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ABSTRACT •.

A five-year multi-tasked research project was pursued by the present

investigators to study complex viscous internal flows under AFOSR

sponsorship between 1980-1985. The major objective of this study was to

acquire improved understanding of viscous internal flows related to e'"-

turbomachinery components by analyzing appropriate model flow problems. In

the process of achieving this objective, significant effort was directed

towards developing basic computational methods which were made available to I
interested researchers involved in computational fluid dynamics (CFD)

research and to users involved in the design of turbomachinery components.

Several analyses were developed and include an asymptotic analysis for the

fully developed three-dimensional flow in curved ducts, a parabolized 71
Navier-Stokes analysis for developing flow in curved ducts, an unsteady..

Navier-Stokes analysis for internal and external flows, adaptive grid

generation for one- and two-dimensional viscous flows, analysis of the -

Neumann problem in generalized orthogonal coordinates, efficient semi-
implicit solution techniques consisting of the alternating-direction

implicit multi-grid (ADI-MG) and strongly implicit multi-grid (SI-MG)

methods, the direct block Gaussian elimination (BGE) method for solution of

the Poisson equation in generalized orthogonal coordinates and the ADI-BGE

and SI-BGE methods for the unsteady Navier-Stokes analysis of incompressible

flows. For the flow inside a shear-driven cavity, the asymptotic flow in

curved ducts and the flow in doubly-infinite backstep channel, the predicted

results provided clarity for interpretation of the available corresponding ,"
not;

experimental results and have now become benchmark solutions for these a-

problems. The adaptive-grid generation procedure developed is unique and

effectively treats multiple critical regions of high gradients typical of .

nonlinearities such as boundary layers, shear layers, shock waves, etc. For

the incompressible Navier-Stokes equations, the coupled ADI-MG and SI-MG o-
semi-implicit analyses provide the most efficient steady-state methods

available in the literature; this is also true for the ADI-BGE and SI-BGE

fully-implicit methods for solution of the unsteady Navier-Stokes equations.
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SECTION 1

OBJECTIVES

The development of computational fluid dynamics (CFD) analyses for -

complex viscous interacting flows was pursued by the present investigators .

under AFOSR sponsorship during March 1980 - February 1985. The broad

objective was to gain a better understanding of the basic fluid flow

phenomena present in complex multi-dimensional internal viscous flows. To

realize this objective, the approach used was to study, initially, isolated

problem areas and flow features through the simulation of model flow

problems. Subsequently, as the necessary information was either generated

'y the present investigators or made available through the efforts of other

researchers, more complex model flow problems were treated to better

understand some of the dominant flow features in turbomachinery type of flow

fields and, eventually, develop an analysis to solve the three-dimensional

flow in rotating blade passages.

The major research thrust was directed in analyzing the dominant

features of the flow fields in diffusers, ducts, blade passages, etc.

Significant effort was directed in carefully analyzing

" Geometrical Complexities and Three-Dimensionality,

" Secondary Recirculating Flows and Streamwise Separation, :"1i

o Unsteadiness,

whereas some effort was also made in better understanding

a Turbulence and Compressibility.

Several major CFD analyses were initiated to study these flow features;

these are grouped into six different categories and are briefly outlined

here.

i. a For a (lass of three-dimensional viscous flow problems with a
predominant flow direction and no streamwise separation, .-.
asymptotic flow fields were to be determined using the derived

-..- "



variables vorticity and velocity (w, V_). This totally independent .. 4,
formulation was to be used to verify, at least in part, the
significant amount of developing-flow predictions determined
earlier. Also, a systematic study of Dean's instability was to be
carried out for curved square ducts.

0 Further, for the curved duct flow configuration with low-speed.-
flow at relatively high-Reynolds number, turbulence was to be
carefully modelled by the two-equation (k-E) differential model.
The Wall-Function (WF) approach as well as the Low Reynolds-number
Modelling (LRM) approach were to be studied carefully to determine
which of the two treatments of the wall-region lead to more
accurate and efficient solutions. The (k-E) model itself needed
further study in order to modify its usage with flow
configurations encountering secondary flows of the second kind,
namely, those generated by the turbulence itself; a corner-flow
configuration was to be used as the model flow problem for this
purpose.

ii. Two-dimensional viscous separation encountered in steady flows
with adverse pressure gradient was to be studied using both the
Navier-Stokes (NS) equations as well as the approximate NS

equations referred to as the semi-elliptic set of equations, using
primitive variables. An asymmetric channel with a constriction,
as well as a thick plate, were used as model problems. Both
laminar as well as turbulent flow separation were to be
investigated. An improved semi-elliptic analysis was to be
developed, with appropriate treatment of the inflow and outflow
boundary conditions.

iii. The effect of unsteadiness in the flow fields was to be studied
using an unsteady Navier-Stokes analysis. This analysis was to . . -
use derived variables, namely, vorticity w and stream function p,
and was to be applied to both two-dimensional and axisymmetric
geometries such as the doubly-infinite backstep channel, channel
with sudden expansion, pipe with sudden expansion, center-body

combustor geometry, pipe orifice, etc.

iv. Surface-oriented coordinates were to be used so as to permit
approximations to the NS equations, if needed. Analytically as
well as numerically generated grids were to be developed,
depending on the specific body shape in question. An adaptive
grid-generation analysis was to be developed for treating multiple
critical regions. The adaptive grid procedure to be developed was
to have been applied to model configurations.

v. Accuracy and efficiency of the numerical analysis developed was to

be continually improved by careful examination of both the
continuous and discretized problems. Boundary and initial
conditions were to be developed so the mathematical problems are .
well posed and these conditions were to be implemented correctly. NY

Higher-order spline methodology was to be developed for improving
the solution accuracy. The efficiency of the numerical solutions
was improved by the use of semi-implicit methods with increasing

g 2



degree of implicitness such as alternating direction implicit
(ADI) method and strongly implicit (SI) procedure. For enhancing
solution convergence, the multi-grid (MG) technique was to be
coupled with the existing semi-implicit methods for two-
dimensional flows. The various operators of the multi-grid
methods were to be carefully studied so as to lead to an efficient .
solution procedure. The multi-grid method was to be implemented '/"

in a three-dimensional PNS analysis. The solution convergence was
also to be enhanced by use of a local time-stepping method.

vi. Direct solvers available for solving the Poisson equation in
uniform Cartesian coordinates were to be extended for use with
clustered curvilinear orthogonal coordinates. Cauchy-Riemann
solvers were to be developed for the solution of Poisson equations
in rectangular and generalized curvilinear coordinates. The block
Gaussian elimination (BGE) method was to be developed for the
solution of the Poisson equation in generalized orthogonal -
coordinates.

Z. .'

. .
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SECTION 2

DESCRIPTION OF SIGNIFICANT ACCOMPLISHMENTS

All of the areas of research initiated and the progress as well as the

d specific achievements made in these studies during the five-year grant

period are briefly summarized in the following subsections.

2.1 Viscous Flow in Curved Ducts: Examination of Asymptotic Flow and

Turbulence Models

A generalized formulation was developed to study three-dimensional

asymptotic viscous flow in curved ducts using the streamwise vorticity ,

the streamwise velocity w and the cross-flow velocities in terms of a cross-

flow stream function p. The analysis readily permits the consideration of

straight as well as curved ducts of rectangular as well as polar cross

sections, as shown in Fig. la. For these flows, the similarity parameter of

significance is the Dean number K rather than the Reynolds number Re. From

the investigators' earlier work on this problem, it was felt that, for

highly curved configurations, the strong coupling between the primary and

the secondary flow should be honored by the numerical solution technique

employed. Consequently, simultaneous numerical solutions of the three

second-order coupled partial differential equations (PDE's) governing the

flow were obtained using semi-implicit methods. Initially, an ADI method

was used; subsequently, the strongly implicit (SI) method was necessary for

proper convergence of cases with larger values of K. For curved ducts of

square cross section, the use of very fine grids revealed that Dean's

instability occurs at K=125, as shown in Fig. Ib, when an additional pair of

JI

secondary vortices first makes its appearance. The PNS analysis of K. Ghia

and Sokhey (7977) ind, _ater, of U). h , K. rhia and (oyal (19'q) had

Li'',.
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predicted this instability to occur at K = 143, whereas Cheng et al. (1976)

had used the vorticity-velocity variables (C,w,) and predicted this

instability to occur at K-202. In the latter investigation, it was also ..

predicted that this additional pair of secondary vortices disappears for

K > 520 whereas, in the present study, the additional pair of secondary

. vortices persists even for K - 900. The significance of this phenomenon is

that this second pair of streamwise vortices creates additional pressure

losses. The results for the asymptotic flow in curved ducts of polar cross

section are shown in Fig. Ic. The cross-flow streamline contours for

K = 100, 200 and 300 exhibit no symmetry and the primary vortex pair shows

that the upper vortex is slightly weaker than the lower vortex. Most of the

results for laminar flow obtained earlier using the PNS analysis withstood

the test of comparison with these asymptotic results, except for the cross-

flow velocities. In general, even the quantitative agreement between the

two approaches is good, thereby providing reliance in the PNS marching

analysis. The detailed asymptotic results for these flows were given by

K. Ghia, U. Ghia and Shin (1981). The fine-grid solutions for this flow

problem as well as this model problem itself have become benchmarks, as

other investigators are using this flow configuration to validate their

results and analyses by comparing with the present investigators' solutions. 401

The PNS analysis developed by U. Ghia, K. Ghia and Goyal (1979) for

laminar flow in curved ducts was extended to turbulent flow configurations.

Turbulence closure was achieved by a two-equation (k,c ) differential model.

A comparative study of the wall-region treatment by the wall-function (WF)

method and the Low-Reynolds number Modeling (LRM) method was carried out by

Goyal, K. Ghia and U. Ghia (1980) using a curved circular pipe configuration1.
with Re =25,000. Here, ReD denotes Reynolds number based on hydraulicDD

5



. . . . . . . .. . .

diameter. The mean flow as well as turbulence quantities were examined in

detail but the study was inconclusive due to the following. The form of the

law of the wall used did not account for the effects of curvature; on the

other hand, the LRM method satisfies the wall-boundary conditions more

accurately, but has the disadvantage of being limited to f)ows with moderate

Reynolds number and requiring much finer computational grids. The detailed

flow results, showing the effect of the duct aspect ratio and curvature

ratio on the overall flow, were given by Goyal, K. Ghia and U. Ghia (1981).

Flow results were obtained for curved circular pipes with Re = 25,000 and
D

236,000. For curved rectangular ducts, results were obtained for . ,

Re 6ReD = 0.706x10 . All of these results compare well with other existing

experimental and numerical results.

The 900 axial corner flow configuration, representative of the flow d •

near the junction of a turbomachinery blade with the hub, was analyzed,

using a velocity-vorticity formulation, to study the effect of turbulence,

compressibility and mass transfer on the developing flow along an axial

corner. The governing equations for this quasi-three-dimensional flow were

obtained as the limiting equations derived from the general corner-layer

equations formulated earlier. These asymptotic equations were solved using

a semi-implicit second-order accurate marching scheme. The turbulence was

modeled by using a Cebeci-Smith (1974) type two-layer algebraic model in

which isotropy is assumed. The turbulence stresses were also modeled using

a modified form of the Gessner-Emery (1976) anisotropic model. The skin-

friction coefficient obtained using the two different turbulence models is

presented in Fig. 2a. The conformity between these two sets of results led

to the conclusion that the effect of anisotropy is not significant in the

e-



corner-flow configuration. Figure 2b shows the variations in the streamwise

as well as the cross-flow velocities due to suction and injection at the

wall for both laminar as well as turbulent flow. Additional results for P_.N

this flow configuration were presented by Mikhail and Ghia (1981) for a

range of Mach numbers between 0 and 2.0, with adiabatic as well as heat-

transfer boundary conditions at the corner walls; the effects of suction and

injection were also included.

2.2 Two-Dimensional and Axisymmetric Separation For Steady Flow

Steady laminar incompressible separated flow was studied by U. Ghia,

K. Ghia, Rubin and Khosla (1981). Their semi-elliptic analysis was

formulated using the primitive variables (V,p). The model problem was that

of a doubly infinite channel with an asymmetric constriction. This approach

was demonstrated to be very promising by comparing the results with those of

* the Navier-Stokes analysis of the authors. Further, Osswald and Ghia (1981)

*' used a totally different formulation using the derived variables, namely,

the vorticity w and the stream function , and showed that their results L

agree with those of U. Ghla et al. (1981). Hence, further work was carried ,

out using the semi-elliptic analysis. However, with a larger region and a

finer grid, the numerical method experienced convergence difficulties. In

hindsight, it seems that, if the semi-elliptic analysis had been used in .]-

conjunction with a staggered grid and a multi-grid procedure, the steady

separated flow could have been studied more effectively. 4lso, it should be

pointed out that the present investigators were later able to develop an

Interacting Parabolized Navier-Stokes (IPNS)

analysis which overcomes these difficulties. This latter analysis was

developed originally under NASA sponsorship and, hence, the details are not
[;] 7 "
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presented here. Figure 3 shows the typical stream function contours for

.4 separated flow computed using the Navier-Stokes analysis of Osswald and

K. Ghia (1981); additional results are also given in this reference. A

second model problem, namely, that of flow past a class of two-dimensional

blunt bodies was also initiated to study flow separation. The Navier-Stokes

equations in conformal coordinates and similarity-type variables were

solved, using the approximate factorization scheme of Beam and

Warming (1977). The effect of Reynolds number on the length of the

recirculation region was studied and satisfactory agreement was obtained '- '..

with the data of Lane and Loehrke (1980), as shown in Fig. 4a. The detailed

flow results, including those for the axisymmetric case, were given by Ghia

and Abdelhalim (1982). The corresponding turbulent separated flow was lo

studied using second-order closure via the (k-E) two-equation model. The V

wall region was treated using the LRM method. Figure 4b shows the

distribution of the turbulent kinetic energy obtained from this analysis for

a slightly blunt-shouldered body and compared with the measurements of Ota "-.

and Narita (1978) for a completely sharp-shouldered thick plate. As ..

expected, the computed separation was milder than the measured one. When

the streamwise dimension of the predicted separation bubble was scaled up to -. .?

match with the measured separation bubble, the computed results within the

separated-flow region compared well with the corresponding data, as shown in

Fig. 4b. The detailed flow results were given by Abdelhalim, U. Ghia and -

K. Ghia (1983). L

?44 4
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2.3 Two-Dimensional and Axisymmetric Separation for Unsteady Flow

The effect of unsteadiness on the flow field was studied using the

model problem of flow over a backstep in a doubly infinite channel. The

unsteady Navier-Stokes equations were formulated in terms of vorticity w and

stream function p. Clustered conformal grids were used and nearly optimum

grid distribution was arrived at to attempt to honor the multiple length

scales of the separated-flow problem. K. Ghia, Osswald and U. Ghia (1983)

gave the detailed flow results and also provided comparisons with the data ".-.

of Denham and Patrick (1974) as well as Armaly and Durst (1980). Figure 5a

shows this comparison for the reattachment length of the primary bubble on

the lower wall. At Re - 212, the calculations show, for the first time,

the appearance of a secondary bubble near the upper wall and,

simultaneously, a marked deviation from the data of Armaly and Durst (1980).

This information was communicated to those authors and the response received

was that spanwise variation had indeed been observed and, hence, the ,

experimental data were really three-dimensional. These results were .. ..

carefully examined by Osswald, K. Ghia and U. Ghia (1983) who also obtained

predictions of their own, as given in Figs. 5b-5d; their deviation from the

data of Armaly and Durst (1980) represents the effect of three-

dimensionality in the flow field. The computed results for a configuration

well within the transition regime exhibits a 'near-limit-cycle' behavior, as

shown in Fig. 6. This is an example of self-sustaining oscillatory motion,

where disturbance mechanisms are developed without any external excitation.

This creates an instability which subsequently leads to transition. Figures W O

7a and 7b show the time-averaged stream-function and vorticity contours, . '.

respectively. The overall mechanism causing the unsteadiness was also

explained by the present investigators. The Strouhal number of the vortex L1._

shedding is 0.38 and the large-scale coherent structure observed has been

9
4.5 .55.
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recently reproduced by Patera (1985) in his direct numerical simulation

using the spectral-element method; for a similar configuration, Roose and %

Kegelman (1985) also observed this coherent structure in their experiments

for the first time.

The separated flow through two-dimensional and axisymmetric sudden

expansions was studied by Osswald, K. Ghia and U. Ghia (1984). The results

of their analysis agreed well with the data of Durst, Melling and

Whitelaw (1974) for the plane sudden expansion and with the analysis of

Macagno and Hung (1967) for the axisymmetric case. The transient results

were presented for the cold flow in an axisymmetric centerbody combustion

* ,chamber. McGreehan, K. Ghia, U. Ghia and Osswald (1984) simulated the flow

inside a pipe orifice to study this persistently unsteady flow and analyze

the nature of vortex shedding. The collective vortex interaction phenomenon

of Ho (1981) was observed in this configuration.

The cornerstone of any internal aerodynamic analysis is the ability to

predict the lift and drag on lifting surfaces such as airfoils, or cascades

of airfoils where concerned with turbomachinery applications. For

compressor cascades, it is very vital to understand the effect of A .

unsteadiness on the flow field involving phenomena such as rotating stall, a.

individual blade stall, stall flutter, compressor surge, etc. Common to all

of these physical phenomena is the occurrence of unsteady flow separation.

When the flow separates over a body surface, a 'strong' interaction region -'.

appears locally where the pressure field in the flow is determined by the --

viscous layer rather than the inviscid flow. Accurate and efficient strong

viscous-inviscid analyses are still under development. Therefore, it was

decided to modify the objectives for the last year of the proposal and

include in it a study of flow over an isolated airfoil. At low speed, the

10
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local 'strong' interaction regions arise in this latter flow due to

boundary-layer separation and rapid flow acceleration immediately aft of the
,'S

trailing edge. The Joukowski airfoil, with its sharp trailing edge, is an

ideal candidate for this study, since it also permits the use of analytical .".

transformation metrics, thereby avoiding the error incurred due to the use

of numerically computed metrics. Therefore, in order to carefully analyze

persistently unsteady flow with massive separation, K. Ghia, Osswald and U.

Ghia (1985a) extended their earlier analysis for internal flows and applied

it to an isolated airfoil at high angle of attack. For moderate Re, these

authors were successful in simulating the flow structure in the highly

unsteady vortex-dominated wake region. The results of a limit cycle

analysis for flow past a Joukowski airfoil are presented in Fig. 8. Such

limit-cycle solutions represent realizations of a strange attractor, as all

phase-space trajectories are ultimately attracted to the time-asymptotic

limit-cycle solution. The detailed evolution of the pairwise shedding of

vortices from the airfoil surface was discussed by K. Ghia, Osswald and

U. Ghia (1985b). The Strouhal number of this shedding motion was S = 0.18

which agrees well with the universal wake-based number of Roshko (1954). ...

2.4 Numerical Grid Generation

The problem of the resolution of high-gradient and high-curvature

regions in computational fluid dynamics is important not only from

considerations of truncation errors but sometimes simply for correct

prediction of the flow details in these regions. Most nonlinear phenomena

have a tendency to occur in very thin regions which may or may not be

associated with boundaries, as shown by K. Ghla, U. Ghla and Shin (1981) and

U. Ghia, K. Chia and Shin (1982). In the simulation of viscous flows at

4. 
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high Reynolds number in these thin regions, the nonlinear convective terms

P became large in comparison with the viscous terms. In this circumstance, it

became difficult to obtain a wiggle-free solution using a central-difference

discretization for the convective terms. A new analysis was developed for
'IX

generating an adaptive grid which took into account the influence of the

* problem geometry, the prevailing physical flow phenomena, the flow

parameters, as well as the discretization parameters of the problem. The

grid constraint used minimized the coefficient of the convective terms in

the transformed flow equations in a rational manner and led to grid

equations which were analogous to the inverted form of the Poisson equations

used in elliptic grid-generation techniques. The method was demonstrated -

with the help of nonlinear one-dimensional as well as two-dimensional model

problems by comparing the predicted solutions with the corresponding exact

solutions. As shown in Fig. 9a, for the flow-dependent adaptive grid, the

desired number of grid points have migrated to the region of the high

gradient so as to limit the magnitude of the truncation errors. Figures 9b

'4
and 9C show the computed and analytical results for Re up to 10 for the

nonlinear viscous Burgers' equation and a model internal flow problem,

respectively, and the agreement with the exact analytical solution is

excellent; to the authors' knowledge, these calculations were the first of

their kind. The detailed results for a few one-dimensional and two-

dimensional model problems were given by K. Ghia, U. Ghia and Shin (1983).

2.5 Semi-Implicit Numerical Methods: Accuracy and Efficiency

For improving the accuracy of a given numerical method, it was decided,

early in this research program, to seek solutions with accuracy higher than

second order by using spline methodology, thereby also minimizing the number -
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of grid points needed for obtaining solutions for viscous flow problems with

high-gradient regions. A subsequent period of this research program saw the

development of a multi-grid (MG) method which improves the solution accuracy

by utilizing very fine grids while still retaining rapid convergence

behavior. This MG method as well as the spline method are discussed next.

It was shown by K. Ghia, Shin and U. Ghia (1979), using primitive variables

(Vp), and by Shin, K. Ghia and U. Ghia (1981), using derived variables,

that for low-speed viscous flow problems with localized high-gradient

regions, although the resulting solutions themselves may be smooth, their

first- and/or second-order derivatives were frequently not smooth. This led

to the development of a new spline technique employing a quartic spline

polynomial S(4,2) of deficiency two, i.e., with two continuous derivatives.

The integrated form of the governing equation, which is generally used in

finite-volume techniques, was employed in this analysis to complete the

equation set. Some detailed flow results obtained using the spline S(4,2) - -

method were given by Turner, K. Ghia, U. Ghia and Keith (1982). The

accuracy of spline S(4,2) is comparable to, if not better than, that of the

fourth-order box scheme used by Wornom (1977) and the compact differencing

scheme of Hirsh (1975). In a review of higher-order methods for the

solution of incompressible viscous flows, K. Ghia and U. Ghia (1982) had

suggested spline S(4,2) as a potential means for fourth-order accurate

solutions of Navier-Stokes equations and their approximation forms.

To improve accuracy and simultaneously achieve superior convergence, t

U. Ghia, K. Ghia and Shin (1981) developed a multi-grid (MG) method for the

solution of the two-dimensional Navier-Stokes equations. 4 coupled strongly

implicit multi-grid (CSI-MG) method was used for simultaneous solution of .,C

the vorticity and stream function equations. The model problem used was

13



that of the flow inside a shear-driven cavity. The potential of the method

was demonstrated via efficient computation of solutions for Reynolds number

up to 104 using a very fine grid. Because of the appearance of one or more

secondary vortices in the flow field, uniform mesh refinement was preferred

to the use of one-dimensional grid clustering coordinate transformations.

This method was further extended by K. Ghia, U. Ghia and Shin (1981) for use

in determining asymptotic three-dimensional flow in curved ducts and by

U. Ghia, K. Ghia and Ramamurti (1983) for determining the developing three-

dimensional flow in curved ducts. In this latter parabolized Navier-Stokes

analysis, the MG method was advanced for use with Neumann boundary-value

problems in clustered curvilinear coordinates. This comprised an important

step in the analysis of viscous flows using the velocity-pressure %

formulation of the Navier-Stokes equations. With successive over-relaxation

(SOR) as the smoothing operator and with suitably formulated restriction and

coarse-grid-correction operators, a 4-grid MG procedure enhanced the

efficiency of fine-grid solutions of the Neumann problem approximately by a

factor of four. U. Ghia, K. Ghia and Ramamurti (1983) also carefully

examined the influence of the smoothing operator by employing the ADI and SI

techniques in place of SOR. For the curved polar duct with a clustered

grid, Fig. 10 shows the convergence history of the MG-SI method for the

Neumann Poisson problem. The computational advantage of the MG procedure

with increasing refinement of the finest grid is very obvious from this

figure.

As stated earlier in this section, the MG-SI method was applied to the

shear-driven cavity problem. The MG-SI method developed by U. Ghia, K. Ghia

and Shin (1982) had about fourteen times faster convergence rate as compared -

to the available solvers, including that of Benjamin and Denny (1979). The

14
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detailed structure of the various secondary eddies at Re = 10 is shown in

Fig. 11a; these have become the benchmark solutions for this fairly standard

model problem as they were obtained using a fine grid of (257x257) points.

Further, K. Ghia and U. Ghia (1984) suggested, via the results presented in

Fig. 11b, that the original experiments of Pan and Acrivos (1967) were

three-dimensional in nature. Koseff and Street (1983) repeated the

experiment with a spanwise aspect ratio of three and confirmed that the

predictions of U. Ghia, K. Ghia and Shin (1982) are correct; these new

experimental results are also shown in Fig. 11b.

The convergence of the conventional ADI method was also accelerated by

using a local time-step method suggested by K. Ghia (1975). Abdelhalim,

U. Ghia and K. Ghia (1983) found that it was almost essential to use this

procedure to obtain converged results for their problem of flow past a blunt

plate including a separation bubble. The approach can be viewed as a means

of preconditioning the iteration matrix of the relaxation scheme and

corresponds to a more uniform Courant number throughout the flow field.

2.6 Fully-Implicit Numerical Methods: Semi-Direct and Direct Methods

The development of semi-direct and direct Poisson solvers was also

given considerable attention. The fast direct solvers of Hockney (1970) and

Buneman (1969) were widely used for two-dimensional flow problems, involving

separable Poisson equations. It was felt that these methods were not easily

extendable to the generalized Poisson equation or to other generalized

elliptic equations. Therefore, initially, a Cauchy-Riemann solver which

i., %.%

leads to a semi-direct (SD) method of solution was developed. This method

followed that of Martin (1978) such that the form of the generalized

operator in non-orthogonal coordinates was made to fit the form of the
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Cauchy-Riemann operator in rectangular coordinates. The results of this

feasibility study were given by Osswald, K. Ghia and U. Ghia (1980). These ,

results showed that the degree of non-orthogonality and grid clustering

strongly influenced the solution convergence rate. However, it remains a

viable approach for efficient solutions of the Poisson equation in a variety

of orthogonal and non-orthogonal coordinate systems.

For solution of the Poisson equation in generalized orthogonal

coordinates, Osswald and K. Ghia (1981) developed a direct block Gaussian

elimination (BGE) method. Block-Gaussian elimination is a direct extension

of the Gaussian elimination procedure to block matrices. The BGE procedure

provides the effective inversion of an [(NM)x(NM)] matrix through the actual

inversion of a predetermined sequence of N(MxM) sub-matrices. The BGE

method was compared with the SD method of Martin (1978) for the general

Poisson problem for evaluation of accuracy and efficiency and was found to

yield a direct one-step solution, irregardless of the degree of grid

clustering, with considerably increased efficiency as compared to the SD

method. A comparison of various existing subroutines for solving the two-

dimensional Dirichlet Poisson problem was also provided and, as shown in

Table 1, direct BGE provides a solver with efficiency comparable to other

available direct solvers, but with the added advantage that it is applicable

for unsteady flow analysis in generalized orthogonal coordinates. This BGE

solver was also extended by Osswald, K. Ghia and U. Ghia (1983) for solution

of the Neumann Poisson problem encountered for the pressure field in an

unsteady primitive-variable Navier-Stokes analysis. The extension of the
.P

BGE method to the solution of the Poisson equation for axisymmetric flow was

also provided by Osswald, K. Ghia and U. Ghia (1984), whereas the solution

of the Poisson equation for a doubly-infinite region was provided by
P J'.."..:
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K. Chia, Osswald and U. Chia (1985a). The solution of the Poissoni equation

by the BCE method has proved to be very vital in the overall success of

Mavier-Stokes analysis of unsteady flow.
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PH.D. DEGREE DISSERTATIONS
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SECTION 6

TECHNICAL APPLICATIONS dd

"-..Z

Of the various CFD analyses developed, some were of direct use to the

technical community. Although to our knowledge, none of these analyses were -

used in the development of any specific hardware, they are being used in

preliminary design studies by analysts in the industry. Some of these

analyses are also being used by other researchers at governmental

laboratories to improve their analyses. The following is a list of the CFD

analyses and the organizations using them.

ANALYSIS OR GAN IZ ATI ON

" The Parabolized Navier-Stokes Analysis General Electric Co., Cincinnati, OH;
for Three-Dimensional Internal Flows AVCO Corp., Everett, MA.

" The Unsteady Navier-Stokes Analysis General Electric Co., Cincinnati, OH.
for Internal Flows . -

" The Unsteady Navier-Stokes Analysis McDonnell Aircraft, Co., St. Louis, MO; -
for External Flows NASA-Langley Research Cntr., Hampton, VA.

" Adaptive Grid Generation Analysis Sverdrup Technology, Inc., Arnold a-.-..
Air Force Station, TN.

o Navier-Stokes Analysis in Primitive NASA Langley Research Center,

Variables Hampton, VA.
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b(i) TRANSIENT SOLUTION (AT T= 8) WITH IMPROVED MESH.
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b(ii) STEADY-STATE SOLUTION (AT T=41) WITH IMPROVED MESH.

FIG. 3. STREAM-FUNCTION CONTOURS FOR CONSTRICTED CHANNEL FLOW. *4

Re= 1000, Ap= 0.002 WITHIN SEPARATION BUBBLE;

*~A =40.1 OTHERWISE.
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(a) STREAMFUNCTION CONTOURS; 0.5

RE

V.-2.0 0.0 2.0 1.0 6.0 8.0 10.0 12.0 14.0 16.0 18.0

(b) VORTICITY CONTOURS; Aw 5.0. .

FIG. 7. TRANSIENT FLOW THROUGH ORIFICE PIPE, ReD =1000; 3=06
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I~0 05 LEVELS, MG-SI

o4 LEVELS, MG-SI

S3 LEVELS, MG-SI

CPS

(81 x 81)

.40

FINE-GRID.~ ITRTIN

* FIG. 10, CONVERGENCE HISTORY OF MULTIGRID METHOD FOR NEUMANN

PRESSURE PROBLEM IN DEVELOPING FLOW THROUGH CURVED .

POLAR DUCT WITH GRID CLUSTERING.
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