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Block Gaussian Elimination Method.

(Continued)

to users involved in the design of turbomachinery components. Several
analyses were developed and include an asymptotic analysis for the fully
developed threefﬁimensional flow in curved ducts, a parabolized Navier-
Stokes analysis for developing flow in curved ducts, an unsteady Navier-
Stokes analysis for internal and external flows, adaptive grid generation
for one7 and twofdimensional viscous flows, analysis of the Neumann problem
in generalized orthogonal coordinates, efficient semi-implicit solution -
techniques consisting of the alternatingfdirection implicit multisgrid

- (ADI-MG) and strongly implicit multifgrid {SI-MG) methods, the direct

block Gaussian elimination Z(BGE) method for solution of the Poisson equation
in generalized orthogonal coordinates and the ADI-BGE and SI-BGE methods

for the unsteady Nayiery¥Stokes analysis of incompressible flows. For the
flow inside a shear-driven cavity, the asymptotic flow in curved ducts and
the flow in doublyfinfinite backstep channel, the predicted results provided
clarity for interpretation of the available corresponding experimental
results and have now become benchmark solutions for these problems. . The
adaptive-grid generation procedure developed is unique and effectiv§i§““=
treats multiple critical regions of high gradients typical of nonlinearities
such as boundary layers, shear layers, shock waves, etc. For the
incompressible Navier-Stokes equations, the coupled ADI-MG and SI-MG
semi-implicit analyses provide the most efficient steady-state methods
available in the literature; this is aiso true for the ADI-BGE and SI-BGE
fully-implicit methods for solution of the unsteady Navier-Stokes equations.
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ABSTRACT

A five-year multi-tasked research project was pursued by the present
investigators to study complex viscous internal flows under AFOSR
sponsorship between 1980-1985. The major objective of this study was to
acquire improved understanding of viscous internal flows related to
turbomachinery components by analyzing appropriate model flow problems. In
the process of achieving this objective, significant effort was directed
towards developing basic computational methods which were made available to
interested researchers involved in computational fluid dynamics (CFD)
research and to users involved in the design of turbomachinery components.
Several analyses were developed and include an asymptotic analysis for the
fully developed three-dimensional flow in curved ducts, a parabolized
Navier-Stokes analysis for developing flow in curved ducts, an unsteady
Navier-Stokes analysis for internal and external flows, adaptive grid
generation for one- and two—-dimensional viscous flows, analysis of the
Neumann problem in generalized orthogonal coordinates, efficient semi-
implicit solution techniques consisting of the alternating-direction
implicit multi-grid (ADI-MG) and strongly implicit multi-grid (SI-MG)
methods, the direct block Gaussian elimination (BGE) method for solution of
the Poisson equation in generalized orthogonal coordinates and the ADI-BGE
and SI-BGE methods for the unsteady Navier-Stokes analysis of incompressible
flows., For the flow inside a shear-driven cavity, the asymptotic flow in
curved ducts and the flow in doubly-infinite backstep channel, the predicted

results provided clarity for interpretation of the available corresponding

[~ 7]

ECTep
experimental results and have now become benchmark solutions for these ‘hu v

problems. The adaptive—-grid generation procedure developed is unique and
effectively treats multiple critical regions of high gradients typical of
nonlinearities such as boundary layers, shear layers, shock waves, etc., For
the incompressible Navier-Stokes »quations, the coupled ADI-MG and SI-MG
semi-implicit analyses provide the most efficient steady-state methods
available in the literature; this is also true for the ADI-BGE and SI-BGE

fully-implicit methods for solution of the unsteady Navier-Stokes equations.
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SECTION 1
OBJECTIVES
The development of computational fluid dynamics (CFD) analyses for
complex viscous interacting flows was pursued by the present investigators
under AFOSR sponsorship during March 1980 - February 1985. The broad
objective was to gain a better understanding of the basic fluid flow

phenomena present in complex multi-dimensional internal viscous flows. To

- realize this objective, the approach used was to study, initially, isolated

problem areas and flow features through the simulation of model flow
problems. Subsequently, as the necessary information was either generated
“y the present investigators or made available through the efforts of other
researchers, more complex model flow problems were treated to better
understand some of the dominant flow features in turbomachinery type of flow
fields and, eventually, develop an analysis to solve the three-dimensional
flow in rotating blade passages.

The major research thrust was directed in analyzing the dominant
features of the flow fields in diffusers, ducts, blade passages, etc.
Significant effort was directed in carefully analyzing

® Geometrical Complexities and Three-Dimensionality,

® Secondary Recirculating Flows and Streamwise Separation,

® Unsteadiness,
whereas some effort was also made in better understanding

® Turbulence and Compressibility.

Several major CFD analyses were initiated to study these flow features;
these are grouped into six different categories and are briefly outlined
here.

i. » For a class of three-dimensional viscous flow problems with a

predominant flow direction and no streamwise separation,
asymptotic flow fieslds were to be determined using the derived
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variables vorticity and velocity (w, V). This totally independent
formulation was to be used to verify, at least in part, the
significant amount of developing-flow predictions determined A
earlier. Also, a systematic study of Dean's instability was to be

A AL

AT A S
R A T

i, T
carried out for curved square ducts. e
"'.J‘.
® Further, for the curved duct flow configuration with low-speed Aﬁ:%}
flow at relatively high-Reynolds number, turbulence was to be :}\}:}
carefully modelled by the two-equation (k-¢) differential model. NV

The Wall-Function (WF) approach as well as the Low Reynolds-number
Modelling (LRM) approach were to be studied carefully to determine
which of the two treatments of the wall-region leac to more
accurate and efficient solutions. The (k-¢) model itself needed
further study in order to modify its usage with flow
configurations encountering secondary flows of the second kind,
namely, those generated by the turbulence itself; a corner-flow
configuration was to be used as the model flow problem for this .
purpose. -

e e

ii. Two—-dimensional viscous separation encountered in steady flows
with adverse pressure gradient was to be studied using both the

Al T,
v
7«

.

)
%

>

Navier-Stokes (NS) equations as well as the approximate NS -,J
equations referred to as the semi-elliptic set of equations, using T
primitive variables. An asymmetric channel with a constriction, :}:}:
as well as a thick plate, were used as model problems. Both }:\:\
laminar as well as turbulent flow separation were to be i?:f:
investigated. An improved semi-elliptic analysis was to be v
developed, with appropriate treatment of the inflow and outflow T
boundary conditions. SR
PR

iii. The effect of unsteadiness in the flow fields was to be studied e
using an unsteady Navier-Stokes analysis. This analysis was to 3;C$n
use derived variables, namely, vorticity w and stream function y, e
and was to be applied to both two-dimensional and axisymmetric f:?::

geometries such as the doubly-infinite backstep channel, channel
with sudden expansion, pipe with sudden expansion, center-body
combustor geometry, pipe orifice, etc.

»

LY
'
I

o

PR I
«
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iv. Surface-oriented coordinates were to be used so as to permit
approximations to the NS equations, if needed. Analytically as

| .
’ 3
. well as numerically generated grids were to be developed, e
. depending on the specific body shape in question. An adaptive *ﬂx‘
: grid-generation analysis was to be developed for treating multiple giuf:f
. critical regions. The adaptive grid procedure to be developed was Wi
N to have been applied to model configurations. P
: HSINO
. V. Accuracy and efficiency of the numerical analysis developed was to 3;*::
» be continually improved by careful examination of both the R
: continuous and discretized problems. Boundary and initial AN
¢ conditions were to be developed so the mathematical problems are y::}-
A well posed and these conditions were to be implemented correctly. .
j Higher-order spline methodology was to be developed for improving j?f%i'
‘ the solution accuracy. The efficiency of the numerical solutions {:f:f
. was improved by the use of semi-implicit methods with increasing e
A e
:: e
| 2 -
; T
.n‘;:‘.n‘.:‘:&‘i. >t et
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5 degree of implicitness such as alternating direction implicit Pt
: (ADI) method and strongly implicit (SI) procedure. For enhancing :}i«
. solution convergence, the multi-grid (MG) technique was to be et
' coupled with the existing semi-implicit methods for two- -
" dimensional flows. The various operators of the multi-grid y :x:
t methods were to be carefully studied so as to lead to an efficient é}ﬁy
é solution procedure. The multi-grid method was to be implemented ;?ﬂ}
' in a three-dimensional PNS analysis. The solution convergence was oo
! also to be enhanced by use of a local time-stepping method. :jz_;
! vi. Direct solvers available for solving the Poisson equation in ::f:ﬁ
> uniform Cartesian coordinates were to be extended for use with ;\;z:
N clustered curvilinear orthogonal coordinates. Cauchy-Riemann e
> solvers were to be developed for the solution of Poisson equations ;}i:j
i

in rectangular and generalized curvilinear coordinates. The block <
Gaussian elimination (BGE) method was to be developed for the
solution of the Poisson equation in generalized orthogonal

ALY e
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g SECTION 2
3

DESCRIPTION OF SIGNIFICANT ACCOMPLISHMENTS :?fhf

All of the areas of research initiated and the progress as well as the .

specific achievements made in these studies during the five-year grant

period are briefly summarized in the following subsections. ﬂb

2.1 Viscous Flow in Curved Ducts: Examination of Asymptotic Flow and ;;fgn

Turbulence Models

A generalized formulation was developed to study three—-dimensional
asymptotic viscous flow in curved ducts using the streamwise vorticity ¢z,
the streamwise velocity w and the cross-flow velocities in terms of a cross-
flow stream function Y. The analysis readily permits the consideration of
straight as well as curved ducts of rectangular as well as polar cross
sections, as shown in Fig. 1la. For these flows, the similarity parameter of
significance is the Dean number K rather than the Reynolds number Re. From
é the investigators' earlier work on this problem, it was felt that, for
: highly curved configurations, the strong coupling between the primary and
the secondary flow should be honored by the numerical sclution technique
: employed. Consequently, simultaneous numerical solutions of the three
second-order coupled partial differential =quations (PDE's) governing the
flow were obtained using semi-implicit methods. 1Initially, an ADI method
\ was used; subsequently, the strongly implicit (SI) method was necessary for

proper convergence of cases with larger values of K. For curved ducts of

; square cross section, the use of very fine grids revealed that Dean's

. K ':':'
e LR
instability occurs at K=125, as shown in Fig. 1b, when an additional pair of ,5:~
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secondary vortices first makes its appearance., The PNS analysis of K. Ghia 5

and Sokhey (1977) and, later, of U. Ghia, X. Ghii and Goyal (1979) had RASRY
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predicted this instability to occur at K = 143, whereas Cheng et al. (1976)
had used the vorticity-velocity variables (g,w,¥) and predicted this
instability to occur at K=202. 1In the latter investigation, it was also
predicted that this additional pair of secondary vortices disappears for
K > 520 whereas, in the present study, the additional pair of secondary
vortices persists even for K = 900. The significance of this phenomenon is
that this second pair of streamwise vortices creates additional pressure
losses.

The results for the asymptotic flow in curved ducts of polar cross

section are shown in Fig. 1c¢. The cross-flow streamline contours for
K = 100, 200 and 300 exhibit no symmetry and the primary vortex pair shows
that the upper vortex is slightly weaker than the lower vortex. Most of the
results for laminar flow obtained earlier using the PNS analysis withstood
the test of comparison with these asymptotic results, except for the cross-
flow velocities. 1In general, even the quantitative agreement between the
two approaches is good, thereby providing reliance in the PNS marching
analysis. The detailed asymptotic results for these flows were given by
K. Ghia, U. Ghia and Shin (1981). The fine-grid solutions for this flow
problem as well as this model problem itself have become benchmarks, as
other investigators are using thls flow configuration to validate their
results and analyses by comparing with the present investigators' solutions.
The PNS analysis developed by U. Ghia, K. Ghia and Goyal (1979) for
laminar flow in curved ducts was extended to turbulent flow configurations.
Turbulence closure was achieved by a two—equation (k,c) differential model.
A comparative study of the wall-region treatment by the wall-function (WF)
method and the Low-Reynolds number Modeling (LRM) method was carried out by
Goyal, K. Ghia and U. Ghia (1980) using a curved circular pipe configuration

with ReD=25,OOO. Re

Here, D

denotes Reynolds number based on hydraulic

5
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diameter. The mean flow as well as turbulence quantities were examined in
detail but the study was inconclusive due to the following. The form of the
law of the wall used did not account for the effects of curvature; on the
other hand, the LRM method satisfies the wall-boundary conditions more
accurately, but has the disadvantage of being limited to flows with moderate
Reynolds number and requiring much finer computational grids. The detailed
flow results, showing the effect of the duct aspect ratio and curvature
ratio on the overall flow, were given by Goyal, K. Ghia and U. Ghia (1981).

Flow results were obtained for curved circular pipes with Re_ = 25,000 and

D
236,000. For curved rectangular ducts, results were obtained for

ReD = 0.706x106. All of these results compare well with other existing

experimental and numerical results.

The 90° axial corner flow configuration, representative of the flow
near the junction of a turbomachinery blade with the hub, was analyzed,
using a velocity—-vorticity formulation, to study the effect of turbulence,
compressibility and mass transfer on the developing flow along an axial
corner. The governing equations for this quasi-three—-dimensional flow were
obtained as the limiting equations derived from the general corner-layer
equations formulated earlier. These asymptotic equations were solved using
a semi-implicit second-order accurate marching scheme. The turbulence was
modeled by using a Cebeci-Smith (1974) type two-layer algebraic model in
which isotropy is assumed. The turbulence stresses were also modeled using
a modified form of the Gessner-Emery (1976) anisotropic model. The skin-
friction coefficient obtained using the two different turbulence models is
presented in Fig. 2a. The conformity between these two sets of results led

to the conclusion that the effect of anisotropy is not significant in the
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corner-flow configuration. Figure 2b shows the variations in the streamwise

as well as the cross-flow velocities due to suction and injection at the
wall for both laminar as well as turbulent flow. Additional results for
this flow configuration were presented by Mikhail and Ghia (1981) for a
range of Mach numbers between 0 and 2.0, with adiabatic as well as heat-
transfer boundary conditions at the corner walls; the effects of suction and

injection were also included.

2.2 Two-Dimensional and Axisymmetric Separation For Steady Flow

Steady laminar incompressible separated flow was studied by U. Ghia,

K. Ghia, Rubin and Khosla (1981). Their semi-elliptic analysis was

formulated using the primitive variables (V,p). The model problem was that
of a doubly infinite channel with an asymmetric constriction. This approach
was demonstrated to be very promising by comparing the results with those of
the Navier-Stokes analysis of the authors. Further, Osswald and Ghia (1981)
used a totally different formulation using the derived variables, namely,
the vorticity w and the stream function ¢, and showed that their results
agree with those of U. Ghia et al. (1981). Hence, further work was carried
out using the semi-elliptic analysis. However, with a larger region and a
finer grid, the numerical method experienced convergence difficulties. In
hindsight, it seems that, if the semi-elliptic analysis had been used in
conjunction with a staggered grid and a multi-grid procedure, the steady
separated flow could have been studied more effectively. Also, it should be
pointed out that the present investigators were later able to develop an
Interacting Parabolized Navier-Stokes (IPNS)

analysis which overcomes these difficulties. This latter analysis was

developed originally under NASA sponsorship and, hence, the details are not
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presented here. Figure 3 shows the typical stream function contours for IR AR

separated flow computed using the Navier-Stokes analysis of 0sswald and -\'}:4

K. Ghia (1981); additional results are also given in this reference. A& e
S second model problem, namely, that of flow past a class of two-dimensional ;E:,
] e
: blunt bodies was also initiated to study flow separation. The Navier-Stokes é__'._:i
w" equations in conformal coordinates and similarity-type variables were .:..‘:
j solved, using the approximate factorization scheme of Beam and ::l
:: Warming (1977). The effect of Reynolds number on the length of the ;.;'.;
.; recirculation region was studied and satisfactory agreement was obtained '.‘\fr;‘

S S
3- with the data of Lane and Loehrke (1980), as shown in Fig. lda. The detailed :\‘:Ej
; flow results, including those for the axisymmetric case, were given by Ghia fi::-;‘

(y’ " "
[ '.-; B

and Abdelhalim (1982). The corresponding turbulent separated flow was

L4
1, &
e A

studied using second-order closure via the (k-e) two-equation model. The

23
£

L
£

wall region was treated using the LRM method. Figure 4b shows the

DA

RARR ) SEARASA
he'

distribution of the turbulent kinetic energy obtained from this analysis for r‘_
o r
w a slightly blunt-shouldered body and compared with the measurements of Ota 13-.‘:3:7
>, '-"._.'_.‘
) ._1 _-_..
b and Narita (1978) for a completely sharp-shouldered thick plate. As h AN
oy
. expected, the computed separation was milder than the measured one. When :',','
A
L the streamwise dimension of the predicted separation bubble was scaled up to -
~ r‘:.‘_:l
- match with the measured separation bubble, the computed results within the ':‘-""',
.\: separated-flow region compared well with the corresponding data, as shown in :::r G
= R
_‘:: Fig. Ub. The detailed flow results were given by Abdelhalim, U. Ghia and :-\,;j::;
‘\.': ‘L\..: %4
K. Ghia (1983). » g
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. 2.3 Two-Dimensional and Axisymmetric Separation for Unsteady Flow Byﬂf:
‘.* ‘-l
LT
The effect of unsteadiness on the flow field was studied using the ;::{:Q
IO
: model problem of flow over a backstep in a doubly infinite channel. The ;E*:f:
. ). {
unsteady Navier—-Stokes equations were formulated in terms of vorticity w and g~- -
W
stream function ¢. Clustered conformal grids were used and nearly optimum ﬁﬁ?{}
| ; ":?V
. grid distribution was arrived at to attempt to honor the multiple length ;5?{%
3 scales of the separated-flow problem. K. Ghia, Osswald and U. Ghia (1983) Ete&?
) N
gave the detailed flow results and also provided comparisons with the data Ifjjﬁﬁ
N
of Denham and Patrick (1974) as well as Armaly and Durst (1980). Figure 5a IO
shows this comparison for the reattachment length of the primary bubble on Eﬁi;::
\."-"-*-':
S A
the lower wall. At Res = 212, the calculations show, for the first time, N
s
the appearance of a secondary bubble near the upper wall and, :m‘J:
R
simultaneously, a marked deviation from the data of Armaly and Durst (1980). ;xi\;
DAY
This information was communicated to those authors and the response received :;}zﬂ
RS
NS
was that spanwise variation had indeed been observed and, hence, the E*ﬁfi
. experimental data were really three-dimensional. These results were o "E

carefully examined by Osswald, K. Ghia and U. Ghia (1983) who also obtained
predictions of their own, as given in Figs. 5b-5d; their deviation from the
data of Armaly and Durst (1980) represents the effect of three-
dimensionality in the flow field. The computed results for a configuration
well within the transition regime exhibits a 'near-limit-cycle' behavior, as
shown in Fig. 6. This is an example of self-sustaining oscillatory motion,
where disturbance mechanisms are developed without any external excitation.
This creates an instability which subsequently leads to transition. Figures
7a and 7b show the time-averaged stream-function and vorticity contours,
respectively. The overall mechanism causing the unsteadiness was also
explained by the present investigators. The Strouhal number of the vortex

shedding is 0.38 and the large-scale coherent structure observed has been
9
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recently reproduced by Patera (1985) in his direct numerical simulation
using the spectral-element method; for a similar configuration, Roose and
Kegelman (1985) also observed this coherent structure in their experiments
for the first time.

The separated flow through two-dimensional and axisymmetric sudden
expansions was studied by Osswald, K. Ghia and U. Ghia (1984). The results
of their analysis agreed well with the data of Durst, Melling and
Whitelaw (1974) for the plane sudden expansion and with the analysis of
Macagno and Hung (1967) for the axisymmetric case. The transient results
were presented for the cold flow in an axisymmetric centerbody combustion
chamber. McGreehan, K. Ghia, U. Ghia and Osswald (1984) simulated the flow
inside a pipe orifice to study this persistently unsteady flow and analyze
the nature of vortex shedding. The collective vortex interaction phenomenon
of Ho (1981) was observed in this configuration.

The cornerstone of any internal aerodynamic analysis is the ability to
predict the lift and drag on lifting surfaces such as airfoils, or cascades
of airfoils where concerned with turbomachinery applications. For
compressor cascades, it is very vital to understand the effect of
unsteadiness on the flow field involving phenomena such as rotating stall,
individual blade stall, stall flutter, compressor surge, etc. Common to all
of these physical phenomena is the occurrence of unsteady flow separation.
When the flow separates over a body surface, a 'strong' interaction region
appears locally where the pressure field in the flow is determined by the
viscous layer rather than the inviscid flow. Accurate and efficient strong
viscous—-inviscid analyses are still under development. Therefore, it was
decided to modify the objectives for the last year of the proposal and
include in it a study of flow over an isolated airfoil. At low speed, the
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g local 'strong' interaction regions arise in this latter flow due to
: boundary-layer separation and rapid flow acceleration immediately aft of the
> . trailing edge. The Joukowski airfoil, with its sharp trailing edge, is an ?ﬂ-;
\a N
b ideal candidate for this study, since it also permits the use of analytical SEE?
transformation metrics, thereby avoiding the error incurred due to the use ;ﬁﬁ‘
of numerically computed metrics. Therefore, in order to carefully analyze ﬂ;,f‘
persistently unsteady flow with massive separation, K. Ghia, Osswald and U.
. Ghia (1985a) extended their earlier analysis for internal flows and applied
N it to an isolated airfoil at high angle of attack. For moderate Re, these
§ authors were successful in simulating the flow structure in the highly
2 unsteady vortex-dominated wake region. The results of a limit cycle
j: analysis for flow past a Joukowski airfoil are presented in Fig. 8. Such
; limit-cycle solutions represent realizations of a strange attractor, as all
: phase-space trajectories are ultimately attracted to the time—asymptotic
.. limit-cycle solution; The detailed evolution of the pairwise shedding of
é vortices from the airfoil surface was discussed by K. Ghia, Osswald and
: U. Ghia (1985b). The Strouhal number of this shedding motion was S = 0.18
; which agrees well with the universal wake—based number of Roshko (1954).
: 2.4 Numerical Grid Generation
g The problem of the resolution of high-gradient and high-curvature
 € regions in computational fluid dynamics is important not only from
! considerations of truncation errors but sometimes simply for correct
f prediction of the flow details in these regions. Most nonlinear phenomena
3 have a tendency to occur in very thin regions which may or may not be
! associated with boundaries, as shown by K. Ghia, U. Ghia and Shin (1981) and };
. O
o U. Ghia, K. Ghia and Shin (1982). In the simulation of viscous flows at 2:;:5
S S
» pRHON.
: 11 -
. NERCS)
: S
S N L AR S : R ;
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high Reynolds number in these thin regions, the nonlinear convective terms
became large in comparison with the viscous terms. 1In this circumstance, it
became difficult to obtain a wiggle-free solution using a central-difference
discretization for the convective terms. A new analysis was developed for
generating an adaptive grid which took into account the influence of the
problem geometry, the prevailing physical flow phenomena, the flow
parameters, as well as the discretization parameters of the problem. The
grid constraint used minimized the coefficient of the convective terms in
the transformed flow equations in a rational manner and led to grid
equations which were analogous to the inverted form of the Poisson equations
used in elliptic grid-generation techniques. The method was demonstrated
with the help of nonlinear one-dimensional as well as two-dimensional model
problems by comparing the predicted solutions with the corresponding exact
solutions. As shown in Fig. 9a, for the flow-dependent adaptive grid, the
desired number of grid points have migrated to the region of the high

gradient so as to limit the magnitude of the truncation errors. Figures 9b

and 9c¢ show the computed and analytical results for Re up to 10“ for the
nonlinear viscous Burgers' equation and a model internal flow problem,
respectively, and the agreement with the exact analytical solution is
excellent; to the authors' knowledge, these calculations were the first of
their kind. The detailed results for a few one-dimensional and two-

dimensional model problems were given by K. Ghia, U. Ghia and Shin (1983).

2.5 Semi-Implicit Numerical Methods: Accuracy and Efficiency

For improving the accuracy of a given numerical method, it was decided,
early in this research program, to seek solutions with accuracy higher than

second order by using spline methodology, thereby also minimizing the number
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of grid points needed for obtaining sclutions for viscous flow problems with
high-gradient regions. A subsequent period of this research program saw the
development of a multi-grid (MG) method which improves the solution accuracy
by utilizing very fine grids while still retaining rapid convergence
behavior. This MG method as well as the spline method are discussed next.

It was shown by K. Ghia, Shin and U. Ghia (1979), using primitive variables

(V,p), and by Shin, K. Ghia and U. Ghia (1981), using derived variables,
that for low-speed viscous flow problems with localized high;gradient
regions, although the resulting solutions themselves may be smooth, their
first- and/or second-order derivatives were frequently not smooth. This led
to the development of a new spline technique employing a quartic spline
polynomial S(4,2) of deficiency two, i.e., with two continuocus derivatives.
The integrated form of the governing equation, which is generally used in
finite-volume techniques, was employed in this analysis to complete the
equation set. Some detailed flow results obtained using the spline S(4,2)
method were given by Turner, K. Ghia, U. Ghia and Keith (1982). The
accuracy of spline S(4,2) is comparable to, if not better than, that of the
fourth-order box scheme used by Wornom (1977) and the compact differencing
scheme of Hirsh (1975). In a review of higher-order methods for the
solution of incompressible viscous flows, K. Ghia and U. Ghia (1982) had
suggested spline S(4,2) as a potential means for fourth-order accurate
solutions of Navier-Stokes equations and their approximation forms.

To improve accuracy and simultaneously achieve superior convergence,
U. Ghia, K. Ghia and Shin (1981) developed a multi-grid (MG) method for the
solution of the two-dimensional Navier-Stokes equations. 4 coupled strongly
implicit multi-grid (CSI-MG) method was used for simultaneous solution of

the vorticity and stream function equations. The model problem used was
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that of the flow inside a shear-driven cavity. The potential of the method

was demonstrated via efficient computation of solutions for Reynolds number

up to 10“ using a very fine grid. Because of the appearance of one or more
secondary vortices in the flow field, uniform mesh refinement was preferred
to the use of one-dimensional grid clustering coordinate transformations.
This method was further extended by K. Ghia, U. Ghia and Shin (1981) for use
in determining asymptotic three-dimensional flow in curved ducts and by
U. Ghia, K. Ghia and Ramamurti (1983) for determining the developing three-
dimensional flow in curved ducts. 1In this latter parabolized Navier-Stokes
analysis, the MG method was advanced for use with Neumann boundary-value
problems in clustered curvilinear coordinates. This comprised an important
step in the analysis of viscous flows using the velocity-pressure
formulation of the Navier-Stokes equations. With successive over-relaxation
(SOR) as the smoothing operator and with suitably formulated restriction and
coarse-grid-correction operators, a 4-grid MC procedure enhanced the
efficiency of fine-grid solutions of the Neumann problem approximately by a
factor of four. U. Ghia, K. Ghia and Ramamurti (1983) also carefully
examined the influence of the smoothing operator by employing the ADI and SI
techniques in place of SOR. For the curved polar duct with a clustered
grid, Fig. 10 shows the convergence history of the MG-SI method for the
Neumann Poisson problem. The computational advantage of the MG procedure
with increasing refinement of the finest grid is very obvious from this
figure.

As stated earlier in this section, the MG-SI method was applied to the
shear-driven cavity problem. The MG-SI method developed by UJ. Ghia, K. Ghia
and Shin (1982) had about fourteen times faster convergence rate as compared

to the available solvers, including that of Benjamin and Denny (197Q), The
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detailed structure of the various secondary eddies at Re = 10“ is shown in
Fig. 11a; these have become the benchmark solutions for this fairly standard
model problem as they were obtained using a fine grid of (257x257) points.
Further, K. Ghia and U. Ghia (1984) suggested, via the results presented in
Fig. 11b, that the original experiments of Pan and Acrivos (1967) were
three-dimensional in nature. Koseff and Street (1983) repeated the
experiment with a spanwise aspect ratio of three¢ and confirmed that the
predictions of U. Ghia, K. Ghia and Shin (1982) are correct; these new
experimental results are alsé shown in Fig. 11b.

The convergence of the conventional ADI method was also accelerated by
using a local time-step method suggested by K. Ghia (1975). Abdelhalim,
U. Ghia and X. Ghia (1983) found that it was almost essential to use this
procedure to obtain converged results for their problem of flow past a blunt
plate including a separation bubble. The approach can be viewed as a2 means
of preconditioning the iteration matrix of the relaxation scheme and

corresponds to a more uniform Courant number throughout the flow field.

2.6 Fully-Implicit Numerical Methods: Semi-Direct and Direct Methods

The development of semi-direct and direct Poisson solvers was also
given considerable attention. The fast direct solvers of Hockney (1970) and
Buneman (1969) were widely used for two-dimensional flow problems, involving
separable Poisson equations. It was felt that these methods were not easily
extendable to the generalized Poisson equation or to other generalized
elliptic equations. Therefore, initially, a Cauchy-Riemann solver which
leads to a semi-direct (SD) method of solution was developed. This method
followed that of Martin (1978) such that the form of the generalized
operator in non-orthogonal coordinates was made to fit the form of the
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Cauchy-Riemann operator in rectangular coordinates. The results of this §;$~1
feasibility study were given by Osswald, K. Ghia and U. Ghia (1980). These ﬂﬁﬁt

! results showed that the degree of non-orthogonality and grid clustering ::;:a

; strongly influenced the solution convergence rate. However, it remains a Ezzﬂ

| To

l viable approach for efficient solutions of the Poisson equation in a variety ;?"5

! of orthogonal and non-orthogonal coordinate systems. 3{?%

For solution of the Poisson equation in generalized orthogonal

PR

coordinates, Osswald and K. Ghia (1981) developed a direct block Gaussian
elimination (BGE) method. Block-Gaussian elimination is a direct extension

. of the Gaussian elimination procedure to block matrices. The BGE procedure

provides the effective inversion of an [(NM)x(NM)] matrix through the actual

iy 4

t e

2 inversion of a predetermined sequence of N(MxM) sub-matrices. The BGE s
L a4

’ . --‘:~.:.-

- method was compared with the SD method of Martin (1978) for the general P

i Poisson problem for evaluation of accuracy and efficiency and was found to Q?f'

¢ yield a direct one-step solution, irregardless of the degree of grid S’Ei

.', -.,

. b,

. clustering, with considerably increased efficiency as compared to the SD tffs
RN

.. ~ LI

/ A

i method. A comparison of various existing subroutines for solving the two- Rl
v ’_ﬁ.

r dimensional Dirichlet Poisson problem was also provided and, as shown in :{:ﬁ

) ST

, T

$ Table 1, direct BGE provides a solver with efficiency comparable to other :f:j

> AN

s available direct solvers, but with the added advantage that it is applicable -

) ..

“_‘ ISR

- for unsteady flow analysis in generalized orthogonal coordinates. This BGE 3’ N

? solver was also extended by Osswald, K. Ghia and U. Ghia (1983) for solution ﬂii:

" Iy

4 L

. of the Neumann Poisson problem encountered for the pressure field in an & ~

Z unsteady primitive-variable Navier-Stokes analysis. The extension of the

-

- BGE method to the solution of the Poisson equation for axisymmetric flow was

; also provided by Osswald, K. Ghia and U. Ghia (1984), whereas the solution

i of the Poisson equation for a doubly-infinite region was provided by
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The solution of the Poisson equation

by the BGE method has proved to be very vital in the overall success of

K. Chia, 0Osswald and U. Ghia (1985a).
Navier-Stokes analysis of unsteady flow.
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Ghia, K.N., Osswald, G.A. and Ghia, U., "Analysis of Two-Dimensional
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presented at Third Symposium on Numerical and Physical Aspects of Aerodynamic
Flows, Long Beach, California, January 1985.

Ghia, K.N., Osswald, G.A. and Ghia, U., "Study of Subsonic Separated Flows Using
Unsteady Navier-Stokes Equations," presented at Theoretical Aerodynamics
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Osswald, G.A., Ghia, K.N. and Ghia, U., "Unsteady Navier-Stokes Simulation of
Internal Separated Flows Over Plane and Axisymmetric Expansions," presented at
AIAA 17th Fluid Dynamics, Plasma Dynamics and Lasers Conference, Snowmass,
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McGreehan, W.F., Ghia, K.N., Ghia, U. and Osswald, G.A., "Analysis of Separated
Flow in a Pipe Orifice Using Unsteady Navier-Stokes Equations,™ presented at
Ninth International Conference on Numerical Methods in Fluid Dynamics, Saclay,
France, June 198U,

Osswald, G.A., Ghia, K.N. and Ghia, U., "Investigation of 2-D and Axisymmetric
Internal Separated Flows," presented at AIAA 10th Annual Mini-Symposium on
Aerospace Science and Technology, Wright Patterson AFB, Ohio, March 1984,

Shin, C.T., Ghia, K.N., and Ghia, U., "Adaptive Grid Generation for Fluid Flow
Problems," presented at AIAA 10th Annual Mini-Symposium on Aerospace Science and
Technologz, Wright Patterson AFB, Ohio, March 1984,

McGreehan, W.F., Ghia, K.N., Ghia, U, and Osswald, G.A., "Numerical Solution of
the Unsteady Incompressible Navier-Stokes Equations for Separated Flow in a Pipe
drifice," presented at AIAA 10th Annual Mini-Symposium on Aerospace Science and
Technology, Wright Patterson AFB, Ohio, March 1984,
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Osswald, G.A., Ghia, X.N. and Ghia, U., "Study of Incompressible Separated Flow
Using an Implicit Time-Dependent Technique," presented at AIAA 6th Computational
Fluid Dynamics Conference, Danvers, Massachusetts, July 1983.
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Conference, Houston, Texas, June 1983. ggsﬁﬁ'
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‘ Generation, ASME Fluid Engineering Spring Conference, Houston, Texas, June 1983, ,ﬁ{i
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! Ramamurti, R., Ghia, U. and Ghia, K.N., "Analysis of Viscous Flows Using Multi- S
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Symposium on Aerospace Science and Technology, Wright Patterson AFB, Ohio, March
1983.

Osswald, G., Ghia, K.N. and Ghia, U., "Study of 2-D Laminar Separated Flow Using
Unsteady Incompressible Navier-Stokes Equations," presented at AIAA 9th Annual
Mini-Symposium on Aerospace Science and Technology, Wright Patterson AFB, Ohlo,
March 1983.

Ghia, K.N., Ghia, U. and Shin, C.T., "Study of Asymptotic Incompressible Flow in
Curved Ducts Using Multi-Grid Technique," presented at AIAA 9th Annual Mini-
Symposium on Aerospace Science and Technology, Wright Patterson AFB, Ohio, March
1983,
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Ghia, K.N., Osswald, G.A. and Ghia, U., "A Direct Method for the Solution of
Unsteady Two-Dimensional Incompressible Navier-Stokes Equations," Second
Symposium on Numerical and Physical Aspects of Aerodynamics Flows, Long Beach,
CA, January 1983.

Ghia, U., Ghia, K.N. and Ramamurti, R., "Multi-Grid Solution of Neumann Pressure
Problem for Viscous Flows Using Primitive Variables,” presented at 21st AIAA
Aerospace Sciences Meeting, Reno, Nevada, January 1983,

Turner, M.G., Ghia, K.N., Chia, U. and Keith, J.S., "Application of Higher-Order
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International Conference on Numerical Methods in Fluid Dynamics, Aachen,
Germany, June 1982.

Abdelhalim, A., Ghia, U, and Ghia, K.N., "Solutions of Navier-Stokes Equations for
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Shin, C.T., Ghia, X.N. and Ghia, U., "Solution of Navier-Stokes Equations Using
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Ghia, U. and Ghia, K.N., "Boundary-Fitted Coordinates for Regions with Highly
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Techniques, NASA CP-2166, October 1980.

Osswald, G., Ghia, K.N., and Ghia, U., "Efficient Solutions of Flow Problems in
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TECHNICAL APPLICATIONS A

Of the various CFD analyses developed, some were of direct use to the . N
technical community. Although to our knowledge, none of these analyses were ,:H“ﬂ;
used in the development of any specific hardware, they are being used in
preliminary design studies by analysts in the industry. Some of these
analyses are also being used by other researchers at governmental
laboratories to improve their analyses. The following is a list of the CFD

analyses and the organizations using them.

ANALYSIS ORGANIZATION

o] The Parabolized Navier-Stokes Analysis General Electric Co., Cincinnati, OH;
for Three-Dimensional Internal Flows AVCO Corp., Everett, MA.

o] The Unsteady Navier-Stokes Analysis General Electric Co., Cincinnati, OH.

for Internal Flows

@ The Unsteady Navier-Stokes Analysis McDonnell Aircraft, Co., St. Louis, MO;
for External Flows NASA-Langley Research Cntr., Hampton, VA.
o} Adaptive Grid Generation Analysis Sverdrup Technology, Inc., Arnold

Air Force Station, TN.

® Navier-Stokes Analysis in Primitive NASA Langley Research Center,
Variables Hampton, VA.
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FIG, 5a. SIMILARITY STUDY OF PRIMARY

REATTACHMENT LENGTH,

Re x 10-2

F1G. 5b, SECONDARY SEZPARATION AND
REATTACHMENT LENGTHS.
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FI1G. 6b. TIME-AVERAGED STREAM-FUNCTION CONTOURS FOR 95.02 < T < 117,00
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