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ABSTRACT
Research on optical data processing for missile guidance and robotics is described. Our major

emphasis is pattern recognition using feature extraction (Fourier coefficients, moments and chord

features) and correlation (using distortion-invariant synthetic discriminant function matched spatial

filters). All of our research in pattern recognition concerns multi-class distortion-invariant processors. It

includes new algorithms to extract distortion parameters from chord features and a hierarchical moment

feature processor for distortion parameter estimation. Extensive database tests of moments and synthetic

discriminant functions have been performed. Component research has addressed AO cells with

performance measures and detector effects described. Matrix-vector research includes: error source

analysis, a new quadratic matrix algorithm, and initial laboratory system results with attention to the

electronic support system and the laboratory system fabrication.
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1. INTRODUCTION

During this first year (September 1984 - September 1985) of our new research contract in optical .,,

data processing for missile guidance, we have addressed the major key issues and aspects required and

V
associated with this technology. This research includes: .

" real-time devices and components,

" new system architectures,
S. " new algorithms,

" new high-speed general-purpose optical data processing techniques and systems,
" tests on new and extensive image databases,
" plus new pattern recognition techniques, architectures, algorithms and concepts.

As in past years, we have been quite faithful in reporting our AFOSR sponsored research in various

journals and conference publications. 24 publications (an average of 2 per month) have resulted from this

AFOSR research (Chapter 18). Copies of the more relevant papers we have published over the past year

are included as various chapters of this report. These are included to provide complete documentation of

the different aspects of our work.

In Chapter 2, we provide a summary and overview of our research progress achieved during the past

year. This work addressed 6 vital areas of optical data processing research:

1. real-time spatial light modulators (Section 2.2 and Chapter 3),

2. optical pattern recognition (Section 2.3 and Chapter 4),

3. computer generated holograms (Section 2.4 and Chapter 5),

4. optical feature extraction (Section 2.5 and Chapters 6-10),

5. optical correlation (Section 2.6 and Chapters 11-14), and

6. optical linear algebra processors (Section 2.7 and Chapters 15-17).

S.4.

Topic (1) concerns the vital issue of real-time spatial light modulators. Topics (2)-(5) address

pattern recognition for ATR using new optical pattern recognition (OPR) techniques. In this work, we L

have been faithful to address vital problems such as multi-class distortion-invariant pattern recognition of

military targets, the acquisition and importance of the use of a large database and the effects of noise on -,

the algorithms used. Topic (6) concerns the most attractive item in optical processing at present and a

potentially quite general-purpose optical processor concept.

0 .-
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Details of the more salient results of our research are provided in Chapters 3-17. In Chapter 18, we

enumerate our AFOSR sponsored publications, the presentations given on this research at conferences and

seminars during the past year, and the Master's and PhD students that this grant has supported. .,

Our level of AFOSR research support on this grant has not increased for several years and our

optical artificial intelligence separate research AFOSR proposal was not funded. This will significantly

impact our research program. Other funds are being sought to allow support of this research we feel is

necessary. The aforementioned remarks, plus the unavailability of funding from Eglin AFB for our

Kalman filtering research are expected to result in a reduction in the quantity of research we are able to

produce for AFOSR. We anticipate that we will still remain considerably above the output level of other

researchers however.

During the past year, the principal investigator (PI) presented invited talks on our AFOSR

sponsored research at various conferences including the Critical Review of Technology SPIE Conference

on Digital Image Processing and the Critical Review of Technology SPIE Conference on Computer

Generated Holograms (SPIE, Los Angeles, California, January 1985) and the DoD conference on Parallel

Algorithms and Architectures for ATR (Leesburg, Virginia, conference proceedings published February

1985), plus other OSA and SPIE optical computing and robotic conferences during the year. The PI has

chaired conference sessions and seminars and served on the organizing committees for the following

conferences and topics:

* SPIE (robotics),
" Optical Society of America (optical computing),
" Optical Society of America (machine vision),
" SPIE (digital image processing),
* SPIE (computer generated holograms).

The PT was also guest editor of a special issue of Optical Engineering on robotics and computer vision.

lie was invited to submit papers to the journal Optical Engineering special issues on pattern recognition

(November 1984), optical computing (January 1985) and computer generated holograms (October 1985).

..5
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2. OVERVIEW AND SUMMARY

2.1 INTRODUCTION

Our six major research areas and our recent progress in each are highlighted in Sections 2.2 - 2.7.

Details of each aspect of our fifteen work topics follows in Chapters 3 - 17.

2.2 SPATIAL LIGHT MODULATORS (ACOUSTO-OPTIC CELLS,

CHAPTER 3)

Recently, our spatial light modulator research has emphasized acousto-optic cells. In [1], we

considered the salient acousto-optic architectures (spectrum analyzers and correlators). The various

acousto-optic cell and acousto-optic architecture component errors have been enumerated, grouped into

different classes and combined into several new models. New performance measures for acousto-optic

correlators and spectrum analyzers were defined and detailed (spectrum estimation, delay estimation, and

detection). Each is an appropriate performance measure for a different application. General error-free

formulae for each of these performance measures were derived and the performance obtained with each

was described and quantified as a function of the various system parameters. Our new work [2] in this

area (Chapter 3) addressed component error source effects on performance (specifically detector effects). 

We plan to apply AO processors to optical image processing in our future research.

2.3 OPTICAL PATTERN RECOGNITION REVIEWS (CHAPTER 4)

Our AFOSR optical pattern recognition research is at the forefront. Our paper [3] in Chapter 4 on

coherent optical pattern recognition was included in the recent Critical Review of Technology series on

Digital Image Processing. A more recent review [4] was one of only two optical pattern recognition

papers at a recent DoD conference on parallel architectures and algorithms for ATR. A journal OPR

paper was invited and published in the Optical Engineering issue on optical computing [5] in January

W 1985. Chapter 4 [3] is a complete review of optical techniques for feature extraction and correlation and

includes new algorithms, architectures and hybrid optical/digital processing concepts. Sections 2.4-2.6

and Chapters 5-14 detail specific aspects of our recent OPR research.

......... .......... ...... . . . . . ii. .. .... ... . ..
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2.4 CGHs FOR OPR (CHAPTER 5)

Our 1984-1985 research has increased the use of computer generated holograms (CGHs) for optical

pattern recognition (OPR). We were selected to present a review of this area [6] in a recent Critical

Review of Technology conference on CGHs. A detailed revised version [7] of this paper was invited for

submission to a upcoming journal special issue. This review will be included in our 1985-1986 annual

report. In Chapter 5, we include new recent work on the use of a CGH as a wedge ring detector for

diffraction pattern sampling [8].

2.5 OPTICAL PATTERN RECOGNITION FEATURE EXTRACTION

(CHAPTERS 6- 10)

Three new optical feature extraction techniques have been detailed in our recent research:

1. the use of multiple feature extractors and dimensionality reduction techniques (we consider the
specific case of a wedge ring detector-sampled optically produced Fourier transform feature
space) (Chapter 6 and Ref.[9[);

2. a new method to measure distortions from a chord distribution feature space (Chapter 7 and
Ref.[10]); and

3. a hierarchical two-level hybrid optical/digital moment feature processor (Chapter 8 and
Refs.[11] and [12]).

Our optical Fourier transform space and multiple feature space work (Chapter 6) includes four different

diniensionality reduction and feature extraction techniques. A new classifier concept, quantitative data on

the importance of amplitude versus phase Fourier coefficients (for pattern recognition, rather than image

reconstruction) and the performance of each in the presence of noise. These represent quite novel results

which have thus far not been published for any other feature extractor (optical or digital). Experimental

results for two letters and two vehicles with 25 images of each at different scale and in-plane rotational

differences were obtained. In Chapter 7, new techniques to obtain distortion parameters from chord

features are detailed [10].

In Chapter 8, our new hybrid optical/digital moment processor, our new hierarchical moment-based

class estimator technique, and a new two-level classifier using moments are detailed and the results

obtained on a set of ship images are presented (111. Robotic part data on the same system are contained

in Ref.[12]. The performance of this system on non-controlled imagery and a new segmentation

,-. o ° - .. - ,- - . . o- . -.. .. .- . . • . .. .. . .. . . S -. 5 5 .
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processing technique were recently published 113] and are included in Chapter 9 for completeness. The :

accuracy with which the distortion parameter estimates can be obtained is summarized [14] in Chapter _

2.6 OPTICAL PATTERN RECOGNITION CORRELATORS (CHAPTERS %

11-14)

Our distortion-invariant multi-class multi-object correlator research emphasizes synthetic

discriminant functions (SDFs). Our tests and algorithms for projection SDFs on ship images with data on

noise performance with new guidelines for the suggestion of projection values were included in a recent

journal special issue on pattern recognition [15] and are provided in Chapter 11. New related SDFs that

optimize various performance measures [16] are detailed in Chapter 12. New correlation SDFs have been

described and initial results with them have been obtained for a tank and APC image database [17].

These results are summarized in Chapter 13. We were directed to perform tests on aircraft images by

AFOSR. These results [18] are included in Chapter 14.i i
2.7 OPTICAL LINEAR ALGEBRA PROCESSORS (CHAPTERS 15 - 17)

This optical data processing application area has received very much recent attention.

A first vital aspect of optical linear algebra research that we initiated was the error source modeling

and simulation of OLAP (optical linear algebra processor) architectures and algorithms [19]. Chapter 15

details this work. A second novel facet of our OLAP research has concerned specific applications. The

application chosen for major attention was Kalman filtering and the specific application of it was missile

guidance, control and state estimation. Support for future research in this area is questionable at present.

A third facet of our research is new parallel algorithms. A new parallel algorithm for the solution of

quadratic nonlinear matrix equations using a finite number of steps has been devised [201 and is detailed

in Chapter 16.

The fourth and final aspect of our OLAP research has been attention to fabrication of an OLAP.

We recently [21] discussed our laboratory processor and its electronic support and initial results. This is -

detailed in Chapter 17. A lengthy version of this work is in preparation for a journal special issue. This

..............



- -YIJ - ,~ - ~ ,

7

is one of the few laboratory results published on OLAP processors. We are thus quite novel in the work

we have generated on each of these OLAP areas.



3. DETECTOR EFFECTS IN REAL-TIME
AO PROCESSORS
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Detector effects on time-integrating correlator
performance

Anastasios Goutzoulis, David Casasent, and B. V. K. Vijaya Kumar

Detector array effects are considered for a time-integrating acoustooptic correlator used for signal detection.
Effects such as detector area integration, detector element, spatial response, and the location of the correla---
tion peak within a detector element are included. General SNR, PD, and PFA expressions are derived as a
function of various system and detector parameters. Quantitative data are provided for a Gaussian -Markov
signal, and initial experimental confirmation is included.

I. Introduction wn (r) for an individual detector, and conventional sig-

Acoustooptic (AO) devices have been suggested for nal and system parameters. Our performance measures .
use in many new signal processing architectures and used are probability of detection PD and probability of
applications.' This interest is motivated by the com- false alarm PFA. Our prior statistical analysis 6 related .

mercial availability, good reliability, and performance these to measurable correlator SNR values and showed N

of new AO cells." 2 One of the most attractive AO signal that these factors completely characterize the system's .-..
processors is the time-integrating (TI) correlator. 3.4  performance. We do not consider detector noise and -
This architecture is attractive because of the large detector element cross talk, since earlier detector noise
processing gain it provides and the large signal devia- analyses 4 can easily include such effects. The statistics
tions it can accommodate. However, only limited sta- (mean and variance) of the correlator's output are then
tistical analyses, 5 error source consideration,6 and evaluated in Sec. III for the case of Gaussian-distributed
quantitative performance data have been published on signal and noise. In Sec. IV, performance expressions

" this system. Published work has considered the effects are derived for the case of Gaussian-Markov signals.
of signal time bandwidth product (TBWP), input signal The effect of the finite detector area (Sec. V), the loca-
noise, detector noise, 4 and finite detector area effects tion of the correlation peak within a detector element '

on time delay estimation applications.7  (Sec. VI), and spatial weighting across each detector
In this paper we consider detector effects in a signal (Sec. VII) are then analyzed, and quantitative analytical ' , -. "

detection application of a TI correlator. We consider results are provided. Brief experimental results are,.'..
correlators using AO cells operated in the linear inten- included (Sec. VIII), and then our summary and con-
sity mode (since these architectures yield analytical clusions are advanced (Sec. IX) on the design of a TI
results). Detector effects for AO cells operated in the correlator for detection applications. Signal, systems,
amplitude mode can be analyzed following the proce- and output detector parameters are considered
dures and models advanced herein. In Sec. II, we re- throughout. Emphasis is given to our general analyses,
view the linear intensity TI correlator and derive an the quantitative effect of different parameters, and the
expression for its output including the finite area D of analyses of various initial quantitative results.
each detector element (and the associated spatial in- 1 Df S e
tegration and sampling), the spatial weighting function II. TI AO Correlator for Signal DetectionIP

A simplified schematic of a linear intensity TI AO
correlator 3 is shown in Fig. 1. We denote the reference r.
signal by s( t) and the received signal by s (t - ro) + n (t),
where T0 is the delay and n(t) is additive noise. For %

When this work was done all authors were with Carnegie-Mellon linear intensity modulation3 of the AO cells, the signals .
University, Department of Electrical & Computer Engineering, are added to two biases B, and B2. The signal driving
Pittsburgh, Pennsylvania 15213; A. Goutzoulis is now with West-
inghouse Research & Development Laboratories, 1310 Beulah Road, the point modulator at P% is
Pittsburgh, Pennsylvania 15235. s2(t) = B2 + s(%t - T) + n(t). (1)

Received 11 October 1984. 4 _e
0003-6935/85/081224-10$02.00/0. The light intensity leaving P1 is then proportional to %.-..
© 1985 Optical Society of America. s2(t). This light beam is expanded by lens L 1 and -e

1224 APPLIED OPTICS / Vol. 24, No. 8 / 15 April 1985



P1  L. P2  1.2 P3  L3 P4  standard deviation in the peak value). SNR 2 is the ., -
same as SNRI except the standard deviation is com-
puted far from the peak. (It is thus similar to the

EK. j B fl - peak-to-sidelobe ratio.9) The probability of detection
PD and probability of false alarm PFA are related to

I these two SNR measures by6

S- -sNRjjx - EC01
Lawr AO Coll sptie Detector PD = 1 -SNR2x - EIC()] }) x,
Diode Filtering Array (3)

Fig. 1. Schematic of a time-integrating acoustooptic correlator. I -SNR 2 X - E[C(T) ix,

PA=V'2wE
2 IC(OIl/SNR 2 Jx 1  2E9[C(O)] %

(4) J.

uniformly illuminates the AO cell at P 2. The signal where E[C(O)] and E[C(r)] are the means of the signal - -
s1 (t) = B1 + s(t) modulates a rf carrier and drives the and noise, respectively, and 0 is the detection threshold.
AO cell at P 2. Lenses L 2, L 3 and the spatial filter at P3 By increasing 0, PFA will be reduced, but PD will also
separate the diffracted and undiffracted orders, block decrease. Note that E[C(r)] and E[C(O)] can be esti-
the undiffracted order, and image the +1 diffracted mated by evaluating the correlation C(T) far from the
order onto a linear detector array at plane P 4. The peak r >> 0 and at the peak r = 0, respectively. We -
detector array at P 4 provides the time integration over choose to express PD and PFA in terms of SNR 1 and
T1 of the resulting light intensity s 1 (t)s 2 (t). Including SNR 2 because of the considerable ease with which these ' A
the finite area D of the detector elements, we write the two SNR terms can be measured experimentally on an ""
P4 output from the nth detector as optical correlator. In our statistical analysis in Sec. III,

1 Ti/2 (n+1/2)Dw we derive expressions for SNR and SNR 2 and from *.,. ,T(n) = Tj- J ~ WJ .,u-(r) +sthese obtain PD and PFA expressions. (.,.-.<

x [B2 + s(t - To) + n(t)]drdt, (2)

where T = x/v,, x denotes the direction of the sound Ill. Statistical Analysis r "r.
propagation, v, is the speed of sound in the AO crystal, To simplify our statistical analysis, we assume uni-
Wn (T) is the spatial response weighting function for the form weighting across each detector, wn (T) = 1, and '.4-
nth detector element, and n = -N/2,... 0, ... N/2 is equal biases B 1 = B 2 = B and that constant bias terms
the index for the N + 1 detectors. We note that D = are subtracted from the P4 output. Equation (2) for the r"".
D/v, has units of time. (D, is the detector area in nth detector output now contains the following five
distance units.) The normalization factor 11T, is in- terms:
cluded to simplify our results and does not affect the
system's detection performance. B r./p(./.

Equation (2) contains all parameters necessary to 1(n) = / (/ s(t - r)drdt

study the effects of all detector parameters [i.e., D,wn (T) TJ T,/2J fn-/.2W %

as well as the value of To with respect to D] and various B T /2 (n +112) M d
. (t - T)drdt N%signal and system parameters (such as T,, signal +T-- f-T,/2 )D

bandwidth, and TBWP) on the system's performance. B f T12 (n+ /2)D
Other AO system component errors can be treated in- + J- f n(t)ddt

dividually in the input or frequency plane as shown T . ,+l/2)
earlier. 6 Dead spaces between detector elements can + - f ( + s(t - r)n(t)drdt ..

be included by allowing w,(T) to become zero at the T1 f T,-/+2 J(n-1/2)1)

edges of each detector element. In our analyses, we +I st - - o)ddt (5) T0f(+1/2

+ _ ),~~~~(t - r dr t (5assume 1:1 imaging from P 2 to P 4 in Fig. 1. Operation -T,/2 Jn-1/21)

of the AO cell in the linear amplitude mode is also pos-
sible. In this case, the correlation output is present on For the case of zero-mean independent signal s(t) and
a spatial carrier, and after postdetection processing the noise n(t), the square of the expected value involves
correlation obtained is still given by Eq. (2) with a dif- only the last terms in Eq. (5), i.e., ..-

ferent signal-to-bias ratio. Thus, our results can be
extended to apply to both amplitude and intensity mode 6 ,.
AO cell operation. E211 (nH f Rjr - ro)drj'. (6)

As performance measures, we use the parameters6  -r -P

SNR1 , SNR,, PI), and PFA. SNR is the typical SNR
measure5 used in communications (the square of the where R, is the signal autocorrelation function. The . "mesr "Re icm~iain,(h qaeo h % ,

ratio of the average correlation value at the peak to the variance of l(n ) is found from Eq. (5) to be

15 April 1985 / Vol. 24. No. 8 / APPLIED OPTICS 1225



varrl(n)] E[I(n)]2 - E 2[I(n)]

B2 ,,T1/2 ,.(n+ 112)D

X 2 J /2 JJ(-/ 2 )DR,(t - u - r + r')drdr'dtdu

B2 D 2  71/2 B 2
D

2  T1/2
Ti- rT/2 R.(t-u)dtdu+ T I T - u)dtdu

1 f j/2 (n+1/2)D
+ T/2 if(.+1/2)D R,(t - u - T + r')R(t - u)drdr'dtdu

+1 f Ti/2 +(1/2)D R,(t - u)R.(t - u - r + rt')drdr'dtdu
TY , '.-T,2 fJ(n-1/2)D

+ ff TI12 if(n+1/2)D R,(t - u - r + ro)R,(t - u + r' - ro)drdrdtdu

LJJ-T/2 (-1/2)D

2B
2

D C.Tel2~ R(n+Il2)DR.(t - u - 7 + r 0 )drdtdu, (7)

+TIJ -TI2 f(n-I/2)D

where Gaussian-distributed signals were assumed
(third-order moments are zero, and the fourth moment
theorem8 can be used) and where Rn(-r) is the noise
autocorrelation function. Assuming that the signal and
noise have similarly shaped autocorrelation functions,
Eq. (7) simplifies to

B 2 T CT (n+l/ 2)D B2 D2 (S-A2
varel(n)J = I-r_,,°  , - 7+ [1 I( + M - (T, - IzI)R.(z)d

1 I- -Ti (n+1/2)D
+ + iNRI)(f - IzI)R.(z),Rs(z - 7+ r)d-rdi'dz

1 _Ti f(n+1/2)D ,

+ - T' ( 1 - Izl)R.(z - r + o)R.(z + 71 - ro)drdr'dz

2B
2D Ti (n+1/2)D

+ -Ti (n-1/2)D (T' - IzI)R.(z - r + ro)drdz, (8)

where the input SNR, is the ratio of the peak signal
power to the peak noise power. If the assumption of
similar correlation functions for the signal and noise is fourth term in Eq. (9). SNR1 and SNR2 can now be
removed, the SNR1 expression can be appropriately obtained from the ratio of Eq. (10) to var[I(0)] and Eq.
modified.10 Assuming Ti >> 1/3, where # = BWs is the (10) to Eq. (9), respectively. A numerical evaluation
signal bandwidth, we can omit the I z factors in Eq. (8) shows that the fourth term in Eq. (9) has a negligible 3%
and obtain contribution to the total variance far from the peak.

Bvaijl(n)] = 2re D(- This is logical because R, is sharply peaked and because
Ti J-TJ -D - Iql)R,(z + q)dqdz the two factors in term four diverge as r changes. For

B
2D 2  

1 1 generality, we retain all terms in Eq. (9).
T, IV. Gausslan-Markov Case Study .,

if ,T D
+ 1+ J (D- Iql )R. (z) We now use the results of our statistical SNR analysis 0T S T

J-D in Sec. III to derive PD and PFA expressions. We con-

* X R,(z + q)dqdz sider the case of signals with a Gaussian-Markov auto-
1 Te (n+ 1/2)D correlation function": ..

X ' + ' - T~rr hre #.-m is(z tesga' - Bbnwit n Ro ei(-sz) the-_TB_.D Srt l(,+2 /R) R(z - 7 + 7)dz (9 iga owr hi.iga odlws hse eauei

TJ Ti (n-1I/2)D allows an analytical evaluation of both SNR and SNR 2
With no loss of generality, we assume that the cor- without the need for numerical evaluation. We have

relation peak occurs at the n = 0 detector element. also numerically evaluated our results for a Gaussian- 4

Then shaped autocorrelation signal model and obtained re- s,. ,

D/2 
2  sults similar to those obtained herein, where we include w

E2 (/(0)] = I / R,(7 - To)d7 (10) only the analytical results for the Gaussian-Markov
VD/2 I model.

where now -(D/2) < ro < (D/2). The variance at the Using the model in Eq. (11), the average peak power %
peak var[I(0)] is thus given by Eq. (9) with n = 0 and the in Eq. (10) can be shown by a simple but tedious analysis

variance far from the peak var[I(n)] by neglecting the to be
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E2I[I(0)l =L [2 - exp[-fl(D/2 + 7o)] - exp[#(-D/2 + io)]I
2. ' ',.

2 0
(12) 1

The var[I(O)] and var[I(n)] expressions now become
= 5 0 IIS- 0.

var[I(0)] =G D ~ 8+ )+ ' 2 + = i =100-0T1i5 SNR1  T1#
2  S= 250 SNF.

TRj
2  

TR 2  
SNR=5I0

T12 R 12 BWs=O1MHz
var[J(n)] =O2D 18+ ) -1+ I 3  1)10

T1 SNR, TN52  SR, To=

where

A1  -8TO - 6 exp(-2#To) - 4To exp(-2#7io) 10

+ exp(-ftD)[exp(20iTo) + exp(-29To)] (D +3)

- exp(-D)[exp(2#,ro) - exp(-2f-ro)]2o, (15a) 1

A - + - exp(-#D) + 2D exp(-#D), (15b)

A 4D 6 
6 -1

A 4D - exp(-D) + 2D exp(-O1D). (15c) D
- -& 10 100 1000 (111m11) *

From Eqs. (12)-(15), we find Fig. 2. Effect of detector size D and integration time T, on PFA (for

SNR 12 - exp[-O(D/2 + To)] - exp[O(-D/2 + 7o)]1
2  PD = 0.999).

D2,6__ (8 2 j 4D % 1 A! 1i\~
D 8+ + +I2 - + 1-+-t1 +TI(SBR)2  SN) T I T 1  .NRI

(16)

SNR 2 12 - exp[-O(D/2 + TO)] - exp[O(-D/2 + TO)]1
2  

PFAT = 1 - - PFA)N+1. (20)

) NT8+- + S+A RI) The three detector effects we consider are the finite
TI(SBR) 2 ( SNR, T, (7 detector size D (Sec. V), the location of the correlation(1) peak within a detector element (Sec. VI), and the spatial

where SBR = /Ro/B is the signal-to-bias ratio for the peariti a detector element (Sec. VI) n ch t
input data to the AO cell. The error-free SNR1 and response across a detector element (Sec. VII). Each ofSNR2 expressions are found (by applying l'Hopital's these detector effects is treated separately, since forrule with D s 0 and To = 0) to be each case the integration time TI, the input SNRI, thesignal bandwidth/1 = BW3, the signal-to-bias ratio

SNR 1 = T103 , (SBR), and other such parameters affect the results.
1 11) I 21 1 Our purpose in these next three sections is to quantify

+ + -82  the effect of these various parameters on the detection ,T1 3 +performance (measured through PD and PFA) of a linear ,d
SNR 2 = T10 (19) intensity TI AO correlator and to provide guidelines for

(1 + ) + 8 + 2 SBR) 2  TI AO correlator design.,,.mlr" -

These error-free expressions are useful for measuring V. Area Integration Effects
the loss incurred when D 5 0 and To 3 0. In this section, the effect of the finite detector ele-

From Eqs. (12), (16), and (17), we can now quantify ment size is quantified. Graphic presentations are used
the PD and PFA performance to be expected as a func- to provide quantitative performance data. The trends
tion of the different signal and system parameters and observed are then noted and discussed. We include
the different detector effects. Pt) is obtained by sub- only PFA data rather than PD data to reduce the length
stituting Eqs. (12) and (16) into Eq. (3), and PFA is of our text. ,%
found by substituting Eqs. (12) and (17) into Eq. (4). In In Fig. 2 we show the variation of PFA with D for
calculating PFA we assume E(C(r)I = 0. This follows different T values. Both PFA and PD improve as T
from our zero-mean signal and noise assumption and increases (as expected since longer integration time
the fact that R.(T) will be sharply peaked. We also note reduces noise and enhances signal). PFA and PD) also
that the PFA we calculate corresponds to PFA for one improve as D decreases. This is less immediately ob-
detector element. The total PFA for the entire output vious but can be explained by realizing that increasing
(PFAT) of N + 1 detectorF can be obtained from our PFA D increases the noise more than the signal (per detector
by element). This occurs since the noise is relatively
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As our next signal parameter, we consider the effect
of D and the signal bandwidth BW on PFA. Our re-

1 suits are shown on Fig. 4. Recall that the width D, of k
SNR i -O. the correlation peak decreases as BW, increases, spe-
SNR1=1 cifically D, = (2/BW,)v,. For BW, = 1 MHz, D, =

- SNRriIO 1230 pm, and all D values shown are much less than D ,
and hence the variation of PFA with D is neglibible. As
BW, increase, PFA improves (due to the increased
TBWP). For BW, > 10 MHz achieving PFA < 10-3 is

1 Ti=5Ops easy for a wide range of detector sizes D. For BW =.
10 MHz, D, = 123 Mm, and we see that any detector size

SBRr0 D < 100 Am (or D less than approximately D,) yields

10MHz good PFA < 10-3 performance. However, as D is in-
creased further, the degradation in PFA is more severe

) t0 =00 for larger BW, (since the width of the correlation peak
becomes increasingly less than the width D of a detector

-4, and thus more correlation noise enters the detector). .
For BW, = 40 MHz, D, = 31 Am, and for any D _< 120
pm we find PFA < 10- 3. Thus, as BW, increases, the
maximum allowable D for a given PFA increases. This

D occurs because the improvement in PFA (with increasing
10 100 1000 (pM) BW) is larger than the degradation in PFA (with in-

creasing D). For lower SNRI cases, smaller D values -
Fig. 3. Effects of input SNR (amplitude) and detector size D on than those shown are expected to be required (as we,,

PFA (for PD = 0.999). found in Fig. 3). For BW, = 5 MHz, D, = 246 pm, and

we find that D < 35 pm (one-seventh of the width of the
correlation peak) is required to obtain PFA < 10-3.

uniform over the correlation plane, whereas the signal Thus, as BW, decreases, we require finer sampling of
correlation is of narrow and finite width. Thus, for any the correlation peak to maintain a given PFA.
D > 0 (not just for D greater than the width of the cor- The number of detector samples required within the
relation peak), a larger D degrades PFA and PD perfor- correlation peak and the PFA obtainable thus interact V

mance. This effect is more pronounced when D is significantly as BW, varies. The quantitative data in
larger than the width of the correlation peak (123 pm Fig. 4 show this clearly (for the SNRI and T1 values
for BW8 = 10 MHz and the shear TeO2 AO cell as-
sumed). The data in Fig. 2 verify this and quantify this 1
effect.

As noted at the outset that many system and signal N
parameters exist and affect performance. Next we BW5 = 1 MHz

consider the effect of D and input SNRI on PFA. As 10-1
expected, we find (Fig. 3) that PFA improves as SNR1
increases (for a fixed D). For the case considered (T'
= 50 psec, BW8, = 10 MHz, or TBWP =500), we findicrelatines reqired). w he caise los(bew1re 10 ,N 0 1

that a smaller D is needed (and oversampling of the T= 100 PS
correlation is required) when SNRI is low (below 1.0 for a10- BWs = 5,. SNR I = 0.1 .

the case chosen). For example, if PFA = 0.001 is desired S= SBR
(with PD = 0.999), the detector size must satisfy D < 18
pm if SNR/ = 0.1. (D = 18 pm is much less than the C" To=0

123-pm width of the correlation peak.) We note (from 1-3
Figs. 2 and 3) that T, and SNRI have a much more
significant effect on PFA than does D. For example, for
D = 70 pm, doubling T1 from 50 to 100 psec (Fig. 2) BWS = 10
results in a quite significant PFA improvement (from 4
10-2 to 10-5). Conversely, reducing D by a factor of 2 10- -BW =40 -
to 35 pm improves PFA from 10- 2 to only 2 X 10 -:3.
Thus, as a general system design guideline, if the desired 7 .
PFA for a given SNR cannot be achieved with a rea-
sonable D, a slight increase in T1 can often overcome 4
finite detector element effects (assuming that the signal 10 100 1000
duration is sufficient). For large SNR,, the size D is of D (pm)
concern. However, low SNRI is the scenario of most Fig. 4. Effects of bandwidth BW, and detector size D on PFA (for ..

concern. T= 100 gsec, SNR1 = 0.1. SBR = ). .
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P signal-dependent noise present in the output of a TI 4FA correlator. This bias cannot be simply subtracted form

1. the system's output. The slope of the SBR = 0.5 curve .
in Fig. 5 is comparable with that of the high BW,, SNR1

SBR- , and T, curves in our prior (SBR = -) figures. However, iSB;s0 the associated D values are an order of magnitude --

-0.4 smaller. Thus quite small detectors and quite fine
no3correlation plane sampling are required for intensity

=062 mode TI AO correlators operation. For example, for

-2 =0.1 the signal considered, the width of the correlation peak
10 is 31 pm, whereas the maximum detector size for PFA

= 0.001 is 24 pm or approximately the width of the
correlation peak (for SBR = 0.5). A change in D by

!25o pl. only 5-19 pm (with SBR = 0.5) changes PFA from 10- 3

to 10- 4 . For the smallest realistic 10-pm detector sizeshown, the PFA values obtained are quite large (for SBR

SNRNO.I _0.4). Thus a finite detector size significantly affects - -
PFA performance for intensity mode AO operation.

-4=0 The low SNRI, the large T/ and large BW, scenario

used in Fig. 5 is typical of most spread spectrum signal _ ,
cases.' "" ""

-(VI. Effects of Correlation Peak Location %

10 do 1000 fti.4 In this section, we consider our second detector effect
(the location To of the correlation peak within one de-

Fig. 5. Effects of signal-to-bias ratio and detector size D on PFA for tector element of finite area D). We first consider PFA
PD = 0.999. as a function of delay ro (where -D/2 _< To _< D/2) .. -

within one detector element for several signal hand- -
selected). This vividly demonstrates the importance widths BW, and several detector sizes D. A delay To -41
of obtaining such plots for the parameters of the signal = 0.0 corresponds to a correlation peak located in the :,
of concern. Without this, the detector sampling re- center of a detector element, whereas a delay of ±0.5 4
quired for a given PFA would be quite difficult to assess. corresponds to a peak located at the edge of a detector 7 W :-
In general, for signals with large TBWP > 1000 and (between two detectors). In Fig. 6, we summarize our _
moderately low SNRJ : 0.1, the detector size can be quantitative PFA performance as a function of D and
chosen to be less than or equal to the width of the cor- %
relation peak, and excellent PFA < 10- 3 will result. For PFA
signals with moderate TBWP = 500, increased over-
sampling of the correlation plane is required. - 1

Last, we consider how D and the final and most 2 T=25O ps -

dominant system parameter (the SBR of the input data 3 SNR 0.1'
to the AO cell) affect our PFA performance measure. 4 SsR:O.5 < .
Recall that SBR = for operation of the AO cell in the ,
amplitude modulation mode and that the best value for Dhim) BW5V4MHz) ',-'. -
the intensity modulation mode is SBR = 0.5. In Fig. 1:10 1
5, we show how PFA varies with D and SBR. We im- - 2: 20 5"-
mediately note that the amplitude modulation mode 3:20 10 % %" %
(SBR f ) yields much better performance for any D 4:10 10
value and allows much larger D values. This must be 5: 20 20
qualified by noting that the output of a TI correlator 6: 20 40
appears on a spatial carrier4 when the AO cells are op- 7:10 40
erated in the linear amplitude mode. Thus the detector
size in this case must be sufficiently small to detect the -I

spatial carrier. (This effect is not included in our %

present data.) However, in a detection (compared to
a delay estimation) application of a correlator, we often
know where the correlation will occur (once we are in - DELAY
synchronization), thus considerably reducing the 0 10 20 30 40 50 (0)
number of detectors required.

From Fig. 5 we see that PFA degrades as D increases Fig. 6. Effects of the BW, ) produtct and the location (delav) of the
(as explained before). The decrease in PFA perfor- correlation peak within one detector (as a percent of n on 'FA tor
mance as SBR decreases is due to the increase in the 1= 0.999.

*h%
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BW.. Curves 1-7 correspond to systems with in- chosen to use this weighting function (and the variable
4 creasing BW, values and different D choices. For the delay To) for its versatility in studying the effects of the ,

systems considered, the correlation width in seconds for detector element's profile on the system's performance.
a signal of bandwidths BW2 is 2/BW,. For a TeD2 cell For example, for d = D, w, (r) describes a rectangular
with 1:1 imaging a 10-mm detector size corresponds to profile, whereas d = 0 describes a triangular profile.
a 16-nsec sampling time per detector. Specifically, a For any other d and D relationship, w, (r) is a trape- . ..- -

BW, = 10-MHz signal has a correlation width of 2/10 zoid.
MHz = 200 nsec. Thus curve 3 corresponds to 200/32 Let us assume that the correlation peak lies within 166

6 detector samples within the correlation width and the n = 0 detector element, i.e., -D/2 <5 TO D/2, then ,%.P,.
curve 4 to a 12 samples. Curves 1 and 2 have consid- wo(r) defines the profile of the detector element in
erably more samples. Curve 5 has 100/32 3 samples. which the correlation peak occurs. The average peak
Curve 6 has 1.5 samples, and curve 7 has 3 samples. As power in Eq. (6) then becomes
BW, increases (curves 1-7), PFA improves due to the D/2 12
larger signal TBWP. As the detector size becomes less E 2[1(0)] = wO(T)R,(T - TO)dT • (22)
(curves 3 vs 4 and 6 vs 7), the correlation plane sampling..', -
is better, and PFA again improves. For larger BW8 , the Substituting Eq. (21) into Eq. (22) yields the expression
improvement due to smaller D values is larger since the for the average correlation peak power lpp. We evalu-
correlation peak is narrower (see Fig. 4). The variation ated this for different dD ratios and found that a rec- * _
in PFA vs To (center of detector) to To= 0.5D (edge of tangular detector gave the best Ipp value. The loss in
detector) also follows logically. As To increases for a Ip was 25% when To = D/2 rather than To = 0. A
fixed D, the correlation peak power within D decreases trapezoidal detector response profile with d = 0.6D gave
(assuming D is less than the width of the correlation 30% less Ipp, and a triangular detector response profile
peak). As BW, increases, the sensitivity to the location gave 70%/o less Ipp. To analyze w, (T) effects on SNR, we
of the peak within a detector element becomes more assumed To = 0 (to simplify the analysis), since then the
important (since the width of the peak is less). The variance of SNR is independent of To (with u, fixed),
variation in PFA with To is most severe for signals with and SNR and SNR 2 vary with To in the same way that
a large BW, (or correspondingly large TBWP). Al- lpp does (for low SNR1 ). For SBR = we evaluated
though PFA is much better for large BW,, this To effect SNRI and SNR. as a function of D and BWs for To 0  -, 0 "

is still quite significant. For D = 20 ym and BW, = 40
MHz (curve 6), PFA varies from 0.0002 (when To = 0) to %P=
0.02 (when ro = D/2). This is a non-negligible factor FA
of 100 loss in performance. Thus, for higher BW. sig-
nals, increased correlation plane sampling is recom- S =O.1 .
mended (e.g., curve 6 is curve 7). %

The data in Fig. 6 were obtained for intensity mod- TS:u 3
ulation (SBR = 0.5). Similar trends are expected for SBR:Q
linear amplitude modulation (i.e., SBR = 'o), but the - BS OM-.
actual PFA values will be better (since the effects of fi- 10 0
nite SBR are absent).

VII. Effects of Detector Spatial Weighting Function
Thus far, the spatial weighting function for each de-

tector element has assumed a rect function. However, 10

this is not necessarily the case, especially for CCD ar-
rays.' 2 In many cases, the response profile for a de-
tector element can be modeled as a trapezoid whose
upper-to-lower base ratio dID depends on the actual 10
array. To consider the effects of such a profile, we as-
sume a detector weighting function: 2150% TRAPEZOID

3.TRIANGLE
2r 2(n - 1/2)1) nI)-D/2< 7 <nr)-d12, 4

D -d 1)-d

I n) - d/2 < < i)+d/2 ,.

11,,(rI 2r (211

2, + 1/2)1)
I) - d ~~i) + d12 < r < ril) + 012.,010 100 (m

where n is the detector element number. 1) is t he lower F "}lfet ,, (fctur wii-hEinfe orolIh. dto /'1.. gfr lP = (M ,11)11 6, -

base f the trapezoid, and d is the Upper base. \Ve have aIi funit ,flc I h, d( hr clIement izve 1) . -
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for different u',,(r) profiles. We found that both tri- To measure SNRI, we fixed D and centered the cor- %.P.'d 1

angular and trapezoidal w, (r) profiles gave better relation peak at the center of the detector element (t..
output SNR values than did a rectangular w, (r). This = 0). Since D = 50-200 pm corresponds to 0.32-1.28
is expected for r0 = 0 since these w, reduce the noise psec, which is less than the 4-psec width of the corre- , 0
more than the peak value. The SNR improvements lation peak, negligible errors are introduced by slight
increased as BW, or D increased (since the peak nar- mispositioning of the detector. Two hundred separate
rows, and the weighting reduces the noise more than the measurements of the detector's output were taken. %
peak value). This is less time if SNRI is larger. (The noise or statistical fluctuations were different in e

In Fig. 7 we show 'FA vs D for these three detector each measurement, and thus these data constituted a -
element profiles for the case r0 = 0. We find that the different sample realization of the random correlation
nonrectangular profiles perform best, with only a small process.) For each choice of D, the mean and variance
improvement in SNR 2 (0.5 dB) and in PFA = 0.00037 of these 200 samaples were calculated and their ratio
(triangular), PFA = 0.00044 (trapezoidal) and PFA = calculated to provide our desired SNRI.
0.00125 (rectangular)].To00comareutut SNRvaluesforT 0fordif To obtain SNR2 , we measured the value of the cor-

ferent U',,T), we consider the worst-case Tor= D/2. We relation at the peak and far from the peak. To achieve
fre th,,, e osidue toe o = D/2.compard W this, we moved the detector element far (-15 psec) fromcompute the/pp loss (due to To = D/2 compared with To the peak location. Image plane detector difference0) and from this subtract the output SNR, improve- errors were negligible, since the same detector was used

ment for T(, = 0 (due to the use of a nonrectangular vs for measurements both at the peak and far from the
a rectangular detector element spatial response profile). feasureme ts tepa and farfrormithe * *..

From this analysis, we find that trapezoidal and trian- pe teducthe efc o inputigh uniformity,AO cell attenuation, and AO cell spatial response vani-gular profiles give -0.5 dB better SNR2 than a rectan- ations, we measured the correlator's output with no
gular profile.Thus it appears that the simpler rectangular detector signal present (i.e., with only the carrier present) andselected two output locations for our SNR., measure-
response profile model can be used (thus greatly sim- ments where the light level was equal within 5%/(. To :
plifying the analysis) with only small efforts of the SNR facilitate a uniform output (i.e., negligible spatial
or PFA to be expected. The PFA results actually ob- fo""b

weighting due to the cell, acoustic attenuation), we used
tained are expected to be slightly better than those a spatial filter in the frequency plane that reduced AOpredicted by the simplified uw, (-r) theory. .L'''''

cell nonuniform response variations. From our 200 . -

ViII. Experimental Verification measurements of the correlation output far from the ''

Initial experimental results obtained on a laboratory peak, we obtained estimates of the correlation noise .. .level and hence SNR2 experimental data. We repeated ' .. :
TI AO correlator for signal detection are now reported. lelanhncSN 2 xprm tldt.Weeetd
TA matchingeaior fr Ti l ce o wassed for thepoite, this procedure for different D values of 50, 100, 150, andA matching pair of TED,, cells was used for the point 200 pm, corresponding to samplings of 50 to 12 sam-
modulator and delay line. The center frequency of both pies/correlation peak width. For each case we obtained .

cells was 35 MHz. Each cell was operated in the linear 200 measurement samples. To ensure that the slit was --
intensity mode. The cells were biased at 12 V and op- centered in the middle of the detector element, we used . -
erated with a signal level of 6 V (i.e., SBR = 0.5). No

a scanning microscope. This also insured us of theadditive noise was introduced, and thus SNR1  exact slit or detector width D used.
Although the cell bandwidth could accommodate 20-
MHz data, we could not produce a signal of such Our experimental data and the theoretical results
bandwidth because of equipment limitations. Thus we obtained from our theory for Gaussian autocorrelation ' '
used a Gaussian-distributed signal (from a noise gen- function signals are shown in Fig. 8. The theoretical
erator) with a Gaussian autocorrelation function and SNRI and SNR., values were obtained from Eqs. (9) and %
a BWs = 0.5 MHz. The width of the correlation peak (10) using Gaussian R(T) and Rn(T) functions. The-
for this signal is 4 psec with the 1:4 imaging system used. oretically, we expect a SNR j of 24.5 dB (for D = 10 m)
To measure SNR and SNR.,, we used a single detector and a SNR. 22 dB (for D = 10 pm). We expect a con- ..

element with D = 200 pm and an integration time Ti = stant 2.5-dB difference in these SNR measures with the '
5 msec. ) = 2W0 0m corresponds to 1.28 psec or about slight decrease shown for SNR as D is increased. Our.'..-.
one-third of the width of the correlation peak. No ad- experimental data (Fig. 8) are in rather good agreement . 5-

ditional system errors were introduced by the band- with theory. Both SNR values are within 2 dB of the
width of the AO cells and the phase response of the theoretical values. SNR., is larger than SNR as pre- "
transducers over this small BW.. This experimental dicted by theory, with the difference (2.2 dB) being very
setup thus allowed detector size effects alone to be close to theory (2.5 dB). Our experimental results show
studied (with all other error sources reduced to negli- that both SNR data remain approximately constant for
gible levels). To study the effect ofl) on system per- 1) values between 50 and 200 pm (as predicted by our -

formance, we inserted a variable detector aperture of theoretical analysis). Sin(e both of our ex)erimental
size I) in front of the detector element and varied the SNR values are less than the theoretical ones by 2 dB.
aperture (and hence D) in one dimension from 50 to 2() furt her credence is given to our data. Possible reasons
pm. The height of the slit was kept constant (at 100 for the 2-dB SNR difference (loss) are detector noise
pm) as its width was varied, and background optical noise.
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' ThorililStR quantified the system performance as a function of the d,* . ._

TheoretialSNR2 SR = 0. various detector error sources and system and signalTheoretiaH SNR] --- SBR = 0.5 ~%,za
Iwo• parameters in our model.

Experimental SNR 2 Points o ls=05Mz
28 Expe

ri enta
il SNR1 points o I = mst We found that area integration resulted in a variety

-r=0.0 of effects such as a degradation in both PD and PFA as
the detector element size D increased. We found that

26 - T and SNRJ effects were more dominant and that an 1•. " 4'"
increase in either (if possible) was more significant than
a decrease in the detector area D. Thus system design .'
considerations dictate an increase in T1 or SNRI (if

(3 opossible) to compensate for losses due to the finite de-
22. -- - -- - - - ------ 0tector element size D. Our studies of the signal band-

width BW, effects showed that both PD and PFA are
20 0 0more sensitive to D (when BW., is large) but that the PD

0 .and PFA values obtained in this case were quite good.
Thus such issues appear to be of more concern when the ,, .

. ... signal time bandwidth product is moderate (i.e., 500-10 50 100 1O 0 250 3M0

r 1000). The effect of the SBR and D was quantified and
found to be the most important and dominant effect on

Fig. 8. Theoretical and experimental data on the effect of the de- the choice of D in a system design. It was shown that
tector element size D on SNR and SNR 2. even for the maximum possible SBR value of 0.5 (for .. -

linear intensity modulated AO cells), the system's
performance degrades significantly as D increases.

#9 The effect of the location of the correlation peak
Valid PD and PFA measurements would require more within a detector element was also studied. From this

than 1000 samples (to observe PFA = 0.001 or 1 peak analysis, we found that the loss encountered as the
that exceeds the threshold in 100 measurements). correlation peak location departed from the center of
Since our results verified the validity of our analysis of the detector element depended on both the D and BWs
the effect of D on SNRI and SNR 2, the conventional values. These effects were quantified. In general, the
relationships between PD and PFA and SNR should be system's performance degraded as either the delay or
valid. An advanced experimental verification would D increased, with the loss becoming more significant as
require use of a higher BWs signal, a larger number of BWs increased. The system's designer must select D
samples, more control over the D setting (i.e., smaller from the PD and PFA values obtained when the corre-
and more accurate slit widths), a more sensitive detec- lation peak is located at the edge of the detector ele-
tor, etc. We note that under such conditions one could ment. As shown this requires detector element sizes
verify the effects of correlation location and spatial much less than the Nyquist value (for the correlation % ,%
weighting function. In our experiments, verification peak width) to achieve good PFA performance.
of the correlation peak location with the available To study the effects of the detector element's spatial
equipment was not possible because of the broad cor- response, we conducted a simplified but well-approxi- .

relation peak obtained with the available signal BWs mated statistical analysis. In this analysis, we used a
equipment. spatial response model that varied to include triangular,

trapezoidal, and rectangular detector response func- .. ., -
IX. Summary and Conclusions tions. Our analysis was conducted under the assump- A.

In this paper, we have studied the effects of detector tion of a low input SNR. For this case, we found that
errors on the performance of an acoustooptic time- a triangular profile enhanced performance (since it
integrating correlator used for signal detection. In our suppressed the out-of-plane noise more than the signal).
analysis, we modeled the system's output to include the In practical cases, the detector element's spatial re-
effects of various detector parameters such as area in- sponse is trapezoidal, and the improvement (over a
tegration, elemental spatial weighting, and correlation rectangular response) was found to be small (of the
peak location within a detector element. As perfor- order of 0.51 dB in SNR I or SNR2 ). Thus future sta-
mance measures we used PI) and PFA and in our theory tistical analyses do not seem to require elaborate ap-
derived expressions for PI) and PFA in terms of detector proximations of the detector's spatial response by a
parameters and the easily measured SNRI and SNR,, trapezoidal function.
output correlation parameters. Our experimental work verified several of our theo-
To study the various detector effects, we performed retical results (specifically the validity of our theoreti-

a general statistical analysis and quantified our results cally predicted difference between SNR I and SNR.,).
for the case of'signals and noisewithaGaussian-Markov The observed dependence of SNRl and SNR2 on "
autocorrelation function. This provided us with ana- appears to be in very good agreement with our theory.
lvtical results which fully describe the system's per- In all cases, our experimental results were in agreement
formance as a function of various system, signal, and (within 101) with our theoretically predicted perfor- .,
detector parameters. From these expressions, we mance.
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ABSTRACT

The parallel processing, high-speed, compact system fabrication possibility, low power
dissipation and size, plus weight advantages of optical processors have achieved great
strides in recent years. The architectures, algorithms and system fabrication of hybrid
pattern recognition processors are reviewed with attention and emphasis to recent results
and to techniques appropriate for distortion-invariant multi-class pattern recogniticn
applications.

1. INTRODUCTION

The parallel processing advantages of optical pattern recognition (OPR) systems have long
been recognized. However, only recently have components, architectures, algorithms and a
commitment to fabrication of such systems emerged. As a result, this topic has seen an
explosion of conferences and research in recent years. Several recent reviews by the author
exist [1-3] and will be summarized in this present paper with attention and emphasis on more
recent work than those noted in earlier reviews. Advances in laser diode and detector tech-
nology and the commitment of several companies (General Dynamics-Pomona, ERIM, Grumman) and
funding agencies, have now made fabrication of such processors and the reduction of research
to systems a reality. Spatial light modulator (SLM) technology is summarized in [5] and
is not discussed herein. These real-time devices still represent the major obstacles to the
widespread low-cost commercial exploitation of OPR systems. However, the future for this
aspect of OPR is quite promising. Recent Soviet work in this area has been most significant
[81]. These and several U.S. programs have concentrated on practical SLM device tech-
nology. Many linear algebra operations are required in OPR [41 and are discussed elsewhere.
Thus, the present text assumes a familiarity by the reader with feature extraction and such
operations. The availability of two computer generated hologram (CGH) recorders has been a
significant adjunct to research and to the fabrication of OPR systems [6] . A general pur-
pose approach to optical computing (presently directed at signal processing rather than
image processing) is the use of optical linear algebra processors. These approaches and
systems are also summarized elsewhere [7] and are not discussed in this present paper. The
various SPIE [8] and IEEE [9] special issues on digital imaqe processing attest to the
significant importance of this topic and the growing number of OPR papers in these references
signifies the importance of this topic..'-'

In this present review, I restrict attention to OPR algorithms and architectures for
pattern recognition rather than image processing (i.e. image enhancement, restoration, etc.).
To those authors whose work is not referenced herein, I apologize and plead a lack of time
and space bandwidth product. Emphasis will be given to work at the Center for Excellence in
Optical Data Processing at CMU, because of my familiarity with it and because of the large
scope of its research in the area of optical pattern recognition. To best unify the large
volume of research work in OPR, I first review the basic operations achievable in optical
systems, two classic OPR architectures, and conventional feature-based pattern recognition
(Section 2). Various optical architectures for feature extraction are then reviewed and
discussed and results obtained on these system concepts and their present status are then
advanced (Section 3). Various new correlator approaches to distortion-invariant OPR are
then briefly reviewed together with optical AI/IU research and sub-pixel target identifica-
tion research (Section 4). SDF techniaues to achieve various distortion-invariant 3-D object
recognition are then detailed with attention to new results and efficient phase-only and CGH
techniques to synthesize such filters (Section 5). Section 6 is devoted to system fabrica-
tion issues with attention to new results and to flight-tests on compact architectures and '. ]
systems for OPR. Our summary and conclusions then follow (Section 7).

2. FEATURE-SPACE OPTICAL PATTERN RECOGNITION (OPR)

2.1 OPERATIONS ACHIEVABLE

In optical processors, 2-D data (images) are represented by the transmittance of a 2-D
data plane. By imaging one such data plane through another, we achieve the point-by-point
multiplication of the two 2-D data arrays. A lens can integrate this 2-D product distribu-
tion (or any 2-D data distribution) and thus achieve a 2-D data summation (1-D data summa-
tions are also possible using cylindrical rather than spherical lenses). With CGHs, random.
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interconnections between 2-D data arrays, coordinate transformations and other space-varia.- ,
operations are possible [6]. Thus, we can characterize and summarize the major operaticrs
possible on optical systems as 2-D parallel data multiplication and addition. A specific
operation that has been the hallmark of coherent OPR is the 2-D Fourier transform (FT).
This operation is readily achieved with a simple lens or mirror. In Figure 1, the 2-D licht
amzlatude distribution incident on P2 is the 2-D FT G(u,v) of the input object g(x,y) placc4
at P1"F'-

G(U,V) = !fg(xy)e- j2 r(ux+vy)dxdy,

where the spatial frequencies (u,v) cf the input object are related to distances (x2,y2) -.

P2 by

(uv) = (x2/)fLY2/ f , (2) .. %

where is the wavelength of the input liqht and fL is the focal length of L, in Fioure 1.
if we place a filter function H* (u,v) , i.e. a matched spatial filter (MSF) , at P2, then the
light distribution leaving P2 is the 2-D data product distribution G(u,v)H* (u,v) and tho T3
output is its FT or

u(x 3 ,Y 3) = G(u,v)H*(u,v) g h. (3)

We represent FT distributions by upper-case letters and corresponding space functions by
the corresponding lower-case letters. The symbol (denotes the FT operator, the superscript
* denotes the complex conjugate and ( denotes the correlation. The system of Figure I is i.'

a frequency plane correlator. The optical correlation of two 2-D images can also be
realized in a joirt transform correlator by forming the FT of the magnitude squared of the
FT of the two functions. To synthesize the H complex conjugate trans-ittance function
required in (3), holographic techniques are used. ,. -

PI L1P L2 P3,. .

y- Y24 00

.

.0 

0

g(x1,y1) II(U,V) g* h.•-"

I(UV) g®h ,.

3.,• 0.0

FIGURE 1

~~Conventional optical Fourier transform and frequency plane correlator ..

* 2.2 CONVENTIONAL FEATURE-SPACE PATTERN RECOGNITION-.-.
The conventional digital and mathematical literature usually considers featur_ -space c"-

* pattern recognition. In this method (Figure 2), a set ofMN image features are calculated ar. " "
an N x N pixel image is represented as an M-dimensional feature vector x. The origina2
feature space is often transformed to a new decision space as y= A x wth independent

features and dimensionality reduction. The axes of this space are aset of basis funct~c.n5-'
.¢t and the elements of each vector y are the pr-ojections on the correspon,'.ng € vectors that '

* define this space. A discriminant vector wi for each class i is chosen such that w Tv > • _ ,..

for all j # i. From the projection values, the class of the input object is determined.

xThe blocks in Figure 2 are chosen to best define subproblems and thus we need not trans'crm ._,
into y as the first step, and then project y onto w. Rather, we can project x onto a new. V'

transformed linear discriminant function vector d -A wI for the class i data.- 5_

4-.
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" INPUT~ ~ (x y) X FETR DIMENSIONALITY REDUCTION ,>class -
INPUT FEATR FEATURE EXTRACTION CLASSIFIER orientation
OBJECT GENERATOR TRANSFORMATION confidence

COMBINED IN PRACTICE

FIGURE 2
Simplified block diagram of a feature-based pattern recognition system

Most intra-class dimensionality reduction techniques are variations of the Karhunen-
* Loeve (KL) expansion [33] in which the elements of Ai in the transformation matrix noted

earlier are the eigenvectors of the correlation matrix for all class i trainina set images.
The use of two two-stage KL transforms, how the means of each data class are handled, the
number of dominant eigenvectors used, and how the correlation matrix is calculated are among
the different versions of the KL algorithm [34] that can be applied. We will employ K-L,

*. Gram-Schmidt (GS) [351, Fukunaga-Koontz (FK) [36] and Foley-Sammon (FS) [35] techniques in
our OPR research. KL methods yield maximum compression of data and an orthogonal basis
function set. GS methods are another technique to produce orthonormal basis functions,
whereas FK and FS techniques are appropriate for inter-class recognition problems. Various
classifiers used include nearest neighbor, nearest mean and the use of a least-square linear

.. discriminant function (LDF) wi. These are among the more popular ones. Our maior concern
in this present paper is OPR. Such digital PR post-processing algorithms are reviewed

-[ elsewhere in this volume [37] and in other OPR references by the author. The important
. points to emphasize are:

-the concepts of a feature-space, basis functions, feature vectors, transformations and
dimensionality reduction;

- -a training set is used to select A and wi and this operation is off-line;
-the only required on-line operations are the calculation of the features, a vector inner
product and the associated classifier decisions.

The high computational load associated with the feature generation and calculation are the
major ones of concern. Thus, we concentrate on the use of the parallelism of optical pro-

*. cessors to achieve these functions and relegate the remaining operations in Figure 2 to a
general-purpose or dedicated digital hardware post-processor. The resultant hybrid optical/
digital system appears to perform properly in each instance. It also appears to be the
optimal combination of the parallelism of optics and the flexibility and decision making
advantages of digital processors. Optical systems using CGHs can also perform the required
transformations and projections directly on the 2-D input image data. The coded-phase
processor [38] is one method to achieve this. Examples of its use to realize FK [39],

% least-squares 140,41] and the hoteling trace [42] operations have also been recently report-
ed. The basic concepts in these optical systems is to determine the linear combination
filter desired for each class (this is a linear combination of the training set images).
This LDF (linear combination filter) is then encoded on a mask. A separate encodino is
required for each input object class. The projection of the input test image onto each dis-
criminant function is then optically produced and the result is summed. The phase of the

.- input data is removed to allow different projections to appear on physically different de-
tectors in the output plane of such a system. The detector with the largest output then
denotes the class of the input object. Such a system (as presently described in the litera-
ture) is not shift-invariant and is thus best described as a feature-space method. If
shifted versions of each input object are included, the space bandwidth product requirements
of the associated CGH increase linearly. Such methods are appropriate for achieving shift-
invariance of such a system, however such details have yet to be published. The use of
optics in this case is thus most attractive when there are a large number of classes to be
searched. However, in general, the vector inner product operations required are not compu-
tationally intensive unless the number of features used is also ouite large.

3. FEATURE-SPACE OPTICAL P;TTERN RECOGNITION (OPR)

In this section, we briefly discuss nine different optical feature extraction or genera-
tion systems and their performance and status.

%I



3.1 FOURIER COEFFICIENT FEATURE SPACE
Since the FT operation is automatically performed optically (Figure 1), this is an ob.icus r Vp

featt,-e space. It is also attractive because it easily allows for dimensionality reductic,:n;.
The T-est attractive optical dimensionality reduction method is to detect and sample the oct~cal
FT pattern (plane P2 of Figure 3a) with a detector with wcdg and ring shaped detector
elements (Figure 3b). This concept was first advanced in [11] and used for screen.ng cf -

aerial images [11], for various production quality inspection tasks [11], and with ar :n,,
and wedge ring detector (WRD) detection planes for aerial image classification. The
comercial version of this device used 32 wedge and 32 ring-shaped detector elements. This
achieves dimensionality reduction from N2 to 64 features. Since the intensity of the FT is
detected, the system is translation invariant. For real images, the FT is sy}mmetric an:r
information loss results fro7 the separate use of the two halves of the FT plane. The w
outputs F(e) are scale-invarliant and their distribution shifts as the input ob-ect rotate=.
Conversely, the ring outputs F(r) are rotationally-invariant and the distribution shifts as
the input object is scaled.

LASER :

INPUT FT LENS D

(a) (b)

FIGURE 3
Optical Four:t: cc.,:: fcient feature space processor (a) and wedge ring

detector optical pattern recognition concept (b)

The most recent pattern recognition work on this feature space has involved realization.
of this detector using Ciis [61. This allows more flexibility and lower cost and size.
The optical realization of this unique detector plane sampling appears essential because of
the large time required to digitally perform the necessary interpolations. Recent pattern
recognition tests on this WRD Fourier coefficient feature space were performed for the
purpose of distinguishing letters and different vehicles [12] Results and details are
available elsewhere [12]. The highlights of this work were attention to the use of ampli-
tude versus phase Fourier coefficient features, the effect of noise, and investigation of
three different feature extractor algorithms, and demonstration of scale and rotation-invar-
iant object classification and recognition using such a feature space. However, only
limited scaled and rotated versions of the input objects were tested.

3.2 WIGNER DISTRIBUTION FEATURE SPACE
The Wigner distribution (WD) function ..

W fg(tw) = ff(t + T/2)g*(t - T/2)e-W dr (4)

is a simultaneous time and frequency display of the signal data. For images, the WD is a
. 4-D display. Auto and cross WD functions can be defined similar to (4) . The WD describes

local variations in the frequency control, whereas the FT provides global signal frequency
- Thrmation. Since images are non-stationary, a WD feature space should be most useful.

One can optically produce a WD by many different techniques. An attractive method (4) uses
the FT of the product of the data in two AO cells at ±450. A binary mask (usir: i maenetc
optic SLM [43]) allows a desired sum of different WD features to be achieved on-line cn a
single detector, for which subsequent pattern recognition analysis is then greatly simpli-
fied. This is essential since the WD of a 2-D function is a 2-D pattern. The most recent

" review of this work [44] includes an SNR comparison of the optimality of WD features and
initial simulation results. For pattern recognition, the auto WD of an input and reference
are multiplied and integrated over time and space. In this case, the mask in Figure 4
would contain the WD of the reference(s) . This appears to be an attractive approach for
many pattern recognition applications. The use of an optical processor and dimensionalitv
reduction technique as in Figure 4 is essential because of the increased dimensional~ty cf
the output in a WD feature display. Researchers in Germany [45], Wisconsin [46] and CMN
[44] are the most active ones in this pattern recognition research area.

% %-
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pattern recognition processor

3.3 CHORD DISTRIBUTION FEATURE SPACE
The chord distribution is defined for a binary boundary object only as the distribution

h(r,6) of the lengths r and angles e for all chords that can be drawn between boundary
points on the object. Denoting boundary image points by .D(x,y) = 1, a chord defined by the
polar coordinates r and e exist between any two points if

g(x,y,r,e) - b(x,y)b(x+rcos 6,y+rsine) -1. (5)

The distribution of all chords in the image is the integral of (5) or [21]

h'(r,e) = .g(x,y,r,e)dxdy b(x,y) E)b(x,y) h(' ,1 (6)

where (Zx,[y) = (r cos F,r sin 6). From the last expression in (6), we see that the chord
distribution can be obtained from the autocorrelation of the boundary of the object. The

*- autocorrelation h(tx,z ) thus contains information from which the conventional chord distri-
bution h(r,e) can be obtained, however complicated trigonometric and square-root calculations
are required for this transformation. This feature space is still quite useful and attrac-
tive 123,24] except for the large computational load required to compute these features.
In [20], we first noted that by sampling the autocorrelation of the object with a wedge ring
detector, the chord distributions

h(r) - fh(Zx , )rde, h(e) - fh(x ,R )rdr (7)
xy xy

could be obtained directly. As before (Section 3.1), the advantages of an optical WRD are
again clearly needed to achieve this. Nichols [18] later also noted this and suggested its
calculation from a digital or optical FT of the optical power spectrum of the image. The
computational load in the interpolation required in (7) can rapidly' become excessive however.
Thus, WRD sampling techniques [20] and other methods of optically producing the autocorrela-
tion [21] appear preferable. The general block diagram of the hybrid optical/digital chord
feature space processor we consider is shown in Figure 5.

*INPUT AUTOCORRELATION (IHROBJECT SAMPLING VADCASFCTO
AND CLASSIFICATION

FIGURE 5
Block diagram of a hybrid optical/digital chord feature space processor ..

Several authors [24] have expressed concern over such a feature space and its use for therecognition of complex objects. However, our post-processing algorithm and testing [20-21]
have confirmed the usefulness of such a feature space. In [21-22), we extended the tech-
nique in (6)-(7) to include a silhouette image of an object with internal gray levels.
These generalized chord distributions that result from such a feature space are much more
useful object descriptors than the original binary edge chord functions. They also promise
better noise performance [22]. In [19] , Nichols considered the case when the dynamic range J"
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of the data and more specifically its FT causes a type of edge enhancement to occur In the
data for which these features are extracted. In [2], we address the use of this chord
feature space for the classification of ships in the presence of out-of-plane rotational
distortions. For this, a training set of 12-18 ships per class was used. The 18 best h(s)
and h(r) features were selected using KL and divergence measures and a Fisher LDF was com-
puted from the resultant training set data. Extensive tests 121] showed perfect 100% reco-
nition performance to be possible on separate test set ship imagery. In [22), we further
extended this technique to include in-planc scale and rotational distortion invariance and]
methods to extract these in-plane distortion parameters from the resultant feature space
data. Initial demonstrations obtained with this technique were mcst attractive. By
properly weighting the chords of different lengths, global (large r) or local (small r) ob-
ject features can be emphasized or a weighted combination of both can be used for objectidentification.

3.4 MOMENT FEATURE SPACE
The geometrical moments

mpq - fff(xy)xPyqdxdy (8)

are a well-known and attractive feature space. However, the computational load in computing
such features is such that present systems are restricted to the calculation of moments for
binary objects or for the computation of only a few moments. Various techniques to optical-
ly compute the moments of an input object exist. These include the use of computer genera-
ted masks '13], a holographic mask 114), acousto-optic (AO) cells [15) and moment calcula-
tions from 1-D projections [28]. In the system of Figure 6, the image f(x,y) is imaged
through masks g(x,y) at P2 on which the monomials xPyq are recorded on different spatial
frequency carriers. The products f(x,y)xPyq are formed in parallel by optical multiplica-
tion, the integration is achieved by the output lens and each moment in (8) is formed at a
different detector in P3 (with the location of the detector determined by spatial frequency
carriers on the mask). In this way, all 21 moments up to fifth order can be produced optz-
cally in parallel. The detector outputs are then fed to a digital post-processor which de-
termine;s the class of the input object, its orientation and the confidence of these esti-
mates.

input P Mask(X, Y)9 (x. y)
(x~y gx.y)rn..

P, Imaging P F T P3
Optics Lens

FIGURE 6
Optical system to generate all moments in parallel

This architecture and a moment feature space are attractive because of the ease with
which the computed moments can be corrected for different optical system and SLM error
sources [13]. A compact version of this system is under design together with alternate
ways to optically produce moments. This technique has been successfully demonstrated in
the classification of real ship images using very modest digital preprocessing operations
[47] and in successfully and accurately estimating the in-plane distortion parameters of
ship imagery [48]. The full hybrid pattern recognition system using this feature space is
shown in block diagram form in Figure 7. It consists of a first-level estimator that pro- A
vides class and aspect estimates. The hierarchical tree search used [17] is unique because
the classes separated at each node are selected automatically using a multi-class Fisher
projection method and because the discriminant vector used at each node is selected auto-
matically from a separate two-class Fisher selection technique. As always, these off-line
operations are performed on training set data and the only on-line operations rec.:red ':-e
the vector inner products (one per node in the tree). Aspect estimates are obtained from
the ratio 20/02 ratio obtained from the computed central moments of the input test object.
An iterative nonlinear algorithm is then applied to these classes and aspects are passed
from the first-level estimator. The final classification and orientation of the object is
then obtained in the second-level classifier. The algorithm used in the second-level clas-
sifier is the minimum error Bayesian classification algorithm. This is possible because the



loments are jointly Gaussian random variables. Extensive tests have been conducted on a set
% of 180 images of ships [17] in five different classes with 36 different aspect views per

ship and for a data base of 324 pipe parts [16] in five different groups with 36 different
aspect views for each of 9 different pipe objects. These tests showed excellent performance
(86% correct recognition of all ship images, 98% correct recognition of ship views within
500 of broadside, and 97% correct pipe classification). These tests used only 4-9 different -
aspect views per class for training, required only 4-6 iterations in the Bayesian classifier
nonlinear algorithm, and showed that the use of the identity matrix as a valid approximation
to the covariance matrix was adequate. These issues greatly reduce the computational load
required on the digital post-Frocessor. Details of this system and these results are avail-
able elsewhere [16,17]. These tests on full 3-D distorted imagery using only a limited vi
training set, and a large test set have also been applied and verified on real imagery.
This makes such a feature-space pattern recognition technique appear most attractive and
demonstrates a clear role for optical processors in feature extraction based pattern recoc-
nition algorithms.

#" Class -

INPUT - MEN0 FISHER Estimate
IMAGE COMPUTER CLASSIFIER REFERENCE

-" Aspect mpq .'.

[ T S I MT A T O R J D A T A B A S E J. 

€
ITERATIVE NONLINEAR

CLASS (1) LSM CLASS/ASPECT/DISTORTION.
ORIENTATION (b) PARAMETER

CONFIDENCE

FIGURE 7

Hierarchical hybrid optical/digital moment feature-space
pattern recognition architecture

3.5 HOUGH TRANSFORM FEATURE SPACE
The Hough transform (HT) has recently received considerable attention and interest in

digital image processing because of its robustness and the ability to implement it on
pyramid digital architectures using simple histogram and accumulation operations only. Both
coherent [27] and non-coherent [25,26,281 optical architectures to compute the HT have been
detailed and demonstrated. The HT maps each line in an image into a point in a (0,e)

Il feature space, where P is the perpendicular distance from the origin to the line and e is -
the angle the line makes with the x axis 131]. This technique has been generalized [30],
extended to curve detection [32] and its similarity to an MSF noted [321. In the optical

Ile realization of this transformation, the equivalence of a radon transform (RT) and HT is used
1291. The RT is defined as

f(p,e) = fff(x,y) 6(r- xcos e-ysin 8)dxdy. (9)

This is equivalent to the projection of f onto a line P normal to the angle e. We denote
at one e by ?a and the full 2-D HT by f. To provide insight, we note that a point (x0 ,y0 )

4." in f(xy) is a sinusoid in f(p,6) space described by

S-x 0 cos0+y 0 sine. (10)

The RT is equivalent to the HT with the sinusoid weighted by the value (intensity) of the
- (xo,yo) pixel point in f(x,y). In this feature space and transformation, a line in (x,y) is
* a point in (2,e), a curve is a set of points in (c), etc. Thus, an object composed of

lines is described by a distribution of points in the (c,e) Hough space.

A noncoherent architecture [28] to realize the RT or HT is shown in Figure 8. In this
simple system, the I-D integration (projection) of f(x,y) is performed by a cylindrical lens and

is produced. The angle 6 is varied different f4 projections at different e produced and the
f(:,e) distribution produced by placing a rotating Dove prism behind the input object.

".."



With a modest 500 rpm rotation rate, one fi(:) slice of f is produced every 60 --sec and a
full f pattern at TV frame rates. To employ an HT feature space for pattern recognition, ME
the HT of the input test object is compared to the HT of the different reference objects ty
whichever feature extractor and classification technique (Section 2.2) one desires.
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FIGURE 8
Optical system to compute the radon transform or

Hough transform by I-D image projections (28]

3.6 OTHER FEATURES FROM THE RADON TRANSFORM
As noted abnve, the HT feature space is equivalent to the RT features generated on the

system of F~y~e 8. Smoothing of the input image nd converting edges into lines is re-
quired and possible by convolution with Gaussian and edge operators. By the central slice
theorem, the 1-D FT of fa is the 2-D FT of f evaluated along the line at e. By the filter
theorem, the 1-D convolution in o at each e for 2 and a reference function 6 is a slice
through the 2-D convolution of f and g at e. Thus, all necessary 2-D filtering operations
are possible on projection vectors with 1-D operators. Conventional AO FT and convolvers
can easily achieve this at the 60 isec rates needed (or even faster if required).

Many other features can also be obtained from this RT output [283. If the 1-D f. outputs
from Figure 8 are fed each TA = 60 ;sec to an acousto-optic (AO) spectrum analyzer, their
FT is produced. One large area detector covering half of the FT plane produces a wedge
sample F(s) of the FT of f each TA. A linear detector array with an integration time NTA in
the other half of the FT plane yields the FT ring samples F(o) each NTA. Thus, a WRD FT
feature space results. The moments mn (the n-th moment of f about e) can be computed and
related to the conventional mp . However, one can also simply compute the first ten m
from only four ?e projections [28). At CMU, we often prefer to use the £ features di -ctly
rather than converting them into mpq features with a loss of information.

From two orthogonal projections 900 apart, the convex hull rectangular boundary of any *

object can be determined. With N projections, an N-order polygon defining the object
boundary can be obtained. The projection widths versus e results in a 1-D feature vector
w(4). This or its FT can be used for object identification.

Polar projections of the integral through the centroid (x y) of the object as a function
of 6 are another useful descriptor of the object shape. If-each projection ?9 is evaluated
at the one point

0 (9) cos 6 + ysin e, (11)

then the I-D feature vector s(e) results. This is similar to a chord transform, but only
for chords through the centroid (the centroid is easily obtained from moments). It is also ..-.
analogous to older polar space-variant optical transform work without the scale-invariont
Mellin transform properties of this earlier optics research [49]. "' %

3.7 AUTOCORRELATION OBSERVATION SPACE
The shape and distribution of the autocorrelation of an input object contains significant

information useful for object recognition. The general architecture for a processor to
analyze such an observation space is shown in Figure 9. In recent work [50), Merkle has
considered many different sampling methods and features calculated from an autocorrelation
observation space. These digitally-calculated features (computed from an optically-produce4•
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autocorrelation pattern) may require extensive time. The features considered include cor:-
tour features such as chain codes and Fourier descriptors, variois histogram operators, mc-
ments of the autocorrelation function, etc. A large set of tests on different characters
was performed and the results obtained using different features were compared.
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*In recent work, the use of CGHs and HOEs to optically realize various special samplingc .
*functions (such as wedge ring detection) has been considered and experimentally demonstrated ,,
*[6]. In other FT observation space research, Duvernoy [84] considered isoenergy contours
* in the FT plane. He computed the Fourier descriptors for such contours at various levels.
* Several basis function analyses techniques were used to classify various types of terrain ""

(woods, fields and cities). These isoenergy contours are attractive because they combine
spatial frequency as well as directional information. The spatial frequency and directional .
information is also available from wedge ring detector outputs, however a WRD space provides ."
this information separately, not combined as in an isoenergy contour analysis.-'•

3.N9 DISCUSSION
As one can easily see, there is significant new research on optically generated features,-,

and feature extractors. These new advances allow many different observation spaces to be,. . ;

*used. The optical generation and calculation of all major feature spaces has been demon-
strated and described. The attractive aspects of this research include: ....

*(1) The same architecture can compute the features for any input object. Thus, a new •.,.
architecture is not necessary for a new object identification problem. "'''

(2) The parallelism of optics in feature generation and the flexibility of digital
feature extractors and classifiers are matched quite well in these architectures.

(3) A different discriminant vector w or feature extractor algorithm can easily be -"
included in the digital post-processor, hould a given object identification data
base necessitate this. ..ouuI

(4) Dimensionality reduction can and has been employed to reduce the calculations .,
sai required by e digital post-processor. Alternatively, the projections and -etoatransformations can be optically implemented if desired using computergenerated holograms. nnat n

S The shortcomings of these or any digital or analog feature extractor for pattern recognition
include : dcl

(1) A higher susceptibility to noise. This is a direct result of dimensionality
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reduction.
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(2) The need to segment the input object into interesting candidate regions before
feature extraction. We refer to pattern recognition architectures capable of
handling multiple object simultaneously as shift-invariant (e.g., a ccrrelatcr)

4. RECENT OPTICAL CORRELATOR ADVANCES

4.1 MULTIPLE MSF CORRELATORS
Several advances in optical correlators are briefly reviewed in this section. Thc:n:.'

description of Figure 1 assumed a single MSF at P2 , however multiple MSFs are alsc -ssx-
[51-53]. In these cases, spatial and/or frequency-multiplexing of the MSFs are used. In T
the space-multiplexed case, the FT of the input object must be replicated, multiplied t% thc
different MSFs at different spatial locations in P2 and the correlation of the input wi.-.
the different MSFs performed. Holographic lens arrays and HOEs [52], a fixed screen tech-
nique [53] or a rotating grating [54] can be used to access these multiple filters. In the
latter case, separate output correlations appear sequentially. In the other cases, multizrle
correlations are available in parallel or can they can all be superimposed (the first choice
requires the analysis of multiple correlation planes whereas the second choice results i.'

poorer correlation plane SNR). The best choice depends upon the application.

4.2 SPECTRAL CORRELATORS
F.T.S. Yu [55], Ludman [56] and others have actively pursued the use of color or spectral

MSF processors for image processing fimage subtraction, deblurring, etc.) and pattern
recognition [55). These processors have the architecture of Figure I with a color input
imace, a tricolor grating behind P1 and a white light source at red, green and blue wave-
lengths. This forms the FT of the portion of the input in each spectral (color) band in a .:'r
different spatial location in P2. Thus, different MSFs can be applied to different spectral
data. Alternatively, objects in different colors in the input will produce correlation
peaks at P3 in different wavelengths. The power dissipation and availability of the neces-
sar, light sources is a practical problem with such architectures. The use of color divcr-
sity appears to best be utilized as an adjunct to the conventional x,y degrees of freedo.
of the system to simplify system fabrication and output data analysis [57].

4.3 HYBRID OPTICAL/DIGITAL PATTERN RECOGNITION, IMAGE UNDERSTANDING AND
ARTIFICIAL INTELLIGENCE

The use of pattern recognition (PR), image understanding (IU) and artificial intelligence
(AI) techniques in a hybrid optical/digital architecture has recently been addressed in an
interdisciplinary program at CMU. A general diagram of the architecture is shown in Ficure
10. The optical portion of the system produces features and correlations with generic SDFs
(see Section 5) . Both optically and digitally computed features are considered and the
optical systems are adaptively controlled by feedback fiom an AI/IU processor that compares
the results obtained to a world model and which uses the results obtained to adaptively
censtruct and modify the world model. Such an advanced general architecture appears to be
most attractive for new supercomputers.* Initial tests on aircraft images, an on-line tech-
nique for producing reference objects in any 3-D orientation by synthesis of the object as
polygons, and related Hough transform feature representations for objects appear to make
such an architecture most attractive and realistic for advanced hybrid supercomputers.

4.5 SUB-PIXEL TARGET LOCATION, TRACKING AND IDENTIFICATION
Another recent optical correlator application under research at CMU involves the location,

tracking and identification of moving sub-pixel targets from space-based mosaic sensors.
The technique used involves: (1) the correlation of two successive image frames, (2) P
sampling the central 3 x 3 or 5 x 5 region of the correlation plane, (3) by estimation de-
termining the shift between two successive image frames (this is achieved to sub-pixel
accuracy) , and (4) the interpolation and resampling to shift one of the images by this
estimated sub-pixel amount, and (5) registration and the subtraction of these two frames.
The shift and registration must be performed to sub-pixel accuracy to extract the target.
In Figure lla, we show a typical input with a sub-pixel target 0.2 of a pixel in size. A
sequencc of three such frames was produced with the background shifted by 0.1 pixels frane-
to-frame and with the target shifted by one pixel frame-to-frame. The result after proces-
sing (Figure llb) shows the successful location of the sub-pixel target and its relative
position in each frame. Such a time-history track file provides the necessary information
for target identification and classification.
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FIGURE 10
Block diagram of a hybrid optical/digital combined

pattern recognition/ image understanding /artificial inelligence image processor
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FIGURE 11 .

Typical imagery (a) and output (b) data plane showing the successful
detection and tracking of a sub-pixel target



5. DISTORTION-INVARIANT SHIFT-INVARIANT OPTICAL CORRELATORS %

Correlators represent quite powerful pattern recognition processors with large processr,o'
gain and shift-invariance plus the ability to handle multiple objects simultaneously. This
correlation operation is easily achieved optically (Figure 1). Although it is t::c octir n--
detection scheme only for white Gaussian noise, its performance in practical structural
clutter is well-known and has recently been theoretically addressed [58]. Image process:n'.
is quite tolerant of the dynamic range requirements of the data. In fact, binary data per-
forms quite well [59) and is often necessary with some SLMs [60]. The susceptibility of a
correlator to distortions between the input image and reference MSF object are its well-
xnown shortcomings. A basic method to overcome this disadvantage and yet retain Luantageous
Froperties of a correlator is shown in Figure 12. This method involves the synthesis of a
synthetic discriminant function (SDF) from a training set of several images of each class,
rather than forming a single image representation of an object in one orientation (and usinc
multiple such images in a multi-channel correlator) . The basic technique used is to select
a basis function set from the training images (these consist of different distorted views
of each obiect class) and from this synthesize an SDF. An MSF of this SDF is then produced
and used in an optical correlator (Figure 1). The SDF = h is a linear combination of the ,

basis function set ;.- or the training set images {fl *

h(x,y) = Lbnn (x,y) , h(x,y) = Xafn (X,y). (12)

This concept was originated by Hester and Casasent [61], applied and demonstrated for intra-
class [62) and inter-class 163] recognition. The filter h and the associated orthonormal
basis function set selection by Gram-Schmidt, KL and other techniques have been detailed
previously [61-63]. The generalized matched filters (GMFs) of Caulfield [64,65] are a
special case of the SDF where the basis function set ¢ are the exponentials and a Fourier
coefficient feature space is used. No general solution to the N2 coefficients recuired to
be computed in GMFs has been advanced and the system is not necessarily shift-invariant be-
cause the full correlation plane response is not specified. The circular harmonic SDFs of
Arsenault [66) use one circular harmonic in the expansion of f(r, ) to synthesize thQ filter.
These filters achieve only rotation-invariance with shift-invariance being a possibility.
In recent work, Stark [83] noted that high SNRi may be required and that the choice of the

center of expansion and the harmonic(s) used is not easy and that for complex objects the
resultant processor may not be shift-invariant. Stark [83] recently offered a vector formu-
lation, used FN techniques and retained several harmonics in an improved version of thesc
circular harmonic filters. Both these filters and the GMFs require far more extensive noise
and discrimination tests on large data bases before they can more properly be assessed.
Since SDFs are more developed, tested, analyzed and have a clear mathematical basis and
synthesis algorithm, they will be emphasized.

OFF-LINE SYNTHESIS -
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FIGURE 12 P"
General synthetic discriminant function (SD) matched spatial filter (MSF) 1

distortion-invariant hybrid correlator concept %
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SDFs are synthesized from the vector inner product matrix V of the training set images by
* specifying the desired correlation plane values at different locations (such as the peak of

the correlation function). These values are specified by a vector u. Depending upon the
% application, five different SDFs are possible. Each corresponds to a different vector u and ,5

matrix V. However, in each case, the SDF is defined by

a = v-lu (13)

which specifies the coefficients an in (12) which define the SDF = h. If u is all unity,
an SDF with the same output correlation peak intensity for all objects of one class (inde-
pendent of the geometric distortion chosen) results. With alternate choices for u, a two- .

class SDF with unity correlation peak values for objects of one class and zero peak values £
for objects of class two results. Alternate projection values (1,2,3) allow one SDF to
discriminate between three object classes, with the value of the correlation output defining
the object class. Use of several SDFs and a truth table of the multiple correlation plane
outputs at each location yields the final type of SDF. These SDF synthesis techniques are
unified in [67]. Excellent performance on ship imagery has been obtained with these SDFs as
summarized in [68] where their performance in noise was also quantified.

We refer to these as projection SDFs. They do not often perform adequately, due mainly
to the fact that the synthesis algorithm specifies the correlation peak value at only one
point (the center of the correlation function). As a result, nothing prohibits peakp, values above threshold from occurring for shifted versions of a false target (for which an
output below threshold, ideally zero is expected). New correlation SDFs [69] overcome this
by specifying the correlation plane values for true and false targets at the central peak
and ±ds pixels away in x and y. The specified value ±d, pixels away is generally zero and

* the value at the central peak is generally one (for true class objects) and zero (for false
class objects). This synthesis algorithm is realized exactly as before with the inclusion
of shifted versions of each training image. This results in a well-controlled correlation
peak shapt (a large central peak and zero or low values ±d, pixels away) for true targets
and zero values (central and ±d5 pixels away) for false targets. This also allows the use

* of both a peak threshold TT and a peak to sidelobe ratio threshold CT to be applied to the
output correlation plane pattern to determine if a candidate region of the input image
contains a target and the class of that target. Recent tests performed with these correla-
tion SDFs considered three automatic target recognition (ATR) objects (Tank 1, Tank 2 and
an armored personnel carrier APC). Figure 13 shows representative images of the APC and one
of the tanks. For each of these objects, 36 aspect views were available at 100 increments
and a given depression angle around the object. The target resolution on these images was
degraded to about 50 x 20 pixels. The objective was to form an SDF using only 6 or so dif-
ferent aspect views such that the correlation plane pattern had a peak for one class and no
peak for the other object class. Table 1 shows results [69] obtained with three different
types of correlation SDFs intended to discriminate Tank 2 from Tank 1 independent of 3-D
aspect distortions. As seen, 93-95% correct classification with no missed targets is possi-
ble using only 6 aspect views to synthesize the SDF and with the SDF tested against all 72
aspect views of both object classes. Table 2 shows similar data for an SDF to discriminate
APCs from tanks. Here, with 12 training set images/class, we find perfect performance to be
possible. Figure 14 shows noise test results when four targets (2 tanks and 2 APCs) not
present in the training set were placed in a typical scene (Figure 14a) with an input SNR
approximately equal to one. The output correlation plane (Figure 14b) shows only two peaks
at the correct location of the two tank objects. Clearly, the SDF has discriminated against
the APC targets and other structured noise clutter in this scene. These are typical of the . "
excellent results obtained for full correlation plane analyses of the SDF performance for
3-D distortion-invariant multi-class target recognition in clutter.

Recently, considerable attention has been focused on the importance of the efficiency of
optical correlators (i.e. the usable optical light in the output correlation plane compared
to the energy of the input image) [70] and to the use of phase only MSFs [71] to improve
light efficiency. Butler and Riggins [72] distinguis' between a phase only MSF in which

*" only the phase of the MSF data is recorded on either an absorption media or on a bleached
material. Phase MSFs provide more useful liqht and initial results indicate that they prc-
vide better discrimination (correlation plane SNR). However, only limited simulations on
two similar letters were performed [71] and no theoretical basis has yet been advanced for
this result. The motivation for this recent attention and an entire conference session [72)
on CGH realization of SDFs is the excellent performance of these filters, the availability
of several commercial CGH recorders and the use of such CGH filters in the fabrication of a
compact SDF-based correlator. Gianino and Horner [75] quantified by simulation the expected

o worse sensitivity of phase-only MSFs with respect to object distortions. Thus, the use of
SDFs with phase-only CGHs is a natural approach to consider. It provides better efficiency
and overcomes the distortion sensitive performance of conventional filters. Rigains and
Butler [74] recently simulated the original equal correlation peak projection SDF with a CGH.
They found 1% light efficiency and good performance on ATR data. However, much more exten-
sive tests are required on the new advanced SDFs and on larger data bases. Kumar et al [76]
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have provided the only theoretical basis for the optical efficiency, space bandwidth prod.;Ct
and number of filters to be used in an SDF. This work has also only touched the su~rface f
this problem however.

dW.

(a) (b)

(c) (d)

I FIGURE 13
Typical ATR images of a tank (a and b) and an APC (c and d) target

objects used in correlation SDF tests

_____________ SOF-1 SDF-2 SDF-3
I-N-PUT - TK ITN-K 2 TANK I TANK 2 TANK I TANK2

NUMBER TTO. 3 0 3 0- -
ERRORS

PC (T7 ONLY) 9S8 95. 8.---

NUMBER CT ERRORS W

(LARGEST PEAK ONLY) 1 3 3 0 5 0

- -- ---- --- -- - ----- - - -- --- --- -- - - - - -- --- --- --- - - -- - -- - --- --

PC (CT, LARGEST PEAK) 94.4. 95.8. 93.P ~e (MISSED TARGETS) 0 0 7

TABLE I
Tank 1 versus Tank 2 correlation SDF test results using 6 trainina

r set images per class. Errors out of 72 test images are listed :



SDF SDF- I SDF-2 51F-3
INPUT TANK I TANK 2 TANK 1 TANK 2 TANK I TANK 2

NUMBER TT 0 0 0 0""ERRORS 0 00 0 .',

Pr (TT ONLY) 100. 1OO ----

NUMBER CT ERRORS
(LARGEST PEAK ONLY) 0 0 0 2 3 2

Pe (MISSED TARGETS) 0' 0 4.20

TABLE 2
Tank 1 versus APC correlation SDF test results using 6 training set images per class.

Errors out of 72 test images are listed.
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FIGURE 14 (..

% Multiple non-training set targets in clutter (a) and correlation %' "m , output plane with peaks for correlation SDF filtering at true target locations (b)



Since these prior tests did not ermploy the new correlation SDFs, w, synthesized a ccrre-
lation SDF-3 of the ship and tested it against real ship imagery with different amounts of
amplitude and phase data retained. We found that the phase-only filter performed well, but"
that retaining two bits of amplitude MSF data and two bits of phase data gave siqnificant '
better results. Thus, from these recent tests of ours, it appears that a filter wit:.
am ltude data present is preferable to a phase-only filter. Considerable future work ana
results are anticipated in this area.

6. SYSTEM FABRICATION

A 2-D real-tine SLM is the key element for a successful parallel 2-D OPR system. T'.-
state-of-art of these devices is susmm-,arized in [5] . Recent Soviet work has resulted Jr.
erfrrmance rRIZ [81] and liquid crystal SLMs with high sensitivity, resolution and cf"'-

ciency ani with unique properties such as directional spatial filtering, edge enhanceMnt"
and the ability to detect and respond only to dynamic removing input obiects [81]. Man-.
real-time optical correlators have been fabricated, described and demonstrated. The Generl.
Motors system for robot inspection [77] is one such system which used a liquid crystal rea2l
time input SLM. Two-dimensional output readout was simplified and rotational invariance
accomlished by use of a rotating pris and a cylindrical optical system using two I-D detectcr
arrays, rather than a 2-D readout array. Several multi-channel real-time optical correla-
tors using a liquid crystal input transducer and multiple MSFs have been fabricated at
Huntsville as described in [78]. In these systems, attention was given to filter synthesis
using weighted MSFs [82) to reduce, rather than overcome, scale and angular object sensitiv-
ity and hence the number of multiple filters needed. Multiple MSFs on the same filter were
tested on these systems fcr light efficiency and spatially-separated MSFs were accessed b"
different laser diodes in different input spatial locations. In the first system, all
correlation plane patterns were superimposed. In the second system, different laser diode-
sources allowed separate MSFs to be accessed when the difference between the orientation or
scale of the input and reference object caused the correlation peak to drop sufficiently.

A recent magneto optic SLM [43) offering low cost has been developed and demonstrated for
simple white light spatial filtering [80] image processing functions (rather than correla-
tions) and for low space bandwidth product CGH MSF correlations [60]. The binary (rather
than gray scale) response of this SLM and its present low resolution and low transmittance
are limitations that must be overcome before it will see general use.

All of these prior real-time optical correlator systems did not attempt to significantly
reduce the physical size of the optical system. A compact portable version of the Huntsville
optical correlator was recently fabricated by ERIM [79] and is shown in Figure 15. This
system uses four laser diode sources to access one of four spatially-multiplexed MSFs with
the output correlation plane detected by a 2-D charge injection device (CID) detector array.
The correlation unit is 15 x 23 x 42 cm and weighs 8 kg. Electronic support unit for it.
is 15 x 26 x 35 cm and weighs 8 kg also. The total power consumption of this portable
compact optical correlator is 55W. It is possible to fabricate far smaller and lower power
dissipation versions of this architecture and several of these are presently being con-
sidered.

All prior well-engineered real-time optical correlators have used only simple or several .. r
simple multiple MSFs and have thus achieved onl: limited distortion-invariant pattern recco-
nition. While the physical size of these processors is significantly less than the classIc
large optical bench processors, they are not yet compact enough for use in a missile. A
more practical optical correlator would be one which employed the advanced SDF MSFs and one
which was significantly smaller in size. The use of SDF filters would reduce the complexity .
of the system and extend its practicality and versatility. The system of Figure 16 was
recently fabricated by General Dynamics-Pomona and demonstrated in initial tests using com-
puter generated hologram SDF MSFs. The system is less than 5 inches in diameter and approxi-
mately 12 inches in length. It is intended for use in a 5 inch missile for on-line real-
time ATR pattern recognition. It employs folded optics, mirrors rathir than lenses, multi-
Fle SDFs, several output correlation planes, and presently a real-tir liquid crystal ELM.Tower tests and captive helicopter tests of this system are expected to be among the high-
lights of OPR work in 1985. This real-time optical correlator of Figure 16 represents the
first such processor suitable for airborne use in a 5 inch missile that has reached hardware.
Further such committments and research support by government and industry are essential to
provide the necessary transfer of technology from OPR research to airborne hardware.

7. SUMMARY AND CONCLUSION

A brief review of the major operations achievable and the maior OPR architectures has
been provided. This was followed by descriptions of nine different optical feature extractorhybrid pattern recognition processors. These systems optically produced all of the ma-cr -.- '
image features using the parallism of optics. Feature extraction and classification on these
optically generated features is then performed in a digital post-processor. The resultant

'
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kybrid optical/digital systems combine the best advantages of optical and digital processors.
These techniques are quite noteworthy because the same optical architecture can compute
the indicated features for any input object and thus the same system is usable for any ob-
ject identification application. The discriminant function, feature extractor, transforma-
tion and classifier used can be changed as desired by employing the flexibility of the post-
processor. In all cases, multi-class 3-D distortion-invariant pattern recognition is the
objective considered. Extensive tests have been made on several of these systems on large
data bases. These include a large number of related objects in different classes with 36
different aspect views of each object (at every 100 increment) from a 20-401 depression
angle. Thus, this represents a multi-class full 3-D distortion problem. Training sets con-
taining only 4-6 different spatial views per object class were found to be adequate to pro-
vide excellent 86-98% correct object recognition and classification identification in over

300 test images in one data set and over 175 test images in a second data base.
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Compact portable real-time liquid crystal optical
~~correlator using 4 matched spatial filters [79]).

Photograph of the General Dynamics-Pomona airborne real-time optical SDF correlator .- '
' :" for packaging in a 5" missile (Photo courtesy of D. Fetterly, General Dynamics-Pomona) .. j



When performance in high clutter and noise is required, a correlator is needed. With

SDFs, a 3-D distortion-invariant multi-class pattern recognition corrclator is possible
with all of the advantages of a correlator retained and with distortion-invariance provided.
Excellent initial test results of the full correlation plane data were presented and a
typical example of the performance in clutter of the system was included. The final issu c
in an OPR system is system fabrication. As shown, significant strides have recently been-,
made in this area with an advanced SDF-based real-time optical correlator packace for a
five inch missile having been fabricated and initially tested. The world of optical pattern.
recognition has a bright and attractive future in all aspects. Further government and V's
corporate committments are still necessary to insure timely transfer of this technology to
hardware however.
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ABSTRACT

d Diffraction pattern sampling provides a feature space suitable for object classification,

orientation and inspection. It allows significant dimensionality reduction. These proper-
ties are best achieved by the use of specifically-shaped Fourier transform plane detector
elements and this can be realized with considerable flexibility, reduced size and improved
performance by the use of computer generated holograms.

1. INTRODUCTION

The Fourier transform (FT) or diffraction plane of an object contains a distribution of
the spatial frequencies present in the input object. This distribution has many attractive
properties. The magnitude of the FT pattern is shift-invariant. Thus, translations of the
input image do not effect the magnitude of the Fourier coefficients. Higher horizontal or
vertical input spatial frequencies (u,v) lie further from the center (dc or zero spatial
frequency) of the FT plane

% (u,v) = (x2 /XfLY 2/ fL). (1)

Input spatial1 5 equencies oriented at an angle in the input plane appear at a radial distance
r = (x2z+y29) in the FT plane (where (x2,Y2 ) are the distance coordinates of the FT
plane) and at an angle orthogonal to the orientation of the input data [1]. As the orientation
of the input spatial frequencies varies, the angle 6 of the FT distribution also rotates.
As the scale of the input object changes, the radial distance at which the frequency peaks
are located also scales. Thus, spatial frequency and orientation information are ronven-
iently available in an FT plane representation. Also, such an FT plane representation is
most suitable for dimensionality reduction of the data. This issue is of considerable
practical importance since the space bandwidth product (SBWP) or number of frequency-plane
components required to represent the input object is equal to the input SBWP. Thus, no
advantage is obtained by use of a FT plane data representation (in terms of processing re-
quirements), unless dimensionality reduction is employed. Fortunately, an FT plane is well-
known to allow considerable data compression, especially for pattern recognition and object
identification applications. Hence, an appropriately-sampled FT plane provides a set of
features that are most useful for feature extraction based pattern recognition and object
identification.

In Section 2, we review the FT properties and prior approaches to efficient FT plane
sampling using elements such as the wedge ring detector (WRD). This sectioi. Trr-vides
motivation for our research. In Section 3, we describe our computer generated holo.ram
(CGH) WRD FT plane concept and in Section 4 we detail our synthesis approach for a WRD ub-n

CGHs. Section 5 provides initial experimental results obtained using our CGH generated WRD
element. Advanced analysis issues and our summary and conclusions associated with this sys-
tem are then advanced in Section 6.

2. WRD PROPERTIES AND FEATURES

For completeness, we first review several common FT properties of use in WRD-sampled FT
plane analysis. We consider real input functions f(x,y), i.e. images. Their intensity FT
is symmetric, i.e.

IF(u,v)l 2= F(-u,-v)l2 (2)

The intensity FT is also shift-invariant

2 2
Jrf(x-a),y-b)] I {F(u,v)l (3) e
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i.e. only the phase varies with a shift of the input function. From (2) and (3), we see

that an FT plane detector can be placed in the center of the FT plane and that either half
of the FT plane can be sampled with no loss of information. The rotational feature of the
FT pattern (the FT pattern rotates as the input object rotates) was noted earlier and is

described mathematically as

t 2 ". . 2 2N%[f(xcos 8-y sin e,x sin e+ycos 8)i =IF(ucos 6-vsin e,usine+vcos ) 1 .  (4) %

The scaling FT pattern property noted earlier is described mathematically as

I%[f(ax,ay)] 12 = 1(1/a) 2F(u/a,v/a) I2 . (5)

1  L P2

1 2 x2x.

L G (u, V)
g(x IY 1 ) PT PLANE

FIGURE I

Optical wedge ring detector sampled Fourier transform object-recognition processor.

(C))

%W (A) Schematic, (B) silicon device and (C) control unit for a silicon-based wedge rini detector

.
-

- * .(7 ) 
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The shift-invariant, rotation and scale properties in (3) - (5) make sampling of the FT

pattern intensity with wedge and ring shaped detector elements most attractive. The typical
optical arrangement used is shown in Figure 1. The input object is placed in plane P1 , its
FT pattern is formed at P2 by lens Ll, where its intensity is sampled by a WRD. This detec-
tor has wedge-shaped elements in one-half of the circular aperture and ring-shaped elements
in the other half of the circular aperture. Figure 2A shows this detector schematically. .
In the version of this device that was fabricated and was commercially available, there were
32 wedge and 32 ring shaped detector elements in each half of a one inch diameter silicon
sensor (Figure 2B). The 64 detector outputs are available in parallel and are fed through
amplifiers to autoranging amplifiers and potentially into a supporting digital processor for
analysis purposes. The output of any detector element can be manually selected and viewed
on a digital display or the full (or any partial set of 64 detector outputs) can be selected,
automatically scanned and fed to a digital processor. Figure 2C shows the standard control
unit. From (4), the FT pattern is seen to rotate as the input object rotates. Since the
ring shaped detector outputs integrate over e, the f(r) ring shaped detector output distri-
bution does not change with input object rotations. From (5), the FT pattern is seen to
scale inversely with changes in scale of the input object. Since the wedge shaped detector
outputs integrate over r, the f(8) wedge shaped detector output distribution does not change
with input object scale changes. From (1), one can place the wedge shaped detector elements
in one-half of the FT plane and the ring shaped detector elements of the other half of the
FT plane with no loss of information (beyond that which occurs due to intensity sampling).

3. CGH/Holographic Optical Element (HOE) WRD CONCEPT

These concepts were first introduced by Stanley and Lendaris [1] and later exploited by
Recognition Systems Incorporated [2]. They find much use as mission screeners in the iden-
tification of the class of different parts of an input scene [1], in object quality inspec-
tion [2], line width analysis for ICs, handwriting analysis (3], for producing a generalized
chord distribution feature space [6], and in more recent work for object identification and
classification [4]. Although these diffraction pattern concepts are attractive, there are
several shortcomings with the present silicon detector units. These include: the lack of
availability of such silicon detectors, the desire to achieve more compact units of smaller
physical size and weight, the attractiveness of often wanting a wider variety of detector %
shapes, the frequent need for more sensitive and higher speed detectors than one can obtain
with the wide area units necessary when fabricated in silicon. One can separate the detec-
tion function and the specific sampling shape aspect of the detector elements by sensing
the FT pattern using a conventional 2-D grid scan pattern and then digitally implementing
various desired detector shape functions. The interpolation required to accurately model
the detector shape desired is a significant overhead in a digital realization and often pre-
cludes real-time operation. Hence, an optical realization using a CGH to achieve the de-
sired sampling function and a linear array of separate high-performance detectors with
parallel outputs is preferable. CGHs and holographic optical elements (HOEs) are presently
receiving considerable attention [5] with the availability of several commercial CGH re-
corders. Thus, this optical approach is also of considerable practical and current interest.

The CGH/HOE-based compact system we envision use of is shown in Figure 3A and in block
diagram form in Figure 3B. The FT of the input object is formed at P2 where a CGH and HOE
are placed. The CGH has different grating patterns in different regions, with each region
having a different shape and location (corresponding to the specific detector shapes re-
quired). In each region, the grating is of one spatial frequency and one orientation (the
spatial frequency and orientation differ in each region) and determines the location in P3
where the data in each P2 region focuses. An HOE recorded on the CGH plate at P2 achieves
the focusing of each P2 region to a separate point in P3.

In practice, the CGH/HOE could be reflective and a folded optical system of reduced size
would result. The separate wedge and ring outputs (or other FT plane sampling shapes de-
sired) are produced in spatially-separated regions of P3. Detector arrays or discrete detec-
tors placed at P3 provide parallel outputs corresponding to the wedge and ring sampled FT ,
plane data. This separation of the sampling and detection functions allows high-speed and
high-sensitivity detectors to be used. These parallel outputs would then be fed to a dedi-
cated digital processor to perform feature extraction (selection, weighting and combining of
the different wedge and ring detector outputs as required for a given application) in this
wedge/ring-sampled FT feature space and estimation of the class, orientation and scale of
the input object. The classification (for out-of-plane distortions) is performed by projec-
ting the wedge/ring-sampled FT feature vector onto a discriminant vector selected by various
pattern recognition techniques [4].

Plane P2 need not be an FT plane. If it is an autocorrelation plane, then the wedge/ring
features produced are the chord distributions [6-8]. As noted earlier, with a CGH, one is not
restricted to wedge and ring sampling, but any desired sampling-shaped function can be used.

%...
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FIGURE 3
Preferred computer generated hologram (CGH)/holographic optical element (HOE) .

realization of an optical wedge ring detector (WRD) system

4. CGH WRD DESIGN

A schematic and block diagram of the laboratory WRD/CGH system are shown in Figures 4A
and 4B respectively. The P1 inputs, P2 CGH and output P3 detector plane coordinates are
shown in Figure 4. The CGH at P2 achieves the desired wedge-ring sampling and diffracts
all light (incident on each separate wedge and ring sampled P2 region) at a different angle
(proportional to the spatial frequency and orientation of the grating present in each P2
region). Lens L2 focuses the parallel light from each wedge-ring P2 region to a different
location in P3 , wnere separate high-performance detectors collect this light and provide the
desired wedge-ring sampled output data in parallel. This WRD sampling and detection tech-
nique using a CGH is preferable to the holographic recording of the necessary pattern in
each P2 region as proposed in Ref.[9]. Our proposed CGH technique requires no sophisticated
optical system for recording and is thus simpler and cheaper. It allows phase relief CGH
recordings to be used and thus has the same high-efficiency advantage of the technique in
Ref. [91 when using bleached dichromated gelatin, but with much easier fabrication, with
greatly increased flexibility and at a significantly lower cost.

For simplicity, we describe each region of the CGH by a square-wave grating of unit ampli- .
tude varying in x only as

g(x) - [Rect(--) * Comb(j)]Rect( ), (6) -4

where Ax is the width of each bar in the grating, d is the grating spacing,u1 = 1/d is the
grating frequency, L is the grating's extent and Comb(x/d) - IdW56(x-nd). We could employ
a sinewave grating in each P2 plane region. However, a square-wave grating is more easily
fbricated using a binary CGH or a binary recorder. Use of a sinewave grating would result
in only one diffracted order, a slight increase in useable light and would not require
attention to avoiding higher diffracted orders. However, as we show in this paper, the
present design with a square-wave grating represents no problem, achieves adequate light
budget efficiency, requires lower resolution than a sinewave grating. Primarly the use of
a square-wave grating allows simpler binary recording systems to be employed. With g(x) in
(6) placed at P2, its FT is formed at P3 in Figure 4 and is2:

"2;:
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G(u) = L Ax d[Sinc(uAx)Comb(ud)] * Sinc(uL), (7)

where u = x3/XfL2 relates spatial frequencies u at P2 to distance x3 in P3. Eq.(7) shows
that the data from one such 1-D grid produces a P2 pattern containing sinc functions of
width 1/L replicated every i/d with an overall amplitude weighting across all of the sinc
functions given by a sinc function of large width 1/Ax.

- L1 '" : L2 fL2

L, 1 (x I,Y1)  ( 2y2 L 2 (x :3 ) " -,-- -

(x 2 ,y 2 )

(A)

WEDGE/RING ..
SANPLTNG DETECTORS .
CGH

(B)

FIGURE 4
(A) Schematic and (B) block diagram of a laboratory wedge ring detector (WRD) computer

generated hologram (CGH) holographic optical element (HOE) system.

The location in P3 of the grating data in the corresponding P2 region is thus

x3 - XfL 2 /d, (8)

where d is the spacing between two gratings square-wave rectangular pulses. The detector
plane P3 size, the size of each detector element, and the length of the system (fL) deter-
mine d and the angle e for each grating region of P2 - We consider a circular CGH of radius
R with wedge shaped elements in the upper half and ring shaped elements in the lower half.
The highest spatial frequency um in the P1 input image determines the radius required for the
CGH as

R> fLlU. (9)

we consider two detector formats: a rectangular array (Figure 5A) and two circularly-
symmetric detector arrays (Figure 5B). The rectangular detector array offers the use of a
simpler commercial detector system with higher CGH requirements. The circular detector
arrays require a far simpler CGH but individual detectors in a nonstandard and therefore
less commercially available array configuration. Both CGHs have the general form shown in
Figure 5C with wedge shaped sampling elements in one half and ring shaped elements in the
other half of the plane. Each CGH region contains a grating of spatial frequency dij and
angle 8-, where the subscripts correspond to the associated detector element. For simplic-
ity, onlo one wedge and ring grating pattern are shown in Figure 5C.
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() Optical Axis (B) (C) ' -

I ~Output plane P3detector ceometries (A) rectangular detector, :,.
(B) concentric detector arrays, and (C) basic WRD CGH geometry

4.1 RECTANGULAR DETECTOR ARRAY
For the rectangular detector array (with square-wave CGH gratings), we require

V

H > 2b (10)

to insure that the second-order terms from the CGH do not fall on the detector array and
that the position of the detector array in P3 is offset from the optical axis by

H' > b (11)

for similar reasons. These conditions in (10) and (11) are most easily derived for the
vertical detectors i in column j 1 . If the grating spacing satisfies

d(i,l) Xf f /h(i,) - XfL/[H-(i-l)s] (12)

for detector element (i,l) in the first column 0j=1), then the second-order is insured to
fall outside the detector array for the other detector array elements, where h(i,j) de-
notes the distance from the origin of P3 associated with detector element (i,j). If the
detector size s is fixed, so is b and the minm= grating spacing d, (maximum spatial frequency
dml) must satisfy

dm < (XfL2/2b)cos e (13)

SZE(SL2

where the term in paetheses is the grating spacing required for the top right detector element in Fig. 5A.

To produce diffracted light focused onto a row of spots at each line in P3, the gratings
in each region of P2 must be oriented at an angle e(i,j) (Figure 5C) to the horizontal xaxis satisfying 

.
S(i,j) Arctan.(j-l)s/H-(i-l)s). 

(14)

~The grating separation in the P2 region corresponding to detector (i,j) must thus satisfy

Sd(i,j) - {Xf L2 /[H-(i-1)s]}Cos[6(i,j)]. (15) -

.'[ Eqs. (14) and (15) define the grating spatial frequency required in each P2 region subject to [[

..:. the grating spacing constraints on d in (12) and (13). This CGH design requires a grating

.;" with period d inclined at an angle e to be recorded in each P2 region with a different d and-.' Oe for each region (Figure 5C). This requires considerable resolution and accuracy, compared",'-'to our concentric detector array system. %
4.2 CON IC CIRCULAR DETECTOR ARRAY-

[.'. For the circular detector array configuration (Figure 5B), the GH design is far simpler ['
'..;' than the case considered in Section 4.1. in this present system, the wedge shaped detector -,I:' elements lie in the top part of the CGH and the ring shaped elements lie in the bottom por- :..[ (tion. The grating spacing dW is fixed for all wedge regions and only ( is varied between P2

%IUR
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regions. The grating spacing dR for all ring regions is also constant and again only the
angle 8 of the grating is varied between ring regions. If a Calcomp plotter is used to
synthesize this CGH, the end points of each line are specified and the plotter draws the
desired line at the necessary angle. In a CGH recorder, the coordinates of each point are
generally required and thus sampling effects will be of more concern. This issue is common
to both detector array cases, since the grating in each P2 region is at a different angle in
both detector cases. The CGH pattern at P2 for the rectangular detector array and the cir-
cular detector array are similar as shown in Figure 5C. The first-order diffracted ..N
radii hW and hR for the wedge and ring gratings of spacing dW and dR must satisfy

hW = Lf2/dW, hR = IfL2/dR. (16)

We can avoid overlapping of the first and second-orders by selecting

2hW - hR> Sd and hR -h W > Sd, (17)

where sd is the diameter of a detector. Each grating produces + and - diffracted orders.
The inner circle of peaks in Figure 5B corresponds to these + and - orders for the wedges
and the outer circle corresponds to these for the ring elements. If there are M wedges in
the top half of the CGH and M rings in the bottom half, then the bisector for the i-th wedge
region is a line

y = K(i)x, where K(i) Tan[(7/M)(i-0.5)J. (18)

The line perpendicular to the bisector is y - [-l/K(i)]x+C and the angle that grating imakes with the +x axis is thus

e(i) arctan K(i . (19)

For simplicity (Figure 5B), the same grating angles are used for both the wedge and ring
gratings.

The last design issue we consider is the diffracted spot size s2 on the CGH, its diffrac-
ted spot size s3'on the detector, and the size sl of an input image region of one uniform
spatial frequency, and the size s3 = sd of a P3 plane detector. This is a unique issue and
requirement for CGH/WRD systems. One spot of diameter s2 at P2 will produce a spot of
diameter s3' 

2XfL2/S2 at the detector plane. This P2 spot diameter is due to a region in
P1 of minimum diameter s = 2fLl/S2 . For simplicity, 1.22 factors have been omitted in the
above spot size equations. The detector size Sd = s3 must thus satisfy

2fL2/s2  < S3  < XfL2[(1/d l-(l/dW)] (20a) -.

3 ?h/ (20b)

where the left side of (20a) insures s3 > 53' to collect all diffracted light from P2, the
right side of (20a) insures that the wedge and ring detectors do not overlap and (20b) in-
sures that the wedge detectors themselves (lying at a radius h.W ) do not overlap. We will
quantify these values for our experimental system shortly.

5. EXPERIMENTAL RESULTS

The experimental results for two WRD CGHs with M = 10 wedge elements and 10 ring elements
follows.

5.1 RECTANGULAR DETECTOR ARRAY
For this case, a 4 x 5 detector array (Figure 5A) is used with a - 7.5 mm and b = 6.0 mm

with s = 1.5 mm detectors on 1.5 mm centers. For the experiment performed, fL2 = 815 mm and
X = 0.465 um (an argon laser line). To satisfy H > 2b in (10), we selected H = 19 mm for a
corresponding minimum grating spacing dm=0.018 6 m-from (13). The grating spacings and
angular orientation for each region were selected from (14) and (15). The grating spacing V
varied from 0.020 to 0.026 mm for the detectors in the first column (J=l) and the grating
angle for the detectors in the j=2 column varied from 4.38* to 5.73* . Over the entire detec-
tor array, d varied from 0.0186 to 0.0260 and e varied up to 30*. The general design
guidelines for the grating spacings and grating angles for the CGH region corresponding to
detector (i,j) - (vertical,horizontal) satisfy (14) and (15) where i = 1 and 2 for wedges ...r
and i - 3 and 4 for ring elements. The end points of each grating line were specified anc a

%.'
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line drawn between them using our Calcomp plotter. The full plot was 10" = 254 nu in diam-
eter with the smallest grating interval being 0.635 mm (the Calcomp plotter easily produced
lines with spacings of 0.02" = 0.5 mm, i.e. well within our 0.635 mm requirements). This
plot was photoreduced by 32.5:1 to 7.8 mm diameter with dm = 0.02 mm. The 2R = 7.8 mm diam-
eter allows a maximum P1 input spatial frequency um = 21 cy/mm (assuming X 465 vm and
fLl = 400 mm), which is more than adequate for realistic imagery.

yd

(A) (B)

FIGURE 6
(A) Computer generated hologram and (B) output plane pattern for a wedge ring detector

computer generated hologram with an output rectangular detector array

Figure 6A shows the CGH used and Figure 6B shows the 2-D rectangular P3 output diffrac-
tion pattern obtained when this CGH is illuminated with a plane wave. The upper two rows
correspond to the ten wedge outputs and the bottom two rows to the ten ring outputs. The
wedges and the inner rings in Figure 6A are not as easily visible because of their higher
grating spatial frequencies. The number of grating lines in the wedge regions varied from
52 to 167 and the number of lines in the ring regions varied from 17 to 227. This accounts
for the different intensity (larger spot sizes) in Fiqure 6B. The spots diffracted by the
wedge reqions are more uniform. Because the area and number of lines in each ring region
varies, their light intensity varies more as is seen. The locations of the diffracted out-
put peaks are in agreement with theory within measurement accuracy.

5.2 CONCENTRIC DETECTOR ARRAY
The CGH for this case (Figure 7A) and the resultant P3 diffracted pattern (Figure 7B)

again agree with theory. The same X and fL2 are used. The original CGH produced by the
Calcomp plotter for this case was 8" = 203.6 mm in diameter with the same dW = 0.042" =
1.07 mm for all wedges and dR = 0.76 mm for all rings. After photoreducing by 20.7:1, the
CGH had: 2R = 9.8 mm, dW =0.052mm and dR =0.03

7mm. The 2R value allows um = 26 cy/mm
input spatial frequencies (assuming fLl = 400 mm). These dW and dR choices satisfy (16) and
(17) with the detector size used sd = 1.5 mm (since hR = 5.4 mm and hW = 3.8 mm). The i-tb.
grating angle is e(i) = (i-0.5)18 from (19). These values also satisfy (20) for P2 . FT
plane spots above s2 = 0.5 mm, corresponding to uniform input spatial frequency regions as
small as XfL1/s2 a 0.4 mm for fLl = 400 mm. The light intensity in the two sets of concen-
tric diffracted peaks (Figure 7B) vary (for the outer set of ring elements) due to the area
of the rings and the varying number of grating lines per ring (27 to 266 lines). 0

6. ADVANCED TOPICS

The resolution (0.006" - 0.15 mm) for the Calcomp plotter used in these experiments
determines the system's size and the number of wedge and ring elements used. Commercially
available recorders with I um resolution [5] allow fabrication of a system of significantly
reduced size. For the system of Figure 4 with X = 820 Pm (a laser diode source), a 14 x 14
mm detector array and a maximum input spatial frequency of 20 cy/mm, both lenses can have
fL -" - 100 mm using a dm - 2 um minimum spot size recorder. This represents a consider-
able reduction in system size.

.7p.
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(A) (B)
FIGURE 7

(A) Computer generated hologram and (B) output plane pattern for a wedge ring detector
computer generated hologram with concentric output detector arrays

le
The light budget for this system is excellent. Assuming lens transmittances of 0.9, a

P1 transmittance of 0.5, a transmittance of 0.5/20 for each of the 20 wedge and ring elements
in P2 (where a 50% efficiency for a bleached or phase CGH is assumed), a P3 transmittance of
0.5 (each detector intercepts approximately 0.5 of the total light in the sinc function, and
10 different input spatial frequencies, and hence a division of the total light into ten
separate regions , then the system's transmittance to one output detector is 0.1(0.9)2(0.5)
(0.1)(0.9)2(0.5) (0 .0 5 ) = 5 x 10

- 4 = 0.05%. For a typical detector with 0.5 amp/watt sen-
sitivity and 0.3 nA dark current, an input light intensity of 6 x 10-10 W corresponds to the
dark current and the maximum input light is 6 x 10- 4 W (for a 6 decade response detector).
If the photodiode is biased at 300 nA (much much greater than the dark current), the minimum
detector power required is 0.6 VW and hence we require only 0.6 UW/(5x 10-4 ) =1.2 mW of in-
put light. This is easily achieved by laser diode sources.

A final topic is the converging nature of the light input to P2 in Figures 3 or 4. In a
converging beam FT system as is used, the FT is formed on a spherical surface got n a plane
[10. The displacement error to the plane where the CGH is placed is Az = (x2 +y2 )/2d ;...:
(x2l+y22)/fLl is only a maximum of 0.25 nm. Thus, the FT spot size is only slightly larger
than the theoretical value and the pattern detected at P3 is correct. Phase curvature at P3
is of no concern since the size of the detectors are used (in our design). If (as occurs in .'

practice) only a small part of a wedge or ring is illuminated at P2 , the 6z effect is of no
concern since all of the light still easily falls within a wedge or ring region.

We have concentrated on the use of a WRD CGH in the FT plane. However, as noted earlier,
a WRD can also be used in the autocorrelation plane to produce chord distribution functions.
As noted earlier, one is not restricted to wedge and ring shaped detector elements but can
employ other detector shapes as required. This is attractive both for FT plane sampling and
for autocorrelation plane analysis. The use of CGHs clearly allows considerable flexibility
in the detection process and it allows separation of the detector shape function from the
detection function, thereby allowing more optimized components to be used. In this paper,
the general concepts of the CGH detector have been advanced, general calculations and design ' -a
rules have been advanced and laboratory demonstrations and designs of two different WRD CGHs
have been provided.
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Feature extractors for distortion-invariant robot vision

David Casasent Abstract. Various feature extractors/classifiers for a hierarchical feature-
Vinod Sharma* space pattern recognition system are described. The system is intended to

Carnegie-Mellon University achieve multiclass distortion-invariant object identification. Although only a /, .b

Department of Electrical and Fourier transform feature space is used, our basic hierarchical concepts, our
Computer Engineering theoretical analysis, and our general conclusions are applicable to other featurePittsburgh, Pennsylvania 15213 spaces. The performance using intensity and phase Fourier transform features ,.

and the performance in the presence of noise are studied and quantified for two
different two-class pattern recognition data bases. % 'f*

Keywords: robot vision; dimensionality reduction: feature extraction; Fourier transform-
optical data processing optical pattern recognition.
Optical Engineering 23(5), 492-498 (September/October 1984).
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CONTENTS provide discrimination, we employ two nonunitary transformations:
the Fukunaga-Koontz (FK)6 and the Foley-Sammon (FS)7 trans-

2. introdusionly rformations. Our classifier then selects the best subspace from the KL, - "
2. Dimensionality reduction and distortion invariance FK, and FS feature vectors...
3. Nonunitary transformations In Sec. 2, we review and highlight our two levels ofdimensionality -

3.2. Fukunaga-Kooni transformation reduction (WRD Fourier transform sampling and dominant
3.2. Foley-Sammon transformation eigenimage calculation). We then discuss (Sec. 3) how we achieve

4. Intensity-only or phase-only Fourier transform features distortion invariance, and we detail the discrimination algorithms
6. Initial experimental results used. Brief theoretical remarks on the use of Fourier transform plane

6.1. Karhunen-Loeve transformations phase or magnitude features and on the noise performance of a .

6.2 Nonunitary transformations feature extractor then are advanced in Sec. 4. The two image data
63. Performance measure bases used in our experiments and the results of our initial dominant
6.3. Poefrerormance c n eigenimage feature vector calculations are summarized in Sec. 5.6.4. Noise- performance comparison More extensive distortion-invariant image test results are then pre-

6.5. Noise performance comparisons sented and discussed in Sec. 6. These results include a comparison of
7. Summary and conclusions
8. Acknowledgment the performance of our system for five different discrimination vec-
9. References tors, comparison of the performance of amplitude-only and phase- ,

only Fourier transform features, and a comparison of the classifiers

1. INTRODUCTION and feature extractors in the presence of noise. Our summary and
conclusions then are advanced in Sec. 7.

I)istortion-in ariant multiclass pattern recognition is considered
using a Fourier transform (FT) feature space. Feature extraction.
dimensionalit\ reduction, discrimination, and classification are ad- 2. DIMENSIONALITY REDUCTION AND DISTORTION
dressed. A simplified block diagram of our hierarchical pattern INVARIANCE
recognition system is shown in Fig. I. We begin with a Fourier If the input image or object is 256X256 pixels, its dimensionalit is
transform feature space, since such a representation is %ell known' to n = 2562. The discrete Fourier transform plane for such an object .
alloy, significant data compression. We extract the magnitude, phase, still has a dimensionality of n. This is quite prohibit;%e for subse-
or both from the Fourier transform plane. As the first dimension- quent feature extraction, matrix transformations, or other similar-1
alit-reduction technique. we use a wedge-ring detector (WRD) to operations. Thus, dimensionality-reduction techniques are essential r
sample the Fourier transform plane data 2 ' to reduce the dimension- operations that must be applied to such a feature space. A Fourier
aht, of the feature space and retain only the dominant eigensector transform feature space is a most useful representation of structural,
for each object class. I his reduced subspace is calculated using a resolution, and orientation information on the input object. Such a
Karhunen- .oe% e (K 1.) transformation4 by newk efficient techniques.' feature space is also attractise since physical insight about the input ,
I his completes the dimensionalits-reduction step in our system. 1i object is easilN obtained from this feature space. Such a feature space

>-L;- c fclt (( Northeastern I niscrv. i lstri l .nd ( ,mptcr t inmc[irng I t is well know n' to lend itself easilN to dimensionality reduction. These
H..n M A1,2119 reasons, plus the case with which such a feature space can be pro-

duced optically fusing a simple spherical lens) or digitalhs (bs sarious "n ited Paper R% -102 rc, tilcd I ch 15 1994. art opted tIF Puhh11CMlt01 March 1, 19S4,""" .

rcseited hs %,naging I dir Mao 29 19X4 fast Fourier transform hardware and algorithms), make this an ideal
19X4 Sotcv I Phit Ii-ptcl inlsirumentaltin I nginecr, choice for our hierarchical feature-extraction studies.
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FEATURE EXTRACTORS FOR DISTORTION -INVARIANT ROBOT VISION

projection value is larger. Ihe KI., or dominant. eigensector trans-
formation in Sec. 2 represents a considerable compression of data

:and simplifies performing the nonunitary transformations discussed
below. The dominant eigenvectors represent each class well in anoptimal compressed manner. However, there is no assurance that P

those features that represent each class well will be optimal for
discriminating one class from another. Thus, dominant eigenectors
are useful for intraclass pattern recognition (that is. recognizing
different versions. i.e., geometrically distorted views of one object),
but not necessarily for interclass discrimination (distinguishing one

Fig. 1. General Fourertransform letc.)feature-extraction pattern recogni- object class from another). In a hyperspace description of a featuretion system block diagram. vector and a discriminant vector, unitary transformations do not r

change the distances between vectors. To achieve discrimination or
interclass pattern recognition. linear nonunitary transformations
represent an attractive approach. These transformations can change

As the first level of dimensionality reduction, we sample the interclass distances and hence provide improved discrimination. We
Fourier transform plane with a WR D. Ifan optical system is used to pursued this approach rather than utilizing additional eigenvectors
produce the Fourier transform, a commercial WRD device exists.' per object class. This choice is logical since the use of more eigenvec-
This unit consists of 32 wedge-shaped detector elements in one-half tors would only further increase the dimensionality and computa-
ofa circular detector and 32 annular-shaped detector elements in the tional complexity of the processor. In the next two subsections, we
other half of the detector plane. This device thus provides 64 W R D detail two nonunitary transformations that we have employed.
outputs and hence reduces the dimensionality of the Fourier trans-
form feature space from n = 2562 to 64. One also can digitally 3.1. Fukunaga-Koontz transformation . ..-

model such a device, of course. The ring detector elements provide The first nonunitary transformation we consider is the Fukunaga-
rotation invariance, whereas the wedge detector elements provide Koontz (FK) transformation.6 To describe the steps in this algo-

% scale invariance (if the values of the wedge-ring detector element rithm, we first define Pi as the apriori probability for class i and Ras
readings are properly normalized for object energy). 2.3 To see this, the autocorrelation matrix for class i. We form the autocorrelation

. we first recall that the magnitude of the Fourier transform is shift- matrices R, and R2 for each class, where Ri = PiR. and we form the
invariant. Next, we note that as the scale ofthe input object changes, full autocorrelation matrix R = R, + R2. We then determine the
the two-dimensional Fourier transform distribution changes radially transformation matrix T that diagonalizes R; i.e.,
(inversely with the scale change of the input object). Thus, the
outputs ofthe wedge-shaped detectorelements will remain invariant T R TT = T(Ri + R2 )T = 1
to such input object scale changes. Finally, we recall that the orienta-
tion of the two-dimensional Fourier pattern rotates as the input where I is the identity matrix. By this transformation we have
object rotates. Thus, the ring-shaped Fourier plane sampling orthogonally decomposed the full R, + R2 matrix. Next, we apply
elements have outputs that remain invariant to in-plane rotations of
the input object. These remarks follow for the case of a real and T RIP and T R2 T T.

positive input function, whose Fourier transform is symmetric. This These new correlation matrices have two attractive features:

situation applies for the case of images, and thus the two halves of the (a) The eigenvectors # (* and #.( 2 ) of T RTt and T R TT are the
Fourier plane can be separately sampled as described with no infor- same. (b) The eigenvalues hi(I andl i2 associated with *and i21"
mation loss. related by

This WRD sampling, plus the training of our system on different are"related

distorted images, provides a distortion-invariant pattern recognition (1) = - (2)algorithm. In this and similar feature space approaches to pattern A(
recognition, one uses N i images in class I and N 2 images in class 2 to From "'"d-oh
determine the parameters of the processor. These are referred to asa From Eq. (2). we see that the dominant igenectors of the trans-
training set of images. Each of the i images per class is denoted by a formed class I matrix are the least-dominant eigenvectors for the
vectorwith {x and Y being the set of i =N t or N2 training set transformed class 2 matrix. Thus, those eigenvectors that represent
image vectors for a two-class example. The corresponding two- class I the least represent class 2 the best (in the new FK transformed
dimensional Fourier transforms are the n-dimensional vector sets feature space). Thus, this transformation has converted the input
I x' i I and {Y','}. These are dimensionality-reduced to the WRD- data into a new space with a common set of basis functions (the iki).samplead 64- Teearedimensionalivectorse ty-redund ts the s d In this new space, the data in the two classes are now separated. In

* sampled 64-dimensional vector sets I x) and I yi. As the secondtw-lsprbeewileecto v ihtelagt
dimensionality-reductionstep, weapplya KLtransformation 4 to the our two-class problem, we will select two #i with the largest
autocorrelation matrix formed from the WRD feature vectors for I hi( I ) - 0.51 values.
each separate object class. The autocorrelation matrix is formed Since R is formed from the KI. vectors (Sec. 2) and since we only -

from the 64 element x; vectors for each of the training set images I x I retain one K L eigenvector per class, the rank of R is two and there are
in class I, and a second matrix is formed from the corresponding Y tnsfom ectors i We denote these two eigenvectors ofthe FK
vectorsofimages inclass 2. Theeigenvaluesand eigenvectors of each transformed data by FK-I and FK-2. FK-I and FK-2 are the two
matrix are calculated and tabulated. One can then retain the domi- vectors that best discriminate class I objects from class 2 objects. To
nant rx and ry eigenvectors per class, where rx and rv~ are typically use these new discriminant vectors to determine the class of an

less than 4. In our experiments, we retained only he dominant unknown input image z. we form the WRD vector z'and transform it
eigenvector for classes I and 2, which we denote by KL-I and KL-2. to a new Tz' = z'. This transforms the input data to the new FK
In practice, two or three eigenvectors would be used per class, space. We then project z' onto an FK discriminant vector qs by

calculating #1 z"" = d. I)epending upon whether d is above or below
3. NONUNITARY TRANSFORMATIONS a threshold, we select class I or class 2 for the class of the input object.

We normalize the FK vectors and refer to the projections onto the
To use these dominant eigenvectors defined in Sec. 2 for classifica- FK directions I and 2 (corresponding to FK-I and FK-2). We note - .
tion, we compute z' for an unknown input object vector z, project it that FK- I and FK-2 do not refer to discriminant vectors for classes I
onto the eigenvectors KI.-I and KI.-2 (for classes I and 2, respec- and 2; rather. theyrefcrtothetwomostdominanteigenvectorsofthe
tively). and select the class for the unknown input based upon which transformed full autocorrelation matrix of both classes. r
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CASASENT, SHARMA

3.2. Foley-Sammon transformation complexities in extracting the magnitude or the phase of the Fourier ,. I

In the Foley-Sammon (FS) nonunitary transformation,' we find a transform are more comparable. Optically, the Fourier magnitude is . -4
linear discriminant vector w. selected to maximize the Fisher ratio,: easily obtained, whereas its phase requires the use of a more compli- 4' "-4

cated heterodyne detection technique.
(difference of means of projections)

2  
5. DATA BASES

F(w) =(3) The four image data bases used are summarized in Table I. They

sum of variances of projections include scaled and rotated images of the letters A and B and of % 4
hand-drawn images of tanks and trucks. For each of these two object .

In~~~~~~~~~ tem2h en 1 adm fth rjcin o ls n classes, we used aset of five images per class and a set of 25 images per%class 2 training set objects onto w and the scatter s, and s2 of these "prjc tins an ca of t class. Various scaled and rotated views were included in each of these -
projections, we can write image sets. A scale value of 1.0 is unity scale, and 0.9 corresponds to a

m, - IWT1061 scale difference, etc. The specific distorted object views included
- m 2  wSBW in each case are detailed in Table I. All images have 16 gray levels.

' s+s2 W- wSwW (4) with the 1.0 nominally scaled images having various numbers of

pixels: A (584 pixels), B (375 pixels), tank (797 pixels), and truck (292
where SB is the between-class scatter matrix and Sw is the within- pixels). For our noise-free tests, these images were present on a
class scatter matrix.' The solution for w that maximizes Eq. (4) is zero-valued background. For our noise tests, zero-mean white Gauss- .e

ian noise was added to all pixels in all images. In our data, we list the "r-o,
Sw S'A(mI - m2 ) (5) standard deviation On of the noise. From on, the total number of

pixels N in the image, and the object energy E (the sum of the squares
where m, and m, are the vector means of the two classes. To use w for of the pixel values for the object), an input signal-to-noise ratio
an unknown input z', we form w'z' = d and compare the projection SNR ! = E/No2canbedefined. ForN = 104.E = 104 (400pixels .
value to the threshold T, where of average value 5), and an = 0.4, a small SNR1 = 6.25 results. ."..

"" (m I + m,)".o

" T = -m 1 m2 )(6)
2 TABLE I. Summary of Experimental Image Data Bases Used ,

If d > T. we select class I. If d < T. we select class 2 for the class of Test 5-Image data base 25-Image data base
the unknown input image vector z. sets Scales Rotations Scales Rotations

00, 100
4. INTENSITY-ONLY OR PHASE-ONLY FOURIER A and B 0.9, 1.0, 1.1 (for 0.9 and 0.8, 0.9, 1.0, ±10, ±50, 00
TRANSFORM FEATURES 1.1 scales) 1.1.1.2 (for each scale)

An attractive aspect of a Fourier transform feature space is the fact Hand-drawn Qo, 1o,
that its magnitude or phase or both can be used. Considerable truck and 1.1 )nd 0.8, 0.9,1.0, f10, ±50.0 sca
work9 '( exists on the representation of image data by the intensity or tank_1.1_scales__1.1,_1.2_(foreachscae_._
phase of the Fourier transform. In general, the conditions under J. J...
which the Fourier transform phase features are adequate are less
restrictive than the conditions under which the Fourier transform
magnitude features are adequate. The magnitude of the Fourier In Table II, we list the five nonzero eigenvalues for the five-image
transform is adequate if the z-transform does not contain reciprocal data base for all four object types and for both magnitude and phase
pole-zero pairs, poles outside the unit circle, or zeros inside the unit Fourier transform features. As seen, the eigenvalue for the dominant
circle. eigenvector for magnitude Fourier transform features is approx-

This prior work has been concerned with aesthetically pleasing imately 70 times the second dominant (in general). This is more
image reconstructions from the magnitude or phase of the Fourier pronounced for the letters A and B. The eigenvalue for the dominant
transform. However. our present concern is object recognition, not eigenvector for the letter A obtained from Fourier transform phase
image reconstruction. Little research exists on this topic. In our case data is low (0.67). Because of the lower (0.67) eigemalue, we may
studies, we will wedge-ring detect and KL transform the Fourier expect lower projection values and hence more errors in our pattern
transform magnitude or phase data (or a combination of both). We recognition of letters using phase features. In general, the dominance
will then quantify the pattern recogr:ition performance of magnitude of one eigenimage in the magnitude data may be attributed to the fact
or phase featuresand their performance in the presence of noise. The that the image data base consists of scaled and rotated (in-plane
Fourier magnitude data are shift-invariant, and thus the location of rotation) images rather than different aspect N, ieys of each object. In
the object in the input field of ,iew cannot be determined from such such distorted images, there is noappreciable nc, information pres- .
data. Conversely.the linear components of the Fourierphase provide ent in each object representation. A possible reason for the lower ',.
data on the location of the input object. Digitally, the computational dominant eigenvalues for phase features may be the reduced accuracy .

TABLE II. Eigenvalues of the Five Nonzero Eigenvectors of the WRD Fourier Transform Data for the Five-lmagi Data Base -.

No Truck Tank A B

Magnitude Phase Magnitude Phase Magnitude Phase Magnitude Phase

1 0.98 099 098 0.89 0.99 067 0.99 095
2 017x10 1 0.78/10 2 0.17X10 1 0.98X10 1 0.71 X10 2 0.24 0.13X10 1 043x10 1

3 0.82X10 4 0.28/10 3 0.21 /10 3 0.12/10 1 084X 10 4 07210 0.49,,,10 3 0 19X10 2
4 081/10 "  012/10 0.64X10 4 024 x 10 2 047 X 10 4011 /1 029x10 4 077 10 3
5 049/10 6 011X10 4 0.11X0 5 014X10 2 0.65>10 5 038X10 2 017> 10 4 070010 4
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-1.00 -. 98 -. 96 -. 94 -. 92 -. 90 FK2

KLI " ; X=0"8 +0.4
-. 91 -0.2

S=.9.0.2
TANK IMAGES = -;4 ; ,-FK1--2.0 -1.8 -1.4 -I.0 -0.6 -0.2

TRUCK IMAGES = X -. 93 =1 .0  -0.2

X a=1.1 -0.4

0-.95 1 2 -0.6 ' .

TANK IMAGES =.e

TRUCK IMAGES X

0= .9 -1.0

a=0.8 -1.2
Il=1.0

* gczI. -1 .4

Ila 1.2 -. 99 =1.2
.......... ............

KL2 Fig. 3. Magnitude-only WRD Fourier transform feature projections for
tank/truck images onto the two FK vectors (25 images/class).

Fig. 2. Magnitude-only WRD Fourier transform features projected onto -
dominant tank/truck eigenvectors (for 25-image data base). KL1 = domi-nant truck eigenvector; KL2 = dominant tank eigenvector. " .yield lower (0.97 to 0.99) projections (versus 0.995 for projection on %

KL-2). The truck images show similarly lower projections on KL-2
associated with the inear arctangentoperation required tcorn- compared to KL-I. However, the large rangeforall projections(all
pute the phase of the Fourier transform. are above 0.95) makes the performance of this system in noise

suspect. These results thus verify the intraclass recognition ability ofthe K L transform. If the two classes are sufficiently different, inter-
ble results to those in Table 11. As noted in Sec. 2, we retained only
the dominant eigenvector per class for magnitude-only and phase- c d i o l o b h g m e
only data. For magnitude features, we expect the second dominant guarantee this. For the case shown, either eigenvector alone is suffi-invecataor oaprvide oores is i tio (th wasefond tomite cient for discrimination. However, this is not a general conclusion.eigenvector to provide poor discrimination (this was found to be the interesting trend from the data of Fig. 2 is that only five pointscase from experiments). For the tank and truck data, phase features exitres25 trck im these orrepon t the five int
may be expected to perform comparably and possibly better than exist for the 25 truck images. These correspond to the five different
magr input image scales (denoted by the values of the parameter a, as
truckdata)fusing one Sdominant eigenvector per clas consistently shown) with all five rotated views per scale giving the same projec-

gave larger projection ratios than magnitude features. For the letters tion. This occurs since rotated images at the same scale have the same .I-".#

energy, whereas different scaled images have different energy. With aA and B, phase features performed poorly (as expected, since the difrnnomlatnofhemgeaabstepojconvus ,',

dominant eigenvalue is smaller). Including the second dominant differentnormalizationoftheimagedatabasetheprojectionvalues
eigenvector for the phase features for our letter recognition tests for different object scales could be made to coincide. This effect is
would be expected to improve performance. However, we included most pronounced for the truck images since they all contain signifi-

only the most dominant eigenimage per class. Our extensive test ntl f r tha tank imagesueladeL2i
results obtained with the 25-image data set are detailed in Sec. 6. normalized for the tank images alone.

Similar results were obtained for the projections of the images ofThey follow the trends noted above, which are expected from the hd n i a n si
data in Table !1. the letters A and B onto their dominant eigenectors (for magnitude

only Fourier data). These results did not exhibit as pronounced a . -

6. INITIAL EXPERIMENTAL RESULTS variation with the scale of the input image (since both letters contain
6.1. KL transformations a comparable number of pixels). The data still exhibited the five

clusters of projection values (one cluster per scale, with only small

All of the results included in this section were obtained on our more variations due to rotation) for the reasons advanced above. All
extensive data base of 25 object images per class. In Fig. 2, we show projection values for the letters were quite large and even more * .
the scatter plots for the projections ofall tank and truck images onto clustered than in the tank data (all letter projections were above * .. ,,.
the dominant eigenvector for tanks (K L- I ) and for trucks (K L-2). As 0.998). More advanced techniques are clearly warranted, and thus we
seen, all images can be separated and correctl) classified from either next experimentally considered our nonunitary transformations.
projection alone. However, all projection values (even those on the
dominant eigenvector of the other class) are quite large (all projec-
tion values are above 0.95). This might be expected since the KI. 6.2. Nonunitary transformations
eigenvectors are useful only for intraclass recognition, not interclass The projections of the truck-tank data base images on the FK-I and
discrimination. Figure 2 shows that the projections of the truck FK-2 feature vectors are shown in Fig. 3. Comparing these results
images on the dominant truck eigenvector KI.-I yield essentially with the corresponding projection data on the KL-I and KL-2eigen- -
invariant values (a0.993). The tank images projected onto the tank images (Fig. 2), we see that the FK-l and FK-2 feature vectors
eigenvector KL-2 show a similar invariance with all projection values separate these two image classes much more than do the KI_-I and
=-0.995. This intraclass invariance is expected (because of the domi- KI.-2 eigenimages. This verifies our remark that the FK feature
nance of the first eigenimage in each class) by the nature of the K L vector direction that represents one class best, represents the second
transform. From Figure 2. we can also assess the interclass discrimi- class worst, and that FK transformations are preferable for discrimi- .,-

nation ofdominant KLeigenvectors. The truck projections on KI.-I nation, whereas KI. or dominant eigenvector projections provide
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TABLE Ill. Comparison of Separability Measure S for Magnitude and Phase Features for Different Case Studies and Different Feature Extractors

FT data Magnitude only Phase only Magnitude and phase

images Truck - Tank A - 8 Truck - Tank A - 8 Truck - Tank A - 8,

S S for KL-1 4.130 7.087 5.681 1.326 7.147 0.254
S for KL-2 2.898 5.984 4.596 8.419 8.781 5.535
S for FK-1 3.908 12.135 5.450 0.201 6.285 0.226
S for FK-2 3.879 12.131 4.253 9.371 7.765 12880 r-. - "
S for FS 4.504 11.898 7.578 9.428 8.541 12.620 -,

standard deviations of the class I and class 2 projections. This I
performance measure in Eq. (7) is valid if a, and 02 are of the same

X = TRUCK IMAGES order. For our data, this was found to be generally true. The measure

= TAK IM1AGES S in Eq. (7) was chosen for its computational ease and because it does ,
not match the measure that any of our feature extractors optimizes.
We computed S for all five feature extractor vector subsets (KL-I. .

KL-2, FK-l, FK-2, and FS) for both magnitude and phase Fourier .

transform data (and combined magnitude and phase Fourier trans-
form data) for both image data bases (vehicles and letters). The -
results are shown in Table Ill and discussed below.

.2' = O.8 (= . 2- a=O. 86.4. Noise-free performance comparison ," -

A larger S value in Table Ill indicates better performance. This table ,
.65 .67 includes the S performance measures calculated using magnitude- ...

.63 only, phase-only, and combined magnitude and phase Fourier trans- ,*
.69 form features. e. to. P-

Let us now discuss Table Ill. The phase features for both image 39
Fig. 4. Magnitude-only WRD Fourier transform feature projections for pairs give larger S values than do magnitude features. However. in . j
tank/truck images on the best Foley-Sammon (FS) vector (25 images/ several cases they perform much worse (for the letters A and B). This
class). For clarity of presentation, the projection values are shown dis- occurs because the dominant KL eigenvector for A is small (as in
placed from the FS axis. Table ii) for these images. Consistent performance improvement

with phase features is expected (and such features appear preferable)
if more than one dominant phase eigenvector is retained. Ignoring . '0.

the phase feature data for the letters, consistent trends emerge from
* only intraclass reonto.Nw w ie a vraini h rjc,alue rgi N niTable I11. Different results occur for different image pair recogni- , -

tion alealong both the FK-l and FK-2 axes (in Fig. 2. only tions. However, FS consistently performs best (or nearly so), withvariationsin theprojectionsonthedominant KLeigenvectorforthe FK always being quite close and, surprisingly, KL-I being consis- -
*" opposite class were observed). Variations in both axes occur here g -sic ec Kfauevetri iercm into"fteK - n tently good. If two vector subsets were to be chosen for a given,-,'

since each FK feature vector is a linear combination of the K L-I and problem, those with the largest S value in one column would be ',-,
KL-2eigen%ectors. Figure4shows the projection values obtained by selected. Combined phase and magnitude features perform better
projecting the truck-tank image data base onto the FS feature vector, than either alone, but the increased complexity in using both magni- -"

The projection values now appear to be separated more than those tude and phase features often yields only a small improvement. 17.- -.
for the KL projections, but less than for the FK projections. A Thus, from such noise-free tests. Fourier transform magnitude -%
quantitative performance measure for comparing these different data appear to perform well. (Optically, Fourier transform magni- "
feature extractors is now advanced tude data are calculated much more easily and hence are preferable if ,.^

the performance obtained is adequate.) But phase data are preferable " -,.4,6.3. Performance measure (if their largest eigenvector is sufficiently dominant). If two Fourier ,

From Fig. 3 (compared to Fig. 2), the difference in the expected transform phase eigenvectors are retained, and if Fourier transform -.

values of the projections of the two classes of data onto the FK phase data can easily be calculated, phase features are preferable. If
feature vectors is larger than for the projections onto the dominant the object classes being discriminated are sufficiently different, KL is v "
K 1, eigenvectors per class. However, the variance is also larger in the adequate. However, in general, FK or FS is recommended. Clearly,
I- K projection case. The same general conclusions also hold for the the results are data-dependent. Thus, let us consider the performance
A-B image recognition data. The scatter plots in Figs. 2 to 4 are of all feature extractors in the presence of noise before advancing a ,
useful for visually coneying results. However, they are misleading final decision.
since they bias one to favor a feature extractor that yields larger
differences in the mean values for the projections of different data
classes. 6.5. Noise performance comparisons

I o more properly compare different feature extractors, the actual T . /
-" projection values (note the different scales in Figs. 2 to 4) and the Tobstess the pefomane ooive atue extrateconsider our two case studies (vehicles and letters separately). In ~variances of the projection values within each class must both be Iable IV, we list the calculated S value for the vehicle identification ,- ,. ,

considered. To achieve this and to quantify the performance of our tests for both magnitude-only and phase-only Fourier transform ._ ,
• sarious feature extractors, we use the separation measure data as a function of the standard deviation On of the noise added to--

the input data. In Table V, similar data for our letter identificationdifference of means of projectionsper class
S=(7) case study are provided. In these tables we also include the miagni-

average standard deviation per class tude of the eigenvalue for the dominant eigenvector for the class I
and class 2 data (the reason for this will be apparent shortly).

The denominator in Eq. (7) is (o + o) 2. %,here a, and a, are the In Table IV, we focus attention on the S performance values
.S.

496 / OPTICAL ENGINEERING / September/October 1984 / Vol 23 No 5 -4 .i

W: /

. . . . -...... .....- . \.**'*~'~**'. .



-- ........... .:T " ''.................... -;-= :."W' -. j .r:'' , ." -pr' . 5. *.),f

,,
FEATURE EXTRACTORS FOR DISTORTION-INVARIANT ROBOT VISION

i!U_
TABLE IV. Eigenvalues and Separability Measure S for the Truck and Tank Images for Different Noise Standard Deviations and for Magnitude-
Only and Phase-Only Fourier Transform Data

Truck and tank (magnitude data) Truck and tank (phase data)

Noise
standard 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2 0.3 0.4
deviation

Dominant
eigenvalue 0.995 0.995 0.994 0.993 0.992 0.881 0.457 0.238 0.234 0.243 -
of class 1
Dominant

eigenvalue 0.999 0.999 0.999 0.999 0.999 0.617 0.599 0.558 0.504 0.450
of class 2
S for KL-1 4215 4.341 4.382 4.315 4.145 6.169 4.513 2.338 0.588 0.416
S for KL-2 2.893 2.924 2.919 2.874 2.792 4.760 4.385 4.017 3.669 3.083
S for FK-1 3.923 3.955 3.952 3.915 3.847 5.624 3.787 1.668 0.436 0.429
S for FK-2 3.894 3924 3.919 3.878 3.806 4.046 3.786 3.963 3.537 3.110
S for FS 4.625 4.705 4.746 4.744 4.699 7.689 5.592 3.995 3.598 3.229

TABLE V. Eigenvalues and Separability Measure S for the Letter A and B Images for Different Noise Standard Deviations and for Magnitude-
Only and Phase-Only Fourier Transform Data

A and B (magnitude data) A and B (phase data)

Noise
standard
deviation 0.0 0.1 0.2 0.3 0.4 0.0 0.1 0.2

Dominant
eigenvalue 0.999 0999 0.998 0.996 0.994 0.582 0.350 0.198
of class 1
Dominant
eigenvalue 0999 0.999 0.998 0.998 0.997 0.836 0.600 0.392 / ,
of class 2
S for KL-1 8.515 9.321 7.748 4.580 2.744 0.744 0.382 0.198
S for KL-2 6.918 6.652 5.049 3.341 2.441 8.480 6.397 3.451
S for FK-1 13.487 16.453 12.344 6.193 3.766 0.259 0.235 0.072
S for FK-2 13.475 16.402 12.284 6.172 3.753 8.547 6.143 3.548
S for FS 13.320 17.057 13.949 6.752 4.010 8.555 6.800 3.480

obtained as on increases. Reading the performance measure data magnitude features, the actual noise contribution in the important
horizontally, we see a negligible change in S with o n for magnitude- Fourier transform plane wedge and ring elements is pro-
only data. Similarly, the maximum eigenvalues Amax for both image portionally much less than for Fourier transform phase features.
classes also vary only slightly with on . Using the phase-only Fourier Hence, we might expect (as observed) poorer noise performance
transform features, we find a quite significant decrease in S as on  using phase features rather than magnitude Fourier transform fea-
increases. This shows that the performance S for phase features tures. The computational accuracy associated with evaluating the
degrades quite significantly as the noise in the data is increased. In function from which the nonlinear phase features are obtained may -
this case, kmax is also reduced significantly with increasing on and be a secondary factor in this observed noise performance for phase
thus reflects the trend noted above, features.

In Table V, similar data are shown for our letter recognition case
study. The magnitude feature data show a decrease in S as on 7SM R A CN SO
increases. However, the decrease in S for the phase features is even
more appreciable. Thus, from both Table IV and Table V we find The classic Fourier transform plane has been considered as a teat ure
that phase features are a less robust feature set than magnitude space for distortion-inariant recognition. [he use of wedge- and

' features in the presence of noise. ring-sampled Fourier transform plane features was employed to
Let us now consider the reasons for the observed perfomance in reduce the dimensionality of the feature space and to pros ide scale

Tables IV and V. We first note that we expect the Fourier transform and rotational insensitisit in our feature extractor. Ne%% feature -

, magnitude data to be concentrated in several dominant spatial fre- extraction algorithms were applied to these WRI) samples of the
.'. quencies. whereas the Fourier transform phase data are expected to Fourier transform plane. and the importance of magnitude and
[. be more uniformly distributed over the Fourier transform plane. phase Fourier transform data for pattern recognition applications

This is logical and is the basis for the success of dimensionality was considered. [he performance of our pattern recognition s\stem
*.i reduction using WRD Fourier transform plane sampling. Thus. with for twodifferent two-class image data bases tsehicles and letters) .[.:Is

Fourier transform magnitude features, a few wedge or ring detector quantified for all leature extractors. Ior phase and magnitude I-our-
elements dominate object identification. Conversely, with Fourier ier transform features, and in the presence of noise
tranform phase features. all wedge or ring detector elements con- I he feature extractors considered were the Karhuncn-l oc\c

.'_ tribute more equally. Thus. when a given amount of noise is present dominant cigenectors lor each class, the -ukunaga-Koontl trans-
*, in the input image, it is evenly distributed over all wedge and ring formed discriminant vectors, and the F-ole-Sammon discriminant
*. Fourier transform samples (for white noise). For Fourier transform vector. Extensions of all cases to more than two-class pattern recog-
'a "'"
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Chord Distributions in Pattern Recognition:
Distortion Invariance and Parameter Estimation

Wen-Thong Chang and David Casasent

Carnegie-Mellon University
Department of Electrical and Computer Engineering

Pittsburgh, Pennsylvania 15213

Abstract

The use of chord distributions in pattern recognition is discussed and efficient ways to
compute such distributions are noted. New methods to achieve scale and in-plane rotational
distortion-invariant multi-class recognition and estimates of the distortion parameters are
described. 3-D out-of-plane rotational distortion-invariant methods are reviewed.

1. Introduction

Chord distributions are well-known features that describe the shape of an object and that
are useful for object identification [1-3]. These features can easily be computed (opti-
cally or digitally) from the autocorrelation. In Section 2, we define the chord distribu-
tion and discuss different chord pdfs. These include an observation space h(,x,. and a
feature space h(r) and h(V). New insight is provided into the local and global features
produced by chord pdfs and the use of silhouette and boundary (profile) imagery. In Section
3, attractive properties of these chord distributions for scale and in-plane rotation in-
variance are discussed. A new use of such features for distortlon-invariant multi-class
object recognition and methods to extract the object's scale and orientation are advanced.

In Section 4, methods to achieve 3-D object distortion-invariance (to out-of-plane rota-
tions) are reviewed. The resultant feature extractor thus enables multi-class object
classification in the presence of a wide variety of geometrical distortions.

2. Chord Features and Distributions

2.1 Definition. The conventional chord distribution h(r,e) is a plot of the distribution
of the lengths (r) and directions (M) of all chords drawn between all pairs of points on the
boundary of the object f(x,y). The two chord pdfs of most use are h(r) and h(e), the pdfs
of chord lengths r and directions e. To most easily compute the various chord distribu-
tions, one can begin by forming the autocorrelation

5,. b(x,y) 0b(x,y) = b(x,y) b(x - x' y - (y)dxdy = R(;xy = h(xy (i)
y y y

of the boundary b(x,y) of an object. The autocorrelation describes the number of points
. of intersection for a given horizontaland vertical shift (Zxiy) between two shifted

images of the object. 'he value of R at a given ( x,'y) thus precisely gives the number
of chords with given horizontal and vertical projection lengths (kx,y) [3-4].

To show this, we write (x,) = (r cos", r sine) where r = (x2+ y) /is the radial.-
. 1 xy xy isterda

chord length and ' 
= tan (Zx/) is the chord's angular orientation. Substituting into

(1), we see that R(;x,i ) contains information from which h(r,e) can be obtained. From
h(;x,v), the chord distribution h(r,e) can be calculated. The chord pdfs h(r) and h(s)
are mo e useful and are most easily calculated from h(lx, y) by appropriately sampling the
autocorrelation function. If the autocorrelation is sampled radially, we obtain

h(r) = .'h( x,£yrd (2)

If we sample it angularly, we obtain

h(9) = !h(x, y)dr (3)

2.2 Realization. These h(r) and h(C) chord pdfs are the features we will use. To obtain
* (2) and (3) optically, we form h(ZxIY) optically (typically from the Fourier transform of

the power spectrum of the object) and sample this distribution using wedne and rin7-shaped ':e
detector elements [4]. Such a detector unit exists (Figure 1) with 32 wedges in one-half
of a circular plane and 32 rings in the other hall of the plane [5]. The autocorrelation V_
function is symmetric and thus no loss of information results by sampling only half of the
autocorrelation plane. In terms of chord distributions, the symmetry of the autocorrelation
function arises because each chord in the image is counted twice as one traverses the boun-
dary of the object. In one case, one end point of the chord is encountered first and then
the other end point is encountered first. The first corresponds to a chord with projections

.5.
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(.x,.Y) and a length r. The sym ietric case corresponds to a chord with projections
x, V) and a direction -: rather than +. For similar reasons of symmetry, the orienta-

tion of the wedge and ring halves of the detector does not matter. The wedge outputs pro-
vide h(V) (quantized to 32 - values over 1800) and the ring outputs provide h(r) (quantized
to 32 r values over the radius of the autocorrelation function). Figure 2 shows
the general block diaoram of our chord distribution feature generator using a wedge-ring
detector (WRD).

'k

INPUT --- 1 h(r),h(6) FEATURE EYTPACTIOQN
AUTOCORRELATION W (FISHER)

AND CLASSIFICATION

Figure 1. Simplified representa- Figure 2. Simplified Block Diagram of a chord dis-
tion of a wedce-ring tribution pattern recognition system.
detector (WRD).

2.3 Boundary, Silhouette and Gray-Level Objects. Different chord distributions result
depending on the type of input object. For a boundary or edge image (case A), the distri-
bution produced is of the number of edge or boundary pixels (i.e., the number of chords).
This is the conventional chord distribution. For a silhouette image (binary with all ones
on the object and with zeroes on the background), the distribution produced (case B) is
the same as case A, but weighted by the common area of overlap of the two images for the
given ( shift. If the shift is large, corresponding to long chords, the weighting
will be smayl. However, if the shift is small, corresponding to short chords, the weight-
ing will be large. Thus, this weighted chord distribution that results for the case of a
silhouette object (case B) emphasizes short chords more than long chords. The chord dis-
tribution in case A will be more susceptible to noise in the interior of the object
(internal pixels of value 1 result in many new chords being produced in case A, whereas in
case B zero internal pixels cause a loss of chords but a much lower percent change results
than in case A). When the chord distribution in case A is computed from the autocorrela-
tion or power spectrum (as in Sections 2.1 and 2.2), it is much simpler to calculate than by
other methods which have great difficulty when applied to a non-continuous boundary. How-
ever, each missing boundary pixel in case A will still result in a loss in the number of
chords counted.

The weighted chord distribution (case B) emphasizes short chords. These correspond
to local object features (whereas long chords correspond to global object features). Since
local object features are useful for discrimination between object classes (inter-class),
we expect the weighted chord distributions to provide superior object discrimination. Long
chords, corresponding to global object features, are more useful for intra-class object
recognition (within one object class, in the face of various object distortions). The per-
formance of weighted chord distribution features in the presence of noise in the input is b

expected to be superior to the use of conventional chord features. In a boundary image
(case A) with N pixels on the boundary, each noise pixel on the object produces N new
chords and each missing b undary pixel (due to noise) causes N chords to be removed from
the distribution. With N? total chords, each noise pixel thus changes the total h by a %
factor 1/N. In case B, each weighting function is on the order of N (this is more true .e

for short chords t~an long chords) and thus each noise pixel produces a change in h by a
factor of only 1/N (this is a considerable improvement, since N is usually quite large).
For the same reason that the change in h for short chords is less susceptible to noise, it
will also be less susceptible to small differences in the object's shape (due to distor-
tions). but changes due to sufficiently different objects are still retained.

The dynamic range of the chord features in cases A and B appears to be comparable.
Since use of the boundary image (case A) whitens the image's spectrum and results in a
sharper correlation function compared to the broader correlation pattern that results in V.
case B, wedge-ring detection in case B is much simpler. Case B is clearly preferable from
noise considerations, its inter-class discrimination is clearly enhanced and its intra-
class recognition should be retained. Since all chords are available (and more easily
detectable in case B), one can use the preferable chord features (short or long, local or
global) for a given problem.

. .-.. .-%-..... ..."- ........ . -
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If the gray-levels of the object and its internal structure are reliable, then the chord
distribution for the gray-level image (case C) is most useful. The distribution in case B
is one level of a general chord distribution. The distribution in case C is a higher-
level of generalized chord distribution [4]. In this case, the chord distribution for all
internal chords or internal object points is provided. Algorithms such as (1) with theboundary object b(x,y) replaced by the full object f(x,y) provide such features with no ,j

increase in computational load for optical systems (digital systems can achieve simplified
correlations when operating on binary imagery).

3. Scale and Rotation-Invariant Chord Processor

3.1 Insight. The chord pdf h(r) is invariant to in-plane rotation of the object. This
is obvious since the in-plane rotation of an object does not alter its radial distribu-
tion. The chord pdf h(1) simply shifts with in-plane rotations. This follows directly
since hl(lx,y) = h(rcos-, rsinS) changes to h2(x,y) = h[rcos(,+e 0 ), rsin( +-0)] for ro-

tation of the input object by &0' i.e. in (r,e) space, h2 (r,) = hl(r," +-jo). Thus in-
plane object rotations rotate h(

2 x, Zy) and translate h(0) . The chord pdf h( ) is invariant
to scale distortions of the object whereas h(r) scales (rather than shifts) with an input

scale change j. The invariance of h(&) with scale is obvious. For a scale change , in
the input object, the h(r) distribution scales proportional to a and h(ar) is obtained.
As long as half of the correlation plane is sampled in e and r, the above remarks remain
valid (due to the symmetry of the autocorrelation and due to the cyclic shift nature of
h(e)]. Table 1 summarizes these properties.

Table 1. Properties of R(r) and h( ) distributions .,.-.

PARAMETER Feature Distribution Property Amplitude Effects

h(r) Invariant None

Rotation, .

h(e) Shifts -e None

-3-%

h(r) Scales r - ar -3

Scale,
h () Invariant -3

h(r) Invariant None

Translation
h(e) Invariant None

Table 1 also notes the effects on the amplitudes of the h(r) and h( ) features. We
now detail the origin of these variations. We consider first the effect of a scale change

!by a factor of a) in the input object on the amplitudes of h(i) and h(:). First, we

consider the observation space h(x,). The image f(x,y) with scale = 1 produces hl.
This relates to h2 for a # 1 as detaiYed below. From (1),

hl(., ,) = f(x,y) f(x + , ,+ )dxdy (4)

For the scaled object (scale factor )

h2 y) = .7 f(ax, y) f ,(x + 1(y + )]dxdy (5)

Changing variables (u,v) = (ax,ay), we obtain .

h 2 lx, = (1/a2) f(u,v) f(u + a x v + Y)dudv = (1/))b 1 ( "

(6)

2
rom (6), we see that h is a scaled version of h with the amplitudes scaled by (1/,).

2 2

%o..,.
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Now we consider the effect of scale changes on the h(r) and h(-) distributions. For
the h(r) distribution, we find, from (2),

h (r) = " f(rcos-, rsin,-)rd- . (7)

For a scaled object (scale factor ),

2 3 3h (r) = (1/,, ) .'f(arcos- _.rsinr:rd- = (1/: ) !f(arcos:,arsin ),rd -  = (1/ )hl ( .r) (8)

Thus, from (7), we find a scale chinge (by a) between the hl(r) and h (r) distributions
and an amolitude scale factor (1/,x). For h(l), the effect of a scali change is simply

3
h = (1/a )hl( ) , (9)

3i.e., only an (1/ ) amplitude factor.

The distribution and amplitude effects of n and distortions summarized in Table 1
and detailed above are valid for continuous da~a and continuous r and sampling. Finite r
and - sampling is expected to change the exact results somewhat. Specifically, due to
samnlinn, an exact ratio of 3 is not expected. Furthermore, the scale change from h(r)
to h(ar) can be quite difficult to uncover since the distribution for one scale may lie
in 11 rinas and the distribution for another scale can easily lie in 6 or 8 rings. Thus,
the h(:) distribution is the most useful one for general (a plus e ) distortions. The h(r)
scale r changes linearly (to L) and is thus not a simple shift. hen the effect of a
finite number of r samples is included, the h(r) effect with a is nonlinear. If we scale
the h(r) distribution in r by a, the ratio a3 then exists between the h(r) for a scaled
object and the original h(r) scaled in r by i. Thus, the distribution and amplitude effects
of scale are coupled as Dust detailed. Specifically, this means that the amplitude ratio a,
is a

3
, but it is this for different r and ar points in the distribution (not the same r

points).

By g(x,y) = f(cx,ay), we describe both the position and value of the pixels. Specifically %
new pixel (x,y) is old pixel (ax,ay) (i.e. a > 1 corresponds to a scale decrease) and the
value of the old and new pixel are the same. Our above formulae for amplitude effects pro-
portional to a-3 thus apply for binary silhouette images (analogous formulae for gray-scale
images can be derived and used if the input data is gray-scale. In such cases, with a < 1,
we have a larger image with more pixels and more intensity per pixel, since the object is
closer and received intensity is proportional to range squared). For binary silhouette images
and a< 1, the new image is larger. Thus, for a given (lx,ty) shift, we obtain more overlap,
larger correlation values, more weighting and more chords. Our new h2 will have larger ampli-
tudes (more chords) than hl and this agrees with h2 = a-

2hl> hl predicted.

3.2 Distortion - Invariant (a and en) Pattern Recognition. The insight provided in Sec-
tion 3.1 and the distortion effects summarized in Table 1 are most useful in devising a new
pattern recognition feature extractor (invariant to scale a and in-plane rotation C ID4
distortions). We consider 3 distortion cases separately below and summarize our results in
Table 2. From Table 1, we note that the h( e ?) distribution is the most useful one in
general (since it provides invariance to sca e automatically and to rotations if shifted
versions of h(e) are tested; and since the ratio of h(e) and a reference hR(&) provides an
estimate of a, whereas the best shift of h(e) provides an estimate of e0 For only
scale distortions, h( ) is best, and for only rotation distortions, h(r) is best for
classification (since these features are invariant to the indicated distortions).

3.2.1 In-Plane Rotations. For the case when e0 is the only distortion present, we com-
pare the h(r) distribution hR(r) for all references R. This provides an estimate of thepar

object class R. Next, for the best reference R (obtained from the h(r) and hR(r) compari-
sons), we compare h(e) and hR(e) for various shifts 0 in hR(&). From the hR(z + 60) and
h(-) comparisons, we obtain a verification of our initial class estimate R and an estimate
of &0" A combination of both h(r) and h(e) tests thus provides the best class R estimates.

3.2.2 Scale Changes. For the case of an a distortion alone, we compare h(e) for the test
inout vs. hR(-) for all references R. We must compare h(S)/hR(') for each '. The reference
R for which this ratio is constant for all S provides the class estimate R. The ratio
h( )/h,(-) provides an estimate of a also. To confirm our R and a estimates, we form h(r) e
and hR ar) for the initial R and a estimates. Agreement of h(r) and hR(ar) confirms our P
initial estimates. Combining both the h(e) and h(r) tests again yields better estimates.

3.2.3 Combined Scale (a) and rotation () Distortions. When both a and e0 distortions
are present (the most qeneral case), analysis relies on h( r ) and is more complex. We
form h() /hR( + -. ) for all R and all shifts ;-. When this ratio is constant for all
the corresponding R, and U estimates are obtained. The ratio provides the a estimate.

% %
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Table 2 Scale and In-Plane Rotation• Invarlart M'X:ti-Class Pattern Recogntio-r-

CASE Procedure Remarks Results

(A) Compare h(r) and h (r) h(r) is Rotation Invariant Class R Estimate'
":' Rot tion

" Only Compare h + ) and h( ) h() shifts with 0 Confirms F I
0Estimate%

Provides

Estimate

(B) Compare h( )/( R Constant Ratio Provides R Class R and

." Scale ifor each Ratio Provides , Estimate Scale
o Estimates

Compare h(r)/h R(,r) Confirms above estimate Confirms P and

Estimates

(C) Compare h(-)0h(: + ) Constant Ratio Provides Initial Esti-

Rotation for all R and all shifts R and -0 . Patio qives mates of
R, 

0

and Scale 
R

Compare h(r)/hR (ar) Confirm above Estimates Confirm R and

Estimates

As a check, we form h(r)/h(-,r) for the initial P and estimates. From the constancy

of the ratio, we verify our R and . estimates. Forming h(r)/hR(-r) initially for all :,
is more computationally intensive and thus the order chosen appears best. This is also the
most aeneral case.

4. Out-Of-Plane Distortions

For and distortions, we require one h(r) and h(-) distribution per class R for our
trainin - set. To accommodate out-of-plane distortions , we use several training set
images per object class and from all h(r) and h(-) features select those with the largest
Fisher ratio F (from training set data). We then form a linear discriminant functions w
that maximizes F for a multi-class feature set. An input test feature vector c (chord
distribution) is projected onto w and the projection value determines the input object
class. This algorithm [4] has demonstrated perfect performance in selected image distor-
tion tests.

5. Summary. °[

Chord distributions h(r) and h(-) have been shown to be easily computed from the
autocorrelation of the input object and WRD (radial and angular) sampling. Using th,
various properties (Table 1) of h(r) and h(-), a new multi-class pattern recognition
system for scale and in-plane rotational distortions was advanced (Table 2). Combined
with our prior out-of-plane rotational distortion work (Section 4), this feature space
can provide full 3-D object distortion invariance and estimates of the distortion para-
meters {orientation and scale) of the object.
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ABSTRACT

A two-level feature extraction classifier using a geometrical-moment feature space is de-
scribed for multi-class distortion-invariant pattern recognition. The first-level classi-
fier provides object class and aspect estimates using multi-class Fisher projections and op-
timized two-class Fisher projections in a hierarchical classifier. Aspect estimates are
provided from ratios of the computed moments. The second-level classifier provides the
final class estimate, distortion parameter estimates and the confidence of the estimates.
Extensive test results on a ship image database are presented.

1. INTRODUCTION

One can efficiently compute the moments of an input object by various methods [1,2].
These features are excellent descriptions of the geometrical aspects of an object. They are
quite unique since they can provide information on the orientation, scale and location of
the input object [2] and because they can be corrected for various system computing errors
[3]. In this paper, our earlier moment classifier [2] is modified to include a two-level
classifier (Section 2). This provides significantly improved performance. We earlier [4]
described initial results for robotic object parts. Here, we detail the new two-level clas-
sifier design (Section 2), and the performance obtained (Section 4) for an extensive ship
image database (Section 3).

2. NEW MOMENT- BASED CLASSIFIER

2.1 Moment Statistics
The geometrical moments

m = lff(x,y)xPyqdxdy (1)Pq

of an input object f(x,y) are jointly-Gaussian random variables (JGRV) [6] due to the finite
spatial sampling of the input image and they are good estimates of the actual moments of an
input object. This JGRV model allows us to use a conventional Bayesian classifier [5] that
minimizes the probability of incorrect class estimates (Section 2.4). The mean 0. and co-
variance I for each object class i must be estimated to use this classifier. Ge~erally, ",.
this requdles a training set of imagery. Because the moment features are JGRVs, we require
only one object view per class to achieve such estimates. Thus, such a classifier using
these geometrical moment features does not require a large training set of data.

2.2 Aspect Angle Estimator (First-Level Classifier)
The moment features are JGRVs only with respect to scale (a,b) , translation (x0,y 0 ) and

in-plane rotations (1), but not for out-of-plane rotations (¢). ihus, we must estimate
for the input object. This is achieved in our first - level classifier, which thus in-
cludeseach image aspect view as a separate object class. We thus distinguish object classes
(in our present database tests, Section 3, this refers to different ship classes) from view 1%

classes (these include all aspect views of all ship images). In our first-level classifier,
we estimate the aspect angle of the input object from the ratio A = 20/L02 of the central
moments, where ~20 = m2 0-m 0 /m0 0 and 02 = m0 2 -m6 /mo. For all reference objects in the
class being tested, we calculate A and then form = A/A. The aspect view with the K value
closest to unity is selected plus all aspect views with K < TA (the aspect threshold). In
our tests, we use TA = 1.5. Those aspect views of the class being tested with K < TA are
passed to the second-level classifier.

2.3 Object Class Estimator (First-Level Classifier)
To further reduce the number of view classes (aspect plus class) passed to the second-

level classifier, we use multi-class and two-class Fisher projections [7] on a -raining set

of ship images. From these scatter plots for the multi-class Fisher projectioi- we select
the two subsets of object classes that are best separated at each node in a %
tree classifier. For each node, we then calculate (from training set images) the two-class

A1
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Fisher vector that best separates and clusters the two subsets at each node. For example,
for node 0, the full set of N-i multi-class Fisher vectors Fl to FN_ 1 for the N object
classes are computed. From examination of the projections of the inputs onto
the two most dominant Fisher vectors, we select the two subsets (with possibly)
several object classes per subset) to be separated at node 0. The two-class Fisher vector
for these two subsets is then calculated and the projections of all training set data on
this Fisher vector are plotted. From this plot, weighted distances to the two class means
were calculated and a class estimation threshold TCl is selected. If the weighted distance
for the projection of an input test image exceeds TC1, then we proceed down the correspond-
ing branch at that node of the hierarchical tree. On each branch, another node is present
at which the classes on that branch are further divided intc two smaller subsets. New multi- %

class Fisher projections are used at each node to determine the two subsets to use and a new
two-class Fisher projection vector is calculated for use at each node.

All of these calculations are performed off-line on a limited number of training set V
images. To account for scale and translational distortions in the input image, the central
moments normalized for scale are used in the first-level classifier and the scatter plots
are calculated for different aspect views of each class. Details and examples of this
organized first -level class estimator are provided in Section 3. This hierarchical pro-
cedure is followed until terminal nodes are reached and a decision on the class estimate(s)
of the input object is made. For some objects [4] , full separation into all classes is not
possible. If the calculated weighted-distance measure for the input test image is less
than TCl, all classes at that node are passed to the next level. Use of alternate
nodes is included to allow better separation of subsets at certain nodes for particular
databases. The real-time calculations involved in this hierarchical class estimator are
quite simple. The test feature vector is simply projected onto several discriminant vectors
(each such operation is merely a vector inner product) and from the projected values, class
estimate(s) are obtained. For each such class estimate, the aspect class estimator (Section
2.2) is used to determine the total number of view classes to be processed in our second-
level classifier.

2.4 Bayesian Classifier (Second-Level Estimator)
Because the operations required in the Bayesian classifier are computationally more in-

tense, the first-level estimator is used to reduce the number of view classes to be pro-
cessed in the second - level estimator. The conventional Bayesian classifier minimizes
the probability of an incorrect class i estimate (here i denotes a view class). Using the
assumptions of JGRV features, the discriminant function to be minimized is [5]

T 1lgi(x) = (x-i (x- ), (2)e

where ki and *i = I are the mean vector and covariance matrix for class i. For our present
case, the feature vector x is a moment vector m and thus only one object view per class is
needed to measure , and Zi" Operation of such a classifier thus proceeds by calculating
gi(x,y) for the measured input feature x=m for all object classes i. The class i that mini-
mizes gi(x) is the best class estimate in a Bayesian sense. The discriminant function in
(2) is the Mahalanobis distance. If Z = I, it becomes the Euclidean distance measure or a
nearest-neighbor classifier. Use of f = Y assumes that all moments are independent and that
the expected variations of all moments are equal.

To utilize (2), i must be a view class. To calculate all object class distortion param-
eters, i.e., scale (a,b), range (R), translation (xo,yQ) and in-plane rotations (S) as well
as aspect view angle (A), we let the view class i include the object class and aspect view
angle and we include the other parameters in a distortion parameter vector b = (x0,y0,a,b,R,
e). We combine the view class and distortion parameters as mi(b) and thus evaluate (2) for
all view classes i and all distortion parameter vectors b. Since m(b) is a nonlinear func-
tion of b, we use an iterative algorithm of the form

bk+l - bk + akrk, (3)

where bk is the b estimate at iteration k and bk+l is a point in an r-dimensional space at
a distance ak in-the direction rk fronmthe present estimate Lk. To determine the complete
form for the iterative algorithm in (3), we expand mi(b) in a Taylor expansion series about
the present b point as

.. 1

M () m (b k) + Jk (b-b, k (4)

where J is the Jacobian of mi (b) with respect to b at the k-th iteration. For a measured
input feature vector _, the error to be minimized-is ei = fn - m(b) and the square-error
measure is Ei = RiTr-±Si, where E-1 is the weighting matrix used. Substituting fi and (4)

• -, . . • - , .- ,. . . - , % % - , , .% . ... % - % -. ....% % - ..% % %%



into the expression for Ei, the b that minimizes Ei(b) is found to satisfy

bk+l = k + [(jkl-i-lklT-l[_ lb " 15

b k = b k _ ( ) TE_ J k I (J ) TI [fi im(b)]. (5)

Eq(5) is the nonlinear iterative algorithm used in our second-level classifier to estimate
b. Thus, for each view class i (5) is repeated and new b estimates are obtained. For each
Ek, we calculate the normalized difference

Agi = [gk(i'b) - gk(ib) bg ) (6) N

between two successive gi estimates, where gi(b) = Ei. The iterationsin the Gauss-Newton or
Newton algorithm in (2) ind (5) are continued until tgi is less than a convergence threshold
T.

2.5 Parameters and Overview
The full moment-based two-level estimator is shown in block diagram in Figure 1. It con-

sists of an optical moment feature computer, first-level class and aspect estimators, and
the second-level Bayesian classifier. The output from the two first-level estimators are
used to access those reference moment vectors necessary for the second-level nonlinear ter-
ative classifier. The final outputs are the class estimates i (class and aspect angle ),
the target's distortion parameters or orientation information b and the confidence gi of the
estimates.

Se

Object Second --+Object Class
Input First Class Reference Level --*View Angle
Moment Level Set Distortion - Scale
Vector Estimator Asect Selection Parameter -Translation

View Angle Estimator ---*Confidence

FIGURE 1
Block Diagram of a Two-Level Moment-Based Classifier

To facilitate b estimates, x0 and yo are estimated from -ni M0 00 and -i01/in0 and scale
is estimated from mQ. To facilitate calculations, J is evaluated with (x0,y0 ,a,b) =
(0,0,1,1), i.e. assuming that the presently calculated distortions b are correct and thus
viewing future iterations as updates on the present bk rather than The initial b0 estimates.
These and other features of the iterative algorithm allow it to converge in typically less
than 15 iterations. Different approximations to E- 1 were considered in our case study.
Such measures were essential since : is ill-conditioned. Approximations considered were:
1-1 = I and Z- 1 = W WT, where W is The multi-class Fisher projection matrix of the reference vector
set. The iterative convergence threshold T is typically chosen as 0.01. This corresponds to a 1% difference in
successive iterates as in (6). The class estimation threshold TCI = [l-dl/d2] is chosen as
0.35, where dl and d2 are the distances of the projection to the two weighted class bounda-
ries at each node in our first-level class estimator. The class estimation threshold TC2
for the second-level Bayesian classifier is defined similarly and is chosen to be 0.35 also.

3. SHIP DATABASE

3.1 Image Sets
Ships on the open-sea represent an attractive application for feature-space techniques

(since one object can often easily be included in field-of-view). The class, orientation
and range of the obiect in this application are necessary for missile guidance and target
selection. The set of ship imagery available consisted of five ship models with 36 different
aspect views per ship class available from a 900 depression angle (00 attack angle) at 10'
intervals (a total of 180 view classes). Figure 2 shows the broadside views of the five ship
classes.

%.
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(a) (b) (c)

(d) (e)

FIGURE 2
Broadside Views of the Five Ship Classes

TABLE 1
Ship Image Database, 36 Images Per Class

CLASS SHIP
NUMBER NAME SHIP TYPE

0 Moskva Soviet Helicopter Cruiser

1 Leahy U.S. Guided-Missile Cruiser

2 Hope Hospital Ship

3 Albany U.S. Guided-Missile Cruiser

4 Brooke U.S. Guided-Missile Frigate

Table I lists the names and types of each general ship class. For each ship, the original
images were binarized and data sets with and without the hull removed were prepared. All
data included were obtained with the hull present. Each image was 128 x 32 pixels with
approximately 20J pixels on the broadside views and less than 200 pixels on the bow and stern
views. Several other ship image databases used are noted in Table 2. These include: the
standard reference images used in the second-level classifier (these include only four
images in the first quadrant, broadside images only and other selected object views).

TABLE 2
Miscellaneous Image Training and Test Sets Used

DATA SET SPECIFIC SHIP IMAGES SYMBOL

Standard 'eference Images l0o,300,500,800 S

Broadside Images 40°-140',220°-320- B

Even Views 00 ,20*,etc. E

Odd Views 10',30',etc. 0

All Views 00 ,10',20',etc. A

3.2 Hierarchical Tree
In Figure 3, we show the scatter plot for all views of all five ship classes on the two

dominant multi-class Fisher vectors. As seen, ship class two is the most easily separated.
Thus, at node 0 we chose to separate the class two ship (the Hope) from the others. This
yields a terminal node for one branch from node 0. At node 1, we examined a similar scatter
plot for classes 0,1,3 and 4 and chose to separate the class 0 ship (the Moskva) from the

. three U.S. guided-missile ships. At node 2, we then separated three ships (the Brooke, a
Frigate, from the two cruisers) and finally at node 3 we separated the two U.S. cruisers.

*Figure 4 shows the final hierarchical tree used for our ship image database.
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3.3 Node Threshold Selection
In Figure 5, we show the projection of the subsets at node 2 in the tree of Figure 4 (a I

denotes a class four projection and a 0 denotes class one and three projections). The dis-
crimination point D is the point where the weighted distances to the means (yo and yl) of
the two subsets are equal. The lower bounds DO and Dl for each subset are noted. For less
uniform clusters, Do and D1 are selected at several standard deviations from yo and yl. The
weighted distances D; and D1 (normalized to 1.0) from DO to yo and D1 to yl respectively , -

were calculated. The D' values for all nodes were found to lie in the range from 0.35 to
0.45. Thus, TCl = 0.35 was selected. If more noise is expected in the input data, TCI can
be lowered. However, if the wrong class estimate is passed from the level-one classifier,
this will be quite detrimental to performance. Thus, the use of a lower TCI threshold
should be carefully considered. In subsequent tests, we verified that the same hierarchical ,I.
tree structure of Figure 4 would be chosen from a significantly reduced set of 16 reference
images (specifically 4 images in each quadrant). The TC, value was similarly found to be
unchanged when this reduced set of training set images was used. This is useful to retain
the reduced size training set advantages possible with JGRV features.
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FIGURE 5
Projection of Subsets at Ship Node 2 Showing the Discriminant Point,
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4. EXPERIMENTAL RESULTS

Various aspects of the classifier were separately investigated. Each subsection below
addresses one major issue of our moment-based classifier for the case of a ship image data-
base. In each case, the test number is noted together with the salient conditions and the
percentage of ships correctly classified. Each data entry in a table corresponds to 180 test
images (case A = all) or 110 test images (case B = broadside views).

4.1 Effect of First-Level Estimator
In Tables 3 and 4, we show the results of tests performed with and without the first-level

classifier enabled. As seen from the last column, excellent performance (above 98% correct
classification) is obtained if the aspect estimator is used. This is expected since the N
second-level classifier does not provide aspect estimates and without this different ships
at different aspect views have similar moments.

TABLE 
3

Effect of First-Level Classifier on Performance (Broadside views, Case B)

TEST AVERAGE NUMBER OF PERCENT

TES TEST CONDITIONS REFERENCE VECTORS PASSED TO CORRECTLY
NO. SECOND-LEVEL CLASSIFIER CLASSIFIED

1 First-Level Not Used 20 35.5

2 First-Level Class Estimator Not Used 8.12 36.3

3 Aspect Estimator Not Used 4.11 98.2

4 Both Estimators Fully Used 1.75 98.2

4.2 Computational Load with First-Level Classifier
In column 3 of Table 4, the number of reference vectors for which the second-level clas-

sifier must be tested is listed. There are a maximum of four aspect views in each of the
five classes. These data correlate well with the percent of objects correctly classified.
The fewer view classes passed to the second-level classifier, the better the system performs.
In tcst 1, all 20 view classes are passed to the second-level classifier (i.e. all four as-

pect views of all five classes, since no first-level estimator was used). In test 2, with
only the aspect estimator used, we might expect five view classes to be passed (the number
of object classes). The larger average number of 8 view classes passed reflects the inde-
cision in the aspect ratio test with the larger threshold of 1.5 used (versus passing only
the best aspect estimate per class). In test 3, the aspect estimator is disabled and thus
we might expect four view classes to be passed. This is close to the average number ob-
tained. The data in Table 4 is quite comparable to that in Table 3 with only slightly lower
percent correct performance obtained (due to the larger 180 versus 110 number of test images
used and the low resolution of the bow and stern views now included).

TABLE 4

. ffect of First-Level Classifier on Performance (All Image Views, Case A)

TEST AVERAGE NUMBER OF PERCENT
TEST CONDITIONS REFERENCE VECTORS PASSED TO CORRECTLY

NO. SECOND-LEVEL CLASSIFIER CLASSIFIED

1 First-Level Not Used 20 36.7

2 First-Level Class Estimator Not Used 7.24 37.2

3 Aspect Estimator Not Used 4.78 86.7

4 Both Estimators Fully Used 1.72 86.7 O-

The first-level estimator is thus useful to reduce the number of view classes to be pro-
cessed by the second-level classifier and hence the computational load on the system. The
aspect estimator is the most important part of the first-level classifier, because of the
nature of the second-level classifier. In general, if the first-level classifier does not
perform well, the second-level classifier cannot improve performance. In the tests performed
in Tables 3 and 4, a convergence threshold T = 10- 4 was used and the reference set was the
standard one in Table 2.

4.3 Convergence of the Second-Level Classifier
In this test, we consider the number of iterations necessary in the second-level classifier

.. .. .. ......................-.- r ........ ... . ...... ..
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for convergence for different thresholds T. The results (Table 5) show that effectively the
same performance (98.2%) correct results for different convergence thresholds T was obtained.
For the case of all ship images (Case A versus Case B), a nearly constant 87% correct class
performance was obtained. As expected, the number of iterations required for (5) to
converge to the specified T decreases as T increases. In no case are more than 20 iterations
necessary however. Several modification details associated with starting the alaorithm and
choosing the step size were incorporated to insure such convergence. Other refinements in
the step size choices in (3) can reduce the number of iterations in the second-level classi-
fier by a factor of two (for the databases tested thusfar).

TABLE 5
Effect of Convergence Threshold T on the Number of Second-Level Class Iterations

(Qse B, Broadside Test Images) X

PERCENT
TEST CONVERGENCE CORRECTLY NO. OF SECOND-LEVEL
NO. THRESHOLD T CLASSIFIED ITERATIONS PER VIEW CLASS i

OUT OF 110

1 10 -  98.2 17.04

2 10 -  98.2 16.00

3 10-2 98.2 14.77

4 101 98.2 13.30

5 0.5 98.2 2.0

6 1.0 98.2 2.0

4.4 Number of References in the Second-Level Classifier
In the prior data, only four reference views per class (all in one quadrant) were used

and excellent 98% (Case B) or 87% (Case A) correct performance was obtained. In Table 6, we
consider the performance obtained when more aspect reference views per class were used in
the second-level classifier. Tests 3 and 4 employ all 18 aspect views. The results shown
are as expected. The excellent original performance 98% and 86.7. were improved by only
1-4% by increasing the number of aspect reference images per object class by a factor of 4.5

d (from 4 to 18). In tests on other images (4] with less symmetry, poorer performance resulted
unless reference images in two quadrants were used in the reference set for the second-level
classifier. Thus, the exact results obtained depend upon the data and its symmetry. In
general, a reduced size reference set can be used. If the number of aspect references is
reduced, the accuracy in the aspect angle estimate may also be reduced. For the cases con-
sidered, interpolation between different aspect views is possible to provide view angle
estimates with 100 accuracy using a reduced reference set. The sign of an odd-order moment
can provide quadrant information on the aspect of an unknown test input object. "

TABLE 6
Effect of Reference Set Size in the Second-Level Classifier

PERCENT
TEST REFERENCE SET CORRECT
NO. (OUr OF 110 & 180)

1 10',30',50-,800 98.2

2 10',30',50-,80- 86.7 ,

3 Even Aspect Views 99.1

4 Even Aspect Views 91.1

4.5 Weighting Matrix Estimates
The final test run concerned the weighting matrix Z used in the second-level classifier.

The choices considered were I and W WT with W calculated from the two dominant Fisher vectors
or from tne four dominant Fisher vectors for-all target views or only the broadside views.
The results show that over 90% correct recognition was obtained with only the identity ma-
trix used for the approximation to E. Use of the full four Fisher vectors gave only 2%
better performance. In all earlier data tests shown, the identity matrix was employed as an
approximation to L.

...... . . .... ,... . ., . . . . . - . - . . .. . . . . . . . . . . . .. - . , . i |i : •
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S. SUMMARY AND CONCLUSION

A new two-level classifier has been described that uses the geometrical moments as the
feature set. These features are JGRVs and thus allow use of a Bayesian classifier with only
one training set image per view class required. A nonlinear iterative algorithm is used in
the second-level classifier to obtain the final class estimate and object distortion param-
eters. To reduce the number of view classes to be searched, first-level aspect and class
estimators are used. The aspect estimator simply employs the ratio L20/u02 to select only
views with a similar aspect ratio. An organized hierarchical tree search is used to obtain
class estimates. Multi-class Fisher projections are used to define the nodes in the tree
and two-class Fisher vectors are used to determine the subset at each node during testing.

* In all cases, the computational load is quite low: the first-level classifier requires only
several vector inner products, the second-level classifier requires approximately 18000 opera-
tions per iteration and fewer than 15 iterations per view class. Thus, a quite efficient
and attractive feature-space object classifier results with excellent performance (uver 90%
correct recognition) for a five-class problem with aspect view object distortions present.
All parameters of the classifier have been examined and quantified for a ship image database.
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A two-level classifier has been designed for use in a moment-based hybrid optical/digital processor. The simulation per- . , '
formance of this pattern recognition system using real IR input test images of ships and reference moments obtained from , ,... % '.,

ship models is described with emphasis given to the preprocessing operations required. % - .%

1. Introduction ....
mpq=fff(x,y)xPyqdxdy (1)

The use of optical processors to compute image "" "

features for feature-based pattern recognition has re- of the P1 input pattern f(x,y) as detailed in [7]. _ N ..

cently received renewed interest. The optically-com- These optically-generated image features are used %,,.. ,
puted image features thus far considered include as inputs to a digital feature-based classifier which then .

Fourier coefficients [1 -31 , chord histogram distribu- determines the object class and the orientation, scale '

tions [4,5!, and geometrical moments [6-81. In this and aspect of the input object. The details of this clas-
paper, a moment-based feature extractor and classifica- sifier are provided elsewhere [81 and are not germaine .
tion algorithm for pattern recognition is considered to our present discussion, however several remarks on .. , -P 4
(section 2) and its performance in the classification of the classifier follow for completeness. The optically- %., .'.,,. ,S

ship imagery (section 3) is addressed. Specific atten- calculated input moment vector nm is projected by the %, .

tion is given to classification of real input imagery first-level classifier in the digital section onto a multi- , -

(section 5) and the image preprocessing required (sec- dimensional Fisher feature space [9]. From the loca- *..-

tion 4). tion of the projection vector, initial estimates of the ".. "... ...-

input object class are made. From the ratio of the nor- ,, ' ..

malized second-order moments 1 20 and P0 2 , an esti-
2. Optical computation of the geometrical moments mate of the aspect ratio or aspect angle of the input ,

object is made. These estimates are used to select ref- -- - -

* -The optical system considered to generate the mo- erence vectors mi(O) for class i and aspect 0 from stor- . . ,

ments of an input object [7] consists of an input plane age against which m is compared. The final decision -'S:%. -. *

PI (in which the input image is placed) imaged onto a on the object class and the geometrical location of the
S moment generating mask at plane P2 . The monomials input object is made in a second-level classifier imple-

xPyq up to fifth-order (p + q < 5) are recorded on the menting a nonlinear least-squares solution as detailed %

P2 mask each spatially multiplexed using a different in [81 . Our present concern is the preprocessing re-
spatial frequency for each carrier. The optical Fourier quired on real images before their moments m can be e:. L W-
transform of the light distribution leaving P 2 is de- reliably extracted. "' -,

tected on 21 multiple parallel output detectors in the

P3 output plane and contains the moments '

" 0 030-4018/84/S03.00 © Elsevier Science Publishers B.V, 227

(North-Holland Physics Publishing Division)
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3. Database
Number

As our reference database we used 180 images of of Pixels
five types of ships with 36 images available per ship Ship .
(at 100 intervals around each ship, from a 900 depres- and sky % %
sion angle). This reference database was obtained from
ship models under controlled conditions. Each image Water 'a-. ,
contains 128 X 32 pixels with about 2000 pixels cor-
responding to the ship (for the broadside view) and Pixe % T P %
less than 200 ship pixels (for the bow and stern views). 150 168 Value
The moments of 4 images per class (10', 300, 500 and "-".- -

80', where 0 0 is the bow view and 900 is the broadside Fig. 2. Bimodal gray-level histogram of fig. I.

view) constituted our reference mi(O) database. As test .
data, we used various real images of the class 2 ship of-view be extracted before the features are computed.
(the Leahy). A typical image is shown in fig. 1. It These operations are most commonly referred to as , . . "
shows the ship in water with a sky and shoreline back- segmentation and also involve noise removal and filling
ground. We used 256 X 128 pixel images with 8 bits in of holes on the object 1101. Care should be taken -
of gray scale for the real ships in our tests. The hori- to employ only simple image preprocessing operations s.. .' I:._ -.

zon (separating the water and the sky background) is that are not computationally expensive. Thus, we used
seen and the depression viewing angle for the real mainly histogram operatioh~s (since they require only ,. -
images is 800 (rather than 900, as in the reference simple tallies of image pixel levels) to aid in threshold I
imagery). The real image (from bottom to top) con- selections. A wealth of such methods exist, but their
tains four regions: (I) water, (2) the hull of the ship specific implementations are quite problem-dependent. % - - . .
and some water, (3) the superstructure of the ship with In )ur case, we used context information (the water is
a water background, and (4) the sky and shoreline at below the ship, the sky is above the ship and the deck S
the top of the image. In section 4, we detail the pre- line and horizon are nearly horizontal due to the sen- .

processing used to extract the ship from the back- sor system used) to greatly simplify the ship segmenta- \.%'V
ground and in section 5, we discuss the classification tion. Our approach is quite novel in the techniques ." -
performance obtained on such imagery. employed to select separate thresholds for the differ-

ent image regions and dynamically select these regions
based on the scene information. Such methods are of

4. Image preprocessing use in feature extractors for diverse applications.
As step 1, we formed the gray-level histogram of .5

Feature-extraction pattern recognition algorithms fig. 1 (see fig. 2). It was bimodal as expected extending. '
require that one object location within the input field- from 0 to 255 (8 bits). A broad peak exists at low .',

pixel values (corresponding to the water and noise, .
which is low in intensity in fig. I ) and a sharper peak

is centered at the high 175 pixel level (corresponding . " "

to the ship and the sky, whose pixel values are larger
in fig. I ). A well-defined valley at pixel level 150 exists. % I-. -" . .
Thus, at step 2, we thresholded the image at 150 (with %. 3' 2
all pixel values below 150 set to zero and all pixel val- .... .',_
ues above 150 set to one). The resultant binary image , ,%

is shown in fig. 3.
At step 3, the image in fig. 3 is used to estimate the

location of the four image regions defined in section.*-',-" . .,

Fig. 1. Typical ship test image (the guided-missile cruiser, the 3. To achieve this, a horizontal or row-projection ,

Lealy, ship class 2). histogram of fig. 3 is formed. This is a graph (fig. 3) of - -

*. "A ". 'I." "-
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V *. umber

* :: 4 :j* ~.e0f Pixels

Sky anid
ra Water

Ship

Fig. 3. Binary version of fig. I thrcsholded from the bimodal
4rav-level histogram of fig. 2. P

Value

the number of pixels with value equal to ore in each F-ig. 5. Gray-level histogram ot the gray-scale image in fig. I o .

row of fig. 3. From fig. 4, the different image regions after subtraction of the means of tile sky and water from the

can be identified. The region to the right of row ( appropriate image rows.

(with zero-valued pixels) is the water below the ship. . " ' "
- The flatter region just to the left of row C is the hull.

The region between row B and where the hull occurs and water only (row A to the bottom row) region of -.-

contains the ship's superstructure (plus water back- the original gray-scale image. Specifically, the average
,ground). The sky and shoreline lie in the region to the pixel values in these two image regions are calculated. -
left of row A. Between rows A and B is a transition re- This involves only a simple sum of the pixel levels in . - -

gion between the sky and water which contains the the proper rows of fig. I . In step 5, the mean-value of . .. .

horizon region with some sky, water and ship super- the sky and shoreline region is subtracted from the
structure. Row A and C are easily defined and located, rows above A in fig. 1, the mean value of the water re- - .
Row B was located from the sum of first differences gion is subtracted from the rows below C in fig. 1. and - .-
for consecutive row values as the inflection point in a linear combination of the mean of the water and sky
the histogram. These procedures are all automated and is subtracted from the rows between A and B. This
require only simple computations. produces an image with the ship pixels on a positive .

In step 4, the values for rows A, B and C from fig. 4 bias and with the water and sky regions on a zero bias.
are used to extract the sky only (top row to row A) In step 6, the gray-level histogram of this image is e

formed. As shown in fig. 5, it has an obvious bimodal
structure with a very apparent threshold level or valley
point at pixel value 1 T - -

Sky TrasitonIn step 7. all pixels in the image with gray-level val-
Pixels Hull Water ues below V1 in fig. 5 are set to zero. This removes the

Super- v.% . .',,.

-S ( ':,7.."-:..' :

Row Z -.
A B Number -we .I

* I,~ . 4. II,,rimontal pricction histogram of the binary image %
, ot he- .3. lie sky , ship. superstrut lure and ater regions of Fig. 6. Segmented ship image produced using ttte threshold , . %

tile imdc are noted, level Tl found from fig. S.
4". -,*- - . . -- .
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%
sky, shoreline and water and thus extracts the ship. If quite general use was detailed for a ship pattern recog-
the gray-levels above VT are retained, a gray-scale seg- nition scenario. Such operations are essential if optical
mented ship image results, If levels above VT are set to or digital feature extraction processors are to achieve "
unity, a binary segmented ship image results (fig. 6). good performance. The successful classification of a
Simple median filtering or other local convolution op- real input image using moment features and a uniqu-,

* erations can be used to suppress miscellaneous noise two-level classifier was demonstrated. Similar results
pixels remaining in the background and to fill in holes were obtained for other real images.
on the target object.
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1. INTRODUCTION, '

A feature space processor for multi-class d is tortion- invariant pattern recognition -
is detailed in Section 2. A moment feature vector space is considered. Test"-data [1,2] on a robotic database are summarized in Section 3. Results on a ship
database, using real input imagery with references from models is presented with
attention to preprocessing, distortion parameter estimation, and class identification are
advanced in Section 4. Sh W

2. PROCESSOR

i a niA moment feature space is easily generated optically [3,4,5] or digitally T6].
its- outputs can easily be corrected for processing errors in post-processing [3].

Moments are jointly Gaussian random variables [2] due to sampling with respect to
in-plane distortions. Thus, they allow use of a Bayesian classifier and thus can
minimize P.. To determine the class i (object class c and aspect view 4) and v
the object's distortions (described by a distortion parameter b) for each computed
input moment vector m, we calculate

> ~~gi = ' - m(b)]Trl[rnl - _n(b)],()

with b calculated iteratively (k is the iteration index) using
'S%

Sk#1 k 
. [(jk)T 1jk]-1(j)Tr-1[ .(b)]. (2)

The class i that minimizes (1) defines c and the out-of-plane rotation angle
(aspect) # of the input, whereas b provides estimates of translations, scales, and
in-plane rotations. The number of iterations k can be reduced to 4-6, E = I can
significantly reduces the computational load per class/aspect i.

The major problem is the large number of aspect-classes i that need -.
potentially be searched. To relieve this, we use two first-level estimators [1,2] to

AA

estimate the aspect (this is achieved by A at p2o402) and class (a hierarchical

tree is used for this, with the node structure chosen from a multi-class Fisher
projection and with a two-class Fisher discriminant vector used per node). As we '*-

show in Section 3, this reduces the number of aspect-classes i to be searched r-'
and thus makes the processor very computationally efficient. A block diagram of
the system is shown in Figure 1.

3. PIPE PART TEST RESULTS

Nine different pipe parts (4 classes) viewed from a 500 depression angle

V 
¢ f
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Cl ass:""

INPUT MOMENT m FISHER Estimate
IMAGE COMPUTER CLASSIFIER REFERENCE

Aspect mpq ...

ASPECT Estimate = -"

ESIMTATOR ."DATABASE_."'

ITERATIVE NONLINEAR-'..

CLASS (i) LSM CLASS/ASPECT/DISTORTION"--'

ORIENTATION (b) PARAMETER
CONFIDENCE

Figure 1: Block diagram of a multi-level moment feature-space classifier

were digitized (128 x 128 pixels) with 36 images per part (one image every 100
in aspec-t) and used as our test database. Test results are summarized in Table
1. They show: 9 out of 36 references are adequate (Test 1). Use of the
first-level estimator reduces the number of i to be searched in (1) to 10 (Test
2). 'The number of iterations k in (2) is only 6 over a large Agi range (Test 3)

and E I in (1) and (2) is adequate (Test 4). As seen in Table 1, the system
of Figure *1 can correctly classify over 97% of the 324 images (using only 9 x 4

36 references).

- PERCENT
TEST

CONDITIONS CORRECT REMARKS
NUMBER_________(OUT OF 324) ","-_,

9 Aspect Ref s each 400 Used
I No Aspect Estimator 97.5% 2 Vieclass (Avg Passed24 View-Class (Avg) Passed ---.

-------------------------------------------------------------------------
2 Full First-Level Estimator 97.5% 10 View-Class (Avg) Passed

----------------------------------------------------------------------------

= 0 to 98.2% more 6 Iterations k
3 Agi  10-4 o 10"I  98.2%refs ....

--------------------------------------- -----------------
4 Different Z 90-93.9% Z = I (90%) Adequate

Table 1: Representative Pipe Part Data (Different Test Conditions)

4. DISTORTION PARAMETER ESTIMATION ACCURACY

Related tests on another database [2,7] showed comparable performance and
similar operational parameters. In this database, the reference objects were
obtained from models and in tests against real-world IR images, excellent
recognition was obtained. The preprocessing required [7] used only simple 10
and 2D histogram operations and thresholding (to maintain low computational
overhead).

We now consider the class c, aspect @, scale a and translation x0 estimation

- .. . . . . . -i. S ,
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accuracy of the system for a second five-class database (36 images at 10
aspect intervals per clas) using only four references per class. The true object
was the 800 aspect view of the class 1 image. A real IR input image (vs.
references obtained from models) at a depression angle 100 different from that of
the reference set was used with real IR noise present in the input. The tests
(Table 2) show perfect class and aspect classification for Ag i z 10- 4 

- 10-1 (for
Ag1

= 0.5, errors resulted as expected) and excellent shift (xO in pixels) and scale
factor (a) distortion parameter estimation. All distortion parameters were estimated
within 5% accuracy, due to the input resolution, noise, etc. factors.

TEST a/x0 CLASS/ASPECTTEST a/PIXEL

NUMBER SHIE ESTIMATE ESTIMATESHIFT xp ______ ______

1 1.0/0 1.0/0 1/80'
2 1.0/15 1.016/14.22 1/800

3 1.0/25 1.023/23.22 1/80 -----

4 0.5/0 0.499/0.1 1/800

5 0.75/0 0.750/0.07 1/80-

6 0.9/0 0.90/0.03 1/80"

Table 2: Results of Class and Distortion Estimation Tests
(True Class 1, Aspect 800)
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CONTENTS 2. SDF SYNTHESIS

I. Introduction A unified SDF synthesis technique was first advanced in Ref. 12 and
2. Synthetic discriminant function (SDF) synthesis recently was more fully described.' For completeness. we briefly
3. Data base review the different SDF synthesis methods. The basic concept of
4. Noise-free projection test results SDF synthesis is to utilize a training set of images of each object
5. SDF projection performance with noise class. From the correlation matrix of the full training set. we synthe-
6. Summary and conclusions size a SDF h(x. y) that is a linear combination of the training set of
7. Acknowledgments images. Depending upon the purpose of the filter, different condi-
8. References tions will be placed on h. and different SDFs can be synthesized.

The simplest derivation of a SDF occurs for the case of one filter h
1. INTRODUCTION that is to yield a constant correlation output c = I forall versions if.I ) .

The frequency plane optical matched spatial filter(MSF) correlator, of objects f in one class; i.e., ,4'
has been the most studied optical pattern recognition system of the .cl-
last 20 years. The sensitivity of the MSF to geometrical distortions fn @ h = c = I
between the input and reference object is a well-known shortcoming where @ denotes correlation. We restrict h to beinga linearcombina-
of any correlator. The use of multiple MSFs can reduce such prob-
lems at the cost of increased system complexity and reduced light tion of the Ifn); i.e.,
budget efficiency.2 Special frequency plane weighting and filter syn- am fm (2)
thesis techniques can reduce this sensitivity, but cannot overcome it. h amf,
Space-variant correlators4 and coded-phase processorss can over-
come various distortions, but at the expense of shift invariance and For notational simplicity, we do not show the spatial dependence of "
multitarget recognition (although they still retain the processing gain the functions fand h in Eqs. (I) and (2). We rewrite Eq. (I) for the ''
advantages of a correlator). projection case (i.e., the central value of the correlation output) as . -

In this paper, we describe the synthesis and performance of MSFs in h = I (where vectors, denoted by boldface type, now describe each
formed from synthetic discriminant functions (SDFs). These linear function). Substituting Eq. (2) into Eq. (I), we find
combination filters retain the shift invarianceand processinggain of
correlators while overcoming their sensitivity to geometrical distor- f (3)
tions. In Sec. 2. we review the synthesis techniques for four different n;m r,
SDFs.' In Sec. 3, we describe the data base used in our projection
simulations. Our noise-free results' are summarized in Sec. 4. and where rnm denotes the elements of the correlation matrix R for Ifni.

-. initial performance in the presence of noises is presented in Sec. 5. In matrix-vector notation, Eq. (3) becomes
Other variants of SDFs also exist-- "; however, SDFs are the most
general and widely tested of such filters. R a = u , (4)

Invited Paper PR-10 received April 3. 1914; revised manuscript received April 27. 1 where u is the unit vector (i.e.. u contains all I "elements). The filter
accepted for publication June 25. 1984 received by Managing Editor Aug. 23. 1984

.e. 0 194 Socitgy of Photo-Opilal Instrumentation Engineers. h that satisfies Eq. (I) is thus defined by

716 / OPTICAL ENGINEERING / November/December 1984 / Vol. 23 No. 6

" , 's " . ,..' , . % % % ,. " . " ' ' ' . .•. ' " . ,., ' '' '.,,. "'' -... ' .-. ' .".%"." . ' . '" .% '



..--.-.

PROJECTION SYNTHETIC DISCRIMINANT FUNCTION PERFORMANCE

IV a=R - u. (5) TABLE I. Truth Table for K-tuple Two-Level Four-Class SDF

We denote the SDF in Eq. (I). defined by Eq. (5), as an equal deIpt/utu 
h- hb

correlation peak (ECP) SDF. It as only of use in intraclass pattern .% 0
recognition. The remaining types of SDFs6 are described quite sim- l"2 , "
ilarly to Eq. (5). with different training sets. correlation matrices, and lfl 0

exogenous vectors u used.
For both intraclass recognition and interclass discrimination, a 1141 1 0

SDF N- is chosen to recognize objects (fil in class i with unit output
and to yield zero output for objects {f} in other classes j; i.e.,

= 
5 i,.(6) indicate no input. In practice, we select K to satisfy 2 K ;? N + I and

1k @ hi = °ik (6) thus avoid the ambiguity possible in the (0,0) output case.
function (MOF) SDF for a two-class prob- Synthesis of ha and hb to satisfy Table I follows directly. The two

Thsmtul .thgnlfilters are linear combinations of the full training set of data:
lem is synthesized using a training set of NI images Ifini of class I
objects and N2 images {f2n} of class 2 objects as h = X a f".- = 1- am ,

.- m,- ,(12)
l am n hb = bmfmn

(7) The coefficients in Eq. (12) are defined byh2 = .bm fm
m a = R41 U4 a

(13)
where fm- b= I for objects inclass l,fI.b =I 0 for objectsin class 2, b (R1

r and the summations in-Eq. (7) are over 15 m<5Ni + N2 . The R  U4b

matrix-vector solutions for the am and bm in Eq. (7) are
where R is the correlation matrix of the full training set of images for

a = i2-N all four classes (N 1 , N2 , N3 , and N4 images in each class, respectively).
The vector u4 in Eq. (13) has Nl + N2 zeros and N 3 + N4 ones (for

b R- N2 ha), with 40 being similar.
-1.2 Other obvious combinations of these four basic types of SDFs

follow directly. In all cases, the filter function is of the form in Eq. (5),
where R1.2 is the (N n + N2 ) X(N 1 + N) correlation matrix of the full with a different correlation matrix R and exogenous vector un. This
training set of data, and where = [I. 1,0...O]T and 2 = unified SDF synthesis method significantly simplifies off-line syn-
(0. 0,1. I]T. In u,, there are NI ones (for the NI class I thesisoftheSDF.Sincetheprojectionvaluesforthedifferentclasses
objects) and N2 zeros (for the N2 class 2 objects). Similarly, u2 has NI in the different SDFs are fixed by the synthesis algorithm, we refer to
zeros and N2 ones. The extension of Eqs. (6),(7), and (8) to more than such filters as deterministic SDFs.
two object classes follows directly.' These MOF SDFs require one
filter per object class and a correlation matrix R of larger order than 3. DATA BASE
in Eq. (5). Tfo d

In some recognition cases, a single multilevel nonredundant filter proper evaluationote peormance
SDF h (we use the simpler term "multilevel SDF") can be used to in Sec. 2 in this paper is a key new detail. SDFs require a large data

recognize multiple object classes. The general requirement for sucha base to properly select training set images that are valid statistical
' filter can be written as representations of the data in each object class, with a sufficient

number of additional test images (not in the training set) remaining

fn@ b= to allow sufficiently valid tests on the algorithm. In all experiments
performed, the computational load was so large that only correlation

* i.e., the value n of the correlation output defines the class n of the plane projection values (i.e., the correlation value at the point ofN r
d input object. For a three-class intraclass and interclass recognition registration) were evaluated as in Eq. (3).

and discrimination problem, we use Ni, N2 , and N3 training set Our most extensive multiclass object data base available con-
images in classes 1. 2, and 3, respectively. The filter is defined by sisted of images of four ships from 9 0 * depression angle with 36 views

available per ship (at 100 intervals in aspect around the full 3600 of

h= af n (10) the ship). In Fig. 1, we show the broadside views of the four ships.
h mfm ,( Clearly, other aspect views, such as the bow and stem, contain

- where the summation is over I < im < N + N2 + N3 , i.e., the full significantly less object data. The images were each 128 X 32 pixels.

training set. The filter in Eq. (10) satisfying Eq. (9) is defined in For the broadside views, the target contained approximately 1200

matrix-vector notation by pixels out of 4000 pixels in the full frame. For the bow and stern
views, about 200 pixels (out of 4000) were present on the target. The

R 3 classes assigned to each ship and the name and type of each are noted -
.' 3 in Table II. The images in class I are numbered I through 36 (1 is the

w i bow, 18 is the stern, etc.). Class 2 images are numbered 37 through.% wheR is the N+ N 2 +N correlation matrix for the full training%

seand , .[I3.1,2 ,3] has N, ones, N2 twos, and N3  72, etc. All images were binarized to only "0"and 1 "valued pixels, %e%
% 2twos, 3 with the threshold selected from simple histogram operations. 3 Two% three.

The final class of SDFs is the K-tuple two-level nonredundant sets of images, one with and one without the hull present, were

multiple filter SDF (we use the simpler term "K-tuple SDF"). We formed and used. This image data base allows the 3-D aspect distor-

describe such filters for the '-ur.class (N = 4) two-filter (K = 2) case tion invariance of our SDF correlator to be verified and its perfor-

2 (i.e., 2 K = N). The four object classes are denoted by f1), (f2 1, etc., mance to be quantified.
and the two filters by h. and hb. The object class is determined from
the outputs from both filters, as in Table 1. For simplicity, binary 4. NOISE-FREE PROJECTION TEST RESULTS
(0, I)valuesare used. Othervaluesare preferable since(0,0)can also In Table Ill. we summarize our digitally simulated SDF projection
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performance obtained for the fourmajor types of SDFs described in performance was obtained (with all 36 projection values within 5% of
Sec. 2, using the first four ship image data bases described in Sec. 3. 1.0). These test I and 2 results show the intraclass recognition per-
Six different tests using different SDFs were considered. The type of formance of SDFs in the face of 3-D aspect distortions. All SDFs
SDF used and the six training set images used per class are noted in require a training set that is a valid statistical representation of the
the table. The number of errors obtained out of the 36 images in each object class for the distortions considered, and in this case 100 to 200
of the four object classes is noted, together with the percentage variation in aspect can be tolerated (in agreement with experiments
correctly recognized. in Refs. 2 and 3). The six training set images used per class in tests I

In test 1,the ECP SDF in Eq. (5) was formed using only six class I and 2 were chosen at approximately 500 intervals around the ship.
images and was tested against all 36 aspect views of the class I object. with three or four images taken from each side of the ship (00 to 1800
All 36 projection values were within 3% of the deterministic value of and 180* to 3600 aspect views).

, unity selected in Eq. (5), and thus 100% correct performance was In tests 3 through 6. the discrimination as well as recognition
obtained. Test 2 was similar for the class 2 object, and again 100% performance of our other SDFs was considered. The two-class MOF

SDF defined by Eqs. (6) and (8) was evaluated first (test 3) using the •
12 training set images in tests I and 2 to form the MOF SDF. The
projection values used in the filter synthesis were (1 .0). In determin-
ing the object class, the projection values P, of each input object on
only the h, MOFSDF in Eq. (7) were calculated, and the decision on
the input object class wasmade based on whether Pi <0.5 or whether
P, >0.5 (where the 0.5 threshold level was chosen as being midway
between the original 0 and I deterministic projection values). The
projection performance obtained was excellent, with 69 of 72 images :.r^-
correctly classified (95.8% correct identification). In test 4, our multi-
level SDF defined in Eqs. (9) and (II) was tested on three object,b classes with deterministic projection values of 0, 1, and 2. respec-
tively, for the three classes. Six trai ning set images per class were
used, and excellent performance resulted, as shown, with only five
errors obtained out of the 108 test images (95.4% correct
performance).

In tests I through 4, the hull of the ship was present in the image
data base used. Comparable results occur if the hull is not present. In
tests 5 and 6, our K-tuple SDF was used for the full four-class
recognition and discrimination testing on all 144 images. A new
training set of six images per class was used (selected as described'in
Ref. 8) to synthesize the ha and bb filters, and the image data base
with the hull of the ship removed was employed (since it yielded
better performance due to more discriminatory information in the
superstructure of the ship). In test 5, the filters were synthesized with
the deterministic projection values noted in Table I. The results were

d. quite good, with only 14 errors out of 144 images (90.3% correct
recognition).

However, as shown, 12 of the 14 errors occurred for the class 4
object. The majority of these errors were at the bow and stern, and all
of these errors were due to the projection values on the second filter
hb being above the 0.5 threshold (recall from Table I that bb should

,"Fig. 1. )-Id) B .radside views of the data bes images in clse I to 4, force class 4 projections to 0, or to below 0.5). Inspection of Fig. I
shows that the class 4 object is the largest ship: Since it appears to be
more difficult to force the projection values of a large object to zero
(compared to the ease of forcing the projection values of smaller

TABLE II. Ship Imap Dat Base Used objects to zero), we altered the projection value choices in Table I to
Ship class Ship name Type those shown in Table IV.

As seen in Table IV, the new deterministic projection value
1 Moskva Soviet helicopter cruiser choices have reversed the projection values for class 3 and 4 objects.

2 Leahy U.S. guided-missile cruiser Both filters (ha and hb) are now designed to yield projection values of

3 Hope International hospital ship (I, 1) for the largest (class 4) object. The results for this filter are
4 Albany U.S. guided-missile cruiser shown in Table Ill, test 6. They are excellent, with only two errors

out of all 144 test images (98.7% correct classification). Attempts to

TABLE Ill. Noise-Free SDF Projection Prfoeance Test Results
Test Errors per class Percent

number Type of SDF Training set 1 2 3 4 correct

I ECP(class 1) (1,6,10,15,20,25) 0 - - - 100
2 ECP (class 2) (38,45.50,55,60,65) - 0 - - 100
3 MOF (1, 0) (Some as tests I and 2) 1 2 - - 95.8
4 Multilevel (0, 1,2) (Six images per class as above) 2 0 3 - 95.4
6 K-tuple (Table 1) Now training set (Six images per class. hull removed) 0 2 0 12 90.3
6 K-tuple (Table IV) Now training set (Set images per class, hull removed) 0 2 0 0 98.7
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4 )f obtain comparable performance when the hull was present were not projection to 0). Thus, as noise increases, the Pb( 4) projection values
successful for the four-class problem (since the superstructure of the decrease. For a = 0.4, all Pb(4 ) projections are now below 0.5 and %
ship clearly contains the major discriminatory information). In hence correct, and thus no class 4 errors occur.

c general, theamount of the hull that is visible varies considerably with However, the Pb( 2) and Pb( 3) projections for filter hb on class 2
the ship's load, and thus the hull data cannot be reliably assumed to and 3 objects also decrease as a of the noise increases. These projec-
be present. tion values were intended to be 1.0, and initially all were quite close to

1.0. As a increases, their values decrease gradually, and at a = 0.6
5. SDF PROJECTION PERFORMANCE WITH NOISE nearly all filter projections for class 2 objects are below 0.5. The

In Table V, we summarize the performance of the K-tuple SDF in decrease in projection value is quite gradual, and the sharp increase
test 5 of Table Ill in the presence of noise. In tests 7 through 11, in the number of errors (from tests 10 to II) occurs because most

Gaussian, zero-mean noise was added only to the test set of images, projections now pass below the threshold level at this a level of noise.
and a noise-free training set of images was used. For the 24 images The class 2 projection outputs all changed from (0, 1) to (0.0); thus.
present in the training and test sets, noise was added only during all class 2 errors in test I I were class 2 objects classified as class I
testing. In tests 12 thtough 15, noise was present in the training set objects. All of our test data used the same fixed-decision threshold

images also. The noise added was of zero mean, with a standard level. Use of adaptive thresholds can significantly improve
deviation o as given in the table. The noisy images were then bina- performance.

When noise was present in both the test and training sets (all noiseand testing. For the data in Table V, noise was present everywhere is uncorrelated between images), performance remained rather sta-

and estng. or he dta n Tale , nose as peset evrywerery ( 12 to 14 errors) for a values up to 0.2 (tests 12 through 14).
(i.e., in the background and on the target). Because of the binariza- tiona
tion, the effect of noise is different when present in the background When the training set noise was 0.3 or larger, the number of errors
and on the object. In the background, noise adds + I valued pixels, increased significantly (from 14 in test 14 to 52 in test 15). At thisand on the target it forces +1 valued pixels to 0. To stabilize the noise level, the filters are simply not valid representations of the
results obtained, we chose not to make a decision on the object class objects. Recall that the input signal-to-noise ratio (SNR) is different
when the projection values were within ±0.03 of the threshold. These for each image since fewer object pixels exist and more background is
no-decision"cases are indicated in parentheses. The total number of present for aspect views further away from broadside views. The

errors, total number of correctly classified objects, and percentage of performance shown in Table V is still very impressive and should be

objects correctly classified (out of the 144 test images used) are given adequate for most object identification applications over a signifi-

in the table. cant range of sensor noise levels. The tests in Table V were repeated
The results obtained require discussion. A reduction in the for six training set images perclass,chosen at evenly spaced intervals

number of class 4 object errors with increasing noise was observed of about every 500, and comparable results were obtained. The tests."-(tests 7 through 10), up to o = 0.4 noise. Then, for a = 0.6, the total in Table V were also repeated for the case when noise was present
(tests thrug the baptrun of th objec noise Then for obec) Compoathetota

number of errors increases dramatically. To explain this perfor- only in the background ofthe object (not on the object). Comparable
mance, we denote the projection value for filter hi and object class j results were obtained, with the number of errors changing slightly "
by Pi(J). We note that all class4errors in test 7areerrors in Pb(4 ) that less dramatically (since the equivalent input SNR is better for a given

are above 0.5 (whereas they should be 0.0). As noise is added to the a of the noise when noise is present only in the background of the
class 4 object, the zero-valued pixels introduced on the object cause object, rather than on the object and in the background).
the Pb(4 ) values to decrease. The +1 valued pixels introduced into As our final noise performance test, the K-tuple SDFs in test 6
the background alsocause Pb(4) to decrease (since much of the upper (using the projection values in Table IV rather than Table I) were

portion of the bb filter is negative-valued, as needed to force the full used with varying amounts of noise added to the background only(similar results were obtained when noise was present in the back-
ground and on the target) in both the test data and the training data.
The results (Table VI) show the excellent performance expected of a

TABLE IV. New Projection Value Choices Used in Test 6 of Table III correlator in the presence of noise.
Input/Output he hbI u 6. SUMMARY AND CONCLUSIONS

lft 1 0 0 The advantages of a correlator (processing gain, good performance
1f2) 0 1 in noise, shift invariance, or multiple object recognition) can be

Ifs} 1 0 retained and the disadvantages (sensitivity to geometrical distor-

If4 1 1 1 tions) can bc overcome by synthesizing the matched spatial filter
from SDFs. These SDFs are linear combinations of the training sets . .

TABLE V. K-tuple 8DF Performance (Table I Projection Valuesl In the Presence of Noise in the Training and/or Test Data' 4".-:

Noise standard Total Number Percent
Test deviation (a) Number of errors per class number correctly correctly

number Training Testng 1 2 3 4 of errors classified classified

7 0.0 0.0 0(0) 2101 0(0 10(2) 12 130 90.3
8 0.0 0.2 0(0) 1(1) 0(0) 8(4) 9 130 90.3
9 0.0 0.3 0(0) I(1) 0(0) 2(3) 3 137 95.1

10 0.0 0.4 0(0) 3(9) 0(3) 0(0) 3 129 89.6
11 0.0 0.6 0(0) 2719) 3610) 00) 63 72 50.0
12 0.0 0.0 0(0) 2(0) 0(0) i0(2) 12 130 90.3
13 0.2 0.0 0(0) 1(1) 0(0) 13(2) 14 127 88.2
14 0.2 0.2 0(0) 2(0) 0(0) 12(2) 14 128 88.9
15 0.3 0.2 17(1) 9(1) 1(0) 25(2) 52 8 61.1

*No-decision cas with protection velues within :0.03 of the threshold are noted in Parentheses noos everywhere, hull not present.
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TABLE VI. K-tuple SOF Performance (Table IV Projection Values) in the Presence of Noise in the Training and/or Tea Data*
Noise standard

To evain u ume o ror e casTotal Number percent* Tat evitin () Nmbr o eror pe clssnumber correctly correctlynumber Training Testing 1 2 3 4 of errors classified classified

16 0.0 0.0 010) 2(0) ~00 00) 2 142 98.7
17 0.0 0.2 0(0) 2(0) 0(0) 0(0) 2 142 98.7
18 0.0 0.3 ~ 00 2(l) 0(0) 0(0) 2 141 97.9
19 0.0 0.4 010) 3(3) 0(0) 0(0) 3 138 95.7
20 0.2 0.0 010) 2(0) 0(0) 0(0) 2 142 98.7
21 0.2 0.2 0(01 2(0) 0(0) 0(01 2 142 98.7
22 0.3 0.0 0(0) 0(0) 1(l) 6(0) 7 136 94.4
23 0.3 0.2 0110) Q(0) 1 (1) 5(0) 6 136 94.4
24 0.3 0.3 0(011 0(0) 111) 5(0) 6 136 94.4

* No-decisson Cases with proiection values within ±0.03 of the threshold we ,s 'in waentheses; noise in backcground only.
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ABSTRACT

A new class of discriminant filter functions for use in a matched filter correlator for
multi-class distortion-invariant pattern recognition is described. Three variations of these
optimal linear discriminant functions (OLDFs) that optimize different performance measures
are described and initial performance results are presented.

1. INTRODUCTION

Correlators represent a powerful class of pattern recognition architectures that allow
multiple targets to be located and that provide excellent performance in ioise. Optical
systems [1,2] easily achieve the correlation operation in real-time and various compact ver-
sions of such systems have been fabricated [3] and discussed [4]. Coirelators are well known
to be quite susceptible to geometrical distortions between the input ard reference object.
A most attractive technique to achieve distortion-invariant correlation uses synthetic dis- . "
criminant functions (SDFs) [5], projection SDFs [6,7], correlation SDFs [81, or related
methods [9,10]. In general, these prior techniques achieved filter synthesis by forcing
fixed projection values for training set images in two classes [5,7,9]. In [8], a least-
squares solution and a solution that maximized the peak-to-sidelobe ratio plus the class I
to class 2 outputs was employed. In [11], class 2 was treated as noise and SNR was maxi- %-.mized.

In this paper, we briefly review the 5 standard SDFs using a new notation (Section 2).
We then describe three new optimal linear discriminant function (OLDF) filters that maximize
different performance measures (Section 3). These filters differ from the original SDF and
other work in that they are optimal (i.e. maximize various performance measures useful in
discrimination pattern recognition). They are thus preferable, since predicted PD, PFA and
Pe performance and noise effects on them should be able to be analyzed (theoretically and
statistically) more easily. Initial simulation results, using only correlation plane pro-
jection values are advanced (Section 4) to demonstrate and quantify the intra-class recogni-
tion and inter-class discrimination performance of these OLDFs for multi-class cases and in
the presence of noise.

2. SDFs

The 5 standard SDFs [5] are now reviewed for background and to introduce the new notation
that is most appropriate for description of our OLDFs in Section 3. The inner product of
vectors x and Y is defined as x, > X Yi where the N elements of x and are denoted
by xi and Yi and x = (x. ..xN)T. The norm xl of x is defined by ,x T2 = <x,x-. Consider
four classes of objects with training set images

{I1 i Jin {K =i and IL q (1)

where there are n images in ;I (class 1), etc.

An intra-class SDF (equal correlation peak SDF) F is defined such that

<Ii,F- = 1 for i = -..'n. (2)

%%

A two-class mutual orthogonal function (MOF') SDF is defined such that".

- - % % % . % -. ,. '% - V ". • V V % - --. . . -*. •. . , ... - . • . . .*..-, . .
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d I.,F' = 0 for i =I..n (3)

IJiF> = 1 for i =

with other projection values possible in (3). Two MOF SDFs Fl and F2 to recognize all ver-
sions of class I (Ii ) and reject all versions of class 2 (Ji) and vice-versa for F2 are de-
fined such that -'p.

- i,Fl> = 0 and <Ii,F 2
- 

= I for i = I-..n

<JiF 1 = I and <JiF2> = 0 for i = -...m.

A multi-level SDF for 4 classes results by choosing different vector-inner product forcin:.
constants, i.e. for the 4 classes in (1), we can require

<F,Ii> = 0, <F,Ji> = 1, <F,Ki = 2, <F,Li = 3. (5)

A K-tuple SDF for M classes uses K SDFs (where 2 K _ M) with binary valued projection forcinc
functions. For the 4 classes in (1), we require K = 2 SDFs (F1 and F2 ) defined such that

<FlIi
>

= 0, <F2,Ii
>

= 0

<FiJi
> 

= 0, <F 2 ,Ji> = 1 (I)
(6).o..

<FIKi> = 1, <F 2 ,Ki> = 0

<FI,Li> = 1, <F 2 Li> = 1.

To obtain unique solutions F for these SDFs, we require them to lie in the subspace
spanned by the training sets. This solution has the additional advantage that the projec-
tions of other objects not considered (for classification) will be minimized. Thus, F1 etc.
are linear combinations of the 4 training sets, e.g.

n n+m n+m+p n+m+p+q
F = I a. + Z a.J. + Z aK. + Z a.L. (7a)S i=l i i i=n+l i u-n i=n+m+l i i-n-m i=n+m+p+l 1 1-n-m-p

n
F =2 b.I. +"' (7b)2 ii

Using (7a), we write the vector-inner product of F1 and Ij as

n m p q
"-* 'FI'] , = i= a ',1> + Z a. n J i

ll > + Z > + a.n pL i ,I j . (8)..
1 111j i1 1+n i i+n+m< j i1 1-4n+m+p i j

Similar expressions can be obtained for the other vector inner products in (2)-(6). The al
and bi coefficients that define F1 and F2 , for the SDF in (6), can be obtained by solvina
the following system of equations

rt t t t t
11 1 2 1 ... I Ji ..... K I LI ... L q 1  b

a b

q 01

t t .
I1 1 LLq L1 0"

t . . ., .- .. . , . . L
..ILq ..................................... L anp+q bnLp ij

I
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In (9), superscript t denotes transpose and ( )t( ) denotes a vector-inner product. If a
unique solution does not exist, the least-squares solution (obtained by computing the gener-
alized inverse of the matrix) is used. As noted at the outset, these SDFs are computed using

* fixed projection values for the various training set classes.

3. OLDFs

We can describe the new OLDFs as linear functionals f on the finite dimensional vector
space of images. From the Riesz representation theorem [12], we can also describe these
OLPFu by a discriminant vector u, where f(x) = <u,x> for all x in our real linear vector
space. The vector-inner product of two functionals fl and 12 in the dual vector space and
their corresponding I and 22 OLDFs are related simply by <f1 ,f2 > = <R1,R2

> . In all of our
OLDFs, we consider only two-class problems {Ii } and {Ji} with n and m training set images
respectively.

3.1 OLDF-1

As our first OLDF-1, we consider a version of the MOF SDF in which the projection for one
- input class is 0 whereas the projection for the other class is maximized (rather than

beinq a fixed constant value of 1). Three types of maximizations were considered (corres-
ponding to 3 cases (A,BC) for OLDF-I) These are defined as finding OLDF-1 u, such that

CASE A: <u,Ji> = 0 for i = l...m (10a)
'u'I > = a <X'Ii>1 for i 1 = ...n (10b) %

i all x i

CASE B: <u,Ji> =0 for i = 1l..m (11a)
N..

n nmax nnmax ' <xli>' (lib)

I (uI Z >I> 1biZ ui>; all x i l

CASE C: <u,Ji> = 0 for i = 1...m (12a)

n 2 maxn
<uIi.>2 = ax Z <x,Ii>2  (12b)i=l i=l

In all cases, iu . 1 and 1x11 = 1 (i.e. we describe formulation for normalized image and
discriminant vectors). This is necessary to insure that physically large objects do not
dominate the filter. Of course, all testing is performed on unnormalized images.

Let us discuss the 3 cases in (10)-(12). In (10), we force the projections for one class
{Jj. to 0 and maximize the absolute value of each of the projection values of all vector
images in the other class {i}j. There is no general solution to case A [13]. In case B,
we maximize the sum of the absolute values of the projections for the first class of images -.

{i). In case C, we maximize the sum of the squares of the projections on {Ii}. Case C is an analyti-
cally simpler optimization problem. Thus, we form OLDF-1 using (12). In (12), u is the x for which i<x', is
a maxixiun. i1

To solve (12), we first denote the subspace spanned by the {Jl as Sp}'J1_ (where m is
the number of vectors) and the subspace for {Ii ) by Sp{Ii}P=n . In total, there are N = m+n
training set vectors and a maximum of N basis functions {n} for this data. We proceed to
form a maximal orthonormal set {¢il='l from {Jii, where m' < m. Next, we look at the re-mai'n , ,M=+] I! --.
maining >'k4_, orthogonal elements in our space. We forma set n of these {i *m+-
(where n < n) tha spans Sp{Iil and is orthogonal to Sp{:iT= 1 . Oui OLDF-l u is now an
element of S We thus define

m'+n'
V = +1 <2' 7 >., (13)I i j=m'+l i J' 1,- -"'

as a weighted sum (with weights given by the vector-inner product I j) of the :j (which
are orthogonal to the • The optimization problem in (12a) and (12b( thus becomes: find
u, such that

n n "'
2 max 2'Z <x ,I t > 1 4 ) -

i:1 all x il-

N.

* '%
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We rewrite (14) as

E n T V Tu = max x TIT
i- -- i - all x i 1-i

or

T T = max T (15)

(-- - all x .

The solution u to (15) that defines OLDF-1 is

u = Dominant eigenvector of Rill (16)

where

nT
' = 

[  
It = Correlation matrix for {I. (17)

We note that for n' = 1, (16) solves (10) and (11) also [13].

3.2 OLDF-2

For OLDF-2, for each Ii , we find the Ji image in {Ji'} that is closest (using the norm
di.- ance) to Ii . In OLDF-2, we maximize the sum (over all i = 1... n) of the squares of
<u,l-Ji>, i.e. OLDF-2 is u such that

on n
n 2 maxn2
Z <u,Ii-Ji> = ax <xIi-Ji> 2 (18)
i=l all x =l

Following the procedure in Section 3.1, the OLDF-2 solution u is

u = Dominant eigenvector of R (19)
i- Ji'

where

n
% Ra ZIZ H (20)

% (Ii-Ji)T

i s the correlation matrix of the (Ii-J i ) vectors, where Ji is the vector image in 'Ji that
as closest to Ii .

3.3 OLDF-3

* In OLDF-2, we maximized the difference between Ii and Ji, the nearest neighbor of II . In
OLDF-3, we maximize the difference between each Ii and all Ji, i.e. the overall total separa-
tion between both classes. This OLDF-3 filter u is defined by

n m n m
,u - 2 max -2, " i <uI -J. . i <x'l -J > (21)

i=1 =I i 3 all x i=1 j=1 j

Following the procedure in Section 3.1, the solution u to OLDF-3 is

u = Dominant eigenvector of R (22)

'. where

. n mR TR =1 2 x x (23)
i=l j=l

x =I J (24)

.................
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3.4 EXTENSIONS

In Section 3, we considered OLDF formulation for two-class problems. However, extensions
to multi-class recognition can be achieved by extending our OLDFs using the techniques in
Section 2. We have described our OLDF solutions as the most dominant eigenvectors. However,
one can retain the N most dominant eigenvectors. The number to be retained depends upon the
eigenvalues. If the most dominant eigenvalues are close, then we can retain more than one
eigenvector. If the two largest eigenvalues are widely separated, keeping the second worst
dominant eigenvector will not necessarily improve performance since additional noise is now
present in the filter. When W filters are used, the sum of the absolute value of the pro-
jections on each is used to compare to a threshold (set from training set data for each
class).

4. INITIAL TEST RESULTS

4.1 DATABASE

To test the performance of our OLDFs, we used two classes (two ships: the Moskva, a
Soviet helicopter cruiser, and the Leahy, a U.S. guided-missile cruiser). Each ship was
binarized with 128 x 32 p'.xels. For each ship, 36 views at a 900 depression angle (00
attack angle) were avail Dle (every 100 around the ship). The bow is numbered as image 1,
broadside as 9 and the .tern as 18, etc. For each object class, various sets of 6 images
were used for the training set. The OLDF was then tested against all 72 images in the two
classes (including the 60 images in both classes that the system had never seen). In
Figure 1, there are about 2000 pixels on the broadside ship views and 200 pixels on the bow
and stern views. In our tests, we also included noise (in both the training and test set)
with on listed (SNR is different for each ship aspect view due to the different number of
pixels on each aspect view). In Figure 2, we show the views of ship class I with On 0.3
and an =0.4 of noise added.

(a) Class 1 (Moskva) (a) Class 1 ship (an= 0.3 noise)

~'

(b) Class 2 (Leahy) (b) Class 1 ship (On= 0.4 noise)

FIGURE 1 FIGURE 2
Broadside views of the two ships Broadside view of ship class 1

with different on of noise added
a..'<

4.2 INITIAL TEST RESULTS

Table I shows the noise-free performance obtained using the three OLDFs with 6 training
set images per class. In general, excellent results are obtained, with no more than 4 mis-
classifications out of 72 images. In Test 1, the hull was present. Classification is
better without the hull present (Tests 2-4), since the ship's superstructure gives good
discrimination and the hull is in general common data. For the hull present, two linear
functionals had to be used to maintain good performance (thus verifying the above remarks).
Test 3 performs worse than Test 2, since maximum separation from one nearest image in the
second class is not enough. Test 4 performs better than Test 3 as expected since differences
from all images in the two classes was maximized.

The performance of all of the various OLDFs in the presence of noise in the training and
testing sets and in both were quantified. The results for OLDF-1 are shown in Table 2. The

%-% • ",
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results for the other OLDFs are similar. The standard deviation on of the noise is listed
also. As seen, performance is excellent in the presence of noise and generally decreases as
On increases as expected. From Figure 2 and the amount of deterioration present in the
images with an = 0.3 and 0.4 noise levels, the initial performance of these OLDFs is quite
attractive.

TABLE 1 %
Test results using various OLDFS (6 training set images/class, binary images)

HULL ! NUMBER OF OLDF NUMBER OF ERRORS INTEST PRESENT FUNCTIONALS USED CLASS 1 CLASS 2 I TOTAL

- -- -- - ------- -
--------------------------------------------- ---- ------- --- I-----

o N 3 0 I 0 0 0

TABLE 2

Noise performance of OLDFs
(6 training images/class, binary images, one functional)

TRAINING TEST NUMBER OF ERRORS IN
TET SET c's-, SET an CLASS 11 CLASS 2' TOTAL

I ------.-- ---

2 o 0. 0. 0 1 4 •''-43 0. 0. 1 5 6:

--- --- --------- --- T-------- I------

5. SUMMARY

New distortion-invariant correlator filters have been described that maximize various
*discriminant pattern recognition measures. The theoretical basis and ease of analysis for

these new OLDFs is attractive. Initial experimental results are excellent and noise per-
formance is robust. Full correlation tests and further experiments are needed to assess
OLDFs more fully.
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SDF CONTROL OF CORRELATION PLANE STRUCTURE FOR 3-D OBJECT REPRESENTATION AND RECOGNITION %
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Department of Electrical and Computer Engineering, Pittsburgh, PA 15213
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ABSTRACT

The efficient representation and synthesis of 3-D object information using new synthetic
discriminant functions (SDFs) is discussed. The use of SDFs in a correlator for shift-in-
variant and distortion-invariant discrimination of 3-D objects is detailed and experimental
data is provided. The new SDFs described control the peak intensity and the structure and
statistics of the correlation plane pattern.

1. INTRODUCTION

Correlators represent one of the most powerful techniques for automatic target recognition
(ATR). These systems allow multiple objects to be recognized in parallel (by the shift- -

invariant property of a correlator) in the presence of noise and structured clutter (due to
the processing gain achieved by a correlator). The realization of correlators using coherent
optical systems is obvious [1,2] and small size and weight real-time coherent optical cor-
relators now exist [3]. Advanced VHSIC chips and architectures may also allow on-line cor-
relations to be implemented digitally. The major shortcomings of any correlator has been
their porr performance in the face of geometrical distortions between the input image and
reference object from which a matched spatial filter (MSF) is formed [4]. Recently, advanced
MSF synthesis techniques have been detailed [5] and demonstrated on ship imagery [6]. These
new MSF synthesis algorithms form the MSF from a training set of images of different target
objects from different aspects, scales, rotations, etc. These new filter functions are
referred to as synthetic discriminant functions (SDFs).

A brief review of conventional SDFs is provided in Section 2 with discussion on their use
in the representation of 3-D object information. Three new types of SDFs that control the
shape of a correlation plane pattern are then detailed in Section 3 with discussion on their
representation of 3-D object data. Initial experimental results are then advanced in Sec-
tion 4 using a new database of tank, armored personnel carrier (APC) and similar military
ATR objects.

2. THE SDF-BASED CORRELATOR CONCEPT

To achieve intra-class recognition of different distorted versions of a 3-D input ATR ob-
ject using a correlator, the MSF h(x,y) can be formed from a linear combination of training
set images {fn) that are different 3-D distorted views of the target object, i.e.

h(x,y) = E a f (x,y). (1)n n n

If we restrict the correlation peak value to be unity for fn then the SDF MSF in (1) is
defined by

a = R u (2)

where the elements of the vector a define the linear combination coefficients an, u is the
unit vector (this forces all correlation plane values to be unity), and R is the correlation
matrix of the Ifn) training set imagery. The SDF in (1) - (2) achieves intra-class recoqni- I-'a
tion. To obtain inter-class discrimination while still retaining intra-class recognition,
the training set is expanded to include sets of the distorted objects (fl) and {f2 l in two
or more classes. A single SDF or several SDFs that are linear combinations of all of the
training set imagery can then be formed. The filter synthesis procedure is similar to that
in (1) and (2) with larger R matrices (for several object classes) and different exogenous
vectors u as detailed elsewhere [5]. The object class can be determined from the value of
the correlation peak or from combinations of different filter output values.

These initial SDFs [5] have performed well in tests on various image databases [6] pri-
marily on ship imagery. In this paper, we consider other ATR targets (tanks and APCs) and
we extend the original SDF concept to include control of the shape of the correlation plane

-



pattern. The original SDFs only control the value at one point in the correlation and thus
we refer to these as projection SDFs. For ATR using the original SDFs, a correlation plane
threshold is set (determined by the filter synthesis algorithm) and from the locations and
peak values of the regions of one or several correlation planes that exceed the threshold,
the object class and object location in the input field-of-view can be determined. This
technique is susceptible to variations in the modulation level of the input data (since the
correlation value varies linearly with the modulation of the input object). From the dc
value of the input Fourier transform (FT) plane pattern, the output threshold can be adjusted. V
In Section 2, we detail three new SDFs (correlation SDFs) that automatically control the
shape of the true and false correlation plane locations and thus facilitate correlation
plane analysis by the combination of threshold detection and correlation plane and peak
analysis.

a.

SD (s)

CORRELATION - OBJECT CLASS(es)
CORRELATOR PLANEW ------- >OBJECT LOCATION(s)

INPUT | ANLSI>ESTIMATE(s) -

SCENE ATTENUATOR CONFIDENCEI I 4DC FOURIER "

FIGURE I
Block diagram of an SDF-based correlator

The full correlation system (Figure 1) thus distributes the processing and recognition
load between the filter synthesis, the correlator and the output plane detector. From the
dc value of the FT of the input, an estimate of the input modulation is obtained and used -.
to adjust the input intensityand the correlation plane threshold. The system's outputs pro-
vide estimates of the object class and location of all objects in the input field-of-view
and the confidence of these estimates.

2. CORRELATION SDF SYNTHESIS FOR CORRELATION SHAPE CONTROL .

To control the shape of the correlation peak for a true target and to insure suppression
of large correlation plane peaks for shifted versions of false target, we expand the train-
ing set of images to include NS shifted versions of each object. To describe the filter
synthesis, we consider a two-class pattern recognition problem with N1 and N2 training set
images {f) and {g) per class with NS shifted versions of each training set image, i.e. a
total of NT = Ns(N1 + N2) training set images. The SDF synthesis algorithm in (2) restricts
only the vector inner product or the vector projection of each object fi or onto the

filter function h, i.e. only the central correlation plane value.

2.1 SDF-1 (Exact Correlation SDF)

For the one-filter two-class pattern recognition problem, the new SDF is defined to
satisfy

h f. = 1 (central correlation value of 1 for true targets) (3a)

h •f = 0 (0 correlation value away from peak) (3b)

.q h = 0 (0 correlation value away from peak) (3c)

Sh • j 0 (central correlation value of 0 for false targets) (3d)

where the notation is defined in Table 1. Eqs.(3a) and (3d) are similar to the original SDF
requirements (a central correlation peak value of unity for true targets in class one and
zero projections for false class two targets). Eqs.(3b) and (3c) are the new restrictions

7. " ' .. . . . . . . . . . "
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1* added. They require the correlation plane value ds pixels from the central value to be zero.

|'4

TABLE 1
Notation used to describe synthesis of the new SDFs

f, = object in the class to be recognized N1 = number of training set images {f) in class 1
.*4,

! = shifted version of f. N2 = number of training set images {g) in class 2

qi = object in second-class to be rejected NS-I = number of shifted versions of each image

. = shifted version of qiT= Ns(NI+N2) = total training set size

ds = amount of shift (in pixels) for ( I h = MSF SDF filter function-

The filter h(x,y) satisfying (3) will thus have a correlation plane output for a true
class-one target with a fixed peak value of unity and a fixed zero-value ds pixels away (in
±x and ±y) and thus a well-defined correlation plane peak shape. The controlled correla-
tion peak value can allow the use of a fixed correlation plane threshold TC of 0.5.
This selects regions of potential interest in the field-of-view. For each output plane region
of interest exceeding the threshold TC, the peak/mean = C ratio is computed. This new
classification measure C applied to those correlation plane regions exceeding TC allows
significantly better system performance. To calculate C, the mean is computed over the
(2ds+l) x (2ds+l) pixel region around each peak of interest (the mean computation excludes
the central peak value). In our specific work, the parameters in Table 2 are used. Many
other variations of this basic algorithm are possible such as:

(1) applying the C threshold to the regions of the output with the largest peak values
only or just the largest peak location (if only one object is known to be present);

(2) extension of the filter in Eq. (3) to the five different projection SDFs 15];
(3) extension of the requirements in Eq.(3) to include more shifted versions of each

input image;
(4) application of a weighted spatial taper to the FT of the SDF to suppress its side-

lobe response; and
(5) modification of the mean in C to include only those correlation plane values at the

specific ds pixel shifts from the peak value;
(6) use of input modulation estimates to adjust the TC threshold.

TABLE 2
Specific filter parameters used

N N =6 I N (centered and 4 shifted)

ds  5 pixels NT 5(6+6 ) =60

To synthesize the SDF h satisfying (3), we restrict h(x,y) to be a linear combination of
all training set images

h(x,y) - E a.fi(x,y) + E ai2gi(x,y) + I a. fV(x,y) + E a 4g'(xy), (4)
N1  N2  (Ns-1)N1 i3 (Ns-1)N2

where the number of images in each summation is indicated under the associated Z. Denoting
the full NT set of training set images by {z} and individual images by in, the filter h in
(4) is defined by the coefficient vector a that solves the equation

R a = 2I =  (I ...I 0 ... 0 T (5)

N1  NT-Nl

where R is the full NT x NT correlation matrix of all {z! training set images. The choice
of ul in (5) satisfies the requirements in (3). Eq. (5) is a simple extension of (2). The
SDF in (3) is referred to as a correlation SDFand the specific SDF solution in (5) is denoted
as SDF-1 or the exact correlation SOF. This terminology refers to the fact that the solution in 71
(5) is an exact solution to (3).

14 , .;,.z . . . .; , ~ *J ~ ~ ~ -. ... .. ..- t-tf
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2.2 SDF-2 (Least-Square Correlation SDF)

The solution a in (5) requires solving the NT linear algebraic equations (LAEs) defined
by (5). As the nature of the problem increases, so will the dimensionality NT of R and com-.
putational problems plus ill-conditioned matrices may arise (even though the filter synthesis
is performed off-line). The typical solution to such a problem is to reduce the dimension-
ality of R, i.e. to reduce the number of training set images. However, a reduction in N1 or
N2 will degrade the 3-D object information on each target class and a reduction in NS will
degrade the correlation shape. The SDF synthesis in (4) and (5) is equivalent to describing
each object as a d-dimensional vector in hyperspace where d = NT. In these terms, our
second realization of SDF-l retains all NT training set images but reduces d to D, such
that D < NT. This reduction of the dimensionality of our hyperspace rather than the number e
of training set images is both practical, preferable and new. To select the D basis func-
tions Id(x,y) we use the well-known Karhunen-Loeve (1L) technique [7]. For each unshifted
set object, and for each shifted version of each training set object, we compute the dominant
KL eigenvectors of the associated correlation matrix. In our experiments, we retain three
dominant KL eigenvectors per class (as noted above). Efficient methods of computing the
dominant KL eigenvectors of a large matrix and a large database were noted earlier [8].

For the case of (Ns-1) - 4 shifted versions of each image (five shifted images, including
the central centered image), the three dominant KL eigenvectors of each of the ten correla-
tion matrices R (the matrices for the original object f, the false target 2, and each of the
four sets of shifted images per class, with two shifts-in both x and y) were computed and
retained. This provides a new D = 30 (rather than d = 5 x 12 = 60) basis function set. This
new {W)' basis function set thus represents all of the 3-D information in the training set
imagery for the two targets. Retaining more than three KL eigenvectors per class improves
the accuracy of this approximate algorithm (at the expense of increased off-line computation-
al complexity). As noted in [11], three eigenvectors are generally adequate to represent
over 90% of the 3-D object information. This {€'} basis function set was then converted to
the orthonormal basis function set {} using a Gram-Schmidt (GS) orthogonalization tech-
nique [12].

In terms of these new Od basis functions, we describe the desired filter function as the
linear combination filter

D
h(x,y) = E b d~(xy), (6)

d=l ..

Each input image in {z) can then be described as a linear combination of the basis functions

*as

D
Zn (X,y) I Z cnd0d(xy), (7)

d=l

where n varies from 1 to NT (i.e. over the full training set of NT images) and Id is of size
NxN=N 2 . Hereafter all zn(x,y) images are represented as vectors _nd of lengtE D (with
their D elements equal to the projections of zn(x,y) on the D vectors Id(x,y). According to
(3), we require

d- _ if nd "

In matrix-vector form, we write (6) and (8) as

Cb = l ~

where C contains NT rows and D columns. Fince NT > D, the classic least-square solution is
used to determine h(x,y) as

Tb = Cj -1 (10)

T
where the size of C C is now D x D. Other optical solutions to such an overdetermined least
squares problem [9710) were considered for the case D > NT. These solutions have not been
correctly formulated. Specifically, if D > NT, no unique solution exists, since the [cTc]
matrix is not full and thus cannot be inverted. Thus, a least squares solution is not-
appropriate.

N!. .
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For our case, NT > D and a solution exists. We recall that

T NT Tc~C= z .zT  =NR, 1111) ~
n = 1 n d 

- 
nd T-

where nd is of length D, the matrix multiplication in (11) is formed as a vector-outer-prod- W-

uct sum, and R in (11) is the D x D correlation matrix of rcduced dimension D. We also note that

T NCu F u z ,nd (12) ,.%

n-nd

where the matrix-vector product in (12) has been written as a vector-inner product sum over each vec-
tor element zd weighted by the elements un of uI . Using (11) and (12), Eq.(9) becomes

NT -, -i
NT L = UnZnd.

n,

The solution for the SDF in terms of the Znd of length D and the D x D matrix R is

b=R R - -(14)
T n!-

From the D elements of b, the D vectors _d, and (6), the SDF h(x,y) is defined.

Solving (14) involves the solution of D rather than d simultaneous LAEs. Thus, the
V, solution (14) is computationally simpler and faster, although the final result is

more approximate. The use of (14) lies primarily in its computational ease for cases when
NT is large. It is also useful in cases when h must be updated in real-time by an on-line
processor. This corresponds to a Kalman filter update of the SDF function. This situation
arises when the projection value for an input object is near threshold. In this case, we
can update the filter with subsequent views of the input object and thus improve its original
projection value. Such cases occur when the scale of the target or its depression angle,etc.
differ from that of the training set imagesused. The solution in (14) minimizes the mean
square error

NT T hu%1
i dh- u :I (15).,,[

n=1 d- -.

where un = 1 for z = {fi} and is zero otherwise. Setting )J/;h = 0 in (15) and solving for
h, we obtain the coefficient solution in (14). Since R in (14) is of reduced dimensionality -

D - 30 (rather than d = 60), the solution in (14) is far simpler and more accurately com-
puted.

The least-square correlation SDF filter solution h in (14) is an approximate solution to
the exact filter function problem in Section 2.1. Hence, the associated name for this fil-
ter function noted earlier is employed. The accuracy of this solution depends upon the
accuracy to which the several dominant KL eigenvectors per correlation matrix adequately
represent the data in the full correlation matrix. The summation of the eigenvalues associ-
ated with these eigenvectors quantifies this accuracy. This SDF-2 filter function thus
attempts to select h such that the desired peak values are as close to unity as possible and
that the false target peak values at all shifted image correlation values are as close to
zero as possible (in a least-square sense). A correlation peak threshold T = 0.5 can be
used as before or one can simply calculate C for all correlation plane regions with large
peak values. Experimental data on these methods using such a SDF are advanced in Section 3.

2.3 SDF-3 (Generalized Correlation SDF)

SDF-2 is somewhat statistical since the h choice minimizes J in (8). The final type of
correlation SDF is also statistical. Rather than selecting h to cause the desired correla-
tion plane values to be as close to 1.0 and 0.0 as possible Tas in SDF-1 and SDF-2), SDF-3
is chosen to max.inize the peak-to-mean ratio C. In SDF-1 and SDF-2, the C test will provide
tarrget discrimination and recognition plus invariance to object modulation (C is invariant
to object modulation or contrast). However, if the peak value for the target is not above
the threshold T, the C test will never be applied to the proper correlation plane region.
Assuming that maximizing C (or the correlation plane SDF) maximizes thL peak
value Ip of the correlation, then SDF - 3 will produce both large peak values and
large C values. Specifically, the correlation plane regions with the largest peak values

".- -"
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are expected to include the correct target objects and the correlation plane regions cor-
responding to the correct targets will also have large C values 14]. P

The central correlation plane value for an f1 input image vector is hT f. The mean- %
Square-value of this correlation point value for all {fi) is E[(hTfi )2 ]-= hp h, where R is -4

the correlation matrix of {f ). Maximizing the correlation plane SNR for correct targets
thus requires maximization oi

mean-square value of central correlation point for {fi"
J1

e mean-square value of central point for {f i, 9i) and {gi

11 116
hTRfh "

hT[R +R +R ]h(16)-- -- s -- -gs -

where Rfs is the sum of the four correlation matrices Rf1, tRf 2 etc. for the objects fi
shifted in ±x and ±y (Rgs is similarly defined). The sol ution that maximizes J in (16) is
the solution of

Rfh= Xt[fs +R +R s]h (17)
_d -g -gs

where X is the generalized eigenvalue of the matrices. The problem defined by (17) is the
* well-known generalized eigenvalue problem and thus we refer to the SDF h that maximizes the

SNR defined by J as a generalized correlation SDF (SDF-3). The same {¢T orthonormal
basis function set used in the least-square SDF is again employed here with each matrix in
(17) being D x D = 30 x 30 (for our cases).

For SDF-l and SDF-2, regions of the correlation plane above T - 0.5 as well as the larg-
est peaks anywhere in the correlation plane are classified as interesting regions of poten-
tial interest. For each of these regions, we calculate the peak-to-mean ratio

central peak intensitymean in 11 x 11 window'

where an 11 x 11 = (2ds+l)x(2ds+l) window was chosen to agree with the ds = 5 pixel image
shifts used in our data and where the correlation peak value is not included in the mean
calculation. For each potential region of interest, C is compared to a threshold CT deter-
mined from the C values calculated for the N1 and N2 centered training set images. Since
SDF-3 does not fix a correlation plane peak intensity, the largest correlation plane peaks
are selected, C is calculated for these points and compared to CT.

3. INITIAL EXPERIMENTAL RESULTS

3.1 Database

The ATR data base used in our initial experimental results reported herein consisted oft~ree different objects (two tanks denoted as tank I and tank2 and an APC). High resolution1 ages of these objects were obtained and decimated to produce 56 x 22 target pixel images

typical of data from a FLIR at the typical ATR acquisition range of interest. For each
object, 36 images from a 200 depression angle were available at 100 aspect intervals. The
pixel values of the images varied from 0 to 255 with most target pixels having values
near 0 and 150. In Figure 2, we show two images of tank 1 (M60) and the APC at two different
aspect views. Denoting the front of the tank as image 1, tank 2 images 11-15 were much dim-
mer and tank I images 30-34 were much brighter.

Six or twelve image aspects per class were selected for the training set (all approxi-
mately evenly spaced in aspect angle). The centered and four shifted images of each object
were used for the training set. Each SDF was designed to recognized tank 1 and to reject
either the APC or tank 2. Intra-class recognition and inter-class discrimination were al-
ways tested using all 72 images in the two classes. Each test image was centered but all
points in the correlation plane were tested for the threshold T = 0.5. The correct central
correlation peak value was measured and compared to T = 0.5. The largest peak value any-
where in the correlation plane was also measured. C in (18) was calculated only for this
largest peak point regardless of whether it was >T. Regardless of whether the central point
was above threshold, C was calculated only for t~e largest correlation plane point. Errors
in the peak intensity are expected due to aspect views not in the training set, due to



(a) Tank 1, View 1 (b) Tank 1, View 2

(c) APC, View. I (d) APC, View 2

FIGURE 2

p Representative images for 3-Dl ATI testing
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different aspect views of different objects being similar and due to variations in the modu-
lation level of the training set and test set images. Our data represents very worse-case
results. For true targets, by evaluation only at one point, we often miss a target, since C
at the wrong point never exceeds CT (for a true target). For false targets by calculating C
at the wrong point even though the peak intensity there is below T, we can often misclassify
a ta.get. Thus, the data presented is quite worse-case and significant improvement is possible.

In Table 3, we show the data for tank I - APC for six aspect views per class. From row
one, we see that all correlation plane values are correct (below T) for false targets and
only three or five images have central peak values below T (for true targets). This was
found to be due to low modulation of the imagery and to aspect views quite different
from those in the reference data set). With T = 0.4 (0.35) for SDF-1 (SDF-2) all correct
peaks exceeded T. No peak threshold was used with SDF-3, rather the largest several corre-
lation plane peaks would be investigated. Similar remarks apply to the practical realization
of SDF-l and SDF-2. In row two, we see that the largest correlation peak always occurs in
the wronq place for a false target (as expected), but from row three, at the most only six of
these peaks have C > CT. In row two, the largest peak is always in the correct location
(for SDF-l and SDF-2). The number of C errors (C < CT for a tank input and C > CT for an
APC input) are listed in the table. Errors in the first case are missed targets. Errors in
the second class are misclassified objects. Most errors occurred for the same images (four
of which were very bright) and three of which had aspect views significantly different from
those in the training set). In general, least-squares SDF-2 performs comparable to SDF-I.
The projection values were in general lower for SDF-2 (especially for the central (correct)
peak value). This is expected, since this is an approximate image solution and since only
three eigenvectors are used to represent each set of training set images for each shift.
SDF-3 performed worst. We might expect it to perform better, since it maximizes C. Modula-
tion variations in the training set appear to be the cause for its poorer performance. The
percent of all 72 images correctly classified is noted and the percent of the objects with
T > 0.5 misclassified is noted in the tables.

TABLE 3
Worst-case performance of the three SDFs for Tank l/APC data (72 images)

(6 training set images per class, approximately every 600, 5 shifted versions of each)

SDF SDF-l SDF-2 SDF-3

INPUT TANK 1 APC TANK 1 APC TANK 1 APC

No. of CentralPeak Errors T 5 0.5 3 0 5 0 - - '.

No. of Largest
Peaks in Wrong 0 All 0 All 7 All

Location

No. of C Errors 3 1 2 1 7 6

Percent Correct 94.4% 95.8% 81.9%

Percent Wrong 0% 0% 8.3%

CT Threshold 5.0 4.3 3.5

Table 4 shows similar data for tank 1 versus tank 2. The trends are quite similar.
Table 5 shows data for the case of 12 training set aspect images per class. The signifi-
cant reduction in the number of errors observed is due to the fact that the largest cor-
relatior plane value is now in the correct location (for true targets). As in Tables 3
and 4, since C is calculated only at the largest correlation plane point, if this point is
wrong (for a correct target), then C never exceeds CT and a target is missed. In Tables 3
and 4, CT was set at 1.5 below the average C value for the training set images in both
classes. In Table 5, CT was set higher at 0.5 below the average (since with more training
set images, our confidence is higher).

%
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TABLE 4
Worst-case performance of three SDFs for Tank I/Tank 2 data (72 images)
(6 training Fet images per class, every 600, 5 shifted versions of each)

SDF SDF-I SDF-2 SDF-3 r"
INPUT TANK I TANK 2 TANK 1 TANK 2 TANK I TANK 2

No. of Central 3 0 3 0
Peak Errors T 0.5 03 0-
..... ........ ...... - -*0-

No. of Largest %
Peaks in Wrong I All 0 All 4 All

Location

No. of C Errors 1 3 3 0 5 0

Percent Correct 94.4% 95.8% 93.0%

Percent Wrong 0% 0% 7%--------------- -----------------
CT Threshold 4.1 4.6 3.9

TABLE 5
Worst-case performance of three SDFs for Tank 1/APC data (72 images)

(12 training set images, every 300, 5 shifted versions of each)

SDF SDF-1 SDF-2 SDF-3
INPUT TANK 1 APC TANK 1 APC TANK 1 APC

No. of Central
Peak Errors T§0.5 0 0 0 0 0 0

No. of Largest
Peaks in Wrong 0 All 0 All 0 All

Location

No.ofCErrors 0 0 U 2 3 2

Percent Correct 1002 97.2% 93.0%

Percent Wrong 0% 0% 4.2%

CT Threshold 5.5 4.8 4.4
- - - - - - -

4. SUMMARY AND CONCLUSION

The three new SDFs described represent 3-D object information and discrimination infcrma-
- tion between 3-D objects quite well. Initial tests show excellent results. As noted, the

test performed is quite worst-case, since the largest correlation plane point only was used
. and because of fluctuations in the modulation of the training set imagery.
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Correlation Filters for Distortion-Invariance and Discrimination

David Casasent and Abhijit Mahalanobis
Carnegie-Mellon University

Department of Electrical and Computer Engineering
Pittsburgh, Pennsylvania 15213

1. INTRODUCTION

Correlators are powerful shift-invariant object recognition systems that perform
well in noise. However, they are quite sensitive to distortions between the input
and reference object. Synthetic discriminant functions (SDFs) [1] accommodate
intra-class distortions and provide inter-class discrimination. In Section 2, we
review these projection SDFs and note that they restrict only the peak point in
the correlation plane. In Section 3, new correlation SDFs [2] are described.
They control both the peak and sidelobe response and thus exhibit superior
performance. Initial test data on these SDFs are presented in Section 4.

2. PROJECTION SDFs

In the synthesis of projection SDFs, the SDF h is a linear combination of the
training set images {f) in classes 1, 2, etc., i.e.

h(x,y) ' anfn(xy). (1)
n

The coefficient vector a that defines h is given by

a = R' 1 u, (2)

where R is the vector inner product matrix of all (f] with class one data If,]
being the first N, images and class 2 data the next N2 images, etc. The
elements of the deterministic vector u define the filter's desired response for the
If) data. With the first N1 elements of u unity and the next N2 elements zero,
the SDF provides a "1" output for all If,) and a "0" for all (f2 ). Many other . -

choices for u exist and correspond to the various types of SDFs [1).

However, this filter synthesis only restricts the central peak or correct
projection value in the correlation output. There is no guarantee that the value at
other, locations in the correlation plane will not exceed the value at the point of
registration (we refer to this as the central value, with no loss of generality and
denote this value by I). This problem is particularly severe when the input is a
false target (one in class 2) for which a "0" output is desired. Another PA

shortcoming of projection SDFs is that only a simple correlation plane threshold (T
0.5 or other levels) is used to achieve object detection.

3. CORRELATION SDFs

Projection SDFs adequately control I. To control the sidelobes, we increase
the training set size to include N8 shifted versions of each training set imgae, the
centered image and (Ns) shifted versions. We select N. z 5 and the shifted
images symmetrically to be d. pixels in both ±x and +y. Correlation SDF
synthesis still uses (1) and (2) with ift and R being larger, i.e. with N,(N, N2 )
N-. training images (for a two-class problem). The control vector u has zero-

'-...... ................-..........'............... .. ............................ ....
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values for elements corresponding to all shifted versions of all images. Denoting
class 1 (true) objects by 1, class 2 (false) objects by , and shifted versions of

each by primes, the filter requirements are

A 0 , q 'i 0 . (3)

The linear combination correlation SDF = h is

h(xy) Z a aiag(x.y) g ) Z aEai 3f'i(x,y) . Za,4g'i(x,y), (4)
N1  

N2  
+

where the last two summations are over (Ns1)N 1 and (Ns-1)N 2. The vector inner

product matrix R is NT x NT with the first N1 images being f' The SDF-h is

now defined by the solution a to

R2au = [lel1 O666O3T .  (5)

N, NT-N 1

This correlation SDF thus forces the true-class peak to 1, the false class
peak to 0 and the sidelobes (dS pixels from the peak) to 0 for both i and

Thus, the true correlation peak will have a well-defined shape. False targets will
have low response over most of the central correlation region. Use of more
training set images with shifts 2d., etc. can control the full correlation plane

response. This correlation SDF synthesis concept first introduced in [2] is a
refinement of the decorrelation SDF in [3]. Other variations follow directly [2]
such as: a least square solution (to reduce the dimensionality of the data), an
SDF that maximizes the peak to sidelobe ratio (PSR) (rather than forcing the peak
and sidelobes to specific values), etc. In Section 4, we present new test data
on the performance of these correlation SDFs.

4. TEST RESULTS

To test the performance of these correlation SDFs, available software that
produced images of different aircraft at different in-plane rotations 0 and scales and
from different viewing angles * (out-of-plane rotations) was used. We selected
two aircraft (Set A: Class I = Mig, Class 2 z DC10; and Set B: Class 1 =

Mig, Class 2 = F105), de = 5 and 8 pixels, N. a 5 (and thus NT z 1ON, where

N is the number of training set images per class). We generated 36 images (10

in-plane rotation increments 40 = 100) per class and thus desire N ( 36. The
image resolution used was 128 x 128.

With z :0, da : 5, N z 6 (A0 z 60) was used for Set A. The 6 training

set images per class are shown in Figure 1. Three intermediate images per class

(0 - 15, 30, 45) are shown in Figure 2. The correlation SDF was formed
(Section 3). Tests of the full correlation plane data for the training seJ data are
shown in Table 1. The value of the correct peak I, the largest peak lp and

PSR at both peaks are listed. For true targets (class 1), the correct and largest
peak coincide. All I are 1.0 as expected and PSR is large (=3.88) and rather

constant. Data for the false targets (right side of Table 1) show the expected
values (0.0) at the central peak and large (=0.52) but less than 1.0 peak values

.............................. -. °...... . . ,'



ThlD4-3

at other locations. As expected, PSR at these points is less (2.00 max) than for
true targets. Data for test set imagery. (Table 2) shows larger peaks (Io--!0.53)
for true targets than for false targets (1,)!50.50) and larger PSR for true targets
(>2.21) than for most false targets (:52.1). The PSR = 2.4 value for one false
target corresponds to an IP a 0.35 and is thus easily distinguished.

From these data, we see that an IT= 0.5 threshold alone provides 1o0%
correct recognition, The combination of IpT = 0. 5 and PSRT = 2.3 insures even
more reliable performance. Because of symmetry, the three lest data in Table 2
typify all results. Tests of 0 rotation effects were conducted. They are more
severe conditions and require more training set images, different d= and tighter D
and PSRT thresholds,

.- (b) Class 2 DCtO Training Set Images, 0=0. A#=60

.F - --_________________________

* .. . -.- *

Figure 1: Training Set Images Used (-O.,

fortre (a) Class f fsa Class 2 -.

(>2.Figure 2: Three Typical Test Images Per Class f oea

RLCL S' I M G TRUE CLASS CLASS _ 2",JDCI0) FALSE CLASS-"---.- e LOCATION ]p "P SR "' Ip LOCATION;PS :

crcrc60 ni 65,65) 1.00 3.90 0.0 0.63 (60,61) 1.14 i s
120m r,65) 1.00 3.86 0.0 0.51 (61,69) 1.01

,..180 °  (65,65) 1.00 3.94 0.0 0.61 (62,50) 1.92 '"
.,2400, (65,65) 1.00 3.88 0.0 0.54 (60,61) 2.00 t ''300 (65,65) 1.00 3.81 0.0 0.43 (80,61) 1.57

360- (65,65) 1.00 3.84 0.0 0.51 (66,59) - 1.35

gTable 1: Peak Intensity IP Largest and PSR (Training Set Data)mg U

. .
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Sor

t- CLASS 1 ,TRUE CLASS) INPUT CLASS 2 .FALSE CLASS) INPUTr: IT ;TI,...."
> .e I~ PSR PSR LOCATION Ip

150 0.71 2.4 (69,70) 0.43 3.1 0.43 2.1 (44,66) None30. 0.82 3.3 (69,53) 0.51 2.2 0.50 1.6 (52,64) None
450 0.53 2.4 64,71) 0.48 3.0 0.35 2.4 (60,61) None0 .3 2 . ( 6 , 6 ) 'n e

2
e Table 2: Typical Test Image Data
T
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15. ERROR SOURCE MODELS FOR
OPTICAL LINEAR ALGEBRA
PROCESSORS
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The modeling of system and component noise and error sources in optical linear algebra processors (OLAP's) are
considered, with attention to the frequency-multiplexed OLAP. General expressions are obtained for the output
produced as a function of various component errors and noise. A digital simulator for this model is discussed.

Optical linear algebra processors (OLAP's) represent processed are present on a bias. The effects of these
a most attractive class of general-purpose optical pro- bias terms in the output data must be removed and
cessors with parallel and real-time features.' The fre- corrected for. The necessary correction signals can be
quency-multiplexed OLAp 2 is easily fabricated, permits easily obtained with a separate adjunct processor
a competitive high computation rate, and with different channel similar to the way in which bias was corrected
data-encoding schemes allows all the basic operations in the initial optical matrix-vector processors using
of linear algebra functions to be performed with excel- two-dimensional masks. Amplitude-mode operation
lent pipelining and flow of data.3 We thus emphasize of the AO cells and the system is also possible and in
this architecture in our present study. Many OLAP's some cases preferable. In the conventional system, the
that operate on digital data have also been suggested.' detected output intensity will be the square of an am-
These systems achieve the accuracy of a digital pro- plitude product, and thus the square root of the input
cessor together with the speed and parallel-processing (or output) data must be produced. Methods to achieve
advantages of optical systems. Despite this widespread this exist, but coherent detection at the output is pref-
interest, little attention 4 has been given to an analysis erable. In this case, the detector output voltage is
and modeling of the various noise and error sources in proportional to the desired amplitude product. Either
such optical architectures. We briefly review the fre- mode of operation requires attention to the choice of
quency-multiplexed OLAP and the basic linear algebra frequencies and their separation to ensure linearity and
operations required. Then we detail the types of errors suppression of cross talk. The effects of intermodula-
possible in such a processor and derive our model for tion-induced cross talk require further examination.
noise- and error-source effects in OLAP's and the ex- No delays exist in this processor since data flow
pression for the output obtained as a function of the continuously, as detailed elsewhere,3 even though the
various system-component noise and errors. We dis- same matrix remains in the AO cell for NTB. With

- cuss digital simulation of this model and its use. The different space (x), time (t), and frequency (f) encoding,
modeling, simulation procedure, and general approach matrix data can be processed by the system, and various
that we use are valid for most OLAF's, including digi- matrix-vector, matrix-matrix, and matrix-matrix-
tal-optical linear algebra processors. matrix multiplications and iterative and direct solutions

A simplified diagram of the frequency-multiplexed of systems of linear algebra equations can be realized.3

4-. OLAP is shown in Fig. 1. This architecture consists of The basic operation performed by the system is thus a
-" N input point modulators imaged through N separate matrix-vector product each TB. This is the basic

regions of an acousto-optic (AO) cell (with each region building block of all other matrix operations and direct
separated by a bit time TB). The AO cell is fed with N and indirect solutions of linear and nonlinear algebraic
1-D input signals, each on a different temporal-fre- equations.3 In this Letter, we describe our noise- and
quency carrier. We view these signals as N vectors, error-source modeling of the frequency-multiplexed
each on a spatial carrier. The light intensity distribu- OLAP in terms of this basic Ab c c system opera-

. tion leaving the cell is then the products of the input tion.
vector (from the point modulators) and the N vectors
in the cell, with each such product leaving the cell at an
angle proportional to the input frequency to the cell.
The Fourier-transform (FT) lens sums the elements of
each vector product (by space integration) and forms
each of the N-vector inner products on a separate out-
put detector. The detector output voltages (or cur-
rents) are thus proportional to the (N x N) matrix-

S'''" vector product, with one matrix-vector multiplication
- performed each TB. Fig. 1. Simplified schematic of a frequency-multiplexed

If intensity-mode operation is used, the signals to be optical linear algebra processor. (After Ref. 2.)
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The basic architecture of most OLAP's consists of a 6, - b, [I + 6 + 6(2 + 6(31. (1)
linear array of input point modulato. s, an AO cell, and

a detector array. Thus limiting our modeling to the Similarly, the actual and ideal transmittance of the
system of Fig. 1 is not overly restrictive. In the initial matrix data in the AO cell for element j, i (i denotes
modeling, we assume ideal lenses, no dispersion, and no space and j denotes frequency) are related by
cross talk. This yields a useful closed-form expression di, - Oil + 6(2)1HQ1)exp(-ax,), (2)
for the effect of errors, which provides useful insight. + ]( p2
Accommodating other effects and more advanced where xi denotes the distance of the ith data block from

component errors in the simulator is discussed below, the AO cell's transducer. Likewise, the elements of the
In the system of Fig. 1, various input-plane (point- observed and ideal detector plane outputs 4 and a are .

modulator) errors are possible. These include varia- 1+ + n
tions in the bias level or level of lasing for the input i si 1 + 6?1] + d) + n.(t). (3)
modulators and variations in the response of each input We combine all spatial errors (subscript i) into the
point modulator. Acoustic attention of the signal in the single variable
cell produces a deterministic taper exp(-ax) across the
length x of the AO cell, where a is the attenuation ffi , + - 1 + , ) + 6(2) + 223. (4)
constant of the AO cell material used. For now, we Combining Eqs. (1)-(4) and assuming all error sources
assume that a is small and nondispersive. These spa- to be small, the elements 4j of 6 are
tial errors plus variations in the spatial response of the
AO cell owing to imperfections in the AO material or the 4 i aib(1 + V')(1 + 6j)H(fi)exp(-ax,)
transducer used can also be modeled as input-plane + dj+ nj(t). (5) .-

errors. These spatial errors are correctable and can be
reduced to low residual levels by adjusting the input To provide a more vivid description relating to c
signals to the point modulators and the AO cell or by use and the various system and component noise and errors,
of a correction mask in front of the AO cell (the a error we detail Eq. (5) for a 2 X 2 matrix as

1] 0 1+0 0 Y2 Ca21 (122J12.-.,rel +~ 1 0i 0121F,.. .-?,
+l 021 0

1+]2 0 xp -aX 2) 0 b[+ rdii [n,(01). (6)

0 1+ 0 exp(-axi b d2 + [n!(t)J
To provide further insight, we explicitly describe each

error-matrix term in Eq. (6) by its associated origin,
i.e.

F FDetectr A ] FF Input1
]Satial- requency A [Spatial-e e sEx-ebserve ff Response [ epnse Exact Response ,.

Variations Variations Matrix Variations

Acoustic Exact + Dark + Detector]• (7) ...-I.7

[Attenuation LVector] LCurrent Noise .

effect can be corrected only at one frequency, however). When acoustic attenuation is small, Eq. (6) is
As noted above, all spatial errors in the AO cell can be
frequency-dependent AO cell errors can be mapped to f2 C2 62 n2(t)'

the output plane (since the FT lens converts frequency
in the AO plane into position in the detector plane). where the spatial and temporal errors are now additive.
The output detector plane errors thus include variations From Eqs. (7) and (8), and the fact that all OLAP spa-
in the frequency response H(f) of the AO cell, variations tial errors can be reduced to the desired residual levels
in the spatial response of the individual output detec- by correction, detector noise and the dispersive nature
tors, variations in the dark current of the individual of a are potentially the most dominant error sources.
detectors, and time-varying detector noise. The effect If a effects are not small, then the decoupling in Eq. (8) -.-.

of these last two detector plane errors on the system does not occur, the various spatial and detector plane -

output is additive rather than multiplicative, as we will errors can still be grouped and combined as in Eq. (7),
shortly demonstrate. but the simplified form in Eq. (8) does not result.

In Table 1, we summarize the notation used and the To quantify system performance and the effect of
various input, AO, and detector plane errors. We also each noise- and error-source component in the OLAP
include errors that describe spatial variations in the for a given operation, computer simulation is required.
coupling between the inputs and the AO cell. With this The error sources are quite different from those typi-
formulation and notation, the elements 6, of the actual cally treated in analysis of conventional linear algebra
input vector are related to the elements bi of the ideal processors.5 We now briefly discuss how we digitally
input vector by model the various error sources in Eqs. (6) and (7).

*- .,.. :,i'.:.:."."i:i'-y ";i . . .':e ".-. -.. :,i ,a' -.', ..z • -,_.,_,, .. ,_ _ " ,...,, ",,'." ".-_'-..";>-P -. .- ", ... "" ;.- "-. .-"-
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Table 1. SAOP Error Source Model will be too poor to consider. A primary purpose of our

Error Source Notation initial model and its simulator is to quantify the domi-
nant error sources and the magnitude allowed for each

Spatial errors Subscript i (i.e., the level to which fixed spatial errors must be
Frequency errors Subscript i corrected and the amount of noncorrectable errors al-
Input plane errors Superscript I lowed).
AO cell errors Superscript 2 "4Detector-plane errors Superscript 3 For quantitative performance data, other advancedmodels can be used. Exact transfer curves (after cor-
Input Plane Errors Notation rection) for each point modulator and detector can be
Point modulator measured and used in the actual simulator. We have "le

Spatial gain 61 ) done this and found the results (for the small residual
Bias nonuniformity 1 +611 errors present in practice) to be the same as those ob-

Coupling (spatial) 1 + bl tained using our random variable modeling. To include
the dispersive nature of a, a different exp(-ax) factor

AO Cis used for each signal in the AO cell. This is a fixed
Amplifier errors 1 + (2) factor (different for each frequency signal) that mul-
Spatial response 1 + 2) tiplies the present spatial contents of the cell each TB.
AO transfer function H(f,) Our simulator includes this feature, but it is not con- "'" -

Acoustic attenuation exp(-axi) veniently included in the equation formulations above.

Detector Plane Errors Notation Similar remarks apply to cross-talk effects in the AO cell
and to the electronic circuit models.

Spatial response I + 6') From detailed simulations and analyses with theDark current dmodel in Eq. (6), we found that acoustic attenuation and
Time-varying noise n1 (t) detector noise are the dominant error sources. In initial

simulations,4 we found that a effects are dominant in
iterative algorithms and detector noise is dominant in
direct algorithms. We also found that the effects ofFrom experiments on our laboratory OLAP systems, salmlil-ro ore r diiea nE."

we found that the residual spatial errors and the de- small multiple-error sources are additive as in Eq.

tector noise can be modeled as zero-mean Gaussian (8).The various error sources that arise in an OLAP haverandom numbers and that signal-dependent (quantum) been tabulated and grouped into two classes (correct-
noise is not present, The frequency response H(f) and able or fixed and time-varying) and classified according

the acoustic attenuation can be modeled as determin- to the plane (input, AO cell, output detectors) in which
istic errors that are quantified by measurements on the they originate. Combining these separate error sources,
OLAP. This deterministic function multiplies the we find that error matrices in systolic processors are
matrix data in the cell as in Eq. (6). Since the spatial multiplicative and that acoustic attenuation is an im-
errors are independent of time, the random numbers portant error source in OLAP's employing AO cells.
representing each such error are generated once by The model and simulation technique advanced can and
standard IMSL6 or other software and stored. The 3a shouldbe apd to th Laa t an th
standard deviation of each random number is chosen dinant o o the effecto utify error, Z
to equal the percentage error to be modeled. For input ant erormsuce te effect frm e rors,and the performance to be expected from each systemand AO cell spatial errors, the random numbers are in-
cluded in each input vector datum b each TB, and for
detector spatial errors the associated random numbers The support of this research by NASA Lewis Re-
are added to the computed output vector each TB as in search Center (grant NAG-3-5), the U.S. Air Force Of-
Eq. (6). For fixed or spatial errors, the same set of fice of Scientific Research (grant 79-0091), and inde-
random numbers is used at each TB. To simulate de- pendent contractors of Unicorn Systems Incorporated
tector noise, a new set of uncorrelated variables with is gratefully acknowledged.
Gaussian probability distribution is generated each * Present address, AT&T Bell Laboratories, Allen-
TB. town, Pennsylvania 18103.

The model above and the form of the result in Eqs.
(6)-(8) are useful for conveying error effects in closed References V
form, for showing how various error sources can be
grouped, and for noting which error sources are cor- 1. Special issue on optical computing, Proc. IEEE 72 (July
rectable, multiplicative, and additive. Other error 1984).
sources and other models for the various components 2. D. Casasent, J. Jackson, and C. P. Neuman, Appi. Opt. 22,
can be included directly in the simulator [but do not 115 (1983)._ , 

% lend themselves to convenient diagonal matrices as in 3. D. Casasent, Proc. IEEE 72, 831 (1984).Eq. (6) and to a closed-form expression for the system]. 4. D. Casasent, A. Ghosh, and C. P. Neuman, Proc. Soc.Eq. ( n iPhoto-Opt. Instrum. Eng. 431,201 (1983).
Variations in the bias level of the point modulators and 5. J. Wilkinson, Rounding Errors in Algebraic Processes
all errors are assumed to be small residual errors (after (Wiley, New York, 1963).
correction). Thus bias-level variations are included in 6. International Mathematics and Statistics Library Ref-
4i. If such individual errors are not small, performance erence Manual, 8th ed. (IMSL, Houston, Tex., 1980).
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ITERATIVE SOLUTIONS TO NONLINEAR MATRIX EQUATIONS USING A FIXED NUMBER OF STE-S

D. Casasent, A. Ghosh* and C.P. Neuman

Carnegie-Mellon University
Department of Electrical and Computer Engineering, Pittsburgh, Pennsyla.ania - -

*Present Address: AT&T Bell Laboratories, Allentown, Pennsylvania 181.3

ABSTRACT

* An iterative algorithm for the solution of a quadratic matrix equation (the a ..
Ricatti equation) is detailed. This algorithm is unique in that it allows the soluti".'
a nonlinear matrix equation in a finite number of iterations to a desired accuracy.

*retical rules for selection of the operation parameters and number Uf iterations requ :'
advanced and simulation verification and quantitative performance on an error-free
are provided. An error source model for an optical linear algebra processor is then a-
vanced, analyzed and simulated to verify and quantify our performance guidelines. 7-
parison of iterative and direct solutions of linear algebraic equations Is then prc i. ,
Experimental demonstrations on a laboratory optical linear algebra processor are 'ncl I
for final confirmation. Our theoretical results, error source treatment and guidelines arr
appropriate for digital systolic processor implementation and for digital-optical 'roo s
analysis.

I! 1. INTRODUCTION

Optical linear alcebra processors (OLAPs) represent a most general anO attractive use of
the parallelism and real-time processing features of optical systems [1]. The frequency-
multiplexed acousto-optic (AO) processor [2,3] of Figure 1 represents a most general-zurpose
OLAP architecture with ease of fabrication [4] and competitive computational rates [2,4]'. '

In this architecture (Figure 1), N point modulator inputs are imaged through N separate
regions of an AO cell. These individual regions are separated by TB of time (for propagation
of the acoustic wave) and by a phvsical distance dB. In [2], the use of this processor in
iterative algorithms, direct LU and QR matrix decomposition algorithms, and triangular sys-

tem solutions was detailed.
FT

POINT AO

- -amn
"~~ ~~ = at,x) 3-" "1 " " °

- (SHIFTED)

..... ',I..* .",

B =brim = b(t, f );

FIGURE 1
Simplified schematic of a frequency-multiplexed optical linear

algebra processor [3]

..
In this paper, we consider the use of this processor for the solution of a nonlinear matri.-

!K equation (Section 2). The specific application chosen is the solution of the algebraic
S Ricatti equation (ARE). This nonlinear equation is similar to the expressions to be s-lvcd

in Kalman filtering and other advanced modern signal processing algorithms. An iterative
solution is necessary for such problems and for eigensystem solutions. Our proposed non-
linear ARE solution is quite unique since it requires a finrte number of steps to achieve
a specific accuracy and performance. In Section 3, we summarize selection of the operation-
al parameters for such an iterative algorithm and the theoretical basis for our choice of

102 /SPIE Vol 495 Reel Tirm Signal Processing V11 (1984)

...



%-°

... J

:he fixed number of iterations to be used. Section 4 presents initial error-free simulation

data. In Section 5, we advance our error source model. In Section 6, we review our itera- %
,ve and direct solutions to systems of linear algebraic equations (LAEs). This reresents

the fundamental operation required in advanced linear algebra algorithms. Section 7 con-
tans simulation data to quantify the dominant error sources and the accuracy expected frC7 r
soch algorithms. We conclude in Section 8 with the experimental verification and quartf -
cation of our theoretical results. Our summary and conclusions are thon advanced in Section
9 .

2. NONLINEAR MATRIX SOLUTION

in reference [5] , we detailed a solution to the linear cruadratic reaulator control 1rDL."

i,- ize a quadratic performance index for a linear system. Computation of the reculat r
fecdback cain matrix K that defines the optimal controls u involves the solution cf t,c.

TS F + F S S L S + Q= 0 ()

for S. To achieve this, we used the Kleinman algorithm [51 and the solution cf the vector-
izedLvazancv equation to format the solution of (1) as a solution of the set of LA~s

H(k)s(k) = 1(k), (2)

where s anc v are the vectorizations of S and S L S - Q respectively and H is a Kronecker for-

7atted-matrix. This system of LAEs must be solved successively with different matrices H-
an. vectors £ with the results of one cycle used to compute the matrix H and vector v for

.he next cycle. To achieve this, we employ a two-loop iterative algorithm described by

s(r+l,k) = [I - _(k)H(k)]s(r,k) + .(k)y(k). (3)

in solving (2) using (3), we solve (2) for one outer lcop iteration k, update H and v and
solve the next LAE. This procedure continues until s is of sufficient accuracy. The algo-

rithm in (3) implies an iterative solution for each LAE. Direct solutions are also possible
as we discuss in Sections 6 and 7. The indices r and k in (3) refer to Richardson (inner)
an Kleinman (outer) loop iterations respectively.

3. OPERATIONAL PAR-AMETER SELECTION

In an iterative algorithm such as (3), various operational parameters must be selected.
The initial selection s(0,0) for S and the choice s(0,k) for each LAE solution are recuire-.

For s(0,0), we use 0 to insure outer loop convergence (a stability matrix). For s(C,k) , we

use the obvious choice of the prior s(0,k-l) estimate. The acceleration parameter - in (3)
is chosen to be = n/1max - 3/ H(k) . This insures inner loop convergence [2,5). Stop-
ping the inner loop ierations (index r) for each LAE solution and stopping the number of
outer loop iterations (index k) is a ma~or decision.

In reference [5), we derived bounds for the inner loop error, the outer loop error and
their coupling. From this analysis, we derived the selection of a fixed number of inner
loop iterations R tc solve each LAE giver, by

R = nC = C logo 1.5C to 3.OC. (4)

where x (0)-x*(1) < a and [I - I/CR - exp(-n) < 1/;i is chosen. This follows from our
analysis of the error in an iterative solutic. (cue to a fixed number of iterations R),
which showed that the norm of such an error is

s(r,k) - s* = I - H!(k r = (1 - lI/C(k) r,

where C is the condition number of H. Since r is expected to increase with C, we set r = nC

and thus select n such that the error between the computed solution s and the exact solution
s* in (5) is as small as is required. For the fixed number of outer-loop iterations K, we
use K = 5 or 6, which can be theoretically derived (and apFropriately modified) for other
applications with matrices with specific features. These iterative operational parameter
selections are summarized in Table 1.

4. ERROR-FREE SIMULATION RESULTS

The performance measures we adopted to assess performance of the algorithm in Section
implemented using the operational parameters in Table I are the maximum percent error in any

-," element of the matrix K (i.e. .Kmax") and the maximum error in the location of the closed-
loop poles of the system (L'max%). We expect 'K and note that :, is the more

SPIE Vol 495 Real Time Signal Processing VII (984 1703 -
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appropriate error measure for this specific application and that similar error measures
should be used to evaluate the performance of other specific case studies. In
Figures 2 and 3, we show the variation of these two error measures with the number of outer

4 loop iterations k for a fixed number of inner loop iterations for two case studies. These- P-
case studies are the fifth (Figure 2) and third (Figure 3) order models of an F100 enqi.ne."%
As seen from the data for these two case studies, th.e use of a fixed number of iteratzns
results in a monotonic decrease in the solution error with the LK error being approxi:nacel: ,.

ten times that of the , error. From these results, we conclude that the use of a fixEd
number of iterations can yield adequate results when the number of iterations is procIr-Y %I
chosen. Our parameter selection guidelines in Table 1 have thus all been verified a7d z s-

' cussed.

TABLE 1
Operational Parameter Selection Guidelines [5]

SYMBOL PARAMETER PREFERRED CHOICE

s(0,0) Initial Initialization s(0,0) = 0

s(0,k) k-th Kleinman Loop Initialization s(0,k) =s(O,k-l)

R Number of Inner Loop Iterations R = 1.5C to 3.OC

K Number of Outer Loop Iterations K = 5 - 6

w(k) Acceleration Parameter w(k) 3/ H(k)

4 4

3 3

42
3i-. 1-.-, 2 

AA.. .

4.'

00

0
#C

max A%; Er iO-7 max LK%;
- -Curve A -2 Er 

O0 Curve A
-2 max ax% £r" 0 .  B- g ax i x%; W Curve

7 

Curve B

max AX%; R . 100 ma n

-3 - Curve C -4 max %X%;
R 10 *Curve C

.4 -5
1 2 3 4 5 6 1 2 3 4 5 6 7

NO. OF OUTER LOOPS NO. OF OUTER LOOPS

FIGURE 2 FIGURE 3
Variation of the error measures AKmax(V) Variation of the error measures a
and Lmax(%) with the number of outer- and ,max(%) with the number of outer-
loop iterations K for different inner- loop iterations K for different inner-

N loop iteration stopping criteria fo- the loop iteration stopping criter-a for the
fifth-order HPG3 F100 model third-order HPG3 F100 model

5. ERROR SOURCE MODEL

In earlier publications [D,8) we detailed the first system and component error source
model for an OLAP and the general issue of errors in such an architecture. In thIs sectcn,
we review this OLAP error source model. In this moci , we distinguish input, AD cell and %
detector plane errors separately. Spatial errors include: input and detector resonse
variations and errors in the interconnections between the input modulators and the AO cell, %4
and detector dark current. The spatial variations are fixed (time-independent) and are
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. correctable to small residual levels as required (by adjusting the gain of the input point modu-
lators, the detector amplifiers, and the input matrix and vector data). Detector noise is
the only time-varying error source considered. Acoustic attenuation produces a deterministic

*exponential variation of the data in the AO cell. This effect is dispersive, but its fre-
quency dependence is not included in our present model. Acoustic attenuation can be corrected
at one freauency and is thus an input spatial error. The product of an input matrix A and vector
b thus yields a final output d given by

Detector AD Cell Point Mod Tttopas [F - AD Cell + Il e o
d~ ~ = pta rrjn'y ~ L el Response andiF arsse s Attenuation Interconnection _ Vt eDr seV aiations Variationsj[-J [ Variatons

* As seen, the different types of system and component variations are described by error ma-
trices that multiply the input data vector or input matrix data. Thus, the system errors
are described by the corresponding variations in the data matrix and vector. The detector
dark current and noise appear additively in the output vector as shown in Eq. (6)

6. DIRECT AND INDIRECT SOLUTIONS OF LAEs

The sclution of a system of LAEs, A x = b is the fundamental operation required in most
linear algebra processors and signal processing applications. Thus, we concentrate on this
function. The two major types of LAE solutions are direct or matrix decomposition solution
and an iterative or indirect solution.

The preferable iterative algorithm is [2,9]

x(r+l) = x(r) + w rb - Ax (r)], (7)

* where is an acceleration parameter chosen to insure convergence. The iterations (described
by the iterative index r) continue until x(r) = x(r+l). Then, (7) reduced to A x = b and
the system's output x is the desired solution. To implement (7) on the system of Figure 1,

,* the matrix data is fed to the AO cell one column at a time in parallel with the rows of the
matrix frequency-multiplexed, i.e. with the matrix elements amn encoded in time and fre-
quency as a(f,t) and with the vector data x spatially-multiplexed as x(x) and fed in parallel
to the input point modulators. The matrix-vector product A x is formed, operated upon in
analog or digital post-processing electronics to produce the right-hand side of (7) and hence
the new x iterate input to the point modulators. Thus, the detector output is fed back toEthe inpu point modulators. The length of the AO cell NTB is chosen to be just as suffi-

cientto accommodate the matrix data. Each TB, as one column of the matrix leaves the AO
% cell, it is reintroduced into the bottom of the cell. This recycling of the matrix data is

more efficient for system fabrication and reduces the effects of acoustic attenuation.

In direct solutions, the matrix A and the vector b are multiplied by a decomposition
* matrix P1 to generate new Al and bi. Each such matrix-matrix and matrix-vector multiplica-

tion generates one row of the final A' matrix and one element of the final b' vector.
After each matrix-matrix multiplicatlon, the order of the matrix and vector-are reduced by-
one and the new reduced order Al and bl are multiplied by a new P2. This procedure is re-
peated N-1 times (for an N x N matrix) and yields a new upper-triangular matrix U and a new
vector b'. This simplified upper-triangular system of equations U x = b' is then easily
solved Sy back-substitution. The matrix-decomposition can be realized either as an LU de-
composition (this is the technique we use when the matrix is positive-definite or diagonally-
dominant, as is the case here, since pivoting is then not required) or as a QR orthogonal

. decomposition (this technique is more general and stable, but is more difficult to realize).
-' The detailed implementation of LU [2,10) and QR [2,11] decomposition and back-substitution

12,12] have been described elsewhere. To implement the Gaussian-elimination algorithm (LU)
used in the present application on the system of Figure 1, we feed one row of the matrix A
to the AO cell in parallel (with the columns of A frequency-multiplexed, i.e. with the
elements amn of A frequency and time encoded as a(t,f)) and with one row of the decomposition
matrix Pj fed to the input point modulators in parallel (with the elements Pmn of P time
and space encoded as p(t,x)). To facilitate data flow and for speed, we simultaneously
operate on A and b by using an augmented matrix. One row of the augmented matrix A' is
produced in parallel as a'(t,x) on the output detector during each of the N cycles: The new
P1 matrix is easily calculated from the elements of the ji-th column of the augmented matrix
in dedicated electronics.

7. SYSTEM ERROR EFFECTS ON THE SOLUTION OF LAEs

'.- The direct solution requires an AO cell of twice the length of the matrix, but achieves" -

the decomposition in a fixed number of steps. However, as noted in Section 3, iterative
V 5 SVY

SPIt Vol1495 Real Time Signal Processing VII(?984/' 105 -



algorithms can be operated with a fixed number of iterations to achieve a given desired . -
accuracy and iterative algorithms are essential [2] for eigen-systems solutions and tne

solution of nonlinear matrix equations such as the ARE [5) and in Kalman filtering '13j. in
our new results (Sections 7 and 8) ,we ccmpare [6] the performance of direct and iteratz...- alco-
rithms in the solution of the LAEs that arise in a specific ARE solution for the FO enzine.
The two cases considered are third and fifth-order F100 models. These give rise tc 9 x 9
and 25 x 25 matrices. Bipolar data is handled by space-multiplexing [3) and this cd,'.es
the size of the matrices and vectors required. For the third-order problem, C = 2.46, the p
dynamic range is 47.7 and from (5), j 10 iterations are required to solve each LAE. For
the fifth-order problem, C = 56.9, the matrix dynamic range is 1117 and from (5),
iterations are required to solve each LAE. We consider three solutions: an iteratcve alc-
rithm, direct LU Gaussian-elimination with the back-substitution performed opticall> ad
direct Gaussian-elimination with the back-substitution performed digitally with hig. acc'uracy.

- We consider two problems: the solution of A5 x5 = b5 for the fifth and last outer lco"-
(2) and (3) for the solution of the ARE in (1 with A 5 and b5 digitally calculated exactly,and the solution of all five LAEs for all outer loop iterations.

TABLE 2
Performance of Three Algorithms for Two Data Sets in the Solution of One System of LAEs

TEST FlO RESP. VARIATIONS ACOUSTIC DET RMS ". (.)
NO. DATA Point A-TEN. N Ex M MNO. SET Mods(%) Dets(%) (dB / cm) NOISE(,) max

(I) Iterative 1 3 1 1 0.1 0.6 2.49 C.2x10- 3

2 5 1 1 0.001 0.06 4.31 1.3

(II) LU and 3 3 1 1 0.1 0.6 2.39 0.52 

Optical Back-
Substitution 4 5 1 1 - 0.1 0.006 _ 9.77 0.93- ,

(Ill) LU and 5 3 1 1 0.] 0.6 3.04 C.33

igital Back-
Substitution 6 5 1 1 0.1 0.006 6.78 0.71

TABLE 3
Performance of Three Algorithms for Two Data Sets in the Solution of the Nonlinear ARE %e

F100 RESP. VARIATIONS ACOUSTIC DET RS
ALGORITHM NO. DATA Point ATTEN. NOISE(%) ("max

SET Mods(%) Dets(%) (dB / cm) ___a-__

(I) Iterative 7 3 1 1 0.1 0.6 2.98 0.77

---------------- 8- - 8 _5- I 1 ------- 1---- 0.001 . . 0.06 . 5.24.. .. 1.62

(II) LU and 9 3 1 1 0.1 0.6 4.56 0.72

3ptical Back- 6

-Substitution ------ 10.. 5 11 0.1 6x10- 11.34 14

*(III) LU and 11 3 1 1 0.1 0.6 4.12 0.5

igital Back-
% Substitution 12 5 1 1 0.1 6x10 - 4  10.1 iU,_

In Table 2, we show the results for the solution of the singl fifth set of LAEs. Occr
results for the full set of five LAEs, i.e. the full ARE solutions are included in Tatle 3.
Data sets 3 and 5 refer to the third and fifth-order F100 motrix problems respectivci:. Thc
performance measures used in evaluating each approach are the average norm lx cf t c
error in the calculated vector x and the maximum error . max in the location of the cl scr-

*loop poles of the final system. The spatial, detector noise, and acoustic attenuation
errors noted earlier were selected to produce approximately equal output errors for cach
error source treated separately.

" In Tests I and 2, we see that our theoretical operational parameters (Tatle 1) art a:
" valid when noise and system errors are present. Comparing the results for ;*:qorith7 I ar:

II, we see that acoustic attenuation is the dominant error source for an iterative alzccrith7
and detector noise dominates the performance of a direct algorithm. This is expected
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A, because of the cyclic data flow of the matrix in the AO cell during the iterative algorithm.
This alters C for the matrix. In the direct algorithm, detector noise on one cycle is fed
back to both the inputs and the AO cell and thus changes the noise distribution and its
effects accumulate. Also, detector noise affects the small vector elements and this effect
also compounds on successive cycles. From the results of Algorithms II and III, we see that
optical back-substitution yields comparable performance to digital back-substitution. This
is expected, since the operations required in back-substitution are only vector inner prod- "
ucts and only N-1 of these are required. This is a substantially lower computationally in-
tensive set of operations than those required in the matrix decomposition. Thus, the
accuracy of the matrix decomposition determines the final accuracy in our results. Comparing
the results for data sets 3 and 5 and the corresponding data in Tables 2 and 3, we see that
the larger matrix size and the increased number of steps required in the ARE versus the LAE
solution causes the required accuracy to increase for direct algorithms more than for iter-
ative algorithms (e.g. a lower acoustic attenuation constant a is noted to be required for
the iterative ARE solution than for a direct LAE solution). We have derived a theoretical
expression [6)

a < (1/2 .3 1C ) 7 ) " [

for the amount of acoustic attenuation a in dB/cm allowed for convergence of an iterative
algorithm, where L is the length of the AO cell in cm. From the last two columns in both
tables, we see that 1' max errors are significantly less than Lx errors as expected. The
results in Tables 2 and 3 are in agreement with the theoretical guidelines in (7). From
Test 1 and all other tests, we find that spatial errors are additive and that for enall errors
the percent performance scaled with the magnitude of the error. In Tables 2 and 3 and in
(7), we assume that each TB of the AO cell corresponded to 1mm and we assumed new input data
to the point modulators in the AO cell to be introduced every TB. To achieve more practical
: levels, closer spacing of data packets in the cell is necessary. This can easily be
obtained by scaling the values given in Tables 2 and 3. Operation of the input point modula-
tors at a higher rate than the AO cell data [2] can also improve the a and detector noise
values found in Tables 2 and 3. These initial test results are intended to provide guide-
lines for the efficient use of various algorithms, efficient solutions to linear and non-
linear matrix equations, and quantitative data on performance expected. Our theory, guide- .-
lines, and modeling are also appropriate for digital-optical linear algebra architectures.

8. REAL-TIME LABORATORY EXPERIMENTS

In Figure 2, we show the nine outputs from a laboratory system to iteratively solve the
fifth set of LAEs for the third-order F100 model (Test 1, Table 2). The outputs are shown
after 80, 400 and 640 iterations. The laboratory system used a fixed 2-D photographic mask
for the matrix in place of the AO cell and 2-D space-multiplexing in place of frequency-mul-
tiplexing. To accomodate bipolar data, the matrix and vector were biased positive. This
increased C to 120. The laboratory system was operated at a 10MHz data rate per channel.
To facilitate easy monitoring of the system, we used w = -0.125. The number of iterations
j = nC required for 0.6% accuracy was calculated from (3) to be 613 iterations. Our experi-
mental value of 640 iterations at which convergence occurred is thus in excellent agreement
with theory. In the laboratory system, the maskerrors were ±7.2% and these dominated other
spatial system errors. The detector noise was measured as 0.4%. With these errors included
in our simulator, the solution vector x was calculated, compared to the ideal theoretical x'
value and to the x vector calculated on the laboratory system. The locations of the closed- .'.

loop poles of the-system in each case were calculated and compared. The results in Table 4
show excellent agreement (0.5% accuracy or better) in the location of the poles and with the
nature of the poles preserved (e.g. complex-conjugate pole pairs)

TABLE 4
Comparison of the Closed-Loop Poles Computed Theoretically and Using

the Optical Laboratory System

THEORETICAL POLE OPTICAL LABORATORY % ERROR

LOCATIONS COMPUTED POLES

-20.45 + j6.26 -20.74 + j5.88 0.5

-20.45 - j6.26 -20.74 - j5.88 0.5

-4.53 -4.53 10- 3
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ABSTRACT. A new space/frequency-multiplexed optical linear algebra processor

is described. The electronic support system, fabrication of the processor

and initial performance data are presented.
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Fabrication and Testing of a Space and Frequency-Multiplexed
Optical Linear Algebra Processor

David Casasent

Carnegie-Mellon University
Department of Electrical and Computer Engineering .

Pittsburgh, Pennsylvania 15213

1. INTRODUCTION

Optical linear algebra processors (OLAPs) represent a most flexible and

general-purpose class of optical system. In Section 2, we describe the archi-
tecture for a space and frequenc)-multiplexed OLAP. We detail (Section 2) how
this system accommodates bipolar and complex-valued data and its use in matrix-
vector processing. The electronic support system is described in Section 3.
The optical system and initial experimental results obtained on it are detailed

in Section 4.

2. COMPLEX AND BIPOLAR PROCESSOR ARCHITECTURE

The optical schematic for a new OLAP architecture [1] to accommodate bi-
polar and/or complex-valued matrix and vector data is shown in Figure 1. For
the case shown, the matrix A has bipolar-valued elements and the vector b has
complex-valued elements. The bipolar-valued elements of one row of A are
spatially-multiplexed on two linear point modulator input arrays at P1 and the
complex-valued elements of b are encoded in the conventional three-tuple repre-
sentation [2] frequency-multiplexed [4] to the acousto-optic (AO) cell at P2.
This architecture uses input space-multiplexing (rather than time-multiplexing
as in reference [3]) together with frequency-multiplexing [4] to accommodate
bipolar and complex-valued matrix and vector data. If both the matrix and
vector elements are complex-valued, three linear input arrays are used at Pl.
If both the matrix and vector data are bipolar, Figure 1 can be used.

The N point modulators per row at P 1 are imaged through

separate regions of P2,with the different regions of P2 separated in time by TB
(the propagation time of the acoustic wave between the different portions of the
AO cell at P2 ). Each TB, new input data is entered at P1 and a shifted version
of the P2 vector is produced (with the vector-shift provided by the motion of
the acoustic wave with time). Thus, an N-element vector inner product is pro-
duced each TB and a matrix-vector product is computed each NTB (for an N x N
matrix). This basic OLAP architecture can solve linear and nonlinear matrix
equations. The basic linear algebra operation of concern is the solution of a
system of linear algebraic equations. Various algorithms to achieve this on
such a processor have been detailed elsewhere [7].

The frequency-multiplexing requirements for such a system were detailed in
Ref.1I]. For the M-3 frequency case and the system of Figure 1, these require-
ments are quite modest (Af=70MHz). For the case of a banded matrix with band-
width B-M, the number of input point modulators per row is also quite modest.
When B exceeds the number of input point modulators, partitioning is easily
achieved as detailed elsewhere [5]. With a multi-channel AO cell at P2, and
the appropriate data encoding and time-integration of the output, the same
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architecture can achieve high accuracy as detailed in Ref [5]. Thus, this is
a most attractive, powerful and flexible OLAP architecture.

(PLA0 P1 1 (UM 31gM L ) V3QUIIC VLTItX3 TPA5N 15T3 OPL (L#= P3 P0CUSSNG

AC3STTO-OPTIC CMU (LS S 2VM L 2(IAM P 2) '

FIGURE 1
New analog matrix-vector space and frequency-multiplexed

architecture for complex and bipolar-valued matrix and vector elements.

3. ELECTRONIC SUPPORT SYSTEM _ 0
Any optical or digital linear algebra processor or ystolic system must

provide parallel input data to P1 (N words) and to P2  words) each TB, plus
provide acquisition and analysis of the parallel outp t P3 data each TB. To
achieve this with flexibility and programability and to allow input data for
any application to be processed from a digital data se, a dedicated high-speed
microprocessor system was assembled. This electreni support system (Figure 2)
contains many special-purpose boards, a hard disk (1 M bytes), magnetic tape,
on-line multibus memory (512K bytes) and processor memory (512K bytes) with
600nsec memory access, and video (Matrox interface) and graphics processor out-
puts. The microprocessor used at present is an M68000 with an Intel 86/380 RMX
version also under present evaluation. The general philosophy of this support
system is to download digital data from a VAX, magnetic tape, etc. into high-
speed parallel output buffer memory which drives parallel D/As to the P1 and

P2 inputs. Output data is similarly A/D converted in parallel and buffered in
an output memory. The disk system provides storage of the input and output
data. The microprocessor provides control, formatting, etc.

To provi parallel P and 2analog inputs, 04 pecial-purpose
cards with .i parallel output D/As (12 bits at 10MHz) and drivers per card
were fabricated. With 10 inputs to P1 and three inputs to P2, the system pro- . .
cesses 130 M byte (12 bit bytes) input data (1.5 G-bit per second data) with
TBfO.lpsec. This represents a reasonable compromise between available D/A
converters and other hardware and system performance. Each D/A input is ob-
tained from a separate high-speed parallel buffer memory channel, each 4K words
deep (12 bit words). Three special-purpose buffer memory boards with 8 memory
channels per board have been fabricated and are used for input and output buf- .3

fering. The P3 outputs are detected (with special-purpose 20MHz,; low-noise
circuits), A/D converted (using special-purpose circuitry with one A/D per board
with 12 bit accuracy and 10MHz bandwidth), and fed to a parallel input buffer 4
memory. The system's inputs settle to 0.2% in lOOnsec, thus allowing 10MHz data
rate (analog, 'J bits) per channel. The necessary spatial corrections [6]
for the P1 and P2 transducers are obtained off-line and applied to the input
data. These corrections, plus input and output bipolar and complex data normal-
ization and encoding, are performed in software (with their on-line hardware
realization straightforward). An interface board to control the system, and an
RF modulator drive board for the AO cell complete the electronic support system.

% . %
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FIGURE 2 FIGURE 3aPhotograph of the electronic Photograph of the laboratory
support system optical matrix-vector system

4. OPTICAL SYSTEM FABRICATION AND INITIAL RESULTS

The optical system of Figure 1 was assembled (Figure 3) using a laser
diode (LD) input array at PI with individual collimating optics integrated
with each LD source. The PI outputs had a 50% fill-factor and the full P1
input was reduced by a two lens system to be compatible with the size Of P2
and the O.1p.sec data packet spacings. A special input P1 mount was fabricated

Y to allow each PI source to be separately aligned within O.3mrad to illuminate
the correct region of the AO cell at Pi with the necessary beam divergence.
For the initial laboratory system, the beam reducing optics from P1 to P2 Occu-
pied 600+20mm and the optics from P2 to P3 required 160mm. An even more compact
system with folded optics is easily possible.

-. In Figures 4 and 5, several examples of the performance of the system of
Figure 3 are provided. The laboratory system is fully automated with data load-

* ing and output display under control of a dedicated terminal through the M68000
system. The inputs to 3 of the PI laser diodes, the AO cell and the output vector

.s inner product from one detector are shown as functions of time. The results ob-
tained are as expected and verify the digital control and performance of the full

* hybrid optical/digital system.
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FIGURE 4 FIGURE 5
Three LD inputs (top 3 traces, Three LD inputs (top 3 traces, 2
sinewave and 2 biased ramps) and linear ramps and a 0 input) and output
output (bottom trace) with a (bottom trace, quadratic as expected)

constant RF AO input with the RF AO input varying linearly in
power with time over the duration of the

input ramps
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