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SUMMARY
The need to examine the very foundations of fracture mechanics became evident at

the close of an earlier AFOSR program [1]. In essence, the basic tenet of fracture

mechanics is that the stress intensity factor, K, controls fracture and fatigue. here the :j:
former claim is critically examined. The underlying supporting arguments — the original
energy argument of Griffith and the more rodern K-controlled region view - are ﬁ
considered. These considerations demonstrate that there are questionable assumptions in ::{ E
both, so that the viability of K as a damage parameter for fracture has to be established ";Et
RV

'1'3

by the physical evidence. The first question then is whether or not the critical value of K,

K is a material parameter: checking data shows it need not be. The second question is

can the technology be usefully predictive, even in the most simple of situstions: checking

TN TR 7 F S TS NN N O T T . m—m— s ¥

the data shows it to be unreliable in this role. At this time then, it remains to ask similar
questions concerning the role of K in fatigue crack growth and, certsinly for the monotonic
loading case, develop alternatives: these are the objectives of the second phase of the

program

»
[N :
SIS

7

«

YW W oW e
avala e 4

TAaTaT T T EE RS VT TV, ANYSYY'

S e N NP L




P

y & TS e 2 s & 2 e e« ® » ¥ » s VWL ¢ VYV

£S04 .

- e -

et te g .
RSN SRY

KAERAREN

INTRODUCTION

In general, the primary objective of fracture mechanics is to predict when a
component will fail when the analysis of the associated configuration leads to singular
stresses. This is not an easy task, since the theory is saying that physically unsustainable
infinite stresses result from even infinitesimal loadings. At this time, the accepted approach
for dealing with such anomalous findings is Linear Elastic Fracture Mechanics (LEFM), at
least in the instance of cracked geometries. Essentially, LEFM selects the coefficient of
the stress singularity, the stress intensity factor, as the parameter which governs fracture
provided response is sufficiently brittle. As a result of an earlier AFOSR research program
[1]. it became quite clear that this choice and the surrounding technology needed a full

examination. This report describes work undertaken in a one year study to this end.

In somewhat greater detsil, the principal current activities within a fracture mechanics

treatment of a monotonic loading situation may be classified as follows:

e Singularity recognition
e Evaluation of singularity participation

e nterpretation of the resulting quantified singular behaviour

We discuss findings with respect to each of these in turn in what follows.

- " o
------
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L Singularity recognition

:: Typically the presence and character of singularities is well understood - seldom does

. the fracture mechanics community stumble on this all~important first step. This is

! especially so for the elastic analysis of geometries containing cracks. It is also usually the

[

y case for the elastic treatment of other configurations, and for the handling of cracks within

.f nonlinear theories. Asymptotic analyses continue to be contributed in these latter instances,

e.g. respectively, (21" and some excellent articles in the recent conference [3). These

last, incidentally, demonstrate that the nonphysical nature of singuiar stresses is retained
when one entertains yielding, ie., the problem of interpreting singularities is not
circumvented by admitting plastic flow. Basically this is because, physically, elastic response

must precede plastic and elastic analyses to date continue to be plagued by singularities.“

DAY TR RS

Singulsrity participation
in two dimensions, analytica!l solutions provide explicit snd exact values of singularity

participation or stress intensity, K, in some situations. In practice, though, even two-

dimensional geometries are often too complex to be tractable to a purely analytical

RS A ST REC s,

spproach Here, however, numerical snalysis can be employed to good effect Principally,

the finite element method, when used in conjunction with a path independent integral,

furnishes a reliable and accurate means of determining K This is primarily because the finite

-[- element method readily adapts to the various and diverse geometries encountered in
.'-. ongineering,‘ while path independent integrals are orthogonal to any other regular fields
present in the anaslysis of a particular configurstion. Moreover, the approach is sufficiently
L efficient so as to meet enginearing accuracy requirements in return for modest
i computational effort Such efficiency leveis can be demonstrated on test problems with
y

.

. *Copy sppended for convenience.

!. “TMre do exist elsstic analyses of cracks which sre apparently free from singularities — these, however,

either fail to load the crack tip or invoive an integration/finite length scale in effect snd therefore do not really
overcome the difficulty.
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known exact solutions. For example, the path independent integrals devised in (a3, 5"
can be used to determine K to within 1% using fewer than 200 constant-strain-triangle
elements. In all then, the development of the ability to establish singularity participation is
well in hand, at least in two-dimensional instances. And the extension of such methods to
three dimensions is not seen as a further development of any great significance in the

overall question of the performance of fracture mechanics, [6]1"

There are in use at present, nonetheless, some other methods of determining
singularity participation which can be shown to be quite unreliable, [71", [8]" In
substance, these methods employ some kind of fit of local field data to infer K the basic
reasons for the potential unreliability of such local procedures are as follows. First, all
local procedures must consider quantities near but not at the crack tip. Second, at such
stations fields other than the key singular ones can contribute. Third, the extent of such
participation cannot be either completely controlled or fully accounted for. As a
consequence, for any given local procedure there exist problems on which it produces

unacceptably erronecus results.

A corolisry of the unreliability of local fitting procedures is that fracture criteria
based on some local field value cannot be reliably connected to the stress intensity
involved This means that criteria entailing crack opening displacement, crack opening angle,
or some so-called critical stress or strain at a nearby station, all fail in the second aspect
of fracture mechanics, namely establishing singularity participation The successful
completion of this aspect is a prerequisite to successful interpretation Accordingly it is
unreasonable to expect that any of today's local fracture criteria should prove of genuine

and significant vaiue in practice.

.Coov sppended for convenience.

®*Copy sent eaher to AFOSR (final report on Contract No. AFOSR-798-0078).
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Singularity interpretation

The first argument suggested in support of the singularity coefficient, or stress
intensity factor, as the controlling parameter in brittle fracture was, in effect, Griffith's
energy balance. In Griffith's approach, the energy source is the strain (potential) energy
released on fracture, while the sink is a surface energy term. Thus the controlling function
at the onset of fracture is the energy release rate, G. Irwin showed that G has a simple
relationship to K independent of geometry, so that Griffith’s.energy balance is equivalent to

the choice of the stress intensity factor as a damage parameter.

Griffith's work represented a major step forward at that time. Since, however, a
number of questions have been raised concerning the extent of its validity (e.g. Goodier
[9]). Moreover, if one simply applies the ideas to the fracture of a truly brittle material in

a unaxial tension test, one obtains [10]"

1
Uu Wﬁ (n

Here o, is the ultimate stress, £ is the length of the specimen. Equation (1) stems from
the fact that the energy source has dimensions of FL, where as the energy sink has
dimensions of F alone, F being force, L being length. For the application to the tensile
test, L transpires to be £, the specimen length While (1) is trendwise correct in that
fracture stress decreases with increasing size, it is oversimplified. This is because o, cen
slso depend on other dimensions and au's dependence on length need not be to the —-%
exponent, or even particularly close to this precise relation. Indeed, for sufficiently large
specimens, o, is generally regarded as a material properly, independent of geometry. Thus
this simpie application of Griffith's ideas raises a question as to whether or not the
assumption of a surface energy term as the dominant energy source is really valid, or even
sufficiently accurate in certain circumstances. The answer, as far as cracked geometries

sre concerned, has to lie with the physical evidence.

.Copy ncluded in [ V).

e e AT A At et e = e e e et e - e e e

Tt N N N N e T T T e e e e e Ve
o -, AR AN et s T T N T T T e
PRGN COP Y PN P C AT A T ala e o et et e e et L

T NN T T T T e T T
L TR O N R I A SO S SR i S



LW e T LT O T AT AT T e T e T T Y W e

W, T W,

S N R T T P N O P o O PP P e
RS
- .

The more modern argument suggested in support of the stress intensity as the
controlling factor in brittle fracture is as follows. For the K-field alone at the crack-tip,
the associated field quantities are clearly in violation of the underlying yet unpoliced
assumptions of linear elasticity, viz, infinitesimal displacement gradients, stresses in the
elastic range, etc. However, some distance away from the crack tip these K-fields do
comply with underlying assumptions and may be regarded as being valid To fix ideas, call
the radius from the crack tip outside which the K-fields are valid r, Conversely, as one
approaches the crack tip for any configuration, there comes a point after which the K- !

fields dominate any regular fields present Call this radius r . As a result, if r,<ry an

d
annulus is formed which may reasonably be viewed as K controlled, ie. a region in which K
sets the boundary conditions in effect for the process zone at the crack tip. Thus under
these circumstances, given similar fracture processes in the same material, K determines

l when fracture occurs. " .

The drawback to this argument clearly is that r, may not be less than r " Some ::

indication that this can occur is contained in [11]°, [12]" wherein three very similar pac-

man geometries under the same loading are treated. By changing the roof of the pac- P

man's mouth slightly, K switches from on to off to on again Here in some sense r o is :\-
' going from some finite value, to zero, to some finite value. Hence at some point in this SE;:‘.
sequence, no K-controlied annulus exists. And further examples can also be constructed :‘"
Thus the question arises as to whether or not this approach is sufficiently reliable to be :Ni'_'f

useful in practice: again the answer rests with the physical evidence.

Turning to the physical evidence, perhaps the most basic question is to what extent is ;e
the critical value of K, the fracture toughness, a material constant in particular, to what e
degree is the plane strain fracture toughness, ch' 8 material constant, since this is probably
the most carefully governed by standards in measurement of all parameters in fracture i

mechanics today. A review for two materials which possibly have had the most extensive
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testing in this regard of all steel and aluminum alloys, respectively, is given in [13)" A IOy
summary of the results is contained in Table 1 (bars indicate mean values, A indicates 95% .
confidence limit, o, is yield stress, Kc plane stress fracture toughness) In sum, KIC is

about five times more variable than the yield stress and accordingly quite dubious as a

material property.

Table 1. Critical value of K as a material property

Property ranges TS
Materia! Ao AK AK .
. Y le [ .
7075 76 Al 1% 5, +81% K _ +55% K_
k 4340 Stee! +9% 7, +50% K‘c -

LNy
1 r

A second basic question in terms of physical evidence is how well can K be used to

R

predict fracture in the simplest of situations. Focusing on geometrically similar

Y :'.'

configurations subject to a change of scale alone — arguably the most fundamental of tests

of predictive capability ~ an extensive, if not comprehensive, survey of all the pertinent

.
)

v

e
D]
o
et

data is furnished in [141%) [15)"™ . The snswer found is summarized in Fig 1. This

figure shows the percentage of times LEFM is within 10% of predicting fracture - useful A
sgreement — and the percentage of times it is within 5% - good agreement These
percentages are shown as a function of scaling with the number of independent tests
involved for each class of scale factors given in parentheses. When scaling is small (2-3)

there is really little to predict even so K fails to furnish useful predictions over 70% of

.Coov sppended for convenience.
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the time. When scaling is moderate (3-4), K fails to furnish useful results over B0% of
the time, while when it is significant (>4) it fares somewhat worse until eventually there are
no instances of satisfactory performance. And good predictive capability is even more
rare. This performance in such carefully controlled laboratory situations could perhaps have
been expected given the outcome of the earlier question concerning K|c as a material

constant, but is nonetheless most unsatisfactory.
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Vv CONCLUDING REMARKS i
E‘ Fracture mechanics today typically is successful in identifying and quantifying ‘
singularities, prerequisites to a8 useful technology. The present interpretation of the """“
resulting quantified singularity, however, is not good enough. More precisely, the choice of “
the stress intensity factor as the parameter governing brittle fracture under monotonic 1-._
loading. while appealing in its simplicity, is not up to handling the complex phenomena .r‘.i
involved. There is a serious and immediate need to improve our technology here. \,\j
Further investigations are warranted regarding the performance of fracture mechanics
e

in the fatigue or cyclic life arena  Given the unsatisfactory performance of fracture

mechanics in the simpler monotonic loading instance, there would seem to be littie reason
for optimism here. Probably significantly different alternatives will need to be developed
for both monotonic and cyclic loading before engineering can be provided with an adequate AT

technology.
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On the Singularities in Reissner’s Theory S
for the Bending of Elastic Plates R
-p( SN

W. S. Burton’ and G. B. Siacisir' o ;"'}"
Wedge-shaped elastic plates under bending, with the edges "'-_'l s

Jorming the wedge vertex being either stress-free, clamped or My= A
simply supporied, are characterized as to possible singular R
behavior within the coniext of Reissner’s plate theory. L
-(1-. L

Introduction Foo

Probably the first singularity analysis of an angular elastic :i:': -

plate under bending is William’s treatment using the classical By=-- S
theory [1). In the classical theory it is possible to satisfy stress- e e
free conditions at an edge solely in an approximate way, since :-'.t-' o
only two boundary conditions can be enforced and there are ’ 'E Jar aJ
three siress resultants. As the boundary conditions play an im- R KSR
portant role in governing singular behavior at the vertex of :;n A '1

any corner in a plate it is to be expected that Reissner ’s theory *7.'" re NIRRT
{2]. which admits three, physically-natural, boundary condi- N 2(;”2 NN
tions on an edge, may offer an improved, albeit singular, - ALY
representation in these instances. This is the expectation that Fig- 1 Geometry and seardinates for the plate equation \'::"-.':'
possibly motivated other analysts (e.g., Wang [3]) 1o perform i :m"'" \:.*-_':‘-f,.‘

analyses of complete, individual, crack problems using “Eor AN,

Reissner’s theory rather than the classical, and indeed more

physically sensible results are derived in these analyses.
Specifically, for the crack-tip on the tensile face of the plate
the same hydrostatic singular field ahead of the crack as oc-
curs in the extensional case of & cracked plate under tension is
found; this is in contrast to the classical bending theory in
which the principal stresses ahead of the crack differ in sign

shaped elastic plate under bending within the context of

Reissner's theory. Next we establish suitable solution forms
for the dominant asymptotic response near the wedge vertex
and set down conditions for the existence of these fields. The
conditions basically involve the analysis of an eigenequation
for each pair of edge conditions considered. The note con-

on R. He:
coordinat.

and magnitude. As a result it would seem reasonable to at-  cludes by displaying these eigenequations and discussing the On eacl
tempt the analogue of Williams' study for the classical theory  eigenvalues satisfying them which give rise to singularities. tions are t
{1] and explore the singularities in Reissner’s plate theory fora combined !
wider range of geometries than that investigated elsewhereand ~ Formulation follows:
for a full range of boundary conditions; this is the intent of the The plate has thickness A and occupies the open wedge ’
present note. . region, R, Stress.
We begin by formulating a class of problems for a wedge- R={(r.0)0<r<om,~a/2¢h<as/2}(0<as2y), (D Clamp
ey . N . _— where (r,8) are the polar coordinates of a point P in the wedge Simply
'Oepariment of Mechanical Engineering, Carnegic-Mellon University. i) racnecy 10 the origin, 0, st the wedge vertex, and a is the onfe sas

Putsdurgh, PA 1521,
Manuscripy received by ASME Applied Mechanics Division, December 19,
1983; fimal revision July 1S, 1985.
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vertex angle (Fig. 1). .
The plate is comprised of 8 homogeneous, isotropic, and
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BRIEF NOTES

Tsble 1 Eigenequations for Reissner’s plate theory generating
singular moment resultants

Edge Conditions Eigenequation Constants
Stress-free/stress-free sinka=C)A C, = (- )sina
Clamped/clamped sinka =G\ Cy=(-1/0)** sina
Clamped/stress-free sin’ha=Cy - C,\ Cy=a/a(l +9)?

C, = (3/x)yin’a
Stress-free/simply supported sin2ha= CgA Cy =sin2a
Clamped/simply supported sin2ha = CgA Ce=(~1/sh8in2a
Simply supported/simply cosha=C, Cy=(-)cose
supported
Note: k=12 for symmetric or anti-symmetric loading, respectively, and «= (3= 9)/(1 4 »).

lincar elastic material having Young's modulus, E, and
Poisson’s ratio, ». For this plate the stress resultants and rota-
tions of Reissner's plate theory, in the absence of surface
loading, can be expressed in terms of the out of plane deflec-
tion, w(r.0), and a single stress potential, x(r,6). That is,

1 & x
Ve V=
1 & 1 x
M"z"(?’ % r arae)

law+l0’w
r o £~ /)

o
et (305 e )
Mo (B (1-2)

2y x 1 ow

b= -Bi-e o 1 %"
s 2y 1 &x ow

Di-»r ® o'

on R, where V,, V,, the shear resultants, M,, M,, M,,, the mo-
ment resultants and 8,, 8,, the rotations, are functions of r, 8,
defined in the usual manner, with y=42/10, D=Eh/
12(1 - ), the last being the flexural rigidity. Then the field
equations of Reissner’s theory are reduced to the Cauchy-
Riemann equations for the functions x—y¥V2x and DV?w,
ie.,

9 ) | B 3
-07(7( Y93x) ~ % (DV3w),
1 2 d ®
—_t v mn? i 2
~ % (x=vV x)-—a’ (DViw),
on R. Here ¥ is the Laplacian operator in cylindrical polar
coordinates.
On each wedge face three homogeneous boundary condi-
tions are to be satisfied. These three boundary conditions are

combined in sets of edge conditions 10 model various edges as
follows:

Stress-free My=M/,=0,V,=0,
Clamped 8;=8,=0,w=0, «)
Simply supported My=0,8,=20,wa0,

onf= x a/2 (0Sr< o). These three cases combine 10 give six
distinct problems for the wedge. When the same conditions
apply on each face, it is possible to distinguish between sym-
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metric and anti-symmetric contributions. Thus, in effect, nine
problems are considered. Ensuring bounded displacements
concludes our formulation and Limits the singular behavior
admitted-while this formulation is then still not complete, it
suffices given our objective of characterizing possible singular
fields at the wedge vertex. We next consider the construction
of suitable sets of asymptotic solutions.

Singularity Analysis

From the form of the relations in (2), observe that if
w=0(P*!), x=0(r*'), as r—0 on R, A a constant, then the
shear resultants and rotations are O(~), while the moment
resultants are O(~-'). Accordingly we seck to construct
separable solutions for w, x satisfying the governing equations
(3) which furnish six independent constants multiplying these
dominant contributions as r—0, thereby providing a means of
satisfying the six boundary conditions contained in any pair of
the edge conditions (4). To this end, and noting that x - A9 *x
and DV?w are harmonic functions and the interrelations in
(3), we therefore take as our asymptotic solution forms for x
and w, the biharmonic functions?

x=P*1F(N0)+0(7?),
we=pP*IG(A0)+0(7)), )
as r—0 on R, where
F(\0) =(b,cos(A+ 1)8 + bysin(A+ 1)8
+bycos(A - 1)8 + b, sin(\ - 1)9),
G(N0) = (bssin(\ + 1)8 + bycos(A + 1)0
= ybysin(A - 1)8 + yd,cos(\ - 1)8)/D.

The stress and moment resultants and the rotations in (2) may
then be written as

V,aPrF +0(P*2), Vo= —(A+ )PF+ P+,
My=P-1[=290F = D((A+ 1K1+ )G+ G ")+ 0(**"),
M, =P 29\F = D((A 4+ XA+ 9)G+9G "))+ 0 1),
Mo= Py (F* = (A + 1A= 1)0F) = D(1 = »)AG '] + (P '),

= ———27— -0 -2
8= P s 0+ DF-C"] s 00+, ©

2y , .
a,-r*[mr -0+ 1G] s 0,

as r=0 on R, where the primes denote differentistion with
respect to 6.

With this set of separable functions for w and x the
singularity analysis proceeds in a8 manner similar to that
developed by Williams (4] for power singularities and by
Dempsey and Sinclair [§] for logarithmic singularities. Impos-
ing the displacement regularity requirements on (6) and con-

,Nou that one cannot wse Reissner’s solution [2] and bave a sufficent
sumber of independent constants availadle for the asympiotic analvsis.
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s fining attention to singular solutions, the resulting conditions  for the first three cases in Table l by Will_iams {4) and are clar
-',' may be summarized by decomposed in effect into symrpetr;c ln: a;_m-sir_mmetric p;r':s fect
> - i<fvi - by Kalandiia (6], thus accounting for the first five cases. The
": M= 0(r'~!) for real A satisfying D=0, 0<A<1, r:oxs for the last case, simply supported/simply supported, { (:;:
e sin(ylnr) can be determined by inspection. Some of the eigenvalues s
M -o(r*" " ) for complex A= £ + iy given in [4, 6] are actually the real parts of complex solutions; Eq'
cos(ninr) however, no truly comprehensive search for complex roots ap- 1°
pears to be available in the literature. Such a parameter study sut
N satisfying D=0, 0<AReA< ], (7) s outside the scope of the present work. Nonetheless, for any : dir
3 given application the determination of complex eigenvalues { tio
proceeds routinely on separating the pertinent eigenequation i 2
* M =" - Vnr) for real X satisfying for the specific a-value into real and imaginary parts and solv- : °
"D ing the resulting, simple, si.mult‘anepus pai.r ‘of transcendental
———=0, m<n, 0<Asl, equations. Likewise, logarithmic singularities have not been
L exhaustively searched for, but are straight forward to check . N
"~ sin(ninr) for in any specific instance. ’ w
,i:: M -O(r*' Vinr { }) for complex A=¢{ +in In conclusion we remark that the correspondence between )
N cos(ninr) the singular fields in Reissner’s theory and those in extensional 1=
I\ plate theory is not restricted merely to the singular eigen-
~ . d"-*D values, but carries over to the actual eigenfunctions which .
satisfying v L =0, m<n, O<Rerx1, share the same 7 and @ dependences, as can be deduced from a
the solution (6) and its counterpart in Williams {4]. ) E
t:' ? Ol ::t’
’ as r—0 on R, where M =(M,, M,, M,) is the vector of mo- References ) of
ment resultants. In (7), D is the determinant of the coefficient ‘olu m:nr L. "S:rfmw&gu Siuu:.n;tia lgs:dhin; B:;:m Vm:’u; ‘ tie "
matrix stemmirg from the sudstitution of (6) into a set of edge huons in Angular Corners of Plates Under ing."* x
conditions drawn from (4) and 7 is the order of this matrix, m S ysy o/ ‘¢ First U:S. Netions! Congress of Appiied Meckanics. 1951, pp. m
its rank. For any particular combination of the edge condi- 2 Rewsner, E.. *“The Effect of Transverse Shear Deformation on the Bending e ™
tions (4) for a wedge angle a, the values of X in the ranges .:: :91.:“” Plates,” ASME JounnalL of APPLIED MECMANICS, Vol. 12, 1945, pp. Y ;
given in (7) may be regarded as the singular eigenvalues of the -A-T7. " . ] .
eigenequation, D=0. We now investigate the eigenequations ,,:.x::u:'::. cg’:‘“ ﬁﬂ;wm‘::m‘ :;':75:;:;‘ i ¥
resulting from such expansions. pe. 371-350. b |
4 Wililams, M. L., **Stress Singularities l.e:ullin('_from Various Boundary ‘ : .
Eigenequations T o Eyron ASMEJowRws &
For the particular problem of the symmetric bending of a 3 Ppneser. J L ans Sinclar 0 8-, 7208 the St g ! E
stress-free/stress-free wedge, substituting (6) with o5 s34 i PO T {
b, = b, = by, =0 therein into the first of (4) and expanding the ¢ Kalandua, A. L.. “'Remarks on the Singularity of Elastic Solutions Near i
determinant of the resulting 3 x 3 coefficient matrix leads to  Cornen.” Prikiadne Matemeiike | Mekhenika, Vol. 33, 1969, pp. 132-135.
sin(A + Da/2(Asina + sinka) = 0 < a 5 27). @) ?
Equation (8) factors into two equations; however, the first of ‘
these, while not generating a completely trivial solution, does ;‘ L

s
)

v v
v .
"

rf

’,
i
-
-

APy

not give rise 10 any moment resultants and therefore con-
tributes no singular fields. Consequently, it may be discarded
leaving as our eigenequation for this case only the second fac-
tor. The eigenequations for the remaining combinations of the
edge conditions each possess similar, non-singular,
multiplicative factors. In Table 1, we suppress these and list
only those parts of each eigenequation that have attendant
singular fields.

Comparison of the first three cases in Table 1 with the cor-
responding extensional cases given in Williams [4) shows the
eigenequations to be identical. Examining the fourth and fifth
cases in Table 1 and noting that the conditions for the simply
supported edge in (4) are the same as anti-symmetry re-
quirements, we see these eigenequations are equivalent 10 the
anti-symmetric parts of the first and second eigenequations,
respectively, for a wedge of angle 2a. It follows that these two
cases are also effectively contained in Williams® extensional
analysis [4). Finally, taking as the physical analogue of the
simply supported/simply supported edge condition, the exten-
sional anti-symmetry conditions, u, =0, o, = 0 where u, is the
radial displacement and o, is the tangential normal stress, we
find that the last case too has a corresponding extensional
eigenequation. The significance of this correspondence is that
discussions in the literature on the extensional eigenequations
are directly applicable to elastic wedges generated by
Reissner’s bending theory.

Solutions for the dominant singular real part of A are given

2221 Vol. 53, MARCH 1986
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Dyoamic Behavior of Beam Structures
Carrying Moving Masses

S. Saigal'
Introduction

The dynamic response of structures carrying moving masses
is a problem of widespread practical significance. A detailed
survey of research efforts in this field was given by Stanisic et
al. [2]. The original problem is nonlinear in both local and
convective derivatives [3] and is complicated by the presence
of a Dirac-Delta function as a coefficient in the differential
equation of motion. Previous methods {2 applied for the
solution of this problem are approximate in nature and
tedious in their hierarchy of mathematical operation. Recent-
ly, Stanisic (3] expressed the solution in terms of eigenfunc-
tions satisfying the boundary, initial and transient conditions,
for a heavy mass moving over a simply supported beam.
However, in engineering practice there are problems that in-
volve more complex boundary conditions and, therefore, it is
of phenomenological interest to look into the physics of the
dynamical behavior of a clamped and a cantilever beam under
the action of heavy moving masses. The present study extends
Staniiic's theory [3] to study the dynamic behavior of 8

'School of Aeronautics and Astronsutics, Purdue University, West
Lafayette, Indi 47907. Student Membes, ASME.
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PATH INDEPENDENT INTEGRALS FOR COMPUTING
STRESS INTENSITY FACTORS AT SHARP NOTCHES
IN ELASTIC PLATES

G. B SINCLAIR. M OKAJIMA AND J H GRIFFIN

Depaniment of Mechanical Engineering and the Center for the Joining of Matenals, Carnegie-Mellon University,
Pinsburgh. Pennsylvania. U.S.A.

SUMMARY

A set of path independent integrals is constructed for the calculation of the generalized stress intensity
factors occurring in elastic plates having sharp re-entrant corners or notches with stress-free faces and
subjected to Mode I, 11 or 111 type loading. The Mode I integral is then demonstrated to enjoy a reasonable
degree of numerical path independence in a finite element analysis of a test problem having an exact
solution. Finally, this integral is used on the same problem in conjunction with a regularizing. finite
element, procedure or superposition method. The results indicate that sufficiently accurate estimates of
these stress intensity factors for engineering purposes can be achieved with little computational effort.

INTRODUCTION

In a number of engineering structures, sharp re-entrant corners or notches are introduced,
usually to facilitate fabrication. At the vertices of these notches, stress concentrations arise
making them likely sites for fatigue crack initiation and therefore the potential sources of
ultimate failure. Elastic analyses of such configurations result in stress singularities (see, e.g.,
References 1 and 2). While these singularities are physically unrealistic in themselves, it is
possible that, with a sufficiently accurate determination of their nature and participation, an
extension of the now accepted notion of a stress intensity factor K might prove of value.
Although such a generalization lacks the thermodynamic argument in terms of energy release
rates that underlies the physical significance of K for cracks, it could lead to an improvement
over present practice in initiation calculations for notches. One current approach to such
calculations is to assume that a crack has actually formed at the notch tip, then compute the
usual stress intensity factor variation under cyclic loading, AK, and compare it with material
threshold values to see if crack growth commences: with a generalized K for the notch itse'f,
the AK could be computed directly and compared with an accompanying set of experimental
threshold values for the notch. In this way, increased life could be detected in circumstances
in which load levels are too low for the formation of a crack at the notch tip. The intent of
this investigation is to contribute to the analytical component of such a technology by developing
an efficient computational procedure for accurately assessing generalized stress intensity factors
at stress-free notches in elastic plates, one which is readily applicable to the wide range of
complex configurations encountered in practice.

The basis of our approach to meet the foregoing objective lies in the development of a set
of path independent integrals which pick off the K at notches. Such path independent integrals
for singular elasticity problems probably owe their origin to Eshelby's work® in the early 1950s,
and a number of different forms for these integrals have evolved over the intervening years

0029-5981/84/060999-10$01.00 Received May 1982
© 1984 by John Wiley & Sons, Ltd. Revised 20 March 1983
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1000 G. B. SINCLAIR. M. OKAJIMA AND ). H GRIFFIN

(e.g. Sanders' integral;* see also Freund® and the references contained therein). All of the
foregoing integrals apply to a crack. Recently Stern and Soni® developed an integral for a
right-angle corner under fixed-free conditions; here we follow the ideas in Reference 6 and
construct a set of like integrals. termed H integrals, for a stress-free notch in an elastic plate.

The computational advantage of path independent integrals in the analysis of singular
elasticity problems stems from the fact that the only numerical errors accrued in their calculation
derive from the numerical approximations being used—there is no additional source of errors
such as that due to the truncation of an eigenfunction expansion as in local fitting methods. It
is to be expected therefore that, when used in conjunction with a finite element method which
recognizes and handles the singularity present or some equivalent numerical approach, a
procedure results which is easily adapted to varying configurations yet which yields the necessary
resolution for practical purposes in return for a modest computational effort. Such is indeed
demonstrated to be the case in the second section of the paper, wherein the numerical path
independence of an H integral drawn from the previous section is examined, following which
the same integral is used in conjunction with the regularizing procedure of Sinclair and Mullan.”
The paper then closes with some remarks on other applications and extensions.

CONSTRUCTION OF THE PATH INDEPENDENT INTEGRALS

Here we first focus on the in-plane symmetric loading of a notch in an elastic plate and develop
a path independent integral for the stress intensity factors in this class of problems. We then
discuss other integrals for anti-symmetric and out-of-plane configurations.

To formulate our initial class of symmetric, in-plane, notch problems we consider a plane
finite wedge subtending an angle 2a at its vertex (7/2<a <), let (x,, x;) be rectangular
cartesian co-ordinates having origin at the wedge vertex, the x,-axis bisecting the angle there,
and take R to be the open region defined by that part of the wedge in the upper half-plane,
with AR being its boundary (Figure 1). To facilitate further the formulation and subsequent

x2 4

X4

Elastic plate with notch

Figure 1. Geometry and co-ordinates for the region R
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analysis. we introduce companion cylindrical polar co-ordinates (r, 8) related to (x,, x,) by the
transformations,

i
"’vl‘s ‘

.8

x,=rcos 6 x;=rsind (0sr<o, -w<f<m) - (1)

-

Then, in general. we seek the stresses o, and displacements w,(i, j=1,2) throughout R as
functions of x,. x, satisfying the following. The two-dimensional stress equations of equilibrium
in the absence of body forces,t

SANAAN
n

YA

SENELY

Yryx
“.

L

0,,=0 onR (2)
The stress—displacement relations for a homogeneous and isotropic. linear elastic plate,
o,=u[(3-x)/(x=1))b,uss+u,+u,] onR (3)

wherein u is the shear modulus, x equals 3—4v for plane strain and (3—v)/(1+ ») for plane
stress v being Poisson’s ratio, and 8, is the Kronecker delta. The stress-free conditions on the
notch face,

o,n,=0 onaR whenx,/x,=cota (4) o

where n, are the components of the unit outward normal to 3R. The symmetry requirements X
ahead of the notch tip.

0,,=0 u;=0 onaR whenx;=0 (5) ° :
The boundary conditions prescribing the tractions or displacements on the remainder of aR, :
o,n=s! onaR u=u® onaR (6) :

wherein s° u? are the applied tractions and displacements and &, R, 3,R are complementary
subsets of AR excluding the intervals in (4), (5). And finally the regularity requirements at the
notch-tip which insist that the displacements are bounded there,

u,=0(1) onRasr-0 (7
Specifically we seek to extract from the stress and displacement fields meeting these require- N
ments the generalized stress intensity factor present defined by

K= lim_ v(2m)x} 0, onzx,=0 (8)

Here the subscript 1 denotes the opening symmetric mode, Mode 1, and A is the singular
eigenvalue characterizing the only singular stress field possible at the re-entrant corner as
identified after Williams.’t That is, A is the root of the transcendental eigenequation,

sin 2Aa = ~A sin 2a (0<a<l) 9)

with an associated eigenfunction having stresses and displacements in the neighbourhood of
the notch tip behaving in accordance with

o,=0(r*"") u,=0(r') onRasr=0 (10)

L R

A
T.l

* Although the lower case subscripts only range over the integers (1, 2), the usual index notation conventions apply:
repeated subscripts imply summation and a subscript preceded by a comma indicates partial differentiation with
respect to the corresponding cartesian co-ordinate.

$ See Gregory® for a completeness argument for Williams' eigenfunctions. y
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Figure 2. M, integral paths

Fd

K lJ

To construct a path independent integral for computing K; we proceed as follows. In general,
path independent integrals can be devised by invoking the divergence theorem of Gauss on
ensuring the divergence of the integrand is zero: in elasticity, this can be done in effect with
Betti's reciprocal theorem (refer, e.g., to Reference 9, p. 355) which, in a plane, can be stated
as

LA

NS ) fAtA

J (o,u* ~aju)nds=0 (11)
r

£ f s
L I

.

In (11), the integration is performed in a counter-clockwise sense around I" which is any closed
contour in R, o), u? are complementary fields satisfying the same field equations as o, u,,
namely (2), (3), n, are now the components of the unit outward normal to I, and ds is an

a
e

[N

~ infinitesimal line segment of I'. Next we choose I' as the contour comprised of any path X
0 which emanates on the lower notch flank and terminates on the upper, a circular path of radius
*'_'. r from the upper flank to the lower, and two closing straight paths along the flanks (Figure
:j 2). On letting the radius of the inner circular arc shrink to zero it is clear that only those parts
) of the integrand which behave like O(1/7) as r -+ 0 can contribute to this portion of the integral -

in (11). In order that such contributions stem from the singular K, fields alone we therefore

T |

s require that

, o3 =0(r*"), u'=0(r") onRasr-0 - 12)
.' Then (10), (12) imply that the product of the K, terms with the complementary field in (11)
W has the desired 1/r behaviour while all other fields in o,, &, contribute terms o(1/r) as r-0
] by virtue of the fact that the K, singularity is the dominant one present. Unfortunately, under
D this limiting procedure the possibility of divergent integrals along the flanks arises because of
:: the potential of 1/r terms there. Fortunately, if A is an eigenvalue satisfying (9) so is — A, so
*, that the complementary fields can be further required to be eigenfunctions themselves, thereby
C; rendering both o,n, and o}n, zero on the flanks and making the integrals there identically
e zero. Under these conditions the integral around X equals the counter-clock wise integral around
_ the circular arc in the limit as r -+ 0 which, with the selection of appropriate participation factor
‘o
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in the complementary eigenfunction, can be adjusted to recover K,. That is, we define H, by
H,=J (o, uf —oku)n ds (13)
p 3

and scale the complementary eigenfunction satisfying (2)~(5), (12) so that
H =K, (14)

The actual forms for the complementary eigenfunction are most readily established in polar
co-ordinates and can be derived along the lines of Williams' analysis’ yielding

oh=—KIr* '"[(A+3)cos(A+1)0—- 8 cos (A~—1)6]
o8 =Kr " (A-1)cos (A+1)8— B cos (A —1)86]

Or=—K?r* '[(A+1)sin(A+1)8-Bsin(A~1)6) (15)
. Kirt
= [(A+x)cos(A+1)8—Bcos(A—1)8]
2uA
& _—A
te zlu)« [(A=«)sin (A+1)8~B sin (A —1)6)]
with
K _Y(87)uA (A sin’ a +sin’ Aa) - Al-1
' 7 (1 +«)(sin 2a + 2a cos 2Aa) A cos 2a +¢cos 2Aa

Before moving on to the application of the H, integral of (13), several remarks concerning
its use and some simple extensions are in order. First, because of the symmetry involved, it is
clear that H, can be computed as twice the integral around that part of ¥ within R alone.
Second, (14) holds in the limit @ -+ 7 and the notch becomes a crack. Third, the pure traction
conditions on 4, R and the pure displacement conditions on 3,R are solely for convenience in
the formulation and can be relaxed to accommodate admissible mixtures of traction and
displacement components. Fourth, extension to the antisymmetric or Mode 11 case is straightfor-
ward and leads to

HII=KH=J’ (al[ul‘—azul)"[ ds (16)
i

where K|, is the Mode 1], stress intensity factor defined as the natural generalization to a notch
of the Mode 11 factor for a crack, the a,, 4, components now fulfil antisymmetry requirements
instead of symmetry, i.c.

022‘0 “]‘0 on AR when xz=0 (l?)

and, in polar co-ordinates, the antisymmetric complementary fields are given by:
ot =K' [B'sin(A—1)0—(A+3)sin(A+1)8]
ot =Kir* ' [B sin(A—1)0—(A=1)sin (A +1)6]

oh=Kr* ' [B cos(A—1)8=(A+1)cos(A+1)6] (18)
* —A

u? -K'—"—[B'sin(A—l)o-(A +x)sin(A+1)6]
2uA

® A

ul= —ﬂ-—[ﬂ'cos(A—l)O-—(A-x)cos(A+1)0]
2uA
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/ with

K _Y(8m)uA(A sin’ a ~sin’ Aa) , Al-1
"7 (14 «)(sin 2a - 22 cos 2Aa) A cos 2a —cos 2Aa

. where A is now the root of the antisymmetric eigenvalue equation, namely (9) with the minus
4 sign changed to plus. Fifth, for problems entailing a mixture of Modes I and 11, the fields nesd
S to be separated into their respective symmetric and antisymmetric parts in accordance with

: u:’=[“.(xhxz)z(’)iu.(xh_xz)]/z (]9)

where u; and the stresses derived from substituting u; into (3) constitute the symmetric part,

R4 u;, eic., the antisymmetric, then treated individually using (13) and (16), respectively. Sixth
) - and last, extension to include the outstanding our-of-plane mode, Mode 111, also proceeds
) routinely and results in

. Hm‘Km‘j (”s;“g -0;,“3) ds, (20)

b 3
where K, is the generalized, Mode 111, stress intensity factor for a notch, the a5, u3 components

_ are now the out-of-plane responses (j =1, 2), and, in polar co-ordinates (x;= z), the out-of-
S plane complementary fields are:

. . BT, K |‘" . 19

Ter 2ar U: -\/(ZH)rl"/2° sta @
‘ 1)
- ol - KN K L
vQ2r)r'*v/3*  2a 2a?

TEST PROBLEM

) In this section a plane elastic notch problem having an exact solution is set up and analysed
using a finite element approach and the H, integral. The results found enable the numerical
a path independence of the integral to be examined and its efficiency as a computational device
: assessed.
> For simplicity we fix attention on a problem drawn from the restricted class formulated in
. the previous section. One means of setting up a problem within this class having an exact
solution is 1o superimpose symmetric eigenfunctions for a notch on some region R, and we
adopt this simple device here. In order to thoroughly evaluate the performance of the integral
. when used with the simplest of finite elements, the constant-stress triangle, we select for
combination the first three eigenfunctions for the notch since these contain: the necessary
singular stress field; a stress field which, while continuous, is not continuously differentiable
and may therefore be regarded ss just barely being a regular field for constant-stress elements;
and, lastly, a stress field which is relatively smooth and is continuously differentiable.t More
precisely, we consider a plate with a 90° re-entrant comer (a =37 /4) and take R to be the
trapezium within the upper half-plate (Figure 3) defined by

R={(x), x;)|-x,<x,<0,0<1,<a} (22)

t By a 'regular’ field with respect to a given element we mesn one which does not impsir the normal maximum
convergence the element can enjoy; thus fields are regular for analysis using 8 constant-stress element if the stresses
are continuous (see Reference 10, Section 2.2, for a full discussion of the regularity requirements for various finite
clements).
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"4 Figure 3. Geometry for the test problem, coarse grid and integration paths NENIQS
, :L" o 1"
::; On this region we are to place the first three symmetric eigenfunctions for the 90° notch, :-‘f.:-:.'*
¢ admissible in the sense of (7), and associated with the first three eigenvalues of (9) with .‘_-:.j-':
" a =37/4 there and having Re A > 0. The forms for superposition are therefore those of (15) :-j.\'_::
’ with K7 therein being replaced by the constants K;, C,, C; and A being exchanged for ~A RO
—~ then set equal to the three corresponding eigenvalues, A,, Ay, Ay, provided the real parts of " S
the expressions in (15} are taken in the event of a complex eigenvalue. In the interests of S
brevity we suppress details of these fields here and merely list the required eigenvalues e
determined numerically from (9): AR
i
Ay=0-544  2,=1:629+i0:231  A,;=2:972+i0-374 (23) N
The corresponding eigenfunctions satisfy the two-dimensional field equations of elasticity (2), N ,:':.-C
- (3). the stress-free boundary conditions on the upper notch face (4), and the symmetry L
[~ conditions ahead of the crack (5). In combining them we first adjust the participation of the R
A A ,-fields so that e
Ki/o%V(@2n)a' M1=1 (24) RN
- Here K, is the generalized stress intensity factor defined in (8) and o equals o,, for A, at ';::;'::j
. x;=a, x;=0. Then, to complete our test problem, we add together all three eigenfunctions R
- with the A;-, A;-fields having participation factors C,, C, such that they share the same o),
K magnitude at x,=a, x;=0 as the A,-field (namely c°) and take, as the boundary conditions
. on the remainder of 3R (x;=4,0<x,<a; —a<x,<a, x,=a), the tractions that result there oot
. from their superposition. In this manner all three fields contribute to a comparable degree to S
A the test problem. B
g The application of a constant-stress triangle, finite element code and the calculation of the P
) H, integral for this test problem proceeds routinely. Since the issue of interest is the computa- A
< tiona! performance of the integral, we discretize R uniformly with a set of 45° isosceles triangles. e
N To examine convergence we employ s sequence of three grids—a coarse, 8 medium and a __ -
. fine—with the medium and fine grids being formed from the coarse by successively halving ;}.;_(::
( the element sides. The coarse grid has 48 elements and 35 nodes (Figure 3), the medium 192 \:-'
elements and 117 nodes, and the fine 768 elements and 425 nodes. To examine path inde- E:- 1!
B pendence we use three contours £,.(n=1,2, 3) which have nodes common to all three grids S
- ;
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(Figure 3) and along these contours use the mid-point rule to evaluate the integral in (13)—a

quadrature rule of like accuracy to that of the finite element discretization. The results so
found are presented in the first half of Table 1.

Table 1. Numerical values of the dimensionless stress intensity factor for the test problem (exact value 1)

Direct calculation using (13)

Calculation using regularizing
on three integration paths

procedure (25) on three paths

Grid 3, 3, I, Z, 3, 3,
Coarse 1-044 0-843 0-883 0979 0-975 0978
Medium 0913 0939 0-940 0-992 0-994 0-994

Fine 0-972 0-973 0-972 0-998 0-998 0-999

Of course the problem at hand is singular and accordingly results from the foregoing direct
treatment can be expected to be poor; needed is an approach which recognizes the singularity
present and takes it into account if better results are to be realized. One procedure with this
attribute is described by Sinclair and Mullan’ and belongs to a class of superposition methods
which, in essence, treat the singular part of any problem analytically with scant regard for
boundary conditions remote from the singularity source, then use a simple numerical method
to complete the satisfaction of the boundary conditions in what is now a regular problem.
What basically distinguishes the procedure in Reference 7 from other superposition methods
is the use of path independent integrals to balance the analytical and numerical contributions
and it thus seems natural to apply it here. The end result so far as the stress intensity factor
is concerned is (see Reference 7 for details of the surrounding argument)

K,=H/H} (25)

wherein H, is the numerical estimate of H, for the problem of interest, H! the numerical
estimate of H;for an associated singular problem formed by taking corresponding boundary
conditions on 4R as prescribed in effect by the singular eigenfunction alone with a participation
factor of unity. What (25) says, in effect, is not that either H, or H| represent accurate estimates
of H, or H;, respectively, but rather that they constitute roughly equally crude estimates with
the errors cancelling in large part. Central to this cancellation is the use of an underlying
method for calculating K, which has predictable errors due solely to the discretization—hence
the need for the path independent integrals in (25).t

Application of (25) to the test problem is straightforward: the H; values that have already
been computed are simply divided by the numerical values of H, found on the same grid and
path for the singular problem in which the boundary conditions on 3R are established by the
placing of the A,-fields alone on R with a dimensionless participation factor of unity, i.e. as
in (24). The results so found are presented in the second half of Table 1

The numbers in Table 1 illustrate the degree to which the H, integral is numerically path
independent. The variation between the different paths is of the order of 20 per cent for the
direct coarse analysis and converges to approximately 01 per cent for the fine grid; the variation
between paths is yet smaller for the regularizing procedure (25) with the differences being
actually less than 0-5 per cent for the coarse grid, 0-04 per cent for the fine. Moreover these

t See Reference 7 for a fuller discussion of the advantages of path independent integrals relative to methods such as
local collocation in this regard.
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)
" results are the worst experienced in a number of numerical experiments since the signs of the el
- participation factors here are such that errors accrue rather than compensate. Accordingly it nle
. would appear that the choice of integration path is not a major concern in applying the H, s
. integral, especially when doing so in conjunction with the regularizing procedure. The numbers "-.j
3 in Table 1 also indicate the sort of convergence to be expected with H, integral. To illustrate :-;-r:
this more clearly we model the errors for each analysis with W
X e=¢h¢ (26) .
: where e is the absolute percentage error in the dimensionless stress intensity factor for a L

dimensionless grid size of h: e, is thus the error for unit grid size and refiects the initial accuracy
of an analysis, while the constant ¢ gauges its rate of convergence. We fit (26) to the medium
and fine grid results in Table I since we expect that ¢ is more likely to have converged to a ,
constant itself for these grids. To check (26) as an error model we then use it to predict the S
errors for the coarse grid; with the exception of the direct calculation of H, on X, these -
predictions agree well with the actual errors supporting the use of (26). The results of applying
. it can be summarized by the average values determined. For the direct calculations,

- ©=13(%) c=11 27 R
For the regularizing procedure results, _ E‘z
. | e=3(%) e=21 (28) e
- Equations (27), (28) show that for this test problem the regularizing procedure not only leads - :'-f.
o to markedly better convergence as expected, but in addition is about a factor of four more RN,
accurate. Further, the regularizing procedure was observed to enjoy a similar superiority over P :
direct computation in other test problems and the sort of relative improved performance
N demonstrated in (27), (28) is characteristic of that obtained in earlier applications of the

procedure to crack problems (refer to Reference 7 wherein average values of ¢, and ¢ are 42
per cent and 0-15 for a direct calculation using the J integral, in contrast to 8 per cent and
1-4 for the procedure). It would thus seem that the use of the path independent integrals T

developed here, together with a regularizing procedure as in (25), offers an attractive and , "

efficient computational approach for singular elastic notch problems. BAY
- SN
: CONCLUDING REMARKS R
. RO
", The path independent integrals described furnish engineers with a useful tool for determining ._\','\:

generalized stress intensity factors in elastic notch problems. This is especially so when used ;-'- ‘

with a regularizing procedure such as that of Reference 7; then accurate results can readily *—;ﬁj
) be obtained using any standard, constant-stress, finite element code. Improved usage over that s
: demonstrated here can be brought about by introducing mesh refinement with the grid gradation

. being tuned to the complete problem in the instance of a direct calculation, and to the residual
: regular problem when employing the procedure in Reference 7.
Extension of these integrals to treat problems involving loaded notch flanks is elementary

-
£ 4 2 6

.
ou
| o J

via superposition when such loads are constant but otherwise awkward. Extension to composite ?;.—,
! configurations is possible at the expense of some algebra and is being undertaken at this time; :.{‘3
- extension to anisotropic notch problems is possible in principle but does require significant ey
. algebra. Extension to three-dimensional geometries in which the notch tip traces out a e
L sufficiently smooth curve is also possible in the light of Aksentian's analysis'' which shows the N
) singular character in such instances to be that of the two-dimensional problem. However, for i.,;::‘-‘
\ ‘.- . ;.‘
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geometries that are more significantly three-dimensional, such as the intersection of a notch oy
2\ with a free surface, the integrals given here would not be appropriate and the development _—
\ of suitable new integrals would appear to represent a considerable analytical task. -
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A REMARK ON THE DETERMINATION OF MODE I AND MODE II STRESS INTENSITY
FACTORS FOR SHARP RE-ENTRANT CORNERS

G.B. Sinclair

Department of Mechanical Engineering, Carmegie-Mellon University
Pittsburgh, Pennsylvania 15213 USA

tel: (412) 578-2504 .

The independent development in Carpenter [1] and Sinclair, Okajima,
and Griffin [2] of path independent integrals for the stress intensity
factors at sharp re-entrant corners provides fracture mechanics with a
useful analytical tool. Prompted by Carpenter’'s recent sequel (3] to [1],
in which he extends his earlier work so as to be able to individually
determine mode I and II factors, the purpose of this note is to point out
that such a capability is slready available in the integrals of [2]. This
attribute may well be obscured in [2) by the overstatement there that
mixed mode problems “need" to be split into their symmetric and anti-
symmetric parts prior to applying the corresponding path independent in-
tegral. While this is certainly one approach for distinguishing between
mode 1 and wode II, it 1s by no means necessary. Simply applying the
integral for mode I in [2) to a mixed problem yields the mode 1 intensity
and vice versa. This is basically because the complementary fields in
the mode I integral are symmetric so that vhen they are multiplied by any
sntisymmetric fields, including the singular mode II field, then inte-
grated, no contribution results. The converse holds true for the mode II
integral. In detail the argument is as follows.

Consider an elastic plate with a re-entrant corner, or sharp notch,
which has stress-free flanks (Fig. 1). Let x,, x. be rectangular
cartesian coordinates aligned such that the n gnt;ve x,-axis bisects the
opening angle at the corner into two angles of -ngnituAe % - a. For this
geometry we can define the respective stress intensity factors for wmode I,

mode 11 by

) . 12 . 1-2"
K - Lim J2v) x, %,y Kpp * Lim Y(27m) x ©,, Q)
- d+ x,* 6‘
*) 1

onx, = 0. In (1), 9,, is the normsl compogent_in the xz-directiou of
the ittess field o %g. § =1, 2), while A", A7 are the“singular eigen-
values stemnming frsa their corresponding eigenequations,

sin 22%a « - A*g4n 20, sin 2370 = Agen 20 )

with 0 < l’, A" < 1. The elastic fields associated with ¥ and A~ are,
regpec‘ively, symmetric and antisymmetric adbout the x -a;it. That is, if

O,.» u, are the stress and displacement components fo A7 with U‘j. uy
btln; hose for A |
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0g3 (s = %) = o T x) s Wi ogaeny) = - OF Wik, x) @)

and

- i+j
0, (ks = X)) = = (=) - -~ -
i3 2 °1j("1’ x,), u (x), x,) = (=) uy(x), %)
4)
Now from [2] we have, as our path independent integrals for determining
the stress intensity factors for these singular fields,

u,)n ds ) (5

H *® *®
17 [ (ogy vy =0y vy

and

. " D
BII £ (oij u - oij “j)“st 6)

Here, I 1s any contour within the plate commencing on the lower notch
flank and terminating on the upper; n, are components of the unit outward
normal to I and ds is an 1nfin1tesimai element of its length; ghe Inte-
gration is to be performed in a counterclockwise sense; and Ogq0 Yy aTe
the stresses and displjcements of the symmetric complementary 1ingu1:r
eigenfuncgion, o,,, u, those of the antisymmetric (see Appendix for
details). The 61rtiéipation factors of these last are adjusted in [2)
so that they pick off the corresponding stress intensity factor, i.e.,

B =K. ‘n‘ * X ' | )

Turning to their application in mixed mode problems which have both
symmetric and antisymmetric singular fields present, we first focus on
the use of H, established for any problem's elastic fields in [2], the
general contsur I can be exchanged for the here more convenient path T
(Fig. 1). Applying H.  of (5) on I', then changing variables so that seg-
ments in the lower ha}f-plnne (x2 < 0) are expressed in terms of those in
the upper, we have

-]
(2]
"
Okh’ll

- & - - P
1oy, (x5 xz)u‘(xl. x,) + 0., (x), X)), (x), ~ xz))

~oy3 (e % Du Ry %) + 0,10 = 2y, L - xldx,
®)

#Although the lower case subscripts only range over the integers (1, 2) the
usual summation convention for repeated subscripts still applies over this
reduced range.
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= (ogy (g0 xDuglxys %)) - 0y (’f1' - xu (x) = x)))]dx,.

Now introducing into (8) the antisymmetry relations gatisfied by the anti-
symmetric parts of o, ,, u,, namely the equivalent of (4), in conjunction
with the symmetry teiltio%g sajisfied by the symmetric complementary
singular eigenfunctions o¢,,, u,, viz., the equivalent of (3), we see that
8ll the combinations in pgéent eses () cancel. It follows that the only
nontrivial contributions to H. must come from the symmetric parts of o, ,,
u,. Further, as proven in [2}. only the singular part of these -ymmet*lc
flelds actually contributes, recovering the first of (7). Analogously,
BII may be shown to pick off only KII in mixed mode problems.
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Thus for general problems containing & mixture of symmetric and anti-
symmetric fields, in addition to the strategy of separating the given
problem into its symmetric and antisymmetric constityents if it occupies
8 region geometrically symmetrical about the x.-axis , one can simply
apply the H. and H 1 integrals directly on the path of choice to discern
l(E and KZI ;espectively. Either technique provides reliable estimates of
the streS8s intensity factors when implemented numerically, and either can
be made quite computationally efficient when used together with a super-
position procedure or regularizing approach such as [4].
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APPENDIX ’ - e

Here for completeness we furnish details of the complementary singu-
lar eigenfunctions required in the definitions of H. and ﬂI in (5), (6).
These fields are most readily expressed in cylindrgzal pol ; coordinates
r, 6 (Fig. 1). For the nI integral we then.have :

R
o

FE AR AL R S
RSN
SRR

*®

o - KT + 3)cos(h +1)0 - B cos(h = 1)8)

® * )
o =Kr -1

06 [(A = 1)cos(r + 1)8 ~ 8 cos(2r - 1)6)

org = "t + etn(r + 1)8 - B 8in(2 - 1))

*Such a strategy offers computational savings with finite element analysis
of about a factor of four in terms of operational counts and around a fac-
tor of two in storage requirements. See [2], Eqn. (10) et seq. for specifics
of the decomposition,

T VR ol SR O
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* *oA
u - Kr
4 2ul
* )
* Kr
Yo ¥ X

2 a + sin2 la)

* Y(8m)ur (X ein
(1 + x)(sin 2a + 2a cos 2Aa)

K

in which

32 -

<+
A=2, 8" A cos 2a + cos 2ia

and vherein u is the shear modulus, and x = 3 ~ 4v for plane strain and
(3 ~ v)/(1 + v) for plane stress, v being Poisson's ratio.

integral we have

orr = K ¥ 18 s1n(h - 1)6 = (A + Nsta(r + 1))
Ogo ™ Kt 218 sin(r - 1)8 =(2 - 1)sin(r + 1)6)
oft  _ax a1
ro=X r {8 cos(h - 1)8 =(A + 1)cos(r + 1)8)
* g" -2
u - 2u§ (8 sin(d = 1)8 ~(A + «)sin() + 1)6)
"% o)
ug = - 2u§ (B cos(r = 1)8 =(A - x)cos(X + 1)6)
ol Y(8r)ur (3 sin? a - linz Aa)
1 + ¢)(sin 2a - 2a cos 2ia
in which now
2
A=2,8= A_-1

A cos 2a - cos 2)a

Like fields for the mode 111 integral BIII (-KIII) can be found in [2].
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[(x + k)cos(A + 1)8 - B8 cos(A -~ 1)8]

[(A - x)sin(A + 1)8 -~ B sin(X - 1)6)

For the HII
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Figure 1. Geometry, coordinates, and integration paths

LN RR LA A A ERS U NEWHK SNSRI s - ST

¢ IR ERAS JSOSHE <P™ LRSS SRl LA I N P SRRl S B SRS S




s

vl

L

s;\;w

International Journal of Fracture 29 (1985) R17 RSy

© 1985 Martinus Nijhoff Publishers, Dordrecht. Printed in The Netherlands. NENDN

N '--_
RIS

P
N ’-.P g

B

CORRIGENDUM . ‘:f:
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Correction: "A Remark on the Determination of Mode I and Mode II Stress SO
Intensity Factors for Sharp Re-Entrant Corners,"” G.B. Sinclair, Inter- Lo
national Jowrnal of Fracture 27 (1985) R81-R8S. -
Equations (5) and (6) on pg RB2 should read: . :{;_?
N

._:_ “a

AT

ko gt A

BI -fr(oij v} oij ui)njds (5) POty

- * - ghk
vy, {(a”\!:l o1} ui)njds (6)

The paragraph following Eqn. (7) on pg R82 should read:

Turning to their application in mixed mode problems which have both sym-
metric and antisymmetric singular fields present, we first focus on the
use of H. to deterwine K., in such cases. 1In view of the path indepen-
dence oflﬂ establighad }or any problem's elastic fields in [2], the
general cogtour I can be exchanged for the here more convenient path T
(Fig. 1)....

Equation (8) is split and occurs on the bottom of pg R82 and the top of
P8 R83. The arguments for the last displacement field occurring on pg
R83 should read:
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We regret any inconvenience created for our readers by these typographical
errors - Ed. '
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_ Some inherently unreliable practices in present day fracture -
"3 mechanics PNy

= .

¥ G.B. SINCLAIR

.i Deparimert of Mechanical Engineering. Carnegie- Melion Un.cersity, Piuisburgh, PA 15213, USA
-

; (Received July 30. 1984; in revised form December 7. 1984)

Abstract

* A number of current practices in fracture mechanics which use quantities near a crack tip to make conclusions
about response at the crack tip itsell are examined. Specifically these include: stress and displacement matching
10 estimate stress intensity factors. monitonng Joca! stress and strain values to predict fracture. and both crack
opening angle and crack opening displacement as fracture critenia By means of a pair of counter applications. all
of these procedures are demonstrated to have the potential of leading to completely incorrect conclusions. An
undersianding of what causes this inadequate performance then indicaies that such procedures may be unreliable
in general and prompts suggesuons as to alternatives.

1. Introduction

te

ﬁ.
N
9

In fracture mechanics today there are a number of procedures which in essence draw on
field quantities in the vicinity of a crack tip to infer what is happening right at the crack
tip. This paper considers two classes of such procedures: local fitting methods for
determining stress intensity factors, and local fracture criteria for predicting fracture. The
intent is 10 examine the reliability of these approaches.

Local fitting methods for calculating stress intensity factors at cracks arose out of a
need to extract this parameter from numerical analyses, particularly finite element
analyses. One of the first discussions as to how best to undertake such exercises is that of
. Chan et al. [1], though certainly the approach was in use prior to [1] even if somewhat
o informally. Moreover the approach, together with spin offs such as the nodal force
>0 technique of Raju and Newman [2]. continues to be used today in conjunction with both
F. finite element and numerical integral equations analyses, as is evident in several papers in
- recent conferences [3,4]. All of these methods entail matching near but not at the crack tip
e 1o estimate the stress intensity factor there; the question considered here is how reliably
can the attendant extrapolations be carried out.

- Local fracture criteria attempt to predict fracture by checking some quantity in the
vicinity of the crack tip. Among the more natural choices of quantity to this end are
measures reflecting stresses and strains at the crack tip. Stresses are usually used in elastic
analyses and typically in complex configurations (e.g. for failure in composites as in
Chamis [5], and for biomedical applications as in Valliappan et al. [6)). ® Strains are

A A."L
v

.- ’l- '; 'i 3 .
A

n“-‘ P
Do

! * There do exist. though, examples of the direct use of local stresses in elastoplastic treatments. see for instance
e Mller et al. {7).
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normally preferred when significant plastic flow accompanies fracture (c.g. Newman {8).

7 g oo s

Belie and Reddy [9]. Kim and Hsu {10]). Other quantities employed .in this role are the ) A
crack opening displacement of Wells [11] and the crack opening angle of Andersson [12]. ‘-f.\::‘
the former having gained sufficient acceptance to merit a British Standard [13] 1o govern RN
its measurement. * All of these criteria involve comparisons made away from the crack tip ;\-::.\::\
with a view 1o gauging what is happening there; the issue of concern here is the certainty :~;:
with which such comparisons are connected to fracture at the crack tip. ;‘;;:s:
We begin our assessment in Section 2 by specifying the local fitting methods and local o

fracture criteria for testing/calibrating and thereafter using on simple elastic problems in
Section 3. The conceptual applications in Section 3 in fact have known solutions. thereby
furnishing demonstrauons of local procedure performance. These sample evaluations in
turn motivate a discussion of the more general use of local procedures and some -
- suggestions as to alternatives in Section 4. The paper then ends with some concluding SRR

remarks.

3 2. Procedures examined

. Here we first define a stress intensity factor and describe two local fitting procedures
aimed at estimating it - one using stress, the other displacement. We then specify some
( local fracture criteria which are based on stress. strain. crack opening angle. and crack
: opening displacement.

To fix ideas consider a cracked elastic plate which is thick in the out-of-plane direction
so that a state of plane strain obtains (Fig. 1). For the in-plane directions. we let (x, y) be
rectangular cartesian coordinates having origin O at the crack tip and x-axis aligned with
. the crack. To further assist the development, we also let (r, 8) be cylindrical polar

coordinates. sharing the same origin. and related to the rectangular coordinates by

x=rcosf@., y=rsind, (1) j','_,.'_ -

for 0gr<x, —7 <87 Next we assume the plate 10 be under symmetric loading
having resultant force per unit thickness, P, acting transverse to the crack. Then the only
stress intensity factor present is the mode I factor K, defined by

PP SO N

K= linz)ﬂﬂro,U(o,) on 8=0, ) 2,
r= --'< -
where o, is the elastic normal stress in the -direction and U is the unit step function. here ORI
d taken as being one for positive arguments and zero otherwise. < )
_ We now wish to draw on local quantities to form estimates of the stress intensity factor. g X
K,. One straightforward stress estimate is suggested by definition (2) itself and merely sets AR
K, =278, U(&l.-,) on 6=0, (3)

wherein 7, is some “small” distance from the crack tip and the bar atop o, distinguishes it
as being whatever value is found by the numencal solution technique adopted. An
analogous displacement estimate is

k‘,-l—f—' %(—i.l,.,o)u( ~TGgler,) oOn G=wa. (4)

Here. p is the shear modulus. » Poisson’s ratio. and ~i, on § = ¢ the numerically-de-

* Crack opening displacement was also independently introduced by Cottrell [14] 10 the effect a somewhat
different objective. that of classifying brittle versus ductile fracture - see Burdehin [15) for a recent review of 1ts
role in fracture mechanics.
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el

termined opening displacement of the upper crack flank. Again in (4). for simplicity. we
select r=r, as our “small” distance, a policy we continue throughout the remainder of
this discussion without loss of generality. The estimates in (3), (4) both fit the first singular
eigenfunction for a symmetrically excited crack to the entire crack fields at a station
supposedly close enough to ensure that these singular fields dominate. Thus while 3). 4
do not represent the most sophisticated of local fitting procedures for finding K,. they do
contain the essence of the rationalization for all such approaches. Consequently they are
adequate for demonstration purposes here; subsequently we review other. more complex.
local fitting methods. ’

We now turn 10 fracture criteria based on Jocal quantities. For a stress criterion we
choose perhaps the most obvious, namely that the tensile stress ahead of the crack. near
but not at the crack tip, attain a critical value for fracture. That is,

8l,er,=0. On 8=0, (5)

for fracture. wherein o(> 0) is the critical stress determined on a suitable calibration
problem. An analogous strain criterion exists. Instead, with a view to examining a greater e

SOV,
variety of local fracture criteria, we consider the more involved condition of Newman [8). ‘;f-ff
In Newman [8). the crack-tip strain measure is assembled from a finite-element analysis. j-:}-"ff
The sesult, denoted &, here. is the average of the element strains in the y~direction. ¢,. :":":j
taken over all the elements connected to the node at the crack tip. Accordingly for fracture \f-";‘
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we have (Fig. 2)
3

€ =¢. ¢, = PIRTH
=1

(6)

rer,

where ¢ (> 0) is a calibrated critical strainand r, = r; = ¥57,/3. r; = v2710/3,8, = cot” 2.
6,=1an"'2, @,=3n/4. The sample finite element grid of Fig. 2 also suffices for
computing the crack opening angle, a. of Andersson [12]. this being the angle subtended
by the closest node to the crack tip. The associated fracture criterion has that, at fracture.

a=a, a=21n"'"( -ub.,/r,) on O=m (7)

with a (> 0) being a calibrated critical angle. A similar evaluation of the crack opening
displacement, 8, of Wells [11], leads to the fracture criterion that has, at fracture.

8=85. &= —2u,..,, on O=g, (8)

8,.(> 0) being a calibrated critical displacement. Actually 8 is usually evaluated as the
crack opening displacement at r=r, = K/2n0}, where o,.is the uniaxial yield stress:
here we take o, to be such that this station too coincides with r=r,. Equation (8)
completes our specification of the set of fracture procedures based on local quantities 10

be appraised nex1.

|
Finite Element Grid

b Y

7.
- ’. .

G

Deformed Crock Profile
Figure 2. Finite element grid and other features near the crack tp.

3. Test / calibration problem: applications

In this section we start by formulating a test/calibration problem and a pair of problems
10 serve as “applications”. Then we exhibit the closed form solutions to all three problems.
employ the first of these 1o test the local fitting methods and calibrate the local fracture
criteria, and thereafter use the last of the solutions to assess performance.

The problems to be treated ase drawn from the class of symmetric, plane strain, crack
problems outlined in the previous section. We do this conveniently by confining attention
10 the cracked circular plate of radius R (Fig. 3) and hence, by virtue of symmetry. need
only to consider the semicircular region &, defined by

R={(r,0)l0<r<R,0<b<n}. 9)

Throughout this region we seek, in general, the stresses o,. o,. 7,, and displacements u,. ¥,
as suitably smooth functions of r, § meeting the following requirements. All three
problems are o satisfy: the plane-strain stress equations of equilibrium in the absence of
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Figure 3. Cracked plate geometry for test problem and applications.

body forces. namely
ro, ,+144t0,— 0y = o,
a‘."f ’T,'_,+ 27,'-0. (10)

on . where subscripts preceeded by a comma denote differentiation with respect to that
variable: the plane-strain stress-displacement relations for a linear elastic, homogeneous
and isotropic, plate with shear modulus g and Poisson’s ratio v = 1/4, viz.,

o= u[3u,_, +r Wu, + u...)] .
°o'#[3’-‘(“,4‘"0.0)"‘“'.,]- (1)
= I‘["u“’ r"Nu, = “0)]~

on A, the stress-free crack flank conditions which set

‘.-7,'-0 on ’-7. (12)
for 0 < r < R; and the symmetry conditions ahead of the crack which have
uy=0, 17,=0 on #=0, (13)

for 0 <r < R. In addition each problem individually must comply with its applied stress
conditions on the circular boundary. These set

o= 4 Y a, L L r=R, '
kR, _& 2
P . nf | (14)
7,,--1(—"-1)2:““6,, sin=- on r=R,
for 0 < 8 < #(P > 0), where, for the test problem,
k-s, 01-5. 03--1. bl-bJ-]. (15)

are the only a,, # 0, b, » O, and. for the two applications. all nontrivial constants are given
in Table 1, wherein p= R/ro(> 1).

While not strictly needed in the mathematical formulation of the foregoing type of
elasticity problem. we adjoin the following regularity requirements on the displacements in
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: Table 1. Boundan condition constants for the apphications _‘::‘I:
) ; Constani Application 1 Apphcauon 2 L_ﬁ
A 8a, (p-2+2)%/63p 8o’ -1’ -
a,. a, ~17.374.036p' 2 - 5.969.792¢' o :.;
a, 0 3 A
a.. b, 0 15.690.918p" 2 Ehih
N o 1009 - 472 )07/49 -1-10p? < .:j
N a, 200+V2)5'/7 0 AN
L do. = b, 0 47.072.754p" ° S
a- May-a,/7) =3p°(10+90%) “pes
. 4. = b, 0 10.008.616p" * R
- ay b = b, -$a, 0 N
. an. = by, 911 +6,7 10477 634 o
b 0 1 ]
N by 3a, 1-30p° w0
» by —a -a,+a,/2 - fat
b, ~3a,+ a, 30p° + a,,
X
:: all three problems to emphasize their physical admissibility: that the displacements at the
o crack tip be bounded. that is
' u,=0(1). ue=0(1) as r—0, (16)
- on #. where O is the large order symbol: and that the crack opening displacement be
-‘. . nowhere negative. i.c..
% —uy20 on ==, (17)
- forO<r<R. ' .
: We postpone for the moment a discussion of how the test problem and two applica- )
tions were arrived at together with their solutions and merely exhibit the latter at this ,-':'.'-}J
. point. For all three problems the complete solutions admit 10 representation by finite Y
- sums of eigenfunctions for the crack. viz., N
G
-‘ P ‘._‘)/2[ 0 '] 0‘ a'"-'.-
. o,= c,r 6-n)cos(n=2)s +(n+(=)2)cos(n+2)=|. 2
X o= i Y t,r"’"”’[(n+2) oos(n—2)£—(n+(—)"2) cos(n+2)£*. : =
5 kVrR n=12.... 2 2]
‘ ; Te= L4 p c,,r“'""’[(n-Z) sin(n—2)£-(n+(—)'2) sin(n+2)£‘.
‘:-' km a=l2. ... 2 24 .__;_.'\
: - (8) g
4 -LE v
WEUWKVR b
N c ¢ 6
. m _(h-1/2 " o
N x ¥ _;,q. 1%, [(4-n)cos(n—2)5 +(n+(-) 2)oos(n+2)i]. ;‘“\\'
n=1.2.... [ S
p T r
4 T VR S
. el
*- € . . o
. x ¥ —'r""’”[(n-ﬁ»l) sm(n—2)£ —(n+(-)"2) sm(n+2)! . L
¢ n 2 2 O
" ne=1.2.... N
j on A. For each problem respectively, the solutions have k as previously ((15). Table 1) G o
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AN Table 2. Coefficients in the solutions for the applications e
. A
~ Coefficient Application 1 Apphcation 2 ': T
o 0 1 .

r Ces -1.843.509 —1.492.448 s

- 1y eq 0 7.845.459 RO
e 10(9 - 4/2)/49 -10 N
-~ 1y “ce 0 1.251.077 o N
e rca -2010+v2)7 0 N
Nl ricy A11+6/2)/49 9 b
. A
-y - 8]

while the only nontrivial coefficients in the above are: for the test problem,
[ S Td 1 H (19)

and for the two applications, those ¢, # 0 in Table 2.

The solutions in (18). (19). Table 2 may be verified directly. Substituting the forms in
(18) into (10), (11) establishes that the field equations are complied with, and inspection of
(18) shows that the crack flank and symmetry conditions (12), (13) are met. Evaluating o,,
1,4 of (18) on r= R_ using (19), Table 2, further shows that the boundary conditions (14),
o (15). Table 1 are fulfilled. Finally, checking the displacements in (18) under (19) or Table

2
LA
*

\
‘.’-'L'l

i 2 reveals that the regularity requirements (16), (17) are satisfied. :j
> In applying the local fracture procedures to the three problems we begin by assuming _
] that their numerical treatments have been refined to the extent that the exact answers are - o
v recovered 10 all intensive purposes. i.e. §, = o,, etc. This is the ultimate of situations from ‘_-'.:-_',
A an analysis point of view and allows us to focus on whatever errors are introduced by the sl
- procedures alone. o
F. Invoking this assumption we next test our local fitting methods before applying them, a Ay
s precaution commonly undertaken in practice. Using the local fits for the stress intensity SR
" factor in (3). (4) with » = 1 /4 on (18) when (19) holds yields, for both methods,
-j = 4P / 2n
:: Py K - —k_’ T . (20)
‘ For comparison. taking the defining limit of (2) in (18), (19) gives
4P (2= .
% K=TVx- (21) 2
Hence the local fitting values of X, are exact and the performance of the two methods (3), :-‘“.‘_..:i
- (4) on the test problem is perfect.
In order to calibrate our local fracture criteria we need to determine the Joad to fracture R
in our standardizing problem. We do this by regarding fracture as occurring when the s
stress intensity factor takes on a limiting value of K, the fracture toughness for the plate. i
.- It follows from (21) that the critical load in the calibration problem, 2., is X
.4 '-.. p]
:" kK 3 R :'.‘:“
:: 0 F= 3 v 2 - (22) '-_.:::.
2 Thus increasing P to P, and evaluting the stress in (5), the strain measure of (6) *, the :’:
L * For this derivation we note that straightforward manipulation leads to P
- S . . ,‘--"ﬁ[(z-.-(—)'z)eos(n-z)fqu-z)m(.-e)!] A
>, > kYR hai3 2 . 2 ":‘(:
2“ as the normal sirain in the y-direction 10 be calculated at the set of points in (6) et seq.. and thereafier averaged ';':?.
) 10 produce ¢,. W
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crack opening angle (COA) of (7). and the crack opening displacement (COD) of (8). -_‘:
using (18). (19) gives, respectively, AN
g (18).( )81”, P « y y 1
a‘lr-r‘,- '; - _r— = 0. on 0‘0, _\';."’ 3
k ’oR '277' .,\‘.‘-'g'u‘
[ yenlp RN
4Pk KK R
_— =, SN
kprnR  py2mn (23) pRRAY
6P k]¢ S eh
a=2tan"'——— =2 1an"! ‘e =a,, > -
pkyroR 2u,27r, A

ey

‘12P\/7; 31\‘/— -5,

wherein » has been set t0 1/4 and &' = 0.303,299.

With our local fitting methods tested and local fracture criterion calibrated we can
apply them to the two applications. Introducing (18), together with the coefficients of
Table 2, into (3). (4). (5), (6). (7) and (8) with » = 1/4 and when P = P_of (22). with k
therein now taking on the respective values in Table 1, furnishes the results displayed in
Table 3. As opposed to normal engineering practice. we can also determine the corre-
sponding exact answers for the stress intensity factors in our “applications™ from (2). (18)
and Table 2, and thereby check the values of X; when P = P_. These last results are also

included in Table 3.
Table 3. Co:nparisqn of procedure outcomes with actual results
Acuvity Application } Application 2
K, determination
4P
Stress fit K= - T K,=0
Displacement fit R-FVs R0
Exact answer Ky=0 K- .‘T’ X
Fracture prediction
Imj stress “l'-r.- .: .Olvur.- 0
Local strain = (=0
COA se=a as(
cop =38 $=0
Exact answer PP ~K =0 PelP K=K,
Several comments on the results in Table 3 are in order. For the first application. the !W-“
° stress intensity factor in reality is zero irrespective of load level P 5o that the stress right at > s
the crack tip is also always zero and fracture there is not a possibility (at least not prior to ._;},-:-f-:
fracture elsewhere): the local fitting procedures on the other hand estimate X, as being DG
dependent on P and consequently, when this load is sufficiently large (P = P, in fact). all '\-‘\4‘_%
[ L

the local fracture criteria predict fracture at the crack tip. Hence the procedures consid-
ered give rise to conservative but gross errors in Application 1. For the second application.
the stress intensity factor is not zero and increases lincarly with load so that there is
indeed a load level a1 which fracture occurs: the local fitting procedures in contrast give
no K, whatsover, independent of the value of P, and companion predictions of no
fracture for any load. Hence the procedures give rise to nonconservative gross €rrors in
Application 2. In all the results in Table 3 represent a clear demonstration of the potential
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unrealiability of the fracture procedures of Section 2 - we look for means of controlling
such unreliability nexi.

4. Some altemnatives

Here we start by examining the nature of the breakdown of the two local fitting methods
used to estimate K. In the light of this appraisal we review other local fitting methods and
advance suggestions for improved methods of extracting stress intensity factors. Finally
we discuss what remedial action can be taken for the local fracture criteria.

The reasons underlying the failure of the K, estimation via local fitting in the preceding
section are as follows. First, the fit must be made away from the crack tip with r,» 0,
since the stresses can be singular and thus not fittable at r, = 0 while the displacements
are zero there leaving nothing to fit. Second and as a consequence, other eigenfunctions
for the crack that are not being fitted can participate causing incorrect answers. Indeed
this is the effect that the applications in Section 3 were constructed to produce. That is,
symmetric eigenfunctions for the crack other than the singular one being fitted were added
5o as 1o generate the erroneous K, estimates of Table 3, then whatever stresses the
combination so devised realized on the circular boundary were taken as the prescribed
stresses there. *

At first glance it might appear a simple matter to design a local fitting method which
does not succomb to such contrivances. Perhaps the simplest candidate stategy to this end
is 1o move the point fitted closer to the crack tip; such an approach however fails if r, in
the counter applications is then adjusted 10 coincide with the new point (which it can be).
A more sophisticated possibility is the procedure in which V2nro, on 8 =0 is plotied as a
function of r, a straight line fitted to the data, then the line extrapolated to r=0 to
estimate K;. This type of extrapolation technique in effect matches the first and third
eigenfunctions for the crack and would appear to enjoy some popularity in present day
practice. There are a number of ways in which the details of this and like extrapolation
methods may be implemented with varying results, but typically such an approach does
meet with more success on the given applications than that reported in Table 3. In fact. on
knowing the answers, it is possible to adjust the technique to recover the correct results
exactly. For such a fine tuned method though, it is then possible to devise a further new
application on which it does not work by superimposing even more eigenfunctions. By
way of illustration of this sort of more extensive counter gpplication, consider Fig. 4. ** In
Fig. 4. V2nro,/K on 8 = 0 is given as a function of r/R on a set of 17 points; here X is a
nondimensionalizing, but otherwise arbitrary, constant. A least squares, straight line
through these data points passes through the origin, yielding K, = 0. In actuality. K, = X.
illustrating the unrealiability of this approach. Further, gathering more dataon 1/9< /R
< 1 and maiching does not improve the incorrect estimate of X;. Furthermore. similarly
erroneous results can occur when using the displacement counterpart - indeed, there is a
counter application which has exactly the same data as that depicted in Fig. 4 but with
“V2uro,/K on 6 =0" there exchanged for “~ \/n/2r pu,/K(1~») on §=12" thus
producing K, = 0 despite the fact that K, = K. * And this is the situation that prevails in
general. That is, irrespective of how apparently refined a local fitting method is and what
it fits, once its specifics have been decided on it is then always possible 10 generate an
example on which it proves to be comprehensively inadequate. The reason for this is that

* ln this process the choice of » =1 /4 is simply made to facilitate the construction and not of any significance
in itself

*¢ See Sinclair [16) for details of this example.

* See [16] for dewails of thus second example and others.
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Figure 4. Product of stress ahead of the crack times the square-root of distance from the crack in a more
extensive counter application.
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any local fitting procedure must match a finite number of quantities on a finite set of
points and thereby can only fit a finite number of eigenfunctions; thus any local fitting
procedure leaves an infinity of eigenfunctions unfitted whose participation factors can be
adjusted to ensure its downfall.

A key question that arises at this point therefore is who has the final say. the analyst
making adjustments to his local fitting method so that it does produce good results or the
rascal generating the problems on which the given method does not work. Unfortunately
in practice the latter always has the option of going last. This is because in practice we
must ultimately stop checking our procedure on test problems and apply it. Then. since
applications are problems for which we do not know the answers, we cannot tell with
certainty how well our procedure really works, and as a result we have to tolerate the
possibility of it giving erroneous estimates, maybe even grossly erroneous estimates.

Logically one only needs the possibility of such results in an application 10 establish
that a method is unreliabl:. In practice, however, one can perhaps rationalize still using
the method if one can 1ssign a sufficiently low probability to the occurrence of the
disastrous example - the counter application being pathological to a degree. Certainly the
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counter applications provided in Section 3 do not appeal as physical problems, being -
constructed more towards dramatically underscoring how much in error the selected local R
fitting methods and fracture criteria could be. Even so, the two particular counter PN
| applications are one of an infinity of pairs that could be devised to ensure that the P
. methods in (3). (4) give the same completely incorrect estimates as in Table 3. Moreover f-'.:-;.:-:
: there are other such sets of pairs that give rise to estimates that are more subtly in error -}_\,:}
» than those of Table 3 but are nonetheless significantly inaccurate. And such is the case for =

any local fitting method. no matter how apparently refined - one can alway< construct an
indefinitely large number of applications on which it fails. It therefore appears unhikely
that the probability of encountering a problem application in engineering can safely be
taken as being negligible.

More specifically in this regard, consider the following limited simulation of perfor-
mance for the simple stress-fitting method of (3) on two problems that could reasonably
be viewed as being of practical consequence. In accordance with normal practice, we begin
our simulation by testing our method. As a test problem we take the classical Gnffith
geometry of a center-cracked infinite plate and consider the case when the crack is opened
by a uniform far-field tension. Then we adjust r, $0 as to ensure acceptabie results which
here we take as being up to 5% in error. Picking 7, = a/14, a being the semi-crack length.
as a moderately close point at which to obtain accurate stress values by either numenical

- e ¥ ¥ ¥F < £ 7

1 or experimental methods, we find on assuming negligible errors in the stress determination

- that -

:. K, =105k, (24) b

. wherein K is the exact value. Equation (24) represents a satisfactory and encouraging - O

. result. Now as an “application” we take the Griffith crack opened by a uniform pressure. R

i Applying (3) with r, = a/14 as before then yields P

B YAS

) K,=067K,. (23) AN

- A Y

~ Equation (25) represents an unsatisfactory nonconservative result, showing that the -j.::.:{.

‘_: probability of meeting a problem application in practice for this simple method is not '-:g-:\’-:

" zero. * RIS

Of course, as remarked earlier, it is possible 1o adapt ones local fitting method 0 SO,

overcome the difficulty experienced in this last elementary example. However, while e

t: increasing ones efforts considerably when applying local fitting procedures by performing SRS

. the matching in a variety of ways at a number of Jocations does tend to increase the -;j-".:f_

: chances of detecting spurious results, it does not appear reasonable at this time to assume ,‘:-_-ﬁ'»',
that any such combination of techniques reduces the probability of unacceptably incorrect ',-_'.j—':-'

results to a negligible level in all situations of practical interest. Continuing to use Jocal
fitting methods 10 determine stress intensity factors in engineering would thus seem 10 be
unjustified and unwise. This is especially so since there are available quite different
approaches which are free from the potential of furnishing useless results that local fitting
methods have, and which can be implemented with no more effort.

One of the best of such alternative approaches employs path independent integrals,
since the integral operators involved are essentially orthogonal to all of the eigenfunctions ,
for the crack except the singular one. That is, contributions to these integrals from the SoRioa S

nonsingular eigenfunctions can be shown 10 be zero analytically **, so that these terms are o
DS
* See Eftis et al. {17) for further discussion of the effects of the presence of stresses which are independent of 7, \\.‘_.-.‘::‘ -
like the additional hydrostatic pressure here. See also Sinclair and Mullan (18] for s further example, concerning L s
the standard configuration of s single edge notch under tension, wherein local fitting methods have been NS
responsible for less than satisfactory results. ’ i
** Sec eg. [19) pp. 1002, 100 for a prool. S
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in essence eliminated rather than merely hoped-to-be-small as they are to varying degrees AN

in local fitting methods. Two such integrals are the J integral of Eshelby [20]. Rice (21}
and Sanders’ integral [22]: both of these enjoy physical interpretation as the energy release
rate at the crack tip in the elastic instance. Other such integrals are those of Carpenter [23)
and of Sinclair et al. [19]: these last lack the appeal of a direct physical interpretation but
can be expected to perform somewhat better numerically since they inwolve the calculation
of single terms rather than products. * In addition there are also methods. like that
developed by Parks [24]. which effectively employ a path independent integral and
: consequently realize similar performance.

. Tuming to fracture criteria based on local stresses and strains, we find the situation is
notimproved in terms of their likelihood of furnishing correct information. Again one can
conceive of more complex criteria than the simple stress criterion and the average strain
criterion specifically examined here; for example, the condition of Belie and Reddy [9)
which checks the maximum strain in all the elements near the crack tip to decide if
fracture occurs there. Again too one can construct counter applications on which such
approaches fail, for example, Application 2 actually has ¢, =0 at each centroid of the
elements sharing the crack-tip node (Fig. 2). so that Belie and Reddy’s criterion applied to
these elements would predict no fracture despite the fact that crack-tip fracture occurs in
this application when the load is sufficiently large. Simply put, these methods cannot
reliably infer what the physical stresses and strains are near the crack tip given an
underlying theory which can lead to infinite stresses and strains at the crack tip in
response 1o infinitesimal loads. Good alternatives here await the development of stress
and strain fields for cracks whose physical relevance is unquestionable. In the meantime,
the mathematically singular stress and strain fields. while not a physical reality, are a
reality of analysis which must be faced. even in the elasto-plastic instance. ** At this point
the accepted way of doing this, at least in the elastic situation, is by means of the
associated energy release rate, whence the stress intensity factor. Accordingly local
stress /strain fracture criteria must be interpreted as trying to estimate stress intensity
. factors, whether wittingly or otherwise. It follows that such practices are every bit as
’ subject to the uncertainties of explicit estimation via local fitting methods discussed
previously. and we recommend that alternatives, such as those suggested earlier, be used in
their stead.

The last two local fracture criteria could both bé regarded as using measures of the
loaded crack profile and thereby avoiding the singular stresses and strains to some extent.
Nonetheless their performance in the elastic regime is impaired by the same shortcoming
that all of the preceding local procedures have, that of not being able to reliably assign
what proportion of their totals are due to benign nonsingular eigenfunctions and accord-
ingly what part is not. As a result they cannot reliably estimate the accepted governing
parameter, the stress intensity factor. ' Furthermore. being fits of a single parameter at a
single point in effect, they cannot even be readily supplemented to reduce the chances of
extraneous results. In the light of this inadéquacy of both measures in treating elastic
response it would not appear reasonable 10 entertain with any great confidence their use
to treat fracture when significant plastic flow is present, the end to which they were
originally proposed. Especially since. physically, elastic response must precede plastic
irrespective of how much plastic flow ultimately accumulates. In the absence of a sure
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® This has in reality been found to be the case in limited numerical experiments undertaken to date. refer [18.19).
' ** See. for example. Hutchinson [25] for an analysis demonsirating the persisience of tingular behavior within
' the deformation theory of plasticity.

' * In passing we observe that. in view of the uncertainty in the elastic situation of COD's relationship to K,.
i hence to J. sttempts to find a truly general simple relauon between 8 and J in elasto-plastic insiances would
' seem 10 be futile.
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connection to a physically reasoned explanation of fracture then, these measures remain
inherently unreliable and others are 10 be preferred. The best of these at this time would
seem 10 be the stress intensity factor itself and the J integral. both of which at least have
the attribute of being clearly related to the energy release rate in the special case of pure
elastic response.

8. Concluding remarks

Fracture mechanics today continues to be faced with the task of making physically
sensible interpretations of the nonphysical singular fields which exist at crack tips, be the
situation purely elastic or elasto-plastic. A prerequisite to success therefore is an accurate
assessment of the degree to which these singular fields are present. The procedures
considered here ~ local fitting methods to estimate stress intensity factors and local
fracture criteria to predict fracture - fail to do this in a way which can be shown 1o be
reliable.

The basic reasons for the potential unreliability of the local procedures are as follows.
First, all the local procedures must consider quantities near but not at the crack tip.
Second. at such stations fields other than the key singular ones can contribute. Third. the
extent of such participation cannot be either completely controlled or fully accounted for.
As a consequence, for any given local procedure there exist problems on which it produces
unacceptably erroneous results.

The question then arises as to how likely is one to come upon such problem problems
in practice: the answer unfortunately is not obvious. For local procedures based on a
single parameter such as one point stress or displacement matching for K. a critical stress
at a single station, COA, and COD. the likelihood would appear to be quite high. For
local procedures employing a multiplicity of quantities such as some of the more extensive
matching techniques 10 estimate stress intensity factors, the chances would seem to be
reduced. However, for the best of these approaches in this regard, the probability of
invalid results cannot be shown to be zero. Consequently in real applications wherein the
answers are not known, one cannot be sure that such procedures do in fact find them.
That is not to say that local procedures may not work on occasions, and even quite well; it
is just 10 say we cannot be certain they do. Accordingly local procedures must be viewed
as being unreliable at this time.
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Résumé

On examine diverses pratiques courantes en Mécanique de Rupture qui {ont usage de grandeurs paramétnques
au voisinage de I'extrémuté d'une fissure pour urer des conclusions sur ce qui se passe 2 celte extrémié méme
Ces grandeurs sont notamment: les valeurs de la contrainte et du déplacement correspondant & un facteur
d'iniensité de contrainte estimé, 1'enregistrement des contraintes et déplacements locaux en vue de prédire la
rupture, et I'angle et le déplacement d’ouverture d'une fissure en tant que critéres de rupture.

En considérant une paire d'applcations divergentes. on démontre que toutes ces procédures nisquent

d’entrainer des conclusions complétement incorrectes.
Une analyse des causes de ces inadéquations montre que ces procédures peuvent se révéler peu fiables en

général, et conduit & des suggestions de procédures ahiernauves.
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INTRODUCTION

The inherent unreliability of local fitting methods for determining stress intensity
factors is established in [1, 2). In [1, 2), examples of this shortcoming are limited
to very simple fitting procedures, although the general nature of source of the
difficulty is discussed: the intent in this brief supplementary report is to furnish the
details of some more extensive demonstrations. We begin with a precise statement
of four chosen problems, then exhibit their complete closed-form solutions®. Using
these fcqrms we next extract the exact values of the corresponding stress intensity
factors and compare the results with those obtained by fitting stresses and
displacements using several eigenfunctions. The report closes with 8 brief discussion
of some of the implications of the examples regarding even more involved local
fitting procedures.

FORMULATION OF PROBLEMS

The plane region of concern in all four problems is the cracked circuiar disk of
radius R = 9 (Fig. 1. To describe this geometry, we take rectangular cartesian
coordinates {(x, y) with origin at the crack-tip and x-axis aligned with the crack face,
together with cylindrical polar coordinates (r, 6) related to {x, y) by

xzrcos f,ysrsin(0Sr<co, ~M<l ST (1

Since excitation is restricted to that which is symmetric about the x-axis, we can
confine attention to the upper half of the disk, R, where

R=i{lr,#)] 0Sr<R 0S8 <) (2)

We seek then, the stresses 0. Og T.g and displacements u, ug 8s sufficiently
smooth functions of r, 8 throughout R, satisfying the following requirements. The
stress equations of equilibrium in the absence of body forces,

.on the interests of brewity, no miformation as 1o how these particular problems were constructed is given: In
this regard, see [ 1, 2] for the basic approach
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(3)

on R. The plain strain stress-displacement relations for a homogeneous and isotropic,
linear, elastic material with shear modulus x and Poission’s ratio ¥,

2 “ )aur (1 dug ur)
TR S TR
P 13up u ou,
s — (1) - « ). y=", 4
v = TtV =t ey (@

on R The stress-free crack-face conditions and the symmetry conditions ahead of the
crack,

aocrrO-OwhenO-‘rr.

ug =0, 7 5 =0 when ¢ =0, , (5)
for O<r<R. The stress boundary conditions on the outer circular boundary which
prescribe

K & ((2n-1)0) . R

o = a8 cos when r = R,

J 307517 ,‘Z n

(2n-1)8

& (e "
'rﬂ'mﬁ;bnsm 2 when r = R,

for 0<f<7r. where K is a constant (K>0) and a.b (n=0 1.8) are given in Table 1
for the respective problems (1-4). By way of illustration, Figs.2 display sketches of
these stress distributions for Problem 1 (Figs. 2a and 2b share the same scale). And
finally the regu/arity requirements which insist that the dispiacements be integrable at
the crack tip end that there is no overiapping of the crack flanks,
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u, = Ol1) ug, = O(1) as 10, (7)
for 0<4<7r, and
ug <€ 0 when 8 = 71, (8)
for O<rsR.
TABLE 1: BOUNDARY CONDITION CONSTANTS

Constant Problem 1 Problem 2 Problem 3 Problem 4
ao(=bo) 420 420 14,700 ~420
L -569 919 0 5067
L 2,815 14,215 217,219 14,250
e, 5.962 -43,222 1,387,200 -41,781
8, -9.675 -121,275 -9,199,158 ~121,275%
8, -20,115 97,065 9,782,400 97,065
3, 45,525 382,725 14,366,268 382,725
.7(. - b,) -19,683 216,513 -30,083,120 216,513
‘e(' - be) 0 . 0 13,544,091 0
b, -213 779 0 1,689
b2 8,585 42,785 651,657 42,750
I:’3 -30,802 216,606 -6,936,000 215,661
b, 33,975 339,975 22,333,578 339,875
bs 11,367 -837 -23,157,120 ~-837
b6 «42,5625 -382,725 -9,441,144 -382,725

PROBLEM SOLUTIONS

For all four problems the compl/ete solutions can be

eigenfunctions for the crack. Explicitly we have

E.c" 5
n

K 1 1 3
o, tm 2 ¢ [(5 - n) cosin - 5)0 +(n - -5) cosin + 50],

c
n

K & r"( 3) ( 1)0 1 3
g 'm; c[ﬂ Ecosn"z- (n-E)cos(n*E)GJ,

K &er” 1 1 ‘ 3
1.6 .fzﬂ_r. Z —c—(n - 5)[ sin(n -~ 5)0 - sin{n + -2-)0].

expressed as finite sums of

(9)
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(a, . . "..
) u = - (— -n-4 n - —)6 +{n - =) cosin + —)0 oS
, ‘ Z c(2n~1)[ ;" V) cos( { ) 1, N
:Z:"'.:I
3 i+ L = ay) sinin - 8 - (0 - ) sinin + 20 ey
; = —f— n+ - -4y sinln - =} - (n - <) sinln + )0, -
! 27 ; c2nen) 2 2 2 2 R
» i}
j: where ¢, ¢ (n=0,1,....6) are constants having values for the respective problems as "
. given in Table 2. That (9) and Table 2 constitute the solutions to the four problems :‘-\,:":
:1 posed earlier can be verified directly. That is, the forms in (9) for each n e
individually can be shown to satisfy the governing field equations (3), (4) by R
.. substitution and the crack-face and symmetry conditions (5) by inspection, while the R
N e
N combination realized on the boundary r=R=9 using the values in Table 2 can, after ;:-j:f-j
N come manipualtion, be shown to comply with the prescribed stresses there (6), Table '"'-"_::]
' 1. In addition, inspection of (9) shows that the displacements are bounded ar r=0, i.e. NN
% (7) is satisfied, and combining the forms in (9) using Table 2 gives positive crack- ,';'_’.f{;
O opening displacements, viz., (8) is met. ::::Z:::
.: :::::;_
TABLE 2. SOLUTION CONSTANTS 2
: ' 3
- .__:.).
$ Constant Problem 1 Problem 2 Problem 3 Problem 4 s
e vt
s Cf:;'
c 1,890 1,890 595,350 -1,890 Lo
\\ :\'.-_':.
s € 945 945 0 0
N c =<1 -744 2,232 0 5,067 L
~ c, 950 4,750 651,657 4,750 - =
L <, ~230 1.610 -462,400 1.610 RN
j c, 25 225 121,615 225 —
- cg -1 11 -13,760 1 R
- Ce o 0 563 0 S
’ el
J Nt
)} NN
: STRESS INTENSITY FACTORS: EXACT AND ESTIMATED VALUES !"‘3
- T
S Defining the Mode | stress intensity factor, Kl, by o
L R,
: hm AN
, Kl b t=>0 2"' ﬂa l . (10) ’\’;r.
=0 A
) on R, we have from (9), T
\"-:"
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2c (11)
K, = K(—c'!).

Thus from Table 2 we obtain the exact vaiues of KI recorded in Table 3 for each of

the problems.

As out local stress-fitting method we match the transverse stress, og. ©ON the line
of symmetry ahead of the crack (§=0) at the five radial stations r=1, 3, 4, 7, 9. To
do this we take the five eigenfunctions for the crack given by (9) with n=0, 1, 3/2, 2,
5/2 therein®™. Then, in view of definition (10), we must solve the 5x5 system of

equations

- 3/2 2 85/2
Ig * dlr + dzr + d3r + dar 'pm'”ﬂlg.o'

r=12325 78,

{12

where 'K' is our stress-fitting estimate of the stress intensity factor and d_ (n=1-4) are

estimated participation factors for the other eigenfuntions.

As our /ocal displacement-fitting method we match the crack opening displacement,
-ug. on the crack flank {(#=77) at the five radial stations r =1, 3, 5, 7, 8. To do this
we take the five eigenfunctions for the crack given by (9) with ns0, 1, 2, 3, 4",
Then it follows from {(10) and the forms in (9) for n=0 that we must treat the 5x5

system

2 o d ‘2, 3 /4 ’I‘r?
«+dr«edr© «dr d 2 ———J—u
Kedyred, 3 TG TN T Y0l g,

r=135 78,

(13)

where Kl is our displacement-fitting estimate of Kl and dn' {n = 1-4) are estimated
participation factors for the other eigenfunctions.

*The sigenfunction associsted with n=1/2 is not as given in (9) since & 4%0 on f=7r when n=1/2 1n (9).
The eigenfunction for this eigenvalue requires individusl anaiysis snd eventuslly simply reduces to @ equal to o
constant as the only nonzero stress in the plane. As a result o o=0D on 820 for this case so that in effect
this exgenfuntion i1s also being matched by our stress-fitting procelure.

."Hore the actusl sigenfunction sssocisted with n = 1/2 has ug=0D on = 97 and so contributes nothing
10 8 crack opening displacement fit (just as the corresponding stréss does not aftect » stress til)l.  Further.
sithough (9! does give the correct eigenfunctions for n=3/2, 5/2, 7/2, 9/2, none of these terms add to vg
on §=77. Hence in etfect here we sre fiting the first ten egenfunctions.
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12 We now apply our local stress fitting method to Probiem 1. From Problem 1, from
'l

< (9), Table 2, we have

”,

4 5. 2¢

) e ogl = K — "

' 0‘0 n=s c
.f\

2

™ 2 3
Ny 248 r 4 5,2 r 1
i r + 6r + 5r° + —)]. 14

315 5 (14)

P Henze system (12) becomes

' —

-5 K+ dyr dyr gy 9= K

N -
» K +3d, + 330, + 94, + 939,
s K ¢+ 5d, + 5/5d, + 250, + 2550, = 5K, (15)
d‘" v
A K +7d, + 2d7a, + 430, + 49f7a, = K

g =

~ K ¢ od, ¢+ 27d2 + 81:!3 + 243d, = 9K
*_- Solving (15) yields —K‘ = 0, d, = K. d2 = d3 *d, * 0; the first of these is the estimate
::‘_'_ entered in Table 3.
-
' Similarly we apply our local displacement-fitting method to Problem 2, then our
stress-fitting and displacement-fitting methods in turn to Problems 3 and 4. The
- resulting estimates are entered in Table 3.

o,

i

LS

.

: TABLE 3: STRESS INTENSITY VALUES, Kl

‘."
i Problem  Basis of (ocal Local fitting Actual exact
5 fitting method estimate of K vaiue of K

.):
. 1 Stress 0 K
" 2 Displacement 0 K

.‘

e 3 Stress K 0

K 4 Displacement K 0
2%
' : Table 3 shows that it is possible to devise problems which ensure the
.

comprehensive failure of the two local fitting methods put forward here.
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Several comments are in order at this point. Clearly, given know/edge of the exact
so/ution as here, it is possible to modify either of the two local fitting methods so
that they do work. In practice, however, one does not know the answer in an actual
application, so that one does not have the option of fixing up a local fitting
approach but can only see if things “look right”. In this connection, consider the
plotJZnT o,5(6=0) for Problem 1, which as it happens coincides with -pugl8 = m2m I’
! 2(1 -~ ¥) for Problem 2 (Fig. 3). Certainly here things "look right”. Indeed one could
even imagine obtaining results from a sequence of finite element grids at the points
3,5 7,9 then at 2, 3, 4, 5, 6, 7, B, 9, and ultimately at 3/2, 2, 5/2, 7/2, 4, 9/2, 5,
12, 6, 13/2, 7, 15/2, 8, 17/2, 9, and still concluding K = 0 when, in actuality, K =
K. And it is possible to construct a problem which has both its stress fit and its
displacement fit do this. In sum, once any local fitting procedure has been tested
and decided upon, it is then possible to set up an “application” on which the
procedure gives completely incorrect results. Finally we remark that while these
given p'r‘oblems are not the easiest to solve without hindsight using other methods,
they are by no means impossible. In fact, using the superposition method of [3] in
conjunction with the path independent integrals of [4] we would judge that
reasonable results could be obtained in return for some computational effort. More
precisely, for Problem 1 for instance, we estimate from the participation of the
regular eigenfunctions in Table 2 relative to that in trial problems in [4], that K'
could be found to within 10% using a uniform grid comprised of around 1000
constant-strain triangle elements, to within 1% using grids with up to 5000 such
elements and extrapolation. Moreover, these sanalyses could be performed in a
completely systematic way without drawing on a knowledge of the exact answer at
all.
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ON THE CAPRICIOUS NATURE OF ELASTIC SINGULARITIES

AE Chsmbers and GB Sinclar

Department of Mechanical Engineering. Camegie-Mellon'University
Pittsburgh, PA 15213

Classica! elastic analysis of re-entrant corners or sharp notches in plates reveals the
presence of stress singularities at the notch vertices As 8 result. one must make
inferences concerning the structural integrity of components containing such features when
the stresses become infinite in response to mnfinitesimal loads, clearly not a simple task. At
this time the accepted methodology. for the case of cracks in brittle materials snyway, is
to take the coefficient of the singularity ~ the stress intensity factor — as the parameter

governing failure.  This choice represents the basic tenet of knear elastic fracture
mechanics today.

The usua! approach taken in the elastic asymptotic snalysis of re-entrant corners is to
examine what stress fields. including singular fields. are possible for a given local geometry

‘Here we adopt an inverse approach of prescribing 8 field with bounded but nontrivial

stresses ot the vertex then ssking what problem can such fields occur in.  In this way we
construct 8 closed form solution with finite stresses for 8 loaded plate in the shape of »
pac-man with a specific sngle between its stress-free flanks. This configuration then has
s stress concentration factor but no stress intensity factor. By maintaining the same
loadng on the outer edges of the pac-man yet perturbing the shape of the fianks about
their original positions, problems which have participsting singularities are generated these
lsst do not readily sdmit to the determinstion of close form solutions but are amensble to
numerica! snalysis of demonstrably high resolution using appropriste path independent
integrals snd a superposition procedure. Since an identical loading acts in all problems and
only very minor changes in geometry occur, it is to be expected that the physics!
responses would be quite similar. Thus the stress intensity factor's on-off-on-agsin type

behavior makes it ditficult to envisage how it could be the controling damage persmeter n

this sequence of problems These resuits, and other like them (eg. references!. sugges!

the need for a reconsiderstion of the role of the stress intensity factor in fractue

mechanics.
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THE ELASTIC ANALYSIS OF THREE RE-ENTRANT CORNERS
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THE ELASTIC ANALYSIS OF THREE RE-ENTRANT CORNERS
INTRODUCTION

Since many engineering structures sre designed with what are known as re-entrant
corners or notches (Figure 1), it is important to understand the mechanical behavior of
these geometries upon loading Elastic analysis of these notches can result in stress fields
near the notch tip that are singular in nature [1]). Physically, these singularities do not
make any sense. Unbounded stresses imply failure under even an infinitesimal load, which
is inconsistent with everyday experience. For snalytical purposes, it is desirable to
determine the participation of these singular fields in comparison to the regular fields

present

These singular stress fields are eigenfunctions of the equilibrium problem posed upon
loading re-entrant configurations. In general, most regular eigenfunctions stresses acting
slong the bisector of the re-entrant corner are equal to zero, leaving only the singular
fields to dictate the mechanical behavior of the notch (Figure 1) it is these stress fislds
acting at the notch tip that are asnalytically unbounded. It is also these stress fields that
require making some sense of their significance in the problem under investigation In
order to gain some understanding as to how the singularity plays a role in the overall
stress field one could ask the question, is there a re-entrant geometry which has non-
zero and finite stresses acting at the notch tip? Such a configuration would have no
singularity participation, ie. a8 stress intensity factor of zero. The answer to this question is,
in fact, yes. Upon finding a re—entrant corner that has only regular stress fields, the
objective of the present work is to track the variations of the stress intensity factor with
slight perturbations of geometry. A re-entrant corner under a particular loading that has a
stress intensity factor of zero yet nontrivial stresses at the vertex will be determined The

sngle near the vertex of the corner will be decreased and then increased slightly. The
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effects of these geometric changes will be studied through the behavior of the stress

intensity factor.

The first section presents the formulation of the problem under investigation. The
exact geometries to be examined are introduced. The generalized stress intensity factor is
defiﬁed. The second section presents the numerical analysis. A finite element gpproach is
taken to determine the stress and displacement fields. A path-independent integral is used
to calculate the stress intensity factor with the information produced from the finite

element analysis. Results will be presented and discussed in the final section.

PROBLEM FORMULATION

in order to study the effects of a stress singularity of a re—entrant corner, three
individual regions are snalyzed. The basic difference of the three regions is that the
material angle local to the notch tip is slightly perturbed from an initially symmetric
geometry. The planar region R has material angle, 24, (=0,1,2). In particular, ¢, =
128.727° . e, = 125.863 and &, = 131.863° . The choice of these particular values will
be explained later. Let (x,y] be cartesian coordinates that have origin at the notch vertex,
and the x-axis bisects the material angle there (Figure 2). Let (r,§) be polar coordinates in
the region where r?=x? yz snd § = arctan (y/x). The dimensions of the notch are as

follows: a8 = notch depth and h = half-height of notch.

The region, Ro, is defined as the region enciosed by basically two boundaries. The
first boundary, 31R°, is the boundary to which the prescribed tractions will be applied It

consists of three sides of a rectangle. The line segments that define it are:

y = th for -asxS 2h and x = 2h for -hSysh "

The second boundary, azRo, to enclose the region, Ro, is the two line segments given by

tane, = ty/x for -3Sx<0. 2

The region, R iy is defined in a similar manner. The local (x,y} ct.o-dinate system near
the vertex of the corner is slightly rotated about the global coordinates by sbout é§ = 3°.
The outer rectangular boundary, 61R‘ . on which the tractions sre spplied is left intact, as
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is the lower flank. The upper flank is rotated by approximately 2é and extended to y =

h/2, thus resulting in less solid material to support the applied loads in the original problem.

It is connected by a smooth curve to the point where the positive y-face boundary begins

: in the second quadrant at y = h. This is boundary 82R1'
.
,\
The perturbation of the upper flank for Problem i = 2 is similar to that in the first

: perturbed problem. However, the rotation of the local axes is in the opposite direction,
X resulting in more solid material than both Problems i = 0 and 1. This is region Rz' {The
s dotted lines in Figure 2 represent the upper flanks for Problems i = 1 and 2)
.
?' Formally, we seek the stresses, . %98 and T8 and the displacements, Ug and u.
; as funcjions of r and 6 in the region Ri, satisfying the following The stress field must

satisfy the two- dimensional stress equations of equilibrium in the region in the absence of
- body forces.
Cal
;
:l ad" + 1 afro . drr-UGo = o
- or r 08 r ‘
‘_: laﬂoa . afrg . ZTrg - 0’ (3)
. r 968 or r
‘ on R'. The stress—displacement relations for a homogeneous, isotropic, linear elastic plane
2 hold for the regions,
: o [, (1o, u)]
- " C, 2 gr r o6 r

2, 10u, wu ou
yet = c - __Q + L + —r ], 4)
. 766 1[ 2(r o8 r) 'ar] (
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on R, where y is the shear modulus, C, equals 1-2v for plane strain and 1-v for plane

stress, Cz equals 1-v for plane strain and 1 for plane stress, and v is Poisson's ratio

The notch flanks are stress—free which requires that

The remaining boundary conditions on 0 1F?| are prescribed tractions derived from the

following stresses:

-ao[ sin26 + ;— sin20o ]

o =
rr
0
. 8
I'4 = o L sin - — sin , 6)
08 0[ in26 . 2!9o ] (3]
0
Te = "’o[ cos26 - t':os29o ]

where % is arbitrary.  Finally, the regularity requirements involve the fact that the

displacements at the vertex of the notch must be finite,

u and ug = O(1) on Ri as r-0. (7)

More specifically, we want to use the stress and displacement fields found in the
problems (i = 0, 1 and 2) formulated above to find the generalized stress intensity factors
present There are two possible factors, one arising from any symmetric foading and one
arising from any antisymmetric loading in the problem. For the symmetric case, the stress
intensity factor is defined as:

_ Lim 1-X. -
Kl- 0" 2n ggg "t i on 6 =0 (8)
The subscript | represents mode | loading (symmetric opening mode). The value of xi is
the eigenvalue identified after Wiliams [1] that represents the only singular stress fieid
possible at the re—entrant corner under this symmetric mode. That is, Xi is the root of the

eigen—condition

sinZ)":xi = -xisin2.zi (O(Xi<1). 9

For the anti-symmetric case, the stress intensity factor is defined as:
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K = Lim 1-X, P

T oot 2n 7.0 r i on = 0, (10

where the subscript Il represents the mode Il loading (antisymmetric). The eigenvalue xl is

evaluated from the antisymmetric eigen—condition,

sinZXiai = Xi sinZai (0<Xi(1). (1

These eigenvalues produce eigenfunctions which are the only singular stress fields possible
for the particular notch geometry. As a resuit of the problem formulation, the

displacement fields derived are regular. That is, the fields near the notch tip behave as

1

ogg @d 1 g =O(r*i' ) and u and u, =O(r)‘i) on R as R-0. (12)

Some explanation of the traction boundary conditions found from (6} is now in order.
Recall, that the purpose of this study is to look at slight geometric perturbations of a
regular configuration. Therefore, Ro is taken to be the region in the nonsingular problem
under investigation. The approach taken is such that a particular material angle, ey is
sought that will produce a regular and non-zero stress field for an antisymmetric problem.

The following transcendental equation results:

tanZao = 21:0 (13

It is in solving this equation that ¢, is found to be approximately 128.7° . The remaining

0
two problems are then posed by simply changing the material angle by plus or minus about
three degrees. Note, also, there is now an exact solution for the nonsingular problem that
is independent of the radial coordinate, r. it is these regular stress fields that are used as

the traction conditions on the boundary 81Ri (i=0,1,2).

In conclusion, what we have are three problems where the applied tractions and the
boundary on which they are applied remain the same. The flanks change in geometry, but
remain stress free. An easy way to imagine it all, is that the region F(O is an ideal
geometry of a re-entrant corner that is to be fabricated (i=0). The first singular case
examined (i=1) is a result of machining just a little too much material away from the upper

flank. The second (i=2) follows from not machining quite enough material away from the
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flank. When the three configurations are loaded under the same conditions, what is the

result of these slight geometric changes?

ANALYSIS

The analysis of the problems requires two major steps. First, the stress fields in R. (i
= 0,1,2 } need to be determined. Secondly, as stated in the problem formulation section, a
method is then needed to determine the stress intensity factor of each problem for both

mode | and mode 1l loadings.

A finite element method is used to numerically determine the resuitant stress and
displacement fields of the three p'roblems." For each problem, three grids of different
sizes are used in the hopes of attaining better accuracy and gauging convergence. The
grid refinement is fairly systematic. The coarse grid for the nonsingular problem ( i=0 ) is
shown in Figure 3. The nonsingular stress fields defined in (6) are applied on the
rectangular boundary, leaving the notch flanks stress-free. Upon finite element analysis,
nodes along common & are of constant stress. (One drawback of the grid pattern chosen
is that near the notch vertex there is no refinement in the angular direction. Therefore,
convergence as r goes to zero is difficult to judge, though, divergeﬁce can be obvious)
The coarse grid for the first singular problem (i=1) is shown in Figure 4, while that for the
second singular problem is displayed in Figure 5. The dotted lines in Figures 4 and 5 are
the smooth curves that represent the flanks. Since the finite element code uses linear
slements, these curves are better approximated upon grid refinement For all three
problems, three grids were used in the stress analysis. The coarse grids have 68 elements
and 48 nodes. The medium grids have 264 elements and 159 nodes. The fine grids have

1040 elements and 573 nodes.

The second step of the analysis requires a method of determining the generalized
stress intensity factor from the stress and displacement fields generated from the finite
element analysis. The method employed, the H-integral [2], is from the family of path-

independent integrals. The major advantage of path-independent integrals is that the only

.Thc program used is PLANDJ, originally developed by JL. Swedlow. It is used on the VMS/VAX at the
Mechanical Engineering Department, Carnegie-Mellon University.
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errors accumulated are those from the numerical approximations present Another
advantage of these integrals is the fact that the symmetric and antisymmetric parts need
not be separated in the analysis. (For the argument supporting this statement, see
reference [3]) The path of integration is shown in Figures 3, 4 and 5. Notice that the
inside path is chosen so that the curvature of the notch flanks in the two singular
problems (i = 1 and 2) does not interfere with the independence of the integration path.
The H-integral program uses the second-order trapezoidal rule for the integration. The
nodal values along the path of integration are used as points of numerical integration. The
complementary stress fields and displacement fields used in the H-integral (see reference
[2]) are determined from the (r.f) coordinates of the nodes along the path. The actual
nodal displacements are read from the finite element output The stresses at the nodes are
determined from nodal averages of the surrounding elements of each node along the
integration path.
RESULTS

in presenting the results of this analysis, some sort of verification is required. One
common method of verification of the finite element method is to check convergence at
nodes common to all three grids used for each problem. In the nonsingular case,
convergence to the exact solution (B) is required. In the other two cases, convergence
within the three associated grids is desired. As stated earlier, since there is no grid
refinement in the angular direction, convergence near the origin is difficult to assess.
Divergence, on the other hand, is clear when present Therefore, the nodal stresses acting
slong the x-axis (6§=0) are plotted for all three problems. (Figure 6, 7, and 8)
Convergence to the exact solution in the nonsingular problem (i=0) is seen clearly (Figure 6).
The antisymmetry in the problem is observed in that ¢ 66 = 0 and T.0 is finite along the
x-axis. Convergence at r=0 for 7.6 is not obvious (though, as explained earlier, it is not

particularly expected. However, divergence is not noticed.

Comparing the expected singular probilems (i = 1 and 2), divergence at the origin is
clear. For the singular problem i=1 (Figure 7), o g ¥t = 0 is divergent, where the trend

of T g IS not obvious. This is consistent with what will be seen later, problem i = 1 has a
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mode | singularity and no mode . The results for o« 68 and .8 for problem i=2 (Figure 8)
are divergent at r=0. This is also consistent since both mode | and Il singularities are

present in the problem.

Another method of verification is the fact that where there is no singularity present,
H = K should be zero. The Hi—integral of the nonsingular problem oscillates about zero.
And 1s. in fact. numerically zero for our purposes. (The H"-integral cannot be determined

for the eigenvalue equal to 1.0, see reference [2])

For the nonsingular problem (i=0), the eigenvalues corresponding to both equations (9)
and (11) are simply equal to 1.0. Therefore, the stress and displacement fields are of the
order one. The mode | eigenvalue of the first singular problem (i=1) is x1‘ = 05818 this
is the only singular stress field in this problem. For the second singular problem (i=2),
however, singularities in both modes exist That is, )\2' = 05554 and )\2" = 0.9528 The

corresponding results of the H-integration are presented in Table 1.

Notice how the value of the dimensionless K‘ in problems i=1 and 2 are virtually equal
in magnitude but opposite in sign. This could have been expected from the beginning since
the original (nonsingular) material angle is perturbed about the same in both directions for
each of the singular problems (ie. e, = ao-é and e, = ¢°+6). Notice, also, that the value
of K, for problem i=2 is larger in magnitude than K, This is expected since the loading
used was derived from an antisymmetric problem. The antisymmetric singularity should then

be dominant
CONCLUDING REMARKS

in general, re-entrant corners produce stress fields which are singular as the notch
vertex is approached. However, a configuration can be found at a particular material angle
and loading that will produce all regular stress fieids. Slight perturbations in geometry
produce predictable behavior in the stress intensity factor. Since the applied loading in this
particular problem is based on an antisymmetric configuration, the mode ll singularity has a
larger participation factor than that of the mode | Perturbing the material angle in equal
magnitude but opposite direction, results in equal but opposite stress intensity factors for

mode 1.
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Table I. Dimensionless Stress Intensity Factors (K = K / (aovn 11')‘3 »

W T .. AN T

Problem/ 'y e K

Mode ' Coarse Medium Fine

Problem 0 X

Mode | 1.000 128.7° 0.000 0.000 0.000 !
) Problem 1 ’r
. Mode | 0582 1259° -0.066 -0.060 ~0.058 S
. Problem 2 ‘:f.
! Mode | 0555 131.9° 0.063 0.060 0.059 o
. Mode | 0953 131.8° 0.648 0610 0632 o
‘ e

R
A, = eigénvalue after Williams [1] A
e, = half the material angle of re-entrant corner ‘;:’,

o o

Even though the behavior of the stress intensity factor may be predictable, the

-'- f‘ .-k' v."p ".. o, 8N

problem still exists in that these singular fields are not able to interact with the other
regular stress fields that are present The divergent stresses acting along y = 0 in the

singular problems (i = 1 and 2) highlight inis difficulty. Studying the behavior of the stress

::: intensity factor may lead to a better understanding of what is occuring in these re-entrant

. configurations.
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Recently, extensive compendiums of sources of fracture toughness data
have been assembled by Hudson and Seward [1,2]. These lists of references
naturally prompt the question as to what an engineer would find upon con-
sulting them in terms of actual values of fracture toughness for a given
material. The intent of this note is to indicate an answer.

In choosing specific metals for which to obtain fracture toughness
values, we look to ones with large listings of data sources so as to
gauge any variability present. To this end we select AISI 4340 steel and
7075-T6 aluminum. We focus on plane strain fracture toughness values
(K. ) as governed by ASTM standards since these are more generally regard-
ed " ds being material properties. We do not check, however, whether or not
a given test furnishing a K. value complies with all of the specifications
in ASTM E399 [3], simply bezguse none of the references reviewed provided
sufficient information to enable a complete check. Hence values are in-
cluded as valid 1f their contributors claim them as such. Since we
frequently encoun Ered plane stress fracture toughness values (K ) in the
data for 7075-T6 aluminum, we include these as a separate set fof com-
parison. Further by way of comparison, we note yield strengths (g ),
since g may reasonably be viewed as the uniaxial tension test quaXtity
analogoXS to initial unstable crack propagation in a brittle material,
In processing the data we distinguish between markedly different specimen
types reported in a single source but otherwise use mean values for each
source. That is, when what is in essence the same test is repeated a
number of times and outcomes recorded, we merely extract the mean*. For
these average values, we note the number of essentially independent sources
and calculate an overall mean. To estimate the variability we also cal-
culate the ranges and 95 percent confidence intervals (1.96s, s being the
standard deviation). 1In justification of the' second, histograms of the
data show good agreement with the expected frequencies in a normal distri-
bution (possibly because the individual data typically represent mean
values themselves and the central limit theorem applies to some extent).
The only exception to this agreement occurs for the values for 7075-T6.
These data, though, conformed well with a normal dist fbution on taking
logs and accordingly a log transformation was used to determine the confi-
dence interval in this instance. The results are summarized in Table 1;
details of KI values are shown in Tables 2,3 wherein single numbers in
brackets dencfe original sources, hyphenated numbers the corresponding
vreference in [1) or [2], and a virgule between the two implies as reported.
in the latter, e.g. [6]/[1-12] is [6]'s data as drawn from [12] in [1]**,
*For the 7075-T6é K. , about a quarter of the results were designated as
being for a‘longituﬁinal orientation and a like fraction as being for a
transverse orientation with the remainder being unspecified. Given that
the difference between the means for all the longitudinal and transverse
cases was found to be less than 2.5 percent, the effects of orientation
for this alloy were not regarded as being sufficiently significant to merit
distinct classification.
#*In the interests of brevity we do not relist references given in [1], [2].
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Examining Table 1, we find that the variability in plane strain frac-
ture toughness for AISI 4340 steel is 100 percent of the overall mean when
based on the range, 87 percent when based on the confidence interval The
corresponding percentages for 7075-T6 aluminum are 162 percent and 108
percent. These wide fluctuations are in marked contrast to the respective
percentages for the yield strengths which are 17 percent and 19 percent
for the steel, and 22 percent and 21 percent for the aluminuw. Indeed
they are quite comparable to the variations in plane stress fracture
toughness values for 7075-T6, viz, 110 percent and 72 percent¥*.

Such diverse KI data demonstrate that the engineer needs to exercise
considerable care 1fi drawing a walue of plane strain fracture toughness
for a particular material from the literature. Short of undertaking the
time consuming task of collecting a sufficient set of references as a way
of assessing variations as here, no reasonably certain methodology for
ensuring a conservative estimate of fracture toughness appears to exist.
Possibly, 1f a single value is found and then assumed to be at the upper
limit of the ranges involved and a safety factor applied to reduce it to
the lower, a conservative Kx could be expected. Such safety factors
here would be 2.9, 2.5 for AISI 4340 and 3.7, 2.9 for 7075-T6. These
suggest that a safety factor of 3 might be adequate, although there is
really no guarantee of this being so for another material. Indeed, the
fact that the plane strain fracture toughness data display more than five
times greater variability than the yield stress data and vary about as
much as the plane stress values which are known to be geometry dependent,
raises serious doubts concerning the notion of K. being a material pro-
perty. An engineer continuing to interpret and use it as such may there-
fore be making significant errors.

Acknowledgement: The financial support of this investigation by the
Alr Force Office of Scientific Research is gratefully acknowledged.
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Table 1. Mean values and variability of some material data

95%
Material Quantity No. of Mean Range Confidence
data value interval
Steel- cy 36 1500 1370-1630 1360-1650
AIST 4340 KIc 32 70.5 37.4-108.2 39.8-101.2
Aluninum- oy 42 507 434-545 452-561
7075-T6 KIc 29 34.5 21.0-76.9 19.4-56.7
K 94 70.7 32.9-111.0 45.1-96.2

[

1/2

Note: O} values are in MPa; KIc’ Kc values are in MPa m

Table 2. Plane strain fracture toughness values for AISI4340 steel

K K
l(‘Ic Ic Ic
(MPa m1/2) Source (Mpa m1/2) Source (MPa mllz) Source
64.8 [1-2] 70.8 [11])/[1-15] 108.2 [12]}/([1-156)
57.7 [4].[5)/ ] 53.8 [1-25] 57.7 [1-160]
76.9 [1-12} | 73.¢ s8.2  [13)/[2-3]
58.2 [6]/[1~12)] 76.9
89.0 37.4 [1-152) 89.0
90.1 65.4
65.9 58.2 [141/12-3)
74.7 (7)/11-15]
65.9 57.6 [2-27)
85.7 [8]/[1-15] 67.0 37.8 [15]/(2-130)
74.7 [9)/01-15] | 67-0 63.0
84.5
_ 62.6 [2-329]
87.9 (10])/([1-15) 87.9
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i Table 3. Plane strain fracture toughness values for 7075-T6 aluminum

. K K K

.

. . Ic Ic Ic

X (MPa mllz) Source (MPa mllz) Source (MPa mllz) Source

Y

\ .

~ L)

! 37.0 [16]/1-2] 31.6 [20]/[1-51) 26.6 [2-66]

’ 21.0 [1-5) 30.8 [1-52] 28.2 [24)/[2-130]

P

% 27.7 24.2 [2-2] 31.9 [25}/[2-130]

’. 38.5 [1-6] 39.1 [21])/[2-3} 29.9 [26)/[2-130]
48.9 25.3 [221/[2-3) 26.4 [27)/(2-137]
35.9 [1-11) 34.5 [23]1/2-27] 35.2 [2-153)]
48.1 76.9 21.6 [2-157]
53,7 34.8 [2-39] 32.6 [28]/[2-159]
29.1 [17]1/[1-12) 35.7 [2-59) 34.8 [29])/[2-159]
28.6 [18]/11-15]
30.8 [19)/[1-24}
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