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ABSTRACT

Research on optical data processing for missile guidance and robotics is described. Our major
emphasis is pattern recognition using feature extraction (Fourier coefficients, moments and chord
features) and correlation (using distortion-invariant synthetic discriminant function matched spatial
filters). All of our research in pattern recognition concerns multi-class distortion-invariant processors. It
includes new algorithms to extract distortion parameters from chord features and a hierarchical moment
feature processor for distortion parameter estimation. Extensive database tests of moments and synthetic
discriminant functions have been performed. Component research has addressed AO cells with
performance measures and detector effects described. Matrix-vector research includes: error source

analysis, a new quadratic matrix algorithm, and initial laboratory system results with attention to the

electronic support system and the laboratory system fabrication.
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1. INTRODUCTION

During this first year (September 1984 - September 1985) of our new research contract in optical

data processing for missile guidance, we have addressed the major key issues and aspects required and

associated with this technology. This research includes:

e real-time devices and components,

e new system architectures,

e new algorithms,

o new high-speed general-purpose optical data processing techniques and systems,

e tests on new and extensive image databases,

e plus new pattern recognition techniques, architectures, algorithms and concepts.
As in past years, we have been quite faithful in reporting our AFOSR sponsored research in various
journals and conference publications. 24 publications (an average of 2 per month) have resulted from this
AFOSR research (Chapter 18). Copies of the more relevant papers we have published over the past year

are included as various chapters of this report. These are included to provide complete documentation of

the different aspects of our work.

In Chapter 2, we provide a summary and overview of our research progress achieved during the past

. This work addressed 6 vital areas of optical data processing research:

. real-time spatial light modulators (Section 2.2 and Chapter 3),
. optical pattern recognition (Section 2.3 and Chapter 4),

. computer generated holograms (Section 2.4 and Chapter 5),

. optical feature extraction (Section 2.5 and Chapters 6-10),

. optical correlation (Section 2.6 and Chapters 11-14), and

. optical linear algebra processors (Section 2.7 and Chapters 15-17).

Topic (1) concerns the vital issue of real-time spatial light modulators. Topics (2)-(5) address
pattern recognition for ATR using new optical pattern recognition (OPR) techniques. In this work, we
have been faithful to address vital problems such as multi-class distortion-invariant pattern recognition of
military targets, the acquisition and importance of the use of a large database and the effects of noise on
the algorithms used. Topic (6) concerns the most attractive item in optical processing at present and a

potentially quite general-purpose optical processor concept.

R N
‘r‘:'.",‘ N ki
ORI ALY

. .
’ 'l'l‘l

»

. e
a'e
§ PO

l' l..
K e )
’ 4

!
v

‘l

N

.l "
eleleelel

ce s
ALt
a0 Y

*

\'- “'."J
LR A

‘l-.\'—.'l<‘.
Ry

'.vr-r"- Wal "-‘ x
RN A {

PR A
y et
AR

PN
i N

"




(RA

X
v

AP i e

‘f_ " L’l{ &

Y

.
Pl Sl S S

!

3.7 _:{. v, {L"Ll':{‘b 5

) i ." .\ ‘l._"v_’ﬁ_"'J

|
ARKARRS

AAASESA

D
’

o ety .l
A IR
S

LLLLALS S

7y

Details of the more salient results of our research are provided in Chapters 3-17. In Chapter 18, we
enumerate our AFOSR sponsored publications, the presentations given on this research at conferences and

seminars during the past year, and the Master’s and PhD students that this grant has supported.

Our level of AFOSR research support on this grant has not increased for several years and our
optical artificial intelligence separate research AFOSR proposal was not funded. This will significantly
impact our research program. Other funds are being sought to allow support of this research we feel is
necessary. The aforementioned remarks, plus the unavailability of funding from Eglin AFB for our
Kalman filtering research are expected to result in a reduction in the quantity of research we are able to
produce for AFOSR. We anticipate that we will still remain considerably above the output level of other

researchers however.

During the past year, the principal investigator (PI) presented invited talks on our AFOSR
sponsored research at various conferences including the Critical Review of Technology SPIE Con ference
on Digital Image Processing and the Critical Review of Technology SPIE Con ference on Computer
Generated Holograms (SPIE, Los Angeles, California, January 1985) and the DoD conference on Parallel
Algorithms and Architectures for ATR (Leesburg, Virginia, conference proceedings published February
1985}, plus other OSA and SPIE optical computing and robotic conferences during the year. The PI has
chaired conference sessions and seminars and served on the organizing committees for the following

conferences and topics:

e SPIE (robotics),

e Optical Society of America (optical computing),
e Optical Society of America (machine vision),

e SPIE (digital image processing),

o SPIE (computer generated holograms).

The PI was also guest editor of a special issue of Optical Engineering on robotics and computer vision.
He was invited to submit papers to the journal Optical Engineering special issues on pattern recognition

(November 1984), optical computing (January 1985) and computer generated holograms (October 1985).
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2. OVERVIEW AND SUMMARY
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2.1 INTRODUCTION

Our six major research areas and our recen. progress in each are highlighted in Sections 2.2 - 2.7.

Details of each aspect of our fifteen work topics follows in Chapters 3 - 17.

2.2 SPATIAL LIGHT MODULATORS (ACOUSTO-OPTIC CELLS,
CHAPTER 3)

Recently, our spatial light modulator research has emphasized acousto-optic cells. In [1], we
considered the salient acousto-optic architectures (spectrum analyzers and correlators). The various
acousto-optic cell and acousto-optic architecture component errors have been enumerated, grouped into
different classes and combined into several new models. New performance measures for acousto-optic
correlators and spectrum analyzers were defined and detailed (spectrum estimation, delay estimation, and
detection). Each is an appropriate performance measure for a different application. General error-free
formulae for each of these performance measures were derived and the performance obtained with each
was described and quantified as a function of the various system parameters. Our new work [2] in this
area (Chapter 3) addressed component error source effects on performance (specifically detector effects).

We plan to apply AO processors to optical image processing in our future research.

2.3 OPTICAL PATTERN RECOGNITION REVIEWS (CHAPTER 4)

Our AFOSR optical pattern recognition research is at the forefront. Our paper [3] in Chapter 4 on
coherent optical pattern recognition was included in the recent Critical Review of Technology series on
Digital Image Processing. A more recent review [4] was one of only two optical pattern recognition
papers at a recent DoD conference on parallel architectures and algorithms for ATR. A journal OPR
paper was invited and published in the Optical Engineering issue on optical computing [5] in January
1985. Chapter 4 (3] is a complete review of optical techniques for feature extraction and correlation and
includes new algorithms, architectures and hybrid optical/digital processing concepts. Sections 2.4-2.6

and Chapters 5-14 detail specific aspects of our recent OPR research.
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2.4 CGHs FOR OPR (CHAPTER 5)

Our 1984-1985 research has increased the use of computer generated holograms (CGHs) for optical
pattern recognition (OPR). We were selected to present a review of this area [6] in a recent Critical
Review of Technology conference on CGHs. A detailed revised version [7] of this paper was invited for
submission to a upcoming journal special issue. This review will be included in our 1985-1986 annual
report. In Chapter 5, we include new recent work on the use of a CGH as a wedge ring detector for

diffraction pattern sampling [8].

2.5 OPTICAL PATTERN RECOGNITION FEATURE EXTRACTION
(CHAPTERS 6 - 10)

Three new optical feature extraction techniques have been detailed in our recent research:

1. the use of multiple feature extractors and dimensionality reduction techniques (we consider the
specific case of a wedge ring detector-sampled optically produced Fourier transform feature
space) (Chapter 6 and Ref.{9]);

[

. a new method to measure distortions from a chord distribution feature space (Chapter 7 and
Ref.[10]); and

3. a hierarchical two-level hybrid optical/digital moment feature processor (Chapter 8 and
Refs.[11] and [12]).

Our optical Fourier transform space and multiple feature space work (Chapter 6) includes four different
dimensionality reduction and feature extraction techniques. A new classifier concept, quantitative data on
the importance of amplitude versus phase Fourier coefficients (for pattern recognition, rather than image
reconstruction) and the performance of each in the presence of noise. These represent quite novel results
which have thus far not been published for any other feature extractor (optical or digital). Experimental
results for two letters and two vehicles with 25 images of each at different scale and in-plane rotational
differences were obtained. In Chapter 7, new techniques to obtain distortion parameters from chord

features are detailed [10].

In Chapter 8, our new hybrid optical/digital moment processor, our new hierarchical moment-based
class estimator technique, and a new two-level classifier using moments are detailed and the results
obtained on a set of ship images are presented {11]. Robotic part data on the same system are contained

in Ref.[12]. The performance of this system on non-controlled imagery and a new segmentation
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) processing technique were recently published [13] and are included in Chapter 9 for completeness. The oy
) hEY
i accuracy with which the distortion parameter estimates can be obtained is summarized [14] in Chapter f:
10. (A
A 5y
s o)
' 2.6 OPTICAL PATTERN RECOGNITION CORRELATORS (CHAPTERS Y

11-14)

A N
P

':.“_\: Our distortion-invariant multi-class multi-object correlator research emphasizes synthetic '_:"_‘
b o
EES discriminant functions (SDFs}). Our tests and algorithms for projection SDFs on ship images with data on :1‘
o noise performance with new guidelines for the suggestion of projection values were included in a recent i-
E:‘_' journal special issue on pattern recognition [15] and are provided in Chapter 11. New related SDFs that i
::: optimize various performance measures [16] are detailed in Chapter 12. New correlation SDFs have been \_
::: described and initial results with them have been obtained for a tank and APC image database {17]. ;‘h
».-'_.-', These results are summarized in Chapter 13. We were directed to perform tests on aircraft images by ::‘\ :‘
::: AFOSR. These results [18] are included in Chapter 14. ":-‘
- :
2.7 OPTICAL LINEAR ALGEBRA PROCESSORS (CHAPTERS 15 - 17) \..
This optical data processing application area has received very much recent attention. .’_::
/.4
A first vital aspect of optical linear algebra research that we initiated was the error source modeling ;‘-::
and simulation of OLAP (optical linear algebra processor) architectures and algorithms [19]. Chapter 15 ‘_‘_
details this work. A second novel facet of our OLAP research has concerned specific applications. The .‘

application chosen for major attention was Kalman filtering and the specific application of it was missile
guidance, control and state estimation. Support for future research in this area is questionable at present.
A third facet of our research is new parallel algorithms. A new parallel algorithm for the solution of
quadratic nonlinear matrix equations using a finite number of steps has been devised [20] and is detailed

in Chapter 16.

The fourth and final aspect of our OLAP research has been attention to fabrication of an OLAP.

We recently [21] discussed our laboratory processor and its electronic support and initial results. This is

detailed in Chapter 17. A lengthy version of this work is in preparation for a journal special issue. This 9
e
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We are thus quite novel in the work

is one of the few laboratory results published on OLAP processors.

we have generated on each of these OLAP areas.
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3. DETECTOR EFFECTS IN REAL-TIME




LIRSt SNBSS RN M SE R A A MRS N DS RSN AR ALAENIEN TN MM IR AL, SRR M I MR AN,
Poiy R N N A SN R A S S A R TR O AR N R, RSN
3 7
.‘ g‘ "l'
;‘ t?’.g"\. :
P PONLS
: RoBR:
i Reprinted from Applied Optics, Vol. 24, page 1224, April 15, 1985 ‘\6‘" "
1% Copyright © 1985 by the Optical Society of America and reprinted by permission of the copyright owner. - A
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;.I N a N
' Detector effects on time-integrating correlator
; performance
‘e
)
> Anastasios Goutzoulis, David Casasent, and B. V. K. Vijaya Kumar
P
P Detector array effects are considered for a time-integrating acoustooptic correlator used for signal detection. e
Effects such as detector area integration, detector element, spatial response, and the location of the correla- .,Q
B tion peak within a detector element are included. General SNR, Pp, and Py, expressions are derived as a .l'.'l::' |
b j function of various system and detector parameters. Quantitative data are provided for a Gaussian-Markov ._‘;~.:s.: :
N signal, and initial experimental confirmation is included. o ,:,‘-'
~ N
> AN
2\ ',tﬁ)\'
L. introduction wn(7) for an individual detector, and conventional sig- pr
s Acoustooptic (AO) devices have been suggested for ~ nal and system parameters. Our performance measures
~ use in many new signal processing architectures and  used are probability of detection Pp and probability of
o applications.! This interest is motivated by the com-  false alarm Pra. Our prior statistical analysis® related
3 mercial availability, good reliability, and performance  these to measurable correlator SNR values and showed
A of new AO cells.12 One of the most attractive AO signal  that these factors completely characterize the system’s ’
) processors is the time-integrating (TI) correlator.34  performance. We do not consider detector noise and :
v This architecture is attractive because of the large  detector element cross talk, since earlier detector noise A
o processing gain it provides and the large signal devia-  analyses* can easily include such effects. The statistics .'-'-\r".r )
v tions it can accommodate. However, only limited sta-  (mean and variance) of the correlator’s output are then NN
0y tistical analyses,5 error source consideration,® and  evaluated in Sec. III for the case of Gaussian-distributed ‘c_\")g;
,",' quantitative performance data have been published on  signal and noise. In Sec. IV, performance expressions A,
: this system. Published work has considered the effects ~ are derived for the case of Gaussian-Markov signals. WY
of signal time bandwidth product (TBWP), input signal ~ The effect of the finite detector area (Sec. V), the loca- . Al
N] noise, detector noise,* and finite detector area effects  tion of the correlation peak within a detector element A
.‘J' on time delay estimation applications.” (Sec. VI), and spatial weighting across each detector s
0 In this paper we consider detector effects in a signal  (Sec. VII) are then analyzed, and quantitative analytical . :4',:;.
o detection application of a TI correlator. We consider ~ results are provided. Brief experimental results are N
N correlators using AO cells operated in the linear inten-  included (Sec. VIII), and then our summary and con- j'\‘; '
i sity mode (since these architectures yield analytical  clusions are advanced (Sec. IX) on the design of a TI S
results). Detector effects for AQ cells operated in the  correlator for detection applications. Signal, systems,
> amplitude mode can be analyzed following the proce- and output detector parameters are considered
- dures and models advanced herein. In Sec. II, we re-  throughout. Emphasis is given to our general analyses,
o view the linear intensity TI correlator and derive an  the quantitative effect of different parameters, and the
-: expression for its output including the finite area D of ~ analyses of various initial quantitative results.

each detector element (and the associated spatial in-
tegration and sampling), the spatial weighting function
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Il. T1AO Correlator for Signal Detection

A simplified schematic of a linear intensity TI AO
correlator? is shown in Fig. 1. We denote the reference
signal by s(¢) and the received signal by s(t — 7¢) + n(t),
where 7¢ is the delay and n(t) is additive noise. For
linear intensity modulation® of the AO cells, the signals
are added to two biases B; and B;. The signal driving
the point modulator at Py is

sa(t) = Ba +s(t ~ 79) + n(t). (1)

The light intensity leaving P, is then proportional to
sg(t). This light beam is expanded by lens L; and

»-
.

>

oW

G

RN AS

Ll
h %]
s
L AR
P s
.

-,
L4

)
0

AL
v

i)
!

=
Y
s

..f.'f “r ‘: '.I
,':‘5{ ‘.’5"}
XXX ALE
A \-,¥ 4,

1%
i




-

N A U e N A% NN NN
() GO hY ARV RN Y hSCH LR AN
SR A I AR RN MR EN SR AN
) Ly P2 L2 3 L3 Fa
- ani L) | of \TT77T
D: /\/ ‘:r
~ R | N /, \‘\\ .
3{“ s,m
Laser AO Cell Spstisl Detector
Diode Filtering Arrey
Fig. 1. Schematic of a time-integrating acoustooptic correlator.

uniformly illuminates the AO cell at P,. The signal

s1(t) = By + s(t) modulates a rf carrier and drives the
AOQ cell at P,. Lenses Ly, L3 and the spatial filter at P53
separate the diffracted and undiffracted orders, block
the undiffracted order, and image the +1 diffracted
order onto a linear detector array at plane P4. The
detector array at P, provides the time integration over
T of the resulting light intensity s1(t)sa(¢). Including
the finite area D of the detector elements, we write the
P4 output from the nth detector as

Ti/2 {n+1/2)D

wn(7)[By + s(t — 7)]

1
I(n) =—
n) T J- (n—1/2D

Ti/2

X [Bg + s(t — 1¢) + n(t)]drdt, 2)

where 7 = x/v,, x denotes the direction of the sound
propagation, v is the speed of sound in the AO crystal,
wn(7) is the spatial response weighting function for the
nth detector element, and n = =N/2,...,0,...,N/2is
the index for the N + 1 detectors. We note that D =
D, /v, has units of time. (D, is the detector area in
distance units.) The normalization factor 1/77 is in-
cluded to simplify our results and does not affect the
system’s detection performance.

Equation (2) contains all parameters necessary to
study the effects of all detector parameters [i.e., D w,(7)
as well as the value of 7, with respect to D] and various
signal and system parameters (such as T, signal
bandwidth, and TBWP) on the system’s performance.
Other AO system component errors can be treated in-
dividually in the input or frequency plane as shown
earlier.® Dead spaces between detector elements can
be included by allowing w, (7) to become zero at the
edges of each detector element. In our analyses, we
assume 1:1 imaging from P, to P4in Fig. 1. Operation
of the AO cell in the linear amplitude mode is also pos-
sible. In this case, the correlation output is present on
a spatial carrier, and after postdetection processing the
correlation obtained is still given by Eq. (2) with a dif-
ferent signal-to-bias ratio. Thus, our results can be
extended to apply to both amplitude and intensity mode
AO cell operation.

As performance measures, we use the parameters®
SNRy, SNRy, Py, and Pra. SNR; is the typical SNR
measure® used in communications (the square of the
ratio of the average correlation value at the peak to the

RS AR i R N O R SO P R A
RSO N e Lt e N L. AT N
CRCN Al g R I A A P N A A AN SE 20 AL
S "_-".*-“ N A VAR s Y LIRS VA

standard deviation in the peak value). SNRj; is the
same as SNR,; except the standard deviation is com-
puted far from the peak. (It is thus similar to the
peak-to-sidelobe ratio.?) The probability of detection
Pp and probability of false alarm Pgy are related to
these two SNR measures by

1 = [-SNRylx - E[CO)}}
Pp=——— dx,
D \/21rEZ[C(0)]/SNR,£ P oE2C0) *
@)
1 = [-SNRaix - E[C(n)]F)
—— dx,
Pea= oo [C(O)]/_S_Njo; P\ eeco) 1
)

where E[C(0)] and E[C(7)] are the means of the signal
and noise, respectively, and 6 is the detection threshold.
By increasing 8, Pr, will be reduced, but Pp will also
decrease. Note that E[C(7)] and E[C(0)] can be esti-
mated by evaluating the correlation C(r) far from the
peak 7 >> 0 and at the peak 7 = 0, respectively. We
choose to express Pp and Pga in terms of SNR; and
SNR, because of the considerable ease with which these
two SNR terms can be measured experimentally on an
optical correlator. In our statistical analysis in Sec. I1I,
we derive expressions for SNR; and SNR, and from
these obtain Pp and Pga expressions.

lll. Statistical Analysis

To simplify our statistical analysis, we assume uni-
form weighting across each detector, w,(7) = 1, and
equal biases B, = By = B and that constant bias terms
are subtracted from the P, output. Equation (2) for the
nth detector output now contains the following five
terms:

B T2 s (n+1/2)D
I(n) = — s(t — r)drdt
Ty J-112 Jin-1/210
B T2 (n+1/2)D
+- f s(t — ro)drdt
Ty J-1y2 Jin-1/22D

B T2 (n+1/2)D
+= f f n(t)drdt
Ty J-112 Jin—1/123D
1 T2 n+1/2D
+—f st = nt)drdt
Ty J-112
1 Ti/2 (n+ /20
+— f f st — 7)s(t — ro)drdt.
Ty J-1i2 Jin-120

(n—=1/2)D
For the case of zero-mean independent signal s(t) and
noise n(t), the square of the expected value involves
only the last terms in Eq. (5), i.e.,

(5)

y (n+ 172D 2
l'/[l(n)|=lf Rt —ro)dr| -
1

(6)
n=1/2{)
where R, is the signal autocorrelation function. The
variance of I(n) is found from Eq. (5) to be
15 April 1985 / Vol. 24, No. 8 / APPLIED OPTICS 1225
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var[I(n)] = E[I(n)]2 — E2{I(n))

32 T2 (n+1/2)D
J’.f ff R,(t —u— 71+ r')drdr'dtdu
-T2 JJ (n-1/2D

"

O ) b g 2% $%a g B* g% g\, ATy

B’Dz T1/2 Ty/2
dedu + 2 f Ralt — u)dt
ffﬁ/ R,(t — u)dtdu Ti f n(t — u)dtdu

T2 (n+1/2)D
T ff ff Ryt —u— 1+ 7')Ry(t —u)drdr’didu
TF JJ-Tu2 -ynD

1 Ty (n+1/2)D
+— ﬂ' f f Ro(t = Rt — u — 1 + )drdr'dtdu
Tt JJ-1i12 -1/2)D

1 Ty2 (n+1/2)D
*13 Lorie Socarn ®
Tf T2 JJn-1/2D

2 TI/2 (n+1/2)D
ZBDJJ' ! J:" Rolt —u = 1 + ro)drdedu,

-T2 -1/2)D

where Gaussian-distributed signals were assumed
(third-order moments are zero, and the fourth moment
theorem8 can be used) and where R,(7) is the noise
autocorrelation function. Assuming that the signal and
noise have similarly shaped autocorrelation functions,
Eq. (7) simplifies to

varll(n)} = -1/2)D

(n+1/2)D
ff (T: — |2])Rs(z = 7 + 7')d7d7'dz +

(t—u=1+ 7R, (t —u+ 1’ ~ ro)drdr'dtdu

)

T‘i ( ) S 1= 12DR e

(r+1/2D
+—=[1+ Ty - (2)R,(z — 7+ 7' ‘
T?( SNR,) f J]: o (Ty = |2})Rs(2)Ry(z — 7 + 7')d1d7'dz

(n+1/2)D
- -7+ . - ’
T? f ff (Tr = |2])Rs(z — 7+ 179)Rs(2 + 7' — 10)d7dT'd2

-1/2)D

n-1/2)D

2B2D (n+1/2)D
f j: " (Tt — |2])Rs(z — 7 + 70)d7d2, (8)

where the input SNR; is the ratio of the peak signal
power to the peak noise power. If the assumption of
similar correlation functions for the signal and noise is
removed, the SNR; expression can be appropriately
modified.!® Assuming T} > 1/8, where § = BWg is the
signal bandwidth, we can omit the |z| factors in Eq. (8)
and obtain

B?
var[I(n)] = — f f (D ~ |q|)R,(z + q)dqdz

3202
Ry (2)d
T, ( SNR,)fT: (e)dz

Tl SNR,) f f (D - [qD)R, ()
X Ry(z + q)dqdz

(n+1/2D
f ff R, (z— 717+ 719
’I‘, -1/2D

X R,(z+ 1" — 19)drd7d2

282 (n+1/2)D
D f f " R.(z = 7+ 1g)drdz. 9)
(n-1/2)D

+

With no loss of generality, we assume that the cor-
relation peak occurs at the n = 0 detector element.
Then

E?[([(0)] = ore R,(7 — 70)d : (10)
o[£ -]
where now —(D/2) < 19 < (D/2). The variance at the

peak var[/(0)] is thus given by Eq. (9) with n = 0 and the
variance far from the peak var[/(n)] by neglecting the
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fourth term in Eq. (9). SNR; and SNR; can now be
obtained from the ratio of Eq. (10) to var[I(0)] and Eq.
(10) to Eq. (9), respectively. A numerical evaluation
shows that the fourth term in Eq. (9) has a negligible 3%
contribution to the total variance far from the peak.
This is logical because R, is sharply peaked and because
the two factors in term four diverge as 7 changes. For
generality, we retain all terms in Eq. (9).

IV. Gausslan-Markov Case Study

We now use the results of our statistical SNR analysis
in Sec. I1I to derive Pp and Pg, expressions. We con-
sider the case of signals with a Gaussian-Markov auto-
correlation functionll:

R,(z) = Ro exp(—8|z]), (11)

where £3 is the signal’s 3-dB bandwidth and R, is the
signal power. This signal model was chosen because it
allows an analytical evaluation of both SNR; and SNR;
without the need for numerical evaluation. We have
also numerically evaluated our results for a Gaussian-
shaped autocorrelation signal model and obtained re-
sults similar to those obtained herein, where we include
only the analytical results for the Gaussian-Markov
model.

Using the model in Eq. (11), the average peak power
in Eq. (10) can be shown by a simple but tedious analysis
to be




2
EA[10)] = % (2 - exp[=B(D/2 + 70)] — exp[B(~D/2 + Tl

(12)
The var[I(0)] and var[I(n)] expressions now become
var[1(0)] = Rﬁm 8+ srfa,} * ‘;{jfg * SI;R,}
+%A1+Tf§2(1 +ﬁ)Az (13)
var[I(n)] = R"TB;Z)Z SI\?R; + Ti;g;(l + sﬁz}) As (14)
where

6
Ay = —8719— E exp(—287¢) — 47 exp(—287¢)

+ exp(—B8D)[exp(2B7¢) + exp(—2870)] |D + %J

— exp(—fD)exp(2B70) — exp(—2870)]270, (15a)
Az = g + gexp(—BD) + 2D exp(—~3D), (15b)
Az=4D - -g + gexp(—ﬂD) + 2D exp(—~BD). (15¢)

From Egs. (12)-(15), we find
{2 — exp[—B(D/2 + 70)] — exp[B(—D/2 + 7o)}

id
|
d

=0.1

SBR=®

aws=10Wz
To=0

D
1000 (pm)

10 100

Fig. 2. Effect of detector size D and integration time T; on Pga (for

Pp =0.999).

SNR, = e W -
4 1 . Az( )
8+ +—2+—]+2+2{1+
T/(SBR)? ( SNR,| ' T, SNR,) T, T/\"  SNR;
(16)
SNR; = {2 — exp[—B(D/2 + 79)] — exp[B(=D/2 + 7¢)]i2 i

D28 (

2\ Asf 1 )
T/(SBR)?

=1+
SNR;)  T:\' ' SNR;

(17)
where SBR = \/R/B is the signal-to-bias ratio for the
input data to the AO cell. The error-free SNR; and
SNR; expressions are found (by applying I’'Hopital’s
rule with D = 0 and 79 = 0) to be

T:8

SNR, = (18)

1 \+(8+ 2\ 1
SNR, SNR;/ (SBR)?

2+

SNRg =

Tif (19)
SNR, SNR;/ (SBR)?
These error-free expressions are useful for measuring
the loss incurred when D = 0 and 7 # 0.

From Egs. (12), (16), and (17), we can now quantify
the Pp and Pyp performance to be expected as a func-
tion of the different signal and system parameters and
the different detector effects. Py, is obtained by sub-
stituting Eqs. (12) and (16) into Eq. (3), and P, is
found by substituting Eqs. (12) and (17) into Eq. (4). In
calculating Pga we assume E(C(7)] = 0. This follows
from our zero-mean signal and noise assumption and
the fact that R, (7) will be sharply peaked. We also note
that the Ppa we calculate corresponds to Pra for one
detector element. The total Pya for the entire output
(PpaT) of N 4+ 1 detectors can be obtained from our Ppy
by

)

Pratr =1~ (1~ Ppa)V*1. (20

The three detector effects we consider are the finite
detector size D (Sec. V), the location of the correlation
peak within a detector element (Sec. VI), and the spatial
response across a detector element (Sec. VII). Each of
these detector effects is treated separately, since for
each case the integration time Ty, the input SNRy, the
signal bandwidth 8 = BW,, the signal-to-bias ratio
(SBR), and other such parameters affect the results.
Our purpose in these next three sections is to quantify
the effect of these various parameters on the detection
performance (measured through Pp and Pra) of a linear
intensity TI AO correlator and to provide guidelines for
TI AO correlator design.

V. Area Integration Effects

In this section, the effect of the finite detector ele-
ment size is quantified. Graphic presentations are used
to provide quantitative performance data. The trends
observed are then noted and discussed. We include
only Pra data rather than Pp, data to reduce the length
of our text.

In Fig. 2 we show the variation of Pgs with D for
different T; values. Both Py and Pp improve as T
increases (as expected since longer integration time
reduces noise and enhances signal). Pgra and Py, also
improve as D decreases. This is less immediately ob-
vious but can be explained by realizing that increasing
D increases the noise more than the signal (per detector
element). This occurs since the noise is relatively
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Fig. 3. Effects of input SNR; (amplitude) and detector size D on
Pra (for Pp = 0.999).

uniform over the correlation plane, whereas the signal
correlation is of narrow and finite width. Thus, for any
D = 0 (not just for D greater than the width of the cor-
relation peak), a larger D degrades Pra and Pp perfor-
mance. This effect is more pronounced when D is
larger than the width of the correlation peak (123 um
for BW,; = 10 MHz and the shear TeOQ,; AO cell as-
sumed). The data in Fig. 2 verify this and quantify this
effect.

As noted at the outset that many system and signal
parameters exist and affect performance. Next we
consider the effect of D and input SNR; on Pps. As
expected, we find (Fig. 3) that Pra improves as SNR;
increases (for a fixed D). For the case considered (T
= 50 usec, BW, = 10 MHz, or TBWP = 500), we find
that a smaller D is needed (and oversampling of the
correlation is required) when SNR; is low (below 1.0 for
the case chosen). For example, if Ppa = 0.001 is desired
(with Pp = 0.999), the detector size must satisfy D < 18
um if SNR; = 0.1. (D = 18 um is much less than the
123-um width of the correlation peak.) We note (from
Figs. 2 and 3) that T; and SNR; have a much more
significant effect on Pra than does D. For example, for
D = 70 um, doubling T; from 50 to 100 usec (Fig. 2)
results in a quite significant Pga improvement (from
10~2t0 107%). Conversely, reducing D by a factor of 2
to 35 um improves Pra from 1072 to only 2 X 10-3,
Thus, as a general system design guideline, if the desired
Py for a given SNR; cannot be achieved with a rea-
sonable D, a slight increase in T} can often overcome
finite detector element effects (assuming that the signal
duration is sufficient). For large SNR;, the size D is of
concern. However, low SNR; is the scenario of most
concern.
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As our next signal parameter, we consider the effect
of D and the signal bandwidth BW, on Pgs. Our re-
sults are shown on Fig. 4. Recall that the width D, of
the correlation peak decreases as BW, increases, spe-
cifically D. = (2/BW;)v,. For BW, =1 MHz, D, =
1230 um, and all D values shown are much less than D,
and hence the variation of Pra with D is neglibible. As
BW,; increase, Prs improves (due to the increased
TBWP). For BW, > 10 MHz achieving Ppa < 1073 is
easy for a wide range of detector sizes D. For BW, =
10 MHz, D, = 123 um, and we see that any detector size
D <100 um (or D less than approximately D.) yields
good Py < 1073 performance. However, as D is in-
creased further, the degradation in P, is more severe
for larger BW, (since the width of the correlation peak
becomes increasingly less than the width D of a detector
and thus more correlation noise enters the detector).
For BW; = 40 MHz, D, = 31 um, and for any D < 120
um we find Prpa < 1073, Thus, as BW, increases, the
maximum allowable D for a given P, increases. This
occurs because the improvement in Pgy (with increasing
BW,) is larger than the degradation in Pga (with in-
creasing D). For lower SNR; cases, smaller D values
than those shown are expected to be required (as we
found in Fig. 3). For BW, = 5 MHz, D, = 246 um, and
we find that D < 35 um (one-seventh of the width of the
correlation peak) is required to obtain Ppy < 1073,
Thus, as BW; decreases, we require finer sampling of

the correlation peak to maintain a given Pgy.

The number of detector samples required within the
correlation peak and the Ppa obtainable thus interact
significantly as BW; varies. The quantitative data in
Fig. 4 show this clearly (for the SNR; and T values

»

A
1
s

1 >

1000

PRI ST I
10 100
D (um)
Fig. 4. Effects of bandwidth BW, and detector size D on Pg, (for
Ty = 100 usec, SNR; = 0.1. SBR = =),
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selected). This vividly demonstrates the importance
of obtaining such plots for the parameters of the signal
of concern. Without this, the detector sampling re-
quired for a given Pra would be quite difficult to assess.
In general, for signals with large TBWP > 1000 and
moderately low SNR; 2 0.1, the detector size can be
chosen to be less than or equal to the width of the cor-
relation peak, and excellent Pra < 1073 will result. For
signals with moderate TBWP = 500, increased over-
sampling of the correlation plane is required.

Last, we consider how D and the final and most
dominant system parameter (the SBR of the input data
to the AO cell) affect our Pps performance measure.
Recall that SBR = « for operation of the AO cell in the
amplitude modulation mode and that the best value for
the intensity modulation mode is SBR = 0.5. In Fig.
5, we show how Ppy varies with D and SBR. We im-
mediately note that the amplitude modulation mode
(SBR = «) yields much better performance for any D
value and allows much larger D values. This must be
qualified by noting that the output of a TI correlator
appears on a spatial carrier! when the AO cells are op-
erated in the linear amplitude mode. Thus the detector
size in this case must be sufficiently small to detect the
spatial carrier. (This effect is not included in our
present data.) However, in a detection (compared to
a delay estimation) application of a correlator, we often
know where the correlation will occur (once we are in
synchronization), thus considerably reducing the
number of detectors required.

From Fig. 5 we see that Pps degrades as D increases
(as explained before). The decrease in Pya perfor-
mance as SBR decreases is due to the increase in the

signal-dependent noise present in the output of a T1
correlator. This bias cannot be simply subtracted form
the system’s output. The slope of the SBR = 0.5 curve
in Fig. 5 is comparable with that of the high BW,, SNR,
and T curves in our prior (SBR = «) figures. However,
the associated D values are an order of magnitude
smaller. Thus quite small detectors and quite fine
correlation plane sampling are required for intensity
mode T1 AO correlators operation. For example, for
the signal considered, the width of the correlation peak
is 31 um, whereas the maximum detector size for Ppa
= 0.001 is 24 um or approximately the width of the
correlation peak (for SBR = 0.5). A change in D by
only 5-19 um (with SBR = 0.5) changes Pg, from 103
to 10-4. For the smallest realistic 10-um detector size
shown, the Pr, values obtained are quite large (for SBR
<0.4). Thus a finite detector size significantly affects
Pra performance for intensity mode AO operation.
The low SNRy, the large T; and large BW; scenario
used in Fig. 5 is typical of most spread spectrum signal
cases.

Vl. Effects of Correlation Peak Location

In this section, we consider our second detector effect
(the location 1¢ of the correlation peak within one de-
tector element of finite area D). We first consider Pga
as a function of delay 7o (where —D/2 < 14 < D/2)
within one detector element for several signal band-
widths BW; and several detector sizes D. A delay 7¢
= 0.0 corresponds to a correlation peak located in the
center of a detector element, whereas a delay of £0.5
corresponds to a peak located at the edge of a detector
(between two detectors). In Fig. 6, we summarize our
quantitative Pra performance as a function of D and

Fea

1 1
2 1’.:250 ps
snnl: 0.1
SBR=05
D(um) BWgMHz)

1: 10 1
2: 20 5
3: 20 10
4: 10 10
5: 20 20
6: 20 40
7: 10 40

———v ~—————a DELAY

0 10 20 30 40 SO (%D)

Fig. 8. Effects of the BW, [) product and the location (delay) of the
correlation peak within one detector (as a percent of 7Y on Pgy tfor
Py = 0.999).
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BW,. Curves 1-7 correspond to systems with in-
creasing BW, values and different D choices. For the
systems considered, the correlation width in seconds for
a signal of bandwidths BW, is 2/BW;. For a TeO; cell
with 1:1 imaging a 10-um detector size corresponds to
a 16-nsec sampling time per detector. Specifically, a
BW, = 10-MHz signal has a correlation width of 2/10
MHz = 200 nsec. Thus curve 3 corresponds to 200/32
= 6 detector samples within the correlation width and
curve 4 to =12 samples. Curves 1 and 2 have consid-
erably more samples. Curve 5 has 100/32 = 3 samples.
Curve 6 has 1.5 samples, and curve 7 has 3 samples. As
BW; increases (curves 1-7), Pra improves due to the
larger signal TBWP. As the detector size becomes less
{curves 3 vs 4 and 6 vs 7), the correlation plane sampling
is better, and Py again improves. For larger BW,, the
improvement due to smaller D values is larger since the
correlation peak is narrower (see Fig. 4). The variation
in Pra vs 7q (center of detector) to 79 = 0.5D (edge of
detector) also follows logically. As 7¢ increases for a
fixed D, the correlation peak power within D decreases
(assuming D is less than the width of the correlation
peak). As BW, increases, the sensitivity to the location
of the peak within a detector element becomes more
important (since the width of the peak is less). The
variation in Pga with 7 is most severe for signals with
a large BW, (or correspondingly large TBWP), Al-
though Pra is much better for large BW,, this 7 effect
is still quite significant. For D = 20 um and BW, = 40
MHz (curve 6), Py, varies from 0.0002 (when 7y = 0) to
0.02 (when 7o = D/2). This is a non-negligible factor
of 100 loss in performance. Thus, for higher BW, sig-
nals, increased correlation plane sampling is recom-
mended (e.g., curve 6 is curve 7).

The data in Fig. 6 were obtained for intensity mod-
ulation (SBR = 0.5). Similar trends are expected for
linear amplitude modulation (i.e., SBR = «), but the
actual Ppa values will be better (since the effects of fi-
nite SBR are absent).

Vil. Effects of Detector Spatial Weighting Function

Thus far, the spatial weighting function for each de-
tector element has assumed a rect function. However,
this is not necessarily the case, especially for CCD ar-
rays.!2 In many cases, the response profile for a de-
tector element can be modeled as a trapezoid whose
upper-to-lower base ratio d/D depends on the actual
array. To consider the effects of such a profile, we as-
sume a detector weighting function:

21 2n - /2D
D-d D—-d
1 nl) —d/2<;<nD)+d/2
wolr) = 2r 20
4+
D -d
2in + 1/
N —-d

nD) = D/2< 7 <nl—d/2,

nl)+d/2 < <nbh+ D2,

where n is the detector element number. [) is the lower
hase of the trapezoid, and d is the upper base. We have
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chosen to use this weighting function (and the variable
delay 7¢) for its versatility in studying the effects of the
detector element’s profile on the system’s performance.
For example, for d = D, w,(7) describes a rectangular
profile, whereas d = 0 describes a triangular profile.
For any other d and D relationship, w,(7) is a trape-
zoid.

Let us assume that the correlation peak lies within
the n = Q detector element, i.e., —D/2 < 1o < D/2, then
we(7) defines the profile of the detector element in
which the correlation peak occurs. The average peak
power in Eq. (6) then becomes

) D2 2
E2[1(0)] = U‘m wolT)Rs (7 — To)d7| - (22)

Substituting Eq. (21) into Eq. (22) yields the expression
for the average correlation peak power I,,. We evalu-
ated this for different d/D ratios and found that a rec-
tangular detector gave the best I, value. The loss in
Iop was 25% when 7o = D/2 rather than 7 = 0. A
trapezoidal detector response profile with d = 0.6D gave
30% less I, and a triangular detector response profile
gave 70% less I,,. To analyze wj, (7) effects on SNR, we
assumed 74 = 0 (to simplify the analysis), since then the
variance of SNR; is independent of ¢ (with w,, fixed),
and SNR, and SNR; vary with 7¢ in the same way that
I pp does (for low SNR;). For SBR = », we evaluated
SNR, and SNR; as a function of D and BWg for 79 = 0

FA
! -" snnl:on '2
J T=50ps 3
1 $BRz=®
BWg=10MHz
=1
1 '! =0

109 1:RECTY
4 2:50% TRAPEZOID
1 3:TRIANGLE
<
-4
10'*
L
L
-5
10« —-—-“vur—vw-""q'——’ D
10 100 1000 (PmM)
Fig. 7. Effect ot detector weighting profiles on Py (for £, = 0,941

as a tunetion ol the detector element size ).
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for different u, () profiles. We found that both tri-
angular and trapezoidal w,(7) profiles gave better
output SNR values than did a rectangular w, (7). This
is expected for 7y = 0 since these w, reduce the noise
more than the peak value. The SNR improvements
increased as BW, or D increased (since the peak nar-
rows, and the weighting reduces the noise more than the
peak value). This is less time if SNR; is larger.

In Fig. 7 we show "pa vs D for these three detector
element profiles for the case ro = 0. We (ind that the
nonrectangular profiles perform best, with only a small
improvement in SNR; (0.5 dB) and in Pgs = 0.00037
(triangular), Pra = 0.00044 (trapezoidal) and Pga =
0.00125 (rectangular)].

To compare output SNR values for 7y = 0 for dif-
ferent w, (7), we consider the worst-case 7, = D/2. We
compute the I, loss (due to 7o = D/2 compared with 1
= 0) and from this subtract the output SNR, improve-
ment for 7y = 0 (due to the use of a nonrectangular vs
a rectangular detector element spatial response profile).
From this analysis, we find that trapezoidal and trian-
gular profiles give ~0.5 dB better SNR, than a rectan-
gular profile.

Thus it appears that the simpler rectangular detector
response profile model can be used (thus greatly sim-
plifying the analysis) with only small efforts of the SNR
or Pga to be expected. The Pga resuits actually ob-
tained are expected to be slightly better than those
predicted by the simplified w,(7) theory.

VIll. Experimental Verification

Initial experimental results obtained on a laboratory
T1 AO correlator for signal detection are now reported.
A matching pair of TeO, cells was used for the point
modulator and delay line. The center frequency of both
cells was 35 MHz. Each cell was operated in the linear
intensity mode. The cells were biased at 12 V and op-
erated with a signal level of 6 V (i.e., SBR = 0.5). No
additive noise was introduced, and thus SNR; = .
Although the cell bandwidth could accommodate 20-
MH:z data, we could not produce a signal of such
bandwidth because of equipment limitations. Thus we
used a Gaussian-distributed signal (from a noise gen-
erator) with a Gaussian autocorrelation function and
a BWg = 0.5 MHz. The width of the correlation peak
for this signal is 4 usec with the 1:4 imaging system used.
To measure SNR; and SNR., we used a single detector
element with ) = 200 um and an integration time T} =
5msec. D = 200 um corresponds to 1.28 usec or about
one-third of the width of the correlation peak. No ad-
ditional system errors were introduced by the band-
width of the AQO cells and the phase response of the
transducers over this small BWg. This experimental
setup thus allowed detector size effects alone to be
studied (with all other error sources reduced to negli-
gible levels). To study the effect of I) on system per-
formance, we inserted a variable detector aperture of
size [) in front of the detector element and varied the
aperture (and hence ) in one dimension from 50 to 200
um. The height of the slit was kept constant (at 100
um) as its width was varied.

To measure SNR,, we fixed D) and centered the cor-
relation peak at the center of the detector element (7,
= 0). Since D = 50-200 um corresponds to 0.32-1.28
usec, which is less than the 4-usec width of the corre-
lation peak, negligible errors are introduced by slight
mispositioning of the detector. Two hundred separate
measurements of the detector’s output were taken.
(The noise or statistical fluctuations were different in
each measurement, and thus these data constituted a
different sample realization of the random correlation
process.) For each choice of D, the mean and variance
of these 200 samaples were calculated and their ratio
calculated to provide our desired SNR;.

To obtain SNR.,, we measured the value of the cor-
relation at the peak and far from the peak. To achieve
this, we moved the detector element far (~15 usec) from
the peak location. Image plane detector difference
errors were negligible, since the same detector was used
for measurements both at the peak and far from the
peak. To reduce the effects of input light uniformity,
AO cell attenuation, and AQ cell spatial response vari-
ations, we measured the correlator’s output with no
signal present (i.e., with only the carrier present) and
selected two output locations for our SNR, measure-
ments where the light level was equal within 5%. To
facilitate a uniform output (i.e., negligible spatial
weighting due to the cell, acoustic attenuation), we used
a spatial filter in the frequency plane that reduced AO
cell nonuniform response variations. From our 200
measurements of the correlation output far from the
peak, we obtained estimates of the correlation noise
level and hence SNR., experimental data. We repeated
this procedure for different D values of 50, 100, 150, and
200 um, corresponding to samplings of 50 to 12 sam-
ples/correlation peak width. For each case we obtained
200 measurement samples. To ensure that the slit was
centered in the middle of the detector element, we used
a scanning microscope. This also insured us of the
exact slit or detector width D used.

Our experimental data and the theoretical results
obtained from our theory for Gaussian autocorrelation
function signals are shown in Fig. 8. The theoretical
SNR; and SNR; values were obtained from Egs. (9) and
(10) using Gaussian R,(7) and R, (7) functions. The-
oretically, we expect a SNR; of 24.5dB (for D = 10 um)
and a SNR., 22 dB (for D = 10 um). We expect a con-
stant 2.5-dB difference in these SNR measures with the
slight decrease shown for SNR as D is increased. Our
experimental data (Fig. 8) are in rather good agreement
with theory. Both SNR values are within 2 dB of the
theoretical values. SNR. is larger than SNR, as pre-
dicted by theory, with the difference (2.2 dB} being very
close to theory (2.5 dB). Our experimental results show
that both SNR data remain approximately constant for
D) values between 50 and 200 um {as predicted by our
theoretical analvsis). Since both of our experimental
SNR values are less than the theoretical ones by 2 dB,
further credence is given to our data. Possible reasons
for the 2-dB SNR difference (loss) are detector noise
and background optical noise.
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o quantified the system performance as a function of the w
y ®f-  Theoretlcal SNR, —— SNRy = = various detector error sources and system and signal AL
# s "“":'““' ?::‘1‘ 'P;‘ R 2 parameters in our model. P
::, al :";::; o m::’ : [: 5 msec We found that area integration resulted in a variety hSmY,
i . proms 1,200 of effects such as a degradation in both Pp and Pr, as i L
" the detector element size D increased. We found that hin i
", = % T; and SNR; effects were more dominant and that an :f.'
: ) =t increase in either (if possible) was more significant than .:/
Y o wb a decrease in the detector area D. Thus system design Oy
l:: a considerations dictate an increase in T; or SNR; (if :J‘
' i ] o o possible) to compensate for losses due to the finite de- > .
e o tector element size D. Our studies of the signal band- {?‘ «
’4‘: et T width BW; effects showed that both Pp and Pra are PN
' ok ° ° O B .~ more sensitive to D (when BW, is large) but that the Pp AR
5 ° and P4 values obtained in this case were quite good. PATAR
P i Thus such issues appear to be of more concern when the DA
e 1 L 2‘50 P 3;- signal time bandwidth product is moderate (i.e., 500 “:;}‘i'
= 0 tym) 1000). The effect of the SBR and D was quantified and
. found to be the most important and dominant effect on ST
: : Fig. 8. Theoretical and experimental data on the effect of the de- the choice of D in a system design. It was shown that :q‘.'-‘:d‘
‘;\ tector element size D on SNR, and SNR. even for the maximum possible SBR value of 0.5 (for e %4
! linear intensity modulated AO cells), the system’s RV,
o, performance degrades significantly as D increases. ._:_:';
' The effect of the location of the correlation peak
- Valid P and Pga measurements would require more  within a detector element was also studied. From this il
< than 1000 samples (to observe Pra = 0.001 or 1 peak  analysis, we found that the loss encountered as the -
: : that exceeds the threshold in 100 measurements).  correlation peak location departed from the center of -
QY Since our results verified the validity of our analysis of  the detector element depended on both the D and BWg
> the effect of D on SNR; and SNRo, the conventional = values. These effects were quantified. In general, the "
2 relationships between Pp and Pra and SNR should be  system’s performance degraded as either the delay or
: valid. An advanced experimental verification would D increased, with the loss becoming more significant as
, require use of a higher BW signal, a larger number of = BW(g increased. The system’s designer must select D
B samples, more control over the D setting (i.e., smaller  from the Py and Pga values obtained when the corre- o
N and more accurate slit widths), a more sensitive detec- lation peak is located at the edge of the detector ele- -,
Y tor, etc. We note that under such conditions one could  ment. As shown this requires detector element sizes ~
W verify the effects of correlation location and spatial  much less than the Nyquist value (for the correlation -
N weighting function. In our experiments, verification  peak width) to achieve good Pra performance. ~
of the correlation peak location with the available To study the effects of the detector element’s spatial A
N equipment was not possible because of the broad cor-  response, we conducted a simplified but well-approxi- I :a"
! relation peak obtained with the available signal BWs  mated statistical analysis. In this analysis, we used a ARADA
i equipment. spatial response model that varied to include triangular, '.‘-:'}.\j.-\
Ay . trapezoidal, and rectangular detector response func- :'.'_I_.:-':
N IX. Summary and Conclusions tions. Our analysis was conducted under the assump- -:. :‘;,'-
: In this paper, we have studied the effects of detector  tion of a low input SNR. For this case, we found that el
errors on the performance of an acoustooptic time- a triangular profile enhanced performance (since it A '
': integrating correlator used for signal detection. Inour  suppressed the out-of-plane noise more than the signal). RNLSK :‘
N analysis, we modeled the system’s output to include the  In practical cases, the detector element’s spatial re- . t;- W
. effects of various detector parameters such as areain-  sponse is trapezoidal, and the improvement (over a " ‘ :t
[ tegration, elemental spatial weighting, and correlation  rectangular response) was found to be small (of the ; RN
n peak location within a detector element. As perfor- order of 0.51 dB in SNR; or SNRy). Thus future sta- ARty
mance measures we used P;, and Ppp and in our theory  tistical analyses do not seem to require elaborate ap-
A derived expressions for P, and Ppa in terms of detector  proximations of the detector’s spatial response by a
o parameters and the easily measured SNR; and SNR.  trapezoidal function.
L - output correlation parameters. Our experimental work verified several of our theo-
o To study the various detector effects, we performed  retical results (specifically the validity of our theoreti-
:.' a general statistical analysis and quantified our results  cally predicted difference between SNR; and SNR.).
o for the case of signals and noise with a Gaussian-Markov ~ The observed dependence of SNR; and SNR., on D
autocorrelation function. This provided us with ana-  appears to be in very good agreement with our theory.
R lytical results which fully describe the system’s per-  In all cases, our experimental results were in agreement o
formance as a function of various system, signal, and  (within 10%) with our theoretically predicted perfor- N
.:: detector parameters. From these expressions, we  mance. .-'_:
N -~
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HYBRID OPTICAL/DIGITAL IMAGE PATTERN RECOGNITION: A REVIEW
David Casasent

Carnegie-Mellon University
Decpartment of Elcctrical and Computer Engineering
Pittsburgh, Pennsylvania 15213

ABSTRACT

The parallel processing, high-speed, compact system fabrication possibility, low powecr
dissipation and size, plus weight advantages of optical processors have achieved great
strides in recent years. The architectures, algorithms and system fabrication of hybrid
pattern recognition processors are reviewed with attention and emphasis to recent results
and to techniques appropriate for distortion-invariant multi-class pattern recogniticn
applications.

1. INTRODUCTION

The parallel processing advantages of optical pattern recognition (OPR) systems have long
been recognized. However, only recently have components, architectures, algorithms and a
commitment to fabrication of such systems emerged. As a result, this topic has seen an
explosion of conferences and research in recent years. Several recent reviews by the author
exist {1-3) and will be summarized in this present paper with attention and emphasis on more
recent work than those noted in earlier reviews. Advances in laser diode and detector tech-
nology and the commitment of several companies (General Dynamics-Pomona, ERIM, Grumman) and
funding agencies, have now made fabrication of such processors and the reduction of research
to systems a realitv. Spatial light modulator (SLM} technology is summarized in [5] and
is not discussed herein. These real-time devices still represent the major obstacles to the
widespread low-cost cormercial exploitation of OPR systems. However, the future for this
aspect of OPR is quite promising. Recent Soviet work in this area has been most significant
[81]. These and several U. S. programs have concentrated on practical SLM device tech-
nology. Many linear algebra operations are required in OPR [4]) and are discussed elsewhere.
Thus, the present text assumes a familiarity by the reader with feature extraction and such
operations. The availability of two computer generated hologram (CGH) recorders has been a
significant adjunct to research and to the fabrication of OPR systems [6]. A general pur-
pose approach to optical computing (presently directed at signal processing rather than
image processing) is the use of optical linear algebra processors. These approaches and
systems are also summarized elsewhere [7] ancd are not discussed in this present paper. The
various SPIE {8] and IEEE [9] special issues on digital image processinc attest to the
significant importance of this topic and the growing number of OPR papers in these references
signifies the importance of this topic.

In this present review, I restrict attention to OPR algorithms and architectures for
pattern recognition rather than image processing (i.e. image enhancement, restoration, etc.).
To those authors whose work is not referenced herein, I apologize and plead a lack of time
and space bandwidth product. Emphasis will be given to work at the Center for Excellence in
Optical Data Processing at CMU, because of my familiarity with it and because of the large
scope of its research in the area of optical pattern recognition. To best unify the large
volume of research work in OPR, I first review the basic operations achievable in optical
systems, two classic OPR architectures, and conventional feature-based pattern recognition
(Section 2). Various optical architectures for feature extraction are then reviewed and
discussed and results obtained on these system concepts and their present status are then
advanced (Section 3). Various new correlator approaches to distortion-invariant OPR are
then briefly reviewed together with ontical AI/IU research and sub-pixel target identifica-
tion research (Section 4). SDF techniques to achieve various distortion-invariant 3-D object
recognition are then detailed with attention to new results and efficient phase-only and CGH
techniques to synthesize such filters (Section 5). Section 6 is devoted to system fabrica-
tion issues with attention to new results and to flight-tests on compact architectures and
systems for OPR. Our summary and conclusions then follow (Section 7).

2. FEATURE-SPACE OPTICAL PATTERN RECOGNITION (OPR)

2.1 OPERATIONS ACHIEVABLE

In optical processors, 2-D data (images) are represented by the transmittance of a 2-D
data plane. By imaging one such data plane through another, we achieve the point-by-point
multiplication of the two 2-D data arrays. A lens can integrate this 2-D product distribu-
tion (or any 2-D data distribution) and thus achieve a 2-D data summation (1-D data summa-
tions are also possible using cylindrical rather than spherical lenses). With CGHs, random
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interconnections between 2-D data arrays, coordinate transformations and other space-var:arnt
operations are possible [6]). Thus, we can characterize and summarize the major operaticrs
possible on optical systems as 2-D parallel data multiplication and addition. A spec:ficC
operation that has been the hallmark of coherent OPR is the 2-D Fourier transform (FT).

This operation is readily achieved with a simple lens or mirror. In Figure 1, the 2-D licht
amplitude distribution incident on P2 1s the 2-D FT G(u,v) of the input object gl(x,y) placel
at Pl

=327 (ux+vy)

Glu,v) = frg(x,y)e dxdy, (1)

where the spatial frequencies (u,v) cf the input object are related to distances (x2,y2) in
Py by

(u,v) = (xz/AfL,yz/AfL), (2)

where ) is the wavelength of the input light and f; is the focal length of L3 in Figure 1.
if we place a filter function H* (u,v), i.e. a matched spatial filter (MSF), at Py, then the
light distribution leaving P, is the 2-D data product distribution G(u,v)H" (u,v) and the b
output is its FT or

u(xy,y,) =%TG(u,v)H'(u,v)] = g®h. (3)

We represent FT distributions by upper-case letters and corresponding space functions by
the corresponding lower-case letters. The symbolSFﬁenotes the FT operator, the superscra
* denotes the complex conjugate and (¥ denotes the correlation. The system of Figure 1 1
a frequency plane correlator. The optical correlation of two 2-D images can also be
realized in a joirt transform correlator by forming the FT of the magnitude sgquared of the
FT ¢f the two functions. To synthesize the H* complex conjugate transrittance function
required in (3), holographic techniques are used.

y
N 2 X

can - o - w o

X “\ {a‘
1 x
o= - 3
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UL g®h

r
<

FIGURE 1
Conventional optical Fourier transform and frequency plane correlator

2.2 CONVENTIONAL FEATURE-SPACE PATTERN RECOGNITION

The conventional digital and mathematical literature usually considers featurz:-space
pattern recognition. In this method (Figure 2}, a set of M image features are calculated and
an N x N pixel image is represented as an M-dimensional feature vector X. The original
feature space 1s often transformed to a new decision space as y = A x with independent
features and dimensionality reduction. The axes of this space are a set of basis funct:crns

{¢y and the elements of each vector y are the projections on the corresporaing ¢ vecters that
define this space. A discriminant vector w; for each class i is chosen such that w;Ty >w.*‘y
for all j # 1. From the projection values, the class of the input object is determinec.

The blocks in Figure 2 are chosen to best define subproblems anéd thus we need not trans€orr

X 1nto y as the first step, and thén project y onto w. Rather, we can project x onto a new

transformed linear discriminant function vector d; = A w, for the class i data.
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Most intra-class dimensionality reduction technigues are variations of the Karhunen-
. Loeve (KL) expansion [33] in which the elements of Aj in the transformation matrix noted
i- earlier are the eigenvectors of the correlation matrix for all class i trainina set images. A
c - The use of two two-stace KL transforms, how the means of each data class are handled, the .
) number of dominant eigenvectors used, and how the correlation matrix is calculated are among .
- the different versions of the KL algorithm [34] that can be applied. We will employ K-L,
o0 Gram-Schmidt (GS) [35], Fukunaga-Koontz (FK) [36] and Foley-Sammon (FS) [35] techniques in K
o our OPR research. KL methods yield maximum compression of data and an orthogonal basis *
function set. GS methods are another technique to produce orthonormal basis functions,
.. whereas FK and FS techniques are appropriate for inter-class recognition problems. Various
- classifiers used include nearest neighbor, nearest mean and the use of a least-square linear
.. discraminant function (LDF) w;. These are among the more popular ones. Our major concern
- in this present paper is OPR. Such digital PR post-processing algorithms are reviewed
. elsewhere in this volume [37] and in other OPR references by the author. The important
L points to emphasize are:
. ~the concerts of a feature-space, basis functions, feature vectors, transformations and
f dimensionality reduction;
- ~-a training set is used to select A and w; and this operation is off-line;
~ -the only required on-line operations are the calculation of the features, a vector inner
~ product and the associated classifier decisions.
.~ The high computational load associated with the feature generation and calculation are the
; major ones of concern. Thus, we concentrate on the use of the parallelism of optical pro-
N cessors to achieve these functions and relegate the remaining operations in Figure 2 to a
‘ general-purpose or dedicated digital hardware post-processor. The resultant hybrid optical/
Y digital system appears to perform properly in each instance. It also appears to be the
~ optimal combination of the parallelism of optics and the flexibility and decision making
““ advantages of digital processors. Optical systems using CGHs can also perform the reguired
~ transformations and projections directly on the 2-D input image data. The coded-phase
- processor [3B] is one method to achieve this. Examples of its use to realize FK [39],
M least-squares [(40,41] and the hoteling trace [42] operations have also been recently report-
N ed. The Lkasic concepts in these optical systems is to determine the linear combination
filter desired for each class (this is a linear combination of the training set images).
G This LDF (linear combination filter) is then encoded on a mask. A separate encodina is
f- required for each input object class. The projection of the input test image onto each dis-
- criminant function is then optically produced and the result is summed. The phase of the
-, input data is removed to allow different projections to appear on physically different de-
.. tectors in the output plane of such a system, The detector with the largest output then
- denotes the class of the input object. Such a system (as presently described in the litera-
. ture) is not shift-invariant and is thus best described as a feature-space method. If o
shifted versions of each input object are included, the space bandwidth product reguirements F
v of the associated CGH increase linearly. Such methods are appropriate for achieving shift- e
. invariance of such a system, however such details have yet to be published. The use of _\3\
.. optics in this case is thus most attractive when there are a large number of classes to be S
" searched. However, in general, the vector inner product operations required are not compu- -~
- tationally intersive unless the number of features used is also auite large. '{j
_: 3. FEATURE-SPACE OPTICAL P;TTERN RECOGNITION (OPR) ';,‘-'-.'
In this section, we briefly discuss nine different optical feature extraction or genera-
tion systems and their performance and status.
Lo T T
l;l: RIS R
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3.1 FOURIER COEFFICIENT FEATURE SPACE

Since the FT operation is automatically performed optically (Figure 1), this 1s an obvicus
featuvre space. It is also attractive because it easily allows for dimensionality reducticn.
Thercst attractive optical dimensicnality reduction method 1s to detect and sample the ortuicel
FT pattern (plane P of Figure 3a) with a detector with wedge and ring shaped detector

elements (Figure 3b). This concept was first advanced in [11] and used for screening cf
aerial images {11], for various production gquality inspection tasks [11], and with ar imzze
and wedge ring detector (WRD) detectionplanes for aerial i1mage classification. re

commercial version of this device used 32 wedge and 32 ring-shaped detector elements. Thais
achieves dimensionality reduction from N2 to 64 features. Since the intensity of the FT
detected, the system is translation invariant. For real images, the FT is symmetric anZ
information loss results from the separate use of the two halves of the FT plane. The w &
outputs F(%) are scale-invariant and their distributiorn shifts as the input object rcotates.
Conversely, the ring outputs F(r) are rotationally-invariant and the distribution shiftis as
the input object is scaled.

—>

LASER —

—D

INPUT FT LENS WRD

(a) (b)

FIGURE 3
Optical Four:u: cooificient feature space processor (a) and wedge ring
detector optical pattern recognition concept (b)

The most recent pattern recognition work on this feature space has involved realizat:ior
of this detector using Ciis [(6]. This allows more flexibility and lower cost and size.
The optical realization of this unique detector plane sampling appears essential because of
the large time required to digitally perform the necessary interpolations. Recent pattern
recognition tests on this WRD Fourier coefficient feature space were performed for the
purpose of distinguishing letters and different vehicles [12]). Results and details are
available elsewhere [12]. The highlights of this work were attention to the use of ampli-
tude versus phase Fourier coefficient features, the effect of noise, and investigation of
three different feature extractor algorithms, and demonstration of scale and rotation-invar-
iant object classification and recognition using such a feature space. However, only
limited scaled and rotated versions of the input objects were tested.

3.2 WIGNER DISTRIBUTION FEATURE SPACE
The Wigner distribution (WD) function

Weg (tow) = St + /g  (t-1/2)e” T an (%)

is a simultaneous time and frequency display of the signal data. For images, the WD 1s a
4-D display. Auto and cross WD functions can be defined similar to (4). The WD describes
local variations in the frequency control, whereas the FT provides global signal freguency
information. Since images are non-stationary, a WD feature space should be mecst useful.
One can optically produce a WD by many different techniques. An attractive method (§) uses
the FT of the product of the data in two AO cells at #45°. A binary mask (usir; 4 macnet:c
optic SLM [43]) allows a desired sum of different WD features to be achieved on-line crn a
single detector, for which subsequent pattern recognition analysis is then greatly simpli-
fied. This is essential since the WD of a 1-D function is a 2-D pattern. The most recernt
review of this work [44] includes an SNR comparison of the optimality of WD features and
initial simulation results. For pattern recognition, the auto WD of an input and reference
are multiplied and integrated over time and space. In this case, the mask in Figure 4
would contain the WD of the reference(s). This appears to be an attractive approach for
many pattern recognition applications. The use of an optical processor and dimensional:ty
reduction technique as in Figure 4 is essential because of the increased dimensionality cf
the output in a WD feature display. Researchers in Germany [45], Wisconsin [46] and CMU
[44) are the most active ones in this pattern recognition research area.
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3.3 CHORD DISTRIBUTION FEATURE SPACE

The chord distribution is defined for a binary boundary object only as the distribution
h(r,€) of the lengths r and angles ¢ for all chords that can be drawn between boundary
points on the object. Denoting boundary image points by O(x,y) = 1, a chord defined by tlre
polar coordinates r and € exist between any two points if

RPN I
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gi{x,y,r,€) = b(x,y)b(x+r cos 8,y+rsin6) = 1. (5) SL\

The distribution of all chords in the image is the integral of (5) or [21) E;E‘

h'(r,8) = jlg(x,y,r,8)dxdy = b(x,y) @ blx,y) = hll,L ), (6)
| where (ix,fy) = (rcos €,rsin€). From the last expression in (6), we see that the chord ;

distribution can be obtained from the autocorrelation of the boundary of the object. The
autocorrelation h(iyx,%{y) thus contains information from which the conventional chord distri-
bution h(r,¢) can be ogtained, however compliccted trigonometric and square-root calculations
. are required for this transformation. This feature space is still quite useful and attrac-

- tive !23,24] except for the large computational load required to compute these features.

. In [20}, we first noted that by sampling the autocorrelation of the object with a wedge ring
. detector, the chord distributions

"

T
vt Te s
] .
@ ot e

LNPENEIER

DA

7Y a

h(r) = fh(ix,iy)rde, h(g) = fh(ix,ﬂy)rdr 7)

R could be obtained directly. As before (Section 3.1), the advantages of an optical WRD are

g again clearly needed to achieve this. Nichols [18] later also noted this and suggested its
calculation from a digital or optical FT of the optical power spectrum of the image. The
computational load in the interpolation reguired in (7) can rapidly become excessive however.
Thus, WRD sampling techniques {20] and other methods of optically producing the autocorrela-
tion [2]1]) appear preferable. The general block diagram of the hybrid optical/digital chord
feature space processor we consider is shown in Figure 5.

.: »
N h(r) ,h(8) FCATURE EXTRACTION LA
INPUT WRD | TN
, —>| AUTOCORRELATION ‘ (FISHER) W,
v OBJECT SAMPLING AND CLASSIFICATION v g
DA

- t..'-'.
0aS FIGURE 5 e
>, Block diagram of a hybrid optical/digital chord feature space processor .f\f
s Y
\ KN
:.'::4

Several authors [24] have expressed concern over such a feature space and its use for the gﬁﬁ

recognition of complex objects. However, our post-processing algorithm and testing [20-21)

14

have confirmed the usefulness of such a feature space. In [21-22]), we extended the tech- ot
nique in (6)-(7) to include a silhouette image of an object with internal gray levels. ‘);
These generalized chord distributions that result from such a feature space are much more :aq
useful object descriptors than the original binary edge chord functions. They also promise o
better noise performance (22]. 1In (19],Nichols considered the case when the dynamic range \ju
NN
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of the data and more specifically i1ts FT causes a type of edge enhancement to occur in the
data for which these features are extracted. 1In [21), we address the use of this chord
feature space for the classification of ships in the presence of out-of-plane rotational
distortions. For this, a training set of 12-18 ships per class was used. The 18 best h(%)
and h(r} features were selected using KL and divergence measures and a Fisher LDF was com-

ruted from the resultant training set data. Extensive tests [21] showed perfect 100% recoc-

nition performance to be possible on separate test set ship imagery. In [22), we further
extended this technique to include in-planc scale and rotational distortion invariarnce and
methods to extract these in-plane distortion parameters from the resultant feature space
data. 1Initial demonstrations obtained with this technique were mcst attractive. By
properly weighting the chords of different lengths, global (large r) or local (small r) ob-
Ject features can be emphasized or a weighted combination of both can be used for object
identification.

3.4 MOMENT FEATURE SPACE
The geometrical moments

mg = SE (x,y) xPy9axdy (8)

are a well-known and attractive feature space. However, the computational load in comguting

such features is such that present systems are restricted to the calculation of moments for

binary objects or for the computation of only a few moments. Various technigues to ortical-

ly compute the moments of an input object exist. These include the use of computer genera-
ted masks (13), a holographic mask [14]), acousto-optic (AQ) cells [15] and moment calcula-
tions from 1-D projections [28). In the system of Figure 6, the image f(x,y) is imaged
through masks g(x,y) at P2 on which the monomials »Py9 are recorded on different spatial
frequency carriers. The products f(x,y)xPy9 are formed in parallel by optical multiplica-
tion, the integration is achieved by the output lens and each moment in (8) is formed at a
different detector in P3 (with the location of the detector determined by spatial freguenc:
carriers on the mask). 1In this way, all 21 moments up to fifth order can be produced opt:-
cally ir parallel. The detector outputs are then fed to a digital post-processor which de-

termines the class of the input object, its orientation and the confidence of these esti-~
mates.

input A Mask
1(x.y) olx.y) r.n,.
— | ——|—p— :
P {maging P, FY P,
' Optics * Lens ’
FIGURE 6

Optical system to generate all moments in parallel

This architecture and a moment feature space are attractive because of the ease with
which the computed moments can be corrected for different optical system and SLM error
sources [13]. A compact version of this system is under design together with alternate
ways to optically produce moments. This technique has been successfully demonstrated in
the classification of real ship images using very modest digital preprocessing operations
[47]) and in successfully and accurately estimating the in-plane distortion parameters of
ship imagery {48]. The full hybrid pattern recognition system using this feature space is
shown in block diagram form in Figure 7. It consists of a first-level estimator that pro-
vides class and aspect estimates. The hierarchical tree search used [17] is unique because
the classes separated at each node are selected automatically using a multi-class Fisher
projection method and because the discriminant vector used at each node is selected auto-
matically from a separate two-class Fisher selection technique. As always, these off-line
operations are performed on training set data and the only on-line operations regu:red :re
the vector inner products {one per node in the tree). Aspect estimates are obtained from
the ratio Gzo/uoz ratio obtained from the computed central moments of the input test object.
An iterative nonlinear algorithm is then apnlied to these classes and aspects are passed
from the first-level estimator. The final classification and orientation of the object 1s
then obtained in the second-level classifier. The algorithm used in the second-level clas-
sifier is the minimum error Bayesian classification algorithm. This is possible because the
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o~ 1.oments are jointly Gaussian random variables. Extensive tests have been conducted on a set
: of 180 images of ships [17] in five different classes with 36 different aspect views per
o’ ship and for a data base of 324 pipe parts [16] in five different groups with 36 different
- aspect views for each of 9 different pipe objects. These tests showed excellent performance
™ (86% correct recognition of all ship images, 98% correct recognition of ship views within i
50° of broadside, and 97% correct pipe classification). These tests used only 4-9 differert ;_,;
LS, aspect views per class for training, required only 4-6 iterations in the Bayesian classifier . )
v nonlinear algorithm, and showed that the use of the identity matrix as a valid approximation oy
:. to the covariance matrix was adequate. These issues greatly reduce the computational load Iy
.‘; required on the digital post-rrocessor. Details of this system and these results are avail- o
-~ able elsewhere [16,17]. These tests on full 3-D distorted imagery using only a limited ;\;
> training set, and a large test set have alsoc been applied and verified on real imagery. c:-,-j
- This makes such a feature-space pattern recognition technigue appear most attractive and -
J demonstrates a clear role for optical processors in feature extraction based pattern reccg- R
. nition algorithms. N
v
~ A
. .'.:’ﬁ
. ':'4“
N A Class ool
INPUTY > MOMENT pg’ FISHER Estimate .
. IMAGE COMPUTER CLASSIFIER ] » REFERENCE T
"",
P Aspect Moq
~ . ASPECT Estimate
. ESIMTATOR | DATABASE
< u
ITERATIVE NONLINEAR e
». CLASS (i) LSM CLASS/ASPECT/DISTORTION
ORIENTATION (b)—— PARAMETER S
- CONF 1DENCE .
- A
-\;, Lot
r FIGURE 7 .
Hierarchical hybrid optical/digital moment feature-space ":\j
< pattern recognition architecture ;.'-
.- ."\'\.j
o A
-~ 3.5 HOUGH TRANSFORM FEATURE SPACE sy
. The Hough transform (HT) has recently received considerable attention and interest in _,."\-"
: digital image processing because of its robustness and the ability to implement it on S
pyramid digital architectures using simple histogram and accumulation operations only. Both g
- coherent [27] and non-coherent [25,26,28] optical architectures to compute the HT have been ASK
N detailed and demonstrated. The HT maps each line in an image into a point in a (9,%) D
G feature space, where p is the perpendicular distance from the origin to the line and & 1s LAY
-."; the angle the line makes with the x axis [31). This technique has been generalized [30], e
A extended to curve detection [32] and its similarity to an MSF noted [32]. 1In the optical o
¢ realization of this transformation, the equivalence of a radon transform (RT) and HT is used T
[29). The RT is defined as "
-
~ "~ o --'.'
~ f(o,8) = J/f(x,y)é(p- x cos 6~y sin ) dxdy. (9) o
"-. -0 ._‘i:
b This is equivalent to the projection of £ onto a line o normal to the angle €. We denote AT
» f at one 6 by fo and the full 2-D HT by f. To provide insight, we note that a point (xg,yq) A
:- in f(x,y) is a sinusoid in f(p,6) space described by ra¥,
L3 |
o o = x,cO88+y,siné6. (10) .-:
" X
_ The RT is equivalent to the HT with the sinusoid weighted by the value (intensity) of the =
(x0,y0) pixel point in f(x,y). 1In this feature space and transformation, a line in (x,y) 1is S
o a point in (-,%), a curve is a set of points in (¢,?), etc. Thus, an object composed of e
‘: lines is described by a distribution of points in the (:,8) Hough space. ;._‘f
4 A noncoherent architecture [28] to realize the RT or HT is shown in Figure 8. 1In this -
o™ simple system, the 1-D integration (projection) of f(x,y) is performed bv a cylindrical lens and R
.« . 1s produced. The angle € is varied different fo projections at different ¢ produced and the -
R f{:,%) distribution produced by placing a rotating Dove prism behind the input obiject. e
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With a modest 500 rpm rotation rate, one f.(:) slice of f is produced every 60 .sec and a
full f pattern at TV frame rates. To employ an HT feature space for pattern recognition,
the HT of the input test object is compared to the HT of the different reference objects Ly
whichever feature extractor and classification technigue (Section 2.2} one desires.

IMAGI
OBUECT iy
SCENE 1-D DETECTOR
0 o™
;(;‘09)
IMAGE
ROTATOR
Y y'
p ‘ézig}‘c
FIGURE 8

Optical system to compute the radon transform or
Hough transform by 1-D image projections [28]

3.6 OTHER FEATURES FROM THE RADON TRANSFORM

As noted zhove, the HT feature space is equivalent to the RT features generatec¢ or the
system of Fig.ie 8. Smoothing of the input image und converting edges intc lines 1s re-
guired and possible by convolution with Gaussian and edge operators. By the central slice
theorem, the 1-D FT of £: is the 2-D FT of f evaluated along the line at 8. By the filter
theorem, the 1-D convolution in ¢ at each 8 for [ ard a reference function § is a slice
through the 2-D convolution of f and g at €. Thus, all necessary 2-D filtering operations
are possible on projection vectors with 1-D operators. Conventional AO FT and convolvers
can easily achieve this at the 60 usec rates needed (or even faster if required).

Many other features can also be obtained from this RT output {28). If the 1-D f. outputs
from Figure 8 are fed each Tp = 60 usec to an acousto-optic (AO) spectrum analyzer, their
FT is produced. One large area detector covering half of the FT plane produces a wedge
sample F () of the FT of f each Ta. A linear detector array with an integration time NTp in
the other half of the FT plane yields the FT ring samples F(o) each NT,. Thus, a WRD FT
feature space results. The moments m,® (the n-th moment of f about 6) can be computed and
related to the conventional mpg. However, one can also simply compute the first ten myg
from only four f: projections ?28]. At CMU, we often prefer to use the f. features di?éctly
rather than converting them into mpg features with a loss of information.

From two orthogonal projections 90° apart, the convex hull rectangular boundary of any
object can be determined. With N projections, an N-order polygon defining the object
boundary can be obtained. The projection widths versus €& results in a 1-D feature vector
w(g). This or its FT can be used for object identification.

Polar projections of the integral through the centroid (x y) of the object as a function
of 6 are another useful descriptor of the object shape. If each projection f5 is evaluated
at the one point

D(8) = Xcos B +ysiné, (11)

then the 1-D feature vector s(6) results. This is similar to a chord transform, but only
fcr chords through the centroid (the centroid is easily obtained from moments). It is also
analogous to older polar space~-variant optical transform work without the scale-invaricnt
Mellin transform properties of this earlier optics research [49].

3.7 AUTOCORRELATION OBSERVATION SPACE

The shape and distribution ot the autocorrelation of an input object contains significant
information useful for object recognition. The general architecture for a processor to
analyze such an observation space is shown in Figure 9. 1In recent work [50), Merkle has
considered many different sampling methods and features calculated from an autocorrelation
observation space. These digitally-calculated features (computed from an optically-produced
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autocorrelation pattern) may require extensive time. The features considered include corn-
tour features such as chain codes and Fourier descriptors, various histogram operatcrs, mo-
ments of the autocorrelation function, etc. A large set of tests on different characters
was performed and the results obtained using different features were compared.

NAL
TERMI PIC COHERENT
OPTICAL

IMAGE ’ CORRELATOR
jo—ed PDP 11/60 MONITOR VIDICOM <~
PROCESSOR ‘
A\ | )
1IMAGE ‘;7
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MEMORY OPERATION
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FIGURE 9
Block diagram of a hybrid optical / digital autocorrelation
observation space pattern recognition processor [50]

3.8 OTHER FOURIER TRANSFORM FEATURE SPACES

In recent work, the use of CGHs and HOEs to optically realize various special sampling
functions (such as wedge ring detection) has been considered and experimentally demonstrated
(6}. In other FT observation space research, Duvernoy [84] considered isoenergy contours
in the FT plane. He computed the Fourier descriptors for such contours at various levels.
Several basis function analyses technigues were used to classify various types of terrain
(woods, fields and cities). These isoenergy contours are attractive because they combine
spatial frequency as well as directional information. The spatial frequency and directional
information is also available from wedge ring detector outputs, however a WRD space provides
this information separately, not combined as in an isoenergy contour analysis.

3.9 DISCUSSION

As one can easily see, there is significant new research on optically generated features
and feature extractors. These new advances allow many different observation spaces to be
used. The optical generation and calculation of all major feature spaces has been demon-
strated and described. The attractive aspects of this research include:

(1) The same architecture can compute the features for any input object. Thus, a new
architecture is not necessary for a new object identification problem.

(2) The parallelism of optics in feature generation and the flexibility of digital
feature extractors and classifiers are matched guite well in these architectures.

(3) A different discriminant vector w or feature extractor algorithm can easily be
included in the digital post-processor, should a given object identification data
base necessitate this.

(4) Dimensionality reduction can and has been employed to reduce the calculations
required by the digital post-processor. Alternatively, the projections and
transformations can be optically implemented if desired using computer
generated holograms.

The shortcomings of these or any digital or analog feature extractor for pattern recognition
include:

(1) A higher susceptibility to noise. This is a direct result of dimensionality
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:\‘ {2) The need to segment the input object into interesting candidate regions before
;{ feature extraction. We refer to pattern recognition architectures capable of
P handling multiple object simultaneously as shift-invariant (e.g., a ccrrelatcri.
Py ®

4. RECENT OPTICAL CORRELATOR ADVANCES Q'
) o -
Ny -~
hf 4.1 MULTIPLE MSF CORRELATORS :a
Q§ Several advances 1n optical correlators are briefly reviewed in this section. The :rn:it:al o
] description of Figure 1 assumed a single MSF at P), however multiple MSFs are alsc p-scs.ilc nj
% [51-53}. 1In these cases, spatial and/or frequency-multiplexing of the MSFs are used, 1Ir,

*

the space-multiplexed case, the FT of the input object must be replicated, multiplied kv the
different MSFs at different spatial locations in P2 and the correlation of the input with

i
a

% X

the different MSFs performed. Holographic lens arrays and HOEs [52), a fixed screer tech- -j*
O nigue [53) or a rotating grating [54]) can be used to access these multiple filters. 1In the ‘:?
-7 latter case, separate output correlations appear seguentially. In the other cases, multirle :f'
h. correlations are available in parallel or can they can all be superimposed (the first chcic N
ro- reguires the analysis of multiple correlation planes whereas the second choice results 1:n v
;3~ poorer correlation plane SNR). The best choice depends upon the application. >
a3
4.2 SPECTRAL CORRELATORS ot
! F.T.S. Yu [55]), Ludman [536] and others have actively pursued the use of color or spectral :-."
f“ MSF processors for image processing {image subtraction, deblurring, etc.) and pattern -
’. recognition [55). These processors have the architecture of Figure 1 with a color input RO
N imace, a tricolor grating behind P} and a white light source at red, green and blue wave- e
lengths. This forms the FT of the portion of the input in each spectral (color) bandé :n a et
different spatial location in P2. Thus, different MSFs can be applied to different spectral e
data. Alternatively, objects in different colors in the input will produce correlation
peass at P31 in different wavelengths. The power dissipation and availability of the neces- K
sary light sources is a practical problem with such architectures. The use of color diver- e
sity appears to best be utilized as an adjunct to the conventional x,y degrees of freedom S
of the system to simplify system fabrication and output data analysis [57]. O
4.3 HYBRID OPTICAL/DIGITAL PATTERN RECOGNITION, IMAGE UNDERSTANDING AND S
ARTIFICIAL INTELLIGENCE v
The use of pattern recognition (PR), image understanding (IU) and artificial intelligence
(AI) technigues in a hybrid optical/digital architecture has recently been addressed in an oS
interdisciplinary program at CMU. A general diagram of the architecture is shown in Figure f\
10. The optical portion of the system produces features and correlations with generic SDFs N
(sce Section 5). Both optically and digitally computed features are considered and the r:
optical systems are adaptively controlled by feedback from an AI/IU processor that compares S
the results obtained to a world model and which uses the results obtained to adaptively -
T construct and modify the world model. Such an advanced general architecture appears to be f"
most attractive for new supercomputers. Initial tests on aircraft images, an on-line tech- -
nique for producing reference objects in any 3-D orientation by synthesis of the object as “:”
polygons, and related Hough transform feature representations for objects appear to make S
such an architecture most attractive and realistic for advanced hybrid supercomputers. :gf
<.
4.5 SUB-PIXEL TARGET LOCATION, TRACKING AND IDENTIFICATION :’:
Another recent optical correlator application under research at CMU involves the location, g

tracking and identification of moving sub-pixel targets from space-based mosaic sensors.
The technique used involves: (1) the correlation of two successive image frames, (2)
sampling the central 3 x 3 or 5 x 5 region of the correlation plane, (3) by estimation de-
termining the shift between two successive image frames (this is achieved to sub-pixel
accuracy), and (4) the interpolation and resampling to shift one of the images by thas
estimated sub-pixel amount, and (5) registration and the subtraction of these two frames.
The shift and registration must be performed to sub-pixel accuracy to extract the target.
In Figure 1la, we show a typical input with a sub-pixel target 0.2 of a pixel in size. A
sequencc of three such frames was produced with the background shifted by 0.1 pixels frame-
to-frame and with the target shifted by one pixel frame-to-frame. The result after proces-
sing (Figure 11b) shows the successful location of the sub-pixel target and its relative
position in each frame. Such a time-history track file provides the necessary informaticn
for target identification and classification.
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FIGURE 10
Block diagram of a hybrid optical/digital combined
pattern recognition/image understanding/artificial inelligence image processor

(a) (b)

FIGURE 11
Typical imagery (a) and output (b) data plane showing the successful
detection and tracking of a sub-pixel target
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5. DISTORTION-INVARIANT SHIFT-INVARIANT OPTICAL CORRELATORS

Correlators represent guite powerful pattern recognition processors with large processina
gain and shift-invariance plus the ability to handle multiple objects simultaneously. This
correlation operation is easily achieved optically (Figure 1). Although it is thc optimum
detection scheme only for white Gaussian noise, its performance in practical structural

clutter 1s well-known and has recently been theoretically addressed [58]. 1Image processirnc
1s qu.te tolerant of the dynamic range requirements of the data. In fact, binary data per-
forms quite well [59}) and 1s often necessary with some SLMs [60). The susceptibility of a

correlator to distortions between the input image and reference MSF object are its well~
known shortcomings. A basic method to overcome this disadvantage and yet retain civantagecus
properties of a correlator is shown in Figure 12. This method involves the synthesis of =
synthetic discriminant function (SDF) from a training set of several images of each class,
rather than forming a single image representation of an object 1in one orientation (and usarc
multiple such images in a multi-channel correlator). The basic technique used 1s to select
a basis function set from the training images (these consist of different distorted views

of each object class) and from this synthesize an SDF. An MSF of this SDF 1s then produced
and used 1n an optical correlator (Figure 1). The SDF = h is a linear combination of the
basis function set {:;: or the training set images {f)

hix,y) = Lbncn(x,y) s hix,y) = Zanfn(x,y). (12)

This concept was originated by Hester and Casasent [61), applied and demonstrated for intra-
class [62]) and inter-class [63] recognition. The filter h and the associated orthonormal
basis function set selection by Gram-Schmidt, KL and other techniques have been detailed
previocusly [61-63]. The generalized matched filters (GMFs) of Caulfield [64,65) are a
special case of the SDF where the basis function set ¢ are the exponentials and a Fourier
coefficient feature space is used. No general sclution to the N¢ coefficients requireéd to
be computed in GMFs has been advanced and the system is not necessarily shift-invariant be-
cause the full correlation plane response is not specified. The circular harmonic SDFs of

Arserault [6€] use one circular harmonic in the expansion of f(r,“) to synthesize thc filter.

These filters achieve only rotation-invariance with shift-invariance being a possibility.

In recent work, Stark [83] noted that high SNR; may be required and that the choice of the
center of expansion and the harmonic(s) used is not easy and that for complex objects the
resultant processor may not be shift-invariant. Stark [83] recently offered a vector formu-
lation, used FK techniques and retained several harmonics in an improved version of these
circular harmonic filters. Both these filters and the GMFs regquire far more extensive noise
and discrimination tests on large data bases before they can more properly be assessed.
Since SDFs are more developed, tested, analyzed and have a clear mathematical basis and
synthesis algorithm, they will be emphasized.
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FIGURE 12
General synthetic discriminant function (SDF) matched spatial filter (MSF)
distortion-invariant hybrid correlator concept
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SDFs are synthesized from the vector inner product matrix V of the training set images by
specifying the desired correlation plane values at different locations (such as the peak of

A
!
~l
3

"' the correlation function). These values are specified by a vector u. Depending upon the
> application, five different SDFs are possible. Each corresponds to a different vector u and
* matrix V. However, in each case, the SDF is defined by

{
l.'
>
>
-
“

a=vlu (13)

(ST

which specifies the coefficients &, in (12) which define the SDF = h. 1If u is all unity, i{f
an SDF with the same output correlation peak intensity for all objects of one class (inde- -
pendent of the geometric distortion chosen) results. With alternate choices for u, a2 two- s
class SDF with unity correlation peak values for objects of one class and zero peak values r}

for objects of class two results. Alternate projection values (1,2,3) allow one SDF to

discriminate between three object classes, with the value of the correlation output defining s
the ob)ect class. Use of several SDFs and a truth table of the multiple correlation plane ::r
outputs at each location yields the final type of SDF. These SDF synthesis techniques are a7
unified in [67). Excellent performance on ship imagery has been obtained with these SDFs as RNt
summarized in [68] where their performance in noise was also quantified. o

We refer to these as projection SDFs. They do not often perform adequately, due mainly
to the fact that the synthesis algorithm specifies the correlation peak value at only one
point (the center of the correlation function). As a result, nothing prohibits peak
values above threshold from occurring for shifted versions of a false target (for which an
output below threshold, ideally zero is expected). New correlation SDFs [69] overcome this
by specifying the correlation plane values for true and false targets at the central peak
and tds pixels away in x and y. The specified value 3dg pixels away is generally zero and
the value at the central peak is generally one {for true class objects) and zero (for false
class objects). This synthesis algorithm is realized exactly as before with the inclusion
of shifted versions of each training image. This results in a well-controlled correlation
peak shape (a large central peak and zero or low values 3d; pixels away) for true targets
and zero values (central and td; pixels away) for false targets. This also allows the use
of both a peak threshold Tt and a peak to sidelobe ratio threshold Cp to be applied to the
output correlation plane pattern to determine if a candidate region of the input image
contains a target and the class of that target. Recent tests performed with these correla-
tion SDFs considered three automatic target recognition (ATR) objects (Tank 1, Tank 2 and
an armored personnel carrier APC). Figure 13 shows representative images of the APC and one
of the tanks. For each of these objects, 36 aspect views were available at 10° increments
and a given depression angle around the object. The target resolution on these images was

i

.

+
e

degraded to about 50 x 20 pixels. The objective was to form an SDF using only 6 or so dif- :#:
ferent aspect views such that the correlation plane pattern had a peak for one class and no e
peak for the other object class. Table 1 shows results [69] obtained with three different \;\
types of correlation SDFs intended to discriminate Tank 2 from Tank 1 independent of 3-D :,\

aspect distortions. As seen, 93-95% correct classification with no missed targets is possi-

ble using only 6 aspect views to synthesize the SDF and with the SDF tested against all 72 f'\
aspect views of both object classes. Table 2 shows similar data for an SDF to discriminate -
APCs from tanks. Here, with 12 training set images/class, we find perfect performance to be Mo
possible. Figure 14 shows noise test results when four targets (2 tanks and 2 APCs) not [
present in the training set were placed in a typical scene (Figure l4a) with an input SNR e
approximately equal to one. The output correlation plane (Figure 14b) shows only two peaks *#:
at the correct location of the two tank objects. Clearly, the SDF has discriminated against $¢~
the APC targets and other structured noise clutter in this scene. These are typical of the }}

excellent results obtained for full correlation plane analyses of the SDF performance for
3-D distortion-invariant multi-class target recognition in clutter.

S

Recently, considerable attention has been focused on the importance of the efficiency of
optical correlators (i.e. the usable optical light in the output correlation plane compared
to the energy of the input image) [70] and to the use of phase only MSFs [71] to improve
light efficiency. Butler and Riggins [72] distinguish between a phase only MSF in which
only the phase of the MSF data is recorded on either an absorption media or on a& bleached
material. Phase MSFs provide more useful light and initial results indicate that they pro-
vide better discrimination (correlation plane SNR). However, only limited simulations on
two similar letters were performed [71] and no theoretical basis has yet been advanced for
this result. The motivation for this recent attention and an entire conference sessiocn [72]
on CGH realization of SDFs is the excellent performance of these filters, the availability
of several commercial CGH recorders and the use of such CGH filters in the fabrication of a
compact SDF-based correlator. Gianino and Horner [75) guantified by simulation the expected
worse sensitivity of phase-only MSFs with respect to object distortions. Thus, the use of
S§DFs with phase-only CGHs is a natural approach to consider. It provides better efficiency
and overcomes the distortion sensitive performance of conventional filters. Riggins and
Butler [74] recently simulated the original equal correlation peak projection SDF with a CGH.

They found 1% light efficiency and good performance on ATR data. However, much more exten- S
sive tests are required on the new advanced SDFs and on larger data bases. Kumar et al [76] e
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(a)

Typical ATR images of a tank (a and b)

have provided the only theoretical basis for the optical efficiency,
and number of filters to be used in an SDF.
this problem however.

FIGURE 13

(d)

and an APC (c and d) target

objects used in correlation SDF tests

Tank 1 versus Tank 2 correlation SDF test results using 6 training

set images per class. Errors out of 72 test images are listed
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versus APC correlation SDF test results using 6 training set images per class.

Errors out of 72 test images are listed.

FIGURE 14
Multiple non-training set targets in clutter (a) and correlation

(b)

output plane with peaks for correlation SDF filtering at true target locations (b)
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Since these prior tests did not employ the new correlation SDFs, w. synthesizecd a ccrre-
lation SDF-3 of the ship and tested 1t against real ship imagery with different amounts of
amplitude and phase data retained. We found that the phase-only filter performed well, Lut
that retaining two bits of amplitude MSF data arnd twe bits of phase data gave significantly
better results. Thus, from these recent tests of ours, 1t appears that a filter with =«
ampl:tude data present 1s preferable to a phase-only filter. Considerable future work anc
results are anticipated 1n this area.

€

6. SYSTEM FABRICATION

IR

A I-D real-time SLM 1s the key element for a successful parallel 2-D OPR syster. Thre
state-of-art of these devices 1s summarized in [5). Recent Soviet work has resulted :
rerfcormance FRIZ (81) and ligquad crystal SLMs with high sensitivity, resolution and e€ff;-
ciency and with unigue properties such as directional spatial filtering, edge enrnhancenm
and the ability to detect and respond only to dynarmic removing input okjects [8l}. Marny
real-time optical correlators have been fabricated, described and demonstrated. The Gerncral
Motors system for robot inspection [77] 1s one such system which used a liquid crystal real
time input SLM. Two-dimensional output readout was simplified and rotational invar:arce
accormylished by use of a rotating prism and a cylindrical optical system using two 1-D detectcr
arrays, rather than a 2-D readout array. Several multi-channel real-time optical correla-
toers using a lagquid crystal input transducer and multiple MSFs have been fabricated at
Huntsville as described in [78]. 1In these systems, attention was given to filter synthesis
using weighted MSFs [82] to reduce, rather than overcome, scale and angular object sensitiv-
1ty and hence the number of multiple filters needed. Multiple MSFs on the same filter were
tested on these systems fcr light efficiency and spatially-separated MSFs were accessed by
different laser diodes in different input spatial locations. 1In the first system, all
correlation plane patterns were superimposed. In the second system, different laser diode
sources allowed separate MSFs to be accessed when the difference between the orientation or
scale of the input and reference object caused the correlation peak to drop sufficiently.

IooniCl

A recent magneto optic SLM [43] offering low cost has been developeé and demonstrated for
sample whate light spatial filtering [80] image processing functions (rather than correla-
tions) and for low space bandwidth product CGH MSF correlations [60]. The binary (rather
than gray scale) response of this SLM and its present low resolution and low transmittance
are limitations that must be overcome before it will see general use.

All of these prior real-time optical correlator systems did not attempt to sionificantly
reduce the physical sizc of the optical system. A compact portable version of the Huntsville
optical correlator was recently fabricated by ERIM [79] and is shown in Figure 15. This
system uses four laser diode sources to access one of four spatially-multiplexed MSFs with
the output correlation plane detected by a 2-D charge injection device (CID) detector array.
The correlation unit is 15 x 23 x 42 cm and weighs B kg. Electronic support unit for 1t.
is 15 x 28 x 35 cm and weighs 8 kg also. The total power consumption of this portable
compact optical correlator is 55W. It is possible to fabricate far smaller and lower power
dissipation versions of this architecture and several of these are presently being con-
sidered.

'Y
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All prior well-engineered real-time optical correlators have used ornly simple or several
simple multiple MSFs and have thus achieved cnly limited distortion-invariant pattern recco-
nition. While the physical size of these processors is sianificantly less than the classaic
large optical bench processors, they are not yet compact enough for use in a missile. A
more practical optical correlator would be one which employed the advanced SDF MSFs and one
which was significantly smaller in size. The use of SDF filters would reduce the complexity
of the system and extend its practicality and versatility. The system of Figure 16 was
recently fabricated by General Dynamics-Pomona and demonstrated in initial tests using com-
puter generated hologram SDF MSFs. The system is less than 5 inches in diameter and approxi-
mately 12 inches in length. It is intended for use in a 5 inch missile for on-line real-
time ATR pattern recognition. It employs folded optics, mirrors rath:r than lenses, rmulti-
ple SDFs, several output correlation planes, and presently a real-tir- liguid crystal SLM.
Tower tests and captive helicopter tests of this system are expected to be amona the high-
lights of OPR work in 1985. This real-time optical correlator of Figure 16 represents the
first such processor suitable for airborne use in a 5 inch missile that has reached hardware.
Further such committments and research support by government and industry are essential to
rrovide the necessary transfer of technology from OPR research to airborne hardware.

7. SUMMARY AND CONCLUSION

A brief review of the major operations achievable and the major OPR architectures has
been provided. This was followed by descriptions of nine different optical feature extractor
hybrid pattern recognition processors. These systems optically produced all of the ma-cr
image features using the parallism of optics. Feature extraction and classification orn these
optically generated features is then performed in a digital post-processor. The resultant
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rybrid optical/digital systems combine the best advantages of optical and digital processors.

These techniques are quite noteworthy because the same optical architecture can compute
the indicated features for any input object and thus the same system is usable for any ob-
ject identification application. The discriminant function, feature extractor, transforma-
tion and classifier used can be changed as desired by employing the flexibility of the post-
processor. In all cases, multi-class 3-D distortion-invariant pattern recogniation is the
objective considered. Extensive tests have been made on several of these systems on large
data bases. These include a large number of related objects in different classes with 36
different aspect views of each object (at every 10° increment) from a 20-40° depression
angle. Thus, this represents a multi~class full 3-D distortion problem. Training sets con-
taining only 4-6 different spatial views per object class were found to be adequate to pro-
vide excellent 86-98% correct object recognition and classification identification in over
300 test imajes in one data cet and over 175 test images in a second data base.

{olhitating~
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#irror Laser Diooe Mirror
Subassentiy N

943 Filter Mirrgr '.x
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FIGURE 15
Compact portable real-time ligquid crystal optical
correlator using 4 matched spatial filters [79]

FIGURE 16
Photograph of the General Dynamics-Pomona airborne real-time optical SDF correlator
for packaging in a 5" missile (Photo courtesy of D. Fetterly, General Dyramics-Pomona)
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When performance in high clutter and noise is required, a correlator is needed. With \Qh
SDFs, a 3-D distortion-invariant multi-class pattern recognition corrclator is possible o 2J\,
with all of the advantages of a correlator retained and with distortion-invariance provided. LN
Excellent initial test results of the full correlation plane data were presented and a Q}K
typical example of the performance in clutter of the system was included. The final issuc <L
in an OPR system is system fabrication. As shown, significant strides have recently becn "
made in this area with an advanced SDF-based real-time optical correlator packace for a JG&
five inch missile having been fabricated and initially tested. The world of optical patterr LAY
recognition has a bright and attractive future in all aspects. Further government and v
corporate committments are still necessary to insure timely transfer of this technclogy to a0
hardware however. Ny
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X e
- ABSTRACT e
0 —_— el
: Diffraction pattern sampling provides a feature space suitable for object classification, \iﬂ:
N orientation and inspection. It allows significant dimensionality reduction. These proper- N
N ties are best achieved by the use of specifically-shaped Fourier transform plane detector e
elements and this can be realized with considerable flexibility, reduced size and improved
performance by the use of computer generated holograms. o
‘-. ..‘.*:.
- 1, INTRODUCTION N
. “’.'
. The Fourier transform (FT) or diffraction plane of an object contains a distribution of :Qf{
- the spatial frequencies present in the input object. This distribution has many attractive _n:h
. properties. The magnitude of the FT pattern is shift~-invariant. Thus, translations of the [
- . ; g ; 20 ,
input image do not effect the magnitude of the Fourier coefficients. Higher horizontal or :
r. vertical input spatial frequencies (u,v) lie further from the center (dc or zero spatial "
- frequency) of the FT plane .
- R
: (u,v) = (xz/fo.yz/AfL). (1) .j::
N Input sgati 1 75equencies oriented at an angle in the input plane appear at a radial distance e
= (x34+y,¢) in the FT plane (where (x3,y;) are the distance coordinates of the FT £
- plane) and at an angle orthogonal to the orientation of the input data [1]. As the orientation YN
" of the input spatial frequencies varies, the angle 6 of the FT distribution also rotates. -:::
:ﬁ As the scale of the input object changes, the radial distance at which the frequency peaks AN
;. are located also scales. Thus, spatial frequency and orientation information are conven- :\i\
g iently available in an FT plane representation. Also, such an FT plane representation is A
-~ most suitable for dimensionality reduction of the data. This issue is of considerable b N
. practical importance since the space bandwidth product (SBWP) or number of frequency-plane :
| components required to represent the input object is equal to the input SBWP. Thus, no
-~ advantage is obtained by use of a FT plane data representation (in terms of processing re-
- quirements), unless dimensionality reduction is employed. Fortunately, an FT plane is well-
- known to allow considerable data compression, especially for pattern recognition and object
-} identification applications. Hence, an appropriately-sampled FT plane provides a set of
X features that are most useful for feature extraction based pattern recognition and object
s identification.
In Section 2, we review the FT properties and prior approaches to efficient FT plane .L,!
o sampling using elements such as the wedge ring detector (WRD). This section yrovides -}::
w motivation for our research. 1In Section 3, we describe our computer generated holoyr=m e
- (CGH) WRD FT plane concept and in Section 4 we detail our synthesis approach for a WRD us_-a A
L) CGHs. Section 5 provides initial experimental results obtained using our CGH generated WRD KA
. element. Advanced analysis issues and our summary and conclusions associated with this sys- .\:i
[ tem are then advanced in Section 6. lie
. .
~ 2. WRD PROPERTIES AND FEATURES e,
- For completeness, we first review several common FT properties of use in WRD-sampled FT :{i
o~ plane analysis. We consider real input functions f(x,y), i.e. images. Their intensity FT o
~ is symmetric, i.e. Py
L o
\ AP
[~ [F(u,v) % = [Fi-u,-v)|2. (2) e
D
o The intensity FT is also shift-invariant o
) 2 ) N
% IF £ (x-a) ,y-b) ] |* = |F(u,v) |, (3) L
W] N
.‘ :n".
X 3
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i.e. only the phase varies with a shift of the input function. From (2) and (3), we see
that an FT plane detector can be placed in the center of the FT plane and that either half
of the FT plane can be sampled with no loss of information. The rotational feature of the
FT pattern (the FT pattern rotates as the input object rotates) was noted earlier and is
described mathematically as

|%[f(x cos 8-y sin 6,x sin 6+y cos 8) ) |2 = |F(ucos 6-v 8in 6,u sin 6+v cos 8) |2. (4)

The scaling FT pattern property noted earlier is described mathematically as

Iﬁ[f(ax,ay)ll2 = |(1/a)2F(u/a,v/a)lz. (s)
P L P
1 1 2
%
—
—

l‘ 9 11 6(u,v)

8(x),y)) $T PLANE
tNPYT PLANE

FIGURE 1
Optical wedge ring detector sampled Fourier transform object-recognition processor.
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P

The shift-invariant, rotation and scale properties in (3) - (5) make sampling of the FT
pattern intensity with wedge and ring shaped detector elements most attractive. The typical
optical arrangement used is shown in Figure 1. The input object is placed in plane P], its
FT pattern is formed at P, by lens Lj, where its intensity is sampled by a WRD. This detec-
tor has wedge-shaped elements in one-half of the circular aperture and ring-shaped elements
N, in the other half of the circular aperture. Figure 2A shows this detector schematically.

In the version of this device that was fabricated and was commercially available, there were
& 32 wedge and 32 ring shaped detector elements in each half of a one inch diameter silicon

- sensor (Figure 2B). The 64 detector outputs are available in parallel and are fed through
vy amplifiers to autoranging amplifiers and potentially into a supporting digital processor for
N analysis purposes. The output of any detector element can be manually selected and viewed
on a digital display or the full (or any partial set of 64 detector outputs) can be selected,
automatically scanned and fed to a digital processor. Figure 2C shows the standard control
unit. From (4), the FT pattern is seen to rotate as the input object rotates. Since the
ring shaped detector outputs integrate over 6, the f(r) ring shaped detector output distri-
bution does not change with input object rotations. From (5), the FT pattern is seen to
scale inversely with changes in scale of the input object. Since the wedge shaped detector
outputs integrate over r, the f(8) wedge shaped detector output distribution does not change
with input object scale changes. From (1), one can place the wedge shaped detector elements
in one-half of the FT plane and the ring shaped detector elements of the other half of the
FT plane with no loss of information (beyond that which occurs due to intensity sampling).
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3. CGH/Holographic Optical Element (HOE) WRD CONCEPT

v %

These concepts were first introduced by Stanley and Lendaris [1] and later exploited by D
Recognition Systems Incorporated [2]. They find much use as mission screeners in the iden-
tification of the class of different parts of an input scene [1], in object quality inspec-
tion [2), line width analysis for ICs, handwriting analysis [3), for producing a generalized
o chord distribution feature space (6], and in more recent work for object identification and
classification [4]). Although these diffraction pattern concepts are attractive, there are
several shortcomings with the present silicon detector units. These include: the lack of
availability of such silicon detectors, the desire to achieve more compact units of smaller
physical size and weight, the attractiveness of often wanting a wider variety of detector
shapes, the frequent need for more sensitive and higher speed detectors than one can obtain
with the wide area units necessary when fabricated in silicon. One can separate the detec-
tion function and the specific sampling shape aspect of the detector elements by sensing
the FT pattern using a conventional 2-D grid scan pattern and then digitally implementing
various desired detector shape functions. The interpolation required to accurately model
the detector shape desired is a significant overhead in a digital realization and often pre-
cludes real-time operation. Hence, an optical realization using a CGH to achieve the de-
sired sampling function and a linear array of separate high-performance detectors with
parallel outputs is preferable. CGHs and holographic optical elements (HOEs) are presently
receiving considerable attention [5] with the availability of several commercial CGH re-
corders. Thus, this optical approach is also of considerable practical and current interest.
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The CGH/HOE-based compact system we envision use of is shown in Figure 3A and in block
diagram form in Figure 3B. The FT of the input object is formed at P, where a CGH and HOE
are placed. The CGH has different grating patterns in different regions, with each region
having a different shape and location (corresponding to the specific detector shapes re-
guired). In each region, the grating is of one spatial frequency and one orientation (the
spatial frequency and orientation differ in each region) and determines the location in Pj3
where the data in each P, region focuses. An HOE recorded on the CGH plate at P; achieves
the focusing of each P; region to a separate point in P3.

L '; 5N Y

»
PR

B

In practice, the CGH/HOE could be reflective and a folded optical system of reduced size
would result. The separate wedge and ring outputs (or other FT plane sampling shapes de-
sired) are produced in spatially-separated regions of P3. Detector arrays or discrete detec-
tors placed at P3 provide parallel outputs corresponding to the wedge and ring sampled FT
plane data. This separation of the sampling and detection functions allows high-speed and o
high-sensitivity detectors to be used. These parallel outputs would then be fed to a dedi- =
cated digital processor to perform feature extraction (selection, weighting and combining of B
the different wedge and ring detector outputs as required for a given application) in this "y
wedge/ring-sampled FT feature space and estimation of the class, orientation and scale of v
the input object. The classification (for out-of-plane distortions) is performed by projec-
ting the wedge/ring-sampled FT feature vector onto a discriminant vector selected by various .
pattern recognition techniques [(4]. .
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Plane P; need not be an FT plane. If it is an autocorrelation plane, then the wedge/ring N
features produced are the chord distributions [6-8). As noted earlier, with a CGH, one is not
restricted to wedge and ring sampling, but any desired sampling-shaped function can be used.
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“ FIGURE 3 e
e Preferred computer generated hologram (CGH)/holographic optical element (HOE) ~:r;
" realization of an optical wedge ring detector (WRD) system W
-, N
N ]
» 4. CGH WRD DESIGN DA
> >
:f A schematic and block diagram of the laboratory WRD/CGH system are shown in Figures 4A e
5 and 4B respectively. The P; inputs, P, CGH and output Pj detector plane coordinates are -3
AL shown in Figure 4. The CGH at P achieves the desired wedge-ring sampling and diffracts S d
o all l1light (incident on each separate wedge and ring sampled P, region) at a different angle ST
oL (proportional to the spatial frequency and orientation of the grating present in each P ah
i} region) . Lens L, focuses the parallel light from each wedge-ring P, region to a different ~ -
- location in P3, wnere separate high-performance detectors collect this light and provide the PRI
" desired wedge-ring sampled output data in parallel. This WRD sampling and detection tech- ;:s
. nique using a CGH is preferable to the holographic recording of the necessary pattern in G
- each P2 region as proposed in Ref.[9]. Our proposed CGH technique requires no sophisticated RS
S optical system for recording and is thus simpler and cheaper. It allows phase relief CGH .
. recordings to be used and thus has the same high-efficiency advantage of the technique in o~
Ref.[9]) when using bleached dichromated gelatin, but with much easier fabrication, with .
greatly increased flexibility and at a significantly lower cost.
ff- For simplicity, we describe each region of the CGH by a square-wave grating of unit ampli-
» tude varying in x only as
e - X x x
. g (x) [Rect(‘A—x) * Comb(a) ]Rect (f) R (6)
where Ax is the width of each bar in the grating, 4 is the grating spacing,u; = 1/d is the
N grating frequency, L is the grating's extent and Comb(x/d) = |d|Ié§(x-nd). We could employ
.. a sinewave grating in each P, plane region. However, a square-wave grating is more easily
e fabricated using a binary CGH or a binary recorder. Use of a sinewave grating would result
e in only one diffracted order, a slight increase in useable light and would not require
0 attention to avoiding higher diffracted orders. However, as we show in this paper, the
A present design with a square-wave grating represents no problem, achieves adeguate light
~ budget efficiency, requires lower resolution than a sinewave grating. Primarly the use of
r a square-wave grating allows simpler binary recording systems to be employed. With g(x) in
o, (6) placed at P2, its FT is formed at P3 in Figure 4 and is
-
-,
rd
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) G(u) = L + Ax + d[Sinc(uax)Comb(ud)] * Sinc(ul), (7) iej
A F
where u = x3/Af;, relates spatial frequencies u at P2 to distance x3 in P3. Eq.(7) shows .
» that the data from one such 1-D grid produces a P; pattern containing sinc functions of e
- width 1/L replicated every 1/d with an overall amplitude weighting across all of the sinc 'a:‘
- functions given by a sinc function of large width 1/4x. Ex‘
<. Yy
W ]
l» g(., )
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- 2}
oy <
r- e
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> FIGURE 4 ot
Ry (A) Schematic and (B) block diagram of a laboratory wedge ring detector (WRD) computer iﬁ“
A generated hologram (CGH)} holographic optical element (HOE) system. vy
“~

L
-

A The location in P3 of the grating data in the corresponding P2 region is thus ig{
N xy = M ,/4, (8) ]
‘. e
‘s where d is the spacing between two gratings square-wave rectangular pulses. The detector »c
: plane P3 size, the size of each detector element, and the length of the system (f;) deter- LT
- mine 4 and the angle 6 for each grating region of P3. We consider a circular CGH of radius o
e R with wedge shaped elements in the upper half and ring shaped elements in the lower half. A
- The highest spatial frequency uy in the P; input image determines the radius required for the B
- N
- CGH as o
-, N
l" -\.-
) R > Mpu . (9) o
e
~ - We consider two detector formats: a rectangular array (Figure 5A) and two circularly- -
8 symmetric detector arrays (Figure 5B). The rectangular detector array offers the use of a ot
- simpler commercial detector system with higher CGH requirements. The circular detector RS
R arrays require a far simpler CGH but individual detectors in a nonstandard and therefore _ni-
. less commercially available array configuration. Both CGHs have the general form shown in L
e Figure 5C with wedge shaped sampling elements in one half and ring shaped elements in the vy
~' other half of the plane. Each CGH region contains a grating of spatial frequency d;5 and r;f
) angle 8,4, where the subscripts correspond to the associated detector element. For simplic- »
N ity, onig one wedge and ring grating pattern are shown in Figure 5C. o
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(a) Optical Axis (B) (C)

FIGURE 5
Output plane Pg detector ¢eometries (A) rectangular detector,
(B} concentric detector arrays, and (C) basic WRD CGH geometry

4.1 RECTANGULAR DETECTOR ARRAY
For the rectangular detector array (with square-wave CGH gratings), we require

H > 2b (10)

to insure that the second-order terms from the CGH do not fall on the detector array and
that the position of the detector array in P3 is offset from the optical axis by

H' > b (11)

for similar reasons. These conditions in (10) and (11) are most easily derived for the
vertical detectors i in column j = 1. If the grating spacing satisfies

a(i,1) = Asz/h(ill) = Asz/[H-(i-l)s] (12)

for detector element (i,1) in the first column (j=1), then the second-order is insured to
fall outside the detector array for the other detector array elements, where h(i,j) de-
notes the distance from the origin of P3 associated with detector element (i,j). If the

detector size s is fixed, so is b and the minimum grating spacing d, (maximum spatial frequency
dn*) must satisfy

a. < (Xsz/Zb)cos 8, (13)

where the term in parentheses is the grating spacing required for the top right detector element in Fig.SA.

To produce diffracted light focused onto a row of spots at each line in P3, the gratings

in each region of P, must be oriented at an angle 8(i,j) (Figure 5C) to the horizontal x
axis satisfying

6(i,3) = Arctan{(j-1)s/[H-(i-1)s]}. (14)
The grating separation in the P, region corresponding to detector (i,j) must thus satisfy
a(i,j) = {XfLZ/[H-(i-l)s]}Cosle(i,j)]. (15)

Egs.(14) and (15) define the grating spatial frequency required in each P; region subject to
the grating spacing constraints on d in (12) and (13). This CGH design requires a grating
with period d inclined at an angle 8 to be recorded in each P, region with a different d and

8 for each region (Figure 5C). This requires considerable resolution and accuracy, compared
to our concentric detector array system. :

4.2 CONCENTRIC CIRCULAR DETECTOR ARRAY ,

For the circular detector array configuration (Figure 5B), the CGH design is far simpler
than the case considered in Section 4.1. 1In this present system, the wedge shaped detector
elements lie in the top part of the CGH and the ring shaped elements lie in the bottom por-
tion. The grating spacing dy is fixed for all wedge regions and only 8 is varied between P;
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regions. The grating spacing dr for all ring regions is also constant and again only the
angle 8 of the grating is varied between ring regions. If a Calcomp plotter is used to
synthesize this CGH, the end points of each line are specified and the plotter draws the
desired line at the necessary angle. 1In a CGH recorder, the coordinates of each point are
generally required and thus sampling effects will be of more concern. This issue is common
to both detector array cases, since the grating in each P, region is at a different angle in
both detector cases. The CGH pattern at P; for the rectangular detector array and the cir-

e @8 & & F TR

4 .
: cular detector array are similar as shown in Figure 5C,. The first - order diffracted :,W
. radii hy and hr for the wedge and ring gratings of spacing dy and dg must satisfy 'ftg
-:
' = = « "
: hy, Aszldw, hR Asz/dR. (16) Sele
k.
! We can avoid overlapping of the first and second-orders by selecting ”:ﬁ:
: oy
. 2hy - hp > sq and hy - h, > s, (17) i?;?
- where sq is the diameter of a detector. Each grating produces + and - diffracted orders. 'i.
2 The inner circle of peaks in Figure 5B corresponds to these + and - orders for the wedges
l and the outer circle corresponds to these for the ring elements. If there are M wedges in =
the top half of the CGH and M rings in the bottom half, then the bisector for the i-th wedge Ll
- region is a line
- y = K(i)x, where K(i) = Tan{(n/M) (i-0.5)]. (18)
A The line perpendicular to the bisector is y = [-1/K(i)]x+C and the angle that grating i ;
! makes with the +x axis is thus feer
" 8(i) = arctan gt (19) s
s K(1) ° R
’ For simplicity (Figure 5B), the same grating angles are used for both the wedge and ring MR
é gratings. c
l The last design issue we consider is the diffracted spot size s on the CGH, its diffrac- 5_:;
. ted spot size s3' on the detector, and the size s] of an input image region of one uniform P
. spatial frequency, and the size s3 = sq of a P3 plane detector. This is a unique issue and iﬁf\
. requirement for CGH/WRD systems. One spot of diameter s) at P) will produce a spot of ;5&&
. diameter s3' = 2Afy /sy at the detector plane. This P spot diameter is due to a region in DN
". P of minimum diameter s; = 2Af;1/s;. For simplicity, 1.22 factors have been omitted in the T
} above spot size equations. The detector size sg = s3 must thus satisfy LAY
LA
” ZAsz/s2 <83 < Aszl(l/dR)—(l/dw)] (20a) .t >
v e
W R
ry o
; sy < 2nhw/M (20b) e
b.. .‘.-_‘-
t where the left side of (20a) insures s3 > s3' to collect all diffracted light from P,, the =
right side of (20a) insures that the wedge and ring detectors do not overlap anrd (20b) in- pa——
F sures that the wedge detectors themselves (lying at a radius L) do not overlap. We will R
N quantify these values for our experimental system shortly. ,:\f
b DA
. 5. EXPERIMENTAL RESULTS NN
v The experimental results for two WRD CGHs with M = 10 wedge elements and 10 ring elements '}:}"
b follows. toTC
t! 5.1 RECTANGULAR DETECTOR ARRAY
- For this case, a 4 x 5 detector array (Figure 5A) is used with a = 7.5 mm and b = 6.0 mm
: with s = 1.5 mm detectors on 1.5 mm centers. For the experiment performed, fr, = 815 mm and
~ A = 0.465 um (an argon laser line). To satisfy H > 2b in (10), we selected H = 19 mm for a \
2 corresponding minimum grating spacing dy=0.0186 mm from (13). The grating spacings and -
o angular orientation for each region were selected from (14) and (15). The grating spacing -
ol varied from 0.020 to 0.026 mm for the detectors in the first column (J=1) and the grating e
angle for the detectors in the j=2 column varied from 4.38° to 5.73°. Over the entire detec- -
tor array, d varied from 0.0186 to 0.0260 and 8 varied up to 30°. The general design g{\
guidelines for the grating spacings and grating angles for the CGH region corresponding to ANy
detector (i,j) = (vertical,horizontal) satisfy (14) and (15) where i = 1 and 2 for wedges Ny
and i = 3 and 4 for ring elements. The end points of each grating line were specified an< a v
)
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{ line drawn between them using our Calcomp plotter. The full plot was 10" = 254 mm in diam- f{:
- eter with the smallest grating interval being 0.635 mm (the Calcomp plotter easily produced el
N lines with spacings of 0.02" = 0.5 mm, i.e. well within our 0.635 mm requirements). This S
. plot was photoreduced by 32.5:1 to 7.8 mm diameter with dn = 0.02 mm. The 2R = 7.8 mm diam- Y
! eter allows a maximum P; input spatial frequency uy = 21 cy/mm (assuming X = 465 um and -
i fr1 = 400 mm), which is more than adequate for realistic imagery. .
c T
N DD
i
. . "" 3
i af?
A
-~ .1'-r v 4
: RN
s w3
N T
A | 3
0 (a) (B) ="
E
- FIGURE 6 .

(A) Computer generated hologram and (B) output plane pattern for a wedge ring detector
computer generated hologram with an output rectangular detector array

Figure 6A shows the CGH used and Figure 6B shows the 2-D rectangular P3 output diffrac-

SR

tion pattern obtained when this CGH is illuminated with a plane wave. The upper two rows AN
correspond to the ten wedge outputs and the bottom two rows to the ten ring outputs. The T
wedges and the inner rings in Figure 6A are not as easily visible because of their higher -t
. grating spatial frequencies. The number of grating lines in the wedge regions varied from -}:
v 52to 167 and the number of lines in the ring regions varied from 17 to 227. This accounts o
~e for the different intensity (larger spot sizes) in Fiqure 6B. The spots diffracted by the NN
¢ wedge regions are more uniform. Because the area and number of lines in each ring region N
'. varies, their light intensity varies more as is seen. The locations of the diffracted out- .
- put peaks are in agreement with theory within measurement accuracy. _—
» .r",'
N 5.2 CONCENTRIC DETECTOR ARRAY &
e The CGH for this case (Figure 7A) and the resultant P3 diffracted pattern (Figure 7B) il
.. again agree with theory. The same A and fj, are used. The original CGH produced by the .;5i
o Calcomp plotter for this case was 8" = 203.6 mm in diameter with the same dy = 0.042" = o
o 1.07 mm for all wedges and dr = 0.76 mm for all rings. After photoreducing by 20.7:1, the -
!_ CGH had: 2R = 9.8 mm, dy =0.052mm and dg =0.037mm. The 2R value allows uy = 26 cy/mm P
< input spatial frequencies (assuming fpj; = 400 mm). These dy and dg choices satisfy (16) and e
.- (17) with the detector size used sg = 1.5 mm (since hg = 5.4 mm and hy = 3.8 mm). The i-th ~£:‘
e grating angle is 6(i) = (i-0.5)18 from (19). These values also satisfy (20) for Pp. FT RS
- plane spots above s = 0.5 mm, corresponding to uniform input spatial frequency regions as N
3 small as Afy1/s = 0.4 mm for f;1 = 400 mm. The light intensity in the two sets of concen- AN
WL tric diffracted peaks (Figure 7B) vary (for the outer set of ring elements) due to the area S
> of the rings and the varying number of grating lines per ring (27 to 266 lines). .
:-. 6. ADVANCED TOPICS -l
ﬁﬂ The resolution (0.006" = 0.15 mm) for the Calcomp plotter used in these experiments
.f determines the system's size and the number of wedge and ring elements used. Commercially
o available recorders with 1 um resolution [5] allow fabrication of a system of significantly
.. reduced size. For the system of Figure 4 with A = 820 um (a laser diode source), a 14 x 14
”. mm detector array and a maximum input spatial frequency of 20 cy/mm, both lenses can have
[ fr, = 4" = 100 mm using a dy = 2 um minimum spot size recorder. This represents a consider-
_: able reduction in system size.
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FIGURE 7
(A) Computer generated hologram and (B) output plane pattern for a wedge ring detector
computer generated hologram with concentric output detector arrays

The light budget for this system is excellent. Assuming lens transmittances of 0.9, a
P) transmittance of 0.5, a transmittance of 0.5/20 for each of the 20 wedge and ring elements
in Py (where a 50% efficiency for a bleached or phase CGH is assumed), a P3 transmittance of
0.5 (each detector intercepts approximately 0.5 of the total light in the sinc function, and
10 different input spatial frequencies, and hence a division of the total light into ten
separate regions), then the system's transmittance to one output detector is 0.1(0.9}2(0.5)
(0.1) (0.9)2(0.5)3(0.05) = 5 x 10~4 = 0.05%. For a typical detector with 0.5 amp/watt sen-
sitivity and 0.3 nA dark current, an input light intensity of 6 x 10710 w corresponds to the
dark current and the maximum input light is 6 x 10-4 W (for a 6 decade response detector).
If the photodiode is biased at 300 nA (much much greater than the dark current), the minimum
detector power required is 0.6 uW and hence we require only 0.6 uwW/(5x 10-4) =1.2 mW of in-
put light. This is easily achieved by laser diode sources.

A final topic is the converging nature of the light input to P2 in Figures 3 or‘4. In a
converging beam FT system as is used, the FT is formed on a sphericgl surface BOt fn a plane
(10]. The displacement error to the plane where the CGH is placed is Az = (x2%+y,<)/2d =
(x2 +Y22)/fL1 is only a maximum of 0.25 mm. Thus, the FT spot size is only slightly larger
than the theoretical value and the pattern detected at P3 is correct. Phase curvature at Pj
is of no concern since the size of the detectors are used (in our design). If (as occurs in
practice) only a small part of a wedge or ring is illuminated at P, the 4z gffect is of no
concern since all of the light still easily falls within a wedge or ring region.

We have concentrated on the use of a WRD CGH in the FT plane. However, as noted earlier,
a WRD can also be used in the autocorrelation plane to produce chord distribution functions.
As noted earlier, one is not restricted to wedge and ring shaped detector elements but can
employ other detector shapes as required. This is attractive both for FT plane sampling and
for autocorrelation plane analysis. The use of CGHs clearly allows considerable flexibility
in the detection process and it allows separation of the detector shape function from the
detection function, thereby allowing more optimized components to be used. 1In this paper,
the general concepts of the CGH detector have been advanced, general calculations and design

rules have been advanced and laboratory demonstrations and designs of two different WRD CGHs
have been provided.
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Feature extractors for distortion-invariant robot vision
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)
: David Casasent Abstract. Various feature extractors/classifiers for a hierarchical feature-
Vinod Sharma* space pattern recognition system are described. The system is intended to
Carnegie-Mellon University achieve multiclass distortion-invariant object identification. Aithough only a
2N Department of Electrical and Fourier transform feature space is used, our basic hierarchical concepts, our
" Computer Engineering theoretical analysis, and our general conclusions are applicable to other feature
3 Pittsburgh, Pennsylvania 15213 spaces. The performance using intensity and phase Fourier transform features
3' and the performance in the presence of noise are studied and quantified for two
different two-class pattern recognition data bases.
N Keywords: robot vision; dimensionality reduction; feature extraction; Fourier transform;
ol optical data processing; optical pattern recognition. .
o
N Optical Engineering 23(5), 492-498 (September/October 1984/, "
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~ CONTENTS provide discrimination, we employ two nonunitary transformations:
A | Introduction the Fukunaga-Koontz (FK)¢ and the Foley-Sammon (FS)’ trans-
:“. 2. Dimensionalit reduction and distortion invariance formations. Our classifier then selects the best subspace from the KL,
~ TN X y . f FK. and FS feature vectors.
3. Nonunitary transformations . - . . .
~ ) . In Sec. 2, we review and highlight our two levels of dimensionality
3.1. Fukunaga-Kooniz transformation . : - .
. . reduction (WRD Fourier transform sampling and dominant
.t 3.2. Foley-Sammon transformation O . . . g
S 4. Intensity-only or phase-only Fouri f f i eigenimage calculation). We then discuss (Sec. 3) how we achieve oY
. . 3 3 y Fourier transform features b g h 1 the discriminati . g
" 5 Data bases distortion invariance, and we detail the discrimination algorithms e
o Sl . e used. Brief theoretical remarks on the use of Fourier transform plane ,:‘ o>
s 6. Initial experimental results h - f . 4
< ) - phase or magnitude features and on the noise performance of a e
> 6.1. Karhunen-Loeve transformations . ; o e
" . L X . feature extractor then are advanced in Sec. 4. The two image data ¥ o,
- 6.2. Nonunitary transformations . . ) s ; {."'
6.3. Performance measure bases_uscd in our experiments and the results of our initial dominant oI
64 Noise-free pertormance comparison eigenimage feature vector calculations are summarized in Sec. 5. ’
./ o p ) More extensive distortion-invariant image test results are then pre- .
- 6.5. Noise performance comparisons - s ge & =" P
': 7. Summary and conclusions sented and discussed in Sec. 6. These results include a comparison of
ﬁ: 8' ;Acknowled ment ’ the performance of our system for five different discrimination vec-
"y 9' References £ tors, comparison of the performance of amplitude-only and phase-
= ’ ) only Fourier transform features, and a comparison of the classifiers
1. INTRODUCTION and feature extractors in the presence of noise. Qur summary and
g o ) conclusions then are advanced in Sec. 7.
A Distortion-invariant multiclass pattern recognition is considered
- using a Fourier transform (FT) feature space. Feature extraction,
" dimensionality reduction, discrimination, and classification are ad- 2. DIMENSIONALITY REDUCTION AND DISTORTION
LN dressed. A simplified block diagram of our hierarchical pattern INVARIANCE
;;4 recognition system is shown in Fig. |. We begin with a Fourier If the input image or object is 256 X 256 pixels, its dimensionality is
A lranslo‘rmvf‘calure space, since s_ucha representationis wgll known'to n = 2562 The discrete Fourier transform plane for such an object
allow significant data compression. We extract the magnitude, phase. still has a dimensionality of n. This is quite prohibitive for subse-
> or both from the Fourier transform plane. As the first dimension- quent feature extraction, matrix transformations, or other similar
- ality-reduction technique. we use a wedge-ring detector (WRD) to operations. Thus, dimensionality-reduction techniques are essential
‘ _.; sample the Fourier transform plane data”- ' to reduce the dimension- operations that must be applied to such a feature space. A Fourier
. ality of the teature space and retain only the dominant eigenvector transform feature space is a most useful representation of structural,
w for each object class. This reduced subspace is caleulated using a resolution, and orientation information on the input object. Sucha
by ‘Karhuncn-l.oe\e { K[_-) 1raqsf0rr_nalum4 by new Cff'f‘lcm ‘CChquC};‘ feature space is also attractive since physical insight about the input
) This completes the dimensionality-reduction step in our system. To object is casily obtained from this feature space. Such a feature space
[ “Present addre s Northeastern Univeraity. Flectncaland Computer Fagmeenng Dept iswellknown' to lend itself easily to dimensionality reduction. These
. Boston. MA 02119 reasons, plus the ease with which such a feature space can be pro-
u T duced optically {using a simple spherical lens) or digitally (by various
. Invited Paper RV -102 received Feb 15 1984 accepted tor publication March |10 19K, ()P_ ¥l - gasmpiesp 4 s ordig ¥ (by o
» recenved by Managing Editor May 29, 19%4 fast Fourier transform hardware and algorithms), make thisanideal
> & 1983 Society of Photo-Optical Instrumentation | ngineers choice for our hicrarchical feature-extraction studies.
'i

492 . OPTICAL ENGINEERING - September- October 1984 ~ Vol 23 No §




WIMINANT

——J‘ > Frailke

F-K EXCRACTION . Im

[ SUBSPACF

N BeORIER
LMAL D TRAND BoRM

Fig. 1. General Fourier transform (etc.) feature-extraction pattern recogni-
tion system block diagram.

As the first level of dimensionality reduction, we sample the
Fourier transform plane witha WRD. Ifan optical system is used to
produce the Fourier transform, a commercial WRD device exists.}
This unit consists of 32 wedge-shaped detector elements in one-half
of a circular detector and 32 annular-shaped detector elements in the
other half of the detector plane. This device thus provides 64 WRD
outputs and hence reduces the dimensionality of the Fourier trans-
form feature space from n = 2562 to 64. One also can digitally
model such a device. of course. The ring detector elements provide
rotation invariance, whereas the wedge detector elements provide
scale invariance (if the values of the wedge-ring detector element
readings are properly normalized for object energy).2? To see this,
we first recall that the magnitude of the Fourier transform is shift-
invariant. Next, we note that as the scale of the input object changes,
the two-dimensional Fourier transform distribution changes radially
(inversely with the scale change of the input object). Thus, the
outputs of the wedge-shaped detector elements will remain invariant
to such input object scale changes. Finally, we recall that the orienta-
tion of the two-dimensional Fourier pattern rotates as the input
object rotates. Thus, the ring-shaped Fourier plane sampling
elements have outputs that remain invariant to in-plane rotations of
the input object. These remarks follow for the case of a real and
positive input function, whose Fourier transform is symmetric. This
situation applies for the case of images, and thus the two halves of the
Fourier plane can be separately sampled as described with no infor-
mation loss.

This WRD sampling, plus the training of our system on different
distorted images. provides a distortion-invariant pattern recognition
algorithm. In this and similar feature space approaches to pattern
recognition, one uses N, imagesinclass | and N, imagesinclass 2 to
determine the parameters of the processor. These are referred toasa
training set of images. Each of the i images per class is denoted by a
vector, with {x;} and {y; } being the set of i = N, or N, training set
image vectors for a two-class example. The corresponding two-
dimensional Fourier transforms are the n-dimensional vector sets
{x7} and {y7} These are dimensionality-reduced to the WRD-
sampled 64-dimensional vector sets {xi’} and {y/}. As the second
dimensionality-reduction step, we apply a KL transformation® to the
autocorrelation matrix formed from the WRD feature vectors for
each separate object class. The autocorrelation matrix is formed
from the 64 element x{ vectors for each of the training set images {x}
in class 1. and a second matrix is formed from the corresponding y;
vectors of images in class 2. The eigenvalues and eigenvectors of each
matrix are calculated and tabulated. One can then retain the domi-
nant », and n, eigenvectors per class, where n, and 7, are typically
less than 4. In our experiments, we retained only {hc dominant
eigenvector for classes | and 2, which we denote by KL-1 and KL-2.
In practice, two or three eigenvectors would be used per class.

3. NONUNITARY TRANSFORMATIONS

To use these dominant eigenvectors defined in Sec. 2 for classifica-
tion, we compute z’ for an unknown input object vector z, project it
onto the eigenvectors KL.-1 and K1.-2 (for classes 1 and 2, respec-
tively). and select the class for the unknown input based upon which

o ol — A ——
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FEATURE EXTRACTORS FOR DISTORTION-INVARIANT ROBOT VISION

projection value is larger. The KL, or dominant. eigenvector trans-
formation in Sec. 2 represents a considerable compression of data
and simplifies performing the nonunitary transformations discussed
below. The dominant eigenvectors represent each class well in an
optimal compressed manner. However, there is no assurance that
those features that represent each class well will be optimal for
discriminating one class from another. Thus, dominant eigenvectors
are useful for intraclass pattern recognition (that is, recognizing
different versions, i.e., geometrically distorted views of one object),
but not necessarily for interclass discrimination (distinguishing one
object class from another). In a hyperspace description of a feature
vector and a discriminant vector, unitary transformations do not
change the distances between vectors. To achieve discrimination or
interclass pattern recognition, linear nonunitary transformations
represent an attractive approach. These transformations can change
interclass distances and hence provide improved discrimination. We
pursued this approach rather than utilizing additional eigenvectors
per object class. This choice is logical since the use of more eigenvec-
tors would only further increase the dimensionality and computa-
tional complexity of the processor. In the next two subsections, we
detail two nonunitary transformations that we have employed.

3.1. Fukunaga-Koontz transformation

The first nonunitary transformation we consider is the Fukunaga-
Koontz (FK) transformation.® To describe the steps in this algo-
rithm, we first define P, as the @ priori probability for classiand R; as
the autocorrelation matrix for class i. We form the autocorrelation
matrices R| and R, foreach class, where R; = P;R;.and we form the
full autocorrelation matrix R = R + R,. We then determine the
transformation matrix T that diagonalizes R; i.e.,

TRT = TR, +R)T" =1, n

where I is the identity matrix. By this transformation we have
orthogonally decomposed the full R; + R, matrix. Next, we apply
T 10 R]l and R,; i.e.. we form new matrices for each class given by
TR, T and TR,T".

These new correlation matrices have two attractive features:
(a) The eigenvectors ¢! and ¢;? of TR;T' and T R%TT are the

same. (b) The eigenvalues A,'' and A,'? associated with &' and ¢,'?
are related by
)\i(n =1-A?. (2)

From Eq. (2). we see that the dominant eigenvectors of the trans-
formed class | matrix are the least-dominant eigenvectors for the
transformed class 2 matrix. Thus, those eigenvectors that represent
class | the least represent class 2 the best (in the new FK transformed
feature space). Thus, this transformation has converted the input
data into a new space with a common set of basis functions (the ¥,).
In this new space, the data in the two classes are now separated. In
our two-class problem, we will select two ¢, with the largest
[ A1) —0.5] values.

Since R is formed from the KL vectors (Sec. 2) and since we only
retain one KL eigenvector per class, the rank of R is two and there are
only two eigenvectors ;. We denote these two eigenvectors of the FK
transformed data by FK-I and FK-2. FK-1 and FK-2 are the two
vectors that best discriminate class 1 objects from class 2 objects. To
use these new discriminant vectors to determine the class of an
unknown input image z. we form the WRD vector 2’and transform it
to a new Tz' = 7", This transforms the input data to the new FK
space. We then project 2 onto an FK discriminant vector ¥ by
calculating ¢' 2" = d. Depending upon whether d is above or below
a threshold, we select class 1 or class 2 for the class of the input object.
We normalize the FK vectors and refer to the projections onto the
FK directions | and 2 (corresponding to FK-1 and FK-2). We note
that FK-1 and FK-2do not refer to discriminant vectors for classes |
and 2; rather, they refer to the two most dominant eigenvectors of the
transformed full autocorrelation matrix of both classes.

OPTICAL ENGINEERING / September/October 1984 / Vo! 23 No. 5/ 483
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3.2. Foley-Sammon transformation complexities in extracting the magnitude or the phase of the Fourier
transform are more comparable. Optically. the Fourier magnitude is
easily obtained. whereas its phase requires the use of a more compli-

cated heterodyne detection technique.

In the Foley-Sammon (FS) nonunitary transformation,” we find a
linear discriminant vector w, selected to maximize the Fisher ratio*:

Yo d s o srded

5. DATA BASES
The four image data bases used are summarized in Tabie [. They

(difference of means of projections)?
Flw) = . — : (3)
sum of variances of projections

4 include scaled and rotated images of the letters A and B and of I_"'jd
_;4 ‘ S N hand-drawn images of tanks and trucks. For each of these two object e
. In terms of the means m; and m, of the projections for class 1 and ) - ; h NNy
! - . . 2 ) 3 > classes, we used a set of five images per class and a set of 25 images per et
\ class 2 training set objects onto w and the scatter 5§ and s5 of these ) . - B . . - IR RAS
) P : < class. Various scaled and rotated views were included in each of these RN
A projections, we can write X k T i e
o image sets. A scale value of 1.0 is unity scale, and 0.9 correspondstoa -~
X, | m, — m,|? WIS, w 109 scale difference, etc. The specific distorted object views included R
Fw) = ! 2 _ " "B7 (4) in each case are detailed in Table I. All images have 16 gray levels, !. ‘
g s + s} wiS,w with the 1.0 nominally scaled images having various numbers of SN,
- pixels: A (584 pixels), B(375 pixels). tank (797 pixels), and truck (292 :\:\j
N where Sg is the between-class scatter matrix and Sy is the within- pixels). For our noise-free tests, these images were present on a O
::J ciass scatter matrix.* The solution for w that maximizes Eq. (4) is zero-valued background. For our noise tests, zero-mean white Gauss- '..v:.- s
7 ian noise was added to all pixelsin all images. In our data, we list the RS
" w = Sgl(m; ~my) . (5) standard deviation g, of the noise. From o, the total number of ey
ixels N in the image. and the object ener the sum of the squares '
pixels Nin th g d the obj gy E(th f the sq »
.y where m; and m, are the vector means of the two classes. To use wfor of the pixel values for the object), an input signai-to-noise ratio w7 =
~ anunknown input z’, we formw'z = d and compare the projection SNR; = E/No?canbedefined. ForN = 10°. E = 10°(400 pixels AN,
. value to the threshold T, where of average value 5), and ¢, = 0.4, a small SNR| = 6.25 results. .~:.':\.-'.
. (m, + m,) OO
_\ _-—_ . (6) .'_‘-;\-' |
h) 2 TABLE |. Summary of Experimental Image Data Bases Used ¢ Wotand
i 5-lmage data base 25-lmage data base G
A If d > T.weselect class 1. If d < T, we select class 2 for the class of Test g : i , _’..-:._-‘
Nt the unknown input image vector z. sets Scales Rotations Scales Rotations e
el 0°,10° ST
:‘_-{ 4. INTENSITY-ONLY OR PHASE-ONLY FOURIER AandB 09,10 1.1 (for0.9and 0.8 09, 1.0, £10°, +5° 0° N
o TRANSFORM FEATURES 1.1 scales) 1.1.1.2  ({for each scale) S d
. oA
~ Ve ac : e Hand-drawn 0°,10° e eyt
An attractive aspect of a Fourier transform feature space is the fact : R S T
~ that its magnitude or phase or both can be used. Considerable truckand  0.9,1.0.1.1 (for0.9and 0.8, 09,1.0. +10° +5°. 0° F e
. . . . . tank 1.1 scales) 1.1,1.2 (for each scale}
;- work? 19 exists on the representation of image data by the intensity or
. phase of the Fourier transform. In general, the conditions under
A which the Fourier transform phase features are adequate are less
. restrictive than the conditions under which the Fourier transform
.- magnitude features are adequate. The magnitude of the Fourier In Table 11, we list the five nonzero eigenvalues for the five-image
Y, transform is adequate if the z-transform does not contain reciprocal data base for all four object types and for both magnitude and phase

pole-zero pairs, poles outside the unit circle, or zeros inside the unit
circle.

This prior work has been concerned with aesthetically pleasing
image reconstructions from the magnitude or phase of the Fourier
transform. However, our present concern is object recognition, not
image reconstruction. Little research exists on this topic. In our case
studies, we will wedge-ring detect and KL transform the Fourier
transform magnitude or phase data (or a combination of both). We
will then quantify the pattern recogr:ition performance of magnitude

Fourier transform features. As seen, the eigenvalue for the dominant
eigenvector for magnitude Fourier transform features is approx-
imately 70 times the second dominant (in general). This is more
pronounced for the letters A and B. The eigenvalue for the dominant
eigenvector for the letter A obtained from Fourier transform phase
data is low (0.67). Because of the lower (0.67) eigenvalue, we may
expect lower projection values and hence more errors in our pattern
recognition of letters using phase features. In general, the dominance
of one eigenimage in the magnitude data may be attributed to the fact

- or phase features and their performance in the presence of noise. The that the image data base consists of scaled and rotated (in-plane
= Fourier magnitude data are shift-invariant, and thus the location of rotation) images rather than different aspect views of each object. In
", the object in the input field of view cannot be determined from such such distorted images, ihere is no appreciable new information pres-
L, data. Conversely. the linear components of the Fourier phase provide ent in each object representation. A possible reason for the lower
: data on the location of the input object. Digitally, the computational dominant eigenvalues for phase features may be the reduced accuracy
>
.::' TABLE Il. Eigenvalues of the Five Nonzero Eigenvectors of the WRD Fourier Transform Data for the Five-Imagé Data Base
j No Truck Tank A _ B
::; Magnitude Phase Magnitude Phase Magnitude Phase Magnitude Phase
1 0.98 099 0.98 0.89 0.99 0.67 0.99 095 -
N 2 017x10 ! 0.78 %10 ? 017x10 ! 098x10 ! 0.71x10 ? 0.24 0.13x10 ! 043%x10 "' A
<7 3 082x10 4 0.28x10 3 0.21x10 3 0.12x10 ! 084x10 * 072x10 ! 0.49x10 3 019x10 ? e
o a 081x10 ® 012x10 3 064x10 * 024x10 2 047x10 4 0.11x10 ! 029x10 4 077x10 3 AN
" 5 049x10 ¢ 011x10 ¢ 011x10 ® 014x10 ? 0.65x10 ° 038x10 2 017>10 * 0.70x10 * L
N el
N e
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. KL2 Fig. 3. Magnitude-only WRD Fourier transform feature projections for
o tank/truck images onto the two FK vectors (25 images/class).

Fig. 2. Magnitude-only WRD Fourier transform features projected onto
dominant tank/truck eigenvectors (for 26-image data base}. KL1 = domi-
nant truck eigenvector; KL2 = dominant tank eigenvector.

associated with the noulhinear arctangent operation required to com-
pute the phase of the Fourier transform.

The eigenvalue data for the 25-image data base showed compara-
ble results to those in Table I1. As noted in Sec. 2, we retained only
the dominant eigenvector per class for magnitude-only and phase-
. only data. For magnitude features, we expect the second dominant

: eigenvector to provide poor discrimination (this was found to be the
case from experiments). For the tank and truck data, phase features
may be expected to perform comparably and possibly better than
2 magnitude features. In experiments, phase features (for the tank and
truck data) using one dominant eigenvector per class consistently
gave larger projection ratios than magnitude features. For the letters
A and B, phase features performed poorly (as expected, since the
dominant eigenvalue is smaller). Including the second dominant
eigenvector for the phase features for our letter recognition tests
. would be expected to improve performance. However, we included

only the most dominant eigenimage per class. Qur extensive test
3 results obtained with the 25-image data set are detailed in Sec. 6.
‘ They follow the trends noted above, which are expected from the
data in Table 11.

6. INITIAL EXPERIMENTAL RESULTS
) 6.1. KL transformations

All of the results included in this section were obtained on our more
extensive data base of 25 object images per class. In Fig. 2, we show
the scatter plots for the projections of all tank and truck images onto
the dominant eigenvector for tanks (KL-1)and for trucks (KL.-2). As
seen, all images can be separated and correctly classified from either
projection alone. However, all projection values (even those on the
dominant eigenvector of the other class) are quite large (all projec-
tion values are above 0.95). This might be expected since the KL
eigenvectors are useful only for intraclass recognition, not interclass
discrimination. Figure 2 shows that the projections of the truck
images on the dominant truck eigenvector KL.-1 yield essentially
invariant values (=0.993). The tank images projected onto the tank
eigenvector KL-2show a similar invariance with all projection values
=0.995. This intraclass invariance is expected (because of the domi-
nance of the first eigenimage in each class) by the nature of the KL
transform. From Figure 2. we can also assess the interclass discrimi-
nation of dominant KL eigenvectors. The truck projectionson K1.-1

ave s o & K.

4

yield lower (0.97 to 0.99) projections (versus 0.995 for projection on
KL-2). The truck images show similarly lower projections on KL-2
compared to KL-1. However, the large range for all projections (all
are above 0.95) makes the performance of this system in noise
suspect. These results thus verify the intraclass recognition ability of
the KL transform. If the two classes are sufficiently different, inter-
class discrimination will be good, but the KL algorithm does not
guarantee this. For the case shown, either eigenvector alone is suffi-
cient for discrimination. However, this is not a general conclusion.

An interesting trend from the data of Fig. 2 is that only five points
exist for the 25 truck images. These correspond to the five different
input image scales (denoted by the values of the parameter a, as
shown) with all five rotated views per scale giving the same projec-
tion. This occurs since rotated images at the same scale have the same
energy, whereas different scaled images have different energy. Witha
different normalization of the image data base, the projection values
for different object scales could be made to coincide. This effect is
most pronounced for the truck images since they all contain signifi-
cantly fewer pixels than any scaled tank image used and KL-2 is
normalized for the tank images alone.

Similar results were obtained for the projections of the images of
the letters A and B onto their dominant eigenvectors (for magnitude-
only Fourier data). These results did not exhibit as pronounced a
variation with the scale of the input image (since both letters contain
a comparable number of pixels). The data still exhibited the five
clusters of projection values (one cluster per scale. with only small
variations due to rotation) for the reasons advanced above. All
projection values for the letters were quite large and even more
clustered than in the tank data (all letter projections were above
0.998). More advanced techniques are clearly warranted. and thus we
next experimentally considered our nonunitary transformations.

6.2. Nonunitary transformations

The projections of the truck-tank data base images on the FK-1 and
FK-2 feature vectors are shown in Fig. 3. Comparing these results
with the corresponding projection data on the KL-1 and KL-2 eigen-
images (Fig. 2). we see that the FK-1 and FK-2 feature vectors
separate these two image classes much more than do the K1.-1 and
KL.-2 eigenimages. This verifies our remark that the FK feature
vector direction that represents one class best, represents the second
class worst, and that FK transformations are preferable for discrimi-
nation, whereas KL or dominant eigenvector projections provide
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1] TABLE lll. Comparison of Separability Measure S for Magnitude and Phase Features for Different Case Studies and Different Feature Extractors
' FT data Magnitude only Phase only Magnitude and phase
images Truck — Tank A-8 Truck — Tank A-8B Truck — Tank A -8B
S for KL-1 4130 7.087 5.681 1.326 7147 0.254
S for KL-2 2.898 5.984 4.596 8.419 8.781 5.535
S for FK-1 3.908 12.135 5.450 0.20t 6.285 0.226
S for FK-2 3.879 12131 4.253 9.371 7.765 12.880
- S for FS 4504 11.898 7.578 9428 8.541 12.620
LY
standard deviations of the class 1 and class 2 projections. This
performance measure in Eq. (7) is valid if | and o, are of the same
y X = TRUCK IMAGES order. For our data, this was found to be generally true. The measure
) T o = TANK IMAGES Sin Eq. (7) was chosen for its computational ease and because.iu.ioes
. not match the measure that any of our feature extractors optimizes.
y We computed S for all five feature extractor vector subsets (KL-1,
~ KL-2, FK-1, FK-2, and FS) for both magnitude and phase Fourier
X transform data (and combined magnitude and phase Fourier trans-
= form data) for both image data bases (vehicles and letters). The
results are shown in Table 111 and discussed below. 0_ .
s o} X AW ',;’.:".:‘
‘ a=1.2+3=0.8  a=1.2:3=0.8 6.4. Noise-free performance comparison RN
: A larger S value in Table 111 indicates better performance. This table _-:"-.’-"
>, ———s . e —Prs includes the S performance measures calculated using magnitude- _\ N
'q el €3 65 7 65 only, phase-only, and combined magnitude and phase Fourier trans- /‘_?{."1
! ’ ’ : : : form features. LR Y
" Let us now discuss Table I11. The phase features for both image 3 K
" Fig. 4. Magnitude-only WRD Fourier transform feature projections for pairs give larger S values than do magnitude features. However, in :a:'.-:q
> tank/truck images on the best Foley-Sammon (FS) vector (26 images/ several cases they perform much worse (for the letters A and B). This TR
S class). For clarity of p.rosontation, the projection values are shown dis- occurs because the dominant KL eigenvector for A is small (as in ‘.L’_ 4‘:
. placed from the FS axis. Table 1) for these images. Consistent performance improvement e
o with phase features is expected (and such features appear preferable) : o
: if more than one dominant phase eigenvector is retained. Ignoring RS ?‘:
. ) . . o . the phase feature data for the Jetters, consistent trends emerge from ! B
N only intraclass recognition. Now we notice a variation in the projec- Table I11. Different results occur for different image pair recogni- AR
- tion value along both the FK-1 and FK-2 axes (in Fig. 2, only . ' : . : A
8 PO L . . tions. However, FS consistently performs best (or nearly so), with el
5 variations in the projections on the dominant KL eigenvector for the FK always being quite close and. surprisingly, KL-1 being consis- .-N_.:\.-_:.
. o_pposixe cI;ssfwere observed). \(ariations ".‘ bo_th a);es occurlhere tently good. If two vector subse;s were to be‘ chosen for a given ::"1"::'1‘
3 ‘ - A X L
LK s eor s nsurcombinaon R RLTTSTE ol o v the g S v i one coumn wouid be 253
. ecig gure proj y selected. Combined phase and magnitude features perform better T «4"-‘
projecting the truck-tank image data base onto the FS feature vector. than either alone, but the increased complexity in using both magni- y +1
« The projection valugs now appear to be separated more than those tude and phase féatures often yields only a small improvement
¢ for the KL projections, but less than for the FK projections. A Thus, from such noise-free tests. Fourier transform magniiude
. quantitative performance measure for comparing these different data ap;;ear to perform well. (Obtic‘ally. Fourier transform magni-
feature extractors is now advanced. tude data are calculated much more easily and hence are preferable if
the performance obtained is adequate.) But phase data are preferable
6.3. Performance measure (if their largest eigenvector is sufficiently dominant). If two Fourier
From Fig. 3 (compared to Fig. 2), the difference in the expected transform phase eigenvectors are retained, and if Fourier transform
[ values of the projections of the two classes of data onto the FK phase data can easily be calculated, phase features are preferable. If
. feature vectors 1s larger than for the projections onto the dominant the object classes being discriminated are sufficiently different, KL is
v KL eigenvectors per class. However, the variance is also larger in the adequate. However, in general, FK or FS is recommended. Clearly,
" FK projection case. The same general conclusions also hold for the the results are data-dependent. Thus, let us consider the performance
. A-B image recognition data. The scatter plots in Figs. 2 to 4 are of all feature extractors in the presence of noise before advancing a
useful for visually conveying results. However, they are misleading final decision.
since they bias one to favor a feature extractor that yields larger
differences in the mean values for the projections of different data
. classes. 6.5. Noise performance comparisons
R Tomore properly compare different feature extractors, the actual To best assess the performance of our five feature extractors. we
. projection values (note the different scales in Figs. 2 to 4) and the consider (.)ur> .lwo case studies (vehicles and letters ﬂcparalel\-'; In
k- arig f the projection values within each class must both be oy : ) e P P e T
. ;:;‘:32‘;;: To ac';iej\c this and to quantify the performance of our Table IV, we hst the palculaled S value for the vehicle }dentxﬁcahon
Y \ari.ous feaiurc extractors 'we use t:c scpa}atio:mcaﬂurc tests for both lmagqnude-only and phalse-only Founef transform
‘ > ’ ’ ) data as a function of the standard deviation g, of the noise added to
~ differ f means of - lass the input data. In T_able V. similar data for our l.cncr ndenuflca(m_n
/ § = ence of means of projections per class (N case study are provided. In these tables we also include the magni-
< average standard deviation per class tude of the eigenvalue for the dominant eigenvector for the class |
: and class 2 data (the reason for this will be apparent shortly).
. The denominator in Eq. (7)is (0, + 0,) 2. where g, and o, are the In Table IV, we focus attention on the S performance values
’
»
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=3 TABLE IV. Eigenvalues and Separability Measure S for the Truck and Tank Images for Different Noise Standard Deviations and for Magnitude- \‘.&:a '
v Only and Phase-Only Fourier Transform Data o
\j Truck and tank {(magnitude data) Truck and tank (phase data) -..'::-_
-\s:,' Noise .:_; 4
) standard 0.0 0.1 0.2 0.3 04 0.0 0.1 02 03 04 av o4
N deviation ~
Dominant i
B, eigenvalue 0.995 0.995 0.994 0.993 0.992 0.881 0.457 0.238 0.234 0.243 -,,."-_,‘.-
A of class 1 ,:.‘,..
. Dominant el
eigenvalue 0.999 0.999 0.999 0.999 0.999 0617 0.599 0.558 0.504 0.450 .':*.::-.
of class 2 s Dy
l": S for KL-1 4215 4.341 4.382 4315 4.145 6.169 4513 2.338 0.588 0.416 PSS
S for KL-2 2.893 2.924 2919 2.874 2.792 4.760 4.385 4017 3.669 3.083 ,._
Ol S for FX-1 3923 3.955 3.952 3.915 3.847 5.624 3.787 1.668 0.436 0.429 ey
.. S for FK-2 3894 3924 3.919 3.878 3.806 4.046 3.786 3.963 3.537 3.110 RN
o S for FS 4.625 4.705 4.746 4.744 4.699 7.689 5.592 3.995 3.598 3.229 -"j
i
'.-': -::-'::-l‘
e TABLE V. Eigenvalues and Separability Measure S for the Letter A and B Images for Ditferent Noise Standard Deviations and for Magnitude- g
Only and Phase-Only Fourier Transform Data .‘_w
. A and B (magnitude data) A and B (phase data) :.:-,,.\
:: Noise .\:__‘:. :
R standard DO
o deviation 0.0 0.1 02 0.3 0.4 0.0 0.1 0.2 e
=3 Dominant
X eigenvalue 0.999 0999 0.998 0.996 0.994 0.582 0.350 0.198
<. of class 1
I .
s Dominant
.. eigenvalue 0999 0.999 0.998 0.998 0.997 0.836 0.600 0.392
<, of class 2
o) S for KL-1 8.515 9.321 7.748 4.580 2.744 0.744 0.382 0.198
—~ S for KL-2 6.918 6.652 5.049 3.3 2.441 8.480 6.397 3.451
S for FK-1 13.487 16.453 12.344 6.193 3.766 0.259 0.235 0.072
N S for FK-2 13475 16.402 12.284 6.172 3.763 8.547 6.143 3.548
- S for FS 13.320 17.057 13.949 6.752 4.010 8.555 6.800 3.480
>
‘Ii
o
'd
< obtained as o, increases. Reading the performance measure data magnitude features. the actual noise contribution in the important
horizontally, we see a negligible change in S with g, for magnitude- Fourier transform plane wedge and ring elements is pro-
.« only data. Similarly, the maximum eigenvalues A, for bothimage portionally much less than for Fourier transform phase features.
=5 classes also vary only slightly with . Using the phase-only Fourier Hence, we might expect (as observed) poorer noise performance
e transform features, we find a quite significant decrease in S as g, using phase features rather than magnitude Fourier transform fea-
e increases. This shows that the performance S for phase features tures. The computational accuracy associated with evaluating the
R degrades quite significantly as the noise in the data is increased. In function from which the nonlinear phase features are obtained may
) this case. Ay, 18 also reduced significantly with increasing o, and be a secondary factor in this observed noise performance for phase
thus reflects the trend noted above. features.
v - [n Table V., similar data are shown for our letter recognition case
study. The magnitude feature data show a decrease in S as g .
‘ increases. However, the decrease in S for the phase features is everq 7. SUMMARY AND CONCLUSIONS
- more appreciable. Thus, from both Table 1V and Table V we find The classic Fourier transform plane has been considered as a feature
<. that phase features are a less robust feature set than magnitude space for distortion-invariant recognition. The use of wedge- and
o features in the presence of noise. ring-sampled Fourier transform plane features was employed to
) Let us now consider the reasons for the observed perfomance in reduce the dimensionality of the feature space and to provide scale
= Tables IV and V. We first note that we expect the Fourier transform and rotational insensitivity in our teature extractor. New fcature
> magnitude data to be concentrated in several dominant spatial fre- extraction algorithms were applied to these WRI samples of the
quencies, whereas the Fourier transform phase data are expected to Fourier transform plane, and the importance of magnitude and
3:- be more uniformly distributed over the Fourier transform plane. phase Fourier transform data for pattern recogmuion apphcations
- This is logical and is the basis for the success of dimensionality was considered. The performance of our pattern recogmtion system
¢, reduction using WRD Fourier transform piane sampling. Thus. with fortwo different two-class image data bases (vehicles and lettersy s
Fourier transform magnitude features, a few wedge or ring detector quantified for all feature extractors, for phase and magnitude Four-
‘ elements dominate object identification. Conversely, with Fourier ier transform features, and in the presence of noise
. transform phase features. all wedge or ring detector elements con- The feature extractors considered were the Karhunen-Loeve
-:.. tribute more equally. Thus. when a given amount of noise is present dominant eigenvectors for cach class, the Fukunaga-Koonts trans-
& in the input image. it is evenly distributed over all wedge and ring formed discriminant vectors, and the Folev-Sammon discriminant
< Fourier transform samples (for white noise). For Fourier transform vector. Extensions of all cases to more than two-class pattern recog-
"

T - e
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nition applications follow directly. For the cases considered, the
KL-1 vector performed well, but the FK vectors were generally
better, and the FS vector was almost always the best. This follows
from the fact that the KL technique provides only intraclass recogni-
tion, whereas FK and FS techniques provide interclass discrimina-
tion. Our study of the use of magnitude or phase Fourier transform
features showed that phase features were sometimes better, but that
in general the dominance of one eigenvector for phase data was
harder to achieve and thus, if such features were used, more eigenvec-
tors must be retained. This, plus the ease with which magnitude
Fourier transform features can be optically computed, makes sucha
feature space preferable. This use of Fourier transform plane magni-
tude and phase data for pattern recognition differs considerably
from its more conventional use in image reconstruction. Lastly, we
considered the noise performance and robustness of Fourier trans-
form magnitude and phase features and found magnitude features to
be far preferable. An initial heuristic but theoretical basis for this
result that appears to be quite plausible was advanced.
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Chord Distributions in Pattern Recognition:
Distortion Invariance and¢ Paramecter Estimation

Wen-Thong Chang and David Casasent
Carnegie-Mellon University
Department of Electrical and Computer Engineering
Pittsburgh, Pennsylvania 15213
Abstract

The use of chord distributions in pattern recognition is discussed and efficient ways to
compute such distributions are noted. New methods to achieve scale and in-plane rotational
distortion-invariant multi-class recognition and estimates of the distortion parameters are

described. 3-D out-of-plane rotational distortion-invariant methods are reviewed.

1. Introduction

Chord distributions are well-known features that describe the shape of an object and that

are useful for object identification [1-3]. These features can easily be computed (opti-
cally or 4igitally) from the autocorrelation. In Section 2, we define the chord distribu-
tion and discuss different chord pdfs. These include an observation space h(.y,%,.) and a

feature space h(r) and h(2). New insight is provided into the local and global féatures
produced by chord pdfs and the use of silhouette and boundary (profile) imagery. 1In Section
3, attractive properties of these chord distributions for scale and in-plane rotation in-
variance are discussed. A new use of such features for distortion-invariant multi-class
object recognition and methods to extract the object's scale and orientation are advanced.
In Section 4, methods to achieve 3-D object distortion~invariance (to out-of-plane rota-
tions) are reviewed. The resultant feature extractor thus enables multi-class object
classification in the presence of a wide variety of geometrical distortions.

2. Chord Features and Distributions

2.1 Definition. The conventional chord distrib.tion h(r,®) is a plot of the distribution
of the lengths (r} and directions (2) of all chords drawn between all pairs of points on the
boundary of the object f(x,y). The two chord pdfs of most use are h(r) and h(¢), the pdfs
of chord lengths r and directions €. To most easily compute the various chord distribu-
tions, one can begin by forming the autocorrelation

b(x,y) @bx,y) = . bx,y) blx - i,y - ty)axdy = R(5,,ip) = h(i, ,6) (1)

of the boundary b(x,y) of an object. The autocorrelation describes the number of points
of intersection for a given horizontaland vertical shift (iy,fy) between two shifted
images of the object. The value of R at a given (f{y,ly) thus precisely gives the number
of chords with given horizontal and vertical projection lengths (ix,iy) [3-4].

To show this, we writgl(ix,iy) = (r cos®, r sin6) where r = (ix2+ﬁ 2)1/2 is the radial
chord length and - = tan ~(i,/i,) is the chord's angular orientation.  Substituting into
(1), we see that R{.y,{,) contalns information from which h(r,8) can be obtained. From
h(iyx,i,), the chord dis{ribution h(r,¢) can be calculated. The chord pdfs h(r) and h(:)
are mo¥e useful and are most easily calculated from h({y,%,) by appropriately sampling the
autocorrelation function. If the autocorrelation is sampled radially, we obtain

hir) = fhiig,fy)rde (2}

If we sample it angularly, we obtain

h(2) = Shliy,iyldr (3)

2.2 Realization. These h(r) and h(8) chord pdfs are the features we will use. To obtain

(2) and (3) optically, we form h(ix,ly) optically (typically from the Fourier tr;nsform of
the power spectrum of the object) and sample this distribution using wedse and rinr-shaped
detector elements [4]. Such a detector unit exists (Figure 1)} with 32 wedges in one-half

of a circular plane and 32 rings in the other hall of the plane [5]. The autocorrelation
function is symmetric and thus no loss of information results by sampling only half of the
autocorrelation plane. In terms of chord distributions, the symmetry of the autocorrelation
function arises because each chord in the image is counted twice as one traverses the boun-
dary of the object. 1In one case, one end point of the chord is encountered first and then
the other end point is encountered first. The first corresponds to a chord with projections
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('x"y) and a length r. The symmetric case corresponds to a chord with projections
("x'"'V) and a direction -" rather than +%. For similar reasons of symmetry, the orienta-
tion of the wedge and ring halves of the detector does not matter. The wedge outputs pro-
vide h(?) (guantized to 32  values over 180°) and the ring outputs provide h(r) (quantized
to 32 r values over the radius of the autocorrelation function). Figure 2 shows
the general block diaaram of our chord distribution feature generator using a wedge-ring
detector (WRD).

INPUT . WRD]_M(r).n(e) [FEATURE EXTRACTION'
0BuEcT —DL AUTOCORRELATION > SAMPL I NG F———> (FISHER) :
AND CLASSIFICATION |

J

Figure 1. Simplified representa- Figure 2. Simplified Block Diagram of a chord dis-

tion of a wedce-ring tribution pattern recognition system.
detector (WRD).

2.3 Boundary, Silhouette and Gray-Level Objects. Different chord distributions result
depending on the type of input object. For a boundary or edge image (case A), the distri-
bution produced is of the number of edge or boundarv pixels (i.e., the number of chords}.
This is the conventional chord distribution. For a silhouette image (binary with all ones
on the object and with zeroces on the background), the distribution produced (case B) 1S
the same as case A, but weighted by the common area of overlap of the two images for the
given (i4,+y) shift. 1If the shift is large, corresponding to long chords, the weighting
will be small. However, if the shift is small, corresponding to short chords, the weight-
ing will be large. Thus, this weighted chord distribution that results for the case of a
silhouette object (case B) emphasizes short chords more than long chords. The chord dis-
tribution in case A will be more susceptible to noise in the interior of the object
{internal pixels of value 1 result in many new chords being produced in case A, whereas in
case B zero internal pixels cause a loss of chords but a much lower percent change results
than in case A). When the chord distribution in case A is computed from the autocorrela-
tion or power spectrum (as in Sections 2.1 and 2.2), it is much simpler to calculate than by
other methods which have great difficulty when applied to a non-continuous boundary. How-
ever, each missing boundary pixel in case A will still result in a loss in the number of
chords counted.

The weighted chord distribution (case B) emphasizes short chords. These correspond
to local object features (whereas long chords correspond to global object features). Since
local object features are useful for discrimination between object classes (inter-class),
we expect the weighted chord distributions to provide superior object discrimination. Long
chords, corresponding to global object features, are more useful for intra-class object
recognition (within one object class, in the face of various object distortions). The per-
formance of weighted chord distribution features in the presence of noise in the input is
expected to be superior to the use of conventional chord features. 1In a boundary image
(case A) with N pixels on the boundary, each noise pixel on the object produces N new
chords and each missing bsundary pixel (due to noise) causes N chords to be removed from
the distribution. With N¢ total chords, each noise pixel thus changgs the total h by a
factor 1/N. 1In case B, each weighting function is on the order of N4 (this is more true
for shor% chords tgan long chords) and thus each noise pixel produces a change in h by a
factor of only 1/N‘ (this is a considerable improvement, since N is usually quite large).
For the same reason that the change in h for short chords is less susceptible to noise, it
will also be less susceptible to small differences in the object's shape (due to distor-
tions). but changes due to sufficiently different objects are still retained.

The dynamic range of the chord features in cases A and B appears to be comparable.
Since use of the boundary image (case A} whitens the image's spectrum and results in a
sharper correlation function compared to the broader correlation pattern that results in
case B, wedge-ring detection in case B is much simpler. Case B is clearly preferable from
noise considerations, its inter-class discrimination is clearly enhanced and its intra-
class recognition should be retained. Since all chords are available (and more easily
detectable in case B), one can use the preferable chord features (short or long, local or
global) for a given problem.
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ﬁ ' If.the.gray—levels of the object and its internal structure are reliable, thern the chord {31
N q1str1butlon for the gray-level image (case C) is most useful. The distribution in case B ﬂ&"\
N is one level of a general chord distribution. The distribution in case C is a higher- :*f
}evel of generalized chord distribution {4]). 1In this case, the chord distribution for all ~=
internal chqrds or internal object points is provided. Algorithms such as (1) with the -
", poundary qb)ect b(x,y) replaced by the full object f(x,y) provide such features with no s
’. increase in computational load for optical systems (digital systems can achieve simplified S
;~ correlations when operating on binary imagery). r:r
. I
v, . . ~
- 3. Scale and Rotation-Invariant Chord Processor ’s:
i -

3.1 Insight. The chord pdf h(r) is invariant to in-plane rotation of the object. This
is obvious since the in-plane rotation of an object does not alter its radial distribu-
tion. The chord pdf h(®) simply shifts with in-plane rotations. This follows directly
since hyliy,.y) = h(rcos®, rsinf) changes to hy(iy,iy) = h[rcos(~+8g), rsin( +-g}] for ro-
tation of the input object by 43, i.e. in (r,?) space, hy(r,¢) = hy(r,++* %g). Thus in-
plane object rotations rotate h(ix,{y) and translate h(8). The chord pdf h{%) is invariant
to scale distortions of the object whereas h(r) scales (rather than shifts) with an input
scale change . The invariance of h{(%) with scale is obvious. For a scale change : in
the input object, the h{r) distribution scales proportional to o« and h{or) is obtained.

As long as half of the correlation plane is sampled in 6 and r, the above remarks remain
valid [due to the symmetry of the autocorrelation and due to the cyclic shift nature of
h(<)]. Table 1 summarizes these properties.

Table 1. Properties of R(r) and h(f) distributions

AP PARAMETER Feature Distribution Property Amplitude Effects
h(r) Invariant None
Rotation, ’U
h (&) Shifts «g, None B
RGN
-3 L™
h{(r) Scales r -+ ar oy
LY
Scale, RSN
. -3 e
h(?) Invariant a o\
ey
. e
h(r} Invariant None "l
Translation 5$\.
h(&) Invariant None :f?‘
\":*.
LN
e

Table 1 also notes the effects on the amplitudes of the h(r) and h(%) features. We
now detail the origin of these variations. We consider first the effect of a scale change
by a factor of o) in the input object on the amplitudes of hir) and h(-). First, we
consider the observation space h{ix,.,}. The image f(x,y) with scale u = 1 produces h;.
This relates to hy; for 1 # 1 as detailed below. From (1),

hyCor 50 = 0 £00y) £y s ) dxdy (4)
- For the scaled object (scale factor .)
.
?: hy(iyeny) = 70 flaxpay) £Lilx s 0,y + o ) )dxdy (5)
. Changing variables (u,v) = (ax,ay), we obtain
. 2, .. . - 2
h2('x"y) = (1/4%) 57 flu,v) flu +oar , v y)dudv = (1/:7)py X,\-y)
- (6) >
.‘ R A . . 2 - . (".F
N From (6), we see that h2 is a scaled version of h1 with the amplitudes scaled by (1/:7). A
. v'.\:
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? Now we consider the effect of scale changes on the h(r) and h{(-) distributions. For v
, the hir) distribution, we find, from (2), :
'. i
hl(r) = / f(rcos", rsin®)rd- . (7) -
\‘ ..'
y: For a scaled object (scale factor ), ::?
.l .I -
g . 3 . N , B ) s “a
hz(r) = (1/J2) Jf(arcos®, arsin®ird- = (1/;3) /f(arcosi,arsin-)rd- = (l/xB)hl(,r) (8) F:”
A
Thus, from (7)), we find a scale chgnge (by a) between the hl(r) and h_(r) distributions 5:*
and an amplitude scale factor (1/:7). For h(?®), the effect of a scalg change . is simply -
2y = 3 ..
h2¢ ) = (1/a )hl( ), (9)
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i.e., only an (1/,3) amplitude factor.

The distribution and amplitude effects of . and . distortions summarized in Table 1
and detailed above are valid for continuous daga and continuous r and - sampling. Finite r
and - sampling 1s expected to change the exact results somewhat. Specifically, due to
samplina, an exact ratio of .2 is not expected. Furthermore, the scale change from h(r)
to h(ar) can be quite difficult to uncover since the distribution for one scale may lie
in 11 rings and the distribution for another scale can easily lie in 6 or 8 rings. Thus,

the h{®) distribution is the most useful one for general (a plus ¢,.) distortions. The hir)
scale r changes linearly (to ) and is thus not a simple shift. %hen the effect of a
finite number of r samples 1s included, the h(r) effect with a is nonlinear. If we scale

the h(r) distribution in r by 32, the ratio 13 then exists between the h(r) for a scaled
object and the original h(r} scaled in r by a. Thus, the distribution and amplitude effects
of scale are coupled as just detailed. Specifically, this means that the amplitude ratio

is 23, but it is this for different r and ar points in the distribution (not the same r

-

?j points).
:- By g(x,y) = f(cx,ay), we describe both the position and value of the pixels. Specifically
rf new pixel (x,y) is old pixel (ax,ay) (i.e. a>1 corresponds to a scale degreaso) and the
r: value of the old and new pixel are the same. Our above formulae for amplitude effects pro-

E portional to a~3 thus apply for binary silhouette images (analogous formulae for gray-scale

images can be derived and used if the input data is gray-scale. In such cases, with a<1,

n, we have a larger image with more pixels and more intensity per pixel, since the object is
n; closer and received intensity is proportional to range squared).‘ For binary_sinxnmttejnages
e, and a <1, the new image is larger. Thus, for a given (%x,!%y) shift, we obtain more overlap,
:J larger correlation values, more weighting and more chords. ~Our new bz will have larger ampli-
Fj tudes (more chords) than h; and this agrees with hp = a~2hj > h] predicted.

"4

3.2 Distortion - Invariant (o and 6p) Pattern Recognition. The insight provided in Sec-
tion 3.1 and the distortion effects summarized in Table 1 are most useful in devising a new
pattern recognition feature extractor (invariant to scale a and in-plane rotation £,
distortions). We consider 3 distortion cases separately below and summarize our results 1in
Table 2. From Table 1, we note that the h(f,) distribution is the most useful one in
general (since it provides invariance to sca?e automatically and to rotations if shifted
versions of h{f) are tested; and since the ratio of h{(f) and a reference hg(%) provides an
estimate of o, whereas the best shift of h(2) provides an estimate of €,). For only

scale distortions, h(%) is best, and for only rotation distortions, h(r) is best for
classification (since these features are invariant to the indicated distortions).

- 3.2.1 In-Plane Rotations. For the case when 8g is the only distortion present, we com-
G pare the h(r) distribution hgp(r) for all references R. This provides an estimate of the

- object class R. Next, for the Lest reference R (obtained from the h(r) and hgi(r) compari-
" sons), we compare h(&) and hg(¢) for various shifts ¢p in hg(8). From the hgr(r + &3) and

RN h(*) comparisons, we obtain a verification of our initial class estimate R and an estimate

. of 60. A combination of both h(r) and h(¢) tests thus provides the best class R estimates.

i

‘e --‘ L]

“ 3.2.2 Scale Changes. For the case of an a distortion alone, we compare h(f) for the test Fx}\
~ input vs. hgp(%) for all references R. We must compare h(&)/hg(7) for each £. The refererce ,}vﬁ
3 R for which this ratio is constant for all & provides the class estimate R. The ratio N
: h(¢)/hn{%) provides an estimate of a also. To confirm our R and 2 estimates, we.form hir) ey
“ and hR?nr) for the initial R and 2 estimates. Agreement of h(r) and hgilar) confirms our 1{1~
-

1nitial estimates. Combining both the h(f) and h(r) tests again yields better estimates.

.;':g'

3,2.3 Combined Scale (2) and rotation (¢4) Distortions. When both o and 65 distortions o
are present (the most general case), analysis relies on h(?} and is more complex. We X
form h(3)/hp(= + “5) for all R and all shifts ©5. When thisratiois constant for all -, :“L‘
the corresponding R, . and GU estimates are obtained. The ratic provides the » estimate. -
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: Table 2 Scale . and In-Flane Rotatiorn 0 Irvariart Multi-Class Pattern Recognition
s
> . !
| CASE Procedure Remarks Results !
| :
7, »
o i (A) Compare hi(r) and hR(r) h(r) 1s Rotation Invariant Class R Estimate!
- { Rotation ‘ NN
-~ ! only Compare h_(- + < ) and h() h(") shifts with - Confirms F [ AN
¢ ! N R 0 0 : ; Ce
| Estimate | S
'} i l Y a¥]
| Provides - ‘ .
: Estimate
1
!
(B) Compare h(’)/kR(') Constant Ratio Provides R Class R and
Scale for each - Ratio Provides . Estimate Scale .
| Estimates .
I only :
Compare h(r)/hR(.r) Confirms above estimate Confirms R and !
Estimates ‘
\
(C) Compare h(“)/hR(” + *0) Constant Ratio Provides Initial Esti- :
. Rotation 0 for all R and all shifts 0 R and “or Ratio gives = mates of
1 R, :0I A
~and Scale
Compare h(r)/hR(;r) Confirm above Estimates Confirm R and
"N Estimates
- |

As a check, we form h(r)/hgr(-r) for the initial R and » estimates. From the constancy

of the ratic, we verify our R and : estimates. Forming h(r)/hr(a:r) initially for all ., T
is more computationally intensive and thus the order chosen appears best. This is also the -
most general case.

- 4. Out-0Of-Plane Distortions o

. For . and - diztortions, we regquire one h{r) and h(%) distribution per class R for our
trainine set. To accommodate out-of-plane distortions : , we use several training set
images per object class and from all h(r) and h(<) features select those with the largest .
Fisher ratio F (from training set data). We then form a linear discriminant functions w :
K that maximizes F for a multi-class feature set. An input test feature vector ¢ (chord
L distribution) is projected onto w and the projection value determines the input object

N

s
v sty
¥

class. This algorithm [4] has demonstrated perfect performance in selected image distor- e
tion tests. _};}~
R 5. Summary. :;?
Chord distributions h{r) and h(") have been shown to be easily computed from the 1=
autocorrelation of the input object and WRD (radial and angular) sampling. Using the W
various properties (Table 1) of h(r) and h(-), a new multi-class pattern recognition (RS
system for scale and 1in-plane rotational distortions was advanced (Table 2). Combined e
with our prior out-of-plane rntational distortion work (Section 4), this feature space S
can provide full 3-D object distortion invariance and estimates of the distortion para- ;f:.
meters ‘orientation and scale) of the object. W

Acknowledgements
) The support of this research by AFOSR ([Grant AFOSR-79-0091 and F49620-83-C-0100) 1s
g cratefully acknowledced.
K
. References
g

Tenery, IEEE Trans. Mil. Electron. ME-7, 196 (1963).

J. H. Moore and D. J. Parker, Pattern Recognition 6, 149 (1974).

P. Smith and A. K. Jain, Comput. Graphics Image Process, 20, 1699 (1982).
Casasent and Wen-Thong Chang, Appliec Ontics, Voi. 2-. 2037, July 15, 193.

PR
ownoo

5. H. Kasdan and D. Meade, Proc. Electron. Opt. Syst. Des.,b 24€ (1975).

.
.
.
"y Y - PP E SR SN PEOEI 44




Caf el e A i gt oS alta St i et It R U it R il S AT AR i Si A

........

13

8. GENERAL ARCHITECTURE AND
INITIAL RESULTS OF A MOMENT-
BASED HIERARCHICAL CLASSIFIER

Ref. 11




PreC. ORIE
A
N L. 924

(luLgﬁ.\65L4

'),‘: x &

4

AT
Dy
L

HIERARCHICAL FISHER AND MOMENT-BASED PATTERN RECOGNITION

TR

David Casasent and R. Lee Cheatham*

7’
[$

v

Carnegie-Mellon University
Department of Electrical and Computer Engineering
Pittsburgh, Pennsylvania 15213

e v s
e,

a
l'l'
s

G4

*Present Address: Battelle Northwest, P.0. Box 999, Richland, WA 99352

ABSTRACT

A two-level feature extraction classifier using a geometrical-moment feature space is de-
scribed for multi-class distortion-invariant pattern recognition. The first-level classi-
fier provides object class and aspect estimates using multi-class Fisher projections and op-
timized two-class Fisher projections in a hierarchical classifier. Aspect estimates are
provided from ratios of the computed moments. The second-level classifier provides the
final class estimate, distortion parameter estimates and the confidence of the estimates.
Extensive test results on a ship image database are presented.

1. INTRODUCTION

One can efficiently compute the moments of an input object by various methods [1,2].
These features are excellent descriptions of the geometrical aspects of an object. They are
guite unique since they can provide information on the orientation, scale and location of
the input cobject [2] and because they can be corrected for various system computing errors
[3]. In this paper, our earlier moment classifier [2] is modified to include a two-level
classifier (Section 2). This provides significantly improved performance. We earlier [4)
described initial results for robotic object parts. Here, we detail the new two-level clas-
sifier design (Section 2), and the performance obtained (Section 4) for an extensive ship
image database (Section 3).

NEW MOMENT - BASED CLASSIFIER

2.1 Moment Statistics
The geometrical moments

mog = £ (x, y) xPyTaxay (1)

of an input object f(x,y) are jointly-Gaussian random variables (JGRV) [6] due to the finite
spatial sampling of the input image and they are good estimates of the actual moments of an
input object. This JGRV model allows us to use a conventional Bayesian classifier [5] that
minimizes the probability of incorrect class estimates (Section 2.4). The mean u. and co-
variance I, for each object class i must be estimated to use this classifier. Geherally,
this requiftes a training set of imagery. Because the moment features are JGRVs, we require
only one object view per class to achieve such estimates. Thus, such a classifier using
these geometrical moment features does not require a large training set of data.
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2.2 Aspect Angle Estimator (First-Level Classifier)

The moment features are JGRVs only with respect to scale (a,b), translation (xg,yg) and
in-plane rotations (%), but not for out~of-plane rotations (<¢}. Thus, we must estimate ¢
for the input object. This is achieved in our first - level classifier, which thus in-
cludes each image aspect view as a separate object class. We thus distinguish object classes
(1n our present database tests, Section 3, this refers to cdifferent ship classes) from view
classes (these include all aspect views of all ship images). 1In our first-level classifier,
we estimate the aspect angle of the input object _from the ratio A = Ljp/uLgy of the central
moments, where .jQ = mzo—mfo/moo and ugy = moz—mé /mog. For all reference objects in the
class being tested, we calculate A and then form = A/A. The aspect view with the K value
closest to unity is selected plus all aspect views with K < Tp (the aspect threshold). 1In
our tests, we use Ta = 1.5. Those aspect views of the class being tested with K < Tp are
passed to the second-level classifier.
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2.3 Object Class Estimator (First-Level Classifier)

To further reduce the number of view classes (aspect plus class) passed to the second-
level classifier, we use multi-class and two-class Fisher projections [7] on a *raining set
of ship images. From these scatter plots for the multi-class Fisher projectio: -, we select
the two subsets of object classes that are best separated at each node in a
tree classifier. For each node, we then calculate (from training set images) the two-class

s e
PR

B o8008 S
[ _AhAS

.

0
N&\\\-




A S N LA AR N n T R0 00 L L CAMNE A AS G b Al Al A AL A A AV S Al PRI AR AP it A
-

o S04 o
]

K 'J Oy
:F Fisher vector that best separates and clusters the two subsets at each node. For example, Y 'u:
S for node 0, the full set of N-1 multi-class Fisher vectors F} to Fy-] for the N object Se
[ \: classes are computed. From examination of the projections of the inputs onto s
?~. the two most dominant Fisher vectors, we select the two subsets (with possibly) RS
ey, several object classes per subset) to be separated at node 0. The two-class Fisher vector -
for these two subsets is then calculated and the projections of all training set data on e
this Fisher vector are plotted. From this plot, weighted distances to the two class means ﬂ:
> were calculated and a class estimation threshold T¢; is selected. If the weighted distance iu'
: for the projection of an input test image exceeds T¢], then we proceed down the correspond- Ayt
ing branch at that node of the hierarchical tree. On each branch, another node is present >
k'\ at which the classes on that branch are further divided intc two smaller subsets. New multi- #:‘
{‘- class Fisher projections are used at each node to determine the two subsets to use and a new &,
B two-class Fisher projection vector is calculated for use at each node.
= All of these calculations are performed off-line on a limited numbher of training set §f
N images. To account for scale and translational distortions in the input image, the central L
n moments normalized for scale are used in the first-level classifier and the scatter plots 3;
\:: are calculated for different aspect views of each class. Details and examples of this :g
A organized first - level class estimator are provided in Section 3. This hierarchical pro- -,
i cedure is followed until terminal nodes are reached and a decision on the class estimate(s) oy
= of the input object is made. For same objects [4]), full separation into all classes is not
possible. If the calculated weighted-distance measure for the input test imace is less -~
e than Tcl, all classes at that node are passed to the next level. Use of alternate {{
i nodes is included to allow better separation of subsets at certain nodes for particular o~
"N databases. The real-time calculations involved in this hierarchical class estimator are A
::, guite simple. The test feature vector is simply projected onto several discriminant vectors e
Bt (each such operation is merely a vector inner product) and from the projected values, class ot
nj estimate(s) are obtained. For each such class estimate, the aspect class estimator (Section Ny
2.2) 1s used to determine the total number of view classes to be processed in our second-
v level classifier. re
D .
‘:t 2.4 Bayesian Classifier (Second-Level Estimator) t(;
. Because the operations required in the Bayeslan classifier are computationally more in- \?
‘ tense, the first-level estimator is used to reduce the number of view classes to be pro- SN
A cessed 1n the second - level estimator. The conventional Bayesian classifier minimizes :f
>, the probability of an incorrect class i estimate (here i denotes a view class). Using the -
~ assumptions of JGRV features, the discriminant function to be minimized is [5] o
e - T -1 ~
= g; (%) = (x-p;) "L “(x-p,), (2) F_\:
< -
S where p; and Lji = [ are the mean vector and covariance matrix for class i. For our present {\f
bf case, the feature vector x is a moment vector m and thus only one object view per class is ZH:‘
-~ needed to measure u; and I;. Operation of such a classifier thus proceeds by calculating Y
gj{x,y) for the measured input feature x=m for all object classes i. The class i that mini- ~.
mizes gj(X) is the best class estimate in a Bayesian sense. The discriminant function in St
(2) is the Mahalanobis distance. If I = I, it becomes the Euclidean distance measure or a e
nearest-neighbor classifier. Use of I = 1 assumes that all moments are independent and that «¥e
the expected variations of all moments are equal. w}u
D S
b To utilize (2), i must be a view class. To calculate all object class distortion param- ::'
- eters, i.e., scale (a,b), range (R), translation (xg,yg) and in-plane rotations (%) as well -
- as aspect view angle (:), we let the view class i include the object class and aspect view >
s angle and we include the other parameters in a distortion parameter vector b = (xg,y0.a,b,R, -¢?'
= ¢). We combine the view class and cdistortion parameters as mj(b) and thus evaluate (2) for S
o all view classes i and all distortion parameter vectors b. Since m(b) is a nonlinear func- -
‘.i tion of b, we use an iterative algorithm of the form ,ﬁc
I \k
£ p**1 = bk 4 ARk, (3) Vi
= = = [
:Z where bK is the b estimate at iteration k and gk+1 is a point in an r-dimensional space at .
. a distance a® in the direction £k franthe present estimate by. To determine the complete S
s form for the ﬁterative algorithm in (3), we expand mj (b) in a Taylor expansion series about -::_
! : the present b® point as :\:
154 e
b m (b) = m (6% + 3Fp-ph), (a)
) where J is the Jacobian of m; (b) with respect to b at the k-th iteration. For a measured
. input feature vector @, the error to be minimized is e; = M - m;(b) and the square-error
- measure is Ej = giTg‘ ei, where I-1 is the weighting matrix used. Substituting ej and (4)
,
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into the expression for Ej, the b that minimizes E; (b) is found to satisfy

k+1 k

Bt o bRy (M TETlgK

-1 k T

J71 (3 [m m, (b)]. (5)

Eg(5) is the nonlinear iterative algorithm used in our second-level classifier to estimate
b. Thus, for each view class i (5) is repeated and new b estimates are obtained. For each
Qk, we calculate the normalized difference

k=1 (i,0)1/g" (i,b) (6)

k.
Agi = {g (112) - g
between two successive gj estimates, where g;(b) = E;j. The iterations in the Gauss-Newton or

Newton algorithm in (2) and (5) are continued until Ag; is less than a convergence threshold
T.

2.5 Parameters and Overview

The full moment-based two-level estimator is shown in block diagram in Figure 1. It con-
sists of an optical moment feature computer, first-level class and aspect estimators, and
the second-level Bayesian classifier. The output from the two first-level estimators are
used to access those reference moment vectors necessary for the second-level nonlinear lter-
ative classifier. The final outputs are the class estimates i (class and aspect angle :},
the target's distortion parameters or orientation information b and the confidence gj of the
estimates.

Object Second —P0Object Class
Input First Class Reference Level ——PView Angle
Moment Level Set 1 Distortion|—PScale
Vector Estimator Aspect > Selection Parameter p——JpTranslation
—P View Angle Estimator —¥Confidence

FIGURE 1
Block Diagram of a Two-Level Moment-Based Classifier

is estimated from mﬂoo To facilitate calculations, J is evaluated with (xg,yp.,a,b) =
(0,0,1,1), i.e. assuming that the presently calculated distortions b are correct and thus
viewing future iterations as updates on the present bK rather than the initial b® estimates.
These and other features of the iterative algorithm allow it to converge in typically less
than 15 iterations. Different approx1matlons to 1~! were considered in our case study.
Such measures were essential since I is ill- conditioned. Approximations considered were:

- -

- = I and C 1= W WT, where W is the multi-class Fisher projection matrix of the reference vector
‘set. The iterafive convergence threshold T is typically chosen as 0.01. This corresponds to a 1% difference in
successive iterates as in (6). The class estimation threshold T¢cj = [1-d1/d2] is chosen as
0.35, where d) and d; are the distances of the projection to the two weighted class bounda-
ries at each node in our first-level class estimator. The class estimation threshold T¢)

for the second-level Bayesian classifier is defined similarly and is chosen to be 0.35 also.

To facilitate b estimates, xp and yp are estimated from -fijg/figg and -fg;/figg and scale

3. SHIP DATABASE

3.1 1Image Sets

Ships on the open-sea represent an attractive application for feature-space technigues
(since one object can often easily be included in field-of-view). The class, orientation
and range of the obiect in this application are necessary for missile guidance and tarqget
selection. The set of ship imagery available consisted of five ship models with 36 different
aspect views per ship class available from a 90° depression angle (0° attack angle) at 10°
intervals (a total of 180 view classes). Figure 2 shows the broadside views of the five ship
classes.
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FIGURE 2
- Broadside Views of the Five Ship Classes

TABLE 1
Ship Image Database, 36 Images Per Class

il KUMBER RAME SHIP TYPE

: 0 Moskva| Soviet Helicopter Cruiser

_ 1 Leahy U.S. Guided-Missile Cruiser
-; 2 Hope Hospital Ship
:;; 3 Albany| U.S. Guided-Missile Cruiser
}} 4 Brooke| U.S. Guided-Missile Frigate

Table 1 lists the names and types of each general ship class. For each ship, the original
- images were binarized and data sets with and without the hull removed were prepared. All
. - data included were obtained with the hull present. Each imace was 128 x 32 pixels with
-« approximately 2000 pixels on the broadside views and less than 200 pixels on the bow and stern
views. Several other ship image databases used are noted in Table 2. These include: the
standard reference images used in the second-level classifier (these include only four
images in the first quadrant, brcadside images only and other selected object views).

» TABLE 2
Miscellaneous Image Training and Test Sets Used

DATA SET SPECIFIC SHIP IMAGES | SYMBOL

o Standard Reference Images 10°,30°,50°,80° S

. Broadside Images 40°-140°,220°-320° B

: Even Views 0°,20°,etc. E

a 0dd Views 10°,30°,etc. o)

’ All Views 0°,10°,20°,etc. A

. 3.2 Hierarchical Tree
. In Figure 3, we show the scatter plot for all views of all five ship classes on the two
:d dominant multi-class Fisher vectors. As seen, ship class two is the most easily separated.
% Thus, at node 0 we chose to separate the class two ship (the Hope) from the others. This
o yields a terminal node for one branch from node 0. At node 1, we examined a similar scatter

plot for classes 0,1,3 and 4 and chose to separate the class 0 ship (the Moskva) from the
three U.S. guided-missile ships. At node 2, we then separated three ships (the Brooke, a
Frigate, from the two cruisers) and finally at node 3 we separated the two U.S. cruisers.
Figure 4 shows the final hierarchical tree used for our ship image database.
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3.3 Node Threshold Selection

In Figure 5, we show the projection of the subsets at node 2 in the tree of Figure 4 (a 1
denotes a class four projection and a 0 denotes class one and three projections). The dis-
crimination point D is the point where the weighted distances to the means (yg and yj) of
the two subsets are equal. The lower bounds Dg and D] for each subset are noted. For less
uniform clusters, Dg and D) are selected at several standard deviations from yg and yj. The
weighted distances Db and Di (normalized to 1.0} from Dg to yo and Dj to y; respectively
were calculated. The D' values for all nodes were found to lie in the range from 0.35 to
0.45. Thus, Tcy = 0.35 was selected. If more noise is expected in the input data, Te; can
be lowered. However, if the wrong class estimate is passed from the level-one classifier,
this will be quite detrimental to performance. Thus, the use of a lower T¢j] threshold
should be carefully considered. In subsequent tests, we verified that the same hierarchical
tree structure of Figure 4 would be chosen from a significantly reduced set of 16 reference
images (specifically 4 images in each quadrant}). The Tgj value was similarly found to be
unchanged when this reduced set of training set images was used. This is useful to retain
the reduced size training set advantages possible with JGRV features.
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FIGURE 5
Projection of Subsets at Ship Node 2 Showing the Discriminant Point,
Projection Means and Threshold Region
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4. EXPERIMENTAL RESULTS

Various aspects of the classifier were separately investigated. Each subsection below
addresses one major issue of our moment-based classifier for the case of a ship image data-
base. In each case, the test number is noted together with the salient conditions and the
percentage of ships correctly classified. Each data entry in a table correspcnds to 180 test
images (case A = all) or 110 test images (case B = broadside views).

4.1 Effect of First-Level Estimator

In Tables 3 and 4, we show the results of tests performed with and without the first-level
classifier enabled. As seen from the last column, excellent performance (above 98% correct
classification) is obtained if the aspect estimator is used. This is expected since the
second-level classifier does not provide aspect estimates and without this different ships
at different aspect views have similar moments.

TABLE 3
Effect of First-Level Classifier on Performance (Broadside views, Case B)
TEST AVERAGE NUMBER OF PERCENT
NO TEST CONDITIONS REFERENCE VECTORS PASSED TO CORRECTLY
° SECOND-LEVEL CLASSIFIER CLASSIFIED
1 First-Level Not Used 20 35.5
2 First-Level Class Estimator Not Used 8.12 36.3
3 Aspect Estimator Not Used 4.11 98.2
4 Both Estimators Fully Used 1.75 98.2

4.2 Computational Load with First-Level Classifier

In column 3 of Table 4, the number of reference vectors for which the second-level clas-
sifier must be tested is listed. There are a maximum of four aspect views in each of the
five classes. These data correlate well with the percent of objects correctly classified.
The fewer view classes passed to the second-level classifier, the better the system performs.
In test 1, all 20 view classes are passed to the second-level classifier (i.e. all four as-
pect views of all five classes, since no first-level estimator was used). In test 2, with
only the aspect estimator used, we might expect five view classes to be passed (the number
of object classes). The larger average number of 8 view classes passed reflects the inde-
cision in the aspect ratio test with the larger threshold of 1.5 used (versus passing only
the best aspect estimate per class). In test 3, the aspect estimator is disabled and thus
we might expect four view classes to be passed. This is close to the average number ob-
tained. The data in Table 4 is quite comparable to that in Table 3 with only slightly lower
percent correct performance obtained (due to the larger 180 versus 110 number of test images
used and the low resolution of the bow and stern views now included).

TABLE 4
Nffect of Yirst-Level Classifier on Performance (All Image Views, Case A)
TEST AVERAGE NUMBER OF PERCENT

Ndl TEST CONDITIONS REFERENCE VECTORS PASSED TO CORRECTLY
) SECOND-LEVEL CLASSIFIER CLASSIFIED

1 First-Level Not Used 20 36.7

2 First-Level Class Estimator Not Used 7.24 37.2

3 Aspect Estimator Not Used 4,18 86.7

| 4 Both Estimators Fully Used 1.72 86.7

The first-level estimator is thus useful to reduce the number of view classes to be pro-
cessed by the second-level classifier and hence the computational load on the system. The
aspect estimator is the most important part of the first-level classifier, because of the
nature of the second-level classifier. 1In general, if the first-level classifier does not
perform well, the second-level classifier cannot improve performance. 1In the tests performed
in Tables 3 and 4, a convergence threshold T = 10-4 was used and the reference set was the
standard one in Table 2.

4.3 Convergence of the Second-Level Classifier

In this test, we consider the number of iterations necessary in the second-level classifier
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i for convergence for different thresholds T. The results (Table 5) show that effectively the
same performance (98.2%) correct results for different convergence thresholds T was obtained.
For the case of all ship images (Case A versus Case B), a nearly constant 87% correct class
performance was obtained. As expected, the number of iterations required for (5) to
converge to the specified T decreases as T increases. In no case are more than 20 iterations
necessary however. Several modification details associated with starting the algorithm and
choosing the step size were incorporated to insure such convergence. Other refinements in
the step size choices in (3) can reduce the number of iterations in the second-level classi-
fier by a factor of two (for the databases tested thusfar).
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TABLE 5
Effect of Convergence Threshold T on the Number of Second-Level Class Iterations
(Case B, Broadside Test Images)

PERCENT
TEST CONVERGENCE CORRECTLY NO. OF SECOND~-LEVEL
NO. THRESHOLD T CLASSIFIED| ITERATIONS PER VIEW CLASS 1
OUT OF 110
1 1074 98.2 17.04
2 1073 98.2 16.00
3 1072 98.2 14.77
4 107! 98.2 13.30
5 0.5 98.2 2.0
6 1.0 98.2 2.0

4.4 Number of References in the Second-Level Classifier

In the prior data, only four reference views per class (all in one guadrant) were used
and excellent 98% (Case B) or 87% (Case A) correct performance was obtained. 1In Table 6, we
consider the performance obtained when more aspect reference views per class were used in
the second-level classifier. Tests 3 and 4 employ all 18 aspect views. The results shown
are as expected. The excellent original performance 98% and 86.7% were improved by only
1-4% by increasing the number of aspect reference images per object class by a factor of 4.5
(from 4 to 18). 1In tests on other images [4] with less symmetry, poorer performance resulted
unless reference images in two quadrants were used in the reference set for the second-level
classifier. Thus, the exact results obtained depend upon the data and its symmetry. 1In
general, a reduced size reference set can be used. If the number of aspect references is
reduced, the accuracy in the aspect angle estimate may also be reduced. For the cases con-
sidered, interpolation between different aspect views is possible to provide view angle
estimates with 10° accuracy using a reduced reference set. The sign of an odd-order moment
can provide quadrant information on the aspect of an unknown test input object.

TABLE 6
Effect of Reference Set Size in the Second-Level Classifier

ToST|  REFERENCE SET CORRECT
- (OUT OF 110 & 180)
1 10°,30°,50°,80° 98.2
2 10°,30°,50°,80° 86.7
3 Even Aspect Views 99.1
4 Even Aspect Views 91.1

4.5 Weighting Matrix Estimates

The final test run concerned the weighting matrix I used in the second-level classifier.
The choices considered were I and W WT with W calculated from the two dominant Fisher vectors
or from the four dominant Fisher vectors for all target views or only the broadside views.
The results show that over 90% correct recognition was obtained with only the identity ma-
trix used for the approximation to L. Use of the full four Fisher vectors gave only 2%
better performance. 1In all earlier data tests shown, the identity matrix was employed as an
approximation to L,
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5. SUMMARY AND CONCLUSION

A new two-level classifier has been described that uses the geometrical moments as the
feature set. These features are JGRVs and thus allow use of a Bayesian classifier with only
one training set image per view class required. A nonlinear iterative algorithm is used in
the second-level classifier to obtain the final class estimate and object distortion param-
eters. To reduce the number of view classes to be searched, first-level asrect and class
estimators are used. The aspect estimator simply employs the ratio Lyg/ugy to select only

views with a similar aspect ratio. An organized hierarchical tree search is used to obtain :f:
class estimates. Multi-class Fisher projections are used to define the nodes in the tree vf\\
and two-class Fisher vectors are used to determine the subset at each node during testing. \;\}!
In all cases, the computational load is guite low: the first-level classifier reguires only },\'7
several vector inner products, the second-level classifier requires approximately 18000 opera- 2a
tions per iteration and fewer than 15 iterations per view class. Thus, a quite efficient »
and attractive feature-space object classifier results with excellent performance (uvver 90% NP
correct recognition) for a five-class problem with aspect view object distortions present. e d
All parameters of the classifier have been examined and quantified for a ship image database. : :u‘
':- N
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IMAGE SEGMENTATION AND REAL-IMAGE TESTS
FOR AN OPTICAL MOMENT-BASED FEATURE EXTRACTOR
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A two-level classifier has been designed for use in 2 moment-based hybrid optical/digital processor. The simulation per-
formance of this pattern recognition system using real IR input test images of ships and reference moments obtained from
ship models is described with emphasis given to the preprocessing operations required.

1. Introduction

The use of optical processors to compute image
features for feature-based pattern recognition has re-
cently received renewed interest. The optically-com-
puted image features thus far considered include
Fourier coefficients {1-3], chord histogram distribu-
tions [4,5), and geometrical moments [6—8] . In this
paper,a moment-based feature extractor and classifica-
tion algorithm for pattern recognition is considered
(section 2) and its performance in the classification of
ship imagery (section 3) is addressed. Specific atten-
tion is given to classification of real input imagery
(section 5) and the image preprocessing required (sec-
tion 4).

2. Optical computation of the geometrical moments

The optical system considered to generate the mo-
ments of an input object [7] consists of an input plane
P, (in which the input image is placed) imaged onto a
moment generating mask at plane P,. The monomials
xPyd up to fifth-order (p + g < 5) are recorded on the
P, mask each spatially multiplexed using a different
spatial frequency for each carrier. The optical Fourier
transform of the light distribution leaving P, is de-
tected on 21 multiple parallel output detectors in the
P; output plane and contains the moments

0030-4018/84/%03.00 © Elsevier Science Publishers B.V.

{North-Holland Physics Publishing Division)
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Mpq = Jf F(x.7) xPya dx dy (1)

of the P, input pattern f(x, y) as detailed in [7].
These optically-generated image features are used
as inputs to a digital feature-based classifier which then

determines the object class and the orientation, scale
and aspect of the input object. The details of this clas-
sifier are provided elsewhere [8] and are not germaine
to our present discussion, however several remarks on
the classifier follow for completeness. The optically-
calculated input moment vector m is projected by the
first-level classifier in the digital section onto a multi-
dimensional Fisher feature space [9]. From the loca-
tion of the projection vector, initial estimates of the
input object class are made. From the ratio of the nor-
malized second-order moments u,q and g5, an esti-
mate of the aspect ratio or aspect angle of the input
object is made. These estimates are used to select ref-
erence vectors m;(8) for class / and aspect ¢ from stor-
age against which m is compared. The final decision
on the object class and the geometrical location of the
input object is made in a second-level classifier imple-
menting a nonlinear least-squares solution as detailed
in [8]. Our present concern is the preprocessing re-
quired on real images before their moments m can be
reliably extracted.
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3. Database

Number

of Pixels

As our reference database we used 180 images of
five types of ships with 36 images available per ship
(at 10° intervals around each ship, from a 90° depres-
sion angle). This reference database was obtained from
ship models under controlled conditions. Each image
contains 128 X 32 pixels with about 2000 pixels cor-
responding to the ship (for the broadside view) and
less than 200 ship pixels (for the bow and stern views).
The moments of 4 images per class (10°, 30°, 50° and
80°, where 0° is the bow view and 90° is the broadside
view) constituted our reference m;(6) database. As test
data, we used various real images of the class 2 ship
(the Leahy). A typical image is shown in fig. 1. It
shows the ship in water with a sky and shoreline back-
ground. We used 256 X 128 pixel images with 8 bits
of gray scale for the real ships in our tests. The hori-
zon (separating the water and the sky background) is
seen and the depression viewing angle for the real
images is 80° (rather than 90°, as in the reference
imagery). The real image (from bottom to top) con-
tains four regions: (1) water, (2) the hull of the ship
and some water, (3) the superstructure of the ship with
a water background, and (4) the sky and shoreline at
the top of the image. In section 4, we detail the pre-
processing used to extract the ship from the back-
ground and in section 5, we discuss the classification
performance obtained on such imagery.

4. Image preprocessing

Feature-extraction pattern recognition algorithms
require that one object location within the input field-

Fig. 1. Typical ship test image (the guided-missile cruiser, the
Leaty, ship class 2).

228

-

WS A RN AP AV RV RV AV AF AV N A MV RF AV AF AP MV AV R s

150 168

Fig. 2. Bimodal gray-level histogram of fig. 1.

of-view be extracted before the features are computed.
These operations are most commonly referred to as
segmentation and also involve noise removal and filling
in of holes on the object [10]. Care should be taken
to employ only simple image preprocessing operations
that are not computationally expensive. Thus, we used
mainly histogram operations (since they require only
simple tallies of image pixe! levels) to aid in threshold
selections. A wealth of such methods exist, but their
specific implementations are quite problem-dependent.
In our case, we used context information (the water is
helow the ship, the sky is above the ship and the deck
line and horizon are nearly horizontal due to the sen-
sor system used) to greatly simplify the ship segmenta-
tion. Our approach is quite novel in the techniques
employed to select separate thresiolds for the differ-
ent image regions and dynamically select these regions
based on the scene information. Such methods are of
use in feature extractors for diverse applications.

As step 1, we formed the gray-level histogram of
fig. 1 (see fig. 2). It was bimodal as expected extending
from 0 to 255 (8 bits). A broad peak exists at low
pixel values {corresponding to the water and noise,
which is low in intensity in fig. 1) and a sharper peak
is centered at the high 175 pixel level (corresponding
to the ship and the sky, whose pixel values are larger

in fig. 1). A well-defined valley at pixel level 150 exists.

Thus, at step 2, we thresholded the image at 150 (with
all pixel values below 150 set to zero and all pixel val-
ues above 150 set to one). The resultant binary image
is shown in fig. 3.

At step 3, the image in fig. 3 is used to estimate the
location of the four image regions defined in section
3. To achieve this, a horizontal or row-projection
histogram of fig. 3 is formed. This is a graph (fig. 3) of
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Iig. 3. Binary version of fig. 1 thresholded from the bimodal
gray-level histogram of fig, 2.

the number of pixels with value equal to ore in each
row of fig. 3. From fig. 4, the different ir.iage regions
can be identified. The region to the right of row C
(with zero-valued pixels) is the water below the ship.
The flatter region just to the left of row C is the hull.
The region between row B and where the hull occurs
contains the ship’s superstructure {plus water back-
ground). The sky and shoreline lie in the region to the
left of row A, Between rows A and B is a transition re-
gion between the sky and water which contains the
horizon region with some sky, water and ship super-
structure. Row A and C are easily defined and located.
Row B was located from the sum of first differences
for consecutive row values as the inflection point in
the histogram. These procedures are all automated and
require only simple computations.

In step 4, the values for rows A, B and C from fig. 4
are used to extract the sky only (top row to row A)

Number Transition
of Sky Resion
Pixels €8 Hull Water

Super-
structure

~C

Row
Number

A B

Iig. 4. Horizontal projection histogram of the binary image
ot fie. 3. The sky. ship, superstructure and water regions ot
the image are noted.

R AT R R R A AR R

Number

of Pixels

Sky and
Water

Value

Fig. S. Gray-level histogram ot the gray-scale image in fig. 1
after subtraction of the means of the sky and water from the
appropriate image rows.

and water only (row A to the bottom row) region of
the original gray-scale image. Specifically, the average
pixel values in these two image regions are calculated.
This involves only a simple sum of the pixel levels in
the proper rows of fig. 1. In step 5, the mean-value of
the sky and shoreline region is subtracted from the
rows above A in fig. 1, the mean value of the water re-
gion is subtracted from the rows below C in fig. 1. and
a linear combination of the mean of the water and sky
is subtracted from the rows between A and B. This
produces an image with the ship pixels on a positive
bias and with the water and sky regions on a zero bias.
In step 6, the gray-level histogram of this image is
formed. As shown in fig. 5, it has an obvious bimodal
structure with a very apparent threshold level or valley
point at pixel value V.

In step 7, all pixels in the image with gray-level val-
ues below V' in fig. S are set to zero. This removes the

Fig. 6. Segmented ship image produced using the threshold
level V1 found from fig. 5.
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sky, shoreline and water and thus extracts the ship. If

quite general use was detailed for a ship pattern recog-

-
!

the gray-levels above V' are retained, a gray-scale seg-
mented ship image results. If levels above V' are set to
unity, a binary segmented ship image results (fig. 6).
Simple median filtering or other local convolution op-
erations can be used to suppress miscellaneous noise

nition scenario. Such operations are essential if optical
or digital feature extraction processors are to achieve
good performance. The successful classification of a
real input image using moment features and a unique
two-level classifier was demonstrated. Similar resuits

pixels remaining in the background and to fill in holes
on the target object.

LR MR e

were obtained for other real images.
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The moments m of the image in fig. 6 were com-
puted and fed to our digital first-level Fisher projection
class estimator. This first-level classifier omitted class 1
and 3 ships as possible class matches. The second-level
classifier returned class 2 as the most-likely object
class. This classifier also provides confidence levels for
each possible ship class (classes 2, 4 and 5) passed by
the first-level classifier. The class 4 ship, another
guided-missile cruiser, had the second-best confidence
but it was quite worse than that of the best (and cor-
rect) class 2 match. The correct aspect angle (70°) and
scale (50%) of the input object are also provided by
the classifier.
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6. Summary and conclusion

A necessary aspect of feature extractors for pattern
recognition is the image preprocessing required. A
novel digital segmentation preprocessing procedure of
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Hierarchical Feature-Based Object Identification

David Casasent and R. Lee Cheatham*®
Carnegie-Mellun University
Department of Electrical and Computer Engineering
Pittsburgh, Pennsylvania 15213 :

*Present Address: Battelle Northwest, Computers & Information Systems
Section, Richland, Washington

1. INTRODUCTION

A feature space processor for multi-Class distortion-invariant pattern recognition
is detalled in Section 2. A moment feature vector space is considered. Test
data [1.2] on a robotic database are summarized in Section 3. Results on a ship
database, using real input imagery with references from models is presented with

altention to preprocessing, distorlion parameter estimation, and class identification are
advanced in Section 4.

2. PROCESSOR

A moment feaiure space is easily generated optically [3,4,5] or digitally [6].
its. outputs can easily be corrected for processing errors in post-processing [3].
Moments are jointly Gaussian random variables [2] due to sampling with respect to
in-plane distortions. Thus, they allow use of a Bayesian classifier and thus can
minimize P.. To determine the class i (object class ¢ and aspect view ¢} and
the object's distortion§ (described by a distorticn parameter b) for each computed
input moment vector m, we calculate

g = m - m]'Z'[m - m®)]

()
with b calculated iteratively (k is the iteration index) using
gt = Bt e [NTEMTYE I - m). (2)

The class i that minmizes (1) defines ¢ and the out-of-plane rotation angle
(aspect) ¢ of the input, whereas b provides estimates of trarslations, scales, and
in-plane rotations. The number of iterations k can be reduced to 4-6, ¥ = | can
be used in (1) and (2). and J in (2) calculated as an update [1.2]. This
significantly reduces the computational load per class/aspect .

The major problem is the large number of aspect-classes i that need
potentially be searched. 7o relieve this, we use twoA first-level estimators [1,2] to
estmate the aspect (this is achieved by A = p,o/pg,) and class (a hierarchical
tree is used for this, with the node structure chosen from a multi-class Fisher
projection and with a two-class Fisher discriminant vecior used per node). As we
show in Section 3, this reduces the number of aspect-classes i to be searched

and thus makes the processor very computationally efficient. A block diagram of
the system is shown in Figure 1.

3. _PIPE_PART TEST RESULTS

Nine different pipe parts (4 classes) viewed from a 50° depression angle
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Class

INPUT MOMENT | FISHER | Estimate

ivace—Jcomputer P CLASSIFIER —P| REFERENCE
Aspect mpq

ASPECT Estimate

ESIMTATOR [ P| DATABASE
—————®|  [TERATIVE NONLINEAR
CLASS (3) LSM CLASS/ASPECT/DISTORTION
ORIENTATION (b)e=—— PARAMETER
CONF IDENCE

Figure 1: Block diagram of a multi-level moment feature-space cilassifier

were digitized (128 x 128 pixels) with 36 images per part (one image every 10°
in aspect) and used as our test database. Test results are summarized in Table
1. They show: 9 out of 36 references are adequate (Test 1). Use of the
first-level estimator reduces the number of i to be searched in (1) to 10 (Test
2). “The number of iterations k in (2) is only 6 over a large Ag, range (Test 3)

and L = | in (1) and (2) is adequate (Test 4). As seen in Table 1. the system
ot Figure 1 can correctly classity over 97% of the 324 images (using only 9 x 4
= 36 references).
TEST PERCENT
NUMBER CONDITIONS CORRECT REMARKS
(OUT OF 324)
. 9 Aspect Refs each 40° Used
1 No Aspect Estimator 97.5% 24 View-Class (Avg) Passed
2 Full First-Level Estimator 97.5% 10 View-Class (Avg) Passed
....... S P S TR DL S
4 -1 more
3 Ag, 10 7 to 10 98.2% refs 6 Iterations k -
4 Different Z [ 90-93.9% = ] (90%) Adequate L
Table 1: Representative Pipe Part Data (Different Test Conditions)
4. DISTORTION PARAMETER ESTIMATION ACCURACY ‘:
o7
Related tests on another database [2,7) showed comparable performance and ;:-:.'-_
similar operational parameters. in this database, the reference objects were AN
obtained from models and in tests against real-world IR images, excellent e
recognition was obtained.  The preprocessing required [7] used only simple 10 -
and 2D histogram operations and thresholding (to maintain low computational ::.:_.
overhead). N
\:_\"
A
We now consider the class c, aspect ¢. scale a and translation x, estimation .':'_;::'
.u'\

...................
.....

....................
..........
.........

.......................................
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accuracy of the system for a second five-class database (36 images at 10°
aspect intervals per clas) using only four references per class. The true object
was the B0° aspect view of the class 1 image. A real IR input image (vs.
references obtained from models) at a depression angle 10° different from that of
the reference set was used with real IR noise present in the input. The tests
(Table 2) show perfect class and aspect classification for Ag, = 107 - 107" (for
49, = 05, errors resulted as expected) and excellent shift (x, in pixels) and scale
factor (a) distortion parameter estimation. All distortion parameters were estimated
within 5% accuracy, due to the input resolution, noise, etc. factors.

TEST TiU/EPISXCEALLE a/x0 CLASS/ASPECT

NUMBER | SifFrx, | ESTIMATE ESTIMATE
I N 1.0/0__|_ __.1.0/0 ___1___. 1/80° ____
o2 _.1.0/15 | 1.016/14.22 1 _ ] 1/80° ____
[ 3. 4..1.0/25 | 1.023/23.22 ] 1/80° ___
I S 0.5/0 __|_. 0.499/0.1 4 ___1 1/80° ___
I . 0.75/0___|_¢ 0.750/0.07 1 __1/80° ___

6 0.9/0 0.90/0.03 1/80°

Table 2: Results of Class and Distortion Estimation Tests

(True Class 1, Aspect 80°)

ACKNOWLEDGMENT. The support of this research by the Air Force Office of
Scientiic Research (Grants AFOSR-79-0091 and F49620-83-C-0100) are gratefully
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Projection synthetic discriminant function performance

David Casasent Abstract. Synthetic discriminant functions (SDFs) allow distortion invariance
William Rozxi to be achieved in optical correlators, thus making such systems more practical.
Carnegie-Mellon University The synthesis of four different types of SDFs is reviewed. Their perforfnaqc.elin
Department of Electrical extensive projection tests on 144 images is presented, together with initial

and Computer Engineering performance tests in the presence of noise. This distortion-invariant and shift-

Pittsburgh, Pennsylvania 15213
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1. INTRODUCTION

The frequency plane optical matched spatial filter (MSF) correlator!
has been the most studied optical pattern recognition system of the
last 20 years. The sensitivity of the MSF to geometrica! distortions
‘between the input and reference object is a well-known shortcoming
of any correlator. The use of multiple MSFs can reduce such prob-
lems at the cost of increased system complexity and reduced light
budget efficiency.? Special frequency plane weighting and fiiter syn-
thesis techniques can reduce this sensitivity, but cannot overcome it.}
Space-variant correlators* and coded-phase processors’ can over-
come various distortions, but at the expense of shift invariance and
multitarget recognition (although they still retain the processing gain
advantages of a correlator).

In this paper, we describe the synthesis and performance of MSFs
formed from synthetic discriminant functions (SDFs). These lincar
combination filters retain the shift invariance and processing gain of
correlators while overcoming their sensitivity to geometrical distor-
tions. In Sec. 2, we review the synthesis techniques for four different
SDFs.¢ In Sec. 3, we describe the data base used in our projection
simulations. Our noise-free results’ are summarized in Sec. 4. and
initial performance in the presence of noise? is presented in Sec. 5.
Other variants of SDFs also exists-*~!!; however, SDFs are the most
general and widely tested of such filters.

WUONERWN =

Invited Paper PR-108 received April 3. 1984; revised manuscript received April 27, 1984;
sccepted for publication June 23, 1984, received by Managing Editor Aug. 23, 1984
© 1984 Society of Photo-Opuical Instrumenwation Engineers.
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invariant pattern recognition algorithm can also be implemented digitally.

Keywords: apticel pattern recognition; correlator; distortion-invariant pattern recognitions
symhetic discriminant functions. image processing. matched filter.

Optical Engineering 23(6), 716-720 (Novernber/December 1984).

2, SDF SYNTHESIS

A unified SDF synthesis technique was firstadvanced in Ref. 12 and
recently was more fully described.® For completeness, we briefly
review the different SDF synthesis methods. The basic concept of
SDF synthesis is to utilize a training set of images of each object
class. From the correlation matrix of the full training set, we synthe-
size a SDF h(x,y) that is a lincar combination of the training set of
images. Depending upon the purpose of the filter, different condi-
tions will be placed on h, and different SDFs can be synthesized.

The simplest derivation of a SDF occurs for the case of one filterh
that is to yield a constant correlation output ¢ = | for all versions {f,}
of objects f in one class; i.e.,

f,®h=c=1, (1)

where ® denotes correlation. We restrict h to being a linear combina-
tion of the {f;}; i.c.,

h=Yag,f, . P3)]

For notational simplicity, we do not show the spatial dependence of
the functions f and h in Eqs. (1) and (2). We rewrite Eq. (1) for the
projection case (i.¢., the central value of the correlation output) as
f, - h =1 (where vectors, denoted by boldface type, now describe each
function). Substituting Eq. (2) into Eq. (1), we find

foh=10-Santy=Santym ="!. )

where r, . denotes the elements of the correlation matrix R for (f}.
In matrix-vector notation, Eq. (3) becomes

Ra=uw, 4)

where u is the unit vector (i.e., ucontains ali “1 " elements). The filter
h that satisfies Eq. (1) is thus defined by
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:. We denote the SDF in Eq. (1), defined by Eq. (5), as an equal
. correlation peak (ECP) SDF. Itis only of use in intraclass pattern
Y recognition. The remaining types of SDFs¢ are described quite sim-
ilarly to Eq. (5). with different training sets, correlation matrices, and
exogenous vectors u used.
o For both intraclass recognition and interclass discrimination, a
SDF b, is chosen to recognize objects [fil in class i with unit output
and to yield zero output for objects [fj} in other classes j; i.c.,
.
L L Oh =5 . (©)
mo This mutuaI‘(:nhogonal function (MOF) SDF for a two-class prob-
Jem is synthesized using a training set of N, images {f,,} of class |
- objects and N, images {f,,} of class 2 objects as
: by =3 anfy .
o =
™
b =3 bnfy .
\: m
{:: where [, -h, = | for objectsinclass 1, f,, - h, =0 for objectsin class 2,
~+  and the summations in ‘Eq. (7) are over I<m<N, + N,. The
_, matrix-vector solutions for the ay, and b, in Eq. (7) are
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a= RT‘lzll. .
= g-! ®
b=R,,w.

where R, jis the (N; 4+ N,;) X(N, + N,) correlation matrix of the full
training set of data, and where w, =[1,...,1,0,...,0)T and u, =
[0.....0.1,....1]7. In u,, there are N, ones (for the N; class |
objects) and N, zeros (for the N, class 2 objects). Similarly, u, has N,
zerosand N, ones. The extension of Egs. (6),(7), and (8) to more than
two object classes follows directly.¢ These MOF SDFs require one
filter per object class and a correlation matrix R of larger order than
in Eq. (5).

In some recognition cases, 8 single multilevel nonredundant filter
SDF h (we use the simpler term “multilevel SDF™) can be used to
recognize multiple object classes. The general requirement for sucha
filter can be written as

f,®h=n; . 9

i.c., the value n of the correlation output defines the class n of the
input object. For a threeclass intraclass and interclass recognition
and discrimination problem, we use N;, N,, and N, training set
images in classes 1. 2, and 3, respectively. The filter is defined by

h=Sapln,. 10)

where the summation is over ISm<N, + N; + N,, i.c., the ful)
training set. The filter in Eq. (10) satisfying Eq. (9) is defined in
matrix-vector notation by

a=R}u, (tn

where Ry isthe N; + N, + N, correlation matrix for the full training
setandwy; =[1,...,1 .2.....3.3.....3]hasN, ones, N, twos, and N,
threes.

The final class of SDFs is the K-tuple two-level nonredundant
multiple filter SDF (we use the simpler term “K-tuple SDF™). We
describe such filters for the “~ur-class (N = 4) two-filter (K = 2) case
(ie., 2K = N). The four object classes are denoted by {f}]. {f;). etc.,
and the two filters by h, and hy,. The object class is determined from
the outputs from both filters, as in Table 1. For simplicity, binary
(0, I) values are used. Other values are preferabie since (0,0) canaiso

S - B C et
D T T

TABLE (. Truth Table for K-tuple Two-Level Four-Class SDF

Input/Output h, by
tfy} (] (¢}
{fa} 0 1
tfs} 1 1
{f4} 1 0

indicate no input. In practice, we select K to satisfy 2K =N + | and
thus avoid the ambiguity possible in the (0,0) output case.

Synthesis of h, and hy, to satisfly Table I follows directly. The two
filters are lincar combinations of the full training set of data:

h‘ = zamfm M
(12)
hb = Z l"mfm .
The coefficients in Eq. (12) are defined by
a= R:I Ugp v
(13)

= p-!
b‘- R‘ “‘b .

where R is the correlation matrix of the full training set of images for
allfour classes (N}, N,, N;, and N images in each class, respectively).
The vector u,, in Eq. (13) has N, + N, zeros and N3 + N, ones (for
h,), with u,y, being similar.

Other obvious combinations of these four basic types of SDFs
follow directly. In all cases, the filter function is of the form in Eq. (5),
with a different correlation matrix R and exogenous vector u,,. This
unified SDF synthesis method significantly simplifies off-line syn-
thesis of the SDF. Since the projection values for the different classes
in the different SDFs are fixed by the synthesis algorithm, we refer to
such filters as deterministic SDFs.

3. DATA BASE

The properevaluation of the performance of various SDFs described
in Sec. 2 in this paper is a key new detail. SDFs require a large data
base to properly select training set images that are valid statistical
representations of the data in each object class, with a sufficient
number of additional test images (not in the training set) remaining
to allow sufficiently valid tests on the algorithm. In all experiments
performed, the computational load was so large that only correlation
plane projection values (i.c., the correlation value at the point of
registration) were evaluated as in Eq. (3).

Our most extensive multiclass object data base available con-
sisted of images of four ships from 90° depression angle with 36 views
available per ship (at 10° intervals in aspect around the full 360° of
the ship). In Fig. 1, we show the broadside views of the four ships.
Clearly, other aspect views, such as the bow and stern, contain
significantly less object data. The images were each 128 X32 pixels.
For the broadside views, the target contained approximately 1200
pixels out of 4000 pixels in the full frame. For the bow and stern
views, about 200 pixels (out of 4000) were present on the target. The
classes assigned to each ship and the name and type of each are noted
in Table I1. The images in class | are numbered 1 through 36 (] is the
bow, 18 is the stern, etc.). Class 2 images are numbered 37 through
72, etc. All images were binarized to only “0™and “1" valued pixels,
with the threshold selected from simple histogram operations.!* Two
sets of images, one with and one without the hull present, were
formed and used. This image data base allows the 3-D aspect distor-
tion invariance of our SDF correlator to be verified and its perfor-
mance to be quantified.

4. NOISE-FREE PROJECTION TEST RESULTS
In Table 111, we summarize our digitally simulated SDF projection

OPTICAL ENGINEERING / November/December 1984 / Vol. 23No.6 / 717

et T T T T T ST e T T G T T e T
o h e A 2 2 2 A e 222 0 s 2 2’2 22 ok 2 ata ) 03

- ;...h-.\ W e R

L T e e e T T e e e e e e e e T e e
L W TR W T U PR VA U U T T Aedadodod

.
-

LA AL RS
it *

>

Lol
Pl PO

| e




-
]
LA WY 2

oo
AN

[y
o

4y &

. a, 8
PN

P

4
o s

Ay
.

EAs
LA N

. ¢

ar PR Rl A AL A A A I A R L I I I

AL LA SE LA G e A Ch L A AR AR AL AL WL AT St A bkt Al

CASASENT, ROZZI, FETTERLY

performance obtained for the four major types of SDFs described in
Sec. 2, using the first four ship image data bases described in Sec. 3.
Six different tests using different SDFs were considered. The type of
SDF used and the six training set images used per class are noted in
the table. The number of errors obtained out of the 36 images in each
of the four object classes is noted, together with the percentage
correctly recognized.

Intest 1, the ECP SDF in Eq. (5) was formed using only six class |
images and was tested against all 36 aspect views of the class | object.
All 36 projection values were within 3% of the deterministic value of
unity selected in Eq. (5), and thus 100% correct performance was
obtained. Test 2 was similar for the class 2 object, and again 100%

Fig. 1. (a)-(d) Broadside views of the data base images in classes 1 to 4,
regspectively.

TABLE I1. Ship image Data Base Used

Ship class Ship name Type
1 Moskva Soviet helicopter cruiser
2 Leahy U.S. guided-missile cruiser
3 Hope International hospital ship
4 Albany U.S. guided-missile cruiser

TABLE ili. Noise-Free SOF Projection Performance Test Results

performance was obtained (with all 36 projection values within 5% of
1.0). These test 1 and 2 results show the intraclass recognition per-
formance of SDFs in the face of 3-D aspect distortions. All SDFs
require a training set that is a valid statistical representation of the
object class for the distortions considered, and in this case 10° to 20°
variation in aspect can be tolerated (in agreement with experiments
in Refs. 2 and 3). The six training set images used per class in tests |
and 2 were chosen at approximately 50° intervals around the ship,
with three or four images taken from each side of the ship (0° to 180°
and 180° 1o 360° aspect views).

In tests 3 through 6, the discrimination as well as recognition
performance of our other SDFs was considered. The two-class MOF
SDF defined by Eqgs. (6) and (8) was evaluated first (test 3) using the
12 training set images in tests | and 2 to form the MOF SDF. The
projection values used in the filter synthesis were (1,0). In determin-
ing the object class, the projection values P, of each input object on
only thehy MOF SDF in Eq. (7) were calculated, and the decision on
the input object class was made based on whether P, <0.5 or whether
P, >0.5 (where the 0.5 threshold level was chosen as being midway
between the original 0 and | deterministic projection values). The
projection performance obtained was excellent, with 69 of 72 images
correctly classified (95.8% correct identification). In test 4, our multi-
level SDF defined in Egs. (9) and (11) was tested on three object
classes with deterministic projection values of 0, 1, and 2, respec-
tively, for the three classes. Six training set images per class were
used, and excellent performance resulted, as shown, with only five
errors obtained out of the 108 test images (95.4% correct
performance).

In tests | through 4, the hull of the ship was present in the image
data base used. Comparable results occur if the hull is not present. In
tests S and 6, our K-tuple SDF was used for the full four-class
recognition and discrimination testing on all 144 images. A new
training set of six images per class was used (selected as described in
Ref. 8) to synthesize the b, and by, filters, and the image data base
with the hull of the ship removed was employed (since it yielded
better performance due to more discriminatory information in the
superstructure of the ship). Intest 5, the filters were synthesized with
the deterministic projection values noted in Table 1. The results were
quite good, with only 14 errors out of 144 images (90.3% correct
recognition).

However, as shown, 12 of the 14 errors occurred for the class 4
object. The majority of these errors were at the bow and stern, and all
of these errors were due to the projection values on the second filter
by, being above the 0.5 threshold (recall from Table I that by, should
force class 4 projections to 0, or to below 0.5). Inspection of Fig. |
shows that the class 4 object is the largest ship. Since itappears to be
more difficult to force the projection values of a large object to zero
(compared to the ease of forcing the projection values of smaller
objects to zero), we altered the projection value choices in Tabie I to
those shown in Table IV.

As seen in Table 1V, the new deterministic projection value
choices have reversed the projection values for class 3 and 4 objects.
Both filters (h, and hy)are now designed to yieid projection values of
(1,1) for the largest (class 4) object. The results for this filter are
shown in Table 111, test 6. They are excellent, with only two errors
out of all 144 test images (98.7% correct classification). Attempts to

Test Errors per class Percent
number Type of SDF Training set 1 2 3 4 correct
1 ECP (class 1) (1,6, 10, 15, 20, 25) o - - - 100
2 ECP (class 2) (38, 45, 50, 55, 60, 65) - 0 - - 100
3 MOF (1, 0) {Same as tests 1 and 2) 1 2 - - 958
4 Multilevel (0, 1, 2) (Six images per class as above) 2 0 3 - 954
] K-tuple (Table ) New training set {Six images per class, hull removed) 0 2 0 12 90.3
[} K-tuple (Table IV) New training set (Set images per class, hull removed) 0 2 0 O 98.7

718 / OPTICAL ENGINEERING / November/December 1984 / Vol. 23 No. 8

e

X

PUe 4 e s
R
)

AR AR AN
B

§

.
v
«
P

RO

-

'y

s
[
U

Iy .
» "I

PO
P
Sho
Pl

\]

e
R
v
(AP ]
Veta e o
RIS

A

v j o
SR

TeTaTaT e
P
LI

T,
A
Sy fa ety

P A
»

N

. a
LA N v
P

2v’e

.
LAKAF

st e
.

i
. .
. .
AP L

R R P
.

v

A ‘-/'r *
";‘r 4 %

W
3

....
'l. /l

‘.'l
l' _'l

R



r
’.
0
.
R of
¥
o
L

s
¢

LAAY

L4

be present.

ay
.

.'- -‘.-
43

SN0

& 2

obtain comparable performance when the hull was present were not
successful for the fourclass problem (since the superstructure of the
ship clearly contains the major discriminatory information). In
general, the amount of the hull that is visible varies considerably with
the ship’s load, and thus the hull data cannot be reliably assumed to

S. SDF PROJECTION PERFORMANCE WITH NOISE

In Table V, we summarize the performance of the K-tuple SDF in
test 5 of Table 111 in the presence of noise. In tests 7 through 11,
Gaussian, zero-mean noise was added only to the test set of images,
and a noise-free training set of images was used. For the 24 images
present in the training and test sets, noise was added only during
testing. In tests 12 through 13, noise was present in the training set

PROJECTION SYNTHETIC DISCRIMINANT FUNCTION PERFORMANCE

. images also. The noise added was of zero mean, with a standard o
. deviation o as given in the table. The noisy images were then bina- periormance.
. " rized, and these binarized noisy images were used in filter synthesis
- and testing. For the data in Table V, noise was present everywhere
. (i.c., in the background and on the target). Because of the binariza-

| in the table.

tion, the effect of noise is different when present in the background
and on the object. In the background, noise adds +1 valued pixels,
and on the target it forces +1 valued pixels to 0. To stabilize the
results obtained, we chose not to make a decision on the object class
when the projection values were within £0.03 of the threshold. These
“no-decision " cases are indicated in parentheses. The total number of
errors, total number of correctly classified objects, and percentage of
objects correctly classified (out of the 144 test images used) are given

The results obtained require discussion. A reduction in the
number of class 4 object errors with increasing noise was observed
(tests 7 through 10), up to 0 = 0.4 noise. Then, for ¢ = 0.6, the total
number of errors increases dramatically. To explain this perfor-
mance, we denote the projection value for filter h; and object class j
by P, (j). We note that all class 4 errors in test 7 are errors in Py, (4) that
are above 0.5 (whereas they should be 0.0). As noise is added to the
class 4 object, the zero-valued pixels introduced on the object cause
the Py, (4) values to decrease. The +1 valued pixels introduced into
the background also cause Py, (4) to decrease (since much of the upper

- portion of the by, filter is negative-valued, as needed to force the full

TABLE IV. New Projection Value Choices Used in Test 6 of Table Ill

th)
it}
{3}
i}

Input/Output

TABLE V. K-tuple SDF Performance (Table | Projection Values) in the Presence of Noise in the Training and/or Test Deta®

projection to 0). Thus, as noise increases, the Py, (4) projection values
decrease. For 0 = 0.4, all Py (4) projections are now below 0.5 and
hence correct, and thus no class 4 errors occur.

However, the Py (2) and Py(3) projections for filter hy on class 2
and 3 objects also decrease as o of the noise increases. These projec-
tion values were intended to be 1.0, and initially all were quite close to
1.0. As o increases, their values decrease gradually, and at 0 = 0.6
nearly all filter projections for class 2 objects are below 0.5. The
decrease in projection value is quite gradual, and the sharp increase
in the number of errors (from tests 10 to 11) occurs because most
projections now pass below the threshold level at this o level of noise.
The class 2 projection outputs all changed from (0, 1) 10 (0,0); thus,
all class 2 errors in test 11 were class 2 objects classified as class |
objects. All of our test data used the same fixed-decision threshold
level. Use of adaptive thresholds can significantly improve

When noise was present in both the test and training sets (all noise
is uncorrelated between images), performance remained rather sta-
tionary (12 to 14 errors) for o values up to 0.2 (tests 12 through 14).
When the training set noisc was 0.3 or larger, the number of errors
increased significantly (from 14 in test 14 to 52 in test 15). At this
noise level, the filters are simply not valid representations of the
objects. Recall that the input signal-to-noise ratio (SNR) is different
for each image since fewer object pixels exist and more background is
present for aspect views further away from broadside views. The
performance shown in Table V is still very impressive and should be
adequate for most object identification applications over a signifi-
cant range of sensor noise levels. The tests in Table V were repeated
for six training set images per class, chosen at evenly spaced intervals
of about every 50°, and comparable results were obtained. The tests
in Table V were also repeated for the case when noise was present
only in the background of the object (not on the object). Comparable
results were obtained, with the number of errors changing slightly
less dramatically (since the equivalent input SNR is better for a given
o of the noise when noise is present only in the background of the
object, rather than on the object and in the background).

As our final noise performance test, the K-tuple SDFs in test 6
(using the projection values in Table IV rather than Table 1) were
used with varying amounts of noise added to the background only
(similar results were obtained when noise was present in the back-
ground and on the target) in both the test data and the training data.
The results (Table VI) show the excellent performance expected of a
correlator in the presence of noise.

h

= i 6. SUMMARY AND CONCLUSIONS

o o The advantages of a correlator (processing gain, good performance
0 1 in noise, shift invariance, or multiple object recognition) can be
1 0 retained and the disadvantages (sensitivity to geometrical distor-
1 1 tions) can bc overcome by synthesizing the matched spatial filter

from SDFs. These SDFs are linear combinations of the training sets

Test
number
7
8
®
10
1
12
13
14
15

Noise standard
deviation (o)
Training Iimg
00 00
00 0.2
0.0 03
00 04
00 08
0.0 00
0.2 0.0
0.2 0.2
03 0.2

Number of errors per class n:::er

1 2 3 4 of errors
00 201 OO 10(2) 12
(s {+) Ty OO0 84 9
0(0) 1) 00y 23 3
00 39 O3 00) 3
o0) 27%(9) 380) O0) 63
00) 2100 OO 1N2) 12
o0 W) 00 1XH2) 14
00) 2000 00y 12(2) 14
1701 9{1) 10) 25(2) 62

Number
correctly
classified

130
130
137
129

72
130
127
128

88

Percent
correctly
classified

80.3
90.3
95.1
89.6
50.0
80.3
88.2
888
61.1

*No-decision cases with projection velues within £0.03 of the threshold are noted in parenthases. noise everywhere, hull not present.
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TABLE VI. K-tupie SDF Performance (Table IV Projection Values) in the Presence of Noise in the Training and/or Test Deta® ':

) Dy,
~N Noise standard 2
E: X Test deviation (g) Number of errors per class "I:::;"r :‘o‘:::::,; ::,::3; j‘:
O number Training Testing 1 2 3 4 of errors classified classified ,‘:’

. :.* 16 0.0 0.0 00) 200 OO 00 2 142 %7 0%
1? 0.0 0.2 Oo0) 200 0O0) 0(0) 2 142 98.7 N

" 18 0.0 03 o0y  2(1) OO0) 00) 2 141 979 [,

\_‘ 19 0.0 04 00) 343 00 00 3 138 95.7 5y

3 -: 20 0.2 00 o0 200 00 00 2 142 98.7 '

; : 21 02 02 x0) 201 00} 00 2 142 98.7

; 22 03 0.0 00) 00 1) 60) Y 138 94.4 Ko
23 03 0.2 00y 00 11) B 6 136 944 B

0 24 0.3 0.3 00) O 1) &) 6 136 94.4 RO

.‘: *No-decision cases with projection vsiues within 10.03 of the threghold are noted in parentheses: noise in background only. :-‘::-
' e

:-:: .:'\ ¢
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ABSTRACT

A new class of discriminant filter functions for use in a matched filter correlator for
multi-class distortion-invariant pattern recognition is described. Three variations of these
optimal linear discriminant functions (OLDFs) that optimize different performance measures
are described and initial performance results are presented.

1. INTRODUCTION

Correlators represent a powerful class of pattern recognition architectures that allow
multiple targets to be located and that provide excellent performance in noise. Optical
systems [1,2] easily achieve the correlation operation in real-time and various compact ver-
sions of such systems have been fabricated (3] and discussed [4]. Coirelators are well known
to be quite susceptible to geometrical distortions between the input and reference object.

A most attractive technigue to achieve distortion-invariant correlation uses synthetic dis-
criminant functions (SDFs) ([5], projection SDFs [6,7], correlation SDFs [8]), or related
methods [(9,10]. 1In general, these prior techniques achieved filter synthesis by forcing
fixed projection values for training set images in two classes (5,7,9]). 1In [8], a least-
squares solution and a solution that maximized the peak-to-sidelobe ratio plus the class 1
to class 2 outputs was employed. 1In [11], class 2 was treated as noise and SNR was maxi-
mized.

In this paper, we briefly review the 5 standard SDFs using a new notation (Section 2).

We then describe three new optimal linear discriminant function (OLDF) filters that maximize
different performance measures (Section 3). These filters differ from the original SDF and
other work in that they are optimal (i.e. maximize various performance measures useful in
discrimination pattern recognition). They are thus preferable, since predicted Pp, Ppp and
Pe performance and noise effects on them should be able to be analyzed (theoretically and
statistically) more easily. 1Initial simulation results, using only correlation plane pro-
jection values are advanced (Section 4) to demonstrate and gquantify the intra-class recogni-
tion and inter-class discrimination performance of these OLDFs for multi-class cases and in
the presence of noise.

2. SDFs

The 5 standard SDFs (5] are now reviewed for background and to introduce the new notation
that is most appropriate for description of our OLDFs in Section 3. The inner product of
vectors x and y is defined as <x,y> = Iy=1Xj Yi: where the N elements of x and y are denoted

by x; and y; and x = (x1+++xy)T. ~The norm 1 1%]] of x is defined by |{x!72 = <x,x~. Consider
four classes of objects with training set images

{I »n -1’ {3,317 (K ) =1 and {L, (1)

i= i'i=1" i 1 1’
where there are n images in {I} (class 1), etc.

An intra-class SDF (equal correlation peak SDF) F is defined such that

1eeon. (2)

<Ii,F» =1 for i

A two-class mutual orthogonal function (MOF) SDF is defined such that

~ -, N

DRy DR S R Sl A

RN

e, EL L,
DR

A I |

.., PR
Py e PSR, S, S S SO AU



v

v .-
A

L]

" o8
te >
FX
5K 5l19.n> o
s \’u
. S
" <I_,F" =0 for i = 1-++n AN
- (3) N
f <J;.F> =1 for i =1-+-m, -
n with other projection values possible in (3). Two MOF SDFs F; and F) to recognize all ver- {:{
.f sions of class 1 (I;) and reject all versions of class 2 (Jj) and vice-versa for F) are de-~ oS
" fined such that R
«* “'
] - .= - R
) «Ii,F1> = 0 and <Ii,F2» =1 for i = l++en - ::
1N - ) l L
<Ji,F1= = 1 and <Ji,c2> = 0 for i = 1+--m.

»

=3 A multi-level SDF for 4 classes results by choosing different vector-inner product forcinc

0 constants, i.e. for the 4 classes in (1), we can require
[

: <F,I,> =0, <F,J,> =1, <F,K;> =2, <F,L,~ = 3. (5)

S

A K-tuple SDF for M classes uses K SDFs (where 2X > M) with binary valued projection forcing

. functions. For the 4 classes in (1), we require K = 2 SDFs (F; and F,) defined such that

.: <F1,Ii> =0, <F,,I,> =0

f -

f. <F1.J;> =0, <F,,0,> =1 o

<FyKy> =1, <Fy,K. > = 0

0 <Fypely> =1, <Fp,L;> = 1.

;.

?, To obtain unique solutions F for these SDFs, we require them to lie in the subspace

o spanned by the training sets. This solution has the additional advantage that the projec-

ol tions of other objects not considered (for classification) will be minimized. Thus, Fy etc.

~

are linear combinations of the 4 training sets, e.q.

. n n+m n+m+p n+m+p+q
- F, =TI aI, +1 a, J.__+ I a,K.____+ I a.L, (7a)
. 1 i=1 7 i=n+1 i-n i=p+m+1 *1TRTM i=n+m+p+l * ITRTMTP
LS n
o F, =2 b, I, + oo, (7b)
2 =1 i7i
~ Using (7a), we write the vector-inner product of F; and Ij as
~
“ n m p q
. <F,,I_.>» =1 a ,<I,,I.> + I a. <J.,I.> + I a, <K.,I.> + I a. <L.,I.> . (8)
-~ 1775 =1 71773 j=1 3*n 1773 i=1 i+n+m 17 j=1 1tntm+p 1773
Similar expressions can be obtained for the other vector inner products in (2)-{6). The a;
and b; coefficients that define F; and F,, for the SDF in (6), can be obtained by solvina :
the following system of equations
S Mt t t t t t t t t I 7
' ‘ vos s ees L 1 a b 0 0
N R T s T o S L I L M L ql1| | %1 1
~ ‘ M RS
-/ | a, b, . . Ve
/ . 0 0 ?.4
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- Iy g1 | . o 1 Tl
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- t o 1 LR
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: LK q1 1 0 .{i:
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In (9), superscript t denotes transpose and ( ) () denotes a vector-inner product. If a
unigue solution does not exist, the least-squares solution (obtained by computing the gener-
alized inverse of the matrix) is used. As noted at the outset, these SDFs are computed using
fixed projection values for the various training set classes.

3. OLDFs

We can describe the new OLDFs as linear functionals f on the finite dimensional vector
space of images. From the Riesz representation theorem [12), we can also describe these
OLDF3 by a discriminant vector u, where f(x) = <u,x> for all x in our real linear vector
space. The vector-inner product of two functionals f1 and f, in the dual vector space and
their corresponding uj and u; OLDFs are related simply by <f;,f2> = <uj,us>. In all of our
OLDFs, we consider only two-class problems ‘Ij} and (Jj! with n and m training set images
respectaively.

3.1 OLDF-1

As our first OLDF-1, we consider a version of the MOF SDF in which the projection for one
input class 1s 0 whereas the projection for the other class is maximized (rather than
being a fixcd constant value of 1). Three types of maximizations were considered (corres-
ponding to 3 cases (A,B,C) for OLDF-1}. These are defined as finding OLDF-1 u, such that

CASE A: <u,Ji> =0 for i = 1lssem (10a)
. = max ! i = leee
u,I;> a1l x| <X:I;>! for i 1 n (10b)
CASE B: <u,Ji> =0 for i = lse¢em (lla)
n n
. max . .
z <u,l.>, = z <x,I.>| (11lb)
i=1 i all x i=1 i
CASE C: <u,Ji> =0 for i = 1l-+°m (12a)
n n
2 max 2
I <u,l. > = I <x,I.>" ., (12b)
i=1 1 all x i=1 i
In all cases, {iul. = 1 and |[x|| = 1 (i.e. we describe formulation for normalized image and

discriminant vectors). This is necessary to insure that physically large objects do not
dominate the filter. Of course, all testing is performed on unnormalized images.

Let us discuss the 3 cases in (10)-(12). 1In (10), we force the projections for one class
{J;} to 0 and maximize the absolute value of each of the projection values of all vector
images in the other class {Ij}. There is no general solution to case A [13]. 1In case B,
we maximize the sum of the absolute values of the projections for the first class of images
{Ij}. 1In case C, we maximize the sum of the squares of the projections on {Ij}. Case C is an analyti-
cally simpler optimization problem. Thus, we form OLDF-1 using (12). In (12), u is the x for which ;<x,§? is
a maximum.

To solve (12), we first denote the subspace spanned by the {J;! as Sp{Ji}?=l (where m is
the number of vectors) and the subspace for {Ij} by Sp{I'}?=1. In total, theré are N = m+n
training set vectors and a maximum of N basis functions {(¢,)} for this data. We proceed to
form a maximal orthonormal set {¢1}T;1 from {Jj}, where m' < m. Next, we look at the re-
maining ¢} =m'+1 Orthogonal elements in our space. We'fo;%,a set n' of these {Cj}?=$°+1
(where n' < n) that spans Sp’Ij: and is orthogonal to Sp{¢;}j=1. Our OLDF-1 u is how an
element of Sp{:j}?=;?+l. We thus define

m'+n'
It = I <ri,:.>cA, (13)
j=m'+1

as a weighted sum (with weights given by the vector-inner product <Ii,352) of the :4 (which
are orthogonal to the ¢j). The optimization problem in (l2a} and (lfb) thus becomes: find
u, such that

2 max

', =
u,lic all x

<x,Ii>2. (14)
=1

=13
=13
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We rewrite (14) as

n n
T uTIfIfTU max - T 'I?Tx
=1 TiTi = all x (=1 "1 <
or
T oerig T .
wherr e = 0P T hx (15
by

The solution u to (15) that defines OLDF-1 is

u = Dominant eigenvector of RI" (16)
where
n T
R., = I I!I!" = Correlation matrix for {I!:. (17)
S jop—iti i
We note that for n' = 1, (16) solves (10) and (11) also {13].
3.2 OLDF-2
For OLDF-~2, for each Ij, we find the J; image in {Jj} that is closest (using the norm
di..ance) to I;. 1In OLDF-2, we maximize the sum (over all i = l--+n) of the squares of
<u,I,-J3;>, i.e. OLDF-2 is u such that
n n
.2 _ max | 2
Lo<Wrli=di> = g1y x © X Im0>0 (18)
i=1 i=1
Following the procedure in Section 3.1, the OLDF-2 solution u is
u = Dominant eigenvector of R , (19)
2 =I;- J3
where
g T
Bli'Ji = ;zl(li-Ji)(Ii-Ji) (20)

is the correlation matrix of the (I;-J;) vectors, where J; is the vector image in {J;: that
15 closest to Ij.

3.3 OLDF-3
In OLDF-2, we maximized the difference between Ij and Jj, the nearest neighbor of I;. 1In

OLDF-3, we maximize the difference between each I; and all Jj, i.e. the overall total separa-
tion between both classes. This OLDF-3 filter u is defined by

n m
<u,1,-J,>2 = Mmax . - <x,I.—J.>2. (21)
i 73 all x i=1 3=1 1

Following the procedure in Section 3.1, the solution u to OLDF-3 is

u = Dominant eigenvector of Ry (22}
13
where
n m
R, =1 © x x° (23)
i3 =1 §=1 1323
-J.. 24
X1 1, J] {
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. 3.4 EXTENSIONS O
- o
N In Section 3, we considered OLDF formulation for two-class problems. However, extensions .jn:
l to multi-class recognition can be achieved by extending our OLDFs using the techniques in A
A Section 2. We have described our OLDF solutions as the most dominant eigenvectors. However, ALy
N one can retain the N most dominant eigenvectors. The number to be retained depends upon the A
eigenvalues. If the most dominant eigenvalues are close, then we can retain more than one .- )
eigenvector. If the two largest eigenvalues are widely separated, keeping the second worst r%k
> dominant eigenvector will not necessarily improve performance since additional noise is now s
. present in the filter. When N filters are used, the sum of the absolute value of the pro- Zu:
{'r jections on each is used to compare to a threshold (set from training set data for each A
§ class) . B
v P
3 4. INITIAL TEST RESULTS LN
[
o 4.1 DATABASE
N e
N To test the performance of our OLDFs, we used two classes (two ships: the Moskva, a N
‘: Soviet helicopter cruiser, and the Leahy, a U.S. guided-missile cruiser). Each ship was -7
) binarized with 128 x 32 pixels. For each ship, 36 views at a 90° depression angle (0° .
b} attack angle) were avail ple (every 10° around the ship). The bow is numbered as image 1, et
Lo broadside as 9 and the .tern as 18, etc. For each object class, various sets of 6 images SR
were used for the training set. The OLDF was then tested against all 72 images in the two -
classes (including the 60 images in both classes that the system had never seen). 1In e
v Figure 1, there are about 2000 pixels on the brocadside ship views and 200 pixels on the bow Iy
°. and stern views. 1In our tests, we also included noise (in both the training and test set) RO
- with o, listed (SNR is different for each ship aspect view due to the different number of .'\i
¢ pixels on each aspect view). In Figure 2, we show the views of ship class 1 with o = 0.3 DALY
"¢ and o, = 0.4 of noise added. ;a:
7 ¥

(a) Class 1 (Moskva) (a) Class 1 ship (0, =0.3 noise) ;:J:
R
e
BN
v
~a
e - . ‘-
:.-.‘.n
SRS
(b) Class 2 (Leahy) (b) Class 1 ship (o, = 0.4 noise) ;}}f
S "l:"
FIGURE 1 FIGURE 2 [
- Broadside views of the two ships Broadside view of ship class 1 2
. with different o, of noise added e
. . N
o :_...\
.. 4.2 INITIAL TEST RESULTS N
- e
' Table 1 shows the noise-free performance obtained using the three OLDFs with 6 training \n
set images per class. In general, excellent results are obtained, with no more than 4 mis- | o
v classifications out of 72 images. 1In Test 1, the hull was present. Classification is o
s’ better without the hull present (Tests 2-4), since the ship's superstructure gives good
. discrimination and the hull is in general common data. For the hull present, two linear
{, functionals had to be used to maintain good performance (thus verifying the above remarks).
o Test 3 performs worse than Test 2, since maximum separation from one nearest image in the
> second class is not enough. Test 4 performs better than Test 3 as expected since differences
. from all images in the two classes was maximized.
<, The performance of all of the various OLDFs in the presence of noise in the training and
" testing sets and in both were guantified. The results for OLDF-1 are shown in Table 2. The
-
’.
z
.
<

xg
p 7
WY
9 "
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results for the other OLDFs are similar. The standard deviation o, of the noise is listed
22 also. As seen, performance is excellent in the presence of noise and generally decreases as
o, On increases as expected. From Figure 2 and the amount of deterjioration present in the
images with o, = 0.3 and 0.4 noise levels, the initial performance of these OLDFs is quite
attractive.

. ey
- TABLE 1 _-u;._-f_
X Test results using various OLDFS (6 training set images/class, binary images) -Ix}
- sar
& TEST HOLL | NUMBER OF OLDF [ __NUMBER_OF ERRORS_IN__ ] o
R PRESENT FUNCTIONALS USED CLASS 1 ' CLASS 2 ! TOTAL Iy -
| 1 L.
< S Yes __| ______ 2 _____ ..__.1.--____-_9__-_:.___2____|.__Z-__ w
: 2 ___No___l_____1._____ | O SO A S SO I e S -
‘ L3 ]2 No ool . | SRS S I S TR S S N S :
. ) -
. 4 No 1 3 0 ! 0 ' 0 .
TABLE 2
- Noise performance of OLDFs
. (6 training images/class, binary images, one functional)
- TEsT | TRAINING | TEST || __NUMBER OF ERRORS IN__] o
: SET Cp SET op CLASS 1! CLASS 2! TOTAL v
: 1 0.0 0.0 11 0___i._.1 §
D e T < T " 1 R R Byt
- 2 _|_..0.3_ _[_c« QJL_______9___1____5___4___5__1 B
3 0.3 __1_0.3 1] 5 1 6 A
L mlkedestes ettt sntebeddelded P ————— To——====- === L
- 4 0.4 0.4 1! 8t 9 e
: e
5. SUMMARY P
. New distortion-invariant correlator filters have been described that maximize various if{
” discriminant pattern recognition measures. The theoretical basis and ease of analysis for s
¢ these new OLDFs is attractive. 1Initial experimental results are excellent and noise per- >
. formance is robust. Full correlation tests and further experiments are needed to assess {:{
. OLDFs more fully. _5:\
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SDF CONTROL OF CORRELATION PLANE STRUCTURE FOR 3-D OBJECT REPRESENTATION AND RECOGNITION
wen-Thong Chang, David Carisent and Donald Fetterly*

] Carnegie-Mellon University -
] Department of Electrical and Computer Engineering, Pittsburgh, PA 15213 0N

A
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ABSTRACT

Y Y
»

The efficient representation and synthesis of 3-D object information using new synthetic
discriminant functions (SDFs) is discussed. The use of SDFs in a correlator for shift-in- -
variant and distortion-invariant discrimination of 3-Dobjects is detailed and experimental el
data is provided. The new SDFs described control the peak intensity and the structure and S
statistics of the correlation plane pattern.
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1. INTRODUCTION —

-

Correlators represent one of the most powerful techniques for automatic target recognition o
(ATR). These systems allow multiple objects to be recognized in parallel (by the shift- W
invariant property of a correlator) in the presence of noise and structured clutter (due to .
the processing gain achieved by a correlator}. The realization of correlators using coherent
optical systems is obvious [1,2] and small size and weight real-time coherent optical cor-
relators now exist [3). Advanced VHSIC chips and architectures may also allow on-line cor-
relations to be implemented digitally. The major shortcomings of any correlator has been P
their porx performance in the face of geometrical distortions between the input image and
reference object from which a matched spatial filter (MSF) is formed [4]. Recently, advanced i
MSF synthesis techniques have been detailed [5] and demonstrated on ship imagery [6]). These -
new MSF synthesis algorithms form the MSF from a training set of images of different target ‘-
objects from different aspects, scales, rotations, etc. These new filter functions are
referred to as synthetic discriminant functions (SDFs).

¢'ﬁ{J1If

]

UL P AR

) YR

A brief review of conventional SDFs is provided in Section 2 with discussion on their use A
in the representation of 3-D object information. Three new types of SDFs that control the -
shape of a correlation plane pattern are then detailed in Section 3 with discussion on their
representation of 3-D object data. 1Initial experimental results are then advanced in Sec-

tion 4 using a new database of tank, armored personnel carrier (APC) and similar military
ATR objects.

RPATY

’xd!ﬁi

2. THE SDF-BASED CORRELATOR CONCEPT

',
P

To achieve intra-class recognition of different distorted versions of a 3-D input ATR ob-
ject using a correlator, the MSF h{x,y) can be formed from a linear combination of training
set images {f.]} that are different 3-D distorted views of the target object, i.e.

O T
¢ ¢ 2

hix,y) = gan £.(x,y). (1)

1f we restrict the correlation peak value to be unity for £, , then the SDF MSF in (1) is
defined by

A

XL
a o

a=rltu (2) .

F

where the elements of the vector a define the linear combination coefficients ap, u is the ",
unit vector (this forces all correlation plane values to be unity), and R is the correlation F_
matrix of the {f)} training set imagery. The SDF in (1) - (2) achieves Intra-class recogni- f-’
tion. To obtain inter-class discrimination while still retaining intra-class recognition, Aty
the training set is expanded to include sets of the distorted objects {fj;) and {f)} in two

or more classes. A single SDF or several SDFs that are linear combinations of all of the

training set imagery can then be formed. The filter synthesis procedure is similar to that

in (1) and (2) with larger R matrices (for several object classes) and different exogenous

vectors u as detailed elsewhere [S]. The object class can be determined from the value of

the correlation peak or from combinations of different filter output values. -

LA S W b

aa

These initial SDFs (5] have performed well in tests on various image databases [6] pri-
marily on ship imagery. 1In this paper, we consider other ATR targets (tanks and APCs) and
we extend the original SDF concept to include control of the shape of the correlation plane

.
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-.v pattern. The original SDFs only control the valug at one pqiqt in the correlation.and thus .
N we refer to these as projection SDFs., For ATR using the o;xglnal SDFs, a correlation plane g
\j threshold is set (determined by the filter synthesis algorithm) and from the locations and
>, peak values of the regions of one or several correlation planes that exceed the threshold,

the object class and object location in the input field-of-view can be determined. This

. technique is susceptible to variations in the modulation level of the input data (since the e
9 correlation value varies linearly with the modulation of the input object). From the dc Ny
'~ value of the input Fourier transform (FT) plane pattern, the output th;eshold can be adjusted. “’
O In Section 2, we detail three new SDFs (correlation SDFs) that automatically control the <
,::‘ shape of the true and false correlation plane locations and thus facilitate correlation e
W plane analysis by the combination of threshold detection and correlation plane and peak e

) analysis. » O
o
‘.

o
o
o
-"
SDE (s) -
o CORRELATION | OBJECT CLASS (es) ‘o
" CORRELATOR :_:D‘ PLANE(s) |————>OBJECT LOCATION(s) >
> INPUT ANALYSIS ESTIMATE (s) o
N4 SCENE ATTENUATOR """ ConrpEnce s
= DC FOURIER o
n TRANSFORM oo
"_i 2_".
L -_;.‘
o o
ot FIGURE 1 b
Block diagram of an SDF-based correlator £
—~ :
‘o The full correlation system (Figure 1) thus distributes the processing and recognition .
AN load between the filter synthesis, the correlator and the output plane detector. From the o
N dc value of the Fr of the input, an estimate of the input modulation is obtained and used .
0 to adjust the input intensity and the correlation plane threshold. The system's outputs pro- S
P vide estimates of the object class and location of all objects in the input field-of-view “
and the confidence of these estimates. b
N 2. CORRELATION SDF SYNTHESIS FOR CORRELATION SHAPE CONTROL :-:."_
v A
.r_\‘ To control the shape of the correlation peak for a true target and to insure suppression &'__-.
. of large correlation plane peaks for shifted versions of false target, we expand the train- ALy
A ing set of images to include Ng shifted versions of each object. To describe the filter Y
o synthesis, we consider a two-class pattern recognition problem with N3 and N; training set Ja

= images {f} and {g} per class with Ng shifted versions of each training set image, i.e. a .

- total of Np = Ng(N; + Ny) training set images. The SDF synthesis algorithm in (2) restricts gy
- only the vector inner product or the vector projection of each object f; or g; onto the B
o filter function h, i.e. only thecentral correlation plane value. '_.:
-“. "_.\
o) 2.1 SDF-1_ (Exact Correlation SDF) N
YA RN
N For the one-filter two-class pattern recognition problem, the new SDF is defined to (4

satisfy B
LA
._: h . £, =1 (central correlation value of 1 for true targets) (3a) e
. v
~ h . f1 = 0 (0 correlation value away from peak) (3b) NN
“~ s
L)%
'_‘: h . g; =0 (0 correlation value away from peak) (3c) \"'._
e *a
h . g; = 0 (central correlation value of 0 for false targets) (34d) ¥
::-‘ where the notation is defined in Table 1. Egs.(3a) and (3d) are similar to the original SDF \‘:.-
’ requirements (a central correlation peak value of unity for true targets in class one and By
::_. zero projections for false class two targets). Egs.(3b) and (3c¢) are the new restrictions
-~ .:'.
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added. They require the correlation plane value dg pixels from the central value to be zero. &}-
o
TABLE 1 Lt

Notation used to describe synthesis of the new SDFs

£; = object in the class to be recognized Nl = number of training set images {f} in class :.:
I.. 'r
fi = shifted version of £, N, = number of training set images {g} in class 2 S
L L ]
g, = object in second-class to be rejected Ns—l = number of shifted versions of each image :«;

aY

gi = shifted version of 9; NT = NS(N1+N2) = total training set size "
d_ = amount of shift (in pixels) for ( )' [h = MSF SDF filter function -
-".f 3

e

-.' >

The filter h(x,y) satisfying (3) will thus have a correlation plane output for a true ;uf

class-one target with a fixed peak value of unity and a fixed zero-value dg pixels away (in
+x and ty) and thus a well-defined correlation plane peak shape. The controlled correla-
tion peak value can allow the use of a fixed correlation plane threshold T¢ of 0.5.

This selects regions of potential interest in the field-of-view. For eachoutput plane region
of interest exceeding the threshold Tc, the peak/mean = C ratio is computed. This new
classification measure C applied to those correlation plane regions exceeding Tc allows
significantly better system performance. To calculate C, the mean is computed over the
(2dg+l) x (2ds+l) pixel region around each peak of interest (the mean computation excludes
the central peak value). In our specific work, the parameters in Table 2 are used. Many
other variations of this basic algorithm are possible such as:

»e
(1) applying the C threshold to the regions of theoutput with the largest peak values i{i
only or just the largest peak location (if only one object is known to be present]: o
(2) extension of the filter in Egq.(3) to the five different projection SDFs [5]; g
(3) extension of the requirements in Eq.(3) to include more shifted versions of each Ao
input image:; NOS
(4) application of a weighted spatial taper to the FT of the SDF to suppress its side- T
lobe response; and -
(5) modification of the mean in C to include only those correlation plane values at the ‘::
specific dg pixel shifts from the peak value; S
(6) use of input modulation estimates to adjust the T¢ threshold. S
Y
TABLE 2 e
Specific filter parameters used LN
N, =N, =6 N, = 5 (centered and 4 shifted) -
[
d_ = 5 pixels N, = 5(6+6) = 60 NN
s T DN
\‘:~.
RN
To synthesize the SDF h satisfying (3), we restrict h(x,y) to be a linear combination of ?’-
all training set images
hix,y) =7 a_,f.(x,y) + I a..g.(x,y) + I a..flix,y) + I a.,g!x,y), (4)
Ny i174 N, 1271 (Ng-1)Np i37i (Ng-1)N; 1474
where the number of images in each summation is indicated under the associated I. Denoting R
the full Ny set of training set images by {2} and individual images by zp, the filter h in o
(4) is defined by the coefficient vector a that solves the eguation .
as=1u U, = [lese1 0.-.0]T (5) .:_:“
== =1'"=2 —— e ! AN
Ny Np-N AN
1 TN o
where R is the full Ny x Np correlation matrix of all {z} training set images. The choice e
of ui1 in (5) satisfies the requirements in (3). Eq.(5) is a simple extension of (2). The e
a"n

SDF in (3) is referred to as a correlation SDFand the specific SDF solution in (5) is denoted
as SDF-1 or the exact correlation SOF. This terminology refers to the fact that the solution in
(5) is an exact solution to (3).
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2.2 SDF-2 (Least-Square Correlation SDF)

The solution a in (5) requires solving the Nt linear algebraic equations (LAEs) defined
by (5). As the nature of the problem increases, so will the dimensionality Nt of R and com-
putational problems plus ill-conditioned matrices may arise (even though the filter synthesis
is performed off-line). The typical solution to such a problem is to reduce the dimension-
ality of R, i.e. to reduce the number of training set images. However, a reduction in Nj or
N, will degrade the 3-D object information on each target class and a reduction in Ng will
degrade the correlation shape. The SDF synthesis in (4) and (5) is equivalent to describing
each object as a d-dimensional vector in hyperspace where d = Np. 1In these terms, our
second realization of SDF-1 retains all Np training set images but reduces d to D, such
that D < Npy. This reduction of the dimensionality of our hyperspace rather than the number
of training set images is both practical, preferable and new. To select the D basis func-
tions ¢3(x,y) we use the well-known Karhunen-Loeve (KL) technique [7]. For each unshifted
set object, and for each shifted version of each training set object, we compute the dominant
KL eigenvectors of the associated correlation matrix. 1In our experiments, we retain three
dominant KL eigenvectors per class (as noted above). Efficient methods of computing the
dominant KL eigenvectors of a large matrix and a large database were noted earlier [8].

For the case of (Ng-1) = 4 shifted versions of each image (five shifted images, including
the central centered image), the three dominant XL eigenvectors of each of the ten correla-
tion matrices R (the matrices for the original object £, the false target g, and each of the
four sets of shifted images per class, with two shifts in both x and y) were computed angd
retained. This provides a new D = 30 (rather than @ = 5 x 12 = 60) basis function set. This
new {¢'} basis function set thus represents all of the 3-D information in the training set
imagery for the two targets. Retaining more than three KL eigenvectors per class improves
the accuracy of this approximate algorithm (at the expense of increased off-line computation-
al complexity). As noted in [11], three eigenvectors are generally adequate to represent
over 90% of the 3-D object information. This {¢'} basis function set was then converted to
the orthonormal basis function set {¢} using a Gram-Schmidt (GS) orthogonalization tech-
nigue [12].

In terms of these new ¢g basis functions, we describe the desired filter function as the
linear combination filter

D
hix,y) = bde(x'Y)v (6)
d=1

Each input image in {2z} can then be described as a linear combination of the basis functions
as

D
zn(x;Y) = dﬁlcnd¢d(xly)l (7)

where n_varies from 1 to Np (i.e. over the full training set of Ny images) and ¢q is of size
Nx N=N¢. Hereafter all z,(x,y) images are represented as vectors z,q of length D (with
their D elements equal to the projections of z,(x,y) on the D vectors ¢5(x,y). According to
(3), we require

T, -
Zngh =1 1f zp4 = & )
b _ _ .
Zngh = 0 if Z,4 # £
In matrix~vector form, we write (6) and (8) as
Cb =y, {9)

where C contains Np rows and D columns. fince Np > D, the classic least-square solution is

used to determine h(x,y) as

b= (cTc1™ ¢, (10)

where the size of ng is now D x D. Other optical solutions to such an overdetermined least
squares problem [9,10]) were considered for the case D > Ny. These solutions have not been
correctly formulated., Specifically, if D > Np, no unique solution exists, since the [C’C]
matrix is not full and thus cannot be inverted. Thus, a least squares solution is not
appropriate.
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‘ For our case, Np > D and a solution exists. We recall that s
D ':'.;;
1\ T Np Kote
c'c= vz = N, R, (11) K
i n= l—nd—nd T—
. where z,4 is of length D, the matrix multiplication in (11) is formed as a vector-outer-prod- Gf?
Iy uct sum, and R in (11) is the D x D correlation matrix of reduced dimension D. We also note that e
'. - .-. .-
) o
. g‘ Y
» u (12) e
] nZ a’ O
F- n (29 e,
"u gt
l where the matrix-vector product in (12) has been written as a vector-inner product sum over each vec- oo
K tor element 2,4 weighted by the elements up of uj. Using (11) and (12}, Eg.(9) becomes .;a.
N --‘_.n
- Ny
: -
" NoR b = I_ Uz A
"o n=1 A
’, e
i The solution for the SDF in terms of the zpg of length D and the D x D matrix R is ..
. N
LS 1 ~1 T
N b=g R Iuzyg. (14)
& Np n=1 "
N

From the D elements of b, the D vectors ¢4, and (6), the SDF hix,y) is defined.

Solving (14) involves the solution of D rather than d simultaneous LAEs. Thus, the

A

solution (14) is computationally simpler and faster, although the final result is DA
more approximate. The use of (14) lies primarily in its computational ease for cases when )
Np is large. It is also useful in cases when h must be updated in real-time by an on-line NN
processor. This corresponds to a Kalman filter update of the SDF function. This situation NS
) arises when the projection value for an input object is near threshold. 1In this case, we i
" can update the filter with subsequent views of the input object and thus improve its original DN

projection value., Such cases occur when the scale of the taryget or its depression angle, etc.
differ from that of the training set imagesused. The solution in (14) minimizes the mean
sguare error

i
'

R ) 5

the exact filter function problem in Section 2.1. Hence, the associated name for this fil- -
ter function noted earlier is employed. The accuracy of this solution depends upon the
accuracy to which the several dominant KL eigenvectors per correlation matrix adequately -
represent the data in the full correlation matrix. The summation of the eigenvalues associ=- <

_’ J l‘—ndh - u il (15)
-
" where up = 1 for z = {f;} and is zero otherwise. Setting 3J/3h = 0 in (15) and solving for :

h, we obtain the coeff1c1ent solution in (14). Ssince R in (14) is of reduced dimensionality ~~
s D = 30 (rather than d = 60), the solution in (14) is far simpler and more accurately com- T
- puted. ]
™ A
:\ The least-square correlation SDF filter solution h in (14) is an approximate solution to ‘e le
r:‘
.

" ated with these eigenvectors quantifies this accuracy. This SDF-2 filter function thus {f:
N attempts to select h such that the desired peak values are as close to unity as possible and Fi\
\i that the false target peak values at all shifted image correlation values are as close to 5;\
NS, zero as possible (in a least-square sense). A correlation peak threshold T = 0.5 can be o
A used as before or one can simply calculate C for all correlation plane regions with large {:;‘
: peak values. Experimental data on these methods using such a SDF are advanced in Section 3. e
P
!H 2.3 SDF-3 (Generalized Correlation SDF) Tl
{: SDF-2 is somewhat statistical since the h choice minimizes J in (8). The final type of A
- correiation SDF is also statistical. Rather than selecting h to cause the desired correla- T
> tion plane values to be as close to 1.0 and 0.0 as possible (as in SDF-1 and SDF-2), SDF-3 _;mf
is chosen to maximize the peak-to-mean ratio C. 1In SDF-1 and SDF-2, the C test will provide v d
tarnet discrimination and recognition plus invariance to object modulation (C is invariant ig?
to object modulation or contrast). However, if the peak value for the target is not above -

the threshold T, the C test will never be applied to the proper correlation plane region.
Assuming that maximizing C (or the correlation plane SDF) maximizes the peak
value I, of the correlation, then SDF - 3 will produce both large peak values and
large C values. Specifically, the correlation plane regions with the largest peak values
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are expected to include the correct target objects and the correlation plane regions cor-
responding to the correct targets will also have large C values [4].

The central correlation plane value for an f; input image vector isg hT . £,. The mean-
square-value of this correlation point value for all {f;} is E[(E?fi)zl = hTR'h, where R is

the correlation matrix of {f;}. Maximizing the correlation plane SNR for correct targets
thus requires maximization of

mean-~sguare value of central correlation point for {fiJ

~ mean-square value of central point for {fiT} -9;7 ang {gi}

T
h th

T ’ (16)
h [Efs*‘ggﬂ—zgs]E

where Rfg is the sum of the four correlation matrices Rg), Rgp etc. for the objects fj
shifted in #x and *y (Rgs is similarly defined). The solution that maximizes J in (16) is
the solution of

R:h = A[R._+R Ih (17)

f fs —g'*Bgs -
where A is the generalized eigenvalue of the matrices. The problem defined by (17) is the
well-known generalized eigenvalue problem and thus we refer to the SDF h that maximizes the
SNR defined by J as a generalized correlation SDF (SDF-3). The same {¢J orthonormal

basis function set used in the least-square SDF is again employed here with each matrix in
(17) being D x D = 30 x 30 (for our cases).

For SDF-1 and SDF-2, regions of the correlation plane above T = 0.5 as well as the largy-
est peaks anywhere in the correlation plane are classified as interesting regions of poten-
tial interest. For each of these regions, we calculate the peak-to-mean ratio

central peak intensity

¢= mean in 11 x 11 wincow’

(18)

where an 11 x 11 = (2dg+1)x(2dg+l) window was chosen to agree with the dg = 5 pixel image
shifts used in our data and where the correlation peak value is not included in the mean
calculation. For each potential region of interest, C is compared to a threshold Cp deter-
mined from the C values calculated for the Nj and N2 centered training set images. Since
SDF-3 does not fix a correlation plane peak intensity, the largest correlation plane peaks
are selected, C is calculated for these points and compared to Cr.

3. INITIAL EXPERIMENTAL RESULTS

3.1 Database

The ATR data base used in our initial experimental results reported herein consisted of
t* ree different objects (two tanks denoted as tank 1 and tank2 and an APC). High resolution
i ages of these objects were obtained and decimated to produce 56 x 22 target pixel images
typical of data from a FLIR at the tyvpical ATR acquisition range of interest. For each
object, 36 images from a 20° depression angle were available at 10° aspect intervals. The
pixel values of the images varied from 0 to 255 with most target pixels having values
near 0 and 150 . 1In Figure 2, we show two images of tank 1 (M60) and the APC at two different
aspect views. Denoting the front of the tank as image 1, tank 2 images 11-15 were much dim-
mer and tank 1 images 30-34 were much brighter.

Six or twelve image aspects per class were selected for the training set (all approxi-
mately evenly spaced in aspect angle). The centered and four shifted images of each object
were used for the training set. Each SDF was designed to recognized tank 1 and to reject
either the APC or tank 2. Intra-class recognition and inter-class discrimination were al-
ways tested using all 72 images in the two classes. Each test image was centered but all
points in the correlation plane were tested for the threshold T = 0.5. The correct central
correlation peak value was measured and compared to T = 0.5. The largest peak value any-
where in the correlation plane was also measured. C in (18) was calculated only for this
largest peak point regardless of whether it was >T. Regardless of whether the central point
was above threshold, C was calculated only for the largest correlation plane point. Errors
in the peak intensity are expected due to aspect views not in the training set, due to
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FIGURE 2

Representative images for 3-D ATR testing
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different aspect views of different objects being similar and due to variations in the modu-
lation level of the training set and test set images., Our data represents very worse-case

results. For true targets, by evaluation only at one point, we often miss a target, since C
at the wrong point never exceeds Cr (for a true target). For false targets by calculating C
at the wrong point even though the peak intensity there is below T, we can often misclassify
a ta.get. Thus, the data presented is quite worse-case and significant improvement is possible.
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In Table 3, we show the data for tank 1 - APC for six aspect views per class. From row
one, we see that all correlation plane values are correct (below T) for false targets and
only three or five images have central peak values below T (for true targets). This was
found to be due to low modulation of the imagery and to aspect views guite different
from those in the reference data set). With T = 0.4 (0.35) for SDF-1 (SDF-2) all correct
peaks exceeded T. No peak threshold was used with SDF-3, rather the largest several corre-
lation plane peaks would be investigated. Similar remarks apply to the practical realization
of SDF-1 and SDF-2. 1In row two, we see that the largest correlation peak always occurs in
the wrong place for a false target (as expected), but from row three, at the most only six of
these peaks have C > Cp. In row two, the largest peak is always in the correct location
(for SDF-1 and SDF-2). The number of C errors (C < Cr for a tank input and C > Ct for an
APC input) are listed in the table. Errors in the first case are missed targets. Errors in
the second class are misclassified objects. Most errors occurred for the same images (four
of which were very bright) and three of which had aspect views significantly different from
those in the training set). 1In general, least-squares SDF-2 performs comparable to SDF-1.
The projection values were in general lower for SDF-2 (especially for the central (correct)
peak value). This is expected, since this is an approximate image solution and since only
three eigenvectors are used to represent each set of training set images for each shift.
SDF-3 performed worst. We might expect it to perform better, since it maximizes C. Modula-
tion variations in the training set appear to be the cause for its poorer performance. The
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" percent of all 72 images correctly classified is noted and the percent of the cbjects with
"] T > 0.5 misclassified is noted in the tables.
"
P
‘e TABLE 3
" Worst-case performance of the three SDFs for Tank 1/APC data (72 images)
o (6 training set images per class, approximately every €0°, 5 shifted versions of each)
y
et E=32) S A, sbr-1____ ) ___SDF-2_ ___ | ___ SDF-3___
INPUT TANK 1 APC TANK 1 APC TANK 1 APC -
No. of Central e
Peak Errors T $0.5 3 0 5 0 - - "l
................... ) EE USRIV ORI ESASA
No. of Largest N
Peaks in Wrong 0 All 0 all 7 All et
Location '
No. of C Errors 3 1 2 1 7 6
________________________________________________ b e —. —— -
Percent Correct 94.4% 95.8% | 81.9%
Percent Wrong 0% 0% 8.3%
pputagepupupaathaiagetuupapupupu Spuiapagupupapupupuute mfubuiegubunpunpubepnpu) Spupupunpu g
Ct Threshold 5.0 F 4.3 3.5

Table 4 shows similar data for tank 1 versus tank 2. The trends are quite similar.
Table 5 shows data for the case of 12 training set aspect images per class. The signifi-
cant reduction in the number of errors observed is due to the fact that the largest cor-
relatior plane value 1s now in the correct location (for true targets). As in Tables 3
and 4, since C is calculated only at the largest correlation plane point, if this point is
wrong (for a correct target), then C never exceeds Cr and a target is missed. 1In Tables 3
and 4, Cr was set at 1.5 below the average C value for the training set images in both _
classes. In Table 5, Cr was set higher at 0.5 below the average (since with more training
tet images, our confidence is higher).
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TABLE 4
Worst-case performance of three SDFs for Tank 1/Tank 2 date (72 images)
(6 training set images per class, every 60°, 5 shifted versions of each)

________ ﬂyl---_-___J------fﬁEEZL_-_-d._____f¥¥ff{--__4.--_-_fgyfft---_
INPUT TANK 1 TANK 2 TANK 1 TANK 2 TANK 1 TANK 2
No. of Central - _
Peak Errors Ts 0.5 3 0 3 0
___________________ L I R 1 s el ol T T pp—
No. of Largest
Peaks in Wrong 1 All 0 All 4 All
_____ Location ___ _ M M.
No. of C Errors 1 3 3 0 5 0
Percent Correct 94.4% 95.8% 93.0%
___________________ R s s LT P
Percent Wrong 0% 0% 7%
Ct Threshold 4.1 4.€ 3.9
TABLE 5

Worst-case performance of three SDFs for Tank 1/APC data (72 images)
(12 training set images, every 30°, 5 shifted versions of each)
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4. SUMMARY AND CONCLUSION

The three new SDFs described represent 3-D object information and discrimination infcrma-
tion between 3-D objects quite well. 1Initial tests show excellent results. As noted, the
test performed is quite worst-case, since the largest correlation plane point only was used
and because of fluctuations in the modulation of the training set imagery.
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1.  INTRODUCTION

Correlators are powerful shitt-invariant object recognition systems that perform
well in noise. However, they are quite sensitive 1o distortions between the input

and reference object. Synthetic  discriminant functions (SDFs) [1] accommodate
intra-class distortions and provide inter-class discrimination. in Section 2, we
review these projection SDFs and note that they restrict only the peak point in
the correlation plane. In Section 3, new correlation SDFs [2] are described.
They control both the peak and sidelobe response and thus exhibit superior

performance. Initial test data on these SDFs are presented in Section 4.
2. PROJECTION SDFs

in the synthesis ot projection SDFs, the SDF h is a linear combination of the d
training set images {f} in classes 1, 2, etc., ie.

hi{x,y) = nL'anln(x,y). (1)

The coefficient vector a that defines h is given by

a =Ry (2) :

~ :-

where R is the vector inner product matrix of all {f} with class one data (t,} :"j
being the first N, images and class 2 data the next N, images. elc. The o
elements of the deterministic vector u define the filler's desired response for the T
{t} data.  With the first N, elements of u unity and the next N, elements zero, -_j.:‘
the SDF provides a "1" output for all {11} and a "0" for all (12). Many other -Z'_:-_.
choices for u exist and correspond to the various types of SDFs [1]. N
g

However, this filter synthesis only restricts the central peak or correct e
projection value in the correlation oufput. There is no guarantee that the value at ;-j:.-
other locations in the correlation plane will not exceed the value at the point of
registration (we refer to this as the central value, with no loss of generality and gl
denote this value by lp). This problem is particularly severe when the input is a CQ‘
false target (one in class 2) for which a "0" output is desired. Another r!
shortcoming of projection SDFs is that only a simple correlation plane threshold (T i f-‘;:-
= 0.5 or other levels) is used to achieve object detection. | o=
3. CORRELATION SDFs a

' o-\I

Projection SDFs adequately control lp To control the sidelobes, we increase ! ,n;

the training set size to include Ng shifted versions of each ftraining set imgae, the ¢ '—5
centered image and (Ng-1) shifted wversions. We select Ng = 5 and the shifted '-_.:,
images symmetrically to be d, pixels in both +x and asy. Correlation SDF e
synthesis still uses (1) and (2) with {f} and R being larger, ie. with N.(N‘oN.‘,) z --_'.',-
N, training images (for a two-class problem). The control vector u has zero-
B o — TR SR 3
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' values for elements corresponding to all shifted versions ot all images. Denoting Li:
class 1 (true) objects by 1. class 2 (false) objects by g, and shifted versions of T
-: each by primes, the filter requirements are ::;;}
% pod
», hetft =1, hef =0 el
-, - - - =1 ot
Ly heg =0 heg =0 ’ (3) ;3
N The linear combination correlation SDF = h is .
:: h(xy) = ):'N g, tixy) + ENzaizgi(x.y) + Zagtixy) + Za,g(xy) (4) :
.. 1 -'-'j';
> where the last two summations are over (Ng-1)N; and (Ng-1)N,. The vector inner e
product matrix R is Np x N; with the first N, images being f.  The SDF-h is —
- now defined by the solution a to o
e .:_\'
N Ra =y, = [1eee1 Oeee0]". (5) ::::__.
. e g RS
l‘ﬁ N -N ;’n?‘:
. v NN - o
X Do
Trus correlation SDF thus forces the true-class peak to 1, the false class i
N peak to O and the sidelobes (ds pixels from the peak) to O for both 1‘i and g N
:: Thus. the true correlation peak will have a well-defined shape. False targets will :-_-ﬁ:
have low response over most of the central correlation region. Use of more ol
. training set images with shifts 2d, etc. can control the full correlation plane T
v response.  This correlation SDF synthesis concept first introduced in [2] is a I
‘;:- refinement of the decorrelation SDF in [3] Other variations follow directly [2] ';j.:
[ such as: a least square solution (to reduce the dimensionality of the data), an N
- SDF that maximizes the peak 1o sidelobe ratio (PSR) (rather than forcing the peak e
2 and sidelobes to specific values), etc. In Section 4, we present new test data -
on the performance of these correlation SDFs. :(
A 4. TEST RESULTS Ry
o -.:.'
<
- To test the performance of these correlation SDFs, available software that e
~ produced images of different aircraft at different in-plane rotations ¢ and scales and o
from ditferent viewing angles ¢ (out-of-plane rotations) was used. We selected P
- two aircraft (Set A. Class 1 = Mig, Class 2 = DC10; and Set B: Class 1 = =
. Mig, Class 2 = F105), d, = 5 and 8 pixels, Ny = 5 (and thus Ny = 10N, where A
Z:: N is the number of training set images per class). We generated 36 images (10° L~_'_~'
':; in-plane rotation increments Af = 10°) per class and thus desire N ¢ 36. The Z~;:I-
image resolution used was 128 x 128. T
6
- With ¢ = 0, d, = 5 N = 6 (48 = 60°) was used for Set A. The 6 training :il
'_-; set images per class are shown in Figure 1. Three intermediate images per class e
o (¢ =+ 15°, 30° 45°) are shown in Figure 2. The correlation SDF was formed 0
[ (Section 3). Tests of the full correlation plane data for the training sg} data are ~
< shown in Table 1. The value of the correct peak |, the largest peak Ip and X
’. PSR at both peaks are listed. For true targets (class 1), the correct and largest b
3 peak coincide. Al | are 10 as expected and PSR is large (~388) and rather 2
;- constant. Data for the false targets (right side of Table 1) show the expected ;;j-
’ values (0.0) at the central peak and large (=0.52) but less than 1.0 peak values
’,
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at other locations. As expected. PSR at these pomnts is less (200 max) than gy
true targets. Data for test set imagery (Table 2) shows larger peaks (l°_>_0.53)
for true targets than for false targets (|,<0.50) and larger PSR for true targets
(>2.21) than for most false targets (<2.1). The PSR = 24 value for one falge
target corresponds to an {, = 0.35 and is thus easily distinguished.

From these data, we Ssee that an 'p'r 0.5 threshold alone provides 100%
correct recogniion.  The combination of |y 05 and PSRy = 23 insures even
more relable performance. Because of symmetry, the three test data in Table 2
typily all results. Tests of ¢ rotation effects were conducted. They are more
severe conditions and require more training set images, different d, and ftighter |“T
and PSR; thresholds.

{b) Ciass 2 DC10 Training Set Images, ¢=0, A#=60

Figure 1: Training Set Images Used

(a) Class 1 {b) Class 2

Figure 2: Three Typical Test Images Per Class

(CLASS 1 (MIG) TRUE CLASS] [ CLASS 2 [DCT0) FALSE CLASS_

6 | LOCATION | Ip = Tp| PSR | | I, | T, | LOCATION [ ‘PSR
60° | (65,65) | 1.00 |3.90] |0.0] 0.63] (60,61) [ 1.14
120°| (65,65) | 1.00 |3.86| | 0.0] 0.51| (61,69) | 1.01
180° | (65,65) | 1.00 |3.94| | 0.0[ 0.61| (62,50) | 1.92
240° | (65,65) | 1.00 |3.88||0.0]0.54 | (60,61) | 2.00
300° | (65,65) | 1.00 |[3.81]|0.0|0.43| (80,61) | 1.57
360°) (65,65) | 1.00 ]3.84] |0.0]0.51] (66,59) |1.35

Table 1: Peak Intensity lp, Largest .L and PSR (Training Set Data)
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-
or
¥ [ __CLASS 1 [TRUE_CLASS]_INPUT CLASS 2 (FALSE CLASS] INPUT
)- ------ o - - —— - - - - = o b ——:---—-— Ll ettt b et
‘e o | Tp | Psr|vrocation || 1, |PSR[| Tp [Psr |LocaTION || 1p
’.
k1 15°10.71| 2.4 | (69,70) 0.43]3.1 0.43]2.1 | (44,66) None
% 30°]0.82] 3.3 | (69,53) 0.5112.2 0.50 | 1.6 | (52,64) None
. N 45°]10.53) 2.4 | (64,71) 0.48 13.0 0.35)2.4 | (60,61) None
-2
:‘{e Table 2: Typical Test image Data
T
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Optical linear algebra processors:
noise and error-source modeling

David Casasent and Anjan Ghosh*
Department of Electrical and Computer Engineering, Carnegie-Melflon University, Pittsburgh, Pennsylvania 15213
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The modeling of system and component noise and error sources in optical linear algebra processors (OLAP’s) are
considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output
produced as a function of various component errors and noise. A digital simulator for this model is discussed.

Optical linear algebra processors (OLAP’s) represent
a most attractive class of general-purpose optical pro-
cessors with parallel and real-time features.! The fre-
quency-multiplexed OLAP? is easily fabricated, permits
a competitive high computation rate, and with different
data-encoding schemes allows all the basic operations
of linear algebra functions to be performed with excel-
lent pipelining and flow of data3 We thus emphasize
this architecture in our present study. Many OLAP’s
that operate on digital data have also been suggested.!
These systems achieve the accuracy of a digital pro-
cessor together with the speed and parallel-processing
advantages of optical systems. Despite this widespread
interest, little attention* has been given to an analysis
and modeling of the various noise and error sources in
such optical architectures. We briefly review the fre-
quency-multiplexed OLAP and the basic linear algebra
operations required. Then we detail the types of errors
possible in such a processor and derive our model for
noise- and error-source effects in OLAP’s and the ex-
pression for the output obtained as a function of the
various system-component noise and errors. We dis-
cuss digital simulation of this model and its use. The
modeling, simulation procedure, and general approach
that we use are valid for most OLAP’s, including digi-
tal-optical linear algebra processors.

A simplified diagram of the frequency-multiplexed
OLAP is shown in Fig. 1. This architecture consists of
N input point modulators imaged through N separate
regions of an acousto-optic {AO) cell (with each region
separated by a bit time Tg). The AO cell is fed with N
1-D input signals, each on a different temporal-fre-
quency carrier. We view these signals as N vectors,
each on a spatial carrier. The light intensity distribu-
tion leaving the cell is then the products of the input
vector (from the point modulators) and the N vectors
in the cell, with each such product leaving the cell at an
angle proportional to the input frequency to the cell.
The Fourier-transform (FT) lens sums the elements of
each vector product (by space integration) and forms
each of the N-vector inner products on a separate out-
put detector. The detector output voltages (or cur-
rents) are thus proportional to the (N X N) matrix-
vector product, with one matrix-vector multiplication
performed each Tg.

If intensity-mode operation is used, the signals to be

0146-9592/85/060252-03$2.00/0
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processed are present on a bias. The effects of these
bias terms in the output data must be removed and
corrected for. The neceasary correction signals can be
easily obtained with a separate adjunct processor
channel similar to the way in which bias was corrected
in the initial optical matrix-vector processors using
two-dimensional masks. Amplitude-mode operation
of the AO cells and the system is also possible and in
some cases preferable. In the conventional system, the
detected output intensity will be the square of an am-
plitude product, and thus the square root of the input
(or output) data must be produced. Methods to achieve
this exist, but coherent detection at the output is pref-
erable. In this case, the detector output voltage is
proportional to the desired amplitude product. Either
mode of operation requires attention to the choice of
frequencies and their separation to ensure linearity and
suppression of cross talk. The effects of intermodula-
tion-induced cross talk require further examination.

No delays exist in this processor since data flow
continuously, as detailed elsewhere,3 even though the
same matrix remains in the AO cell for NTg. With
different space {x), time (t), and frequency (f) encoding,
matrix data can be processed by the system, and various
matrix-vector, matrix-matrix, and matrix-matrix-
matrix multiplications and iterative and direct solutions
of systems of linear algebra equations can be realized.?
The basic operation performed by the system is thus a
matrix-vector product each Ts. This is the basic
building block of all other matrix operations and direct
and indirect solutions of linear and nonlinear algebraic
equations.? In this Letter, we describe our noise- and
error-source modeling of the frequency-multiplexed
OLAP in terms of this basic Ab = ¢ system opera-
tion.

\—” @\
e T

Fig. 1. Simplified schematic of a frequency-multiplexed
optical linear algebra processor. (After Ref. 2.)
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= 3 .
tions in the bias level or level of lasing for the input § =51+ 8]+ dj+n,(0). @) s,
¥ modulators and variations in the response of each input  We combine all spatial errors (subscript i) into the ars
< point modulator. Acoustic attention of the signal in the single variable el
o cell produces a deterministic taper exp(—ax) across the ” N . 2 N
. length x of the AO cell, where a is the attenuation Vi=o+ o6+ 6 + 6@+ 5. (4) N
constant of t.hg AO cell matengl usegi. For now, we Combining Egs. (1)-(4) and assuming all error sources e
assume that a is small and nondispersive. These spa- to be small. the elements &; of é are R
tial errors plus variations in the spatial response of the ’ !
AO cell owing to imperfections in the AO material or the & = Tia;bi(1+ )1 + 8)H(f;)exp(~ax,) R
transducer used can also be modeled as input-plane +d;+njt). () e
errors. These spatial errors are correctable and can be 7o N
reduced to low residual levels by adjusting the input To provide a more vivid description relating ¢ to ¢ ’: ‘
signals to the point modulators and the AO cell or by use and the various system and component noise and errors, o
of a correction mask in front of the AO cell (the a error we detail Eq. (5) for a 2 X 2 matrix as Lo
f‘;,
& 1+ 6% 0 ] [H(f1) 0 ] [au 012] R
&l = 0 1+ 6% 0 H{fs) az a2 e
1+, 0 exp(~axz) 0 b;] + [dx] . [nx(t)] . (6 R
0 1+ \h] 0 exp(—ax;)| | b ds no(t) - N
To provide further insight, we explicitly describe each S
error-matrix term in Eq. (6) by its associated origin,
ie. o
™ Detector B AO Input iy
¢ Spatial- Frequency- A Spatial- N
Observed | = | Response Response Exact Response R
Variations | Variations Matrix Variations, NN
i b Detector | ﬁj_';...
Acoustic Exact | + Dark + | Detector | - (7) RN
| Attenuation | | Vector Current | Noise e
effect can be corrected only at one frequency, however). When acoustic attenuation is small, Eq. (6) is T
As noted above, all spatial errors in the AO cell can be ¢ 5 0 mas
mapped into spatial input-plane errors. Similarly, any I ‘] = [ + |2 4 ["’( ) (8) .
frequency-dependent AO cell errors can be mapped to ) ¢ b2}  [nalt)
the output plane (since the FT lens converts frequency Cel
in the AO plane into position in the detector plane). where the spatial and temporal errors are now additive. Y
The output detector plane errors thus include variations From Egs. (7) and (8), and the fact that all OLAP spa- R
in the frequency response H(f) of the AO cell, variations tial errors can be reduced to the desired residual levels NV,
in the spatial response of the individual output detec- by correction, detector noise and the dispersive nature o
tors, variations in the dark current of the individual of « are potentially the most dominant error sources. e
detectors, and time-varying detector noise. The effect If « effects are not small, then the decoupling in Eq. (8) e
of these last two detector plane errors on the system does not occur, the various spatial and detector plane BN
output is additive rather than multiplicative, as we will errors can still be grouped and combined as in Eq. (7), j\-’_-:
shortly demonstrate. but the simplified form in Eq. (8) does not result. o~
In Table 1, we summarize the notation used and the To quantify system performance and the effect of o
various input, AO, and detector plane errors. We also each noise- and error-source component in the OLAP o
include errors that describe spatial variations in the for a given operation, computer simulation is requiret_i. )
coupling between the inputs and the AO cell. With this The error sources are quite different from those typi-
formulation and notation, the elements b; of the actual  cally treated in analysis of conventional linear algebra RO
input vector are related to the elements b, of the ideal processors.® We now briefly discuss how we digitally RS
input vector by model the various error sources in Eqgs. (6) and (7). o

component errors in the simulator is discussed below.
In the system of Fig. 1, various input-plane (point-
modulator) errors are possible. These include varia-

the AO cell’s transducer. Likewise, the elements of the
observed and ideal detector plane outputs 8 and s are

r.» : -t - - ~ - AN - DA IEAPARL gL SO Rl S ot S AP R et . Salief et JhaA el AT LA A N At
’ NN
E - - .":"; ]
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.

! The basic architecture of most OLAP’s consists of a b, =b;[1+ 6+ 6%+ 8. (1) ft'_::'
K linear array of input point modulato.s, an AO cell, and . ) . N,
r a detector array. Thus limiting our modeling to the Similarly, the actual and ideal transmittance of the i
4 system of Fig. 1 is not overly restrictive. In the initial matrix data in the AQ cell for element j, i (i denotes R
! modeling, we assume ideal lenses, no dispersion, and no space and j denotes frequency) are related by A

cross talk. This yields a useful closed-form expression 6. =0yl + SDH( )exp(—ax 2 .
, for the effect of errors, which provides useful insight. i = 0iil ) 11U, p.( ). 2 3
: Accommodating other effects and more advanced where x; denotes the distance of the ith data block from i
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Table 1. SAOP Error Source Model
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Error Source Notation
Spatial errors Subscript i
Frequency errors Subscript j
Input plane errors Superscript 1
AO cell errors Superscript 2
Detector-plane errors Superscript 3
Input Plane Errors Notation
Point modulator

Spatial gain 1+ 3

Bias nonuniformity 1+ 6‘5’
Coupling (spatial) 1+ 5@
AO Cell Plane Errors Notation
Amplifier errors 1+5@
Spatial response 1+ 62
AQ transfer function H(f;)
Acoustic attenuation exp(—ax;)
Detector Plane Errors Notation
Spatial response 146
Dark current ,-
Time-varying noise n;(t)

From experiments on our laboratory OLAP systems,
we found that the residual spatial errors and the de-
tector noise can be modeled as zero-mean Gaussian
random numbers and that signal-dependent (quantum)
noise is not present. The frequency response H(f) and
the acoustic attenuation can be modeled as determin-
istic errors that are quantified by measurements on the
OLAP. This deterministic function multiplies the
matrix data in the cell as in Eq. (6). Since the spatial
errors are independent of time, the random numbers
representing each such error are generated once by
standard IMSLS or other software and stored. The 30
standard deviation of each random number is chosen
to equal the percentage error to be modeled. For input
and AQ cell spatial errors, the random numbers are in-
cluded in each input vector datum b each Tz, and for
detector spatial errors the associated random numbers
are added to the computed output vector each T as in
Eq. (6). For fixed or spatial errors, the same set of
random numbers is used at each T5. To simulate de-
tector noise, a new set of uncorrelated variables with
Gaussian probability distribution is generated each
Ts.

The model above and the form of the result in Eqs.
(6)-(8) are useful for conveying error effects in closed
form, for showing how various error sources can be
grouped, and for noting which error sources are cor-
rectable, multiplicative, and additive. Other error
sources and other models for the various components
can be included directly in the simulator [but do not
lend themselves to convenient diagonal matrices as in
Eq. (6) and to a closed-form expression for the system).
Variations in the bias level of the point modulators and
all errors are assumed to be small residual errors (after
correction). Thus bias-level variations are included in
¥i. If such individual errors are not small, performance

will be too poor to consider. A primary purpose of our
initial model and its simulator is to quantify the domi-
nant error sources and the magnitude allowed for each
(i.e., the level to which fixed spatial errors must be
corrected and the amount of noncorrectable errors al-
lowed).

For quantitative performance data, other advanced
models can be used. Exact transfer curves (after cor-
rection) for each point modulator and detector can be
measured and used in the actual simulator. We have
done this and found the results (for the small residual
errors present in practice) to be the same as those ob-
tained using our random variable modeling. To include
the dispersive nature of «, a different exp(—ax) factor
is used for each signal in the AO cell. This is a fixed
factor (different for each frequency signal) that mul-
tiplies the present spatial contents of the cell each T’g.
Our simulator includes this feature, but it is not con-
veniently included in the equation formulations above.
Similar remarks apply to cross-talk effects in the AO cell
and to the electronic circuit models.

From detailed simulations and analyses with the
model in Eq. (6), we found that acoustic attenuation and
detector noise are the dominant error sources. In initial
simulations,* we found that a effects are dominant in
iterative algorithms and detector noise is dominant in
direct algorithms. We also found that the effects of
small multiple-error sources are additive as in Eq.
(8).

The various error sources that arise in an OLAP have
been tabulated and grouped into two classes (correct-
able or fixed and time-varying) and classified according
to the plane (input, AO cell, output detectors) in which
they originate. Combining these separate error sources,
we find that error matrices in systolic processors are
multiplicative and that acoustic attenuation is an im-
portant error source in OLAP’s employing AO cells.
The model and simulation technique advanced can and
should be applied to other OLAP's to quantify the
dominant error sources, the effect of multiple errors,
and the performance to be expected from each system
for each application and algorithm.

The support of this research by NASA Lewis Re-
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ITERATIVE SOLUTIONS TO NONLINEAR MATRIX EQUATIONS USING A FIXED NUMBER OF STIL’S

75
<

D. Casasent, A. Ghosh* and C.P. Neuman

Carnegie-Mellon University
Department of Electrical and Computer Engineering, Pittsburgh, Pennsylvania 17..:
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ABSTRACT

An iterative algorithm for the solution of a gquadratic matrix equation (the a.g
Ricatti equation) is detailed. This algorithm is unique in that it allows the scl
a nonlinear matrix equation in a finite number of iterations to a desired accuracy.
retical rules for selection of the operationparameters and number ¢f iterations regu:r
advanced and simulation verification and guantitative performance on an error-free g
are provided. An error source model for an optical linear algebra processor i1s then a
vanced, analyzed and simulated to verify and quantify our performance guidelines. =&
parison of iterative and direct solutions of linear algebraic equations is then prcvi .
Experimental demonstrations on a laboratory optical linear algebra processor are incluled
for final confirmation. Our theoretical results, error source trcatment and guidelines arc
appropriate for digital systolic processor implementation and for digital-cptical rrccossc
analysis.

T

1. INTRODUCTION

Optical linear aloebra processors (OLAPs) represent a most general and attractive use of

R R A A AAr PR R R N R e e e

the parallelism and real-time processing features of optical systems [1]. The frequency- -*;:
multiplexed acousto-optic (AO) processor [2,3) of Figure 1 represents a most general-grurpose e
OLAP architecture with ease of fabrication [4] and competitive computational rates {2,4]. ' f{’n
In this architecture (Figure 1), N point modulator inputs are imaged through N separate s

regions of an AO cell. These individual regions are separated by Ty of time (for propagation
of the acoustic wave) and by a physical distance dg. In [2], the use of this processcr in .

K iterative algorithms, direct LU and OR matrix decomposition algorithms, and triangular sys- :t}]
v tem solutions was detailed. -y
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rs FIGURE 1 N
:4 Simplified schematic of a frequency-multiplexed optical linear o,
‘. algebra processor (3] Tt
* v ™
e, .-v‘- o
’, NN
’, In this paper, we consider the use of this processor for the solution of anonlinear matrix e
f equation (Section 2). The specific application chosen is the solution of the algebraic b
[ ] Ricatti equation (ARE). This nonlinear eguation is similar to the expressions to be s~lved TE
e in Kalman filtering and other advanced modern signal processing algorithms. An iterative -
S solution is necessary for such problems and for eigensystem solutions. Our proposed non-
\: linear ARE solution is quite unigue since it requires a finite number of steps to achieve

a specific accuracy and performance. In Section 3, we summarize selection of the operat:cn-
al parameters for such an iterative algorithm and the theoretical basis for our checice of
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o +he fixed number of iterations to be used. Section 4 presents initial error-free simulaticn .
data. In Section 5, we advance our error source model. In Section 6, we review our itera- <
z:ve and direct solutions to systems of linear algebraic equations (LAEs). This represernts ks

«ne fundamental operation required in advanced linear algebra algorithms. Section 7 con-

ey

ta:ns simulation data to guantify the dominant error sources and the accuracy expected fre: PON
v such algorithms. We conclude in Section 8 with the experimental verification and quart:f:- ld
o cation of our theoretical results. Our summary and conclusions are thin advanced in Secticn 3:
O 9. .
N ’:;
? 2. NONLINEAR MATRIX SOLUTION ﬁ:f
. [

In reference [5]), we detailed a solution to the linear guadratic regulator control proclas €

minimize a quadratic performance index for a linear system. Computation of the regulator
fecd back zain matrix K that defines the optimal controls u involves the solution cf thc

F+Fs-SLs+Q=0 (1)

In

« F & T
ENNCN G

§. To achieve this, we used the Kleinman algorithm [5] and the solution cf the vector-
Lyapancvy eguation to format the solution of (1) as a solution 0of the set of LAEs

-
.

R R,

B(k)s(k) = y(k), (2)

3
»
-
)

where s and y are the vectorizations of S and SLS-Q respectively and H is a Kronecker fcr-
ratted matrix. This system of LAEs must “be solved successively with different matrices B
arnd vectors y with the results of one cycle used to compute the matrix H and vector y for

*w¢ next cycle. To achieve this, we employ a two-1lo00p iterative algorlthm described b

-
.
"
I

s(r+1,k) = [I - (KH(k)]s(r k) + . (kK)y(k). (3)

In solving (2) using (3), we solve (2) for one outer lcop iteration k, update H and y and
sclve the next LAE. This procedure continues until s is of sufficient accuracy. The algo-
rithm 1in (3) implies an iterative solution for each LAE. Direct solutions are also pOSS;ule
as we discuss in Sections 6 ard 7. The indices r and k in (3) refer to Richardson (inner)

and Kleinman (outer) loop iterations respectively.

PACRERENENY

Ot
b %

3. OPERATIONAL PARAMETER SELECTION

In an 1terative algorithm such as (3), various operational parameters must be selected.
The initial selection s(0,0) for § and the choice s{0,k) for each LAE solution are reguired.

For s(0,0), we use 0 toc insure outer loop convergence (a stability matrix). For s(C,k), we
use the obv1ous choice of the prior s(0,k-1} estimate. The acceleration parameter . :n (3)
1s chosen to be . = n/ipa, = 3/ H{k} . This insures inner loop convergence [2,5]). Stop-

ging the inner loop ierations (index r) for each LAE solution and stopping the number of
outer loop iterations {index k) is a major decision.

.

In reference [5), we derived bounds for the irnner loop error, the outer loop error and
their coupling. From this analysis, we derived the selection of a fixed number of inner
loop 1terations R tc solve each LAE givern by

R =nC = Clogu = 1.5C to 3.0C. (4) ’
where ' 'x (0) X *(1) "' < o and [1 - 1/¢c1R - exp(-n) < 1/31 is chosen. This follows from our ;f
analysis cf the error in an 1terative soluticr (due to a fixed number of iterations R), ~
which showed that the norm of such an error 1is '{
\'-
- ¥ = -y r _ r = N
s{(r,k) s 1 k) = (1 - 1/C(x)) 7%, (3 -
-
where C 1s the condition number of H. Since r 1s expected to increase with C, we set r = nC ?
and‘thus select n such that the error between the computed solution s and the exact solut:ion
s* in (5) 1s as small as is reguired. For the fixed number of outer loop iterations K, we
use K = 5 or 6, which can be theoretically derived (and aprreopriately modified) for cother
applications with matrices with specific features. These 1terative operational parameter

selections are summarized in Table 1.

4. ERROR-FREE SIMULATICN RESULTS

The performance measures we adopted to assess performance of the algorithm in Sectior <
implemented using the operational parameters in Table 1 are the maximum percent error in any
element of the matrix K (i.e. 2Kmaxi) and the maximum error in the location of the closed-
loop poles of the system (L'payx%). We expect 1K >> &' and note that .: 1s the more
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appropriate error measure for this specific application and that similar error measures
should be wused to evaluate the performance of other specific case studies. In
Figures 2 and 3, we show the variation of these two error measures with the number of cuter
loop iterations k for a fixed number of inner loop iterations for two case studies. These
case studies are the fifth (Figure 2) and third (Figure 3) order models of an F100 eng:
As seen from the data for these two case studies, the use of a fixed number of iterati:
results in a monotonic decrease in the solution error with the &K error being approxui:
ten times that of the A% error. From these results, we conclude that the use of a fixez
number of iterations can yield adequate results when the number of iterations 1is progerls

chosen. Our parameter selection guidelines in Table 1 have thus all been verified ard d:os-
cussed.

TABLE 1
Operational Parameter Selection Guidelines (5]
SYMBOL PARAMETER PREFERRED CHOICE
s(G,0) Initial Initialization s(0,0) = 0
s(0,k) k-th Kleinman Loop Initialization s(0,k}) =s(0,k-1)
s P s s
R Number of Inner Loop Iterations R = 1.5C to 3.0C
K Number of Outer Loop Iterations K=5-¢6
w{k) Acceleration Parameter wlk) =3/ 1H(k)
‘ ’
31 3
21
= <}
-] =
* S 1!
-~
S 1} 5 01
&~
© o‘ é 1
X% 3
i A -
o C
o
E-l max AK%; e, = 10-7 ~ 3 max AK%;
- = Curve A -2} ep=10-4 = Curve A
. -7
_2! max AX%; €r* 10 3 max 83%;
= Curve B -3! ¢p=10-4 = Curve B
3‘ max s %; R = 100 3
- = Curve C -4 max A %;
! Y R=10 = cCurveC
. -5
7 3 4 5 6 7 1 2z 3 & 5 6 71
NO. OF OUTER LOOPS NO. OF OUTER LOOPS
FIGURE 2 FIGURE 3
Variation of the error measures AKpax (%) Variation of the error measures (Kpyzy(t)
and &L'pax{%) with the number of outer- and lipax (%) with the number of outer-
loop iterations K for different inner- loop iterations K for different inner-
loop iteration stopping criteria for the loop iteration stopping criter-a for the
fifth-order HPG3 F100 model third-order HPG3 F100 model

5. ERROR SGURCE MODEL

In earlier publications [7,8) we detailed the first system and component error sourc
model for an OLAP and the general 1ssue of errors in such an architecture. 1In this sectaicr,
we review this OLAP error source model. In this model, we distinguish input, AD cell and
detector plane errors separately. Spatial errors include: 1input and detector resronse
variations and errors in the interconnections between the input modulators and the AQ cell,
and detector dark current. The spatial variations are fixed (time-independent) and are
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correctable to small residual levels as required (by adjusting the gain of the input point modu-
lators, the detector amplifiers, and the input matrix and vector data). Detector noise 1is
the only time-varying error source considered. Acoustic attenuation produces a deterministic
exponential variation of the data in the AO cell. This effect is dispersive, but its fre-~
guency dependence is not included in our present model. Acoustic attenuationcan be corrected
at one frecuency and is thusan input Spatial error. The product of an input matrix A and vector
b thus yields a final output d given by

Detector RO Cell Point Mod Time-
é - Spatial Frequency Mgi;ix AD Cell Response and ] Vgitgr + De;g;ior + Varying (6)
= Response Response A Attenuation| jInterconnection b current Detector|” '°
Variations| |Variations == Variations J - Noise

As seen, the different types of system and component variations are described by error ma-
trices that multiply the input data vector or input matrix data. Thus, the system errors
are described by the corresponding variations in the data matrix and vector. The detector
dark current and noise appear additively in the output vector as shown in Eqg, (6).

6. DIRECT AND INDIRECT SOLUTIONS OF LAEs

The sclution of a system of LAEs, A x = b is the fundamental operation required in most
linear algebra processors and signal processing applications. Thus, we concentrate on this

function. The two major types of LAE solutions are direct or matrix decomposition solution
and an iterative or indirect solution.

The preferable iterative algorithm is [2,9)])

x(r+l1) = x(r) + «[b - Ax (1)), (7)

where . is an acceleration parameter chosen to insure convergence. The iterations (described
by the iterative index r) continue until x(r) = x(r+l}). Then, (7) reduced to A x = b and

the system's output x is the desired solution. To implement (7) on the system of Figure 1,
the matrix data is fed to the AO cell one column at a time in parallel with the rows of the
matrix frequency-multiplexed, i.e. with the matrix elements ampp encoded in time and fre-
quency as a(f,t) and with the vector data x spatially-multiplexed as x(x) and fed in parallel
to the input point modulators. The matrix-vector product A x is formed, operated upon 1in
analog or digital post-processing electronics to produce the right-hand side of (7) and hence
the new x iterate input to the point modulators. Thus, the detector output is fed back to
the input point modulators. The length of the AO cell NTg is chosen to be just as suffi-
cient to accommodate the matrix data. Each Tg, as one column of the matrix leaves the AO
cell, it is reintroduced into the bottom of the cell. This recycling of the matrix data 1s
more efficient for system fabrication and reduces the effects of acoustic attenuation.

In direct solutions, the matrix A and the vector b are multiplied by a decomposition
matrix P; to generate new A] and b Each such matrix-matrix and matrix-vector multiplica-
tion generates one row of the fznai A' matrix and one element of the final b' vector.

After each matrix-matrix multiplication, the order of the matrix and vecior are reduced by
one and the new reduced order Aj] and bj are multiplied by a new P,. This procedure 1s re-
peated N-1 times (for an N x N matrix) and yields a new upper-triangular matrix U and a new
vector b'. This simplified upper-triangular system of equations U x = b' is then easily
solved by back-substitution. The matrix-decomposition can be realized either as an LU de-
composition (this is the technique we use when the matrix is positive-definite or diagonally-
dominant, as is the case here, since pivoting is then not regquired) or as a QR orthogonal
decomposition (this technique is more general and stable, but is more difficult to realize).
The detailed implementation of LU ([2,10] and QR [2,1]1) decomposition and back-substitution
{2,12]) have been described elsewhere. To implement the Gaussian-elimination algorithm (LU)
used in the present application on the system of Figure 1, we feed one row of the matrix A
to the AO cell in parallel (with the columns of A frequency-multiplexed, i.e. with the
elements agpn of A frequency and time encoded as a(t,f)} and with one row of the decomposition
matrix Py fed to the input point modulators in parallel (with the elements pmn of P time
and space encoded as p(t,x)). To facilitate data flow and for speed, we simultaneously
operate on A and b by using an augmented matrix. One row of the augmented matrix A' is
produced in parallel as a'(t,x) on the output detector during each of the N cycles. The new
P, matrix is easily calculated from the elements of the j-th column of the augmented matrix
1n dedicated electronics.

7. SYSTEM ERROR EFFECTS ON THE SOLUTION OF LAEs

The direct solution requires an AC cell of twice the length of the matrix, but achieves
the decomposition in a fixed number of steps. However, as noted in Section 3, iterative
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algorithms can be operated with a fixed number of iterations to achieve a given desired
accuracy and iterative algorithms are essential [2] for eigen-systems solutions and the
solution of nonlinear matrix eguations such as the ARE [5) and in Kalman filtering '12;

I"
our new results (Sections 7 and 8),we campare [6] the performance of direct and 1terat:v: alco-
rithms in the solution of the LAEs that arise in a specific ARE solution for the Fi170 enzine.
The two cases considered are third and fifth-order F100 models. These give rise tc 9 x 9
and 25 x 25 matrices. Bipolar data is handled by space-multiplexing [3) and this dzukies
the size of the matrices and vectors required. For the third-order problem, C = 2.48, the
dynamic range is 47.7 and from (5), j = 10 iterations arc required to solve cach LAE, For
the fifth-order problem, C = 56.9, the matrix dynamic range is 1117 and from (5), i = 10y
iterations are regquired to solve each LAE., We consider three solutions: an 1tevat‘ve alzo-
rithm, direct LU Gaussian-elimination with the back-substitution performed ortlcaA‘y ard
direct Gaussian-elimination with the hack-substitution performed digitally with ni accuracy
We consider two problems: the solution of Asxs = bg for the fifth and last outer l‘,r in
(2) and (3) for the solution of the ARE in (1Y with As and bs digitally calculated exactly
and the solution of all five LAEs for all outer loop iterations.

TABLE 2
Performance of Three Algorithms for Two Data Sets in the Solution of One System of LAifs
F100 RESP. VARIATIONS | ACOUSTIC
ALGORITHM T=ST | para | [~ Point ATTEN. | oEE RSl ek o |

* | SET || Mods (%) | Dets(%) | (aB/ cm) - ;

(I) Iterative 1 3 1 1 0.1 0.6 2.49 c.2x1073
e do.2 ) 2_1+____l___,__-_l ______ 0.001 _{__0.06_ _ { __4.31 | __1.3 _
{II1) LU and 3 3 1 1 0.1 0.6 2.39 0.352

Optical Back-
| _Substitution B 4 1.5 1 1 0.1 0.006 9.77 0.93
---------------- ] ----w-—----—-—--—-——-_--_.-_-__-..__--—_--——--— —_——r e o=l
(I11) LU and 5 3 1 1 0.1 0.6 3.04 .33
Digital Back-

Substitution 6 5 1 1 0.1 0.006 6.78 0.71

TABLE 3
Performance of Three Algorithms for Two Data Sets in the Solution of the Nonlinear ARE
F100 RESP. VARIATIONS | ACOUSTIC
ALGORITHM T=ST | patal [ Point ATTEN. NDOEITSER(”;S) (RS LYN KRN LY
: SET Mods (%) Dets($) | (dB / cm)

(I) Iterative 7 3 1 1 0.1 0.6 2.98 0.77
e e s a1 |_o.00n L 0.0 { 5:.24 1 __1.62__
(II) LU and 9 i 3 1 1 0.1 0.6 r 4.56 0.72

pptical Back- -4
 Substitution ___ 1l _ 10 1 5 _ r---__l_-_-__-_l--__._-.0_-_1___-r_§>.<19--_-L-_.l_l_-}i_--_-‘;;i:‘__
(II11) LU and 11 F 3 1 1 0.1 0.6 4.12 .5
Ppigital Back- -4

Substitution 12 5 1 1 0.1 6x10 10.1° .17

In Table 2, we show the results for the solution of the single fifth set of LAEs. Our
results for the full set of five LAEs, i.e. the full ARE solutions are included irn Takic 3.
Data sets 3 and 5 refer to the third and fifth-order F100 matrix problems respectiveiy. The
performance measures used in evaluating each approach are the average norm Ix cf th
error in the calculated vector x and the maximum error . 'max in the location of the ¢
loop poles of the final system., The spatial, detector noise, and acoustic attenuat.
errors noted earlier were selected to produce approximately equal output errors for c*"L
error source treated separately.

€
osci-

\

In Tests 1 and 2, we see that our theoretical operational parameters (Takle 1) ar. als:
valid when noise and system errors are present. Comparing the results for »lgorithr I and
11, we see that acoustic attenuation i1s the dominant error source for an iterative alocr:ths
and detector noise dominates the performance of a direct algorithm. This 1is expected
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because of the cyclic data flow of the matrix in the AO cell during the iterative algorithm,
This alters C for the matrix. In the direct algorithm, detector noise on one cycle is fed
back to both the inputs and the AO cell and thus changes the noise distribution and its
effects accumulate. Also, detector noise affects the small vector elements and this effect
also compounds on successive cycles. From the results of Algorithms II and I1l, we see that
optical back-substitution yields comparable performance to digital back-substitution. This
is expected, since the operations required in back-substitution are only vector inner prod-
ucts and only N-1 of these are required. This is a substantially lower computationally in-
tensive set of operations than those required in the matrix decomposition. Thus, the
accuracy of the matrix decomposition determines the final accuracy in our results., Comparing
the results for data sets 3 and 5 and the corresponding data in Tables 2 and 3, we see that
the larger matrix size and the increased number of steps required in the ARE versus the LAE
solution causes the required accuracy to increase for direct algorithms more than for iter-
ative algorithms (e.g. a lower acoustic attenuation constant & is noted to be required for
the iterative ARE solution than for a direct LAE solution). We have derived a theoretical

expression [6)
a < (1/2.3LC) (7)

for the amount of acoustic attenuation a in dB/cm allowed for convergence of an iterative
algorithm, where L is the length of the AO cell in cm. From the last two columns in both
tables, we see that 4A)lpzx errors are significantly less than Ax errors as expected. The
results in Tables 2 and 3 are in agreement with the theoretical guidelines in (7). From
Test 1 and all other tests, we find that spatial errors are additive and that for small errors
the percent performance scaled with the magnitude of the error. 1In Tables 2 and 3 and in
(7), we assume that each Tg of the A0 cell corresponded to lmm and we assumed new input data
to the point modulators in the AO cell to be introduced every Tg. To achieve more practical
2 levels, closer spacing of data packets in the cell is necessary. This can easily be
obtained by scaling the values given in Tables 2 and 3. Operation of the input point modula-
tors at a higher rate than the AO cell data [2] can also improve the a and detector noise
values found in Tables 2 and 3. These initial test results are intended to provide guide-
lines for the efficient use of various algorithms, efficient sclutions to linear and non-
linear matrix equations, and quantitative data on performance expected. Our theory, guide-
lines, and modeling are also appropriate for digital-optical linear algebra architectures.

8. REAL-TIME LABORATORY EXPERIMENTS

In Figure 2, we show the nine outputs from a laboratory system to iteratively solve the
fifth set of LAEs for the third-order F100 model (Test 1, Table 2). The outputs are shown
after 80, 400 and 640 iterations. The laboratory system used a fixed 2-D photographic mask
for the matrix in place of the AO cell and 2-D space-multiplexing in place of freguency-mul-
tiplexing. To accomodate bipolar data, the matrix and vector were biased positive. This
increased C to 120. The laboratory system was operated at a 10MHz data rate per channel.

To facilitate easy monitoring of the system, we used w = -0.125. The number of iterations

jJ = nC required for 0.6% accuracy was calculated from (3) to be 613 iterations. Our experi-
mental value of 640 iterations at which convergence occurred is thus in excellent agreement
with theory. 1In the laboratory system, the maskerrors were *7.2% and these dominated other
spatial system errors. The detector noise was measured as 0.4%. With these errors included
in our simulator, the solution vector X was calculated, compared to the ideal theoretical x*
value and to the x vector calculated on the laboratory system. The locations of the closed-
loop poles of the system in each case were calculated and compared. The results in Table ¢
show excellent agreement (0.5% accuracy or better) in the location of the poles and with the
nature of the poles preserved (e.g. complex-conjugate pole pairs).

TABLE 4
Comparison of the Closed-Loop Poles Computed Theoretically and Using
the Optical Laboratory System

THEORETICAL POLE OPTICAL LABORATORY %+ ERROR
LOCATIONS COMPUTED POLES
-20.45 + 36.26 -20.74 + j5.88 0.5
-20.45 - j6.26 -20.74 - j5.88 .
-4.53 -4.53 10-3
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solution of the system of LALs Agx $ bs that arise in the Lo ot
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9. SUMMARY AND CONCLUSION -
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We have detailed a two-loop soluticn to the nonlinear ARE. In the 1tera
f1xed number of 1terations can be emrloyved to achieve a given performance a

direct scluticon of each LAE can alsc be emrloyed, however the iterative sclutic s
(1.4.D vs. 975Tp) . Selection of the ¢;erational parameters for the two-lcop al P4
hecretically derived, verified by ncise-free simulaticons and shown tc be apprc ate
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™
8
j,',: ABSTRACT. A new space/frequency-multiplexed optical linear algebra processor
.\ I
'_:: is described. The electronic support system, fabrication of the processor
and initial performance data are presented.
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Fabrication and Testing of a Space and Frequency-Multiplexed
Optical Linear Algebra Processor

- David Casasent

Carnegie-Mellon University
Department of Electrical and Computer Engineering
Pittsburgh, Pennsylvania 15213

1. INTRODUCTION

Optical linear algebra processors (OLAPs) represent a most flexible and
general-purpose class of optical system. In Section 2, we describe the archi-
tecture for a space and frequency-multiplexed OLAP. We detail (Section 2) how
this system accommodates bipolar and complex-valued data and its use in matrix-
vector processing. The electronic support system is described in Section 3.
The optical system and initial experimental results obtained on it are detailed
in Section 4.

2. COMPLEX AND BIPOLAR PROCESSOR ARCHITECTURE

The optical schematic for a new OLAP architecture [1) to accommodate bi-
polar and/or complex-valued matrix and vector data is shown in Figure 1. For
the case shown, the matrix A has bipolar-valued elements and the vector b has
complex-valued elements. The bipolar-valued elements of one row of A are
spatially-multiplexed on two linear point modulator input arrays at Pl and the
complex-valued elements of b are encoded in the conventional three-tuple repre-
sentation [2] frequency-multiplexed [4] to the acousto-optic (AO) cell at Pj.
This architecture uses input space-multiplexing (rather than time-multiplexing
as in reference [3]) together with frequency-multiplexing [4] to accommodate
bipolar and complex-valued matrix and vector data. If both the matrix and
vector elements are complex-valued, three linear input arrays are used at Pj.
If both the matrix and vector data are bipolar, Figure 1 can be used.

The N point modulators per row at P| are imaged through
separate regions of Pz with the different regions of P, separated in time by Tp
(the propagation time of the acoustic wave between the different portions of the
AO cell at P3). Each Tg, new input data is entered at P; and a shifted version
of the P2 vector is produced (with the vector-shift provided by the motion of
the acoustic wave with time). Thus, an N-element vector inner product is pro-
duced each Tg and a matrix-vector product is computed each NTg (for an N x N
matrix). This basic OLAP architecture can solve linear and nonlinear matrix
equations. The basic linear algebra operation of concern is the solution of a
system of linear algebraic equations. Various algorithms to achieve this on
such a processor have been detailed elsewhere [7].

The frequency-multiplexing requirements for such a system were detailed in
Ref.[1l]. For the M=3 frequency case and the system of Figure 1, these require~
ments are quite modest (Af=70MHz). For the case of a banded matrix with band-
width B=M, the number of input point modulators per row is also quite modest.
When B exceeds the number of input point modulators, partitioning is easily
achieved as detailed elsewhere [5]. With a multi-channel AO cell at Pj, and
the appropriate data encoding and time-integration of the output, the same
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architecture can achieve high accuracy as detailed in Ref [5]. Thus, this is
a most attractive, powerful and flexible OLAP architecture.

10 LAsEn DIOCS . 6 ourrur DETECTOR
couvarc res  orecurims orrics b €in{ 07 (M1ere.  monszowraL rounsen i
(L P} (L sysTEN L)) PREQUENCY -MULTIPLEXED “(”"”:,"'G °'l_")“ (PLAKE Py} PROCESSING
ACOUSTO-OPTIC CELL LENS SYSTEN L,
(P P,)
FIGURE 1

New analog matrix-vector space and frequency-multiplexed
architecture for complex and bipolar-valued matrix and vector elements.

3. ELECTRONIC SUPPORT SYSTEM :;2 C}

Any optical or digital linear algebra processor or Aystolic system must
provide parallel input data to Pj (N words) and to P; words) each Tgp, plus
provide acquisition and analysis of the parallel outpyft P3 data each Tg. To
achieve this with flexibility and programability and/to allow input data for
any application to be processed from a digital databmse, a dedicated high-speed
microprocessor system was assembled. This electronip support system (Figure 2)
contains many special-purpose boards, a hard disk (10M bytes), magnetic tape,
on-line multibus memory (512K bytes) and processor memory (512K bytes) with
600nsec memory access, and video (Matrox interface) and graphics processor out-
puts. The microprocessor used at present is an M68000 with an Intel 86/380 RMX
version also under present evaluation. The general philosophy of this support
system is to download digital data from a VAX, magnetic tape, etc. into high-
speed parallel output buffer memory which drives parallel D/As to the Pj and
P, inputs. Output data is similarly A/D converted in parallel and buffered in
an output memory. The disk system provides storage of the input and output
data. The microprocessor provides control, formatting, etc.

/ Y ,".." ]
To provi tﬁe parallel P) and Py analog inputs, ehrég‘§pecia1-purpose
cards with parallel output D/As (12 bits at 10MHz) and drivers per card

were fabricated. With 10 inputs to P; and three inputs to P2, the system pro-
cesses 130 M byte (12 bit bytes) input data (1.5 G-bit per second data) with
Tg=0.lusec. This represents a reasonable compromise between available D/A
converters and other hardware and system performance. Each D/A input is ob-
tained from a separate high-speed parallel buffer memory channel, each 4K words
deep (12 bit words). Three special-purpose buffer memory boards with 8 memory
channels per board have been fabricated and are used for input and output buf-
fering. The P3 outputs are detected (with special-purpose 20MHz, low-noise
circuits), A/D converted (using special-purpose circuitry with one A/D per board
with 12 bit accuracy and 10MHz bandwidth), and fed to a parallel input buffer
memory. The system's inputs settle to 0.2% in 100nsec, thus allowing 10MHz data
rate (analog, 12 bits) per channel. The necessary spatial corrections [6]

for the Py and P, transducers are obtained off-line and applied to the input
data. These corrections, plus input and output bipolar and complex data normal-
ization and encoding, are performed in software (with their on-line hardware
realization straightforward). An interface board to control the system, and an
RF modulator drive board for the AO cell complete the electronic support system.
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4, OPTICAL SYSTEM FABRICATION AND INITIAL RESULTS ;,r
" <
k: The optical system of Figure 1 was assembled (Figure 3) using a laser ;fj

- diode (LD) input array at P; with individual collimating optics integrated e

N with each LD source. The P} outputs had a 50% fill-factor and the full P, Rt
8 input was reduced by a two lens system to be compatible with the size of P v

and the 0.lusec data packet spacings. A special input P} mount was fabricated s
5 to allow each Pj source to be separately aligned within G.3mrad to illuminate S

- the correct region of the AO cell at Py with the necessary beam divergence. j:ﬂ
. For the initial laboratory system, the beam reducing optics from P, to P occu- <o
j pied 600+20mm and the optics from P to P3 required 160mm. An even more compact };}

system with folded optics is easily possible. ;{f
In Figures 4 and 5, several examples of the performance of the system of ;iﬂ'
Figure 3 are provided. The laboratory system is fully automated with data load- {;;:
ing and output display under control of a dedicated terminal through the M68000 g
system. The inputs to 3 of the P} laser diodes, the AO cell and the output vector D
inner product from one detector are shown as functions of time. The results ob- g;?
tained are as expected and verify the digital control and performance of the full >
hybrid optical/digital system. e
~
Lo
. ’:.’_.
=
NN

- L T S U S O PR
.‘-_\.‘-f-_' e T N e e e Lt e e e
B PP R AP PR SO P -
T R e o L SR S Bt '-. S e haa c"a




|i FIGURE 5
- Three LD inputs (top 3 traces, Three LD inputs (top 3 traces, 2
Loos sinewave and 2 biased ramps) and linear ramps and a O input) and output
output (bottom trace) with a (bottom trace, quadratic as expected)
constant RF A0 input with the RF AO input varying linearly in

power with time over the duration of the
input ramps

‘-\:

ACKNOWLEDGMENTS. The support of Unicorn Systems Inc. contractors and various CMU
grants from AFOSR and NASA Lewis are gratefully acknowledged as is the technical
help of Dr. James Jackson and Mr. Gerry Vaerewyck and the facilities of the Center
) for Excellence in Optical Data Processing (with equipment support provided by
ii Westinghouse Electric Corporation, AFOSR, and USI Contractors).

R REFERENCES

- 1. D. Casasent, J. Jackson, "Fabrication Considerations for Acousto-Optic
Systolic Processors', Proc. SPIE, Vol. 465, pp. 104-112, January 1984.

2. J.W. Goodman, L.M. Woody, Applied Optics, Vol. 16, p. 2611, 1977.

3. M. Carlotto, D. Casasent, "A Microprocessor-Based Fiber-Optic Iterative
Optical Processor', Applied Optics, Vol. 21, pp. 147-152, January 1982.

4, D. Casasent, J. Jackson, C.P. Neuman, "Frequency-Multiplexed and Pipelined
Iterative Optical Systolic Array Processors', Applied Optics, Vol. 22,
pp. 115-124, January 1983.

: 5. D. Casasent, B. Taylor, "High Performance Banded Matrix Algorithms and

’g Architectures', Submitted, Applied Optics, October 1984,

6. D. Casasent, A. Ghosh, "Optical Linear Algebra Processors: Noise and
Error Source Modeling", Optics Letters, Submitted, August 1984.

7. D. Casasent, "Acousto-Optic Linear Algebra Processors: Architectures,
Algorithms and Applications", Proc. IEEE, Special Issue on Optical
Computing, Vol. 72, pp. 831-849, July 1984.

R - .. R T T e
PP AT I PR AL VLT PSP W0 UL PR P P W S0 W Y GRE N 0 o > v




O EEEELT. e % B w e wm—

a s 2 nr

-

‘R A S F s

o,

FEC O OER.- W\ %Y

23

18. PUBLICATIONS, PRESENTATIONS

conferences, companies and seminars on our AFOSR research during the past year follows in Section 18.2.

The

18.1 PUBLICATIONS (AFOSR SUPPORTED, SEPTEMBER 1984-DATE

AND THESES PRODUCED

Publications from the start of this new grant are listed in Section 18.1.1. A list of presentations at

theses supported by this AFOSR grant are noted in Section 18.3.
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December 1984.

., P R S S S S S
S NN N ~. BN . .

PRy

AL N atL ML s At gt arh S AR SN SRt o

e >
I,‘ﬁ"-ﬁ ~

)
(MY

vy

R

-

L L AEREN
[ n'l"""

Ny

XXX

A ."
"2’ :

. ,/‘.,..

-
"
'y



DA R DA RN e e e S R R e o

12. D. Casasent, "Optical Processing Research Making Significant Advancements*, Laser Focus,
pp- 150, October 1984.

LRI
AU S

13. D. Casasent, “Coherent Optical Pattern Recognition: A Review", Optical Engineering, Vol.

‘,.'n 5"' Tl | L

24, Special Issue, pp. 26-32, January 1985. '.'_:-:
NN
14. D. Casasent and J.Z. Song, *A Computer Generated Hologram for Diffraction-Pattern ‘{:-
Sampling®, Proc. SPIE, Vol. 523, January 1985. : .j.;'.;
A

15. D. Casasent, *Hybrid Optical/Digital Image Pattern Recognition: A Review®, Proc. SPIE, "‘.A

Vol. 528, pp. 64-82, January 1985.

16. D. Casasent, “Computer Generated Holograms in Pattern Recognition: A Review*, Proc. RS
SPIFE, Vol. 532, pp. 106-118, January 1985. -;

17. D. Casasent, "Parallel Coherent Optical Processor Architectures and Algorithms for ATR*, . -
FProc. of the Workshop on Algorithm-Guided Parallel Architectures for Automatic Target T
Recognition, Leesburg, Virginia, July 1984, Published February 1985, pp. 33-49. N

18. D. Casasent, *Frequency-Multiplexed Acousto-Optic Architectures and Applications*, Applied
Optics, Vol. 24, March 1985.

b
H “\'_"_
19. D. Casasent, "Fabrication and Testing of a Space and Frequency-Multiplexed Optical Linear ;-;'_::'I'_
Algebra Processor®, OSA Topical Meeting on Optical Computing, pp. TuD7-1 - TuD7-4, NN
March 1985, R
Y
I‘.il\\
i 20. D. Casasent and R.L. Cheatham, "Hierarchical Feature-Based Object Identification®, OSA i

Topical Meeting on AMachine Vision, pp. ThD4-1 - ThD4-4, March 1985.

21. D. Casasent and A. Mahalanobis, "Correlation Filters for Distortion-Invariance and
Discrimination®, OSA Topical Meeting on Machine Vision, pp. FB5-1 - FB5-3, March 1985.

s s v Y I mmmm.e =, . v ¢ -
[
o

.D. Casasent and B.T. Taylor, "“Banded-Matrix High-Performance Algorithm and L
Architecture®, Applicd Optics, Vol. 24, pp. 1476-1480, 15 May 1985, ‘\-’
'-..\'::'
23. D. Casasent and A. Ghosh, *Optical Linear Algebra Processors: Noise and Error-Source \".:‘
. Modeling*, Optics Letters, Vol. 10, pp. 252-254, June 1985. ‘-‘_
: e
! 24. D. Casasent, *Computer Generated Holograms in Pattern Recognition: A Review®, Optical
. Engineering, Vol. 24, pp. 724-730, September/October 1985.

: R
, N
l 18.1.2 PAPERS SUBMITTED UNDER AFOSR SUPPORT ?:.\
; RE
. 25. D. Casasent, A. Ghosh and C.P. Neuman, "A Quadratic Matrix Algorithm for Linear Algebra '.-
: Processors®, J. Large-Scale Systems, Accepted. .

a

1

NI AT N NN S L N N e N

T . I RIS BRI LN
W S o .

et e . PRSP S A T ot T e e
n“.;‘l;:\;‘?_;‘;‘:-"i.’ YR T TS R TN




18.2 SEMINARS AND CONFERENCE PRESENTATIONS OF AFOSR

DR AR [ERERTES LSS

-
[

-
Ll
o
v
o
> -
R
N
i

- 10.
.
)'.
- 11.
-
-,
" 12
.
v
.
t‘; 13.
L7
5 14.
E':- 15.
w
16.
17.
18.

RESEARCH (SEPTEMBER 1984 - SEPTEMBER 1985)

September 1984

. Philips Research Laboratories - Briarcliff, NY - *Optics and Pattern Recognition in Robotics*.

. Optical Society of America - Pittsburgh, PA, "CMU Center for Excellence in Optical Data

Processing™.

. Carnegie-Mellon University, ECE Graduate Seminar - Pittsburgh, PA, *Optical Processing

Research in the Center for Excellence in Optical Data Processing®.

. Westinghouse Corporation - Baltimore, MD, *Research and Facilities in the Center for

Excellence in Optical Data Processing®.
October 1984

. Washington, D.C., *Optical Pattern Recognition: Feature Extraction®.

. Washington, D.C., *Optical Pattern Recognition: Correlators".

. Washington, D.C., *Synuhetic Discriminant Function Case Studies®.

. Washington, D.C., *Basic Optical Signal Processing Architectures and Algorithms*.

. Washington, D.C., *Advanced Optical Signal Processing Architectures and Algorithms*.

Washington, D.C., *Optical Linear Algebra Processor Algorithms and Architectures".

Washington, D.C., *Optical Linear Algebra Processor Applications and High-Accuracy
Architectures®.

. Carnegie-Mellon University, ECE Sophomore Seminar - Pittsburgh, Pennsylvania, “Research

in the Center for Excellence in Optical Data Processing"®.

University of Pittsburgh, Center for Multivariate Analysis - Pittsburgh, PA, “Advanced
Multi-Class Distortion-Invariant Pattern Recognition®.

Wright Patterson Air Force Base - Ohio, "Multi-Functional Optical Signal Processor for
Electronic Warfare*.

George Mason University - Washington, D.C., "Optical Information Processing".

SPIE (10CC) Conference - Boston, Massachusetts, *Optimal Linear Discriminant Functions®.
November 1974

SPIE Robotics Conference - Boston, MA, *"Chord Distributions in Pattern Recognition®,

University of Maryland - *Optical Processing for Autonomous Land Vehicle Navigation®.
January 1985

A

R N DR A SR S S AR, B T P ST S
APy A a " I WP TR Uiy U T U R T A A TP, T Ui DR PO D0 JUP I P VR T U TRPU TN TR P

Ml e et s i e A Bl Tt A B S A S S Ay S A S A S S

PN Aa B I AP R A
L
',51 ra Y

”
A
[;




e ARCNEREALIE AT S 4 5 A SUL D St Srh gWic A 0 GNLS00. Ert SOl o s et A AP Bt St Al

e
!
E ¥
26
2
..1
:- 19. Fairchild Weston - Long Island, NY, *Optical Pattern Recognition and Optical Processing®.
B ':“
i~ 20. SPIE Conference - Los Angeles, CA, “Hybrid Optical/Digital Image Pattern Recognition: A
Review®,
‘.“
b, 21. SPIE Conference - Los Angeles, CA, *A Computer Generated Hologram for Diffraction-
;: Pattern Sampling®.
-
2 22. SPIE Conference - Los Angeles, CA, *"A Recent Review of Holography in Coherent Optical
. Pattern Recognition*.
“n
[
s 23. Sandia National Laboratories - Albuquerque, NM, *Optical Pattern Recognition and Optical
::.; Processing®.
o February 1985
x 24. NASA Lewis - Cleveland, OH, "Optical Linear Algebra Processors (Systolic)".
N March 1985
25. George Washington University, - Washington, D.C., "Optical Linear Algebra for SDI®.
26. Lockheed Missiles & Space Co. - Sunnyvale, CA, "Advanced Hybrid Optical/Digital Pattern
- Recognition®
e
‘:-', 27. OSA Topical Meeting on Optical Computing - Lake Tahoe, NV, "Fabrication and Testing of a
;}f Space and Frequency-Multiplexed Optical Linear Algebra Processor®.
-
~ 28. OSA Topical Meeting on Machine Vision - Lake Tahoe, NV, "Hierarchical Feature-Based
" Object Identification*.
g
‘\:: 29. OSA Topical Meeting on Machine Vision - Lake Tahoe, NV, *Correlation Filters for
2 Distortion-Invariance and Discrimination™.
N
. 30. Texas Instruments - Dallas, TX, "Optical Pattern Recognition*.
-*_.: April 1985
.
::\ 31. Electro-Com Automation, Inc. - Dallas, TX, "Optical Pattern Recognition".
” 32. Eglin Air Force Base - Ft. Walton Beach, FL, "Optical Pattern Recognition and Kalman
: Filtering*.
" May 1985
-. 33. Carnegie-Mellon University - Board of Trustees, *Optical Data Processing®.
B August 1985
- 34. SPIE - San Diego, CA, “Correlation Synthetic Discriminant Functions for Object Recognition
. and Classification in High Clutter®.
:: 35. SPIE - San Diego, CA, "A Factorized Extended Kalman Filter".
- 36. SPIE - San Diego, CA, "Optical Finite-Element Processor™.
v September 1985

e <o L e R . DTS IS L
N o

-7, " a0 ~ . P R . P
A - RIS s e e e T . e . I AR ST
alefnSatolatolatelolatoloalolod olokedas, AT N EPSPSINEIEIT B S

_..'_V.'\.’_'. N
gl g ae ot ot o




) Qo “Rab N " Ca s NOLA S ) - ! 4 . - Pl s e - ! v o v
ey -'_:.f
:. ".:-'
= 27 -
-‘ |-.
ALY
3 37. SPIE - Cambridge, MA, *Parameter Estimation and In-Plane Distortion Invariant Chord _*:'
B Processing*. :": ]
38. SPIE - Cambridge, MA, *Optical Processing Techniques for Advanced Intelligent Robots and -
P Computer Vision*. e
‘-" r::.."
:} 39. SPIE - Cambridge, MA, "High-Dimensionality Feature-Space Processing with Computer ;:"
™ Generated Holograms*. o
o o
" s
e 18.2.1 THESES SUPPORTED BY AFOSR FUNDING (SEPTEMBER 1984 - SEPTEMBER v,
- , e
. o
- 19856 .:__:;
- b
1. Eugene Pochapsky, M.S. Dissertation, *The Simulation of Optical Pattern Recognition i-:_
- Systems*®, September 1984.
::' 2. William Rozzi, M.S. Dissertation, *Advanced Quantitative Synthetic Discriminant Function :::::
- Tests on Ship Imagery®, December 1984. :\;:
.. “'.i-
-, l.. l' Y
2. 3. James Fisher, M.S. Dissertation, *Extended Kalman Filter Algorithms for Implementation on Y
a High-Accuracy Optical Processor®, December 1984 .
~ RS
e
N 4. W.T. Chang, Ph.D. Dissertation, *Chord Distributions and Correlation SDFs in Pattern :':
.. Recognition®, March 1985. e
. R
- e
»
-~
Py '
-
+ o
: 5
.» N
o Ny
. ¢,
g NN
) i :\\
o v2
p
' o
P e
o S
¥ ]
> L
4 e
o
< I
- e
4 '.“'.'
: -
X £
N R S e R e T Y S S e




19. REFERENCES

1. D. Casasent, A. Goutzoulis and B.V.K. Vijaya Kumar, *Time-Integrating Acousto-Optic
Correlator: Error Source Modeling®, Applied Optics, Vol. 23, pp. 3230-3237, September 1984.

5,.
2228700

)
|
2. A. Goutzoulis, D. Casasent and B.V.K. Vijaya Kumar, *Detector Effects on Time-Integrating
hy Correlator Performance®, Applied Optics, Vol. 24, pp. 1224-1233, 15 April 1985.
L
3. D. Casasent, *Hybrid Optical/Digital Image Pattern Recognition: A Review®, Proc. SFPIE,
N Vol. 528, pp. 64-82, January 1985. L
:: 4. D. Casasent, "Parallel Coherent Optical Processor Architectures and Algorithms for ATR", ‘_-T::
-:- Proc. of the Workshop on Algorithm-Guided Parallel Architectures for Automatic Target : :'
Recognition, Leesburg, Virginia, July 1984, Published February 1985, pp. 33-49. -'-'J
= A
" 5. D. Casasent, "Coherent Optical Pattern Recognition: A Review®, Optical Engineering, Vol. :‘:'f
- 24, Special Issue, pp. 26-32, January 1985. ,".-':'J
< e
-.3' 6. D. Casasent, *Computer Generated Holograms in Pattern Recognition: A Review®, Proc. .'.':.;
' SPIE, Vol. 532, pp. 106-118, January 1985. L
3 LI
] AT
[ 7. D. Casasent, "Computer Generated Holograms in Pattern Recognition: A Review", Optical -
': Engineering, 24, pp. 724-730, September/October 1985. -‘_:u
WK .‘n ’
‘' '-'.:J
’s 8. D. Casasent and J.Z. Song, *A Computer Generated Hologram for Diffraction-Pattern :-‘.:1
— Sampling®, Proc. SPIE, Vol. 523, January 1985. B
. A
p -
:-' 9. D. Casasent and V. Sharma, *Feature Extractors for Distortion-Invariant Robot Vision*, -}'-j
‘-j Optical Engineering, Vol. 23, pp. 492-498, September/October 1984, ':::S
X oA
"'j 10. W.T. Chang and D. Casasent, “Chord Distributions in Pattern Recognition: Distortion- ::\g
) Invariance and Parameter Est'mation®, Proc. SPIE, Vol. 521, pp. 2-6, November 1984. ‘f_;
S
. NS J
11. R.L. Cheatham and D. Casasent, *“Hierarchical Fisher and Moment-Based Pattern ~:: :1
'.:‘ Recognition®, Proc. SPIE, Vol. 504, pp. 19-26, August 1984. ‘:.‘{:1
S LN
-, o

>

Pd
" ’f Y

12. D. Casasent and R.L. Cheatham, *Hierarchical Pattern Recognition Using Parallel Feature
Extraction®, Proc. ASME, Computers in Engineering 1984, Vol. 1, pp. 1-6, August 1984.

e
r

;’..

> 13. D. Casasent and R.L. Cheatham, "Image Segmentation and Real-Image Tests for an Optical ,_:-_:
; Moment-Based Feature Extractor®, Optice Communications, Vol. 51, pp. 227-230, September A
N 1984. ~e
) PN
ot

14. D. Casasent and R.L. Cheatham, "Hierarchical Feature-Based Object Identification", OSA 2'!

o Topical Meeting on Machine Vision, pp. ThD4-1 - ThD4-4, March 1985. \_::14
I. ¥
- ‘.f‘-q
:: 15. D. Casasent, W. Rozzi and D. Fetterly, "Projection Synthetic Discriminant Function \::\j
" Performance®, Submitted, Optical Engineering, Vol. 23, pp. 716-720, November 1984, :':
- ——— ]
x| N A
nee

g 16. V. Sharma and D. Casasent, "Optimal Linear Discriminant Functions®, Proc. SPIE, Vol. —r;'
. 519, pp. 50-55, October 1984. s
> A
] .:_. \
! e
-y

- A

Eo

: e
g

R S R R R B A BTy




N
y
]

Y W0 e gl DAy S6s e "R Matte tullh A A el S IV el S (R el i A S et St A S A A S A A B AN G R o N I o R L AR oD SORE ot SR

'
00’
& 4 ]
PN
IR
P

29

F

\_.

NS
< l“

l'. j..

17. W.T. Chang, D. Casasent and D. Fetterly, “SDF Control of Correlation Plane Structure for
3-D Object Representation and Recognition®, Proc. SPIE, Vol. 507, pp. 9-18, August 1984.

0

h )

PR
RS

;

>
AR

18. D. Casasent and A. Mahalanobis, "“Correlation Filters for Distortion-Invariance and
Discrimination®, OSA Topical Meeting on Machine Vision, pp. FB5-1 - FB5-3, March 1985.

et
< L
ST

Al

19. D. Casasent and A. Ghosh, “Optical Linear Algebra Processors: Noise and Error-Source
Modeling®, Optics Letters, 10, pp. 252-254, June 1985.

) LRI
N SN
t:"s"-."'-"

20. D. Casasent, A. Ghosh and C.P. Neuman, “Iterative Solutions to Nonlinear Matrix Equations
Using a Fixed Number of Steps®, Proc. SPIE, Vol. 495, pp. 102-108, August 1984.

s '.. )

L M
P4
"5“\" N

(X
.“\

‘v r »

21. D. Casasent, "Fabrication and Testing of a Space and Frequency-Multiplexed Optical Linear
Algebra Processor®, OSA Topical Meeting on Optical Computing, pp. TuD7-1 - TuD7-4,
March 1985. :

'
.
R.J.h

F
'y by
LA
[N

A
e
.

Ty Ty TR Ay,
. W ;
»
LR A A A I

»
s
A

o5
e P

[%
AARPD

(R AN

S,
ALY

a
[ o'

b N

SRR bl
.'l'/":\r“:f :".:\

‘e

PSSR {

~ 4
.'.“n [ A

A AR TR T L
b SIAIRII IR ST RTINS

et ettt .
LSyt SRR




SVERBIVIE N R ORI B TR

‘s’

y“ -

Par % |

COC AL A AR 440 S AL

o
-

/
D

RTRANA IS 3% ) 03N

RS N

UL (AL, IOty AP FRKAE A L S5 5 B AT v AN SRS

L«.
4 T



