africa in
September, 1983. His principal contributions were in the
area of coder and compensator design.

YHR vy,

O YA
S

Dr. S.Y. Kwankam, a former doctoral student of Professor

N ? Kaliski ‘s, at Northeastern, has remained involved in an
S informal capacity with this program since his return to the
: University of Yaounde, in Camerocaon in 1979. He spent the
X 2~ summer of 1985 working on this project as a funded Fulbright
s s Schalar. His contributions were in the areas of

asynchronous machines and asynchronous time signals.

- The group of professional personnel listed below have played :i:f
. a smaller, but nonetheless important role, in the specific e
) project areas listed below. Their work has been done in an

.
SO
[] [}

R unfunded capacity.

-
‘ Dr. Karen A. Lemone, a faormer doctoral student of Professor KOG
- Kaliski ‘s, at Northeastern, is currently an Associate }ﬁ*‘
j ~ Professor in the Department of Computer Science at Worcester TS
L Polytechnic Institute, Worcester, MA. She has contributed y;{j
n )" to the development of conceptual issues in languages defined f:h

i over real number alhpabets, with applications to coder :

design. e
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Quentin L. Klein, of W. Newton, MA, has worked with -'.;:.-':"‘
Professor Kaliski in the study of orbital behavior in one- .
g dimensional nonlinear systems. 00
-..'\' Y0
. AW

N Pamela Halpern, of Comp-All Systems, Lynnfield, MA, is a -','-j'_u Y
- former doctoral student of Professor Kaliski's at :-’_::*.,, ::
.'& Nartheastern. She, too, has worked in the area of orbital N '::

behavior studies. % ;
’ ~nl ..‘~,.‘
:5 David Shulman, a graduate student of Professor Kaliski's at -_‘_\:’_{-_;-:
Northeastern University, has played a role in orbital j.-::.-:.-:'

« behavior studies as well. BAGTAAS
£ RO
“ Andrew Miller, is an American Electronics Association :‘

. Fellow at Noartheastern, and is currently working on his PN,
- Master ‘s thesis for Professor Kaliski. He has been active RSN
in developing the simple asynchronous machine models and "’: 1

simulations described earlier. RN
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w S. Interactions

~3
{ e While Dr. Johnson was with Bolt, Beranek, and Newman,
\ S Inc. (until June, 1984) he and Dr. Kaliski met regularly

(every other week) to ensure adequate progress of the
research program. With him based at General Electric
Company in Schenectady, NY, since then, the level of
interaction has naturally decreased somewhat. Nonetheless,
regular monthly meetings which take place for an independent
joint activity of Drs. Johnson and Kaliski (see below),
provide a continuing forum for interaction on this project.

Research results have been disseminated at a variety :
of conferences around the country (section 3.), and bhave -
been submitted to publications appealing to both the "
computer science and control systems community. This
reflects the spirit of the research as a venture into hybrid
systems theory.

Dr. Kaliski serves as a consultant to General Electric
Company, Corporate Research and Development, for Dr.
Johnson, in the general area of finite-state synchraonaus
cantroller algorithm design and implementation. This
problem represents the practical, computational end of the
general research area of this project. There, aof course,
has been great care taken to avoid any potential .compromise
between the general research goals of this project and
those of that specific praoject. The essential point is that
this parallel activity has served to both keep interactions
in this entire area at a healthy level and has provided
means for validating thearetical constructs in a practical
cantext.

]
L

| EXA

'—'-"':,'l

f.
»
v LN
! ,'f_."."‘.\'._ O

»

.

-‘ -’ '-' 4 ¥
]
'

l‘ 2 &
" ,l "n -
elp e

LN

oA A
>
v 4
e

1
Ly 4 e

RO ALY

b

v
M.

h)

?ééﬁ

¥ |

" VL. «,_ - - v . N O A S ) « = _ . . L T L S - = - R S e St SR TS R S S -
\' LIS o e REA PP A A T T P S A e T L T LI Wl Vil Sh AR S T el et LY - :
G O A A A N A eIy INOGIRA 2 LA




FRS

."

o

l,j,

3

Yy

R S

NS

[ ALs l"\

NS

RS |

é&. Appendices
The follawing Appendices contain material not
previously submitted to AFSC. 1In addition to this material
a single diskette containing programs and data files for
the S5AM simulator is being sent (along with instructions for
its use) with this report.

&.1 The Sam Simulator

The following supplementary material concerning the SAM
simulator is contained in this section:

a) User’'s Manual

b) Modeling of 74LS93 Binary Counter

c) Modeling of RCA CDP1854 Programmable UART
d) Progfammer's Manual

e) Program Listings
6.2 Additional Publications

Copies of publications 3 and 4 are being submitted with
this report, as they were not previously sent to AFSC in
final form.
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The SAM Simulator
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a) User®s Manual 1

1.0 INTRODUCTION

This User's Manual explains the operation of the
asynchronous machine simulater which runs under GW-Rasic.
Since the simulator is menu—-driven, most of the information
is self-explanatory. This manual further clarifies these
menus and assists the user in correctly working with the
simulator.

It is assumed that the user of this manual is familiar with
the paper, "Realization of Asynchronous Finite-State
Machines” by T.L. Johnson and M.E. kKaliski. This simulator
is essentially a direct implementation of some of the ideas
set forth in that paper.

To further clarify the information included in this manual,
refer to two examples included which are executed using this
simulator, referred to as SIMS5AM (SIMulator for Simple
Asynchronous Machines). One example is the simulation of a
simple binary counter. The other is a more compleyx example
aof a Frogrammable UART.

The following files must be included on the drive designated
in the simulation program as the default drive:

MAIN. BAS

INFOVR. BAS
DFGOVR. BAS
LGFOVR.BAS
RSMOVR. BAS
FPLTOVR. BAS

See elsewhere in this manual to set the detault drive.
The order of information presented in this User s Manual is

consistent with the order in which information appears in
the execution of the SIMSAM praogram.

A note regarding program output:
All text displayed by the simulator program will be indented
in this User®s Manual
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2.0 GETTING STARTED

The SIMSAM simulator can be run on any IEBM compatible pc
with 256k bytes of memory and GW-Basic (or eguivalent BASIC
interpreter) running under MS5-DOS.

After loading GW-Basic, load in the main module by typing:
LOAD "dd:MAIN"

where "dd" 1is a valid drive specification for the location
of the file "MAIN.ERAS".

Now type "RUN" to execute the main module under GW-Rasic.

After a short period of time during which the title of the
program is displayed, the following menu is displayed:

SIMSAM MENU

-— Enter Input Waveform

—— Enter Digital Function Generators
== Enter Logic Function Generator-
= Fun simulation

-— Flot results

—-— Set detault drive

-— Exit

NP

2

Enter selection by number

This menu permits one to make a selection by simply typing
the number of the gselection and hitting the Return key. A
brief description of each of the selections is given here.
I+ an invalid selection is made, the simulator emits a short
beep and the menu is redisplayed.

1 —— Enter Input Wavetform

This choice displays another menu to enter the values of an
input waveform, either from a ftile or the terminal. This
waveform can be edited while in memory. and can be saved on
the disk.

2 —— Enter Digital Function Generators

This choice displays a menu to enter the values of digital
function generators. As  with the 1nput waveform, one can
load the DFGs from the terminal or a file, and perform
simple editing.

-

3 -— Enter Logic Function Generator
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1, This choice displays a menu to enter the values of a logic e
! function generator. (.

&) :_,:"f

4 —— Run simulation o

3 A . :'::.;
ﬁ :Q This choice allows one to execute a simulation based on the &b{
g - data entered from choices 1, 2, and I of the SIMSAM MENU. e
- The simulator will not function corvrectly it choice 4 is ko

; . made before choices 1-3. Choices 1-3 can be selected in any ASASA

Y order. e

- :‘f:j".:

Y 5 —— Flot results R
4 E -
This choice gives one a graphical display of any of the L

’: e waveforms, including those entered by the user and those ?:f
SRS generated by the simulator. e
3 - S

. 6 -- Set default drive ;-;-'ﬁ-

Pd

By default, the simulator <cets the default drive to "E".
This is the drive where all parts of the simulator program
are loaded from, and also where all waveforms are saved.
This choice allows one to change the default drive.
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‘0 This choice causes the program to terminate, and control is °
' returned to GW-Basic. o
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3.0 ENTERING INPUT WAVEFORM sy

3 |

-
"l
i

If choice 1 is selected from the SIMSAM MENU, the following
menu is displayed:

l.l
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N INFUT WAVEFORM MENU

o .
2 X

>

o
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Y

B A

1 —— Load input waveform from file 5
:: 2 -— Enter input waveform from keyboard 5&{?
o I —-— Modify input waveform in memory {}ﬁﬂ

4 -— Exit to main menu f}ﬁ&
- $
ﬁ Enter a selection by number ? _,_.:'1.:-!
- As with the SIMSAM MENU (main menu), one can make a g'~
. selection by typing the corresponding number and hitting the e
o Return key. Each of the choices is described in detail

here.

',.
[f Z.1 —- Load input waveform from file

. This choice causes the screen to be cleared and the
following prompt to be displayed:

Enter M (<= 8), the number of input levels

o
M = *T‘-‘L’T.]

At this prompt enter the number of levels in the input ::ﬁfj
N waveform. The program checks to see that the entered value NN
v is within range.
e
L] The program then prompts for the name of the file where the
'j input waveform is saved with the prompt:
e File name for input 7
K4 :
~ A valid filename for the input waveform consists of 7.
"INPUTux", where zx can he any two alphanumeric characters. hﬁﬁﬁ
. The program only distinguishes between different last two NN
N alphanumeric characters for different input file names. The AL
program loads the specified file, and verifies that the data }Q§
. in the +file is consistent with the number of input levels o N
s entered previously. . {'
g After the file has been loaded, the INFUT WAVEFORM MENU is }i?
sy redisplayed. I+ the number of levels of the waveform read ﬁy;
A from the file is greater than the limit entered previously, fj‘
the waveform must be entered from the keyboard. et
;*' .“:93 Kl
o F.2 -— Enter input waveform from keyboard !b:g
‘-_-'.\
Y] As with choice 1, this choice first prompts for the number ‘i%i
}{ of levels in the input waveform. After this, it asks for :{}g
) the pieces of the input waveform with the dialogue: e
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Enter input signal

Enter number of pieces, (<= 30)
‘?

At this point one should enter the number of distinct pieces
comprising the input waveform. The program verifies that
the upper limit is not exceeded. The program then prompts:

Enter waveform in the format: value and start time
piece # 1

Here the user should enter the level of the piece of the
input waveform, and the time it starts, separated by a
comma. Normally the start time begins at time O. The
program checks to see that the level value is an integer in
the range previously specified, and that the start time for
a successive piece is greater than for the previous piece.
In other words, successive start times increase
monotonically.

After all the pieces of the input waveform have been
entered, the program echoes all the pieces on the screen and
asks for any changes with the prompt:

~ 'y changes (Y)es or (Mo
If a "Y" is entered here, the program prompts:

Enter changes in the format: piece #, value and start
time
To end enter piece # of O

Simply enter the parameters asked for in the order
specified, separated by commas. As with all other parts of
the program, it verifies that entered data is within range.

After any and all changes have been made and the input
waveform is sxactly what is desired, the program prompts to
see if the entered data is to be saved in a file:

Note that if this input function is not saved, and
the results of a run using this input are saved, such
as result file will NOT contain information on the
input function which was used.

Save input? Yes(Y) or No (CR) ?
If the input is not saved, the INFUT WAVEFORM MENU 1is

redisplayed. If the input is to be saved, the program
prompts:
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Enter file name under which input is to be saved
in the form “INPUTxx’, where uxix are alphanumeric
characters. ?

After entering a valid filename, the input waveform data is
saved in that file on the default drive, and the INFUT
WAVEFORM MENU is redisplayed. This filename can be one
which has already been used, in which case the new data will
overwrite the old data in the file.

3.3 -— Modify input waveform in memory

This selection should anly be chosen after loading an input
waveform from memory with selection 1. The program proceeds
through the same steps as detailed for choice 2 after the
input waveform had been entered.

It prompts for which pieces of the waveform are to be
modified, and then reminds one to save the modified waveform
back out on disk.

After all modifications have been completed, the INFUT
WAVEFORM MENU is redisplayed.

J.4 — Exit to main menu
After a correct input waveform resides in memory from one of

the other choices, this selection causes the SIMSAM MENU to
be redisplayed to load other waveforms.
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4.0 ENTERING DIGITAL FUNCTION GENERATORS

If choice 2 from the main menu is selected, the following
menu is displayed:

DFG MENU

—— Load DFG from file

-— Enter DFG from keyboard
-— Modify DFG in memory

-— Exit to main menu

B

Enter selection by number ?

Any of the selections on this menu can be chosen by typing
the number corresponding to the selection and hitting the

Return key. Each of the selections is described separately
here: '
4.1 —— Load DFG from file

After selecting this choice, the program prompts:

Enter N (<= 9), the number of states
N =

The user is expected to enter the number of distinct states
for the simple asynchronous machine being simulated. The
program verifies that it is within the bounds specified. It
then prompts for the file name:

el

File name from which DFGs are to be read.

Here, the file name is entered in the form "DFGxx'" where ux
can be any two alphanumeric characters. If the filename is
found on the default drive and the number of states of the
DFGs in the file are compatible with N entered previously,
the DFG MENU is redisplayed.

If any problems occur, the program asks that the DFGs be

entered from the keyboard. This is explained under choice
2.
4,2 -- Enter DFG from keyboard

With this choice, the program again prompts for the number
of states in the DFG, and checks to see that it is less than
a predetermined maximum, then prompts:

Enter DFG for input level mm and state nn
Enter number of pieces, (<= 8)

where mm is one of the input levels 1in the previously
specified range, and nn is one of the SAM states. Note that
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because the number of input levels is needed, an input
waveform must have been entered prior to entering DFGs.

For each DFG, the program needs to know how many pileces
comprise the DFG for a particular input level and machine
state. After that, the program prompts:

Enter waveform in the format: value and start time
piece # 1

Each of the pieces of a particular DFG are entered with the
value and start time separated by a comma. The program
checks that the value is an integer and one of the possible
state values, and that the start time 1s greater than zero,
and is monotonically increasing for subsequent pieces.

This continues for all possible combinations of state values

and input levels. After all DFGs have been entered, the
program prompts for any edits as explained in the next
selection. If there are no edits, or after the edits are

complete, the DFG MENU is redisplayed.
4.3 -- Modify DFG in memory
This choice should only be made atter choice 1, or
alternately, if a DFG has been entered from the keyboard,
this choice is automatically made.
The program echoes each DFG and prompts for changes:

Any changes (Y)es or (N)o ?
If there are changes they are entered in the format: piece
#, value, and start time. A piece # of O terminates the
edits for a particular DFG.
After all changes have been made for one DFG, or 1if no
changes are necessary, the next DFG is displayed, and a
request for edits is made.
After all changes have been made, the program prompts:

Are DFGs to be saved (Y)es or No

If no, the DFG MENU is redisplayed. If yes, the program
prompts:

Enter file name under which DFG is to be saved 7

The file name should be of the form "DFGu:x" where ux 1is any
two alphanumeric characters. I+ the filename already exists
on the default drive, the contents of the file are

overwritten. The DFG MENU is then redisplayed.
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Exit to main menu

This selection causes the SIMSAM MENU to be displayed.
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5.0 ENTERING LOGIC FUNCTION GENERATOR

I1¥f choice 3 from the main menu is selected, the following
menu is displayed:

L F MENU

—— Load LF from file

-— Enter LF from keyboard
—— Modify LF in memory

-— Exit to main menu

E-NE R NN o

Enter selection by number ?

Any of the displayed menu items can be chosen by selecting
the appropriate number and hitting the Return key. Each of
the selections is detailed here.

S.1 —— Load LF from file

This selection first prompts for the filename of the logic
function genetator:

File name from which LF is to be read 7

The file name should be of the form "LFxx"” where xx is any
two alphanumeric characters. This file 1is read from the
default drive. The program checks that the dimensions of
the LF are consistent with the number of states of the
machine and the number of input levels. Because it uses
this information, the input waveform and the DFGs must be
entered before the LFs.

After the file is read, the LF MENU is redisplayed.

3.2 —— Enter LF from keyboard

After choosing this selection, the program displays the
prompts:

Enter number of output levels ?

This answer must be the number of distinct levels in the
output signal.

The dialogue continues:

Enter ns values for output corresponding to input level
nn and each of the ns states.

The user is directed, for a particular input level. to
specify what the output level is for each of the states of
the machine. (ns represents the number of states). This 1is
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repeated for each of the nn input levels. The program
checks that the output level does not exceed the number of
levels specified earlier.

After all output levels have been entered, the program
automatically goes into edit mode which is identical to LF
MENU selection number 2 and will be explained there.

S5.% —— Modify LF in memory

This selection should only be made after lcading a LF from a
file, or control will automatically be passed to this point
after entering a LF from the keyboard. The program prompts:

Readout map Just entered is as follows:

—— v ——— e o — —— . e e

The output level is displayed for each of the machine states
and for one particular input level. The user is then asked
if any changes are necessary. If they are the program
prompts:

Enter changes in the format, state and output.
To end, enter state value aof Q.

The program verifies all corrections to the data. After all
output levels have been modified, if necessary, the program
prompts for a file name to save the changes:

Is LF to be saved (Y)es or No 7

e

Enter file name under which LF is to be saved.

This file name must be of the form "LF:t" where 13 can be
any two alphanumeric characters. I+ the filename alreadyv
exists on the default drive, the contents of the file are
overwritten. After the LF 1is saved, the LF MENU is
redisplayed. The user should be aware that if changes to an
LF are not saved, they cannot be recaptured later.

5.4 —— Exit to main menu

This selection causes the SIMSAM MENU to be redisplayed.
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6.0 RUN SIMULATION

If choice 4 is selected from the main menu, this causes the
simulataor to run using the input waveform, DFGs and LFs
entered previously. Unlike the other main menu selections,
this one does not cause another menu to be displavyed. The
program prompts for necessary information:

Maximum # of system events in simulation (<= 240)
no. of events = 7

The simulator is asking for the maximum number of events to
record in the simulation. If the actual number of events is
less than this amount., there is no problem. If the actual
number 1is greater, the simulation terminates when the
maximum number has been reached. This prevents the
possibility of an infinite number of events in the case
where the simulated machine oscillates.

The simulator next prompts for a physical processing time.
By hitting the Return key, a default value of O is assumed,
but any other value can be chosen. This value can be used
to simulate the latency of a particular machine.

The program then prompts:

Ready to run simulation. Enter initial state,
which must be an integer between 1 and ns

where ns is the number of states of the machine. The
program ensures that the initial state is within range., then
runs the simulation. At the completion of the simulation,

all system events are listed in the form:

Index Output value Start time Input State

The index is an integer starting at 1 and is incremented for
each change 1in the input or state. The output value is
simply the cambination of the input level and the state as
specified in the logic function generator. The start time
is the time when the change detected by the simulator
begins. Again, the change can recognized either in the
input or the state.

After all system events have been listed, the program
prompts to see if the results of the simulation are to be
saved in a file:

?

File name for saving results
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If the results are

simply hit the Return key.
»

siMsaMm  MENU

should be entered,
the
-

file,
P’

a

in

User s Manual
"RESx "

a)

any two alphanumeric characters.
the results

name of the form

After saving

not to be saved,
redisplayed.

A file
can be
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! F 7.0 PLOTTING WAVEFORMS
% .
ﬁ v, If selection S5 is chosen from the main menu, another menu is
t4 o displayed:
o .
|. PLOT MENU
2l
I . .
ﬁ413f 1 —— Plot input function
~! 2 -— Flot state function
PR I -~ Flot output function
Kh ‘; 4 -- Plot DFGs
i S -— {opad results from file to plot
Y 6 —— Exit to main menu
“a e
-J 1"
ﬁ' o Enter selection by number 7
1
N
- o Each of the menu items is described here in detail. For
{; examples of any of the plots, refer to the Frogrammable UART
v 2ample or the Binary Counter example elsewhere in this
:a " Appendix. Be sure to load the appropriate files as
si o axplained below before attempting to plot any functions, aor
ga s errors might result and possibly terminate the program.
L4
T4

7.1 == Plot input function

Choosing this selection causes the input waveform in memory
to be displayed in graphic form on the monitor in high-

a: t- resolution mode. The input levels are displayed on the y-
A e axis and units of time are displayed on the x—axis. The u-
axis will be the same for all plots drawn and is derived
e from the event times of the simulation. Because of this,
L7 :J the input function and DFGs cannot be plotted before a
kj : simulation run (or before the results of a previous run have
%J - been loaded with menu selection S). This plot will be
w: S labeled "INFUT FUNCTION". Hit the Esc key to return to the
=, FLOT MENU.
o 7.2 -— Plot state function
-
! Choosing this selection causes the state evolution as a
.. function of time to be plotted. This state furction is
%, obtained from the simulation run, or by loading the results
file with menu selection S.. The x-aiis is the event time
and the vy-axis records the state levels. This plot will be
- labeled "STATE FUNCTION" and will also list the names of the
yﬂ input., DFG, and LF files as well as the initial state of the
' machine and the processing time. If certain data had not
s been saved or retrieved from a file. the filename for that
od data would be left blank. After examining the plot. hit the
< Esc key to return to the FLOT MENU.
h,
- :f 7.7 -— Flot output function
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MODELING OF 74LSS93 BINARY COUNTER

To demonstrate the capabilities of the Simple Asynchronous
Machine (SAM]) simulator o 74LS93 4 bit binary counter is
modeled. Becouse of current limitations of the simulator,
only three of the four bits of the counter are used.

Figure 1 show o diagram of the counter chip and external
connections for the configuration simulated. A binary input
signal is applied to input B of the 74LSS3 and the state of
the counter is taken from the outputs QB, QC, and QD.

In the simulator, the input signal is described as a two
level signal with a fixed period (figure 2). The counter is
triggered on the folling edge of the input signal.

Since three bits of the counter are used, eight states are
possible. Sixteen DFGs are needed to fully describe the
behavior of this counter. These DFG waveforms are
illustrated in figures 3-18. Each DFG waveform has o title
”OFGDM Element x, y”, where DFGDM is the filenome where
the waveforms are stored, x is the current input level, and
y is the stote. Note that the input can assume one of two
binary levels, 1 or 2. The state is described by a digit

from 1 to 8.

The counter is in state 1 when the G0, QC, QB outputs are

0,0,1 respectively. State 2 represents when the binary
outputs are 0,1,0 and so on. Staote B is when oll outputs

are zero.

Since the counter is incremented only on the falling edge of
the input signal, or when the input changes from level 2 to
level 1, all DFGs for input level 2 are flat. That is, if
the counter is in state y, and the input level is 2 the
counter will remain in thaot state until the input level
changes.

When the input level becomes 1, the binary counter with
ripple carry is incremented. Because aof the ripple carry
and finite delaoy of each JK fFlip-flop in the counter, the
least significont bit of the counter (QB) changes state
before the more significant bits.

As o result, if the counter is in state 7, for example, and
the input changes from level 2 to level 1, the counter will
pass from state 7 to staote 6 to stote 4, and finally to
state B8 aofter the carry has rippled through all flip-flops.
This is shown in figure 9.

Figure 19 shows how the state of the modeled counter changes
when the input signal alternaotes between levels 1 and 2 at
regular intervals. The state is seen to progress in o
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oY 74LS83 Binary Counter 2

._ staircase fashion overall, but for certain state Q
ol transitions, the counter passes briefly through some :.:_: ::-1
intermediate states. Again, note the transition from state ‘?J\H
< 7 to state B as an exampls. ‘-:'.-"N"
2 SER
b The output function is illustrated in figure 20. It is RREALY Y
. identical with the state function becnuse the simple ripple nr !
?f counter modeled has no combinational circuitry at the ?}ﬁ'ﬁ
o outputs of the flip-Flops. This caon easily be added to the S
model if desired. -lﬁi}
“ ..:_.-"\-:
;E Although the binary counter modeled by the SAM simulator is Oy

o simple example, it demonstrates the capabilities of the o
_ simulator. With some enhancements the simulator will be ;{;25
3 able to handle more complex asynchronous circuits where the ?%t&4
‘ot effects of inputs on the overall response are not ocbvious. Qhﬁqﬁ
Then the simulator will become a more useful tool. ST
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Modeling of RCA CDP1854% Progrommable UART
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MODELING OF RCA CDP185S% PROGRAMMABLE UART

1. INTRODUCTION

An example of the usefulness of the SAM simulator is
illustraoted here by modeling the behavior of o RCA CDP1854
Programmable Universacl Asynchronous Receiver/Transmitter
(UART]). The 1854 can be programmed to transmit 5-8 bit
characters, with or without parity, and one or two stop
bits., See attachment for o detoiled specification of the
1854 UART. To transmit a character, the character is loaded
into the transmitter holding register. The UART then
transfers it to the transmitter shift register, where it is
serially shifted onto the transmit line.

Due to current limitations in the simulator (only a single
input and a single outputl), and because of the complexity of
the 1854, several assumptions are made and limitctions are
placed on the operation of the 185S4.

First, the 1854 expects an external clock input connected to
TCLOCK (pin 40) to be 16 times the actual transfer rate of
the serial data. To simplify the simulation, TCLOCK is
assumed to be identical with the transmit frequency.

Second, the 1854 is assumed to be configured to operote in
Made O by grounding pin 2 on the chip. In this mode many
important output functions are directly available os output
pins an the chip. 7The chip is aolso configured to transmit 5
data bits. The specificotion stotes that 1.5 stop bits are
traonsmitted ofter a S bit character if the chip is
configured for 2 stop bits. The simulation assumes that 2
stop bits are transmitted with 5§ bhit characters.
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2. INPUT FUNCTION

For this simulation, inputs of the 1854 are taken as
TCLOCKC(H), the external clock input, and THRLCL). Note that
the polarity of the signal is designated in porenthesis
after the signol. "H” means the signal is activaoted, or
asserted when the signal is high, or logic value 1. "L”
means the signal is asserted when the signal is low, or
logicol value 0. THRL is the transmitter holding register
load signal and is active-low.

Because of the limitotions of having only a single input,
the two binary input signals are encaoded intoc a four level
input function. This input function is shown in figure 1.
The values of the binary inputs aond the level of the input
function are reloted os here:
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COP1854% UART 2

THRLCL] TCLOCKCH] INPUT FUNCTION LEVEL

Again, referring to figure 1, it can be seen that the input
signal initiaclly alternotes between levels 2 and 3. This is
equivalent to the TCLOCK input changing as expected with
THRL high, or not aosserted.

When the input signal alternates between levels 4 and 1,
this is equivolent to the THRL signal being asserted (recall
that it is asserted when its value is a logical O] and the
clock input continuing as befare. Finally the THRL signal
becomes not asserted and the clock continues as before.

What the input Function is modeling is the normal operaotion
of the 18S4 UART and an aosynchronpus signal which loads a
character into the halding register of the UART. The time
axis for oll plots is expressed in units of microseconds.
Thus, a time interval of 2 is equaol to 2 microseconds and a
time intervol of .3 is equal to 300 nanoseconds.

3. DIGITAL FUNCTION GENERATORS

Before explaining the DFGs themselves, it is first necessary
to explain the meaning of each of the 9 state values. Five
bit characters ore being transmitted olong with o start bit
and two stop bits. In addition, the UART may be in a mark
state (no data available to transmitl. This implies the
following 8 states olong with their staote levels:

State Level Stote Description

start bit transmission

data bit transmission

data bit transmissian

data bit transmissian

data bit transmission

data bit transmission
first stop bit transmission
second stop bit transmission
mark transmission

woNOWLWR P
W~ o

Some of the DFGs for the simulation are shown in figures 2-
18. Only the DFGs for input levels 1 and 3 are shown since
the DFGs for input levels 2 and 4 are constant. This makes
sense because during levels 2 and 4, the clock input,
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- TCLOCK, is low and it is assumed that transitions occur on &
g the rising edge of the clock pulse. o :::
ARG
“u To explain the DFGs in figures 2-18, see figure 2 os a ":;:::"
o typical example. Continuity of state is aossumed in the DFG :\':\';s"
K and after a time interval of .3 [ 300 ns ) the state RN X
transitions from state 1 to state 2. The 300 ns delay ,.'._ _
:"’.; reflects the specification for the 1854. :i_).:)'\ .
A DO,
Note in figure 18 that after 300 ns, the state transitions ::::"‘3: ]
-~ from state 8 to state 1. In other words, the UART transmits RN
another stact bit after transmitting the last stop bit. :ﬁ:;ﬂ-
= This is true gssuming another charoccter is available to ".“‘ ;
transmit after the current character has been sent. AT
7 NN
- -"‘4’:'-'(“
4. STATE FUNCTION .:."3;.-_‘:
PRNN
E The stote function versus time is shown in figure 20 emaTh
gssuming an initial state of 8 ( mark state ). 0On the @
rising edge of the next clock pulse, the UART transitions to
N state 1, then 2, and soc an. This shows that the 1B5Y4 is
transmitting a charocter, bit by bit, as it proceeds from .

one state to the next. L

I'}‘

In actual operation of the 185%, it would not proceed from a
mark state to start bit transmission staote unless the THRL
input signal is pulsed to load a character. With the

P " et e <___,,
L e e e d ST d
PR o

PR LY a0

. Ll SRR "
e e S -

A

:‘\ limited number of states in this simulation, it is not
" possible to know if the transmitter holding register is
empty unless the THRE signal is maonitaored as another input.
g This deviation from actucl operation in the simulation does Py, A
o not obviate the results, however. e -:.::
4 S. OUTPUT FUNCTION 2
LS S
Three ocutput signals are modeled for the 1854. SDO(H), the " P
serial dato output of the UART is where the ocutput data is ‘ -\-\_}- ‘
. observed. THRE(H], transmitter holding register empty, is :s.\":c: A
asserted when the contents of the transmitter holding IO
v register have been transferred to the transmitter shift :}"‘s‘_ 2
¢ register. TSRE(H], transmitter shift register empty, is AR
¢ asserted when the last stop bit of the charaocter has been N>
tranamitted and there is no character in the holding N
- register.
o
THRE and TSRE become not asserted when the input signal THRL .
- is asserted. After THRL becomes not asserted, the charaocter .
L that has been loaded into the holding register is o 5
< transferred to the shift register and THRE is asserted. \::.-
O
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’ The three binary output signals are encoded into a single B8 -
. level oputput function os in figure 21. The output signals ;"" N
and the corresponding output function level are shoun below: :.‘ :
- Ly
o TSRE(H] THRE(H)] SDOCH] Qutput Function Level "c'.lu )
< s z-oosn oo e ___—_————— Q’ 13\\:
. o Q o 8 .
I (o] o 1 1 RN
-~ 0 1 0 2 RGN
o} 1 1 3 ._\;.'\-
= 1 0 0 4 sy
‘-." 1 0] 1 S N
1 1 0 B -

1 1 1 7 !—\—
o AT
The output function waveform aossumes that a five bit ::,‘: X
N character ”00101” is transmitted, with bit O , a logical 1, :.*1{-"3
‘ transmitted first. Referring to figure 21, the output 51‘7-’-_
= function starts at level 7 [ initially, holding register and g',%.
- shift register are empty, a mark gor logical 1 is output on \j\__\_‘_
- SDO0). After the next clock pulse the output level draps to :&;f? 4
Ny 2 [ holding register still empty, start bit transmitted). ONEN
The output momentarily shifts to level 3 then to level 1 M
. indicating that bit O is being transmitted (logical 1), and 1 nl o,
3] meanwhile, the THRL input signal is asserted to clear THRE. ET,:
< . e
- Next, bit 1 is transmitted (logicol 0) and THRE is re- R
-~ osserted because the character has been transferred ta the e e
- shift register and the holding register is now empty. Then :'-::'-';.‘-
bits 2 through B are transmitted, aond two stop bits. AT

- Assuming the holding register has been refilled, the

transmittaer continues to transmit, beginning with a start
bit, ond so on.

A\
-
< 6. SUMMARY
-7 This 1BS4 UART exaomple is a good illustration of the utility :\l-}:
o~ of the SAM simulator. It shows the basic cperation of the ’ -,-*-::\:-'
UART for transmitting S bit charocters. This example also '{::":"_'
4 surfaces several problems in the simulotor. ;::’::
- o P
First, it is difficult to "see” the transitions on the [
individual binary inputs and ocutputs since they aore encoded NN MR
‘_‘ in a single multi-level signal. A more useful simulotor ,-.:\ﬁ-.’
o would allow seporate inputs to be specified individually. -;:&c:.
The same statement is true for the outputs. ;\&i:
-
L Second, it is difficult to accurately model what happens .Q'Q:”'\
o when the last stop bit of a charaocter is transmitted. The RS
) UART has to sample the THRE signal. If this signal is RO
- agsserted, then enter the mark stote. If this signol is not AT
. asserted, transfer a character from the haolding register to \.\\
AU
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the shift register, enter the transmit start bit state, and
assert THRE. The difficulty is that THRE needs to be used

as both an input and cutput signal. The current simulator

does not gllow outputs to be fed bock to inputs.

A less desirable way to circumvent this problem is toc add 9
more stotes, defined as for the first 9 states except that
one state means THRE is asserted and the other state means
THRE is not asserted. This immediately doubles the
requirments of the model, however.

Further work will allow the simulator to better model the
precise behavior of asynchronous devices, and thus provide
more accurate results.
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RCA CMOS LS| Products

CDP1854, CDP1854C

ass

Ta T

Features:

COP18S4ACD H-1001

o Two operating modes:
Mode O-functionaily compatible with
industry types such as the TR1602A
Mode 1-interfaces directly with
CDP1800-series microprocessors 8 Fully programmable with externally se-
without additional components

Programmable
Universal Asynchronous
Receiver/Transmitter (UART)

8 Baud rate-DC to 200 K bits/sec

@ Vpp=5Vv
DC to 400 K bits/sec

@ Vpp=10Vv

lectable word length (5-8 bits), perity

COP1ISIAE @ Full- or half-duplex operation inhidit, even/odd parity, and 1, 1'4, or
COP18S4ACE H-1002 ® Parity, framing, and overrun error 2 stop bits
detection @ Faise start bit detection

The RCA CDP1854A and COP1854AC are sificon-gate
CMQOS Universal Asynchronous Receiver/Transmitter
(UART) circuits. They are designed to provide the necessary
formatting and control for interfacing between serial and
parallel dats. For example, these UARTS can be used to
interface between a peripheral or terminal with seriai /O
ports and the 8-bit CDP1800-series microprocessor paraliel
data bus system. The CDP1854A is capable of full duplex
operation, i.e,, simuitaneous conversion of serial input data
to parsilel output data and parallel input data to serial
output data.

The COP1854A UART can be programmed to operate in
one of two modes by using the mode control input. When
the mode input is high {(MODE=1), the CDP1854A is

Vi

NC*NO CONNECTION
FECH- 204300

Mode
Terminal Assignment

directly compatible with the CDP1800-series micro-
processor system without additionat interface circuitry.
When the mode input is low (MODE=0), the device is
functionslly compatible with industry standard UARTs
such as the TR1602A. It is also pin compatible with these
types, except that pin 2 is used for the mode control input
instead of 8 VgGg=-—12 V supply connection.

The CDP1854A and the CDP1854AC are functionally
identical. The COP1854A has 8 recommended operating-
voitage range of 4-10.5 voits, and the COP1854AC has a
recommended operating-voltage range of 4-8.5 voits.

The COP1854A and CDP1854AC are suppliad in hermetic
40-tead dual-in-line ceramic packages (D suffix) and in
4Q-lesd dual-in-line plastic packages (E suffix). The
COP1854AC is als0 available in chip form (H sutfix).

]
2
3
4
3
[
?
[
9

[~ 111 92€8- 2085008
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Terminal Assignment
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1800-Series Peripherals
CDP1854, CDP1854C

MAXIMUM RATINGS, Absolute-Maximum Values:
OC SUPPLY-VOLTAGE RANGE, (VpD)
(Voitage referenced to Vgg Terminal)
COPIBBMA ... ovvinrnrrnnosesncsssnsannaossasnns o -0Sto+11V
COP1BS4AC .. ........... . Ve resteaeecitenanttesranes -0Sto+7V
INPUT VOLTAGE RANGE. ALL INPUTS ...
OC INPUT CURRENT, ANYONE INPUT ... ..icviennncnancnans [P
POWER DISSIPATION PER PACKAGE (Pp):
For TA=—401t0 +80°C (PACKAGE TYPEE) ......covvvvrnnnanenannes
For To=480 to +83°C (PACKAGE TYPE E) Derate Linearly at 12 mw/*C to 200 mW
For TA=—5810 100°C (PACKAGE TYPED) .. .ucvvtuuiesenssnnrneseersosarsenssasassssnssessnsos ereees. 500 mW
For Ta=+100t0 +125°C (PACKAGE TYPED) ....vvvicrnnerasnsonsesensas veaevan Derate Linearty at 12 mW/*C to 200 mW
DEVICE DISSIPATION PER QUTPUT TRANSISTOR
FOR Tao=FULL PACKAGE-TEMPERATURE RANGE (All Package Types) ...
OPERATING-TEMPERATURE RANGE (Tp):
PACKAGE TYPED........ vrsenaane
PACKAGE TYPE E
STORAGE TEMPERATURE RANGE (T'gq) Ceeserassanen .
LEAD TEMPERATURE (DURING SOLDERING):
At distance 1/16 + 1/32in. (1.59 = 0.7 mm) trom case for 10 s max.

- & -{A'.

e e,
PR

’

Mode Input High (Mode = 1)

COP1802
TIANSHITTEI‘ SECTION INTERFACE RECEIVER  SECTION

g

EE ol

ats . &

v e

l Lo ]kl

TTER RECEIVER
TIMING & CONTROL TIMING 8 CONTROLS

N )

-

TRANSMITTER N"

"uun IMTERCONNECT 22CH-20a890Y

Fig. 1 - Mode 1 dlock diegram (COP1800-series microps
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RCA CMOS LSI Products
CDP1854, COP1854C
STATIC ELECTRICAL CHARACTERISTICS at T, = —40 to +85° C, uniess otherwise noted.
CONDITIONS LIMITS
CHARACTERISTIC vo | vin | VoD CDP18S4A COP1854A UNITS
(V) | (V) | (V) | Min. | Typ.*[ Max. | Min. { Typ.*| Max.
-~ 105§ 5 -~ 1001} SO — 1 002] 200
i | |
Quiescent Device Current, Ipp — lo.10] 10 _ 1 200 | — _ _ uA
04 10,5 5 0S5 1 1% - 055} 1.1 -—

t Ori ink L A
Output Low Orive (Sink) Current, {0t 05 lo.10] 10 13 28 _ _ _ - m
Qutput High Drive (Source) Current, 10K 46 [ 0.5 5§ |—055]—-11| — [-05§f -1.1] — mA
(Except pins 24 and 25) 95 [0,10] 10 | ~1.3| 28} — — — —

Output High Drive {Source) Current, 10 46 ] 0,5 5 ~-18)-35| — | -16}| -35| — mA
Pins 24 and 25 85 jo,10] 10 | ~28]| -80] — — —
- 0.5 5 - 0 0.1 - 0 0.1
tput Voltage L Level, d
Qutput Voltage Low-Level, VoL _ o101 10 _ 0 0.1 _ _ _ v
- {05 5 49 5 - 49 5 -
t Vol igh- s
Output Volitage High-Level, Vo — lo.so] 10 09 10 _ _ _ _
0.545] — 5 - -— 1.5 - - 1.5
1 t Low Voitage, vV
nput Low Voltage, V| 0595 — 10 - 3 - - - v
0545 — ] 35 - - 35 - -
! t High Voltage, V
nput High Voltage. Vin 0885 — | 10| 7 | - | -1 =] -] ~
- 1058 5 - - +1 - — 1
Input t, |
put Current. IIN PR T I I N P S e e
0,5 0.5 5 - - +1 - - 1
3-State t Kk , A
§i Qutput Leakags Current, IOoyT 0.10 {0.10 | 10 _ —{+1w0| - _ _ "
-— 0.5 5 - 1.5 3.0 - 1.5 3.0
[ ]
Operating Current, 101 —~ lo.10] 10 _ 8.0 12 _ _ _ mA
Input Capacitance, Cin —_ - - — 5 7.5 - 5 7.5 E
Output Capacitance, Coyr - - - - 10 15 - 10 15 e

‘Typical vaiues are for To=25"C.

*loL=lgH=1 kA.

*Operating current is measurad at 200 kHz for Vop=% V and 400 kMz for Vpp=10 V in a COP1800-series microprocesscr system,

with open qutputs.

AECOMMENDED OPERATING CONDITIONS at Ta=Full Package Temperature Range

For maximum reliability, operating conditions shouid be selected 30 that operation is always within the following ranges:

Mode 1
CDP1800-Ser 5\,
SIGNAL FUN -I\#'.,
D: H
Posmvo supp! . "' -\_-"
MODE SELEC q
A high-levei v "J- o
microprocess: " '-c-
vss: -
Ground " RSN
A S
CHIP SELECT "0
Alow-level vo '\-‘ o
selacts the cc . J'.\ ~

RECEIVER BL %"
Receiverparal . .
to correspond > -

INTERRUPT ( @ ___
A low-levei vo -.
one or more ¢ '\

FRAMING ER .~
A high-level
received char .
following the ; . .
voltage. This u-"u ",
transterred to

PARITY ERRC .y R
A high-igvel ve « %" ~
PE or OE bitir ™
Register Bit A = ™ :—

REGISTER SE‘ : Y
This input is v, ooy
Registers (hi¢ " a"a
registers (low @

RECEIVER CL *.>.¥

Clock inputw . -
shift rate. ‘-.,.
\ (

TPR: . -". .,

A positive inpu 1, ~"‘-:
DATA AVAILZ \,3\
A low-lavel vc = M &

character has ( f.
Holding Regis

SERIAL DAT2
Serig! data rec
Shift Register
length. A higt
data is not be:

CLEAR (CLEZ ..

A low-ievel vc 'f""‘
o

Flop, Receive

Status Registe

CONDITIONS LIMITS

CHARACTERISTIC Voo COP18S4A COP1834AC | UNITS

v Min. | Max. | Min. | Mex.
OC Operating-Voitage Range - 4 10.5 4 8.5 \
Input Voltage Range - vVss | Vool Vss | Voo v

- - X bi

Baud Rate (Receive or Transmit) 5 200 200 bits

10 - 400 - - /98¢
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1800-Series Peripherais

Functions! Definitions for CDP1854A Terminals
Mode 1

CDP1800-Series Micropr
SIGNAL: FUNCTION

r Compatible

vVpo:

Positive supply voitage

MODE SELECT (MODE):

A high-level voltage at this input selects COP1800-series
microprocessor Mode operation.

Vss:

Ground

CHIP SELECT 2 (CS2):

Alow-level voltage at this input together with CS1and CS3
selects the COP1854A UART.

RECEIVER BUS (R BUS 7 - RBUS 0):
Receiver paralie] data outputs (may be externaily connected
to corresponding transmitter bus terminals).

INTERRUPT (INT):
A low-{evel voitage at this output indicates the presence of
one or more of the interrupt conditions listed in Table |.

FRAMING ERROR (FE):

A high-level voitage at this output indicates that the
received charscter has no valid stop bit, i.e., the bit
tollowing the parity bit (it programmed) is not a high-ievel
voltage. This output is updated each time a character is
transterred to the Receiver Holding Register.

PARITY ERROR or OVERRUN ERROR (PE/QE):

A high-level voltage at this output indicates that either the
PE or OE bitin the Status Register has been set (see Status
Register Bit Assignment, Tabie |I.

REGISTER SELECT (RSEL):

This input is used to choose either the Controi/Status
Registers (high input) or the transmitter/receiver data
registers (low input) according to the truth table in Tabie (il.

RECEIVER CLOCK (RCLOCK):
Clock input with a frequency 16 times the desired receiver
shift rate.

TPB:
A positive input pulse used as a data load or reset strobe.

DATA AVAILABLE (DA):

A low-ievel voitage at this output indicates that an entire
character has been received and transferred to the Receiver
Holding Register.

SERIAL DATA IN (SOI):

Serisl dats received on this input fine enters the Receiver
Shift Register at s point determined by the character
length. A high-level input voitage must be present when
data is not being received.

CLEAR (CLEAR):

A low-level voltage at this input resets the Interrupt Flip-
Flop, Receiver Holding Register, Control Register, and
Status Reglster, and sets SERIAL DATA OUT (SDO) high.

CDP1854, CDP1854C

TRANSMITTER HOLDING REGISTER EMPTY (THRE):

A low-level voltage at this output indicates that the Trans-
mitter Holding Register has transferred its contents to the
Transmitter Shift Register and may be reloaded with a new
character.

CHIP SELECT 1 (CS1):

A high-ievel voltage at this i.\put together with CS2 and CS3
selects the UART.

REQUEST TO SEND (RTS):
This output signal tells the peripherai to get ready to
receive data. CLEAR TO SEND ( ) is the response from

the pcriph_erll. RTS is setto alow-level voltage when data is
lstched in the Transmitter Hoiding Register or TR is set
high, and is reset high when both the Transmitter Holding
Register and Transmitter Shift Register are empty and TR is
low.

SERIAL DATA QUTPUT (SDO):

The contents of the Transmitter Shift Aegister (start bit,
data bits, parity bit, and stop bit(s) are serially shifted outon
this output. When no character is being transmitted, 8 high
level is maintained. Start of transmission is defined as the -
transition of the start bit from a 1.igh-level to a low-ievel
output voltage.

TRANSMITTER BUS (TBUSO0-TBUS 7):

Transmitter parailel data input. These may be externally
connected to correspondinrg Recaiver bus terminals.
RD/WR:

A low-level voltage at this input gates dJdats from the
transmitter bus to the Transmitter Holding Register or the
Control Register as chosen by register select. A high-leve!
voitage gates data from the Receiver Holding Register or
the Status Register, as chosen by register select, 1o the
receiver bus.

CHIP SELECT 3 (CS3):

With high-level voltage at this input together with CS1 and
CS2 selects the UART.

PERIPHERAL STATUS INTERRUPT (PSI):

A high-to-low transition on this input line sets & bit in the
Status Register and causes an INTERRUPT (INT=low).
EXTERNAL STATUS (ES):

A low-level voltage at this input sets a bit in the Status
Register,

CLEAR TO SEND (CTS):

When this input from peripheral is high, transfer of a
character to the Transmitter Shift Register and shifting of
serial date out is inhibited.

TRANSMITTER CLOCK (TCLOCK):
Clock input with 8 frequency 16times the desired transmitter
shift rate.
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RCA CMOS LS| Products

CDP1854, CDP1854C
Table | — Interrupt Set and Reset Conditions
SET* (INT = LOW) RESET (INT = HIGH)
CAUSE CONDITION TIME
DA Read of data TPB leading edge
(Receipt of data)
THRE*Y Read of status or TPB leading edge
(Ability to reload) write of character
. THRE - TSRE RAead of status or TPB leading edge
(Transmitter done) write of character
PST Read of status TPB trailing edge
{Negative edge)
cTs Read of status TPB leading edge
{Positive edge when THRE - TSRE)

*interrupts will occur only atter the IE bit in the Control Register (see Table 1V) has been set.
*THRE will cause an interrupt only after the TR dit in the Control Register (see Table 1V) has been set.

Table Il — Status Register Bit Assignment

When set high, this bitindicates that an entire character has
been received and transterred to the Receiver Holding
Register. This signal is aiso available at Term. 19 but with its
polarity reversed.

1~OVERRUN ERROR (OE):

When set high, this bit indicates that the Dats Available bit
was not reset before the next character was transferred to
the Receiver Holding Register. This signal OR'ed with PE is
output at Term. 15.

2—PARITY ERROR (PE):

When set high, this bit indicates that the received parity bit
does not compare to that programmed by the EVEN
PARITY ENABLE (EPE) control. This bit is updated each
time a character is transferred to the Receiver Holding
Register. This signai OR'ed with OE is output at Term. 15.

3-~FRAMING ERROR (FE):

When set high, this bit indicates that the received character
has no valid stop dit, |.e., the bit following the parity bit (if
programmed) is not a high-ievel voitage. This bitis updated
each time a character (s transferred to the Receiver Hoiding
Register. This signal is aiso available at Term. 14.

it 7 [ 5 4 3 2 1 0
| Signal THRE | TSRE | Psi | ES | Fe | PE | OE | DA
Also Avallable st Terminat | 22° | — - — [ 14 | s | 15 | e
*Poiarity reversed at output terminai.
it Signai: Punction
0—DATA AVAILABLE (DA): 4—EXTERNAL STATUS (ES):

This bit is set high by & low-level input at Term. 38 (ES).

§—PERIPHERAL STATUS INTERRUPT (PSI):

This bit is_set high by a high-to-low voltage transition of
Term. 37 ). The INTERRUPT output (Term. 13) is also
asserted (INT=low) when this bit is set.

8—TRANSMITTER SHIFT REGISTER EMPTY (TSRE):
When set high, this bit indicates that the Transmitter Shift
Register has compieted serial transmission of a full
character including stop bit(s). It remains set until the start
of transmission of the next character.

T—TRANSMITTER HOLDING REGISTER EMPTY (THRE):
When set high, this bit indicates that the Transmitter
Holding Register has transterred its contents to the
Tranamitter Shift Register and may be reloaded with a new
character. Setting this bit aiso sets the THRE output (Term.
22) low and causes an INTERRUPT (iNT=low), if TR (s
high.

ol J_g'.;r.: .-_:J:_;.';-’;r;;,‘f{(,‘_.-."r',:f_:‘r‘:a Y
. 5 3 5 3 3 W

Ao

L S S S

o

AT
2

Description of
processor Com

1. Initislizetion

in the COP180
the COP18544
send status vis
connected to

determined by

Toble
RD/W
Low

ASEL
Low

Low | Higt

High | Low

High | Higt

in this mode t'
tional bus syst
connectedtot
control outpu’
CDP1854A ing
puised, resetti
Registers and
Control Regis
order to dete

4

5585

l)"‘a. "ﬁ.
Ny

>y
5
LR S
5

l [ g
:‘\, & %
]

'v"“
9
*

SRR
(oL

‘,-l
e
‘e’s

A

“a"y
g
P

]
»
!
3

20"
"
LI

e ety s WD
. l
4

A 8
o

2 %5

’
.
. K

6‘1

UART. Data is .
to the Contrc o
selected CS?
designated (R. .~
8 Status Regis
(RBUSO-RE ~ .
UART. Some -
separate term:
2. Transmitter ..
Before beginr ~ .~
(TR) bitinthe - ..
V) is set. Lo - !
7=high)inhid -
two loads are « 'I- N
10 set TR. W 2 07y
signalling the :-“.".'1
Register is & -
causesgssert <. 2.
(ATS) output " .
torproperope ..~. *
to enabie S
The Transmitt « 3"
TP8B during ;." oy
CDP1854A is X4"s
Holding Regi .\ 5.1
When m.?[ S A
connected to s~ %
Transmitter € S
mitter Moldin, .
CTS i aiway RPN
loaded on th. .-
occurs at iea: .
TPB and trar
period ister ( -
bit(s) wili be
word lengths. .-
unused bits .- | .
transmitted. i [Yhu .
——————— . .n
- .:.\:: :
g
‘::..-:.
LU RN
N
NS
-
S
\’:‘-{‘w
e

N L NN
RARARN N
el

R

b PTG FOVRRCMN



a)

[

'y

%]

! “start
‘o

HAe):
1amitter
%) the
"o NOW
T erm.
A1TRis

N e R e e -
ARSI -‘*'!\'.-.'.\’!\_Q.’\"\'- el

PETATETLYY VU VW T TP T P

Description of Mode 1 Operstion COP1800-Series Micro-
processor Compatible (Mode lnput=¥pp)
1. iniislization and Controls

in the COP1800-series microprocessor compatible mode,
the CDP1884A is configured to receive commands and
send status via the microprocessor data bus. The register
connected to the transmitter bus or the receiver bus is
determined by the RD/WR and RSEL inputs as follows:

Table Il — Register Selection Summery

RSEL | RO Function
Low | Low [Load Transmitter Holding Register from
ransmitter Bus
Low | HMigh Receiver Holding Register from
ver Bus

High | Low Load Control Register from Transmitter
us

High [ High JRead Status Register from Receiver Bus

In this mode the COP1854A is compatibie with 8 bidirec-
tional bus system. The receiver and transmitter buses are
connected to the bus. COP1800-series microprocessor I/Q
control output signals can be connected directly to the
COP1854A inputs as shown in Fig. 2. The CLEAR input is
puised, resetting the Control, Status, and Receiver Holding
Registers and setting SERIAL DATAOUT (SDO) high. The
Control Register is loaded from the Transmitter Bus in
order to determine the opersting configuration for the
UART. Data Is transterred tfrom the Transmitter Bus inputs
to the Control gso'glstor during TPB when the UART is
selected CS1 - - €S3=1) and the Control Register is
designated (RSEL=H, RD/WR=L). The COP1854A aiso has
a Status Register which can be read onto the Receiver Bus
(R BUS G- R BUS 7) in order to determine the atatus of the
UART. Some of these status bits are also avsiladble st
separate terminais as indicated in Table I1.

2. Transmitter Operation

Betore beginning to transmit, the TRANSMIT REQUEST
(TR) bitin the Control Register (see bit assignment, Table
V) is set. Loading the Control Register with TR=1 (bit
7=high) inhibits changing the other control bits. Therefore
two loads are required: one to format the UART, the second
to set TR. When TR has been set, a TRAN
(THAE) interrupt wit! occur,
signalling the microprocessor that the Transmitter Holding
Register is empty and may be loaded. Setting TR aiso
causes assertion of a low-ievel on the REQUEST TO SEND
{RATS) outputto the peripheral. It is not necessary to set TR
for proper operation for the UART. If desired, it can be used
to enable interrupts and to generate the TS signat.
The Transmitter Hoiding Registeris loaded from the bus by
TPB during execution of an output instruction. The
CDP1854A is seiected by CSt - - CS83=1, and the
Holding noamov is selected by RSEL=L and RO/WR=L.
When the input, which can be
connected to a peripheral device output, goes low, the
Transmitter Shift Register will be loaded from the Trans-
mitter Holding Register and data transmission will begin. If
is siways low, the Transmitter Shift Register will be
loaded on the first high-to-low edge of the clock which
occurs at least 1/2 clock period after the trailing edge of
TPB and transmission ot & start bit will occur 1/2 clock
period (ater (see Fig. 3). Parity (if programmed) and stop
bit(s) wiit be transmitted following the last data bit. It the
word length selected is ess than 8 bits, the most significant
unused bdits in the transmitter shift register will not be
transmitted.

One transmitter clock period after the Transmitter Shift
Register is loaded from the Transmitter Holding Register,
the THRE signat wiil go low and an interrupt will occur (TN
goes low). The next character to be tranamitted can then be
ioaded into the Transmitter Holding Register for trans-
mission with its start bitimmediately following the last stop
bit of the previous character. This cycie can be repeated
until the last character is transmitted, at which time s final
THRE - TSRE interrupt will occur. This interrupt signais the
microprocessor that TR can be turned off. This is done by
roloudlngrtho original control byte in the Cantrol Register
with the TR bit = 0, thus terminating the Fe‘bvéa"m
SEND {ATS) signsl.

SERIAL DATA OUT (SDO) can be held low by setting the
BREAK bit in the Cantrol Register (see Tabie IV). SDO is
heid low until the BREAK bit is reset.

TCLocK ICLOC1

L] ASEL !

~ < cs !
S ' usf—o

- 3 .

csy

Voo .
WA o I
PO TP UART . ..
cPy TN —— —a. COPIBSEA oo g
: ‘p— TNT ! "
T e
T~ — = —— - THRE a
L VR 1 ‘ L

p——-aFE |
T = i SO r——

. ‘o— = - PE/OE

‘:i

' T oS
nBus
CLEAR CTLEAR _ wO0DE

92C3 - 2048001

Fig. 2 - Recommended CDP1800-sernes connéction,
Mode 1 (non-interrupt driven system).

3. Receiver Operstion

The receive operation begins when a start bit is detected at
the SERIAL DATA IN (SDI1} input. After detection of the tirst
high-to-low transition on the SDI line, a valid start bit is
verified by checking for a low-tevel input 7-1/2 receiver
clock periods later. When & valid start bit has been verified,
the following data bits, parity bit (if programmed) and stop
bit(s} are shifted into the Receiver Shift Register by clock
puise 7-1/2 in esch bit time. The parity bit (it programmed)
is checked and receipt of a valid stop bit is veritied. On
count 7-1/2 of the first stop bit, the received data is loaded
into the Receiver Holding Register. if the word tength is less
than 8 bits, zeros (low output level) are losded into the
unused most significant bits. It DATA AVAILABLE (DA)
has not been reset by the time the Receiver Holding
Register is loaded, the OVERRUN ERROR (OE) status bit is
set. One haif clock period later, the PARITY ERROR (PE)
and FRAMING ERROR (FE) status bits become vaiid tor the
character in the Receiver Holding Register. Atthis time, the
Date Available status bit is also set and the DATA
AVAILABLE (DA) and INTERRUPT (INT) outputs go low,
signalling the micropgocessor that & received character is

1800-Serles Peripherals
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RCA CMOS LSi Products
CDP1854, CDP1854C
ready. The microprocessor responds by executing an input rovided for communication with a peripheral. The OYNAMIC ELE:
instruction. The UART's 3-state bus drivers are enabied REQUEST TO SEND (RTS) output signal_sierts the €y =100 pF, see
‘ when the UART is selected (CS1 - C32 - CS3=1) and ripheral to get ready to receive data. The CLEA! .
| RO/Whi=high. Status can be read when RSEL=high. Data 0 (ETS) input signal is the response, signalling that
: Is read when RSEL=low. When reading_dats, TPS latches the peripheral is ready. The L
i dats in the microprocessor and resets DATA AVAILABL inputistches a periphersi status level, and the PERIPHERAL -
! (DA in the UART. The preceding sequence is repeated for Input senses & status edge T__T ..
’ each serial character which is received from the peripheral. (high-to-tow) and also generates an interrupt. For exampie, M " N
. the modem OATA CARRI line could de oA
connected to the PST input on the UART in order to signat Minimum Clock '\"':'."-'j
. the microprocessor that transmission failed because of - Tty
] 4. Peripheral interface loss of the carrier on the communications line. The PS| and Minimum Puise .- -\,-::4'
; in sddition to serial deta in and out, four signals are ES bits are stored in the Status Register (see Tablie (). Clock Low Le \'_f -.:‘\‘
’ e e
; _ o j
; ‘ Clock High Le » "
- : Table IV — Control Register Bt Assignment
: ST
] P8 -_.‘\v_.}.,
! 0 7 s 5 s 3 2 1 0 v A
: Signal TR| BREAK| 1E | wis2| wis1| ses| ere| o nimum Setup v~ 09
' TP8 to Clock . My
t Propsgation De N
g B Signai: PFunction Clock to Data
i 0—PARITY INHIBIT (Pl): 5—INTERRUPT ENABLE (IE): TPBto T
‘ When set high parity generstion and verification are When set high THRE, DA, THRE - TSRE, CTS, and PSI to THRE
| inhibited and the PE Status bit is held low. It parity is interrupts are enabled (see interrupt Conditions, Table I). e
! inhibited the stop bit(s) will immediately foliow the iast dats 8—TRANSMIT BREAK (BREAK): Clock to THR +
bit on transmission, and EPE is ignored. Hoids SDO low when set. Once the break bit in the control :
1—EVEN PARITY ENABLE (EPE): register has been set high, SOO will stay low until the break
When set high, even parity is generated by the transmitter bit is reset low and one of the following occurs: CL| *Typical values ar
and checked by the receiver. When fow, odd parity is goes low; goes high; or a word i trangmitted. (The *Maximum limits
selected. transmitted word will not be valid since there can be no start -~
2~-STOP BIT SELECT (SBS): bit if SDO is llnl'dy low. SDO can be set high without :\ :s“'-‘
i intermediate transitions by transmitting a word consisting O
: See table below. of ail zeros) Rt
: . ) L A
: 3—WORD LENGTH SELECT 1 (WLS1): 7—TRANSMIT REQUEST (TR): ST
See table below. LN
i When set high, ATS is set low and data transfer through the Lo
4—~WORD LENGTH SELECT 2 (WLS2): transmitter is initiated by the initial THRE interrupt. (When -:.-‘("
See table below. loading the Control Register from the bus, this (TR) bit Faday
inhibits changing of other control flip-fiops). ._'
e e,
g Bite | Bit3 [B12 &
)
¥ wisz2[wis1 | sas Function "
0 0 0 |5 data bits, 1 stop bit
0 g 1 {5 data bits, 1.5 stop bits
. 0 1 0 |6 data bits, 1 stop bit L
0 1 1 |8 ¢ata bits. 2 stop bits e
! 1 [} o 7 data bits, 1 stop bit .
b 1 0 1 |7 data bits, 2 stop bits .
-4 1 1 0 [ data bits, 1 stop bit o
g 1 1 1 |8 data bits, 2 stop dits .
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1800-Series Peripherals
50!’1854, CDP1854C it
DYNAMIC ELECTRICAL CHARACTERISTICS st Ty = -40 to +85°C, VDD 8%, lnir=20 ne, Vi(=0.7 VgD, ViL*0.9 YDO. *
Gy =100 pF, see Fig. 3. H
' $98 .
l‘qm 1 10 .
CHARACTERISTIC Voo cory 4] uNITS ¢ ! i NN
n . . 1A RN,
™ Typ.! | Mz | Max. ARt : I N
Tranemitter Timing — Mode 1 ' ; i NN
1 10 844 3
Minimum Clock Period tce ‘50 3:: : o 0 3 ns 1 é ¥
LT 4° . — e : i - SN
Minimum Pulse Width: 5 100 [ t2s [ 10 | 128 e 1 % -
Clock Low Level oL | 10 78 100 - - ; ; K .
5 100 125 100 125 bal! f
lock M 11 AP
Clock High Leve!, tcH 10 75 100 _ _ ns it h N :
] 100 150 100 150 1t |1
P8 Ll T 78 - - " HIERE. Y
Minimum Setup Time: 5 175 | 225 | 171s | 228 n ,‘ S -
TPB to Clock e 10 90 150 — - PRNL ¢ T
Propagation Delay Time: 5 300 450 300 450 ne i % f_
Clock to Data Start Bit tco 10 150 228 - - g3l &
= [ 200 300 200 300 SRR
T 2y & .
TPB to THRE TTH 10 100 | 1%0 — — ne ‘1
— 5 200 300 200 300 S
Clock to THRE tCTH 10 100 150 _ _ ns 4
Hypical vaiues are for To=25°C and nominai voitages. ' § .
*Maximum fimits of minimum characteristics are the values above which all devices function. - i
N <
3
H
. 1
R
3y i
i)t
: ﬂ L
TRANSMITTER HOLOING * TRANSMTTER SiFT ™ * e t
REGISTER LOADED REGISTER LOADED -
\;. |4
T CLOCK &
' R g N = e
whTE | [} 1 R (
L e 8l
Tl !r;_n V-t :—.’crn ' g Aq
™ L ! it
- —teo ) o
%00 Y £ i

# THE HOLOING REGISTER 1S LOADED ON THE TRAILING EDGE OF TP

%% THE TRANSMITTER SHIFT REGISTER 13 LOADED ON THE FIRST MIGH -TO-LOW TRANSITION OF THE
CLOER WHICH OCCURS AT LEASY /2 CLOCK PEMOD + tve AFTER THE TRAL NG EDGE OF TPO, AND

TRANSIHSSION OF A START BIT OCCURS 1/2 CLOCK PERIOD + tep LATER.
t WRITE IS TME OVERLAP OF TP, CSi, AND C83 » 1 ANp CTY, no/ WRe 0.

Fig. 3 - Tranamitter timing disgram - Mode 1.
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CDP1854, CDP1854C e
OYNAMIC SLECTRICAL CHARACTERISTICS at Ty = -40 to +85°C, Vpp 5%, 1n14=20 ne, Vi=0.7 Yoo, ViL*0.3 Vpp. DYNAMIC ELECT ﬁ-‘i{
+ CL=100 pF, see Flig. 4. CL=100 pF, see FI. . - .1
& . . Lo o
ﬁ.r : LIMIT 3]
2y | CHARACTERISTIC Vpo COP1884A UNITS ATy
H -
§ I o | et mene] + ] Maxe 58
3 ‘ \
' Receiver Timing — Mode 1 CPU interface — \ ::‘\:'\
Minimum Clock Period tce y % 1 310 ) 20 ) 30 ne Minimum Pulse W %,
- 10 128 155 - = P8 i
E- Minimum Pulse Width: s 100 | 125 | 100 | 128 . Minimum Setup 71 ]
- o0
A Clock Low Level tCL 10 75 100 - - ASEL to Write "~
. -] 100 125 100 128 G
- Kk M '\_- -
: Clock High Level tcH 10 75 100 _ _ ns Oata to Write RSN
08 or | S 00 | 1% | 100 ) %0 | Minimum Hold Tin "1
10 IS = = RSEL after Write
Minimum Setup Time: L) 100 150 100 150 ns T
Data Start Bit to Clock we | 10 50 75 - - Dats after Write N
pagation Delay Time: [] 220 328 220 325 e DA
TP8 to DATA AVAILABLE oA 10 190 | 178 - - Typicet values are 1c .,
5 220 | 328 | 220 | 325 “Maximum fimith of ¢ > 57
ATA N
; Clock to DATA AVAILABLE tcDA 0 10 ot a o ne
) H] 210 300 210 300
Kk
| Clock to Overrun Error t1COE 1 108 150 _ _ ns
-1 240 375 240 s
[
Ciock to Parity Etror tCPE 10 120 175 _ _ ns
200 300
Clock to Framing Error tCFE y 200 ::: ns -
10 100 = = DYNAMIC EBLECT -
Typical vaiues are for n-wc and nomnal voitages. CL=100 pF, see Fy =
*Ma) limits of mi istics are the values above which ail devices tunction. — T
wlcey cLack ' ¢ ‘: .
ten ""‘"c«. SAMMLE CLOCK 7Yp LOAD HOLOING REGISTER. }P::-I‘
" cLocx Tl CPU intertace — F 7o
= 1 toc® P Minimum Pulse Wi "+ &
sor — STARY 817 PamTY [ sTommiT) v P8 ;
A [ ——
o o T - !’(“‘ Minimum Setup Ti o
3 = ! J 4 RSELtoTPB  .N.W
: Y = \ V ; Minimum Mold Tin - :'
2 ST - | BsELatwree
™ ! | tcoe Read to Data Acce o>%%
O" p p——
'. ; t
s | Read to Data Vailg -
.. ’I' t e
. Jl
v, .'_'gt_ RSEL to Data Valic
' ) .
Yy re . /— Hold Time:
] % 1P A START BT OCCURS AT A TIWE LESS THAN toc BEFORE A o -TO-LOW TRANSITION OF Tng CLOCK, T1oo 1400 Oata after Read
Loyl THE START BT MAY NOT BE RECOGMIZED WYII. THE NEXT HIGH - TO-LOW TRANSITION OF TNE CLOCK. e e,
"1 THE START 9IT MAY 8¢ COMPLETELY Wﬂ‘ THE CLOCK. [ 1 velves %>
Tn.' " ".':'i"lo.".‘.'.ﬁ':'i:' ng: 3’;&"’ ctt?n’to u.v'::.ho wovnt RECEIVER MOLDING REGISTER §Y THE *Maximum mvu::t * .
A TIME A WEW WORD (3 LOADED INTO THE RECEIVER HOLOING REGISTER, THE OF SIGNAL WILL COME TRUE
|." 1 OF ANO PR SHARE TERMINAL 13 AND ARE ALSO AVAILAGLE AS TWO SEPARATE TS IN TWE STATUS REGISTFR
>
1]
' Fig. 4 - Mode 1 receiver timing diagram.
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1800-Series Peripherals

CDP1854, CDP1854C

OYNAMIC ELECTRICAL CHARACTERISTICS ot Ty = 40 t0 +88°C, Vpp 5%, tn11=20 ns, Vjy=0.7 Vop. ViL=0.3 Vppo.
€1 =100 pF, see Fig. 8.

1 |

v
L

LIMITS
CHARACTERISTIC Voo COP1884A COP18S4AC UNITS

(\4] Yyp.! I Max.* t ] Max*
CPU intertace — WRITE Timing — Mode 1

Minimum Puise Width: § 100 150 150
TPB : 10 50 75 -
Minimum Setup Time: s 50 75
RSEL to Write | 10 25 40
] -100 -75
10 | -so | -3s
Minimum Hold Time: 5 50 75
RSEL after Write 10 40
4 s 5 128
10 40 80

—_—

f.:" Lol g

Ay’
[ 37 =

.
oy
+ »

Data to Write

Data after Write two

Typical values are for To=25°C and nominal voitages.
*Maximum limith of minimum characteristics are the vaiues above which ali devices tunction.
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DYNAMIC ELECTRICAL CHARACTERISTICS st Ty = -40 to +85°C, Vpp £5%, tn,t=20 ns, V)4=0.7 Vpp, Vi120.3 VpD.
C=100 pP, see Fig. 6.

. umIT
CHARACTERISTIC Voo CDPISBIAC uNITS
Win. I Typ.! i

) Max.*| Min. | Typ.' | Max.*

CPU Interface — READ Timing — Mode 1
Minimum Pulse Width: L} 150
P8 10 75
Minimum Setup Time: [ 7%
RSEL to TP8 10
Minimum Hold Time: L] 50 75
RSEL after TPB TRg | 10 25
5 200 300
10 100 150
s 200 300
10 100 150
s 150 225
10 78
Hold Time: L] 150
Data after Read tROH 10 78
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Reed 1o Dats Access Time tRDDA

Read to Data Valid Time tROV

.. .f.

L)
»

RSEL to Data Vaiid Time tRSOV
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LA

TTypical vaiues are for T4=28°C and nominel voitages.
*Maximum limits of minimum characteristics are the velues sbove which sl devices function.

&
7

X
~

LY

7'
0

‘.ﬁ.".'i.'"

‘:f
v

T?"?f

ey
"
c. "

-
o
L S
P

PR
’\\\‘.

ry

'-‘ -. ." .-. "o. ‘-‘ \h. .I‘ ‘e .-. .-
R A AR A AR




O

L
A

RCA CMOS LS| Products
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Fig. S - Mode 1 CPU intertace (WRITE) timing disgrem.
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Fig. 8 - Mode 1 CPU interface (READ) timing diagram.
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Functionsi Definitions & -
Standerd Mode 0 PN

Mode Input Low (Mode = 0) 1+ voo
2.3+ vey
T cLocK - 2100
l‘o l 34
TRANSMITTER RECEIVER ___4 e }.—"
[ nuing & conrmoL TIMING & CONTROL a:‘:-":v‘;l e

RECLIVER
L
NEGISTER

TRANS. ‘ CONTADY, e STATUS . 3-STaTe .
HOLDING MO REGISTER REGISTER I VERS
027283 VI RN l!!nus'r 2 413 ¥ 9 4 87 & % O 12
S - RO~ R w ¢evws ~ e e A L - £
D 2L we = s - - -
;!!!!;!g L s ch | 870 = m!???fisfno
TRANIMITTEA ngceivir
.8 ws

TRANSMITTER SECTION ALCEIVER sEchon

WL tessem

Fig. 7 - Mode 0 diock disgram (Industry
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A high-level voitage 8 "/ ",

A
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X
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~

RECEIVER BUS (R B
Receiver paraliel dats

PARITY ERAOR (PE)
A high-level voltage -
received parity does °
the EVEN PARITY E! ..
updsted eschtimesc .. .
Holding Register. PE -~ ..
bused together sinc: “ =" =%
provided by the STA” s <~
FRAMING ERROR (F @:

A high-level voitage ..~
received charscter
following the parity t .-
voitage. This output
transferred to the Re
a number of arrays ¢
disconnect capabili' -
DISCONNECT (SFC -

OVERRUN ERROR RS

A high-level voltage .~
AVAILABLE (DA) <~
character was transt «°

b
5

-

OE lines from & nur «° | ._;.
since an output dis 7 7 .,
STATUS FLAG OIS \:_ .:;.'__-
STATUSFLAGDIS >~ ™"~

A high-ievel voitag: ’___' b
state outputdrivers °, .° <t <*
these status output: ._.,..: ::
RECEIVER CLOCK ,*. v 0.
Clockinput with &t .= . "
shift rate. .- _.::_._ ‘o,
DATA AVAILABLE ';: '..,-“.:

A low-level voitag: 7" *
tiip-flop. o
DATA AVAILABLE .t
A high-level voitag ™ N~
charscter hasbeen -J'=.-™ <
Holding Register. g "o e
- \*\ h
SERIAL DATA IN ¢ "¥, LY,
Serial data receive ‘G\‘ )
register at 8 point N
high-level voitage [ Vo
received. 5
MASTER RESET (
A high-level volt
Holding Register,
and sets the seris!
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O COP1854, COP1854C B ALk
‘ Punciions! Definitions for COP1884A Terminais TRANSMITTER HOLOING REGISTER EMPTY (THRE): k(e
‘l Standard Mode 0 ‘r‘ numd Ho;vo;lnooﬂ:t" this output Indicates that the B "o
. ranem ing Register has transferred its contents PENSE
| ! SIGNAL: FUNCTION 10 the Transmitter Shift Register and may be relcaded with ».
LY Voo v 8 new charscter. o
g Mnooe“ pngaid “‘(m“’:a_ TRANSMITTER HOLDING REGISTER LOAD (THAL):
- : low-level voltage spplied 10 this Input enters the character
-Q. A low-level voitage st this Input selects Standard Mode 0 on the bus into the Transmitter Holding Register. Data is
h) Operation. Iatched on the trailing edge of this signa. !
Vss: TRANSMITTER SHIFT REGISTER EMPTY (TSRE):
Ground. A high-level voitage at this output indicates that the :
RECEIVER REGISTER DISCONNECT (RRD): Tranamitter Shift Register has compieted sarial transmission = N ]
e o

A high-level voitage applied to this input disconnects the
Recseiver Holding Register from the Receiver Bus.

RECEIVER BUS (RBUST-R8US 0):
Receiver paralisl dats outputs.

PARITY ERROR (PE):

A high-level voitage at this output indicates that the
received parity does not compare to that programmed by
the EVEN PARITY ENABLE (EPE) control. This output is
updated each time a character s transterred to the Recsiver
Holding Register. PE fines from & number of arrays can be
bused together since an output disconnect capability is
provided by the STATUS FLAG DISCONNECT (SFD) line.

FRAMING ERROR (FE):

A high-leve! voitage at this output indicates that the
received character has no vaiid stop bit, l.e., the bit
tollowing the parity bit (it programmed) is not & high-ievel
voitage. This output is updated each time a characler Is
transterred to the Receiver Holding Register. FE lines from
a number of arrays can be bused together since an output
disconnect capablility is provided by the STATUS FLAG
DISCONNECT (SFD) line.

OVERRUN ERROR (O€E):

A high-leve! voitage at this output indicates that the DATA
AVAILABLE (DA) flag was not reset befors the next
character was transferred to the Receiver Holding Register.

of a full charscter including stop bit(s). it remains at this
lovel ontl the start of transmission of the next character.

SERIAL DATA OUTPUT (SOQ):

The contents of the Transmitter Shift Reglster (start bit,
data bits, parity bit, and stog (bit(s)) are serially shifted out
on this output. When no character Is being transmitted, &
high-level is maintained. Start of transmission is defined as
the transition of the start bit from a high-leve! to a low-leve!
output voitage.

TRANSMITTER BUS (TBUSO-TBUS 7).

Transmitter paraliel data inputs.

CONTROL REGISTER LOAD (CRL):

A high-tevel voitage at this input loads the Control Register
with the control bits (P, EPE, SBS, WLS1, WLS2). Thisline
may be strobed or hardwired to a high-level input voitage.

PARITY INNIBIT (P1):

A high-levet voitage at this input inhibits the parity genera-
tion and verification circuits and will ciamp the PE output
fow. If parity is inhibited the stop bit(s) will immediately
foliow the last data bit on transmission.

STOP BIT SELECT (SBS):

This input selects the number of stop bits to be transmitted
after the parity bit. A high-ievel selects two stop bits, &
low-level selects one stop bit. Selection of two stop bits
with five data bits programmed selects 1.5 stop bits.

£l
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OE lines from a number of arrays can be bused together
since an output disconnect capabllity is provided by the
~ STATUS FLAG DISCONNECT (SFD) line.

STATUS FLAG DISCONNECT (SFD):

A high-level voitage applied to this input disables the 3-
state output drivers for PE, FE, OE, DA, and THRE, allowing
these status outputs to be dus connected.

RECEIVER CLOCK (RCLOCK):
Clock input with g frequency 16 times the desired receiver
shift rate.

DATA AVAILABLE RESET (DAR):

A low-level voitage applied to this input resets the DA
fiip-fiop.

DATA AVAILABLE (DA):

A high-level voitage at this output indicates that an entire
character has been received and trunsterred to the Receiver
Hoiding Register.

SERIAL DATA IN (SDI):

Serial data received at this input enters the receiver shift
register at 2 point determined by the character length. A
high-ievel voitage must de present when data is not being
received.

MASTER RESET (MR):

A high-level voitage at this input resets the Receiver
Holding Register, Control Register, and Ststus Register,
and sets the serial data output high.
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RCA CMOS LSI Products

CDP1854, CDP1854C

WORD LENGTH SELECT 2 (WLS2):

WORD LENGTH SELECT 1 (WLS1):

These two inputs select the character length (exclusive of
parity) as foliows: '

wisz | wist Word Length.
Low | Low 5 Bits
Low | High 6 Bits
High | Low 7 Bits
High | Hign 8 Bits
EVEN PARITY ENABLE (EPE):

A high-level voitage at this input selects even parity to be
generated by the transmitter and checked by the receiver. A
low-level input selects odd parity.

TRANSMITTER CLOCK (TCLOCK):
Clock input with a frequency 16 times the desired transmitter
shift rate.

Description of $tandard Mode 0 Operation
(Mode Input=vgg)
1. initislization and Controls

The MASTER RESET (MR) input is pulsed, resetting the
Control, Status, and Receiver Holding Registers and setting
the SERIAL DATA OUTPUT (SDO) signal high. Timing is
generated from the clock inputs, Transmitter Clock
(TCLOCK) and Receiver Clock (RCLOCK), at a frequency
oqual to 18 times the serial data bit rate. When the receiver
data input rate and the transmitter data output rate are the
same, the TCLOCK and RCLOCK inputs may be connected
together. The CONTROL REGISTER LOAD (CRL) input is
pulsed to store the control inputs PARITY INHIBIT (PI),
EVEN PARITY ENABLE (EPE), STOP BIT SELECT (SBS),
and WORD LENGTH SELECTs (WLS1 and WLS2). These
inputs may be hardwired to the proper voitage leveis (Vss
or Vpp) instead of being dynamicaily set and CRL may be
hardwired to Vpp. The COP1854A is then ready for
transmitter and/or receiver operation.

2. Transmitter Operstion
For the transmitter timing diagram refer to Fig. 10. At the
beginning of & typical transmitting sequence the Transmitter

Holding Register is empty (THRE Is HIGH). A character is
transferred from the transmitter bus to the Transmitter

holding Register by applying a low puise to the TRANS-
WITTERHOLDING REQTSTER LOAD (THRL) input causing
THRE to go low. If the Transmitter Shift Register is empty
(TSRAE is HIGH) and the clock is Iow, on the next high-to-
low transition of the ciock the character is loaded into the
Transmitter Shift Register preceded by a start bit. Serisl
data transmission begins 1/2 clock period ister with a start
bit and 5-8 data bits followed by the parity bit (if pro-
grammed) and stop bit(s). The THRE output signal goes
high 1/2 ciock period tater on the high-to-low transition of
the clock. When THRE goes high, another character can be
losded into the Transmitter Holding Register for trans-
mission beginning with a start bitimmediatsty following the
last stop bit of the previous character. This process is
repeated until all characters have been transmitted. When
transmission is complete, THRE and Transmitter Shift
Register Empty (TSRE) will both be high. The format of
serial data is shown in Fig. 12. Duration of each seria!
output data bit is determined by the transmitter clock
frequency (fcLOCK) and will be 18/ CLOCK.

3. Receiver Operation

The receive operation begins when a start bit is detected at
the SERIAL DATA IN (SD1) input. After the detection of a
high-to-iow transition on the SDI! line, a divide-by-16
counter is enabied and a valid start bit is verified by
checking for a low-level input 7-1/2 receiver clock periods
later. When a valid start bit has been verified, the following
data bits, parity bit (if programmed). and stop bit(s) are
shifted into the Receiver Shift Register at clock pulse 7-1/2
in each bit time. If programmed. the parity bit is checked,
and receipt of a valid stop bit is verified. On count 7-1/2 of
the first stop bit, the received data is loaded into the
Receiver Holding Register. If the word length is less than 8
bits. zeros (low output voltage leval) are loaded into the
unused most significant bits. It DATA AVAILABLE (DA)
has not been reset by the time the Receiver Hoiding
Register is loaded, the OVERRUN ERROR (QE) signal is
raised. One-haif clock period later, the PARITY ERROR
(PE) and FRAMING ERROR (FE) signals become valid for
the character in the Receiver Holding Register. The DA
signal is aiso raised at this time. The 3-state output drivers
tor DA, OE, PE and FE are snabied when STATUS FLAG
DISCONNECT (SFD) is low. When RECEIVER REGISTER
DISCONNECT (RRD) goes low, the receiver bus 3-state
output drivers are enabled and data is available at the
RECEIVER BUS (R BUS 0- RBUS 7; outzgun. AEPI ing &
negative puise to the DATA AVAI ( )
resets DA. The preceding sequence of operation is repeated
for each serial character received. A receiver timing diagram
is shown in Fig. 11.

| Minimum Pulse W

CRL

Controt Word tc ::\: )
Minimum Hold Ti » -7, 4
Control Word a . @
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1800-Series Peripherals

CDP1854, CDP1854C

DYNAMIC ELECTRICAL CHARACTERISTICS at Ty = -40 to +88°C, Vpp 5%, 15,11=20 ne, V|4=0.7 Vpp. ViL=0.3 VDD,

€1 2100 pF, see Fig. 9.
LIMITS
CHARACTERISTIC Voo OP1 __G_p_l'?ﬂg_‘ UNITS
v) Typ.' | Max.*| Typ.!| Max?
interfece Timing — Mode 0
Minimum Puise Width: ] 50 150 S0 150 ns
CRL tCRL 10 40 100 - -
Minimum Pulse Width: 5 300 400 300 400 ns
MR . tMR 10 150 200 - —
Minimum Setup Time: L} 20 50 20 50 s
Control Word to CRL tCWG 10 0 40 - -
Minimum Hold Time: L] 40 /] 40 80 o
Control Word sfter CRL tccw 10 20 30 - —
Propagation Delay Time: ] 200 300 200 300 s
SFD High to SOD tSFDH 10 100 150 - -
[ 78 120 75 120
SFD Low to SOD tSFOL 10 « _ _ ns
RRD High to Receiver Register 5 200 300 200 300 .
High Impedance tRROH 10 100 150 - -
. 5 80 150 80 150
RRD Low to Rocoivor‘ Register Active tRAROL 10 P 70 _ _ ns
TTypical values are for T4=25°C and nominal voitages.
*Maximum limits of minimum characteristics are the values above which ail devices function.
.
CONTROL INPUT WORD TIMING
eur v ore X X
— tewe ~to—tccw—et
L)
cRL _‘________/— \
e fem v
STATUS OUTPUT TIMING
St X -— X
In—-l——'sron —p tSrDL b
I
| . X
sFD | - 1
RECEIVER REGISTER DISCONNECT TIMING
Ao »e .- ) o
—eitronre— Fotanrpue
o > 1
(134 B8 1T 34 )

Fig. 9 - Mode 0 interface timing diagrem.
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f ' RCA CMOS LS! Products

CDP1854, CDP1854C
DYNAMIC ELECTRICAL CHARACTERISTICS st Ty = <40 1o +85°C, Vpp 8%, 15,4=20 ne, Vjp4=0.7 Voo. ViL=0.3 Vpp. g'ﬁ‘: :'C' !:%rs‘
CL=100 pF, see Fig. 10. A
CHARACTERISTIC Voo uNITS
m Tyo.! | Max* | Typ.' | Max* ‘
Tranamitter Timing — Mode 0 | Receiver Timing —
Minimum Clock Period - ‘So f:: 3;: 250 310 ne Minimum Clock Pe 5
Minimum Pulse Width: 5 00 | 125 | 100 | 128 Minimum Putse W .
Clock Low Level teL 10 75 100 — - ns Clock Low Leve
s 100 128 100 128 Clock High Leve .
Clock High Level
¢ 'CH {49 78 100 - ne :
r— -] 60 150 60 150 DATA AVAILAB
THAL tTHTH 9 100 ns e
19 - —= Minimum Setup Ti .
Minimum Setup Time: s 175 275 178 s Start Bi
THRL to Clock tTHC 10 20 150 — - ne | Data Start Bitto -
ToaT H 20 50 20 50 Propagation Delsy -
Data to THAL BAYA AVATCAE -
07 | 10 0 ) = - ne AAV
Minimum Hold Time: s 40 80 «© ') Oata Available
Dats atter THAL o | 10 20 30 - — ne
Propagation Delay Time: 5 300 450 300 450
Clock to Data Start Bit tco 10 150 225 —_ - n
. 5 200 300 200
Clock to THRE t
CT | 10 100 | 150 - - "
— s 200 300 200 300
THRL to THRE tTTHR ns
10 100 180 = = Clock to Parity
s 200 300 200 300
Clock to TSRE ns
TS 10 100 150 — = Clock to Framir
. -
:f tTypical values are for T4 =25°C and nominal voitages.
B *Maximum limits of minimum characteristics are the values above which sil devices function. tTypical values are
- *Maximum limits of
» TRANSMITTER SHIFT
TRANSMITTER MOLDING REGISTER LOADED
-~ REGSTEA La0ED  \
T CLOCK
b

—¥
3

. 300 Vot
- 1 :
Lo l
-‘ el
N ' :.?
THRE :r |
F R , - 1TTS
By Tang :'
}.-'OT—-‘.-'TD-O'
1 _ \
33 D, 757 C

® THE MOLOING REGISTER IS LOADED ON THE TRAILING EOGE OF TRAL
W9 THE TRANSMITTER SHIFT RECISTER, IF ENPTY, 1S LOADED ON THE FIRST NIGH - TO-LOW TRANSITION OF THE
CLOCK WHICH OGCURS AT LEAST 1/2 CLOGCK PERIOD*tTiC AFTER THE TRAILING EDGE OF THAL, AND TRAMS-
MISSION OF A START BIT OCCURS 172 CLOCK PERMOD  top LATER

-—a=p—
LN A

scw-NeTem
Fig. 10 - Mode O transmitter timing diagram.
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}_L_;
‘- CDP1854, CDP1854C o
.{- DYNAMIC ELECTRICAL CHARACTERISTICS at T = -40 to +85°C, VDD %5%, t,,t1=20 ns, V))4=0.7 Vpp, ViL=0.3 Vpp, E Yo
Ci >100 pF, see Fig. 11, ~ X
- LIMITS “ o
,'- CHARACTERISTIC Voo CDP1834A COP18S4AC UNITS .: .-:
-’f‘ (W) Typ.t | Man* Typ.! | Maxs NN
Receiver Timing — Mode 0 sl
et 5 250 310 250 310 8 '
. ini lock Peri va
Minimum Cloc od tce 10 125 155 _ _ ‘
) Minimum Pulse Width: 5 100 125 100 125 o
. Clock Low Level tcL 10 75 100 - - A
5 100 125 100 125 )
. lock High I
- Clock High Leve 'H | 4o 75 100 - —
S 50 75 50 75
ATA AVAILABLE R T
. D LABLE RESE toD 10 25 «© _ _
o~ Minimum Setup Time: 5 100 150 100 150
Data Start Bit to Clock toc 10 50 75 _ _
- Progagltion Delaﬁ Time:
A A to 5 150 225 150 225
E Data Available toDA 10 75 125 - -
5 225 325 22§ 325
Clock to Data Valid t
< COV | 4o 10 | 178 - -
v -] 225 325 225 325
. k Avail
pre Clock to Data Availabte tCDA 10 10 178 _ _
5 210 300 210 300
tock to O 13 t
Ciock to Overrun .rror COE 10 100 150 _ _
v 5 240 3rs 240 375
N lock to Pari
l Clock to Parity Error tCPE 10 120 175 _ _
N 5 200 300 200 300
- Clock to Framing E t
- ock to Framing Error CFE 10 100 150 _ _
*Typical values are for TA=25°C and nominal voitages.
- *Maximum {imits of minimum characteristics are the values sbove which all devices function.
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RCA CMOS LSI Products
) CDP1854, CDP1854C
- "'E" %ﬁu:h CLOCK 7Yy LOAD HOLOING REXSTER
teuferieettcy,
N4 ;
:" soz ﬂ START BiT AMTY [ sToP miT1 li ;
} Li—u—‘cw
= nee- C
| - = a=s
.:: r—o'-—'ou i-n' oA
~ o I i
e gy ——— fooe —ats
~ ot —
I‘r‘:_ tept —qo—et
) " I

! SOIPCITI I
N N e

[{3 !

# (F A START BIT OCCURS AT A TIME LESS THAN toc BEFORE A HIGH-TO-LOW TRANSITION OF THE CLOCK,
THE START BIT MAY NOT BE RECOGNIZED UNTIL THE NEXT HIGH-TD -LOW TRANSITION OF THE CLOCK THE START
$IT MAY BE COMPLETELY ASYNCHRONOUS WITH THE CLOCK
% % 1F A PENDING DA HAS NOT BEEN CLEARED 8Y A READ OF THE RECEIVER HOLOING REGISTER 8Y THE TIME A NEW
WORD IS LOADED INTO THE RECEIVER HOLDING REGISTER, THE OF SIGNAL WILL COME TRUE
CH - NQT?

Fig. 11 - Mode 0 receiver timing disgram.

” - 8/1¢c 00K

—\ D—-ﬁ_[“i lj \ /NUY DATA WORD

- ,\\ $-8 DATA B'TS . s « -STOP BITS
VW2 OR2
DATA DATA
LS8 MSB

START &
[ 184
> - -PARITY
er

920y 20463

Fig. 12 - Serial dats word format.

230

LR AT PN AT A SO AT AR A O S I PR s
e N SISV I SRR

ORI e N

-

;:b;".f X
a_» s "

]
T
A
") &

|

7

'l
..I .J

-

>
©
XA
Y
AN

2

fz

P

120 «

o
100 \-’.'d‘.‘
[ {o]

60 -

LR
L A

40

e

Dimensionsinpare
the basic inch dime -
miig (10~3 inch).

LA

~
OPERATING A -, ).

1. Handling
All inputs anc g -
network for e C- Sk
Recommende
are described
and Operatior

Operating

Y

‘2

»
N Te WX
2 4007,
'y "s s
7
)‘:".I':’ \

T,
é'
¥ I

€

Ouring opers
limit, care shc
supply turn-o

g

ripple, or gro. n

notcsuseVp( -,

rating o
N

p

v

[T N
e

N "4’-

G S S SN
b ) A v
DERSASR SRS



1800-Series Peripherals

co-§

(s :. 6w
{

o-
l_,_ 4-10
‘L 0.102-0.254)
fe—

182 <190

CDP1854, CDP1854C

83

—

161 =169
(4 089-4.293)

(4 623 -4 826)

92CL-33340

Dimensions and pad layout for COP1854ACH.

[o] iongin par are in millimeters and are derived from
the basic inch d a8 indi d. Grid greduations are in
mits (10~ inch).

OPERATING AND HANDLING CONSIOERATIONS

1. Hendling

Al inputs and outputs of RCA CMOS devices have &
network for slectrostatic protection during handling.
Recommended handling practices for CMOS devices
are described in ICAN-8525 “Guide to Better Handling
and Operation of CMOS integrsted Circuits.”

2. Operating
Operating Voitage
During operstion near the maximum supply voltage
limit, care should be taken to avoid or suppress power
supply tum-on and turn-off transients, power supply
ripple, or ground noise: sny of these conditions must
notcause VOD—VSS 10 exceed the absolute maximum
rating.

The photogrephs and dimensions represent g chip when it is pert
of the water. When the wafer i3 cul into chips, the Clesvage angles
are 57° instead of 90° with respect to the face of the chip.
Therefare, the isolated chip is actually 7 mils (0.37 mm) larger in
both dimensions.

Input Signals
To prevent damage to the input protection circuit.
input signals shouid never be greater than Vpp nor
less than Vgs. Input currents must not exceed 10 mA
even when the power supply is off.

Unused Inputs
A connection must be provided at every input terminal.
Alf unused input terminais must be connected to either
Vpp or V§s. whichever is appropriate.

Output Short Circuits

Shorting of outputs to Vo p or Vg§ may damage CMOS
devices by exceeding the maximum device dissipation.
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q 1.0 INTRODUCTION
*A
This manual 15 intended for anyaone who desireoes a thorougn
[ ktnowledae of the i1ntsrnal control :nd dats strostares o+ Lhe
< SIMZSAM simulator., It 12 a companion £o the groaran t ot oo
Lo ; . .
* alzo includesd 1in this Appeadir. Thz readr v 201 6 o)
. 15 agsumed to be familiar with the BPAOSID Lasgosgse, zma sl-
#:‘ Fazic knowledge 1z especiall. keloial,
2,
-.*
The program listings are fully comnentea, o om
. information will rmot be redundantly 1rncloasa ker o, T
&7 manual w1ll explais the logic of sections o~ “he 20 23075
that are not clear in the lisbtimgs, bo*t will ont o owsdk v 20 e
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) . o ] . N
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. 2.0 MAIN.BAS

The purpoze of this module 1= to declare all arra.z nse.
by the simulator. display the main merna, and mergs Huoher

;,3 modules as needed w~ith this module.
2.1 INITIALIZATION
-~
:i Thiz section tabtes care of the array declaratio
Dascriptions of the varicus arravs are noluded .n the
- listing. The default drive (DRIVE®) 1z =zeft to YIU.

- 2.2 MAIM MENU

- Thie zection displayz the SIMzAM MEMU, alz> raterrec to oo
. the main menw.  This 1s the menu from whaoch all abbor acous

1
and functions are acceszed.

n

2.7 CHAIN OTHER MODLES

2 3

At ter the user onts A =aloct Lor numb e

-
i
ii

o sezrhtion wses the CHAIN MEFRGE comoaand o moos
> . - .
“a appropriats module to the end of the main I+ am
invalid selection 13 made this SOUNT sommsed e .

All modules that are chained to the main module ta.® |1
numbers which begin at 2000, Al mooduies retorn contel ] G
the main module bv a GOTO SO00 command.
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3.0 INPOVR.BAS

This module loads the input waveform intos memnory, 21 ther
fraom a disk file, or from the kevboaud. it < X
simple editing of the file, and the ability
edited version.

Referring to the program listing. the +first task 1s to
displavy the INFUT WAVEFDRM MENLU. The mznu mechanism 13
identical o that of thes main modul=.

Z.1  ENTER NUMBER OF INFUT LEYELS

=z set to be the number of input levels,
less tham MMAXY (which was preset 1n the main

I¥ the inmput waveform is to be cobtained from a £
selection 1. then INFUTIXE 13 =t to the namne
nd a subroutine 13 called to read the data.

Fifbar the subroubtine returnz ths O bit
12 we=d in a ounber of modulze to indnoa
read from the fi1le 1e tnconzistent with
For example., thare iz an error of MU

are read from the file, so 0O would o

(Rl

o 1.

T.2 0 ZAVE INFUT WaAVEFORM

i
i
ii
5
+
7
T
-
v
i

Here, IMFUTXXE iz et to the mame oF the $ile
1irput wavetorm data to.

Z.3 0 EMTER INPUT WAVEFORM

This section iz used to read the 1npot
Levboard. ML 19 set to the rnunber
the 1nput wavefoarm. Az the value and
entered +rom the kevboard, the. are =
UVYH Oy amd UT O respechivel . A& checkh
the value 15 an (ntegsr greater than rero,
than ™MU%.

Atter all rnput daba
BooneresEn Ao po

¥ timen th

rtotimes inta JNW.
arvd T

LHFUT WAy EF0RM

perned on the detault drsl owibtn trhe bl armame we
wnams brme TEER coermmseed e P
Wl b e random (a2 - Tl i S
cAertiaoy | e (RS = T R o O § .
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the 1inout value, and 4 bhvtes for the start bimee of the
value.

These pairz are written beqQinning with reco
1% reserved for the number o2+ 1rmput plec
number of input levels (MU

.5 READ INFUT WAVEFORM

AN input waveform is read from the detawlt
filename contained 1n INPUT{YLE, The fil=2 K
format az explained in the previous sectian.

SAVEDMUY is set to the number of 1noout pileses
file. I+ this value iz greater than NMUMPFL
to 1. Otherwise, WA and UT ) arra
data read from the i1nmput +1le.

BCYCOR SR ENERES
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4.0 DFGOVR.BAS

This module begins by displaving the DFGE MENU ang obtaininn
the ucser 'z selection.

4.1 ENTER NUMBER 0OF STATES
T o1n ke machine to b

2= than NMAXMN. the maimam
b 1m the dain magils.

MS% 13 =et to the number of state
s1mulated. This value must be le
allowable nunber of states. orez

m

PR
)

4.2 ZAVE DFGS

L

@ o1 DE G 8 }'17'

Thiz section prompts for the filename Lo oe
=0 the DFGEs can be written to dic

4.7 EMTER DFGS

MAYXFY had been sst earlier to be egual
number of piec allowed in any one DFG
iz used to keep track of the numbesr of
particular input level and machines =
tor the 1rnput level, and JDY i the

DRt

Each piece of a DFG 1z stored in two

the value, and DFGT () holds the =tart time. The L
be in ranoe, and successive start times must bhe KRS
h\.

monotonically 1ncrsasing. J¥W% is the inde:x for
number of a DFG.

P
P AR

I+ any changes are desired aftter the arra
LFGT ) have been displaved., the wuser inow
rnumber ., value. and start time into J¥., X%, and v.
nat egual Lo zero, the piece of the DFT s wrrdated,

g the o

4.4 WRITE DFGE

The filename in DFGXX$ is opened az a random il or FEhe
default dirrve. The record length is & b
o]

Frazid 1 1=
twa bhotes, and field © 15 four bytes.
For recard 1. the 1 twin I it
prLeacss i the first DFG, and b

nuenber of tnput levels (MU
number of =t at

artimna with the seconag record, DY Le =
current plrece number, 2% tracks the i1nmput
e shate l=vsl. Fipat Fmh e e e e

LFE are ¢ Freld . Yhen biie sl Tl

ST v T A P .
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ber e :

1 set to the number of stat frem the f1l=, I

ither of theze quanzTitis
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mEmary,. &h Srrror 1S repor
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othaeg Gl
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5.0 LGFOVR.BAS

Thia modul begins by displaying the LF MEMNU, arnd accepting
the wser selection.

S.1 0 EAVE LF

I+ the Logic Function is to be saved., the name of the 3l
1e stored 1n LFYXXS$,

5.2 ENMTER LF

This section allows the logic function

Levboard. YMaE holds the numbsrr of out
; LFY (Y stores an cutput wvalue for

itrla input levels, and sach =f fthe N

= 4

r

= or the zurrent imput laeve]
gpecifying the state (1Y) and the rav

N

1

T

"

]
xR

5
“"‘/‘J
AR
,dd
"‘-‘-‘r
< 4

o the

by &

writhen i1mto the »
; Cach record

LR TRN

L ]
EEY A
Fon

tains the number of z s Seu ] )
the nurber of number of npu ! 1
tha nunber of output level

contain the output wvalu

Me Frlename L
e format debtan

Ehe ~umb
the momk 1rgt

trieee ol Ffer from
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6.0 RSMOVR.BAS

arnd LF

=nomeed @t

Thiis module takes the Input
comprising the model of the
execute the simulation.

.1 ENTER MaXIMUM EVENTS
e masinum nomber of ever
EVERNTSY. Thizs value mu
13 prag i bthe main menu.

w1 h

ERTER FROCESZIMNEG TIME

Qo Log tlimz can be stored
; that ccow during this
point 1z clariftied 1n the n=2

the initial
MDY 1

A ‘j I} wtiik
rumb e

i

wlhs of e 2N ST

antered into

A
- .

Thiz section 15 probably comple: of tne proor: AR
sinc2 it encompas s bthe achus ameil abtron of thee maon . e
. . " - K3 ..“-._N

The program flow will be Witk ref s T § A,
. . . TRINLY

thie variablss comntalined li=timg. EALA

Y
:

wvardables ars initislized. TIMFE RO GRS
. . e, "
12 htime pmriod, ROy
‘e e %
- -~
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L
ALY

the number of
current DFG L
e number. [
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7.0 PLTOVR.BAS

7.1 FLOT QUTRUT

+

lal=)

IMFUT

FFLTA D) is

From

STATE

loaded
the number

TIMEFLY (0.

(=T

Frogrammesr’

the user’ g

REMOVER
The ar-ay FFL

et

[ SR

initialized

into
ot

to be plotted,
to correspornd

z Marual

selection of

(). Berauss
> o iginald

Twl et

FRLTZ (3,
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d oo the valus of CarTIOMNA. The :
led using MY, the pumber of levels 1 the =
Lo,

_.
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 ths o w-awis 1w plotts
T {the 1. 2lement of TIMO
lzbtited using the valuwes from

Coy soaled to Fill the scraen.

=1 BN TS ¥ oY

IMNFEY® command iz used to
to the FLOT MERNL

TS FILE
- Mts fr1le whoze filename iz contalined
fram the default drive., For details a
frs frle, refer to the SAVE SIMULATION RE

e RSMOVE modul e.

FRIUST DFG TIiME €

e able tn plot the LFGs correc

r+
—
=

DFGs must be expanded tc be sogual to the Hime
cutpult function. Ykl (y 1z loaded witih the
OFGVRCE areay., TIMY) 1 loaded with the valws:
() array. N4 1ie S8t 2qual to the number of =z

IONY 15 =et to 4.
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' 100
~

1001
10072
1O
1040
1 is0

1080

T 41O
s 12100

1220
oo

TN
e 1TOC

M 13540

1540

[—d
Eali
:‘:‘ 15

.
«
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Bl ol B o

AR

Ul

(SO

TR

f ph ek b b e A e b

¥
f

N
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PR

REM

MAIN. EAS MOLDULE

AV S S S S ES SRR R ESEE RS ESELES SRS EESR LRSS REDERERRRAT

REM
REM
REM
REM
REM
FEM
REM
REM
REM
REM
~EM
FEM
REM
REM
REM
REM
REM
REM
REM
REM
REM
R

This program simulates the behavior of zimple asvrnochronous
machines (SAMs). The simulation proceeds i1in an event-driven
fashion and provides for graphical output as well
oriented input and output. It ie aszsumed that the
12 familiar with the contents and constructs of the papsr
"Realization of Gsvhnchronouws Finite-State Ma

chitnes, by
Johneon and Ealiski. For 1nitial storage allocation,
values +or the following key variables will be presel:

MNMAaXY: The maximum number of : ict statez allaowed 1m 3 54N

distinct é
MM X The ma<imum number of distinct irput levels +or ths 56M :
M X% The maximum mumber of pieces allowed oy sranal j
MAXDY: The masximum number of pireces allaowed " -
MAXY%:  The maximum number of pieces present aterd o
output signal. To be consiztent with -

:

SAM model., MAXYYL = MAXUYL & MAXDY 20N

- _ e . e

ey will be prezet to the +ollowing values, F oot Q,

can be changed at any time, of coursze. e
o--'.
.Y

o
"N

MMAXY = Q1 MMAXY = 8
MAXUL = Z0 @ MAXDY = 8
MAXYL = MAXUL %X MAXDY

‘e a
- ~ . . . . - : u.-
o facilitate the writing of a common subroutins i
for i1nputting both the SAM input si1gmal and its OF \:\
zet the variable MAXW to the mayiimum of MaEXUL and e

—
Al
.

IF MAXUAL MAXDY THEN MAXXK = MaXrs ELSE MAXL = MY

The =zimulator uses arrays o represzent
as other key entitiess, The following
simul ator’s data bace:

INELIMAXUY) 1 The values o+ the praces oFf Lhe nipet funsotion
in tempcral sequence,

UT fHEdU e The times that the dis

function begin, starting

AV UME R D MMEC NMA R s DGV

=t the pireces ot the 1.1

DFGT OME e Do  PIMA O MMA ) . DEGT O,

'.' P
1. {'
ll.:t

A

A
{‘-

that the pileces 1m Ehe 1,0 \?ﬁ}f

wiLth time = i, \d}ﬂ&
CLLMEY Y s The mf the prec BSAYOS)
-

ouitoul runc
CUMAEYR Y The +im

TRMPOr S
ey gt

. . "

cratput foametor @2, = \': - ‘;

. g Iy Lt N " . N * .
oo e L MGy T are sy, R

rhe nuurhar O olas
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REM LFY% (MMAX Y (NM&AaXLY ¢ This array contaims at zrtry 1,31 the .
REM logical function output value producea +or the Hy:&H
REM ith input armd ath state value, f¢\j1
REM URESYX(MAXYZ):  The temporal values ot the 34M 1nout mreeld
FEM at each system "event" time -- gee below --—, ;xjﬁ
REM XRESYW IMAXYY) » The temporal values of the SaM st i .-:: :}'&
REM at each system "event" time —-—- =ee below --—, i;f 1
FEM FRLTYSASOY s The simulator uses this : e ggpﬁ’
REM far the asynchronous signal :isﬁd
FEM TIMERLT(SM : The start ftimes aszoclat 1 n?;3ﬂ
REM to be plotted are saved in this ar :Q?:ﬁ
REM MAaM¥: This variable contains the identit = #ﬂixﬂ
REM toc be plotted. The i.d. 13 the et o
REH o zelect the function in the plot menu. A.T*T
Pz SFEC%: This variable contains the specifics of run

BEM plot is requested. Such information

REM function, the DFGE and the LF uveesd,

REM variable, provided these have baen Eing whe

REM appropriate file mname ftorma Qiven Cr Oy A

REM CODEY . The variable iz 1, 1if due tao =

REM non—-zerc processing tims, an nput e Zowiele a
REM previous event iz =ti1ll being proces < oduring the

" REM rurn for which plote are requestsd.
TE REM VALLE(E0Y s This array iz used by the plotter
200 REZM stare the values of the diffsrent piec
! G20 REM function to be plotted.
borgan REM TIM(S0): This array 1 used by the plotter sunroutine. and
SIS L R holds the start times of the pilreces 1m the +uanctioan
230 to be plotted.

Shdy

The plotter subroutine requirss the Laroest
ordinate value to sppear 1n each plot. This s
in LEVELSY

[S-2ne
i NTFS.
FEM el
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F2GES REM ke x¥ekex IMITIALIZATION XkrxkkERik
2REH FEM
2980 REM The arrays are dimensioned as above:s
- ZO00 REM
bﬂEOZO DIM UV IMAXUL) JUT MAXUY) (DFGVYYE (MAXDY MMA S MM,
d’DFGT(MHxDZ.MMAX%.NMAXE),YVZ(MQXYZ),YT(MAXYZ)
T4 DIM EXMAXL CMMAX A MMAXYE)Y (LFOMMAX  MNMA K URESN ima iy,
;\:’ XRESY (MAXYY)
Q.EQ&O OlmM FRLTA(SG) , TIMEFLT (50)
100 DIM VALLW {100y, TIMO100)
2Ll DRIVESE="8" ‘detault drive for files
o FEM
- LIS REM S kxisesd MalnN MEMU sdkkrkrkix
Bt SEM

1
.
g B

D

=

iQILZQ CLE
P OIl40 LOCATE 12,34 ¢ PRINT “S I M S A MY
EL&D LQCATE 24,19 ¢ FRINT "copyright (g 1985 MNortheastern dniwersivs’s

%
[
o
Y

FOR I = 1 T 1000 ¢+ NEXT I

CILS : LOCATE 2 FRIMNT "S5
LOCATE 7.28 @ "1o-— En
LOCATE 9,28 ¢ FPRINT 2 —-- En

IMS AM ME M u"
ter Input wavetorm”
ter Digital Function Sererators”

4o - "

ﬁ\ 1e23 FRINT "Z - Enter Logic Furchion Geaer ztor
N 12,2% ¢ PRINT "4 -- Run simulation®
15,2 FEIMNT "5 -- Flot results "

FRINT "4 —- Set detault drive®

FRIMT 7 —— Eizt"

FRIMT SFC (400

INFUT "Enter selectior by number i SELECTH

s

LOCZATE 272,20
REM
FEM stxksddidr CHaI OTHER MODULES XEdEst kst
HEM
[F SELECTY=SELECT.OLD% GOTO @R
Or BELECTY (BOTD 2417, 2479,7459, 7475, 2499, 2410, TS0
STHIME 2o, 20 GOTUO 240
CLz @ ITNFUYT "Detault drive "iDRIVES @ 6O0TO S
CUERLAYE=DRIVES+H" : INFOVRY @ GOTO 500
UNVERLAYS=0R [VES+" 1 DFGOVE 2
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fEr rnumber of distinct levels in 1NEWY s1gnal

M and/aor Yhe numbtter of distinct statzcs appear-iag

~EM 23 than NS, MUEMNS 2ntriss nust be provided for LF, :
17 SUBSEL=T BATD 10740 :
IMPUT "Erter number of oubtput levels "iYM&E2W ¢ FRIMNT ) K

FOR J%=1 TO MUY N

O SUBRSELY SO0 10000, 1O7&0,  1GE&D, Einio _':.-:.-\",
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10320 FRINT "Readout map J1ust entered 1 as followss” -.'f-.*-.::

- 10900 FRINT “Input"TAE(10)"State"TAE(ZM) “Output” NN,

: 10920 FRINT M————- "TAB(LO) e "TABR (20 M A.:'.\"x.‘
< 10940 FOR L%=1 TO NS% R

10560 FRINT TAB(YIW s TAB I LA TAB(Z2Y L (3%, L)

e

< NEXT L% Yy
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ot REM fAsk tor modifications, i+ any e

INFUT "Changes? (Y)es or (Mo ":1X$ ~:_":-.'j
o IF X%<-"Y" GOTO 11240 f:{—:"'-.'
s FRINT "Enter changes in the format., state and output.” _._.._';.:__

FRINT "To end, enter state value of 0"
11100 INFUT I%4.Y%

oo11120 IF I%<=0 GOTO 10880
11140 IF I%>NS% GOTO 113204

LIFUA(T%, TA) =Y

GOTO 11100

FRINT "State value must not excesd"MNEY%
G0TO 11100 ".‘r
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MEXT J% TR,

RETURN It

REM VI
REM )
REM $kxdoddxsdd WRITE LF ok xrrkksy ékfgi
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REM This subroutine 1s used to save a Logic Function generator f.le \i"
REM Ry
IF DRIVE="B" THEM FILE$="BR: "+ Fxx% St
IF DRIVE£="b" THEM FILE®s L& ny o
OFEM FILES A% #1 LEMN=Z " ;‘."

p

>
b

FIELD #1, T AS V3
LSET W8 = MEIS (NS
FUT #1,1

LSET W = MEI$ (MUY
FUT #1,2 e
LSET W& = MEI$(YMAXY) A
FUT #1,3 ;
FOR IZ% = 1 TO MU%
JT% o= (I2%-1 $ME%
Ja4% = [RnARSY o+ 3

KDY = 1

FOR JZ% = J2% To J4%

LBET Y% = MEIF(LF%(I2%,KD%s)
BT #, JE
BDY = B D%
M
NEXT 12%
CLOSE #1
FE TURN
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IF DRIVES="
IF DRIVE®="
CFEM FILES
FIELD #1,2
GET #1,1

SAVEDNSY =
GET #1.2
SAVEDMUY =

IF SAVEDMSY
IF SAVEDMU
GET #1.7 =
FOR T = 1
JE% = (IZ2%~
Ja4% = 124N
EDW o= 1

FOR
GET #1.,J:
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274 = J

LFX(I2%, D)

DY = HDH
MEXT J2%
NEXT IZ%
0% = 0
CLOSE #1
FETURN

IF SAYVEDMUY- ML
IF SAVEDNSY
"t mensions of
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FRINT
FRINT
GOUTO 12020
FIRINT
FRINT
FRIMT
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REM

FEM
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REMOVR. EAS MODULE
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The simulation igs event driven, the events being chan
in the input, but NOT the stalte. The simulation will

continue to run until either no more such changes occour

fas indicated by the particular DFE signal and input
involved! or until a wser-—-specified masimum number of

z1qQnal

o

=

A

have occuwred. We prompt the user for this masimum nunber

and store it in variable EVENTEX

It is thuszs true that EVENTSY <= MAaxvYi.

Rk ik ENTER MAXIMUM EVENTES k¥kif¥fsiy

CLS : PRINT

FRIMT " Maximum # of svstem events im simulaztiorm o=ty

FRINT

INFUT “"nmo. of events = ", EVEMTSY

IF EVENTSY < 1 GOTO 10320

IF EVEMNTEY <= MAXYY EOTO 102860

FRINT "Mumber of events is out of range. Try agein.”
GOTG 10220

FEXEKK KKKy ENTER FROCESSING TIME %k kkkkkkk

For rzalizable (physical) SAMz there 158 & masimun ~zps
rate for events which can bs process=d by the SaM. Tr

from the finite (nonzero! time 1t takes to process '

We call this time TFROC and prompt for 1t. Th +

T
is O, meaning that the SAM is not rezlicable

FRINT : FRINT
FEREINT "& realizable (physicall)? S5AM takes a finlite”
FRIMT "length of time to procezz an event

Ernter this

FREIMT "the default value 1s O, — aszsumed 1+ CR 13 sntered.

INFPUT "Freocesssing time™ ", THFROC
Foam simulation

FRIMT

FRINT "Ready to run simulation. Entase anitlal
FRIMNT "which muzt be am 1nteger between 1 and "'nSW
TRIFUT

IF X0 1 GOTO 10780

¥ X e MEW GOTO 10gld

FRIMT "Imniti1al state is out of ramnge. Try agsing
GOTEO 10680
Imitzal ;
GOSUR 13280
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11060
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11480
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REM F
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TANVH TN
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REM
REM Xk
REM

REM

RiZM

REM

REM

REM

REM

REM

REM

REM

REM

FEM

REM

REM

REM

FRINT "INDY =
rint output
FRINT "Index

Ya INDX
and other arravs
"TAEB(2) "Output value"TARY

"Irprt"TAR47) "State”

FRINT Mee——— BTAE (81 " mm e W TS

FOR J% = 1 TO IND%

FRINT Tagp(3)

s TAR(Z27IYT (X)) s TAR (29 URESY (%)Y s TAR (4
MEXT J%

FRINT
FRINT
FRINT
FRIMNT
FRINT
INFUT
IF RESAX$=""
GDEUR 1327200
ROTO FHOO00

"Results from this run mzy be =
"I results are to be saved, en
“form TRESuxT . where ix are num
"I+ rezultg are NOT to be saved
"File name for saving results.
GOTO 11240

Friyk RUMN SIMULATION #kddridddis
¥AEXSURBROUTINE RUNSIM&kYE%

This subroutine performs the actual s
entered in the foregoing part of the
conzists of determining the autput at
the corresponding state and input. =Zi

changes in the output can only occur
either in the inrput or in the state,
driven.

Set the time corresponding to am infi
Blso set EFSI, a small positive gquant

determining when TW and TX are about

CD¥% 15 a code wsed to determine wheth
neouwrraed during procsssing, throuaghoon
TINE = Z2000 1 EFSI = 000001 ¢ CDR
Imtialize 1ndices

INDEXY IxX%=1: IU¥=1

Imitialize input amnd DFG

S CTUY)
ztale

XIV=DFENS (1, Wy, 2%
First ocutput pilece

YT Ly =0 o Ly =R U )

URES 01 =101 :
Stort loop

IMDEZY =2
Cet time to next tramslrtion on lnput
[F NIMFULT S THEN TU=TIMF BLSE T=0T e

TF FoaMaaa (L%, A% 22 THEM

I x5

Te=TIMF ELZE

Z4)y"Start
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11200
1920

7 A

A1240

REM
REM
REM

Test +t+or cccurence of
Note that we test only
since a

an evenu
for

11760 G = 0 Tclear

TR0 IF TU »= TFROC GOTO 1Z2&80

4200 Qx =1 « CD%4 =1 Taven
20E0 Current input does not persist throw

Get
I
IF TU%
+ UT{IU%+1?
IF IU%

32040
: il
o
ELSE TU

OO0

Sy
120

next i1nput
IU% + 1
= NUMFUY
UT (TU%?
NUMFUZ

plecsa.
s
in

THEN TU TIMNF

i

THEM MUMFUZ

TU%

REM Check to see it duration of mew pilecei=z' plus what 18 latt of
12140 ~EM current piece i1s up to TRROC,
< 21&0 IF TU TRFROC GOTO 12040
:QEIBD REM TU i=s now large enough. Decrement inpubt plece pointer. This
12200 REM will be incremented im the part of the program whioh handlss py

where the event

1

the case
TU% e -
GOTO 12760
Check for smaller of
IF ABS(TU--TX) EFSI
IF TuU T GOTO 127&0

Next event is a change in the
XA¥=DFOVA CIX L, UT%, X%

Get output value and start time.
YULCIRDEY ) =LFH (ULY,, XJ%)
YTLINDEXL) =TX+YT (INDEXY%-1)

IF Q%=1 THEN YT UJ{IMDEXX)

next 1% an

e TU and TX

GOTO 1322

Q

FEM =

=

tate.

REM

- 2500 INDEXZ=INDEX%+1

INDEX% INDEX%
Adiust TU.

IF TUC -TIMF THERN
Read new TX.

IF &% 0 ROTO 12&80
IF Tx < TINF THEN TX
GOTO 11900
ITxn=1X%+1

: IF INDEXXI=EVENTSX
1: RETURM

FEM

et TH=Ti-TX
Y 30

132600

FEM

2520 = TX TFRIC

GOTO 11900
MNevt event
T Ti¥4
ul

AlA=Xd%

Feiom 16 &
+ 1

CIUY)

input changs. Gt

LT
P Rl

Lans
v i

Get new state
TX%=1: XJWu=DFEVY% (L1, T%, X%
LGet output
YL CINDE X
YT INDE XY
[F Q%=1 THEM

¥T CINDEXY) =¥

a

cat. e -

during
oTCUrence
state change 1s not consider

0f

=

RrOTesE iy

ahout proc

input change.

ha )

=)

12450 URESL(INDEX Y =UL%: XRESU (INDERW) =XJ%
12430 REM Increment output piece pointer.

GaTo

IF IX%i =k AMAKE (UI%, £L%) BOTO 12720
I%% = IX% = 1: Tx = TINF: 3070 11200
TA=DFGT (IX%, UI%, XLW) =DFET (IN%=1, LI, (L%

t

o]

;"' 7’-'- -~ -.‘ '.‘ .- o« ..- -.‘ s - --l ..l - '-.., ° .“.-\ o= .\--' ‘--' .t -h. v'. ..' - .- ‘..“--'.p.' -
LSVEPUL AR, S S S S, ST AR AR LA A, S A S P, WL S RN

e shate,

=YT (INDEXY -1 +TFROC

L2540

ST OIMDE =1+ TRLC

ST, Tt et 4t
«

N A L T T T

h P

Q’

X

LY

)

AR

LS R

3y 4 S

o
AN

x

<

¥

L

-

B
"f

/7,

PR
AT A

v fx .‘l

b

>

A A

s

LA

Pl
gk e ]

[ ok 2R ot
oy 8, &

)
o3

X

a
[t

,
a_v 4 4
L )

IR

.
o

ay




URESY (IMDEXY%) =%
INDEX%=INDEX%+1

IF IMDEX%<=EVENMTSY

INDEXY = INMDEXY -

Irncremant state pointer.

IX%=TX%+1

IF IXM<=kEiMAX% (UIKN, XYy GOTD 135140
TA=TINF: I[x%=IxX%-—1

GOTO 131460

TX=DFGT (2, UI%, XL¥%)
Get new TLJ

IF (TUE+1) =NUMPUY THERM TUsTIMF ELSE TUSUT (IU%+1 -y T IMDEZL-1)
GOTAQ 11900
TU=TX.

IF TU:C >TINF GOTO 12760

INDEX% = INDEXY —1: RETURM

A

FEM

FEM

FEM $dddsigdxd SAHVE SIMULATION RESULTS #Rdfkxksds
REM

FEM fhizs subroutine is used for saving hthe
M

oI Y

PRk
.

. r'-.;!

'I
PRI AN
LY SN

IF DRIVE®="B" THEMN FILE$="B:"+REZ{X%
IF DRIVE®="pb" THEN FILE®="E:"+RE
OFEM FILEE A5 #1 LEN=10Q

A

" s
A3

FIELD #1, 2 A5 Y%, 2 A Uk, 2 A5 X%,
Save speclitics of the run
LSET U$ = RIGHTS (INFUTXXS, )
LEET X% = RIGHTS (DFGXX%,2)
LSET ¥$ FIGHTS (LFXX%
LSET T = MEI$(INDY?

FRIMT Y¢,Us, X%, T%

FUT #1.1

LSET v¢ METS (YFAXA)

LSET U = MEIS$ (MUY

LSET X% ME TS (NS

LSET T% = MEI$(X0%)

FUT #1,2

LSET vY¢ MET% (CDY

LBSET T3 = MESE (TRROD)

FUT #1.32

Far J¥% = 4 TO IMNDY+Z

LEET v% = MEIE (VYL {TU-Z0)
LBET U% = MEIF (URESL(JW-T0)
LEET X8 = R
LBET T%

FUT #1L,J%

MIEXT J%

CLOEE #!

SETURN
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REM FLTOVE., BAS MODULE
FEM (fddd kR F AR R R Rk Ry etk oy

L

REM NN

CLS ¢ LOCATE 2,31 ¢ PRINT "F L QT M E N U" 3?45

L0020 LOCATE .28 @ PRINT "1 —— Flot input function® Q:}f
§p04& LOCATE 11.3% : FRINT "2 -- Flot state function® il
0060 LDCATE 13,25 FRINT "2 —= Flot output function® :\-u

AOGBO LOCATE 15,25 FRIMT "4 -— Flot DFGs"

as as ws a¢ ke ta ik

:blOD LOCATE 17,25 FRINT "S -— Load results from ftile to plot” AN
BOIRG LOCATE 19,25 @ FRINT "6 —— Exit to main menu"” oSS
10140 LOCATE 23,20 FRINT SFC(40) SO
POLEO LOCATE 273,20 IMFUT "Enter selection by nunber 1 SUEZELN xﬁtﬁ:

OM SUBSELY GOTO 10440, 10600, 10300, 10780, 10220, 5000 AL

SOUND 200,32 ¢ BOTO 10140

CLS : INFUT "Enter results file name ";REZSXX$

EOEUE 13&80 @ GOTO 10000 .
REM :

CLS "clear screen r
REM ’
FEM fdfdkkdrds PLOT QUTRUT $Xk¥kiddidsE
REM
REM Output is to be saved.
FOR 1% = 1 TD IND%
FRLTA G Y = YUY (LY
NEXT L%
MAMAL = 1
LEVELDY = YMAXY
,}042@ GOTO 10840
A0450 =M
47 REM ¥x¥trdkxyry FLOT INFPUT $dduyfideds
104372 REM
Woaa0 REM Input 15 to be saved.
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1 GaE0 FRLTYL(LY) = URESY (L% RN
FOE00 NEXT L% RO
Y0820 NAMZ = = ROeRYe
A - ML SRRV
10540 LEVELSY = MU% i

]

CODEY = CD%
GAOTO 1E40

1S &0

PLOT STATE $kswind e

LEVELSY = M3%

GOTO 10840 R O N R R T T T Y

it M

BEM fumchk b ik k EA RN
REM
R [ CI .

GLISIE




Y’v ’r

’

10820
840
SDEED

10880

AERLIATA
AR

::'_‘1 160
1 L&D

11280

[
rn
&

.\
(N

T4

S O O

.
i

Ly
Lo
o

A,_.
E e = o SN NI A
I8

o

4

e

el

ia

Ll N

o, = et

N W

SCREEN O @ GOTWQ
ave time array
= INFUTKXE + ", "

= DFEGXXE + ")

Ig o= LFEXs + "UIntt. smtate!
SFECSE = ZF1% - SFPIe + SR
FOR LY o= 1 TO INDX
TIMEFPLT (LYY = ¥T (L%

MEXT L%

FE

]

sEY Ry ik FLOYT REQUE

Functions saved arz o bhe plotted row.
FRIMT

For each function to 2e plaotted, +1010

EM ArFAay .

FOR ELY = 1 TO INDX

VALK IR = FRLLTH CRLRY)

TIMOELYY = TIMERLT(ELY)

MEXT KL%

MFW = INDX

MY o= LEVELSY

CEPT IO PP

STaHRY = CODEX

TF = TFROLC

FLS%: = 5 5%

GOSUR 11420

SCREENM O famoreen o

GOTO 10000

EMND

FEM
RETt
FEM staddrdeis FLOTTER FUNCTION ¥wkktfdkxigd
REM

FEM FAEXXSUBROUTINE PLOTTERKY X

FEM

REM THISE ROUTIME FLOTE QUT & FIECEWISE COMZ 74
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TO <= TLAET AFFEARS AT
OF 20+ (TO/TLAST: ¥S500.

HOF L ZOMT AL F

IF TLAST=0 THEM
CASE REOUIRES NO
AND IS SFECIALLY

THE TimME
SCAL THE
HAMNDLED

FUMCTION H
OF  THE HOE
BELOW,

CHAMGES IN THE TIME FUMITION
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- i Received August 10, 1983; accepted March 15, 1985 DI AT
h_-: l, . A novel collection of nonlinear discrete-time systems is analyzed and characterized up to
- ‘ isomorphism. The systems in question are autonomous and deterministic and have the half- .
open unit interval [0. 1} as state space. The analysis establishes isomorphisms between these
(a .: : systems and the members of an especially simple, easy-to-understand, normal-form subclass of _
s ' “prototype” systems. The prototypes consist exclusively of piecewise-linear systems with -~
| parallel pieces. The theory hinges upon a generally unfamiliar but remarkable real number a7
' representation resembling ordinary binary or decimal notation but involving a radix or base r«_‘.";‘ -
L ; which is not an integer. 1985 Academic Press. Inc DN
e H S .p:_..
e ! DR
: I. INTRODUCTION N
H ! \-‘f\- R
! g
t . . . . C.e. L
“ ‘ The systems to be considered here are discrete-time systems having as state space o
the half-open unit interval [0, 1} of the real line, and are autonomous, time- ; _:j,'\'jl
- invariant, and deterministic, as well. Thus they are characterized by a difference ‘:'_-"::):-c(_
:a equation of the form x,.,=f(x,), k=0, 1.2.., where f is a function mapping A:-_':'\-}'\},t
il ¢ [0, 1) to [0, 1). We further require f to have the general form shown in Fig. 1 (and :1’4\
- i described precisely in Section 11 below). ._‘-,,:-,,_2-
0 When started at time zero in an initial state x, such systems will naturally "
s prqceed thrpugh an infinite sequence of states x,, x, = f(x,). X, =f(x,) and so on
(Fig. 2). This sequence constitutes the “orbit” of the system arising from initial state
7 : Xo- This paper will investigate how qualititative aspects of the orbit change, first as
_'E X, is varied through [0, 1) and second, as f itself is changed (but stili of the form of
Fig. 1).
“ By focussing attention on a subset of these systems—the “signature-distinct™ ones
b (see Sect. [I}—we shall develop an isomorphic relationship between these systems
- * This author's work was supported in part by the US. Air Force Office of Scientific Research
-a (AFSC). Contract F49620-82C-0080.
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o b i

FiG. 1. A typical saw function.

and piecewise-linear systems. This isomorphic relationship will essentially reduce
the study of nonlinear signature-distinct systems to the study of piecewise-linear
prototypes with parallel pieces—a great simplification, since the latter are much
more manageable, both computationally and conceptually.

Three diverse considerations motivate the approach of the present paper. The
first is strictly pragmatic: extending prior research by the authors in this area for
similar systems having continuous transition functions (3.4, 5]. Our orbit space
here is much more intuitively structured and ordered and the net result is a detailed
structure theory for these systems—an achievement which we believe will lead the
way to similar results for more extensive classes of systems (see Section VI). The
second motivation involves demonstration that the analytic techniques of our
carlier papers are not restricted to continuous transition functions and as such are
applicable to systems possessing two distinct modes of behavior as in Fig. 1. The
third motivation is purely mathematical: an old problem of Ulam [13] asks
whether any continuous transformation of (0, 1) is conjugate to a piecewise-linear
transformation of same. The results presented here represent additional progress on
this basic mathematical question.

b /L
2 T =X
b
)
X, v ¢
LI
Xs || P
X0 IRV
' vy
i H i
0 XgX3 X b Xy |

FiG. 2. The orbit arising from a point x,.
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SR Sl
N ! Prior research in this area has employed the tools of ergodic theory [11] or has ::"-
?{f f restricted itself to the study of fixed points of the iterates of functions [9, 6). Our PRORSR
’ X approach here is deliberately fundamental, concentrating on the isomorphism AN
question and using only the most elementary tools of mathematical analysis. The f-j-‘,':-',‘-:
' authors are currently endeavoring to reconcile the more esoteric methods of system ':"""—"" ». .
% analysis with the approach presented here. The interested reader should consult the s
. monograph of Collet and Eckmann [1] for a good overview of current work in this ":j{..f:
R dynamic field, as well as the now “classic” papers of Li and Yorke [7] and May LN :'*-
b [81. LR
va 'V. Al
.' ! II. SAwW FUNCTIONS, SIGNATURES, AND FUNDAMENTAL RESULTS
) : We propose to investigate the behavior of 1-dimensional autonomous discrete-
':- time systems possessing saw functions for their transition maps. These functions
& have the sawtooth form illustrated in Fig. | and are formally defined as follows:
A DEFINITION 1. A function f: [0,1)—= [0, 1) is a saw function iff there exists a
- point b in (0, 1) such that the following three conditions hold:
. (a) fis continuous and strictly monotone increasing on each of the intervals
E [0, b) and [5, 1),
(b) f(0)=0 and f(6)=0,
. (c) the limit of f(x) as x approaches b from the left is | and the limit of f(x) N .
. as x approaches 1 from the left is some quantity ¢ in (0. 1]. C-;
o - . . . SR .°:
! Note that NO assumption of differentiability, linearity, or convexity is placed ‘\'ij:,‘_;:.
‘ upon any part of /. The point b will be called the “breakpoint™ of f. . ';x';-.ixz
2’ DeFiNiTION 2. Two saw functions f and g are said to be isomorphic iff there : . -
, . exists a (necessarily strictly monotone increasing) homeomorphism :_:,'
‘::',' ; h: [0, 1)~ [0, 1) such that f=hgh~', where 2! denotes the inverse of A. e et
Y i . . . . . . . RS
- f The isomorphism of two saw functions f and g immediately implies that the \j.:",;ﬂ\j
- . autonomous discrete-time systems they define are essentially the same as regards AT
: 3 : iterative, order-theoretic, and topological properties. The following further .q.',:..'.ﬁ
N definitions are fundamental in pursuing this line of thought. ,:‘:::::--:.:
g/
DerINITION 3. Given an arbitrary function f denote by f* k=1,23,., the "}":':&,
k-fold composition f*(x)= f(f(--f(x)---)). Take f°x)= x. The function f* will ::;—r,'-::{-‘.
be called the kth-iterate of f. Tt
DerFINITION 4. Let f be an arbitrary saw function and let x be a point in [0, 1). .‘ .:'_ '.\'
Define the orbit of x under f, denoted by orb/{x), to be the infinite sequence of real .';:.:j.},'.\:
numbers x,x, .., where x, = f*(x), for k =0, 1,.... Define the signature of x under f, :{:\-:{-'.'}
SN W
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denoted by sig{x), to be the infinite binary sequence s,s,...where 5, =0 if x, is in
[0, b) and 5, =1 if x, is in [b, 1).

Thus sig{x) is a simple 2-level quantization of orb,(x) which serves to indicate to
which of the two subintervals [0, b) or [b, 1) each x, belongs. The analysis below
will demonstrate that signatures are more useful in understanding the orbital
behavior of f than are the orbits themselves; the superabundance of exact quan-
titative information in orbits obscures the intrinsic, coordinate-system-independent
structural information which signatures expose!

The following theorem, although fundamental, is straightforward and its proof is
omitted.

THF;OR!-:M 1. Let h:[0,1)> [0, 1) be a homeomorphism and [ a saw function
with breakpoint b. If g is the function defined by g=hfh~"' then g is also a saw
Junction, with breakpoint h(b) and, for all x in [0, 1), sig{x) = sig(h(x)).

DerINITION 5. For any saw function f define the orbit repertoire of f, denoted
as OR,, as the set {orb{x) | x is in [0, 1)}and define the signature repertoire of f,
SR,, as {sig,(x)| x is in [0, 1)}.

COROLLARY. If g=hfh~', as in Theorem 1, then SR, =SR,.

Note. 1f g=hfh~" as in Theorem 1 it is manifest that for corresponding points x
and h(x), orb,(x) can differ arbitrarily from orb,(h(x)), whereas the signatures have
been shown to be identical. This illustrates our earlier remark about the invariance
of signatures under a “change of coordinates.”

DEFINITION 6. Let S denote the set of all infinite binary sequences s, 5, 5, ...
Consider S to be ordered lexicographically and let “ <™ denote this ordering. That
IS, §=505, §3..<I=1y1, I, ..If they are not identical and if. setting k to be the first
position in which they differ, s, =0 and 1, =1. Use < to define intervals (s. 7).
[s, 1), (s,t], and {5, ¢] in the usual fashion. Consider all possible open intervals
(s, t), together with the “semi-infinite” intervals {r |t <s} and {r|7> s} as defining
a topology TOP on S.

The reader’s familiarity with the following mathematical properties of S, <. and
TOP is assumed:
(a) § is uncountable
(b) < really is an order relation
{c) < isatotal orderon S
(d) S contains a least element, 000..., and a greatest element, 111...

(e} given any subset T of S, there exists a unique element of S serving as
sup(7T) (provided of course that T is non-empty)

(f) similarly inf(T) always exists, if T is non-empty
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44 KALISKI AND KLEIN

(g) the topology TOP is a standard one on totally ordered sets known as the
“order topology”

(h) in TOP a sequence s’ of elements of S converges to s in S iff for each &
the sequence of kth terms of the s' becomes eventually constant, with value equal to
the kth term of s

(i) S is not homeomorphic to [0, 1] owing to the presence of gaps in the
order: there are no elements of S between each pair of elements of the form sq s, ...
5,0111.,and sg5,..5,1000....

Since signatures are infinite binary sequences themselves we will consider them as
elements of S. The significance of the < order thus placed on signatures will be
explained by the next theorem; the significance of the topology will become evident
in Section IIL

DerINITION 7. For sin S, s =545, 5, ..., define for k >1 the sequence lop*(s) to
be the sequence s, s, ., .., obtained by lopping off and throwing away the first k
terms of s. Define lop(s) to be lop'(s). Define lop®(s) to be s.

The following obvious property will be referred to as the “mapping property” for
signatures and will be useful throughout the sequel:

sig{ f*(x))=lop*(sig/(x))  forall k>0

DermnTioN 8. Given an arbitrary saw function f with breakpoint b define f as
the function obtained by restricting f to [0, b) and define f, as the function
obtained by restricting f to [4, 1). Note that f, and f, are both strictly monotone
increasing on their respective domains.

THEOREM 2 (Monotonicity of signatures property). Let a fixed saw function f
be given. For arbitrary points x and y in [0, 1), x <y, it is always the case that
sigAx) <sig{ ).

Proof. Recall the above definition of f; and f,. Given an arbitrary point z in
[0, 1) with orb{z) =242, 2; .., and sigdc) = wo w( w; ..., we have the general for-
mula

Zi =fk(z)=fw._|fw._z"'fu\)(z)u

since the signature of - tells us which “partial” function f; or f; to use in calculating
2, from z,, for i=0, 1,....

Now consider the given points x and y. If sig{x)=sig{y) we are done. If the
signatures differ set sig(x) = 5o 5, 5, ..., sigy)=1o1,.., and let k be the least index
for which they differ. If k> 1 then apply the above formula to conclude that

SRR = oo S o)
fk(y)g-f“_l "'fl|flo(.v)
= Sk "'fnf:o(y)
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by the definition of k. The functional composition common to the nght-hand sides
;3 . of these expressions is a strictly monotone increasing function. being the com-
o . o position of such, so x < y implies f*(x) < f*(y). Note that this is true even if k = 0.
: Hence in all cases the statement “s, not equal to ¢,” can be valid only if s, <1,.
: Thus sig{x) <sig{ ) by the definition of the < order on signatures.
- Hence in all cases we have sig{x) <sigd y). QED.
‘ The monotonicity of signatures property shows that the order in which a saw
:" function assumes its signatures is pre-determined. This simple regularity will be
-~ exploited throughout the remainder of the paper. The remainder of this section dis-
cusses a number of corollanes to Theorem 2. Most of the proofs are straightforward
o and will be omitted for lack of space.
MoNoToNICITY COROLLARY 1. Given a saw function f the following are all
N equivalent formulations of the Monotonicity of Signatures Principle:
- ’ (a) sig,: [0,1] = S is a (generally non-strictly) monotone increasing map
" (b) if sigdx)>sigdy) then x>y
:-5 ' (c) it is impossible 1o have x < y and sigAx) > sig{ y) simultaneously.

) It is important to understand that one cannot in general strengthen the statement
W of Theorem 2 to read “x < y implies sig,(x) < sig,(v).” The following discussion will
é address this latter point.

TN
' A
. . . . o . . . A
DEFINITION 9. A saw function f is said to signature-distinct if and only if for all e
t" x and y in [0, 1), x not equal to y implies sig{x) not equal to sigA y). ;:}_
TN
Figure 3 establishes the existence of saw functions that are not signature-distinct: MAT-TY)
i the shaded x-axis interval sits entirely to the left of the breakpoint b and maps into ~i o
i . itself under the action of the saw function shown. Hence all points of the shaded --:.:-:.'-‘,-.::‘
interval have signature 000 .... ALY
% NN
4 ~ ,x_”:\:c\
| . NTACNON
] y*x <
- |
Y |
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| |
: |
o P S
EN i :
2 ' ]
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3 FiG. 3. A saw function which is not signature-distinct. DAY
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DermnimioN 10.  For any saw function f and any sequence s in S, define pAs) to
:j\ _ , ' be the set of points x in [0, 1) for which sig{x)=s.
T
MONOTONICITY COROLLARY 2. For any saw function f and any s in S, pAs) is
3 either empty, a single point or an interval.
In the next corollary we do indeed establish the existence of a wide class of
o signature-distinct saw functions:
:3‘: DerNiTioN 11 Let f be a given saw function, f, f; as in Definition 8. Define
. F, on domain [0, b] by setting Fo(b)=1; Fy(x) = fo(x) for x in [0, b). Similarly
Dy define F, on domain [b, 1] by defining F,(1)=c, F,(x)=f,(x) for x in [5,1). We
say f is piecewise strictly expansive (psz) if and only if F, and F, are strictly expan-
sive in their actions, i.e., for arbitrary x and » in the domain of F,. |Fy(x)—
v Fo{y) > 1x — y| and similarly for F,.
h&.
MoNOTONICITY COROLLARY 3. If a saw function is pse it is signature-distinct.
:::; Proof by contradiction. Assume that s=s5y5,5,.. is a signature under f for
v which p/(s) is an interval of positive length. Observe that for all i >0 by the map-
ping property for signatures, F,(pA{lop(s))) is a subset of p{lop'*'(s)). By the
W expansive nature of F, and F, then we conclude that 0<length p{s)<
length p{lop(s)) < length p{lop*(s)) < ....
Two subcases arise: if all the signatures lop‘(s) are different from each other, and
- from s, then all of the intervals in the inequality chain above are disjoint, so that N
T the sum of all of their lengths must be at most 1. Yet the sequence of lengths is o
increasing—contradiction. So it must be that lop'(s) =lop/(s) for some i and /. In
i this situation we would have equality of lengths, contradicting the inequality of
! lengths noted above.
- The only conclusion: p{s) is never an interval of positive length, ie., each
. signature produced by f arises at but one point. Q.ED.
,‘::: . The following corollary is a partial converse to the corollary to Theorem 1; it is
given without proof. ’
:S MoONOTONICITY COROLLARY 4. Suppose that f and g are saw functions with ~¥are
"~ IRC AN
K SR, = SR, and suppose that g is signature-distinct. The function h: [0, 1) - [0, 1) ENGENE
, defined by h(x)= the unique y in [0, 1) for which sig,(y) = sigAx) has the following AR
-, properties: ,.:,._': o
fb' .:\-P d‘\f
(a) h(0)=0, h(breakpoint of f )= breakpoint of g Tt
o (b) h is monotone increasing
e (¢) hisonto [0,1)
(d) h is continuous
s
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-:: (e) h is a homeomorphism ifl f is signature-distinct
> () hf = gh; if [ is signature-distinct, g =hfh™".
! This naturally leads to:
n, !
n ' THEOREM 3. Let f and g be signature-distinct saws. We have SR, = SR, iff f and
- ] g are isomorphic.
Pl
;-; ‘ Proof. By the corollary to Theorem 1 and Monotonicity Corollary 4. QED.
In summary the simple concept of signature repertoire contains enough infor-

o~ mation to determine the isomorphism class of signature-distinct saw functions in an
instrinsic fashion. Consequently it behooves us to understand more thoroughly the

content and structure of signature repertoires. This is the central topic of the next
. section.

IHl. EXTENDED SAWS

o PR
- Motivated by the desire to determine the content and structure of arbitrary saw Z-:-:':-.j-:

functions’ signature repertoires we hereby introduce a modified class of transition NN
o mappings (the class of extended saws) for which this determination can be carried ~}:'~:,'-::-:
[ out with minimal technical difficulty. Once the determination has bcen made (in ﬁ:-;:t;

Subsection B below) we shall return to derive analogous results for signature-dis-

77
J

- tinct ordinary saw functions (in Subsection C). The latter development will lean AN
o heavily on extended saw theory. The authors know no shorter path. .'-‘.:-::\-
o~ As their definitions will instantly reveal, extended saws are not really functions in ::-‘.:-:
the modern mathematical sense of the word, because they are multiply-defined at .:—:::-:.
. one point b of their domain [0, 1]. Strictly speaking, extended saws are relations G
"~ between [0, 1] and itself Unfortunately, the rigorous “relation™ terminology [

obscures the more pertinent understanding that extended saws are but another way
N of dealing with the discontinuity in the graph of a function. We will sidestep this
o terminological issue in what follows by simply using the term “extended saws,” as
opposed to “extended saw functions™ or “saw relations.”

3 A. Elementary Material
g . . . . .
> The following paragraphs introduce extended saws, oibits, and signatures in a
. . fashion analogous to the definitions for ordinary saw functions given in the
:::- previous section. By reason of said analogy many of the straightforward proofs

Y ‘ below are omitted for the sake of brevity.

‘ DeFINITION 12.  An extended saw F is a multiple-valued mapping from [0, 1] to

n.‘ ;
:." i [0, 1] having the following properties:

{ (a) the multiple-valuedness occurs at a single point b in (0, 1), where F(b) is
~ ' both 0 and 1. We shall call b the breakpoint of F.

s

Oy
Bl )

"',‘-

'.-"f

s

T AT N N T A A
SRNARAN IR SR LR O




2" L 14

1JSEB

Vo

Ky vy o gr e

[l et

3

48 KALISKI AND KLEIN

[« b [

FiG. 4. An extended saw.

(b) F restricted to [0, b) is continuous, strictly monotone increasing, and
onto [0, 1).

(¢) F restricted to (b, 1] is continuous, strictly monotone increasing, and
onto (0, c] for some ¢ obeying O0<c< 1.

Figure 4 shows the graph of a typical extended saw. Clearly given an ordinary
saw function f an extended saw results by annexing the points (b, 1) and (1, ¢) to
the graph of f and all possible extended saws arise in this fashion. If f is a saw and
F an extended saw so derived, we call F the extension of f and f the underlying saw
of F. Referring to Definition 11, note that F, and F, represent the left and right
halves of F and that each function is strictly monotone increasing on its domain.

DermNITION 13. Let F be an arbitrary extended saw, x in [0,1]. Define
Xo X X3 .. (where x; in [0, 1] for all i), to be an orbit for x under Fiff x,=x and
X,,1=F(x,) for all i Note that if x,=b then x,,, can be either 0 or 1, so some
points x have more than one orbit under this definition. Writing orb {x) as the set
of all possible orbits of x, we say x is regular if orb{x) is a singleton set; otherwise
we call x irregular.

All irregular points are representable as F~*(b) for some nonnegative integer k.
Since F~*(b) contains at most 2**k elements, the totality of irregular points for a
given Fis finite or countably infinite. In fact, as a moment’s thought will reveal, it is
countably infinite.

DerINITION 14, Let F, x be as above, and let x, x, X, ... be an orbit for x. The
signature of x associated with this orbit is the binary sequence s, s, 5, ..., for which
5;=0if x,<b; s;=1if x,>band if x,=b then 5,=0if x,,,=1,5,=1if x,,  =0.

Defining sig(x) as the set of signatures of x so associated with the elements of
orb-x) we note the following relationship with extended saw signatures and
ordinary saw function signatures: Let / be an ordinary saw function and let F be its
extension. For any x in [0, 1), sig/{x) is an element of sig {x). If orb,(x) includes b,
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oy

however, then sig,{x) contains additional signatures corresponding to the extra
orbit(s) arising from the point b.

"y

THeEOREM 4 (Monotonicity of signatures for extended saws). Ler F be an
' arbitrary extended saw, x and y points in [0, 1]. Let so5,s,.. be an element of
SIge{x), 2o 1 17 ... an element of sig A v). Then x < y implies sy 5,5,... i1, 15 ...

K

DerINITION 15.  The signature repertoire SR, of an extended saw F is the set
{s!sis in sig{x) for some x in [0, 1]}. For any s in S (Definition 6) the set ps)
is equal to {x| xin [0, 1] and s is in sig{x)}.

The above definitions are a straightforward generalization of those of the

~1
:,:‘ preceding section. Note that an immediate consequence of Theorem 4 is that, for
- any s, pgs) is an interval. It is non-empty iff s is in SR,.
3 , B. Topological Considerations
i The purpose of the above discussion has been to introduce extended saws on an
. equal footing with their ordinary saw counterparts. Recalling that the ultimate pur- ~
..1 pose of this introduction was to expedite analysis of signature repertoire content, Y
R we now proceed to derive a fundamental result: SR, is completely determined by . \/
sig {1)! The demonstration proceeds in two stages: (a) showing that the initial por- NG
- tions of strings in SR are determined by sig,{!), and (b) showing that initial-por- :
E tion repertoires determine SR, via a limiting process. Some uniformity of notation
is called for: NASIX
,:;, N S
e DermviTiON 16, Let $* denote the set of all length & strings of Os and 1s; S* thus NN
" contains 2* members. Given s in S let s[0, k) denote the k-bit string so5, ... 5, _ ;. R
k> 0. Similarly define 5[0, k] to include s,. Given an extended saw F and a point x N .
B in [0, 1], define the k-signatures of x, sigh(x) via sigf(x) = {s[0, k) | s is in sig(x)}.
-~ Let SR{, the k-signature repertoire of F, denote all length k strings which arise in
this fashion. Thus SR is a set of strings, analogous to SR . If s is a string of length
f"-: k or greater, let p¥(s) denote the set of all x such that s[0, k) is in sigk(x). Note that
N Pi{s) is empty iff s[0, k) is not in SRX. View S* as lexicographically ordered by <
as S is.
- -
e . LEMMA 1. For any extended saw F and any x in [0, 1], sig A x) is closed as a sub-
) set of S in the topology TOP (Definition 6).
.-:: : Proof. Choose any sequence of signatures s' in sig{x) which coverges in TOP
o to some sequence s in S. If 5 is not in sig {x) then it fails to be a signature for x due
4 to a fault in its first k terms, for some value of k. By the nature of covergence in
' TOP, then, for i sufficiently large, the s' themselves are not signatures of x. Con-
::.': ‘ tradiction. So s is in sig{x). Q.ED.
H
: By virtue of Lemma 1, we can make the following definitions:
N
LS !
i
¥ ;
!
N"J
[
Y,

RERRY |
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DermNmmioN 17, Denote sup(sig {x)) by rs{x), called the right signature of x,
AN . and denote inf(sig {x)) by Is{x), the left signature of x. By Lemma I, rs {x) and
f-‘f: : ‘ _1 Is {x) are in sig {x).
Note that if x is regular, it must be that sig{x)= {Is{x)} = {rs{x)}. Further-
! more, the above “lopping properties” hold for left and right signatures:
" lop(rs {x)) = rs { F(x)) for x not equal to b,
% lop(ls {x)) = Is { F(x)) for x not equal to b,
! lop(rs (4)) = 0000 ..., R
v lop(ls (b)) =Is{1). .
-.':‘ Note that s and ¢ in S with s<¢ implies s[0, k)< [0, k). The principle of g
monotonicity of k-signatures immediately follows: s in sig(x) and 7 in sigi(y) and . ; g
o x < y implies s < ¢. It is immediate that if x and » share a k-signature s then every - IR
é between x and y must share this signature and this be the only signature for :. RN
Hence p{(s) for any s in SR% is an interval. In fact, it is a closed interval, as the 9__
. following lemma demonstrates. We omit its straightforward proof which simply SAYE
o relies upon the closedness of the intervals [0, 5] and [b, 1]. N
g DN
LEMMA 2. For any s in SR% the point set pi(s) is a closed subset of [0, 1]. :.-::;j:i;::’_
'y LN N
ﬁ Proof. The proof is straightforward and is omitted. - (j a
W
What is the relationship between the p*(s) and p{s)?
e
&- LEMMA 3. pds)={x|xis in p¥{s) for all k} for any s in SR, ie., pAs) is the
intersection over k of the p*{s).
. Proof. From basic definitions it is clear that for any s and for any &, p{s)isa
o subset of p(s). Conversely, suppose that x is in p{s) for all values of &, for a given
s. Then there must exist a sequence of elements of sigx) s', s 5., for which
" I s’[0, iy agrees with 5[0, i) for all i But this means that in the topology TOP, {s'}
::-j converges to s. Since sig {x) is closed (Lemma 1) it must be the case then that s is
in sigAx) too, i.e., x is in p(s). Q.E.D. A
- COROLLARY. pg{s) is a closed interval. ': .;- T
. RN
Note. Any function g defined on points x may be extended to a function g '.‘::_f
o defined on sets of points X by writing g(X)={g(x)|x is in X and x is in the :{-‘:-.-'_\:'_
s domain of g}. We shall use this convention below in referring to sets Fo(X) and .-:}::-:
- F,(X) for various subsets X of [0, 1]. We similarly will talk about sigX) and _'.f..'.'.-. -
. sigh(X) for subsets X of [0, 1] and to simplify notation will write g[ p. ¢] instead of e
:-3 g([p. q]) when the sets X in qu-stion are intervals. el
e The next Lemma shows how (k + 1)-signatures are related to k-signatures; its
proof is straightforward and is omitted.
:&.
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Lemma 4. For any subset X of [0,1), and k2 1
sigh* {(X) =0 sigh{ Fo(X)) v 1 - sig{F (X)),

where the dots denote string concatenation.

We also omit the proof of
LiMMA 5. Given arbitrary x and y obeying 0< x< y<1, for any k21,
sigh[x, y]=SRE A [Ist(x), rs¥{¥)],

where A denotes intersection, and the closed interval shown is an interval in S*.

The Recursion Theorem
All of the above culminates in what may be regarded as one of the fundamental

results of this paper.
THEOREM 5 (Recursion theorem). Let F be an arbitrary extended saw. Then for
all k=20

SRA*1=(0-SRY) U (1-SRE A [10%, rsh* '(1)]).

Proof. Recalling that F{1)=c we have
SR+ =sigh*'[0, 1] (by definition)
=0-sigh(Fo[0,1])u 1 -sigh( F,[0.1]) (by Lemma 4)
=0-sigt{0, 17U 1-sig{0, c] (by direct calculation)
=0-(SR% A [Is%0), rs"(1)])
Ul (SF% A [Is%0), rs&c)])  (by Lemma 5).

Since SRX is a subset of [1s%(0), rs';;(l }] we thus have
SRE*+1'=0-SRAU 1 (SR% A [Is’40), rsi(c)])
=(0-SRX)u(1-SRE A [10% sk (1)])
Q.ED.

We always have, or course, that SRL={0,1}; by mathematical induction
employing the recursion of Theorem S, then, it follows that all finite length
signatures (initial portions of elements of SR ;) are determined by rs 1) (and hence

by sig1)). It will now be demonstrated that SR itself is determined by sig1)
(Theorems 6 and 7.)

(by direct calculation).
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~ - Dermimion 18, Given any sequence T* of subsets of S* define lim T to be the AR
- subset T of S such that ¢ is in T iff ([0, k) is in T* for every k. R
S T RN
W T THEOREM 6. SR, =lim SRX. e
. NN
) Proof. Clearly SR is a subset of lim SR%, for if s is in SR ; then for all &, s[0, k) Zataty
! is in SR} by the definition of SR%. Conversely, suppose that s is in lim SR%. Then _5_' -
¢ ! 5[0, k) is in SR} for all k, and thus, for all k, pk{(s) is non-empty. By Lemma 3, p{s) ::.:,x,x
’ is the intersection of pi(s), which themselves form a nested sequence of closed inter- ANy
:*: ,’] vals. By elementary analysis, then, p«(s) is non-empty. Hence, sis in SR;. Q.E.D. :I:'I::J'?
B E AR
i : Finally, we have the following string-theoretic criterion for membership in SR, :f:v‘._‘l‘"
i based entirely upon rs {1): Ty
- J RSANRY,
T ‘ THEOREM 7. Let F be an arbitrary extended saw. Then .»'\':-":-:\j‘.
SRS,
i a0k
N , SR, = {5 lop*(s) < rs{1) for all k). RO
- LYy
. Proof. 1f sisin SR, then for all k. lop*(s) is in SR,. rs (1) is the maximal mem-
': 1 ber of SR, by monotoniarty of signatures. Conversely, we use a method attributable
-~ to Kwankam [6]:
Given s in S with lop*(s) < s 1) for all kX, we must show that s is in SR,. By
A ' Theorem 6 it suffices to show that s[0. k) 1s in SR for all k. We do so by induction
3 on k. We find it easier to prove by induction a more general result. Letting

s(j. j+k] denote the finite sequence s,s,. , ...5,,,. it will be shown by induction
on k that s j, j+ k] isin SR4* " for =0, 1. 2,... That is. we shall establish that al}
. contiguous length (k + 1) substrings of 5 are (k + I )-signatures of F, rather than just
- concentrating on initial substrings only.

Basis: for k=0, s[j, j+ k] is either 0 or 1. but SRE={0, 1}.

' . Induction step: Assume that s(i,i+ k] is a (k + 1)-signature for all i. Consider
t for a given j, s[ j, j+ k + 1]. Applying the recursion theorem we argue as follows: 1f
; s{Jj,j+k+1] arises from s{j+ 1, j+ k +1] by prefixing a 0, it is immediate that

:::z i s(j,j+k+1]is a (k + 2)-signature. If it arises from s[ j+ 1, Jj+k + 1] by prefixing
a | then we note that it will be a (k + 2)-signature if it is <rs%*%(1). But this is true
from our theorem hypothesis, since lop’(s) < rs{(1). Q.ED.
= |
- C. The Signature-Distinct Case
The general results of the previous two subsections will be applied here to
produce a detailed theory of signature repertoire content for signature-distinct saw
'L: functions. In particular a theorem for determining signature repertoire content
analogous to Theorem 7 will be established. Most of the results on signature-dis-
-~ tinct saw functions f recorded here will be derived from properties of the extension
:-:" F of f. Accordingly we will cite some results relating the two (F and f) in greater
detail. The proofs are straightforward and are omitted.
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LemMa 6. Let f be an arbitrary saw and F its extension:
(a) Let xo X, X5 ... be an F-orbit. Then x4 x, x4 ... is an f-orbit \ff no x, is equal
to 1.
(b) Let xo X, X; ... be an F-orbit and 545, S, ... the corresponding F-signature. If
Xg X, X, ... is also an f-orbit, then s, 5, 5, ... is also an f-signature (and is the signature
associated with this orbit).
(¢) If sy5,5;.. 15 an f-signature (of the point X, sav) then sy s, 55 ... =15 {x).

DeriniTiON 19.  An extended saw F is said to be signature-distinct iff whenever x
is different from y then sig{x) and sig{ v} are disjoint.

Lemma 7. Let f be an arbitrary saw function and F its extension. Then f is
signature-distinct iff F is.

TueoreM 8. (Discriminant theorem). Let f be a signature-distinct saw function
and let F be its extension. Then

SR, = {s|lop*(s) <IsA1) for all k>0}.

Proof. Let T denote the set of strings on the right of the above equation. We
first show that SR, is a subset of T. If s is in SR, then there exists an x in [0, 1)
such that s=rs{x), by Lemma 6. We know that f*(x)<1 for all k. Hence by
monotonicity, lop*(s) <Is1) for all k. Since F is signature-distinct (Lemma 7) and
x <1, it follows that lop"(s)<ls,(l) for all k. Hence SR, is a subset of 7.

Conversely, suppose s is in 7. By Theorem 7, s is in SR . Thus there exists x, in
[0, 1] with orbit x,x, x,..., such that s is an F-signature for x, ansing from this
orbit. If this orbit contains the term x, =1 then lop*(s) is a signature of 1 arising
from the F-orbit x; X, ., X, . » --; hence lop*(s) = Is {1), contradicting the definition
of T. Thus the orbit x,x, x,... contains no x, =1 and so is an f~orbit by Lemma 6.
So again by Lemma 6, s is an f-signature. Q.E.D.

DEerNITION 20. Let f be an arbitrary saw function. Any string 4 in S for which
SR, = {s|lop*(s)<d for all k20} will be called a discriminant for f and will be
denoted by discrim( f ).

Thus, a discriminant for f is any string by which one may readily discriminate
between members and non-members based upon a “lop test.” Theorem §
demonstrates that Is{(1) is a discriminant for a signature-distinct saw function f.
The discussion below will show that this is indeed the only discriminant for f,
justifying the functional notation discrim( ).

DEFINITION 21. A sequence o §, Sy ... in S is said to be lop-maximal if for all
k>0, lop*(s) <.
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MW" Y
3 (Notc that non-lop-maximal sequences exist, ¢.g., 010111.., as well as lop- :::‘-::;.:}
e ) ‘ maximal ones, ¢.g., 11000....) RERSN0
Y - X KA
. J THEOREM 9. For any exitended saw F, 1s (1) is lop-maximal. -'.;}:."_‘a
! Proof. Recall that the lop of the left-signature of x produces the left-signature of .- -
o | F(x) when x is not equal to b, and of 1 when x equals b; thus lopping takes left- .::;'-
) signatures into left-signatures. By montonicity of signatures Is{1) is the largest '\?_ A
:j } possible left-signature of F; the theorem immediately follows. Q.ED. .:).: t
g Ak
R Turorem 10 (Continuity of signatures). Let F be an arbitrary extended saw. If DN
. Xo X, X3 ... is a sequence of points from [0, 1] converging to some point x of [0, 1] ’_"_i-i_._' ,
~ from the left, with no x, equal to x, then for any choice of signatures 5% 5',..., for the :-:._-P:-_ .
) : x, the limit im s' in the < ordering on S exists and is equal to s {x). Similarly if '_-.-'-.-‘-:\:
ictl he right, th + choi i AN
“ | Yo Vi ¥z converges to y strictly from the right, then for any choice of signatures RN
“s . 1 1%,..., for the y, the limit lim t' exists and equals 15 y). '-‘:ix.f:
Proof. The proof is straightforward and will be omitted.
Cj‘_ COROLLARY 1. Let f be an arbitrary saw and F its extension. Then ::: g
‘ sup SR, =1s(1). S
RN,
Ry Proof. By Lemma 6(c), SR, = {s | s =rs4{x) for x in [0, 1)}. By monotonicity of I
&, F-signatures, it is immediate that Is{1) is an upper bound for SR,. By continuity of o e e
signatures if {x,}, x, in (0, 1), converges to 1 from the left, rs{(x,) converges to s
s Is A 1). Hence a sequence of elements of SR, converges to an upper bound for it; this AT
- ] upper bound must then be the sup. QED. S
. '\J‘\J"..' k
r\.:\.\_.r
COROLLARY 2. Let f be a signature-distinct saw-function. Then the discriminant C:,,::::f.
‘ Jor [ is unique. ol T
T . . . SN,
Proof. Let d=sup SR,. By Corollary 1, d is equal to Is{1) and is thus a dis- v ':.'-:.1-
" criminant for f; since d is certainly not less than itself, d is not in SR,. Suppose b, ‘-,,."-,::
'_::- i, there were a second discriminant & for f. By the very definition of discriminant &' is "’:'_':: N
i an upper bound for SR,. Hence 4’ > d. By the lop-maximality of 4 (Theorem 9), d AW
- 1 thus satisfies the d'-discriminant criterion for being a member of SR,. Contradic- AT
et i tion. Conclusion: there is only one discriminant for f. QE.D. -' s
Can signature repertoire content for a signature-distinct function be narrowed ‘.:' j:
o down any further? In terms of the present development this amounts to asking -
e whether discrim( /') can be an arbitrary lop-maximal sequence or whether there are kN
further inherent restrictions on its structure. The following key result yields yet N
. another restriction on the form of discrim( f). e
& PSRN
i THeoREM 11. If F is a signature-distinct extended saw then discrim( /') contains e
infinitely many 1s. LA
A
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at <
Proof. By contradiction, suppose discrim( ) contains only finitely many 1s (it :ﬁt}"\-
:: always contains at least 1 since discrim(f)=Is{1) and hence the first bit of dis- :;-.:-
SN crim( f) is a 1). Thus it is of the form \:':::
- ’
discrim(f) =505, 52..5,000 ..., .T "
o33
with s, = 1 for some integer k > 0. Since discrim( /) =1s (1), it follows from the lop- -;'_}:-F
e ping properties for extended saws that 100... is a signature of F*(1). Now 100... is :\ﬁz,u
N also the right signature of b, the breakpoint of F, and, thus, by the signature-dis- ":H':'
~ tinctness of F, it must be that F*(1) is equal to b. Since b can map to 1, it follows A .
—~ that 1 has an orbit that periodically returns to itself. Since this orbit always uses F !:._ .
:;-‘ (as opposed to F,) whenever there is a choice it follows that the signature of this NND
N orbit is Is{1), the least signature of 1. Conclusion: Is{1) is periodic and thus con- T
tains infinitely many 1s—a contradiction. Discrim( /') must really contain infinitely e
4 many Is. QED. I
' AT e
We can go no further is reducing the possibilities for discrim( /' ): any sequence of ; =
B Os and 1s which is lop-maximal and which contains infinitely many ls can really LS
- arise as the discriminant of a signature-distinct saw function. This requires :f.:::.:-:
.- demonstration of course! The next section will substantiate this assertion by ::-::.~::'
actually constructing the requisite function f. Remarkably the constructed f will ~."-.::\
) always be piecewise-linear with parallel pieces, yielding as a bonus the theory of ot
C' piecewise-linear prototypes of Section V. [
:::t'..'_:ﬁ
., LRSS
"~ IV. REAL-RADIX NUMBER SYSTEMS ;-;_L-}_}
£33
In this section we introduce a simple generalization of standard positional num- Letat
. ber notations, of which the binary and decimal notations are familiar examples. The .,_ -
. essence of the generalization consists in allowing the radix r of the representation to i'-';\::
) be an arbitrary real number r > 1, as opposed to an arbitrary integer greater than 1. A
o~ Although our development could be carried out with full 7> 1 generality, we shall
insist that r be confined to the range (1, 2]. This assumption allows us to employ
the results of Sections Il and 111 to develop rapidly the properties of these number
F systems. The goal of this development is reached in Theorem 15: any lop-maximal
.t sequence with infinitely many 1s is a discriminant.
The proofs of Theorems 12 and 13 in this section are straightforward and will be
omitted for lack of space.
7

DeFINITION 22.  Given any real number r in (1, 2] and any real number x in
[0, 1) define the radix r representation of x as the sequence ¢, g, ... of integers given
by the “Radix r Representation Algorithm™:

Step 1. Set s=1/r, x4=x, and i=0.
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Step 2. Divide x, by s'*'; let g, be the integer valued quotient and let x'* ! be
the non-negative remainder. Thus

i+l

x;=q.s' +x,,, with 0<x,, ,<s
Step 3. Seti=i+1 and go back to Step 2.

THEOREM 12. Let r, x, s be as in Definition 22, and let q4 q, ... be the sequence
derived by the above algorithm. Then q, q, ... has the following properties:

(a) each q, is either O or 1,
(b) x=goes'+g, 57 +..,
(©) Xe=qeos** +q o8 7+,
(d) *>ques*  +qp s+

The Radix r Representation Algorithm insures that every x in [0, 1) has a well-
defined representation which, by (b), faithfully represents x. Statement (d) implies
that not every sequence of Os and s actually arises as the representation of some
quantity in [0, 1). Indeed for any  in (1, 2] the sequence consisting all of 1s fails to
satisfy the inequality. It is important in the sequel to know exactly which sequences
of Os and 1s actually arise as radix r expansions of numbers x in the interval [0, 1).
Condition (d) turns out to be sufficient as well.

THEOREM 13. A sequence qq q, ... of Os and s is the radix r expansion of some x
in [0,1)if for all k=20

>quas T b et

The x yielding this expansion is unique and is given by go s s+, * s> + ...

DeFmNiTION 23. Given rin (1, 2] define RRNS(r), the real-radix number system
of radix r, to be the coliection of all strings output by the Radix r Representation
Algorithm in response to inputs selected from [0, 1). Define E,: [0, 1) —= RRNS(r)
as the function which assoctates with each x in [0, 1) its expansion in RRNS(r).
Define V,: S — the real numbers to be the function which associates with any string
S 81 §3 .., the real value x =sqo/r +5,/r* + ...

Note that V, is a continuous function for each r and that V, restricted to
RRNS(r) and E, are inverse mappings. Also note that we may summarize
Theorems 12 and 13 by stating that RRNS(r) = {q | ¥,(lop*(¢q)) <1 for all k>0}.
The alert reader will immediately observe the formal similarity between this
representation of RRNS(r) and the representation of SR, as given by Theorem 8.
Could there be a connection?

DEeFINTION 24, For r in (1, 2] define the mapping f,: {0, 1) — {0, 1) as follows:
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given x in [0, 1) with radix r expansion ¢ ¢, ¢, ... take fix)=q,/r+q/rt + ...
Thus f,(x) is obtained by “lopping™ the radix r expansion of x.

THEOREM 14 (Link between number systems and saw functions). f, is a
signature-distinct saw function with breakpoint 1/r. For any x in [0, 1) sig (x) is
equal to E(x).

Proof. We claim that f,(x) is given by the formula
Sx)=rx if xisin [0, 1/r)

=rx—1 if xisin [1/r1)

for if x < 1/r then g, (in Definition 24) must be 0 by the expansion algorithm and
consequently f,(x) is merely r times x. If x>1/r then go=1 and so f,(x)is rx—1.
Figure 5 shows the graph of f,(x). It is clearly a saw function with breakpoint 1/r.
Since its pieces are parallel with slope r, which is greater than 1, f, is pse and hence
signature-distinct by the Monotonicity Corotlary 3 of Section Il. The lopped
sequence q, g, ... clearly obeys the inequality of Theorem 13 (since g, g, ... does) and
thus is the radix r expansion for f,(x). So, by induction, E,( f*(x))=1lop*(E,(x)) for
all k. Hence the first term of lop*(E,(x)) tells whether or not f“(x) is less than 1r.
That is, E, is equal to sig,,. Q.E.D.

COROLLARY 1. E, is strictly monotone increasing.

Proof. This follows immediately from monotonicity of signatures applied to /,.
the signature-distinctness of f,, and the equation £, =sig,. Q.E.D.

COROLLARY 2. RRNS(r)y={q|lop*(q) <discrim(f,)}; thus there exists a dis-
criminant sequence for determining membership in RRNS(r).

Proof. By Theorem 8 of Section III and the fact that RRNS(r)=SR,. QE.D.

COROLLARY 3. V,(discrim(f,))=1 and, for all k>0, V (lop*(discrim(f,)))< 1.

-
[

0 /e ]

Fi6. 5. The prototype saw function f,.
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58 KALISKI AND KLEIN

Proaf. Let x, be a sequence of points of [0, }) converging to 1. By continuity of
signatures (Theorem 10), rs;(x,) converges to Is. (1), where F, is the extension of
f.. Consequently lop*(rs,(x,}) converges to lop*(Is.(1)) for all k. Hence, by the
continuity of V,, the numerical sequence having as its ith term ¥, (lop*(rs£(x,)))
converges to V,(lop*(Is;(1))) for every k. For k=0 the indicated numerical
sequence is just x,, since for x <1, s, (x) is equal to sig (x) (Lemma 6(c)) and we
have just shown that signatures under f, and notations radix r coincide. Because
the x, converge to 1, and because V, (any signature of f,) is <1, the relations in the
corollary statement immediately follow. Q.E.D.

We are finally in a position to demonstrate that any lop-maximal sequence with
an infinite number of 1s is the discriminant of a signature-distinct saw function. We

show

THEOREM 15. Let d=dyd, d,.. be lop-maximal with infinitely many 1s. Then
there exists a unique r in (1,27 such that d = discrim( f,).

Proof of Uniqueness. If d=discrim(f,) then V,(d)=1 by Corollary 3 above.
Hence 7 is a root of g(x) =1, where g(x)=d,/x+d,/x? + ... The function g(x) is
strictly monotone decreasing on the nonnegative reals and consequently has at
most one root in the region of interest. Hence if r exists it is unique.

Proof of Existence. Let R={r|d is in RRNS(r)}. If d=111.., then
d=discrim( f,) and we are done. If 4 is not equal to 111.., then no tail of 4 can be
111..., cither, since d is lop-maximal. Hence V,(lop*(d)) < 1 for all k. Consequently
dis in RRNS(2) and therefore 2 is in R. Thus R is non-empty and inf R exists. Call
it . We claim that d=discrim( f,). We do this in two steps. We first argue that
V,(d) is equal to 1 as follows:

(a) forany t>r tisin R; hence 4 is in RRNS(?) and V (d) < 1;

(b) since d is lop-maximal and ¥, is strictly monotone increasing on
RRNS(1) (being the inverse of E,) V,(lop*(d)) < V,(d) for all k=0;

{c) from (a) and (b) and the continuity of ¥V, as a function of x
V,(lop*(d)) < V(d)< 1 for all k=0;

(d) if V,(d) is not equal to 1, consider the family of maps {g,: (1, 2] — reals}
given by g.(x)=V (lop*(d)). This family of maps is equicontinuous. If V,(d)< 1
then there exists 1 < r so that for all k20, V (lop* (d)) <1, i, tis in R. This con-
tradicts the definition of r. Thus V,(d) equals 1.

We now show that d=discrim( f,). Suppose d<discrim(f,). Then lop*(d) <
discrim( f,) by the lop-maximality of 4, and this implies 4 is in RRNS(r), con-
tradicting the fact that V,(d)=1.

If d> discrim( f,), we look for the smallest position k for which these two strings
differ. Consider lop*(d). It has an initial term of 1 and hence has value > 1/r (strictly
greater due the presence of infinitely many 1s in 4 Similarly lop*(discrim( f,))
must begin with a 0 and it follows from Corollary3 above then that
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‘;:-‘ V,(lop*(discrim( f,))) has value < 1/r. Herein lies the contradiction. V (discrim( f,))
b . and V,(d) both have values of 1; hence these two tails must have the same value.
Consequently, we have neither d<discrim(f,) or d>discim(f,), so
Q.ED.

E d = discrim( f,).
@ V. THEORY OF PROTOTYPES FOR SIGNATURE-DISTINCT Saws
The goal towards which the foregoing material has been aiming is that every
—_ signature-distinct saw function is isomorphic to one of the functions f, introduced
in Section IV. We are now in a position to formally demonstrate this result.

THeOREM 16 (Prototype theorem). Ler f be a signature-distinct saw function.
Then there exists an r in (1,27 such that f is isomorphic to the piecewise-linear,

- parallel piece saw function f,.
. Proof. By Theorem9, discrim(f) is lop-maximal; by Theorem 11 it has
,Q: infinitely many 1s. Hence by Theorem 15 there exists a unique r in (1, 2] for which .
* discrim( f ) = discrim( f,). Hence by Theorem 8, SR, =SR;, and, by Theorem 3, f NS
- and f, are isomorphic. QE.D. A
. "s_. '..
.
THEOREM 17. The following are equivalent statements about signature-distinct RN
saw functions f, and f, and their respective prototypes f, and f,: F )
- .
1 (a) discrim( f,) < discrim( f;) S
> (b) SRy, is a proper subset of SR, 3

(¢} RRNS(r,) is a proper subset of RRNS(r;)
d) ri<r,.
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- Proof. We show (a) iff (b), (b) iff (c), and then (c) iff (d): :::::
O (a) iff (b). Assume (a) is true. Any string with all its lops less than j_,
discrim( f,) has all its lops less than discrim( f;); thus SR, is a subset of SR, by s
- Theorem 8. It is indeed a proper subset of SR, since discrim( f,) is certainly not a :_,':
b member of SR, (it is not less than itself), but is a member of SR, si.ice it is lop- 2
- maximal and is less than discrim( f5).
‘ Conversely, if discrim( f,) =discrim( f,), then by Theorem 8, SR, is equal to
SR,,. If discrim( f,) > discrim( f;) then, by repeating the above argument, SR, is a
- proper subset of SR,,. Thus contradictions arise for either assumption. The con-
v clusion: discrim( f,) < discrim( f3).
-~ (b) iff (¢). By Theorem 14, Corollary 2, note that RRNS(r,)=SR, =SR,,
7a and RRNS(r;) = SR, =SR,. The result is immediate.
. (c) iff (d). Assume that r, <r,. Recall the characterization from Theorems 12
PN and 13 that RRNS(r) = {q | V,(lop*(g)) < 1}. Now for r<r' it is always true that
N
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Fi1G6. 6. Isomorphic saw functions.

Uo/r +u,/r* +.. <1 implies uy/r' +u,/r'*+.. <1 for any sequence ugu, ... It is
immediate then that RRNS(r,) is subset of RRNS(r,). It is a strict subset because
the string discrim( £, ) is not in RRNS(r,)}—by Theorem 14, V, (discrim(f, ))=1—
but is in RRNS(r,) (since V, (lop*(discrim( £,,))) <! for all &, by Theorem 14, then
for all k, V,,(lop"(discrim(f,,))) is <1, since r, <r;).

Conversely, if r, =r, then certainly RRNS(r,) = RRNS(r,); if r, > r, then, by the
above argument, RRNS(r,) is a proper subset of RRNS(r,). It must be then that
ry<r,. Q.E.D.

The above theorem is significant in that it shows that every signature-distinct saw
has a unique prototype, which in turn corresponds to a unique radix. In informal
terms the family of prototypes is a 1-parameter family—r being the parameter; as r
increases from 1 to 2 the signature repertoire of the prototype increases accordingly.
Any signature assumable by f;, is assumable by f,, iff r, <r,. This property reflects
' B back to signature- distinct saws; by comparing discrim( /;) with discrim( f,) we can
determine which saw can “simulate” the other—a rather remarkable result.

As a consequence of this discussion we can immediately conclude that the two
saw functions illustrated in Fig. 6 are isomorphic: they are both signature-distinct
since they are pse, and their respective extensions share common signatures for 1
(and hence a common left-signature).

V1. CONCLUSIONS

The following results have been derived:
(a) Every saw function has a signature repertoire. Two signature-distinct saw
functions are isomorphic iff they have the same repertoire.

(b) For evéry signature-distinct saw function f there exists a unique’ string
discrim( f ) called the discriminant of f, such that an arbitrary string s is in the
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signature repertoire SR, of f iff all “tails” of s, and s itself, are strictly less than dis-

o . crim( /) in lexicographical order.
(c) discnim( f) may be obtained as cither Is (1), where F is the extension of
P f, or as sup SR,.
L (d) The collection of discriminants so arising can be characterized in strictly
string-theoretic terms: a string d is the discriminant for some signature-distinct saw
"y function iff it is lop-maximal and contains infinitely many 1s.
:{ (e) Discriminants d are in one-to-one correspondence with radices r chosen
from (1, 2]. The correspondence is given by r is the unique positive root of dy/x +
2 P
di/x*+.. =1 i
Q

(f) Each discriminant arises from a particular 2-piece piecewise-linear saw
function. Consequently every signature-distinct saw function is isomorphic to one of

these prototype saw functions.
The theory of prototypes has far-reaching implications. The iterative structure of

EACRAR

any signature-distinct saw function may be studied by considering the structure of
. an isomorphic parallel-piece linear saw. Fixed points, periodic orbits, orbital
A topology, asymptotic behavior, and ergodic properties of orbits—all can be {
. investigated through consideration of these elementary constant-slope, piecewise- X

linear maps. The simplification effected is indeed remarkable in extent.

Due to the central role played by piecewise-linear functions in this theory, and
also due to the ability of piecewise-linear maps to approximate the behavior of
more general maps, the iterative behavior of the piecewise-linear family becomes an
especially interesting research topic.

Perhaps the most discouraging aspect of the theory expounded here is the num-
ber of restrictions placed on the class of systems studied: a l-dimensional state
space; autonomous operation; transition functions which have two continuous and
monotone pieces; signature-distinctness. We believe however that the methods
employed in this paper will routinely extend to general 2-piece functions ( f(0)=0
and so on not required) and also to p-piece functions with p > 2. The general areas
of non-autonomous systems and of higher-dimensional systems remain totally
untouched topics.

A special reference is required for three pioneering works on number notations
g and prototype theory, works unknown to the authors for more than one year after
% their own independent work in this area. Everett [2] apparently first investigated

the existence of real radix number systems; Parry [10] then thoroughly developed
their properties and [11] derived a prototype theory by means of ergodic theory

s

o

Y

e

NS
PR

Vs
s
A vavas

RANF I R
X
T A NNy

A

- =
-.-.

v, . ) " .
" methods. The interested reader is referred to these expositions for an alternative
- exclusively mathematically oriented view of number systems and prototype theory.
o
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Abstract

A theory of orbital behavior in certain autonomous one-
dima2nsional nonlinear systems is pursued, using an approach
basad upon the concept of (orbital) signatures. Farticular
attention is paid to the fixed point structure of such
systems with the ultimate aim of using the signature
rapartoires of these systems to characterize fived-point
arders and the presence of <chaes. A system-thsoretic
approach is puwrsued here -—-- an  approach which complemsnts
other recent studies of a more analytical mature. Chaotic
bahavior in a certain subclass of these system is conpletely
characterized in terms of the Ffirst two iterates of
spacific known point in the range of the system transition
function.
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I. Introduction

There has been great interest in recent yvears in the
orbital behavior of autonomous nonlinear one-dimensional
zystems defined over the unit interval [G,1] 1+F+F8.8,6,7,
Thers is, in particular, interest in the so-called chaotric

behavior of the equilibrium, or Yixed, points of such
syshens. This behavior manifests itself aven in procassss
describable by simple first-order difference equations of
the form:

N+t = 'f(){k-) (1)
where f: [O,11 > [O,1].

Various approaches have been employved to analyze
systams of Fform (1), ranging from graphical methods ©, to
purely analytical technigues 4 and ergodic  theoretic
constructs =, A system theoretic approach, introduced by
Flein and Ealiski (and cited above) is purswu=2d in  this
papetr. We view the function + as the state tranmsition map

of an avtonomous one-dimensional nonlinear discrete-time
system. The concept of signature, defined below, i3 uwsed to
characterize the orbit of any given initial system state.

This paper analyzes the fixed point structure of these

systemns through the use of sFigrature repertoires. Qe

valopment is necessarily somewhat detailed due to owr ne=d

o formalize and introduce certain +fundam=ntal concepts.

Dur results prove to be of intrinsic interest for the
fnllowing twod reasons:

(i) Chantic behavior (the presence of firxed points of
all periods) in a broad subclass of these svst2ns -- the
sigrature—distinct well-structured unimodals - is
characterized strictly in terms of the first two ita2ratss of

¥
m transzition

a2 secific point in the range of the syste
function, Hence & highly constructive test for  cheos

1305,

(ii} The utility of the signature concept iz  thus
damonstrated, a concept with complanents alternate methods
Ehat draw  upon more advanced ergodic  theory and mea
theorestic treatments of the subject.

Much of this work appeared in a somewhat different format in
on@ of the authors’ doctoral dissertation 2.

# LA

Iy
A
Pl
Ll

(4 -

dtv,
l\.'
AR

g

,
1]
1 .0

CHUNS
s U
o

YL Sy e

.I .I
SIS N
NN




[ ' N

-~

N

WA

T

LR
LA

A Y

wn

Unimodals, Subbells, Signatuwres and
Gray Code Order
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The concepts bhelow were first introduced in the cited
wortk of FKFlein and kKaliski. They are thersfore Jjust
summarized below.

I7.1 Unimodal and Subbell Functions

Detinition 1: A urimodal fupction 1is A Continuwous  map
F:LO,13 =% [Q,11 for which (Figure

-
~—r
11

{i} ¥ has a unigue maximum g at soms paint p in (O, 1)
(i1} f is strictly monotone on [O,p]l and on [p,1]
W tarm p the breafporint of £, and g 1ts pealb value.

Befinition 22 A Fubbel!! function 1is a wnimodal Ffunction
obeying thes additional constraint below (Figure s

(iii) F(O0Y = £(1) = O
L The name subdbell iz derived from the ralationship of t
functions ko the bell Jfunctions considered in reference 73
the ball function is additionally constrained to obey f(p} =
113

This paper is primarily concerned, {rom an =2:upositiona
point of visw, with subbell functions, althowgh mamy of £
results rapidly generalizce to the more wtensive Class o
unimodal functions. In section VII w2 @zamnins one  key
aspact of this issue in mores depth -—--  thes pressnce  of
chantic regimes 1n unimodal functions. We ses2 thara how we
can aszsociate with a2 given wnimodal an appropriate subbsll
ano oy orbital properties of the uninodal natuwrally derive
from corvasponding properties of  the assc subbsll
frampztion.

1.2 Fimnitte and Infinite Signatures

et £ be a given subbell. Write, for & = L, &%
dapotse the kth iterate of £, i.e. the L-fold composition of
Tomith itseldf Define ¥ to be f and define ¢ to be ths
vlentity map, 1.2, FP00) = v, For all .

p

Definition Tz et kX O be given, along with o ovn DO, o0,
The S-zignature  of x  under ¥, sigr ), 1o the tanatn &k

hring bBe by .. brey where, for i = Oyl kols
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= 1, if () is in (p,11 fb‘f‘
LR
~ '\“'-’\’
N If f4(x) = p, we set by to a "-". :-.-“sf,-:;
RS
o . . . _ ] sl
sia%{x) will be called regular if, for all i, by i3 O or 1, e
"N but not “-", I+ sigx(x) is not reaular, it will be callad e
- irregular. B
The (infinite: sigrature of u, sig(x}), is ‘i

zimilarly defined as the infinite seqguence of points in
f3,1,- obtained by letting Kk rangse over all the positive

)

integers. We say that u  is regular if sig(u) is regulacs
ﬁ otharwise we term x  irregular. Note that if 2 is regular
- then, for all k, sigh*(x) is regular, and conversslvy.
“a IT.3 Gray Code Ordering
E
We can dafine a total order upon binary strings (not
o necessarily  ragular signaturas) which the reader will
:i recognize as Gray code order:
3 Definition 4: et =3* = Dbeo by ... and ® = deo da «uv. be
n two binary seaqueances of equal finite length, o of both
. infinite length. Then s ¢ 2 if s' is not eqgqual to s* and,
denoting by J the bit position at which s and s=2 firs
o differ (j > 03,
o
) (Bbo + +ua + by) mod 2 = O
(de + .. d_-,) mod 2 = 1
. This order relation is  fundamental in the theory of
i signaturas, in that all subbell functions obey a
A monotonicity of signatures property (monotone with respsct
to this order). We explors this in section II.5.
- Mote that we wuse the symbol " ko denotse both
< conventional numerical order on the reals a3 well as the
‘ Just defined Gray code ordering on  s2guences. This will
‘- posne Mo problem in the sequsl as the context of its use will
N alwayvs ba appar=nf.
L 8
I11.4 Instances of Irregul ar Signatures: Signatuwre
:; Fepartoires
Detinition S: Suppose s1ig () is irregular {for some o, An X j&:
~ instance of sig() 1s any binary string obtained from sigiud Ay en
E, by arbitrarily inserting G¢'s and 1 '3 for 2ach """ 1n sigit. .\'lv
We term the least zuch instance obtained, in thae ¢ ordering. AR
-, the lett-sigrnature of 1zGY; we fterm the greatest such ?;Q?}-
; instancs aobtaimed the right-sigrature of &, ralod. It 1= ;—k{h*
- . /s to show that  1s{(e) and rsGr wll ditfer 1 just one RN
position, the posibtion whare bhe first "-" occwrs. This 13 .#7°ﬁ'
g Erue aven  1f wig(x) has mors than one dash. Whon sl 1 o
“ =
T T e e N N G e N
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irregular we define 1s(x) = rsiu) = sigix). In this case we
can thersfore ref2r to sig(k) as =ither 1sixl or sl

without ambiguity and will do s0 at tLimes 1n the seguel,

vl

; whanaver convenient to.
of
These definitions extend in & straightforward way to
L‘ finite signatures, and we write the left and right b -
- - i . , : -
tﬂ signaturas of x as lsk (k) and rs* (4}, respectively.
Pefinition &: The 4&-sigrature repertoire of f, denoted by
& g%, i3 thes sat of strings:

S = { rek), v in [O,13 3 O L ls*(x), « in [O,13

The signature repertolire of +, denoted by S, is the set of
strings:

=4 rs(u), v in [G,13 > 4 { 1si{x), % in L[Q,113 3
Thus the signature rapertoires consist of all signaturss of
reqgqular points, and the greatest and least signatures of

all irregular points.

L~

1.5 Monotonicity of Signatuwres

All subbell functions, as noted e=arlier,
following property. We cite it without proof.
Aapp=ars in reference 2:

obey the
The proot
Thaeorem 1: Let + be a subbell

points, % < y. Then for all k, rs
< 1ls(lyl.

let », v in [G,1] be given
() = Is*(y), and rsix)

Note that in general we cannot strengthen the ineguality "=v
to "', We return to this matter in section V.
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. III. A Roadmap for the Technical Developments to Follow i,:::\{‘::
t RN
~ . . ‘ . . Lo
In Section IV we examine certain recudrsions +or ’i
“G calculating the k—-signature repertoires of subbells. We AT,
A will see that ths role of the left signature of the pe2al X
i valus g is central to these formulae. In Section V we beqgin -:sf.\:;\
- to 2ramine the issue of fived point existence for subbells. ::.':;::::
é Mecassary and sufficient conditions for the existence of ;;ﬂr
tixed points having given finite or infinite signatures are e
i derived. We follow this in Eection YI by an in depth :.‘-:."-:'-
\:: aramination  of fixad point orders and the conditions LSOO
o necaessary for the presence of chaotic regimes -- the .‘;:-::"-'_::.
presence of Ffixed points of all positive orders. Necsssary R
e background material is introduced as neeseded; the reader is iR
i often referred to the cited references +or proofs of many of :‘;‘_L)
the subsidiary resulis pressntad. \:,"
.. Section YII1 examinezs the more general class of unimodal ,'__‘_’-
N functions in  the context of the earlier sections of the AN
papar. We associate with an  arbitrary unimodal a subbell o
for which ow developed theory appliess. This allows us to
' rapidly derive analogous properties for the unimodal family. _
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IV, Recursions for Determining Signaturs Repertniress

We preazsnt  two recursions that tell us how to compute
(k+1)—-signatures from k-signatures.
Theorem 2: 2 For all k£ * 1

gk+1 = £ O - G L [ 1lsk*1(0y, lgkx+3(p) 1 > U

{1 - 8« «~ [ rsx*3(p), rgk+2(1y 1
wherae the - denotes sequence concatenation, -~ denotes
intersaction, and the sgquare brackets represaent closed
intervals 1n the ordering on binary seqguences We will
p

often omit the concatenation symbol "-" when its presence is

implicit and wunambiguous.

Since any subbell § obesys (03 = f{1} = G, i is
immadiate that 1s(0) = sig(0) = 000 ... and rz{l) = zigil)
io0d ... Further, ls(p}, by definition, is equal to O-ls(g);
similarly rs(p) = 1-1s(g). We may thus simplity the above
recursion to read:

'
P
i

Ghk+l = (O - § Gk L oxy Isx(q) 1

v

1 - £ 8% . [ 0w, lax(g) 3

(]

Observing that o1 = {0,1, we have the

3 following
alternative formulation of Theorem 2:

Theorem 3: The +inite signature repertoires of a subbell
ar2 determined recursively as follows:

(i3} 8 = {Q,12

(ii) S+ = G - Tk I S

whars T* consists of

1s*(q).
This Jormulation of the Fecursion underscoreas the
significance of the pealk value g of the subbell. In

"signature space" subbells form
functions, the parameter being
naak value of the subbell.

a one
the left

parametar family of
signature of the

those k-signaturss  in S% which are *
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V. On the Existence of Fixed Foints Having Given Finite
and Infinite Signatures

We are concerned with the existence of fixed paints of
f*, ¥ & subbell, +for various valuss of k, having given
finite and infinite signatuwrs=s. A fixed point of % is a
point 2o for which f*(ka) = e and represents a value which
repeats with pariod E under iteration of f. To sxpedits the
developments b=2low we must introduce a f2w more notions,

V.1 On Rotations and Shifts of Segquences

Let s be a k-bit sequence. Denote by s%j the seguences
obtained by rotating s circularly j bits to the left, O <
N T We term s%3j the jth left rotation of =. Datine s+%0 to
bhe agual to s.

Definition 7: The rotaticnal maximal of s, rm{(s), is the
largest such lefft rotation of s. s is called rofation

maximal it rmiz) = s.

The sequenc
Theres ma:

e 10011, for example, is rotation maximal.

y exist, in general, more than one valu= of j for
which rm{(s) = s¥j. For =rample the sequence s = G11011 has
rotational maximal rmi{s) = 101101, which is esgual to both
=#*#2 and s*5. In all cases, however, rmi(s) is well-defined
and wunique for a given s.

A similar concept applies for infinite binary sequences s.
The jth left shi¥t of s, Ly(s), is the sequence obtained by

shifting s J bits to the left, thus ‘“lopping off" *the j
leftmost bits. Let L(s) denote the set of all left shifts
of =, 1.2, L (3} = { Ly(s), 5 > O . Define Lo(s! to be
Definition £: The shift mayximal of s, sals)., 1z sgual to
sup (l.(s)) . When 5 15 =2qual to  smis) w2 tarm 3 shivE

maximal.

The sesquencs 10010101311 ..., for sxample, i3 shift maamal.,
Mota that in ge2n2ral smis) 1s not an 2lement of L, a3 ~n tne
caze when 3 = 1010010CGOLIGOO0L .. here smis) = G0l (L

It can be proved 2 that 1s(g) is alwayvs shift maimal [
any subbell., This is a wsa2ful fact that 13 Smed ol e

zagqual. )

V.2 Signature Bins

lat. 5 = b By .. be a given indinite binar. saooenoe,
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Definition 9: The &-sigrature bin of s, k > 1, iz the set
o — L]

A = 1 % such that ls*() or re* () = bo by oo Br—a?

From Theorem 1 (Monotonicity of Signatures!) it follows that
Ak, 1f non-~empty, is an interval in [O,11, In fact it is a
closed interval =,

Detinition 1GC: The sigrature bin of 3 iz the zet

A = L % such that 1s() or rs(y) = =3

It again +follows from Theorem 1 that A, if non-2mpty, is an
interval in [0,11 and in fact satisifies =

lq=w~iqk

where the intersection is taken over all values of k. Hance
A 1s a closed interval as well.

V.3 0On Fixed Foints of +% and Their Signatures

We can now begin to turn to the central issues of this
papar, the necessary background material in placs. We will
bhe addressing three gquestions 1in the pages that follow in
this section:

QUESTICH i: When is an infinite binary sequence s in the
signature repertoire § of a subbell 7

QUESTION 22 When iz an infinite binary seqgquence s in € the
latt or right signatura of a fixed point of % for some k ==
1"\

QUESTION 3= When i3 a given length k binary sequence 3 the

left k-signature or right k-signatuwre of a fixed point of %
tor a given values of k7

We address these questions in turn  through a s2quence of
Theorems and Lemmas. We begin with our first question:

Leamma 1: Let ¥+ be a subbell, s be a given infinite binary
Sequence. Then 5 15 in S, the signature repertoire of ¥,
it and only if, for all k, every k-truncation of = 13 in &%,
the bL-signaturse repartoire of f. (By k-truncation wa nean

the firzst kb bibts of 30 .
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Froof: The necessity of the condition is obvious, as thes k-

truncation of a left or right signature is a left or right

k-signatura. As for suwfficiency, suppose avery k-truncetion
t

for & is in §%. Then each k-signature bin Ak is non-emp ‘
and as noted, is closed. Thus A = ~ A. 1s non—-2mphty also.
But by ouw earlier remarks, A 15 the signaturs bin of
Thus 8 is in 8. GQED

We ca

3

i Now provide a complete answer to fuestion 1:

Theoram 43 Let 5 be a given infinite binary ssguenca. Than
5 is in S, the signature repertoire of f, if and only if
ly {3y < 1s(qr, $or all 3 % O

Froof: (-3} Suppose s is in § and is equal to ls(x) or rs(x)

for some point x in [O,11. Evary =shift of s is in § and is
the left-signature or right-signature of a point in the
orbit of . Such points, from the definition of g as the
p=2ak value of f, have values less than or =gual to q. I+ g

is not in the orbit af » then, by Theorem 1, Ly(s) = 1lsig}
for all 3 » @, and we are done. If g is in the orhit of
then so0 i3 p, the breakpoint of £, and it is masy to verity
that all shifts of s corresponding to those iterates of «
equal to g are equal to 1s(gY. All others, by Theoream 1,
are l=ss than or 2qual to 1s(g). Thea conclusion follows.

(i-) Suppose that L,(s) ° 1g5(q) for all j » 0. Write s as
bo ba «r. We are going to use the recursion of Theorsm 3.
Since be is clearly either ¢ or 1, it ie in S, as i35 b,.
Since b, is the First bit of Li(s), and Lii{s) % 1ls(g}, bv
hypothesis, w2 have b, * 1si{g} and thus deduce by Theorem
Z that be b, is in 8=, Now consider be by, b=z ... It is
2asy to deduce by an argument similar to  that Jjust given
that by bz is in S5%®; further, b, bz are the first two bits
of La(s). Thus, with L=z(s) = 1s(g9}, again by hyvpothesisz,
by b= = 1s=2(g). So again by Theorem 2, be by bz iz in 57,
By repeated use of thess arguments, we find that avery k-
truncaticon of 5 is in 8. Firom temna 1, then, is 1 5, as
desired. QED

Having dispensed with our First guesstion, ws can now

turn to Quastion 2. Wz  must settle for a2 partial answer,
Nowavar, f or although it iz certainly true that ithe

signatura of 2 fived point of f% i35 periodic with period b,
its left o right signature may not be (one always will be
A% We Wwill see shortly.)

Thaorem S:  Let kB % 1 be given, along with 3 subboll §, and
infinitse binary sequences % in S. Then if 3 i1z periodic winh
pariod otherae 15 a fixed point » of % for which 1z

ra(e) = 3.
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with =2,

Froof:

Froof: -2t Ay denote the i-signature bin of

the signatuwr=2 bin of s. Sinze s 15 in €, all ths
ara non-a2mpty closed intervals in [O,113. Nows
certainly the case that &, 1 Az 7

it is also true that A = ~ Ay 1 = 1,2,...

Frrom the assumned periodicity of s we know that

r "q(i—-l)k far all 1 »= 2. Tht_.(S -~ '{'H(.I{:Q1;.;) r -

. and sincs A

s, and &
Ay and A
it 1S

= e Ay,

"Fk (l"‘i* k)

!qti—--x)k [
where the First intersection begins with i=1, the
Bul we may re-write the latter as ~ Asiw, with 1

sacond

bheginning at 1, and this eguals A, by ouwr observation in the

precading paragraph. Thus  ~ F% (AL L A. It i

deduce that (.« Ager L ~ R LA ) . Thus f*(A) =

easy Lo
W Ayt

L A, and thus +* has a fixed point ¥ in A. By definition of

A, then, ls{x) or rs(x) equals s. 2ED
Corollary: A given infinite binary sequence s 13
right signatuwre of a fixed point of +% if it is

parind k, and if smi(z) = 1ls(g}

the left or
pericdic of

Feriodic infinite sequences always contain their
shift maximals. Thus all left shifts of 5 will in

tact be

less than or =qual to ls(qg). From Theorem 4, then, s will

ba in S. The raesult follows from Theorem 5. RED

Before addressing the third of our questions we need to

state the finite seguence analog of Theorem 4:

Theorem b: Lt = be a k-bit sequence for which

ls*(gq). Then every rotation of & is in Bk,

Q, Sy

ra(pl). By

rm(s) <

satisties

~apaating

Froof: We will show theat every rotation s, of s
the following properties: if s, begins with a
ls*(p); i¥f s, begins with a 1, then s, >
basic result of reference ¢ it will follow that avery
rotation of s i3 in 8k, (Lack of 3zpace prohibits
3

+
b Y

proof of this result.)

Assumea, then, that therse is some rotation s.

wht ik Sy = O l‘:); Boe.. lSk(p) o S5y = 1 by bae ..

Since ls*(p} = O ls*"1(g) and rs*(p! = 1 ls*"3(qi,
FoolasMrrigr. MNow for any
and Za of

ot 8 for
rar(pl.
w2 hawve

etting =z, =

in both Cases that bs b=z ...

binary seguences z,; and =z of equal length, and z.

2qual length, =z, * zz implies =i 2= & T2 Za . 3

b: be ..., = = lgk=2(q), z=x = © o 1 (according to the

LI

case) and zZa the kth bit of 1ls(g} vields =z, * 1
EBut 54 # 1 = rmi(s), which by hypothesis i1z <

1s=(qr.
ls*{g:.

Thus we arrive at a contradictiaon and no such Fotation s, of

auists. The proof is complete, QED

il
i

Dur next resuwlt iz an important one, both for addrassing
ants

Dusstion T and for the developm
analysis of chaotic behavior.
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Theoram 7: Let 1o be a fixed point of +%- Then either
15 (Ka? or rs(ke! is periodic of period k. Let s denote the
first k-bits of this periodic signature and term 1t the
periodic k—signature 0¥ xo. There exists 1, in the orbit of
e whose left k-signature is equal to rm(s). Further,
rm{s}y rm{s) =< l1s=%igq) and, when it is equal to 1s=%={(g),
ls(g) is in fact periodic and egqual to rm(s) rmi{s) rmis} ...

Froof: Clearly sig(xe) is periodic with period k. I
31g{He? 13 ragular then s is equal to sigkiug) and it i
readily apparent that rin(s) occurs as a subsequence o
513 {(al. I+ this subsequence begins for the first time a
position j > O in sig{xe), then rm(s) is the k-signature of
a1 = F9(ka)e Further, sig(iy}) = rm(s) rm(s) ... RNote that
since p, and hence g, does not occur in the orbit of 1o all
points in this orbit (including o) are less than g. From

S 1) B

the Monotonicity of Signatures Froperty, then, rm(s) rmis) =<

1s=H(g). I+ it 135 < 1s®%(gq) there 1is nothing further to
prove 1in the sig{xe) regular case; assume that it sgquals
1s=%(q)y, then.

Write rm(s) as Si. Thus sig(i,) = 5y 8,
using Monotonicity of Signatures, siglx.? l1s(g:. I it
is less than ls(g}) we argus as follows,. Its first 2k bitks
agre2 with 1s(g}) by hypothesis. It must b2 then that ls (g3
is of the form s1 S: ... 52 (n times) z,, where n *» 2, and
where the infinite sequence =, does not begin with s;. Now
suppnse 31ig (.l and ls(g) differ for the first time at the

. e s Again,

iAW

nik+3j th bit, with & < j < |, 2t m = nk i+t N is even, and
tn-1)k 1i¥f n is odd. Consider La(siagGia3? and La(lsigl).
The former is again sig(iy), whereas the latter is zi if n
is even and sy =z, if n iz odd. In both cases (n odd, n
avenl), an even number aof s,'s were deleted and hence zig(x.!?

1
Lem(ls(g)}. Sincez thess two sequences differ within thes
first 2k bits (as z, does not begin with s,), it must be
that the First 2k hits of La(ls(g)) are greater than thoss
of sigix.) = 1z=%(qg). But this 1s not possible by Theorem
45 Thus sig(y) = ls(g) and the latter is periodic and
agual to rm(s) rnls) ...
There dJust remains the sSigide? irreqular case  to
discuss. Clearly both p and g o t oof

U 1n the arbit
and because sigiral) 1s periodic no point greater than g
DIZCUrs 1N Mo s orbit. It is straightforward to demonstrate
that 1s{(g) will be periodic of period & and that eithe

r5(ta) o 1s5(keg! will be, depending upon  the paritv  of
5143 (Mo before the first "=, After this "-" the remaindsr
of both 1s{te) and rs(uae) is ls(gl. Since 3 is the first k-
bits of this signatuwre it follows that rn(s) must be ls%ig}
by monotonicity of signatures. The point ., having rmi(s) as
ity left-signaturs  is g itsa2lf, and thus 156G, 13 egqual to
ls(q), whizh is thus rm(s) rn(s) ... Note, in particular,
Ehat rm(s}? rm(s; i3 =2qual to 1s®-(g:. QED

We use Theorem 7 to answar Duestion I, In fact, we couch

the answer as a Corollary to Theorem 7

ot .
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Corollary: et 5 be a given k-bit binary seguence. Then RO
thers is a fixed point of % with periodic k-signature s if _&\5&}
" and anly if rm(s) - rm(s} < 1s2k(g), with 1s(g) = rmis) RSO
> rmis) ... when rm(s) rm(s) = lsBxig), PSSR
A Fraof: (=) From Theorem 7
W
¥ 3
) (<=} Conversely, consider the sequence z =5 3 5 ... (n
h times), for any n * 1. It is =sasy Lo demonstirate that rm(z)
ki = rm{s) rmisy ... (n timesi. It follows from ow hypothesis
that rm{z? = 1s"™(g). Thus from Thzorem &, & 1tseld is in
I Sk, Hence all initial portions of z of le2ngth m, m =
Qj lyewesnk=—1 are in Sm, Since this is trua for all n » 1 it A
; follows that s 5 s ... is in €, by Lemma 1. Since the PRYARAS
-y latter infinite seguence is periodic with period k, ws know el
g by Theorem S that there is a fixed point ¥ of f% whose left
i o right signature is e2qual to s 5 5 .... Certainly s is
. 's periodic k-signature. CGED

Y.4 Signatuwre-Distinct Subbells

-+

Definition 11: A subbell is termed sigrature—-distinct if
sig(x) = sigly) implies # = y. A wide class of signature-

distinct subbells have been shown to =2xist 2 and include all
those subbells which are piecewise strictly expanzive, 1.:=.
for which there esrxists E > 1 such that for all x,y in [Q,p],
AEC)-F(yr/ > E Su-y/ and similarly For all x,y in [p,11.

A
l{"

ﬁf One consequence of signature-distinctness is that i & is

g not agual to v, then no instance of sig(e) iIs aqual to an NN
instance of sig(y) either. POSROATE

N PSS

;f For signatwe-distinct subbells a more powerful form of i}i;?{
the Corollary to Theaorem 7 holds: .

N

\:." z

Theorem 81 Let f be signature~distinct and l=2t = be a given
. k-bit binmary sagusnca. Then there is & fixed polint ofF &
with periodic k-signature s if and only if rmisy rmiz) =

case Of equality,

N 15%%(q), with the further proviso, in the

(Y that g is & fixed point of f* as wall.

- Froof: (=) I+ suwzh a fived point esxists then rm(s rmis)

:\ = 1s®F-(q) from the above LCorollary to  Theoream B

) Furthermore, in the case of equality, ls(g) is periodic with
pariod &  and i3 eqgqual to rm(s) Fmisy o0 L. By Theoram 5,
then, ther2 e2xists a ftixed point x of f% whosa left or right

4 signature is egual to 1si(g). SBince f is signatuwre-dishtinot
this point 1« must in fact agual g.

i

”. (=) Conversaly, if rmis) Fin (s S-Sl the result 1=
immadiatz from  the Corollary to Theorem 7. [f agquali k.

- ol ds and Q15 a fived point of % as well. then 11 13 2as,

F g,
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VI. On Fiwed Foints anga Their Orders

PP

In this section we turn to characterizing the

. Yixed point regimes of subbell functions, building wupon the
ti matarial of section V. tet + be a given subbell in the
v discussion that follows.
': Detinition 123 A Finite binary sequence s of length n > |
El is said to be of order &, k 2 n 1f we can write s in the
fOrm S1  Si1 e sy (p—times), where s=; 15 of length k, nn =
{i pk, and s: cannot be similarly decomposed.
e
(Thus a sequenc=2 consisting of only 13 or only O's is of
- order 1; the five bit sequence 10110 is of order five, and
E the six bit sequence 010010 is of order threaa.:
Definition 13: Ha 15 & Yixed pofnt of ¥ of order &, k &
e 1, if
1O

(i) F* (e = Mo

(11} 3 (o) is difverent from e, for j = 1,...,.k=-1

Thus a fixed point of order k first maps into itself after k
iterations under f. Note that fixed points of arder 1 ar
simply defined as those points that obey (i) for k=1
Note also that if iz a AFixed point of +F* and it
"periodic" k-signature 1is of order k, then » is in fact o
arder k. We state this as a Lemma:

o

s,

-+ 1

. |

F &
'.

- Lemma =3 If » is a fived point of f* and 1tz "periodic® k-
e signature is of order &k, then x is of order .

. Froof By contradiction. Supposs  » iz of order N0 Y k.
;\ Clearly n divides k, and ® 13 also a +tixed point of 7. Wz
- know from  Theorem 7 that a21ith }oor rsi) 1z peraiodila

of period . Suppose 1t is 1s{xT. Then l1sux: is als=o
e pariodic of period k, sifnce n divides k. Thus the
A "periodic! k-signatuwre of » conszists 1in bEhis z oFf kn
rﬂpims of the "pariodic'" a-signatur=s ad o, & lar remart

lds if it i3 rs() that it is periodic. In both Cass then

., hio

o’ , . . . . N

0N thae order of the "periecdic” k-signatwre2 of 0 135 at most n.
* DED

’
vanry subbell with  peak value g greater tham 1l
. 1

braakpoint p oA (regular) fixed point of orde- 1. fiaviog
4 signature 111 .o Term this polnt Ythe npon trivial fr1eed
zf point of order 1t R S (f A A trrvial fived point ar O
OFf o ms, ) For all k, the k-signature of 4+ ¢ non-trivial

L]
fied point i3 1¥, and., by definition, 15 1n &%, Cince the
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clear be=low.
q w2 hava:

N

=

in Sk,

Froof: Clearly the Theorem holds
that k& 2. Now the conditions

QED.

two are present.

Frioof: We sgz=ential
the various ways that

fised point. Contradiction.

than £y, deducing that 42 0x) 1

is thus not a fived point. Qgain a

ey T
{ “aEE

begins with L1

T R i SN N NS
AR R A L, R A SRR N

)

Theorem F: I 1s=(q) = 10 then, for all k > 2,

1G.  Similarly 101k~% iz in S%, since Qikx—=

The condition 1s52(q) = 1C¢ is a fundamental one +for subbe
ince it must hold i+ any fixed points of aorder greate

ly argus by ¢«
1s¥ (g} can not eqgqual 1a,

gne can similarly wrgue the case w
. v
B i

condition g p can be =squivalently phras . d as ls* (g = 1,
v w2 Can suwimarize this simple observation as
;j Lemma 32 If 1s3(gq} = 1, then, for all k * 1, the segusnce
o i« i3 in Sk,

We are motivated to n=xt look at certain k-bit seqguences
containing a single O. The reasons for this will be made
By imposing a somaewhat

stronger condition upon
1ais—=2 13

for k = 2. Assume then
of this Theorem Al

stronger than those of the above Lemma; hence 1% is in
Sk—=2, From Theor=sm 3, we then have that Ol1%—2 iz in Skt
since it 15 clear that 1= ls*—={g) as ls(g) begins with

i
ls*—1r (g’ also.

Since it is the study of such fixed points
intarest hera2, we will restrict our
tarming them well-structured.

r

that 1s  of particular

attention to such subbells,

Wa nf course nzed to demonstrate the above claim.
Theorem 100 If 1s=q)

is not equal to 10, then + has no
fireod points of order greater than two.

ontradiction, looking at

Case 11 1s(q) begins with a O

The argument: In this case, 0q ¢ p. S8Since g the peak
value of f, 1t {follows that for all in LG,11, S50 T =
Assuming that  is A& Fixed point of order graater than two
it must be that {0¢) and +F=04) are  unsqual. I+ £=0G0r 13
less than (), then by the monotonicity of £ on [Q,pl and
thes above obssrvation that range(f) is a subset of [O,pd, 1t
is immadiate that for all 3 > 1, F3*tQC) 3 (). In other
words, Cf302)3 is a decreasing sequence and thus » is not a

here +%(:) 1s greater
3 wnocraasing, and thai
contrad i ction arises.
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The argum=nt: Suppose x 15 a fixed point of order greatar
than two. Therea are several suboases based upon the {form
that the signature of 1 may take.

rase2 2at sigix) contains no 1's

Mo iterates of w are greater than p. In particular it
must be that « < Fx) = p or f{x} < x = p. (. cannot
agual f(x), or it would be a fixed point of order 1. We
can argue  as in Case 1 that {£200F i3 =sither an i1ncresasing
or decrsasing seguences, and hence x cannot b2 & fixed point.

Zh: 53ig(x) contains No Qg

Mo iterates of » are less than p. Let us say, for real
numbers a,b,and ¢ in [0,13 that b is betweer a and C 1+
2ither a < b < o or < < b 7 a. It is =2asy to prowe that 1f
2., and <C ar= all greater than or egual to p, then if b is
batw2en a and o, (b 13 betwean f(ar and f (o).

With the order of w greater than two, x, fix}, and
+= (2} are all different. Thus one of tham is betwesen the
other two. We thus have three possibilities for Zb".

1) If ' $Gy is between 2 and £2(4) we reaszon as follows: if
f¢) » x then from the definition of "between", on the
hand, + () < F= 00y, but with all iterates of » * p, on the
otha2r hand, £ (i) =ooF2 0, Contradiction. A similar
contradiction arises 1+ (g} < w. Thus F(x) 13 not hatwaan
voand £20x).,

i
3J
1

2 If f=2(x) is between » and f (¢} ws argus as follows: =
our abservation above, for all i > 0O, $3*=(y) 13 betwzen
£ ()Y and  FrTr(x0. Eut this implies that /3= (i—+t+3 ()
L AFATA g —f3 () S, and hence the dizstance betw2en succeassive
iterates of » is strictly decreasing. But this s2quence of
distances must be periodic i+ iz a fixed point.

Contradiction.

.

Zy I+ w iz botween fFO:) and £ ) the arqument is similar to
that of pozsibility "2"  above. Fror all A T R -
-1 ¢ e

L)

batween £3%1 (4; and fFA =000, and thus the distance betwaen
stoRszlve iterates  of P 15 strictly  1NCFrSAasing, aga3in
leading to a contradiction.
CAaze Ji zigix) contains both O's and [ s

Thiz 13 the last and most interost casze to oonzaidae.,
We haves  nokoed that is shift mavimals henos, sinoe b
baginz Wittt 11, 1t mu fact be wqual to 1li... vlove et th
A fioomed ooink all 1hmrates miaat s g, oince theo
are obviously  in khe range of ., Hernoe, hy Theoren 4, fhe

teft and  raght signatures of  oll of o 3 1herstes mont bo o

T R N T T PO APUC Tt o
SRR GAN - . S e T R R LY - . T e
o W el et Nt

o

h':\:
™
LAY

r
hY
Sl

4
“I

AT
72,

Iy

v

i 4

YA

'’

y_ v _ T _3_8
PN A
:';.'1"1\./-‘!'

»Y
N

i




A
AD-A174 525  ASYNCHRONOUS DISCRETE CONTROL OF CONTINUOUS PROCESSES 3/3
CU) NORTHEASTERN UNIV BOSTON MR M E KALISKI 24 FEB 86
AFOSR-TR-86-2052 F49620-82-C-0080
UNCLASSIFIED F/G 974




R A

NG Yy S

P

N
., L
'b‘\v'

o
"

RRRCRR B R ol iy ot i allote St P etin e St Sl I Sl oS ek Y

-‘s

NS

PRL A
NN

o

L
-

At

'-\-
o«

A

&

LY

.
LGNt

L4

.

ad

!

ol

% ¢V eNC R,

10 ¥
S & i 2=

. 40
|m T
y = llLe
o 28 e s
A = =] =

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

VAL T S TR T

(M Ml e e e LA T

el

SAN NN T AN

O ¥ 0

\

AN BNy e o

-‘i‘

=




LN
0N

20 RN

L4
X
LAXA

ls{(gy = 111l... Thus no such left or right signature can be »
of the Fform 10... It is easy to argue from this that with :
sig(x) periodic of period greater than 2, and of necessity e
Eg containing O's and 1°'s, this constraint cannot be met. "\:f~
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E\ This completes the proof of the Theorem. QED :;!5,}

The2orem 11: Let + be well-structured. Then + has tinxed
points of order k, k odd, and greater than or equal to Z, i¥
and only if it has a fixed point %o of f* with "periodic®
k-zignature equal to 101x—=,
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Froof: (-} Since the sequence 101% 2 ig of order &, it
follows that e is of order k from Lemma 2.

(->) Let yo be a fixed point of order k, k odd, k » 3. Let :.';:;\.::
s be its "periodic" k-signature, and assume s is not equal "i»f‘
to 101%—=2, s cannot equal O%, For i+ it did, then either F}Pﬁ{
l1s(ye) or raelya) would be 000,,. (in Fact it would be ?}ﬁﬁh;
3 ls({ve)) and thus yo and all its iterates would be < p. By NN
. arguing as for "Case 1" in the proof of Theorem 10 we S?{h?ﬁ
arrive at the conclusion that yo cannot be a fixed point of ﬂﬁt:ﬁ
order greater than 2y a blatant contradiction. Thus s is K. B
not O+, Similarly s cannot be 1%, for we would have lsiya) ﬁﬁ@?ﬁj
ar rsl{ve) = 11l... and thus yeo and all of its iterates would 3fxﬁf¥
bhe > ju 39 By arguing as in ‘"case 2b" in the proof of Q}\QQ@
N

4
o

Theorem 10 we conclude again that yo is not a fixed point.
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Thus s is not Ox or 1%, It it is easy to prove® that

- it k is odd and s is different from O% or 1%, then rm(s) > PRI
’ 1olk—=2, From Theorem 7, rm(s) rm(s) < 1s52%(gq). Thus we Qﬁayﬁﬁ
have 101%—210lk==2 < 152 (g) as well. Usina Theorem 7 ;;;ﬁﬁd

again, the proof is complete. QED NavaNaad

N

We next prove a result which shows how the presence of
~ firxed points of certain orders implies the existence of
) fived points of other orders.

Theorem 12: Let £ be well-structured. If ¥+ has a fix=ad
point of order k, Kk odd, k£ * 1, then ¥ has fived points of
orders k-1,k+1, and k+2.

Froo+t: Assume ¥ bhas a Fived point of order k, Lk odd and
, greater than 1. From Theorem 11 there is a fixed point :ao
of f* whose periodic k-signature is 101%—2; from the
Corollary to The=orem 7, uwusing the rotation maximality of
1012, we thus have 101%~2101k—= < Jg2x(g),

Consider the sequence 101%—!, which we will denote by

. 51, It is of order k+1 and is itself rotation maximal. If
o we can argue that s:6, 7 18%%+*2(q) it will follow from this
- Corollary, that there is a fixed point of f%** with periodic

(k+l)-signature s.. From Lemma £ it will follow that this

fived point is of order k+1.

............
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We do argue this as follows. Look at the leftmost k+Z
bits of si135: and of 101%~=101*~2, The former is 101l%; the
latter 101%—20, Since k is odd, 101l% is less than 101%—20,
Thus the leftmost 2k bits of s:s5; are less than 101%-"FTiQ1k-=
and thus less than 1s2%(gq); s0 131 itself is less than
1s=%*+2(q), as desired.

The remainder of the proof is along similar lines. To
ohtain the fixed point of order k+2 we look at the sequence
B = 101k, It is rotational maximal, of order k+2 and can
raadily be shown to be obey sasz @ 1s5%%*%(qg). From the
Corollary to Theorem 7, and from Lemma 2, we deduce the
existence of a fixed point of f%*2 which is of order k42,

To obtain the fixed point of order k-1 we look at the

seguence sx = 101k—=, This iz of order k-1, is rotational
maximal and obeys sxsx 7 152%—2(g). The proof is complete.
QED

Thus when a well-structured subbell has fived points of
order ky k odd and > 1, it has fixed points of orders k-
1,k+1, and k+2. Since k+2 is odd, we can rea—-apply Theorem
12 to deduce the presence of fiued points of orders k+3, and
k+4, and, continuing in this fashion we come to the
conclusion that §F £ has Tived points of order ke, ko odd
and > 1, it has fixed points of all orders 2 fko—i.

In particular, then, it follows that if a well-
structured subbell has fixed points of order three it has
fixed points of all orders, since it certainly has the non-
trivial fixked point of order 1. This conclusion is akin to
that derived in reference 4; unlike the results derived
therein, however, our "test" JFor this chaotic condition is
far simpler in the case that f is signature-distinct:

Theorem 13: Let ¥ be an arbdbitrary well-structuread
signatuwre-distinct subbell. Then + has fixed points of all
orders if and only if

re¥(q) = 100

Froot: (=3 Suppose the above condition on rsT(gq: doesz not
hold. We will show that F has no fixed point of order
three, contradicting the hypothesis of the Theorem. The
saguance 100 is the largest thre2e bit seguance I+ ra=(3?
does not sgqual 100, then, it must be las than it.
Combining this observation with 1s®(g) = 10, it is immadiate
that sig<(g) = 10 and rs(g) = 1aT(g) = 101. hus =i1g™qg)
i3 regular, and q is not a fixed point of .
The sequence 1s(g@) is shift-maximal; s3ince 1355 (g)

101, we thus have 1s®(g) < 101101, We thus deduce that
has no fixed point with periodic T-signature 101, for war
thar=2 to be one, it would Follow from the Corollai-w to
Theoram 7, that ls®(3} = 101101, and that, Hurther. by
Theorem 8, that g is a fixed point of £, contradicting the

above remarks., But if {f has no fixed point with periodis T -
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signature 101 it has no fixed points of order I at all from
Theorem 11. The conclusion: rs=(q) = 100,

(=) Suppose that rs=®(g) = 100, I+ 5ig¥{(g) is reguiar, then
1s®(q) is also 100, and thus 101101 < 1ls®(q). By Theorem
7's Corollary, then, fF has a +fixed point with three bit
periaodic signature 101, This is clearly a fixed point of
order 3, and thus by our remarks preceding the statement of
this Theorem, F has fiued points of all orders. If sig=(q)
is irregular then, since 1s¥(gq) = 10 (f is well-structured:
it must be that sigS(g) = 10-., Thus g is a fixed point of
=, since p maps to q. Further, its order is Z. It then
follows again that ¥ has fixed points of all orders. QED

He there¥ore need examine only the first three bits of
the right signature of the peak value q of a3 well-structured
signature—~Jdistinct subbell to determine the presence of
chaos.

From the viewpoint of economy of computation, we n=ed
only look at how p compares with f(p), f=2(p}, and F=(p). As
an example, consider the family of ‘"symmetric tent" maps
shown in Figurs 3. These maps are all signature-distinct
since with a » 1/2 they are piecewise strictly expansive.
Further, when a > 1/2 it is sasy to deduce that 1s5=(g) = 10;
they are thus well-structured. It is readily demonstrated
that rs (g) will equal 100 if¥ and only if a > (l+sgrt(S)i/4,
i.2. chaos will be present when a is in [(l+sgrt(5)}),/4,11.

VIIiI. Unimodals and Subbells. Extensions of the Theorvy.

Let us turn, in this final section, to the case of the
mor2 general unimodal function (Definition 1). Although we
couwld directly re-examine, result by result, ow Just
developed theory to see which results gensralize to unimodal
functions, we puwsue a more interesting approach in the

nmaragraphs that follow. For lack of space we focus on
generalizing just the key result of this paper --— Theorem
12,

Let £ be a given unimodal, with (3} = a, f(1) = b, O

a,b < 1, and breakpoint p in (0,1), peak value g = f(p).
Define the auxiliary map h: [0,13 > [1/4,3/47 via hQ) =
Zx+1)/4. Thus h is a linear map, mapping ¢ to 1/4 and 1 to
/4. The map h—® £1/74,%/43 -> [O,11 1is, of course,
defined as well, and obeys h=*(y) = (4y-1)/2. The raadar
will observe that there i3 nothing "sacred" in the values
i/4 and Z/4; we have chosen them with the goal of appending
simple "steep linear legs" to the unimodal -- a fact that

will be apparsnt from the discussion below. Thea reader will
alen observe that we have assumed that both a2 and b oars
pPoOsi tive, If either is, in fact, ¢, then a straightforward
modification of the argunsnts below will be called for,
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These cases entail creating a "single-legged" subbell. I¢
both a and b are O we have the case of the subbell itsel+,
of course, and there is nothing to discuss.

Consider the mapping +%: (0,11 -5 (0,11 defined as
follows:

£f*(z} = 4h(a)z, if O = z = 1/4

hfh—3(z), if 1/4 < z

I A
i
~.
B

2h(b) (1-z), if 3/4 < z < 1

These various maps are all shown 1in Figure 4. Note., in
particular that +* maps [(1/4,2/41 into (1/4,3/43. Thus any
point that gets mapped by f* into [1/4,2/4]1 becomes
"trapped" there under fuwrther iteration. This concept 1=
cantral to the results prsented below.

Lemma 4: * is a subbell with breakpoint p* = hi(p), and peak
value g* = h{(g}.

Froof: Note first that * is continuous and that £*(0) =
(1) = Q. Further, consider the behavior of +* on
CO,h(p)1. hi{p) of necessity is » 1/4, since p is » Q3 it i3
also < 3/4, since p ¥ 1. Thus only the first two equations

above apply. For z in [0,1/4], of course, ft*(z) is strictly
monotona increasings for =z in [1/4,h{p)]1, Hh~*(x) strictly
increases from O to p; fh~*(z) thus strictly increases from
a to g, and thus f*(z}! strictly increases from h{(a) to hig’.
Conclusion: f* 1is strictly monotone increasing on [O,h{p)].
By similar reasoning f* i3 strictly monotone decreasing on
th{pr,11. The Lemma follows. QRED

Term this artificially created subbell the associated
subbell of the wnimodal f. f* obeys several more
interesting properties. We begin by noting that the

concepts of Ffixed points and their orders, although detined
for subbells, naturally extend to unimadals as well.

Lemma St Suppose that » in (0,1) is a fixed point of %%,
for some ko O, Then « in fact must be in [(1/74,2/741 and,
further, h~*i{x) is a fived point of f*. I+ x 1s of order

ke then so is h™1v ().

Froof: We first argue that « must be 1n [1/4,3/413. 1¥ not,
there are two possibilities: i3 in (0,1/4), or 2 is 1n
(274,15, In the former case the iterates of +* on

increase as 4h(al)x, (4h(a))2:,... until one of these value:
leavaes the interval (0,1/4). This will happen, since, wii
ain (CGy,l1:, 4h(a) i% in (1,2, and, in particular,

gra2ater than 1. When 1t leaves (0,174 it must thus go to
value in  [1/4,3/41, It will then b2 captursd 1n Li A,7741%,
as noted earlier. Thus < can nevear ratuen oo (O, a4y and
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is not a fixed point of +*%, for any value of k > 0. A
similar, but more subtle, argument allows us to conclude
that % is not in (3/4,1).

Foints in (3/4,1) of necessity map into (O,h(bj}). I+
is in (1-1/16h(b},1) it maps to (G,1/4), and by the argument
above, can never return under subsequent iterations to
(Z/4,1). IFf 3 is in (3/4,1-1/16h(b)} it maps to (1/4,h(b));
but this 1s a subset of (1/74,2/4) and hence X again 1is

captured. Conclusion: if such a fixed point of +** exists
it must be in [1/4,7/47.

The remainder of the proof comes quickly. With
£1/4,3/4]1 closed under f* we argue as follows: frR () =
hfxh—2 {(x) with x in [1/4,3/41]. Thus if F%*&(x) = x, it
follows immediately that f*(h=1(x})) = h—"*G0. That the

orders of % and h~*(x) agree is clear. QGED

Corollary: Other than the trivial fixed point of O, all
other fixed points of +* are in [1/4,3/41 and are images
under h of fixed points of f of the same order.

The "converse" to this Lemma also holds and we state it
without proof:

Lemma &z I+ ¥ is a fixed point of %, for some k > O, then
hix) is a fixed point of "G, This fixed point is in
[1/4,3/4]1 and its order agrees with that of .

Corollary: ¥ has fixed points of all orders if and only if
f* does, i1.e. f is chaotic if and only if % is.

Froof: Mecessity is immediate from Lemma é. As for
sufficiency we note that all fixed points of % of order
greater than 1§ are in [1/4,3/4] by Lemma 5, and are images
of fixkxed points of + of the same order. +* has a fixed
point of order one in [1/4,32/4] also; thus f has a fiued
point of order one. GED

Finally we explore the issus of chaos. The notions of
signatures, well-structuwredness, and signature-distinctness
genaralize rapidly to unimodals in a straightforward way.

Thearem 14: If f is well-structuwred and signature-distinctk
then so 13 f*. I+ ¥ is so behaved then ¥ has fixed pointu
of all arders if and only if rs¥(gq) = 100, whersa tho

signature is taken with respect to f.

Frootf: We begin by noting that for any » in [QO,1] the +-
signature of x is identical with the " - signature of R,
Similarly, for « in [1/4,3/41, the f-zignature of h~* (' 1s

identical with the f*-signature of 2. Thus 1+¥ 1s®(g) = (C
for § it must be that 1s®(g™) = 10 for +%*, and conversel..
In other words f is well-structured if and o2nly if % is.
The signature-distinctness aof f certainly implies ithe

- nca = arm - -~n - - R - . - *» & & =~ « » _m Y s - R IR TR S N IR T L S o
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signature—-distinctness of f* over the interval [1/4,3/741.

That " 1s signature—distinct over all of [0,1] results
from the following argument.

Define the capture time of a point x in [(G;1] to be the
smallest k > O for which =*%(x) is in [1/4,%/4]1. Clearly i+
x itgelf is in [1/4,2/4] its capture time 1is equal to G.
Take two arbitary distinct points x, and %= in [0,1]1. Let
ky and kz denote their respective capture times. Set k =
max (ky ,k=z). One of two cases occurs. sig(xi) and sig(xa)
either agree through the first k+! positions, ar they do
not. In the latter case the signatures differ, obviously,
and we are done. In the former case it follows that vy, =
2% (144} and y=z = Ff**(z) are also distinct (by the strict
piecewise monotonicity of f* and the obvious fact that we
have faithfully tracked pieces together to this point).
Furthermore, all their iterates are in [1/4,%/41, by the
"capturing property". By the just deduced signature-—-
distictness of f* on ([1/4,7/41 then, s3igl{y.) will differ
from sigly=).

Thus if £ i3 signature-distinct, +* is. The remainder
of this Theorem follows immediately from the fact that if
ra% (g} = 100 for +F, then rs=(gq™) = 100¢ for f*. Applving
Theorem 13 and the above Corollary completes the proof. DED

VIII. Conclusions

This paper has presented a vwvariety ot  results
concerning the fixed point structure of certain maps defined
aver the unit interval. The underlying common thread of the
developed theory bas been that of the signature of a poaint
and of its role in characterizing the map s orbital
behavior.

From an expositional point-of-view this signature-based
theory is appealing; it is minimally dependent upon advanceaed
measurae-theoretic concepts typically found 1n the
literature, and needs no a priori assumptions on functional
form such as differentiability, linearity, or convexity.

The authors are  currently addressing the most
significant restriction inherent in parts of thiz paper:
signatuwra-distinctness., We are, more specifically, seesking

to ses2 whether Theorems 13 and 14 indeed hold when the
zigrature-distinctness condition is removed, or whether thisz
condition i3 indeed necessary. Appropriate counterexamples
will be produced in this latter case.
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FIGURE !: A unimodal function with breakpoint p and peak value q s
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