
BD-Ai74 459 COMPUTER AIDED STRUCTURAL DESIGN OPTIMIZATION USING A 1/4
DATABASE MANAGEMENT (U) IOWA UNIV IOWA CITY OPTIMAL
DESIGN LAB T SREEKANTANURTHY ET AL 38 SEP 86

UNCLASSIFIED DDL 85-17 AFOSR-TR-86-2869 AFFSR-82-0322 F/G 18/3 L

IIIIEIIIIIIhI
ElllIIIIhllll
IllhlllIIIhhl
llllhllImllhlu
llllllhhlllhl
lllhhllllllhll

HfLI, Q:18 2.5

IIIII13ii2 1 1 2
1.8

11111_L.25 111'4 NuI

CROCOPY RESOLUTION TEST CHART
NATIONAI RIIRFAII nF STANDARD' T963-A

* f

, .,

%A
I N-N~s.

0 AFOSR-TR- 86-2069

,Kt Technical Report No. ODL-85.17

Computer-Aided Structural DesignI

0a Optimization Using A Database
Management System

0 _ 1 0 -1
_+C

~ ~ ~ ~ .r"t,. 7- .- 1

~f. T. Sreekanta Murthy and J. S. Arora .

• ,' Zi). •'

,; Optimal Design Laboratory ,
: College of Engineering t .' .: i 4 ''

The University of Iowa ""
Iowa Cit Iowa 5242"

0

Prepared for the or

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH
Under Grant No. AFOSR-82-0322

" DTIC ,

Iowa CiII 2I o9a 5

I-.
o!Prpprreeforfth

8 N 6 1 2, 9-t 3

- -. Appove forp '.Ii:r~l%'A

SECLIRI'', CLASSIFICATIOIN OF THIS PAGE)4- 4/-I-,
REPORT DOCUMENTATION PAGE

* E~R
T

S- .. 'RrCLASSIi-ILATIO 11 kiiI,.,HTIV- KMAH-ip' ra

* m-1i;i led Nonle

SE *-, CLASSi- CATICN .'LUTHORiTY :3 OtSTRILt, TIO AV/AL At IL Ty OF REPOPTf

P:C F AI~IN OCVVNGRAOING SCHEDULE ~h~t

V,% NI COIANIZATION REPORT NUMBER(S) 5MUNITORING 0146AN 2 TION REPORT NUCMEERIS;

m.:.17 AFOSR.TR. 8 6- 0O69
~ FI M4,ING12RGAN:Z.TICQN b OFFICE SYMBO'L 7a NA~. OF %1Ni N OIAN)R'-ANIZ,.TION

'::~l, iT' TI rhra yr OUL Al 0-SE/NA

IA o2242 ~D.C. .2 U8

Nm. C' '-%%SNSR" 8b OFFICE SYMBOL 9. PROCJRLII i-NT INSTPCMfl IOLN TiFICATiN NuMRV~EI -
CRA;N ir Tce f P (If appircabic>

"j w~d Z0 Co! 10 SOURCE O)F FLUP-L'INC, NOC

P. R Roc R A N P, L: E C' T A, NGOPK :NT
t EME NT N r NO NCr

-- ~ ~ 'Computer-Aided 6110o2 2307 Bi
-ruc tural Pt-s~,:n Opt imizat ion Us ing a DBMS _________________________________

L.;~-~c!T.1I~r~vand T.S. Arorza

K- ~ ~ ~ ~ F Et Cd DArCF T L3 C)VF P~ "AT E POR -R (1 ~ %1,15 PAUE COCNj!T

tF S7-.1.''N T~ ION

C ~ ~ ~ ~ ~ ~ ~ ~ ,) hI ,jT ,,.".s- n r1' 'toInrs

-~ . ------------- i ~e i CiiOptimizat ion, Da taba se IDe;i, n, Pat aim se
V' . - Managero at e '-Stern, Eva 1 ottt LGn , S1. rutu res.

.r~)-'at 11 : i te cnmit t aed -Opt Iot 1 nt rtct ura I le di i~li l.o hc~uod~s 4:n'

*--.M~ I t L, r-pu 1 or ' ~ I s !tem (canta inl mugi a (L-1tah Isc i a pr I- ra

winhm'n i at-V i OTI i nI1 timla in pl icd UP0on (databaseninlir
r, 1, t 1- i. .. 11 . iipor!T t i)1 f~lt C oqz ire,, to bii i Id c o 1,1! re'-;I i d c'!

a11r(Ieorihed . A lruimber of databctse manlagemenlt ('i~viopt
P . , r K lci relI a t i olnaIl a Trowd l c , O~ c l pttua1 1 mt ('~i Tl-I -Iit vn ci

t -i r -a I i za i L i on -f att a a-Ji v lo 1al11 andI i (cc:i da1,1t arc' , a re L' i 'at: k 1
PCr- 4;in aa A. miet iI l 0g to) cles itl In ci kahn in .r~ 1

r Ii ion-o eC ptlifll , ''I L crill 1 Id c t rI 1 a.1 :11-c ~ ~ l ed . t 1
1 hati Cid- i1.; (h. ;A ,- Iwd(. Fl.;) o ' I-),)t I' I I of tr u

101 1 i ly e I h'Ct rrI' cr c.p;. tRw ciC ''o t t,.tL _ _: _ __T t :- 'd)It0 '

, ,F 1470 A~~P R lOf~ ii 'it,

% '

CuRITY CLASSIF CATION OF THIS PAGE -

*;upports both relational and numeric'al dau a models. It can be used either through application
rovram calls or interactively. A database for structural design optimization is designed

using the proposed methodology. A computer program for finite element analysi., and structural
,.esin optimization is developed. The program uses database and the database management
svstem Y.TDAS. The program is based on hypermatrix approach for assembly and solution of large
:atrix equations. Several example problems are solved using the program. An evaluation of
data model, database and database management system in computer-aided structural design
c,'timization environment is made. The performance of M!TPAS in equation solving environment

determined using skyline and hypermatrix approach. finally, it is concluded that with the
-p roposed data models, database design methodology, and the advanced database management system
ornputer-aided design optimization of complex structural system can be attempted.

l'nc lassi f i(:d

SECURITY CLASSIF ICATtON OF THIS PAGF

~ V,% %- . .-..-.. ;>,. ., ,./-.,v , /- .% V -;

Technicz Report No. 0DL-85.17

COMPUTER-AIDED STRUCTURAL DESIGN OPTIMIZATION

USING A DATABASE MANAGEMENT SYSTEM

T. Sreekanta Murthy and J.S. Arora

Optimal Design Laboratory
College of Engineering
The University of Iowa
Iowa City, Iowa 52242

Prepared for the
AIRFORCE OFFICE OF SCIENTIFIC RESEARCH

Under Grant No. AFOSR-82-0322 WO.-

September 1985

- .--.-

. , . , " ,e € . " " • ' - ,.- -,- 7. -' . .. '. . " ," -.- " " -

PREFACE

This is one of a series of reports under the Grant No. AFOSR 82-

0322 from the Air Force Office of Scientific Research, Air Force Systems

Command, USAF. The project title is "Database Design and Management in

Engineering Design Optimization." The report is based on the research

conducted between October 1982 to September 1985 leading to the Ph.D.

dissertation of Mr. T. SreekantaMurthy completed under the direction of

Professor Jasbir S. Arora.

L~

Accesion For

NTIS CRA&I a

DTIC TAB
U.-annoL0, tc:d Ii

B y

Avaiabtiity CO:!es
77,0-7:7

MV0a, P.
Dbt ---.A

a-I "

COMPUTER-AIDED STRUCTURAL DESIGN OPTIMIZATION

USING A DATABASE MANAGEMENT SYSTEM

by

Thammaiah Zreekantamurthy

An Abstract

Of a thesis submitted in partial fulfillment of
the requirements for the Doctor of Philosophy b.

degree in Civil and Environmental Engineering
in the Graduate College of

The University of Iowa

December 1985

Thesis supervisor: Professor Jasbir S. Arora

",<- .

,?;-.

ABSTRACT

A study -i-&- made to integrate 'finite element-based-optimal

structural design methods and computer-science methods into a computer- .-

based system containing a database, a program library and man-machine

communication link. Emphasis is placed upon database management

concepts for structural design. Important components required to build

a computer-aided structural design system are described. A number of

database management concepts -- hierarchical, network and relational

data models, conceptual, internal and external view of data

organization, normalization of data, and global and local database are

discussed with reference to structural design data. A methodology to

design a database is proposed. Three levels of data organization- .

conceptual, internal and external are suggested. A methodology to

construct a numerical data model is described. This model supports data

of various types of large matrices such as banded, skyline and '.

hypermatrices. Requirements of database management system and

components needed to develop it are discussed. Language requirements to .

enable good communication link between designer and computer are

formulated. A database management system - MIDAS is implemented for use

in structural design applications. MIDAS supports both relational and .. 4..

numerical data models. It can be used either through application

program calls or interactively. A database for structural design

-. ;--'.
- . "-

I ',)',-" ,,",'. ',"' '':.%','q,: " > ;'.' ;'' - .. .'. " "'.""-''-""."." ," ""-, -- "." -'- " -' -'" " -" -" ." -. -, -. '.. .. "" .'"-" .- '-"-_ ." "-.

Ni ',.,',w, -, .. ,,' '.,',,,,,-, , .),-,. -',, . - , . , ,, . ,". ,' '_ . " ,r '_" '. ' " .- , - ." - .- . .- - .- . - . ,- , . . , _

2

optimization is designed using the proposed methodology. A computer

program for finite element analysis and structural design optimization

is developed. The program uses database and the database management

system MIDAS. The program is based on hypermatrix approach for assembly

and solution of large matrix equations. Several example problems are

solved using the program. An evaluation of data model, database and

database management system in computer-aided structural design

optimization environment is made. The performance of MIDAS in equation

solving environment is determined using skyline and hypermatrix

approach. Finally, it is concluded that with the proposed data models,

database design methodology, and the advanced database management

system, computer-aided design optimization of complex structural systems

can be attempted.

A b s t r a c t a p p r o v e d _ _ _ _ _ _ _ _ _ _ _

Tfiesis supervisor

Title and department

Date

V.4

-""- ".--

.9'9 - -£'...x. % . . L, r " -: " ." . . .' ' ' ' '~ ,.'. '..k"," '- ' "-", "" '-

COMPUTER-AIDED STRUCTURAL DESIGN OPTIMIZATION

USING A DATABASE MANAGEMENT SYSTEM

by

Thammaiah Sreekantamurthy

A thesis submitted in partial fulfillment of
the requirements for the Doctor of Philosophy
degree in Civil and Environmental Engineering

in the Graduate College of
The University of Iowa

December 1985 -.

Thesis supervisor: Professor Jasbir S. Arora .

% w_' 1

. . . - . , .- - - -. . - -

Graduate College
The University of Iowa ..7-

Iowa City, Iowa

CERTIFICATE OF APPROVAL

PH.D. THESIS

This is to certify that the Ph.D. thesis of

Thammaiah Sreekantamurthy

has been approved by the Examining Committee
for the thesis requirement for the Doctor of
Philosophy degree in Civil and Environemntal
Engineering at the December 1985 graduation.

Thesis committee: - , _
Thesis supervisor

M e~ber / //j ..Memb

r'

Me~ier,

m r

~~~~~' .:a b. -



... ~* :~-M-

*A~A

*,.

.)A

4

A.,.

* A.

.~A.A

A .r ,

A',

A.

TO

My parents and my brothers and sister
v~~* ~

~
p.

A,.
-. 4.'

AAAAA
A,

~AA

'A.- ~
'A

~ *'A A A A

"c-A

"A

~ y

A, -A
4'

4'.... :.t.:. ..-* A~* ' A ~'~A~'~'AAAA..... . A.'. A~AA A

* A * ' AA ~ A -- - - .. - -
* A *~ A- -* A~A~A

~* ~ *~A~ * A" *~A~ AA~AA~A,~~ A - -



ACKNOWLEDGEMENTS T 4.,

First of all, I wish to express gratitude to my advisor and thesis .,

supervisor Professor Jasbir S. Arora for his constant support and >.-

encouragement, and for his invaluable suggestion and advice. Professor

Arora introduced me to the concept of optimal design of engineering .-*

systems and influenced the area of my research topic. It has been a

pleasure and previlege to work with Professor Arora for the last three

years. I also thank my committee members, Professor J.S. Arora,

Professor H.C. Wu, Professor M.A. Bhatti, Professor H. Kane and

Professor R. Shultz for the careful reading of the manuscript and

helpful suggestions to improve this work. The financial support ."

provided by the Graduate College of the University of Iowa, and the Air

Force Office of Scientific Research is gratefully acknowledged .

Finally, I am grateful to my wife, Jayashree S., for her understanding -

and patience and to Mrs. Peggy Duwa and to Mrs. Tina Swartzendruber for t-..-. l ym
their excellent typing of the manuscript. z Z-

iii-, ,,.

* .~.........................~*t .- * - . . . . .-.



TABLE OF CONTENTS

Page

LIST OF TABLES .......................................... vi -..

LIST F FIURES...... ... ........... i

LIST OF SYMBOLS. .. ... xii-

CHAPTER

1. INTRODUCTION........... ...... ................. 1
,oo oo oo

1.1 Introductory Remarks ....... ................. o...... I
1.2 Computers in Structural Design - State-of-the-Art........2
1.3 Motivation for Research ....... ............... 5
1.4 A Survey of Literature ................ 6 ............. 6
1.5 Objectives of Research ................................. 12
1.6 Scope of Work... ........... ......... . ............. 13

2. COMPUTER-AIDED STRUCTURAL DESIGN ... ... -.................. 15

2.1 Introductory Remarks ........... o...... ..... ......... 15
2.2 Structural Design Process and a Sample

Design Problem...15o..-.. ................ 1

2.3 Mathematical Modelling of Structural Design............. 19
2.3.1 Finite Element Analysis ... ............ o........ 19
2.3.2 Optimal Structural Design ........................ 23

2.4 Components Required to Develop
Computer-Aided Structural Design System ..............26

2.5 Need for a Database in Computer-Aided
Structural Design Optimization...................... 29

2.6 Communication Subsystem................................. 33
2.7 Users of Computer-Aided Structural Design System ........ 35

3. A STUDY OF DATABASE MANAGEMENT CONCEPTS..................... 38

3.1 Introductory Remarks ................................. 038
3.2 Problems Associated in Providing

a Good DBMS for CAD-OPT.................... ..... 39
3.3 Definition of Various Terminologies ............ o ....... 40 ..

3.4 Views of Data Used in Strucutral Design
and Data Models ............. ........ .... 49 

3.4.1 Hierarchical Model ........ .......... 51
3.4.2 Network Data Model ..... .......... 51

P -, - -e 5

-'..o " .

-U. - . .,- .,*. *. -

-. '. . - : .; : U< U.. .. ....-... ...... .. . . . . ...... ... ..... ..... .. . ... . . .. . . ..



Page

3.4.3 Relational Model ................................. 53
3.4.4 Numerical Model ................................... 56
3.4.5 Choice of Data Model for

Structural Design ........................ .58 ",
3.5 Normalization of Data ................................... 59
3.6 Global and Local Databases .............................. 64

4. DATABASE DESIGN METHODOLOGY FOR STRUCTURAL
ANALYSIS AllD DESIGN ........................................ 67

4.1 Introductory Remarks ................................... 67
4.2 Aspects Considered in the Proposed Methodology

and Background ....................................... 68

4.3 Methodology to Develop a Conceptual Data Model .......... 72
4.3.1 Basic Considerations ............................. 72
4.3.2 Identification of Conceptual Data Objects ....... 73
4.3.3 Reduction to Elementary Relations ................ 79
4.3.4 Determination of Transitive Closure .............. 84
4.3.5 Selecting Elementary Relations to Form

a Conceptual Data Model ....................... 86
4.4 Methodology to Design an Internal Model ................. 93
4.5 Some Aspects to Accommodate an External Model .......... 103
4.6 Methodology to Incorporate Large Matrix Datainto a Database ..................................... 106 e-(

4.6.1 Identification of Matrices ...................... 106
4.6.2 Methodology for Design of a Numerical Model ..... 108

4.7 An Algorithm or a Data Model? .......................... 120

5. DATABASE MANAGEMENT SYSTEM FOR
STRUCTURAL DESIGN - A PROPOSAL ............................ 122

5.1 Introductory Remarks ................................... 122
5.2 Components Required in a Database

Management System ................................... 123
5.2.1 Command Processor ............................... 124 l,.'.
5.2.2 Input-Output Processor.......................... 126 %

5.2.3 Addressing and Searching .............. 127
5.2.4 File Definition and File Operations ............. 128
5.2.5 Memory Management ......................
5.2.6 Relational Operators ............................ 129
5.2.7 Security Schemes .................... .e.... 9*130

5.3 Requirements of Data Definition Language ............. 131
5.4 Requirements of Data Manipulation Language...........134
5.5 Requirements of Query Language ........................ 136
5.6 A Review of Database Management Systems- ... 138 .....
5.7 Summary of Requirements of a DBMS...................... 148

V

, ?o '.." , . ".".".-" .",".-" "..--" :.-' v. '-.-,...' .'.. -.''....-;'....'-.-],- ,- ;,-..--,,,.- "-. , '.. -...,-... .- .. .. - . ... ".'',.
w 

, .  
" - J" ." . ." • • " . ." ." " - . "-" '. " ' .. •. .. - '#% .. ,..i . ., - - • . . . • % . . . %. . % , -

' -, - . " ,,. G' ,.,. .- . . . . . . . . .". ";''> ; ,, ' ' -
,

,\",-,' ;, %' ,-' ' '..-



Page

6. IMPLEMENTATION OF A DATABASE MANAGEMENT SYSTEM -- MIDAS ...... 152

6.1 Introductory Remarks ................................... 152
6.2 Implementation of MIDAS/R .............................. 153

6.2.1 Capabilities of MIDAS/R ......................... 154
6.2.2 Database of MIDAS/R ............................. 154
6.2.3 Data Definition Commands of MIDAS/R....,, ..... ,155
6.2.4 Data Manipulation Commands of MIDAS/R ........... 159
6.2.5 Interactive Commands ............................ 164
6.2.6 System Design of MIDAS/R ...................... 167
6.2.7 Limitations of MIDAS/R .......................... 169

6.3 Description of MIDAS/N ................... . .... ..... .170

7. A DESIGN OF DATABASE FOR STRUCTURAL ANALYSIS AtD
OPTIMIZATION DATA ......................................... 173

7.1 Introductory Remarks ................................... 173
7.2 Identification of Data Used in Finite Element

Analysis and Structural Design Optimization ......... 173
7.2.1 A List of Entities of

Analysis and Design Data ..................... 174
7.2.2 A List of Domains of

Analysis and Design Data ..................... 176
7.3 Design of a Conceptual Data Model ...................... 179

7.3.1 Elementary Relations and
Diagraph Representation ...................... 179

7.3.2 Deriving Additional Relations ................... 180
7.3.3 Selecting Elementary Relations to Form a

Conceptual Data Model ........................ 193
7.4 Design of Internal Data Model .......................... 196

7.4.1 Data Needed in Computation Process .............. 197
7.4.2 Relations and Matrices for

Internal Data Model ............. ..... . 198
7.5 An External Data Model Design .......................... 205 I
7.6 Evaluation of Database Design Methodology .............. 205

8. IMPLEMENTATION OF A COMPUTER-AIDED STRUCTURAL DESIGN
OPTIMIZATION SYSTEM USING DBMS ............................ 210

8.1 Introductory Remarks ..................................... 210
8.2 Capabilities of the Program ............................ 211
8.3 System Design .......................................... 212 P

8.3.1 DBMS Used in the Program ........................ 212
8.3.2 Finite Element Analysis Program ................. 212

8.4 8.3.3 Design Sensitivity Analysis Program ............. 220
8.4 Example Problems Solved Using the Program .............. 224

V-A

vi

- ~ .-.> -



Page

9. EVALUATION OF DATABASE, MIDAS AND COMPUTER PROGRAM FOR
STRUCTURAL DESIGN OPTIMIZATION ............................ 233

9.1 Introductory Remark .................................... 233
9.2 Evaluation of the Database used in the Program ......... 233
9.3 Evaluation of D0L, DML and Query

Language of MIDAS ................................... 241
9.4 Evaluation of MIDAS in Structural DesignAppl ications ........................................ 244m

9.4.1 Skyline and Hypermatrix Approaches..............245
9.4.2 Performance of MIDAS/R.......................... 247
9.4.3 Performance of MIDAS/N .......................... 249
9.4.4 Comparison of MIDAS/N and MIDAS/R

Using Skyline Approach ....................... 251
9.4.5 Comparison of MIDAS/N and MIDAS/R

Using Hypermatrix Approach ................... 253
9.4.6 Performance of Memory Management

'qof MIDAS/R ................................... 255

9.5 Evaluation of the Computer Program for Structural
Design Optimization Using MIDAS ..................... 256

10. SUIMARY, DISCUSSION AND CONCLUSIONS .......................... 264

10.1 Summary 264
10.2 Discussion 268
10.3 Conclusions ............................................ 272

* 10.4 Scope for Future Work ................. .... ... .... 274

APPENDIX I. AN ALGORITHM FOR TRANSITIVE CLOSURE ....................276

APPENDIX II. BNF DESCRIPTION OF THE PROPOSED
DATA DEFINITION LANGUAGE ........................... 278

APPENDIX III. BWf DESCRITPION OF THE PROPOSED
DATA MANIPULATION LANGUAGE ...................... 286

-\ Vii

.. R .... ... ............................................ .



LIST OF TABLES

Tabl e Page

4.3.1 Transitive Closure for Elementary Relations ................. 89

4.3.2 Deriving Minimal Cover...................................... 92

5.7.1 Features of Various Database Management
Systems for Engineering Applications .................... 151

9.4.1 Performance of MIDAS/R ..................................... 248

9.4.2 Performance of MIDAS/N ..................................... 250

9.4.3 Comparison of MIDAS/N and MIDAS/R
Using Skyline Approach .................................. 252

9.4.4 Comparison of MIDAS/N and MIDAS/R
Using Hypermatrix Approach .............................. 254

9.4.5 Performance of Memory Management of MIDAS/R ................ 257

9.5.1 Summary of Evaluation Parameters for " '

Ten Bar Truss ........................................... 259

9.5.2 Summary of Evaluation Parameters for
Twenty Five Bar Truss .................................... 259

9.5.3 Summary of Evaluation Parameters for
Forty Seven Bar Truss ................................... 260

9.5.4 Summary of Evaluation Parameters for
Seventy Two Bar Truss ........................... , ...... 260

9.5.5 Summary of Evaluation Parameters for
One Hundred Eight Bar Truss ............................. 261

9.5.6 Summary of Evaluation Parameters for
Two Hundred Bar Truss ................................... 261 . .

v i i i .

;---.-.' Z



LIST OF FIGURES

Figure Page

2.2.1 Conceptual Design of a Frame ................................ 17

2.2.2 Designer's View of a Frame .................................. 18

2.3.1 A General Flow Diagram for Optimal Design of Structure ...... 27

2.4.1 Components of Computer-Aided Structural Design System ....... 28
2.7.1 Users of Computer-Aided Structural Design System ............ 37

pu e s ............

3.3.1 Functional Dependenciesy................................... 46

.N. 3.3.2 Full Functional Dependency.... 46.......

3.3.3 Transitive Dependence ....................................... 46

3.3.4 Di graph ..................................................... 48

3.4.1 Hierarchical Data Model ..................................... 52

3.4.2 An Occurrence of a Hierarchical Data Model .................. 52

3.4.3 A Network Model ............................................. 54

3.4.4 An Occurrence of a Network Model ..........................54

3.4.5 Relational Model ............................................ 55

3.4.6 Examples of Numerical Data Model ............................ 57

3.5.1 First Normal Form for Relation CONN .• ..................... 61

3.5.2 Second Normal Form for Relation CONNo.......................63

3.5.3 Third Normal Form for Relation NA-DOF ...................... 63

3.6.1 Network of Databases ........................................ 66

4.3.1 Digraph Representation of Elementary Relations .............. 87

ix

.! .w''..' .'. % . .. a.'. 
-

. " - . .'. ". . . - . -. o "./.-' - -' ,. - ••. •• " -l -- - -" . .""."",,' ' .% . .- ' -a

• ',~r 
- - F -

• . ..e .- ',)w , - "- " " , • -, . -", - , -' ' " ' va *" • . -" ," w ... ' -%z IR %t, ._ , .V



Figure Page

4.3.2 Connectivity Matrix C for Elementary Data ................... 88

4.3.3 Digraph Representation of Minimal Cover ..................... 91

4.4.1 A Tentative Internal Model .................................. 96

4.4.2 Relation TRM-D in 1NF ....................................... 96

4.4.3 Relations in 2NF ........................................... 101

4.6.1 Banded Matrix .............................................. 109

4.6.2 Htyper Matrix ............................................... 109

4.6.3 Skyline Matrix ............................................. 109

4.6.4 Row and Submatrix Storage Schemes .......................... 113

4.6.5 Relation for Matrix Storage ................................ 116

4.6.6 Transforming Internal Storage to External Views ............ 118

4.6.7 Row-Column Storage Scheme (Internal) ....................... 118

4.6.8 External View of Sparse Matrix ............................. 119

5.2.1 Components of a Database Management System ................ 125

6.2.1 Data Type and Size of a Relation ........................... 157

6.2.2 Layout of Data in a Typical Relation .............. ...... 158

7.3.1 Diagraph Representation of Association Between
Entities and Attributes... .......... ................. 181

7.3.2 Initial List of Elementary Relations ....................... 187

7.3.3 Initial Connectivity Matrix .................. ...... o..... 188

7.3.4 Final Connectivity Matrix ............................ o.... 189

7.3.5 Derived Elementary Relations .................. ...........190

7.3.6 Transitive Closure for the Elementary Relations
(Partially Shown) ...................................... 194

7.4.2 Relations for Internal Model .............................. 199

4.X

Z "lo
SM%

PL,-. . . . . . -.- - ~ .,



Figure Page

7.4.3 Relations for Internal Model ............................... 204

7.5.1 Relations for External Model ............................... 206

8.3.1 Modules in Finite Element Analysis Program ................. 214

8.3.2 ASsenibled Stiffness Hypenuatrix .. ...... ..........

8.3.3 Load Hyperinatrix. 0... **.... ....... .............. ... _.219

8o3.4 Modules in Design Sensitivity Analysis Programn........ .... o222

8.4.1 Ten-Bar Truss.... .... ... . ...... ... ....... ..... ... ... 226

8.4.2 Twenty-five-Member Transmission Tower....... .......0.0-.227

8.4o3 Forty-seven-Member Plane Truss ................... ...228

8.4o4 Seventy-two-Member Space Truss.. .........o ............ .o.229

8.4.5 Two Hundred-Member Plane Truss. ... o..... o ......... ......._230

8.4.6 Geometry of Helicopter Tailboom.. .......................... 231

8o4.7 Arrangement of Memnbers for Open Truss
Hel icopter Tail boom. .......... 0.....o.....o... .232

Xi.

% %.



LIST OF SYMBOLS

-A Element cross-sectional property matrix

B Strain-displacement matrix

b, bi  Design variable value

b it Lower limit of design variable value

bi Uppler limit of design variable value

C Damping matrix of a structure

D Constitutive matrix

F Body force

Fe Element forces

Ft+ a  Vector of nodal forces equivalent to element stresses

h Equilibrium equation

Kbb Assembled boundary stiffness matrix.

K Assembled stiffness matrix of a structure

Kb Condensed stiffness matrix of a substructure

Kbi Assembled internal-boundary stiffness matrix

Ke Element stiffness matrix

Keff Effective stiffness matrix of a structure .9.

Kii Assembled internal stiffness matrix

KNL Nonlinear geometric stiffness matrix

t
KL Linear strain incremental stiffness matrix

tK Tangential stiffness matrix

xii

......-..... -.. *



K Geometric Stiffness matrix

N Assembled mass matrix of a structure

Me Element mass matrix

N Shape function matrix "

n Element number

P Global loads on a structure

PB Element body force

Pb Boundary loads of a substructure

Pb* Condensed load matrix of a substructure

Pe Element load vector N
Peff Effective load matrix of a structure

P Internal loads of a substructure

Ps Element surface loads

pt+At Vector of externally applied loads at time t+At

Element load due to initial strainPO

r Substructure number ",

T Transformation matrix

U Global displacement of a structure

Ue Element Displacements

Ui  Internal displacements of a substructure

Ub Boundary displacements of a substructure

V Volume

y Mode shape

z Displacement vector

za Allowable displacement at jth location 3'
le" 4r

x i i i . A,

,',w. T



Displacement of jth location

AV Vector of incremental nodal displacements

E Element strain

C Initial strain0 Z

p Material density

ca Allowable stress in the member
a

G b Buckling stress of a member

F Element stresse r

G. Stress in the member

A Eigenvalue

A. Adjoint matrix

* - Constraint function

o Cost function

Frequency

.4.o Lower bound on eigenvalue

#.'I.4'xi



.,,

,4

CHAPTER 1

INTRODUCTION

1.1 Introductory Remarks

Advances in computer technology have brought about profound changes

in the way engineering analysis and design are performed. In structural

analysis computer has become a vital adjunct to theory. Several general

purpose computer programs having a wide range of capabilities are

currently in use for finite element analysis of structures. In the

structural design field, computer programs are being developed for

optimal design. But, they are in the early stage of development and are

facing a number of problems in design of practical structures. Problems

arise due to iterative nature of optimal design algorithms and need for

reanalysis of the structure in each iteration. Reanalysis of a

structure using existing finite element programs are difficult because

they are not flexible to use modified data generated at various design

stages. Moreover, designer needs control over the program and data in

selecting appropriate algorithms and data to obtain optimum solution.

Thus, there exists a wide gap between structural analysis and design

capabilities. To bridge this wide gap, it is necessary to establish

approaches through integration of computers in the design environment.

The term computer-aided design has evolved over years which provide a

good basis for such an integration.

, -. --M



Computer-aided design (CAD) means integration of engineering

methods and computer-science in a computer-based system, using a

database, a program library and a nan-machine communication link The

term computer-aided design optimization (CAD-OPT) is derived from the

above definition to cover analysis and design optimization methods. In

this study a new concept is presented for integrating structural

analysis and design optimizat )n methodology into a computer-based

system which encompases this meaning of CAD. Emphasis is placed upon

database management concepts for finite element analysis and structural

design optimization.

1.2 Computers in Structural Design - State-of-the-Art

Knowledge about the historical background provides a better

understanding of the state-of-the-art. Going back to 1960, Integrated

a. Civil Engineering Systems (ICES) development was an important milestone

in the use of computers in solving civil engineering problems. It was

based on the idea of integrating computers in the problem solving

environment to provide faster, more accurate and complete analysis and

% > design capability to engineers. During the same period, theory of the

finite element method began to evolve and led to the development of

several finite element analysis programs. The computer programs such as

NASTRAN, STRUDL, and ASKA are well known and widely used for finite

element analysis. Many of these programs are quice sophisticated, large

in size and are capable of analyzing a wide variety of structural

problems. With the advances in computer technology, computers are

or,...
.-.



3

available at a lesser cost and have additional facilities like graphic N
display, and large disk capacities. Finite element programs were

designed to make use of such facilities to display finite element mesh,

store large amounts of data on disk and provide interactive facility to

users. Programs like GIFTS, ANSYS, and ADINA were developed in the

seventies to provide these new features to users.

During the last decade, research activity in the area of structural

design optimization increased. Investigations on nonlinear programming

techniques in structural optimization became one of the major topics of

research. Several computer programs were developed for solving

structural optimization problems. These include DOCS (Arora, et al.,

1984a), ACCESS (Fleury, et al ., 1981), PROSSS (Sobieszczanski-Sobieski,

et al ., 1980) ODYSSEY (Bennett, 1979) and others having moderate range

of capabilities in solving optimization problems. They use finite

element method for analysis of structures. DOCS program has capability

to use substructuring, design damaged structures, and to use gradient-

based techniques for optimization. PROSSS uses SPAR program for finite

element analysis. Many of these programs were developed to study

problems of research interest. Therefore, applicability of the programs

to general structural problems is limited. None of these programs is

linked to any pre- or post-processor making input to program and %

analysis of results extremely difficult. Studies are being made to

develop good structural design optimization programs that are comparable

to tho generality and capabilities of existing finite element programs.

.

. .. . . . . . ... ...." h%



4

Since, finite element analysis of structures uses large amount of

data, some routines were incorporated into finite element packages to

store data on secondary storage devices. Data management using these

routines was tedious and applicable only to one program. Data generated

by finite element packages were almost impossible to use in other

programs for further analysis and design of structures. Development of

design optimization algorithms, faced this problem for using analysis

data generated by finite element packages. Iterative design process

posed a big challenge not only in efficient use of computer resources,
,-

but also in organization of a large amount of data of finite element

analysis and design optimization methods. At this stage, engineering

software designers began to think of introducing database management

concepts into the software similar to those of business database

management systems. Several database management programs were developed

..J in the late seventies and in the beginning of the eighties for

engineering applications. Integrated programs for Aerospace Vehicle

Design (IPAD) development is an important milestone in engineering

database management. A database management system called RIM (RIM,

1982) was developed under IPAD project. Several application programs

such as SPAR (Giles and Haftka, 1978), BANDIT (band width minimization),

PROSS, ATLAS, and NPLOT (graphics) were tied together with a common

database for integrated design of structural systems (Fishwick and

Blackburn, 1982). However, use of a database in these application

programs was limited to input and output only. There does not exist a

finite element program which directly uses a generalized database

-s

; , ,.,',= ,, '",".... . ' .:"'-"-.s .* \ **--N,""--"'. . > . . . . - - -



5

management system such as the one developed for IPAD project. Studies

are being made to incorporate a database, a program library and man-

machine communication link as needed for computer-aided structural

design. Emphasis on blending computer-science and engineering

methodology toward arriving at efficient and economic design of

structural systems seems to be the goal of CAD today.

1.3 Motivation for Research

In optimal design of structural systems we generally use nonlinear

programming and finite element techniques. Nonlinear programming

techniques require formulation of design objectives and constraints of

the system. They use large amount of data depending on the size

and complexity of problem. Organization of data related to design

variables, geometry, material, loads, and intermediate computation data,

generated and used in design of large structural systems is a tedious

task. Finite element techniques are usually adopted to analyze the

system within a design iteration. As such the finite element techniques

require huge amount of computation and data storage depending on the

size of problem at hand. Further, the amount of data handled depends

directly on the number of iterations performed in iterative design

optimization algorithms. Therefore, there is a need for data

organization in optimal design of structural systems.

In this regard, incorporating a database into structural design

programs looks attractive. Such a database can provide data for both

structural design optimization and finite element analysis programs. It

0. INA % *



6

will enable designers to choose appropriate data from the database and

use them in any optimization algorithms to improve design. Also, data

used and generated in one program can be made available for use in

another program. Since, most of the data for finite element analysis

and design optimization are common, a centralized database will provide

efficient organization of computer resources. A centralized database

allows interaction between a finite element program and an optimization

program to improve design iteratively. Such a database will provide an

option for the designer to interrupt the program execution and provide

flexibility for the designer to change the design parameters. A good

database will enable addition of new optimization and other programs

which use the common data without extensive modification of database or

existing programs. Also, several designers can be allowed to use a

common database to investigate alternate designs. Interactive graphics

data can be stored in a database to provide easy communication between

• computer and designer. Therefore, a properly designed database,

together with a set of design programs and communication system, offer a :

considerable aid to engineers involved in design optimization.

In view of the above observation, we will investigate design and

use of a database and a database management system in structural design

optimization.

W1- 1.4 A Survey of Literature

A survey of literature of data management in computer-aided

structural design is given in this section. The survey also includes

N V ..

.. . . . .......-.. ..... . ........... ........... 44



- 7

literature on database management for engineering applications. The

survey is broadly classified into database management concepts and

systems. Various database management systems currently in use are

reviewed in Chapter 5 and their features tabulated there.

The meaning of computer-aided design has changed several times in

the past two decades of its usage. It was a popular idea that CAD meant

a menu of analysis programs called by the designer. Later, CAD became

synonymous with computer-aided drafting. However, a true description of

CAD is synergistic interplay of man and computer (Allan 1972). A more

appropriate definition of CAD is given by Encarnacao and Schlechtendahl

(1983): "It is a discipline that provides know-how in computer-software

and hardware in system analysis and in engineering methodology for

specifying, designing, implementing, introducing, and using computer

based systems for design purpose."

The paper by Felippa (1979) serves as an introduction to the

subject of database management for scientific and engineering

applications. It highlights the differences between the business data

management and scientific data management. A comprehensive list of

terminology relevant to scientific computing is given in another paper

by the author (Felippa, 1980). Since, the terminology used in business

DBMS is fairly new to engineers, this list serves as a starting point

for the newcomers. It is interesting to know how scientists actually

use their data. The paper by Bell (1982) discusses some issues about

data usage and also gives comparison between data modelling for

scientific and business applications. In order to bring out differences



8

between the use of database for business and engineering applications,

Foisseau and Valette (1982) describe a list of criteria.

The application of data management in finite element analysis and

design optimization computation is fairly new. Even though, data

management in these computations is critically needed, not much

attention has been paid to develop proper data management techniques.

Only a few research studies were made on data management for finite

element analysis. Lopez (1978) and associates studied the application

of data management to structures. They pointed out that serious

drawbacks of ASKA, STRUDL and NASTRAN were due to lack of high level

database management facility. Also, these programs did not provide any

. type of data structure capability. They have simple internal

organization and require many files with trivial data structures. These

type of system tend to be I/0 bound because logical operations on data

are related directly to a physical location on a serial device. For

example, in generating the stiffness matrix for the elements of a

structure, most programs generate one matrix and write onto a sequential

device; and the process is repeated for all elements of a structure. In

order to access these stiffness matrices at a later time, the program

must pass serially over the entire file again. Lopez (1974) in another

paper presented a data management system for finite element analysis.

Pahl (1981) described the properties and functions of data storage for

finite element programs.

Several research studies were made on data management techniques

for computer-aided design and general engineering applications. The

- ' ' -
-a 10 6%



9

techniques developed for them are also applicable for finite element

analysis and design optimization. Studies on data models, database

design methodology, database network, data definition language, data

manipulation language, database integrity and consistency and numerical

database management were conducted by several researchers. A

comprehensive survey of data management in engineering applications is

given by Sreekanta Murthy and Arora (1985a).

The well-known data models -- hierarchical, network and relational

have been studied by many researchers to find out their suitability for

organizing engineering data. Koriba (1983) discusses applicability of

ANSI/SPARC, CODASYL and relational approach to CAD software design. The

three levels of data view proposed by ANSI/SPARC is gaining wide

.4. acceptance and is likely to be incorporated into future CAD systems.

Relational approach is based on set concepts and provides a sound

mathematical background. This approach provides high level of data

independence, user friendly data definition and data manipulation

capabilities. Relational model is becoming popular among database

designers and users. Several researchers are currently working on this

model. Fishwick and Blackburn (1982) discuss advantage and disadvantage

of a relational model from an engineering point of view. Authors

proviJe exan;ples of relations for managing data of a finite element

.4 model. Fhey also described the development of the PRIDE system which

intejratpos enj1,(eering application programs -- AD-2000, SPAR, PROSSS,

NCAR, and 3ANUIT. SPAR and PROSSS are finite element analysis and

n;,, structjral 1 ti1i .,it j )I.K i es respectively. AO-2000 is a finite

. .- ,. - -. -, .. - ,. ... V-. . -- , -- - . -



10

element model generator and BANDIT is bandwidth optimization program.

However, use of their database management system was limited to

interfacing application program input and output to a common database.

Modification of application programs was not made to use the database

for programs internal data organization needs. Blackburn, Storaasli and

Fulton (1982) in another paper demonstrate the use of a relational

database in engineering applications. Four sample problems -- a panel

with circular hole, a square plate, a conventional wing structure and a

large area space structure were used to evaluate the merits of managing

engineering data using a relational system. Studies on hierarchical

model are mainly with reference to organizing large matrices. Lopez

(1974) uses a hierarchical model for finite element data organization.

A hierarchical data structure for organizing node, element, load and

stiffness matrix data is given in the paper. However, the DBMS uses a

problem-oriented language translating facilities in the POLO supervisor

under which the application programs operate. Hence, it is highly

doubtful that two will ever be used independently of each other. Pahl

(1981) described hierarchical storage structure for hypermatrix data

organization. Hypermatrix stiffness and load data are found to be most

suitable to hierarchical data representation. A paper by Elliot, Kunni,

and Browne (1978) describes a hierarchical model of data and a DBMS

system design based on it. Some practical examples on structural design

and wind tunnel data management are also given in the paper. But, this

system requires a precompiler to decode the data description and data

manipulation commands in a source program.



Investigations have been conducted to find out a suitable way to

design a database for engineering applications. There exists basically

two different approaches to database design -- first approach generates

a global schema and then derive local views from it; the second one

obtains local views of different users and then integrate them to form a

global view. Buchmann and Dale (1979) analyze different methodologies

to design a database and present a frame work for evaluating them. A

comprehensive description of database design methodology for business

applications is given in Vetter and Maddison (1983). Several

*researchers , Lil11ehagen and Dokkar ( 1982) , Grabowski ,Ei gener and Ranch

(1978) , and Eberl ei n and Wedeki nd ( 1982) have worked on database des ign

or CAD appl icat ions . So far, there does not exist any methodology to

design database of finite element and design optimization programs.

Development of suitable data definition (0DL) and data manipulation

languages for engineering applications have been of interest to many

researchers. One of the major considerations in the design of data

definition language was to keep the syntax concise and easy to use for

appli c at ion prog r ammers . Several other important considerations in DDL

design are described in detail by Elliot, Kunni and Browne (1978). They

use special indicators in the source program code to identify the DDL

and DML commands and translate them u s ing a precompi ler to FORTRAN

statements. These LPDL and DML statements can be used to operate on a

hierarchical data structure. Special featuires of DDL and DML in a -

relational DBMS for interactive design are described by Shenoy and

Patnaik (19P23).

'4

J. .0 j
-S., .

Ll %

% %5 .



12

The application of data management in numerical computaticn is

fairly new. Finite element analysis and design optimization procedures

require substantial amount of matrix data processing. Data management

system require special facilities to deal with data of large matrices.

A recognition of this need is made by Daini (1982) and a model is

developed for numerical database arising in many scientific applications

to keep track of large sparse and dense matrices. The paper describes a

generalized facility for providing data independence by relieving users

from the need for knowledge of physical data organization on the

secondary storage devices. Because of the limitation of core storage

and to reduce the input-output operations involved in secondary storage

" techniques, many investigations have been conducted on the efficient use

of primary memory. A detailed survey by Pooch and Nieder (1973) gives

various indexing techniques that can be used in dealing with sparse

matrices. Darby-Dowman and Mitra (1983) describe a matrix storage

scheme in linear programming. Rajan and Bhatti (1983) described a

memory management scheme for finite element software. Sreekanta Murthy,

Reddy and Arora (1984) describe the database management concepts that

are applicable to design optimization field.

1.5 Objectives of Research

I. To study of various database management concepts applicable to

computer-aided structural design optimization field. Suitability of

available database management concepts and drawbacks associated with
'.,

their use in engineering design will he investigated.

5,

0%"- . ' % - ' ' " ' ' " - - -' " " " " " % " o ,° " " - -' .- • " .- . '. " '-' , - . % ' - - " . = . "% , , - %" ''



13

2. To develop a suitable database design methodology for structural

design database and to develop a conceptual data model to represent

the design data. Schemes for constructing internal and external

data models will be identified. Data models for organizing matrix

data will be developed.

3. To study the existing database management systems and to identify

the important features with respect to their suitability to organize

structural design data.

4. To formulate requirements of data definition language, data

manipulation language and query language for engineering design

database management system.

5. To implement a database management system for engineering

applications based on selected data models.

6. To design a database for structural design optimization. Use of

database design methodology for constructing conceptual, internal

and external model will be demonstrated.

7. To implement a computer-aided structural design optimization program

using a database management system and evaluate its performance.

1.6 Scope of Work

Computer-aided structural design process is identified in

Chapter 2. Mathematical modelling for finite element analysis and

structural design optimization are given. Need for database management

in structural design is stressed. Chapter 3 deals with database

management concepts. Well-known data models are described with

- -.--." "-? "- .. ," -" -. ' '- - -"..' . - '" '"'; -" ..-. '.'.,..-.'....-..-,. ..- ' " " ,=- .- " . . "'. . .. ,'-

,,.': < ' L -" .- '..".-.. .... . . . . . . . . ... . . . . . . ..-.-.,'' ?'? -.- , ' ."." ".', .-. "' - - ,. .. _...i .'". .' ,'Z.



14

reference to structural design data. Various database management

concepts like normalization of data, and global and local databases are

described. Database design methodology for structural design is given

in Chapter 4. Methodology for conceptual model development for

structural design database is described. Normalization procedures for

developing internal data model are described with examples. Description
of a proposed numerical model is given there. In Chapter 5,

requirements of a database management system are studied. Requirements

of data definition and data manipulation languages for structural design

database are formulated. Considerations in developing memory management

schemes and query language are presented. Implementation details of a

database management system for organizing structural design data are

described in Chapter 6. Relational data management procedures and

numerical data management schemes are described. Usefulness and

drawbacks of this systems are given. In Chapter 7, database design for

structural optimization is described. An evaluation of database design

methodology is given. Computer program developed for finite element

analysis and structural design optimization is described in Chapter 8.

The capabilities of the program and example problems solved using it are

given there. In Chapter 9, evaluations of the database, the database

management system, and the computer program for structural optimization

are made. Finally, discussion and conclusions of the present study are

given in the last chapter.

'L % , '. " ;.." ._' ."-."." "" "' -J. .-"... ". -. ......- -. -.. . ; . -. ... ., .. - . - .. . r....- <. . . .- - .(S

,'.. ,; .'. ; , ;-.; <? ' X' ,-',',i---i.> '/ , ." ,- '-."."/,'.--." / ." ' .-" '-. (.'' . -" ".



15

CHAPTER 2

COMPUTER-AIDED STRUCTURAL DESIGN

2.1 Introductory Remarks

In this chapter, the principles, methods and tools required to

develop a computer-aided design of structural system are described.

Structural design process is described with the aid of a sample design

problem to provide qualitative description of the design process. In

particular, mathematical modelling of the structural design process is

given in Section 2.3 to bring out various steps. As mentioned in

Chapter 1, a database, a program library and a communication link form

the important components of a CAD system. These components are

described in detail in Section 2.4. Need for data management for

structural design is emphasized in Section 2.5. Need for a good

c ommuni cfaftifon subsystem is given in Section 2.6. Finally, various

(-lasses of jsers of a computer-aided structural design system and their

requlrements are identified in the last section.

2.2 Structural Design Process

and a Sample Design Problem

A study of overall structural design process is necessary to

(Iovei)p a computer-aided structural design system. The design process

can be described, in general, by a sequence or chains of actions where

each action passes its results on to its successors. The complex nature

u'..

'.- ,- " ; ,,.- . ".- ". ". ".- .- " .." ' " " ." " ."" - -" -" 4 ." ." .""' 4" . "-" "." "-.'. . " - - .. -



16

of design process will have to be reflected in CAD systems if such

systems are to support the design process as a whole.

The design process begins with the identification of a need by a 7%
user of the structural system. The needs and objectives of the system

are defined quantitatively. Functional analysis is carried out to find

out operational requirements of the structural system. The next step is

the configuration or conceptual design of the system. For example, if

function to be performed is to support the loads on a frame, the

conceptual design (see Fig. 2.2.1) includes beams, columns, plates, and

bars. At the conceptual design stage various parameters describing the

system are identified and acceptable range of values are prescribed.

This preliminary design is then analyzed with respect to the constraints

and if it does not adequately satisfy the constraints, the design is

revised. lhis is an optimal design process, which has its objectives

the choice of undetermined parameters that were identified in the

previous step. The criterion for optimal design may be maximization of

structural system capability or minimization of cost. The analysis and

redesign cycles are repeated until a design satisfying all the

constraints is obtained. ". .

It is common that a number of designers working on a practical 7.

design project carry out specific subtasks. Designers are required to

meet individual goals, and may have an isolated view of the project.

For example, designer A (see Fig. 2.2.2) may work only on part of the

structure in the design project. During the process, a set of

information required for individual needs is derived to carry out the

[i ' . J

I..

-,-';..-. -."-,'. .- , L-.'.5.".. -.. . :. .-' -, ,'- -----'.,'.-'-':,-,-.-, , . ".- "-,> '-..-'-,'., - -, -"'.''-. '.- -.'-", .,,....



17

DNeN

B

I 'R OR

ZR R toi 1 ii
T T T I i i

C C C Ci

%-,

C -__ B -C-BEAM 
Z

C -COLUMN
R-ROD

NT -TRIANGULAR PLATE
B Q- -QUADRILATERAL PLATE

-1---- --- -

Figure 2.2.1 Conceptual Design of a Frame

% I
I  

i ' ' 4

w.. II e~* ' II -. . .



181

VIEW OF VIEW OF

DESIGNER DESIGNER
CA

SUBSTRUCTURE A

DESIGN OPTIMIZATION

VIEWVIE OFVEWO

DESGNE DEIG E INE

"" SUBSTRUCTURE B

FINAL DESIGN- -
o C

4' ,  -.-  .

; ' BSUCKLING ANALYSIS "

DYNAMIC ANALYSIS =

" '"DESIGNER DESIGNER

~Figure 2.2.2 Designer's View of a Frame

%



19

specific task. The sharing of information takes place, between the

conceptual design level with subsystem design levels, and among

subsystem design levels themselves. The method of information sharing

(reports, catalogues, etc. in case of conventional design process; a

database in case of CAD design process) and tools for information-

sharing (typing, printing, drafting in conventional design; interactive

computer terminals, graphics in CAD design process) are dependent on the

state-of-art of the design process.

2.3 Mathematical Modelling of Structural Design

In the previous section, a general structural design process was

described. Here, mathematical modelling for structural design is

given. This mathematical model is intended to provide a basic framework

for developing a computer-aided structural design system. Various steps

of the structural design are formulated in terms of mathematical

models. Namely, identification of objectives and constraints, analysis

of the structure by the finite element method, design constraint checks,

design sensitivity calculations, and design optimization process are .

described.

2.3.1 Finite Element Analysis

Finite element analysis begins with idealization of the structure

using a number of finite elements. The input data for a finite element

analysis program consists of the geometric idealization, the material

properties, and the loading and boundary conditions. Important steps of

* . , . . .".
. . . .. . . . . . . . . . . . . . . . . . - ..-. . .



20

finite element analysis (Cook, 1981) are listed below. Depending on the

type of analysis, some or a combination of the steps are used.

Element Level Computation. At the element level, stiffness

matrices, mass matrices, load matrices are computed as

K f BTD B dVe V

4 = f NTp NdV
V

Pe = Po + Ps + PB '

Po f N D E dV
0

Ps = J NT p dA
A

P f NT F dV
V ~

Substructure Level Computation. If substructures are used in the

idealization, then element stiffness matrices are assembled to form

substructure level matrices. The equilibrium equation for the rth

substructure is given by

Krur pr

i .e.

90. .



21

Ki i K ir U r P ir

li I ~
K Klb Kbb] L b [Pb

The following computations are done

r r r r
%= %bb %i- K1i K.

r r - 1I r r
P b =%ij Ki i "Pi

Keff= K

r

.r

"eff = b  + Pb

Structure Level Computation. Equations of equilibrium for the
C.

complete structure are solved to get response of the structure. For V

static equilibrium, we have

KU= P

where

K: Ke,  P PeSn n

For dynamic response of a linear structural model.

,9% - 9- ." *e" . . ".-". ,.' -", - ", .* " ..." .'% " -"d",' , w % . .' ,



.

22

MU + CO + KU = P

where

M Ne C , e P P e

For nonlinear analysis

(K' + K ) AU = pt+At Ft+tit: ~ ~ I NL -

For buckling analysis

(K + XK ) U = 0

* For frequency analysis ""

=r4..

(K + XM) U= 0

Recovery of Element Level Response. After the structure level

response have been computed, element level displacements, stresses,

*- strains, and forces are computed
.44°-

Ue = TU

C= Bue
e Be "':

.:::.

'.4 %•

. . . . . . . . . . . . . . . . . . . .. . - -... . . . . . . . . . . . . . . . . . .4 . 4 4 4 4 . . .. . . 4 . . .. . . . 4 .

*4.a~.* ~ *.- 444. . . .
~ % {** ..- ** *.4. . . . . . . . . .4 - - *4*4'4.4 n.

",""s -'- "" "-",". ":" 
-

"" " . " ", '" ' - "". '". - *""-" " "- " " -' . . . . . ." "-"- " •. . . . -



23

a= BDu e

Fe ToeFe : -X'e

2.3.2 Optimal Structural Design

Optimal structural design is carried out using well-known methods

given in Haug and Arora (1979) and Arora and Govil (1977). Important

steps of optimal design consist of formulation of cost and constraint

functions, checking for constraint violations, design sensitivity

analysis, design change computations and convergence checks. These

steps are listed below.

Problem Formulation. Optimal structural design problem is

formulated using a set of state and design variables. The objective is

to minimize the cost function

£Qo(Z, C, b)

subject to state equations

h(z,b) = 0

K(b)y : cM(b)y .'-.

and constraints

#l(z, c,b) 0

NW0

m%> '<X£ ',x%, V V i ;.;G , . , , ,- ,." ."- Y ,,'-* .--' .4 -' -: -' " '- -,4 4.



24

other constraints are identified. For displacement constraints

a
€iz z - 0

For eigenvalue constraint

i o- 0 -
1 ;o

For stress constraints

i  j - Ga < 0

For buckling constraint

'bi ai j -b (0

For design variable constraints

pi bi - biu 0 , or bi- b. ' 0

Design Sensitivity Analysis. Design sensitivity analysis is done

to determine the effect on the problem functions of a change in

design 6b in b0 . Gradients of function p is

'STe .

,a



25
di 3Wi 3ai d i

1:- - +

The following computations are needed to calculate gradients:

1. Linear systems

dz ahKd -- for direct differentiation method
K- -au

KT x -'i for adjoint variable method
1 az

I -I (K(b)i - F(b))

2. Nonlinear systems (Ryu, Haririan, Wu and Arora, 1984)

T
t KT X1 4

1 a.

3. Sensitivity analysis of eigenvalues

j YT X- aK

Design Change Computation. A change in design variable vector b is

computed to reduce the cost. Mathematical programming methods such as

the gradient projection or other methods (Arora, et al., 1984b) are used

to compute design change 6b:

b 1l - b' + 6bv, v = 0,1,2 ..... iterations

%--

% % %



26

A general flow diagram for optimal design of the structure is given ;.-.j

in Fig. 2.3.1.

2.4 Components Required to Develop

Computer-Aided Structural Design System

For developing a computer-aided structural design system three

important components -- a database, a program library, and a

communication subsystem are required. A database contains data required

for finite element analysis and structural design optimization. Several

users operate on the database either interactively or though application

programs. A database acts as a central repository of data for CAD

applications. The second component, namely, a program library contains

both the modules used for data management and modules containing

algorithms needed for structural analysis and design applications °

(matrix operation library, equation solvers, finite element programs and

optimization routines). Data management programs need basic components

-- file management, input-output processor, memory management,

addressing and searching, and security routines. Finally, a

communication subsystem is needed to provide link between the computer

and designer. They provide channels of data communication between the

database, database management, and application programs. A

communication subsystem consists of interactive command processors, data

definition language, data manipulation language, and routines for

graphic display. The basic components of a computer-aided structural

design system are schematically shown in Fig. 2.4.1.

;;I-- V -



2]

Formulate'-

.4

the .,
Design Problem ,

Structure

Check for-..Constraint
Violation

~Design
Sensitivity
Analysis

'1

No Convergence

Figure 2.3.1 A General Flow Diagram for Optimal Design of Structure

%P'Im

%l



2F

0~ a..

4
LAJ .-

Qa

4

CD 0.614

(n 0
a. .

It.
4 0

wz 0

~ 4-4
41W %

C-~0 p.

c(n E0 4

44 <

2 z CN

____ ____ ____ ____ ____ 6"

-" .- %

I..%



9, 29

*Thus, we need to design and develop the three components -- a

database, a program library and a communication subsystem to provide an

efficient and economic means of designing a structural system using A

computer. In this study, database which is the most important component

of the system is considered in detail.

2.5 Need for a Database in

Computer-Aided Structural Design Optimization

In optimal design of structural and mechanical systems, we

generally use nonlinear programming techniques (Haug and Arora, 1979). .

The design objectives and constraints for the system are described in a

mathematical model. Design of a system is specified using a set of

parameters called design variables. The design variables depend on the

type of optimization problem. In design of aircraft components such as

stiffened panels and cylinders, the design variables are spacing of the

stiffeners, size and shape of stiffeners, and thickness of skin. In

optimization of structural systems such as frames and trusses of fixed

configuration the sizes of the elements are design variables. Thickness

of plates, cross-sectional areas of bars, moment of inertia represent

sizes of the elements. If shape optimization is the objective, the

design variables may include parameters related to geometry of the

, system.

he constraints for the system are classified into performance and

size constraints. The performance constraints are on stresses,

displacements, and local and overall stability requirements in the

static case; frequencies and displacements in the dynamic case; flutter



30

velocity and divergence in aeroelastic case, or a combination of

these. The size constraints are the minimum and maximum value of design

variables. In nonlinear programming, the search for the optimum design

variable vector involves iterative schemes. The design variable data at

the nth iteration is used to compute a direction vector and a step size

along it. The direction vector involves computation of gradients of

objective and constraint functions with respect to the design

variables. Data belonging to equivalent design variables are grouped

there by reducing the size of design variable vector.

In most problems of structural and mechanical system design,

behavior of the system can be defined using state variables, e.g.,

stresses, displacements, and other response variables. In such a case, -'-

- state space formulation is frequently employed (Haug and Arora, 1979).

Design sensitivity coefficients in terms of matrix equation are

determined in state space formulation. Adjoint equations are used to

define a set of variables that provide design sensitivity information. -

Symmetric matrix equations can be used to advantage thereby reducing the

data storage requirements.

Finite element and other numerical methods are used for analysis of

structural and mechanical systems. Finite element method uses data such

as element number, nodal connectivity, element stiffness matrix, element

mass matrix, element load matrix, assembled stiffness, mass and load

I. matrices, displacement vectors, eigenvalues, eigenvectors, buckling

modes, decomposed stiffness matrix, and the stress matrix. In qeneral ';"

data used in finite element and other numerical analysis procedures is"

A

Pe.
Mau 1:i; "



31

quite large. Symmetry of stiffness and mass matrices is taken into

account so that data storage requirement is reduced. Hypermatix or

other special schemes are generally used in dealing with large matrix

equations.

For design of large structures, efficient design sensitivity

analysis is particularly critical. For such structures, substructuring

concept can be effectively integrated into structural analysis, design

sensitivity analysis, and optimal design procedures (Haug and Arora,

1979. In this concept, one deals with small order matrices as the data .4-

can be organized substructure-wise. The degrees of freedom can be

classified into boundary degrees of freedom and interior degrees of

freedom. Data for the stiffness matrices corresponding to these degrees

of freedom can be separately stored. Data of constraint functions

corresponing to internal and boundary degrees of freedom are used in

uete'iiining design sensitivity calculations. Adjoint matrix data is

stored for each substructure.

Many real world problems will have features that are not explicitly

contained in general optimal design formulation. Problems with peculiar

features need to be treated by making minor alterations in the general

, ':noi. Interactive computation and graphics can be profitably

I (A -in design optimization. At a particular iteration, the 4,

oesigrer -an study the data of design variables, constraints which are

)c Psr)rmance nystem, cost function, admissible direction

of travel, sensitivity coefficienLs, etc. He can make judgement

regarIiinj !i1taility of a particular aIgorithm, change of system

.. . . . --. ............. . - . .. . .-.



32

parameters, and redefine convergence parameters to achieve optimal

design. Interactive graphics requires additional data for display of

system model, results, and graphs.

Thus, for design optimization, data generated during analysis must

be saved in the database. This data is used for formulation of

constraints. Constraints are checked for violation. Design sensitivity

analysis of violated constraints is carried out using most of the data

generated during analysis. Once design sensitivity analysis has been

completed, a direction finding problem is defined and solved. Note that

the size of direction finding problem at each iteration depends on the

number of active constraints. Therefore, sizes of data sets change from

iteration to iterations. Thus, the nature of data is quite dynamic. We

should be able to dynamically create large data sets, manipulate them

during the iteration, an( delete some of them at the end of iteration.

Useful trend information from each iteration must be saved for

processing in later iterations. Note that a row of the history matrix

(such as design variable values) is generated at each iteration.

However, to use the trend information for a quantity (e.g., a design

variable), we need to look at its value at the previous iterations.

This implies that we should look at a column of the history matrix.

Therefore, we should be able to create data in one form and view it

another. Thus, we must have an intelligent and sophisticated DBMS.

Data must be organized, saved in a database, and properly managed for

design optimization.

We observed that large amount of computation is needed in the

design process. Finite element analysis and optimization programs

V_ I-,*

- ..-.

-, L



,' 5 .

33

generate large amount of data depending on the size of the problem. The

amount of data used during design optimization stage depends directly on

the number of iterations. Several application programs are used during

the design process and each of them requiring specific data. Several

algorithms may be needed which use similar data to arrive at optimal

design. In such a case data used by one algorithm should be made

available for use in another algorithm. Therefore, designer needs
S.

control to select appropriate algorithm and data to obtain optimum

solution. An important feature of design database is that it contains

both informative data such as geometry, material property as well as

operational data such as stiffness matrix. Informative data remains

static where as operational data gets continuously updated, modified and

deleted. A centralized database is needed which stores all the data of

analysis and design. A centralized database provides an option for the

designer to interrupt the program execution and provides flexibility for

the designer to change the design parameters. Therefore, a careful

consideration of data organization in a database is necessary to improve

design efficiency.

in summary, we have identified the need for a database for

structural design and special nature of the data was highlighted.

2.6 Conmunication Subsystem

In this section, we emphasize the need for a good communication

subsystem of computer-aided structural design system. A good

%i

" - D".- . -A .



34

communication link is possible through a well defined languages for

interaction between the computer and the designer. Also, computer

graphics provides an effective channel of communication.

Languages for interaction are used either through application

program or interactively using a computer terminal. Finite element

analysis and design optimization application programs interact with the

computer to define and manipulate data in the database. Data definition

and data manipulation languages are provided for this purpose. These

languages are generally a set of commands/subroutine call statements in

the host language. It is essential to design these languages such that

they are simple and easy to use. In an interactive mode, data

definition and manipulation is done using a query language. A general

set of interactive commands must be available in the system.

Requirements and implementation of these languages are discussed in

later chapters.
16

Finite element analysis and design optimization algorithms produce

huge amount of data. In order to make these results useful for

interpretation and evaluation, they need to be presented in a readily

understandable form. Long list of printed data are not suited for

comprehension. Graphical presentations are appropriate solutions.

Typical tasks of computer graphics include the selection of visual aids

(graphic displays, fast plotters), editing of data to be displayed,

command interpretation and graphic database management. Therefore, a

well-developed command language and computer-graphics can offer

considerable aid to designer to communicate effectively with the

computer during the design process.

%y



35

2.7 Users of Computer-Aided
Structural Design System

We have to identify different users of computer-aided structural 4-

design system and their needs. Three types of users are identified --

(i) the system programmers (ii) application programmers and

(iii) interactive users. The difference between these users and the way

they use the system are described below.

System programmers are those who develop general purpose programs

for structural analysis and optimization. In general, persons who write

these programs are not the same as those who apply them. They work on a

very high level of data abstraction. They need a good database

management system, matrix operation and utility library, and a graphic

system. There exists a second category of system programs who modify

the existing general purpose finite element programs to add new

capability to the programs. Some programs like GIFTS, ADINA, and SPAR

have excellent analysis capability. However, many of these systems do

not have database management facility capable of sharing data outside

the program environment. In some of these programs, a local data

management routines are used. These programs can be incorporated into

structural design system by providing an interface between the database

and the programs or by modification of program to retrieve essential

data that program requires. Pre- and post processing capabilities of

these programs together with their local database may be used to

integrate them in the design process.

The application programmers are much closer to practical

applications. Their interest is not to provide means for general

probleii solution, but to solve special problems; e.g., stress analysis

% ,

.:,2 ..). "..',.._.2-.''.. . , * .',: .. . . . . . . . . . . .... .... ... .:..-....-... . . . . . . ... ...-. .". . . . ..-."..-.'. ..'.--' --,
' .

-- .



36

of a structure for a certain number of load combinations. In general

the packaged programs may not have capabilities to handle special needs

of the problem. For this reason the application programmers need

capabilities to exchange data between subsystems and add their own

algorithm whenever the subsystems are not completely covering their

needs. Consider, for example a finite element package in which

capability to include special boundary conditions does not exist.

Application programmer in that case selects an appropriate algorithii for

assembly and solution of system of equations to meet the needs. Design

optimization procedures have similar needs for selecting alternate

application programs. Depending on convergence and other requirements,

designer switches to appropriate optimization algorithm, but essentially

using almost the same data.

Interactive users are those who use the same application program

many times by changing only certain parameters. This type of users do

not worry about complicated descriptive or algorithmic facilities.

Their concern is data input for many iterations with minimum effort on

and easy-to-perceive representation ' *i .t 4 ,t.. An intpraU tv., user of

finite element system may lik. t. ) e. )', . f introducing a

boundary condition at a particuVi ,' 1, 1 rI . A ,1E,- igner

using an optimization pack aOe 'a ,.r, 'p vpr- t Cr i) ter.

for various values of st -p, -!P n '-' .t .

Thus, we have ihent' i,, P"' ,

aided structural desi'j-.'' ', i . "I ,

Fig. 2.7.1. Needs of v ow1 r , )% ,,i,', rE. f , 'rk-, in

developing a computer-a d- d *r ir ,..

, .".% % %
% A Jk A PA .A



37 9.

z~ U).

2m

a--

(L I-,

0.-

A.1

3c
o" 9

(r w,

-i M

I I
to..

W D.a CL C

Z 41.

~* -~ <.* - 9-
Nm >: >., '



CHAPTER 3

A STUDY OF DATABASE MANAGEMENT CONCEPTS

3.1 Introductory Remarks

In the previous chapter, we studied the structural design process

and emphasized the importance of database management concepts in

computer-aided structural design. One of the objectives of this

research is to study various database management concepts. In this .4

chapter this study is made to understand various methods available for

data organization and to implement them for structural design

applications. The concepts are explained with reference to finite

element analysis and design optimization examples. Before the concepts

are described problems in developing a good database are posed in

Section 3.2. In Section 3.3, various database management terminologies

are described, since they are relatively new to engineering community.

In Section 3.4, commonly used data models are evaluated in view of

organizing structural design data and suitable data models are selected 2

for further study. Concepts of normalization of data is given in

Section 3.5. Finally, the concept of global and local databases is

explained in Section 3.6. Based on these studies; a technical paper has

been recently accepted for publication (Sreekanta Murthy and Arora,

1986).

[I/ W # , , . " , . . , .. - . " ' , . " . . - - - " -- . " " '" - • ' '- , ' .- #, ' - . '. ' • ." , ' "4- ,



39

3.2 Problems Associated in Providing

a Good DBMS for CAD-OPT

Now, our problem is how the database has to be organized? what kind

of information is to be stored? what kind of database management system .

(DBMS) is suitable? how data is manipulated? and how various finite

element analysis and design optmization applications use the data?

These problems have to be studied in detail. Data handling techniques

in existing finite element analysis programs are primitive and difficult

to use. Moreover, they offer little flexibility to extend them for -7<

design optimization applications. As new methods of design evolve,

there is a need to incorporate the information required by them in the

database. Thus it is necessary for the existing database to be flexible

and allow simple modifications. The increasing size of database and ". ,

complexity of information content introduces a new dimension to the

problem of inconsistency of data. The operational data creates update

consisLency problems. If informative data are changed, the operational

data )lust be invalidated. Thus, the problem of data dependency which

arises from storing operational data together with informative data

influence the design of database.

Abstract structural design information must somehow be modeled into

the coiiputer. This modelling aspect of actual design data requires a

formal approach. In this regard, sophisticated techniques are available

in business database management area to deal with complex data

organization problems. But the question arises as to whether

e nineerin data could be similarly modeled? If so, do the structural

design databases require different performance consideration from the
m" "

&'.r



40

database OT commerical applications? These questions have not yet been

adequately answered. Several different approaches have to be taken; fur

example, use of commercially available database systems, and development

of special structural design database systems. Further, the data

modelling considerations depends on the type of user and application

programs as discussed earlier. Requirements of users and application

for structural design.

3.3 Definition of Various Terminologies

A number of terminologies and definitions are given to facilitate

descriptions in subsequent chapters. They start with simple ones and

move on to more complex ones. These terminologies are new to

engineering community and are explained here with examples from finite

element analysis and structural design applications.

Database. A database is defined as a collection of interrelated

data stored together without harmful or unnecessary redundancy to serve

10 multiple applications. The data are stored so that they are independent

of programs which use them. A common and controlled approach is used in

adding new data and in modifying and retrieving existing data within the

database. The data is structured so as to provide a foundation for

future application development. One system is said to contain a

collection of databases if they are entirely separate in structure

(Martin, 1977).

,'4...-.- 4 ~ - 4~'~4*** .4% %. .



REL

41

Logical Data Structure. Data in a particular problem consists of a

set of elementary items of data. An item usually consists of single

element such as integer, real and character or a set of such items. The

possible ways in which the data items are structured define different

logical data structures. Therefore, it is the data structure as seen by

the user of the DBMS without any regard to storage details.

Model. The logical structure of data.

Schema. The coded form of logical data structure is called schema.

Data Independence. It is the property of being able to change the

overall logical or physical structure of data without changing the

application program's view of the data (Martin 1977).

Entity. An entity may be 'anything having reality and distinctness

of being in fact or in thought' (Vetter and Maddison, 1981). An entity

N may be: (i) a real object like structure, material; (ii) an abstract --

concept like finite element, nodes, a time period; (iii) an event, i.e.,

a situation that something is happening (e.g., vibrating structure); and

(iv) a relationship, eg., elements of a particular type.

Entity Set. An entity set is a collection of entities of the same

type that exist at a particular instant, e.g., set of finite elements

(ELEMENTS) and set of nodes (NODES).

Property. Property is a named characteristic of an entity, e.g.,

element name, and element material type. Properties allow one to
.5m

identify, characterize, classify and relate entities.

a'.



42

Property Value. It is an occurrence of a property of an entity,

e.g., 'element name' has property value BEAM.

Entity Type. Entities having same kind of properties are said to

be of same type. Upper case letter is used for its name.

SDomain. A domain is the set of eligible values for, a property. A

domain has same characteristics as a set, i.e., the values belonging to

a domain are distinct and their order is immaterial. A predicate is

associated with each domain allowing one to determine whether a give.

value belongs to the domain in question. Thus, the formal definition of

domain Di is

D {viIP i} where vi represents a value satisfying the

predicate Pi

Examples of domain are

Element Name {BEAM, TRUSS, .............

Element Material type = STEEL, ALUMINUM, ..........

Length = {xlx > 0 and x 100',

Attributes. Columns of a two-dimensional table are referred to as

attributes. An attribute represents use of a domain within a

relation. Attribute names are distinct from those of the underlyiny

domains; e.g.,

Domains: NODES =ili > 0 and i < n}

DOES j!j > 0 and j < m}

AAu_, '.. .>'T-. "-,.:- -,. ,-,.-,.-..-. -.?-' :-L -.+ .'7 .T-.......--..... -".-..--.-.-..-.,...--...,---....,..--.....,....---".4 .--,.;',



43 )""

Attributes: NODEI - First node of an element derived from

domain NODES

DOFI - First d.o.f. derived from domain DOFS

Relation: ELEMENT(E4, NODEi, NODE2)

Attributes NODE1, NODE2 and derived from domain

NODES

Entity Key. An entity key is an attribute having different values

for each occurring entity and provide unique identification of a

tuple. An entity represents a compound key if it corresponds to a group

of attributes. It is also called candidate key.

Primary Key. If several entity keys exist for a given entity set,

then one of them is arbitrarily choosen as the primary key.

Secondary Key. It is an attribute that does not have different

".2 values for each occurring entity, but identifies those occurring

entities that have certain property.

Relation. R is a relation on the domains (i.e.,

sets) D1, b2 ... Dn (not necessarily distinct) if it is a subset of

cartesian product D1 xD 2x...xD n Thus R c D xD2x.-*xDn. The value n

represents the degree of the relation R. The relation R is usually

* written as

R DI 9 02  Dn, 29 n

Here 01, D2, ... , Dn are called attributes of the relations. The values

of the attributes are taken from the corresponding domains for

wu' IL



D1 , D2 , .. D,, Note that dumdin is a set of values where as attribute

is a list of values (Vetter and Maddison, 1981).

Tuple. Rows of a relations are called tuples.

Function. A function is a special kind oi relation between two N

sets, say, A and B. Each member of a set A is associated with exactly

one member of set B. A function f is denoted as

f: A+B

Functional Dependence. An attribute A is functionally dependent on

the attribute B of a relation R if at every occurrence of B-value is

associated with no more than one A-value. This is denoted as

R.B + R.A

Example. As an example, consider the relation

ELEMENT (ELMT#, EL-NAME, AREA)

EL-NAME is functionally dependent on ELMT#. AREA is functionally

dependent on ELMT#. ELMT# is not functionally dependent on EL-NAME,

because more than one element could have the same name. Similarly,

ELMT# is not functionally dependent on AREA.

An attribute can be functionally dependent on a group of attributes

rather than one attribute. For example, consider the relation for a

triangular finite element:

CONNECTION (NODEI#, NODE2#, NODE30, ELMT#)

Here ELMT, is functionally dependent on three nodes NODEI, NODE?:!,

and NODE30. Given any one of NODEI#, NODE2#, or NODE3# it is not

-Z.. '_



-%" w. w~. ~-ru w -. . .

45

possiole to identify ELMT#. These functional dependencies are shown in

Fig. 3.3.1.

Full Functional Dependency. An attribute or a collection of

attributes A of a relation R is said to be fully functionally dependent

on another collection of attributes B of R if A is functionally

dependent on the whole of B but not on any sub3et of B. This is written

as

R.B R.A

:n the Fig. 3.3.2 for example, ELMT# in the relation CONNECTION of

a triangular finite element is fully functionally dependent on

concatenated attributes NODE1#, NODE2# and NODE3# because three nodes

combined together define an element. NODE1#, NODE2#, or NODE3# alone

does not identify ELMT#.

Transitive Dependence. Suppose A, B and C are three distinct

attriDutes or attribute collections of a relation R. Suppose the

following dependencies always hold: C is functionally dependent on B

and i is functionally dependent on A. Then C is functionally dependent

on A. I, the inverse mapping is nonsimple (i.e., if A is not

,inc-onally dependent on B or B is not functionally dependent on C),

then is said to be transitively dependent on A (refer to

Fig. 3.3.31. This is written as

k.A R.B .>

k A %I

*,..- 5 ..'--

. . . . . . . . . . . . . . ..' -2



4t)~

ELMTI1 MODEI#
EL-NAME-'-- 1  NODE2
AREA NODEU

ELMT#

Figure 3.3.1 Functional Dependencies

Figure 3.3.2 Full Functional Dependency

JR.A

R .C

Figure 3.3.3 Transitive Dependence

le



47

Then, we can deduce that

R.A + R.C

R.C A R.A

For example, consider the relation

EL-DISP(ELMT#, EL-TYPE, DOF/NODE)

Here, ELMT# + EL-TYPE

EL-TYPE A ELMT#

EL-TYPE + DOF/NODE

Therefore ELMT# + DOF/NODE (transitively dependent)

DOF/NODE A ELMT#

Digraph. A directed graph (refer to Fig. 3.3.4) or a digraph is a

fiyure with nodes and arcs. Each arc is a line with a direction. Nodes

represents attributes and arcs represent dependencies (functional, fully

functional). Length of a path is the number of arcs in it. For example

NI-AI-N 2-A3-N3-A4-N2-A5-N4 has length 4. Distance between two nodes is

the longest possible path between them. For example distance between N1

and N4 is 4 since longest possible path between nodes is N1-AI-N 2-A3-N3-

A4-N2-A5-N4 (Vetter and Maddison, 1981).

Connectivity Matrix. Square matrices can be used to represent

digraphs. If the digraph has n nodes then an nxn square matrix is

used. Rows and columns represents nodes. Using the value I to means

presence of a connection and the value 0 to mean absence of a 77

connection, a square matrix can represent the connection between the

nodes of a digraph. For example, if node 2 is connected to node 4, then

connectivity matrix is

%, %,



1A.

A5

N4.'

Figure 3.3.4 Digraph



~ .,".

49

N1  N2  N3  N4

NI  0 0 0 0

N2  0 0 0 1

N3  0 0 0 0

N4  0 0 0 0

Each row and column of a connectivity matrix is named the same as the

corresponding node (i.e., with the name of the attribute constituting

the node). Appropriate role names are then used to distinguish multiple

rows and columns denoting essentially a single node (Vetter and

Maddison, 1981).

3.4 Views of Data Used in

Structural Design and Data Models

Nature of data used and computations performed in finite element

analysis and structural design optimization were discussed in Sections

2.2 and 2.5. In general, data used in design can be viewed as single

data items, vectors, matrices, tables, etc., depending on the nature of

data and the context in which they are used. The question of how the

design data should be organized in a database can only be answered by

considering a formal description of data and associations among them.

The most elemental piece of data is a data item. It cannot be further

subdivided into smaller data type. A data item by itself is not of much

use. It becomes useful only when it is associated with other data

items. Thus, database consists of data items and the association among

IX * . % ]

6 ~I*,



50

them. A data model is nothing but a map showing different data items U
and their associations. A data model shows logical organization of data

and is useful to describe user's view of data. Layout of data on,7

physical storage devices is known as physical organization.

A database can be viewed at various levels depending on the __

context. A level of data representing view of interactive terminal

users and application programmers is known as external view. Conceptual

view of data deals with inherent nature of data occurring in finite

element analysis and design optimization and represents a global view of

data which is of theoretical interest. The data organization describing

the physical data layout is dealt at the internal level. At this level,

one is concerned with efficiency and storage space details. There is

one more level of data organization below the internal level where the

actual storage of data on a particular computer system becomes the main

consideration. But, this aspect is a specialists job and has no general

guidelines. Therefore, it is not discussed here. Three levels of data

- external , conceptual and internal are used to describe various views

of data. These levels of data organization were suggested by ANSI/SPARC

(American National Standard Institute/Standard Planning and Requirements

committee). They are considered for detailed investigation in the later

chapters.

In the following subsections, various methods available for data

organization are evaluated in view of organizing structural design P"

data. suitable data models are selected for further study. 7-
"p

.

,6. 41.

• '. ''" 1 ' .,/.."",, ,"w_.- g,"'-'.# ", """ '"" " "• -"- .-".-". - .."- .-"- . "• . " "." -. ". . . .. . .. . .%-',,.' .. ' . .-,'',V . '.,.-' ._'. '." v - . . , ,'-'-, ... .-.-" ,.. .-. - ,.. . - - ". . .'. ,- ' .'sr.. '-,.



51

3.4.1 Hierarchical Model

In this model, the data is represented by a simple tree

structure. A tree is composed of a hierarchy of elements called

nodes. Every node (except root) has a node related to it at a higher

level. The node at a higher level is called a parent node. Each node

can have one or more nodes related to it at a lower level called child

nodes. A node at the top of a tree is called the root. No node can

have more than one parent. A hierarchical model has one-to-many

relationships.

In finite element analysis, we can form a hierarchical model with

data items such as structure, substructure, and elements. This model is

schematically shown in Figs. 3.4.1 and 3.4.2. Another example of

hierarchical model is the hypermatrix data organization. Depending on

the size of hypermatirx, it is divided into number of submatrices and

arranged at various hierarchical levels. In design optimization also,

the data related to design variables can be arranged at various

hierarchical levels. For example, data of design variable number,

design group link, and design variable values can be arranged at various

levels. We can see from these examples that hierarchical model fits

natirally with the usual subdivision of design data.

3.4.2 Network Data Model

In network data model, a child in a data relationship has more than

one parent. A network is more yeneral than a hierarchy because a given

node occurrence may have any number of immediate superiors as well as

? _ . . . . . . . .. .. . . .J,

:;~f f, 2J , ': . ' -> -,1. . .I- -. : - -:> - -:-'-;- -%.;..>r-'::,. ?: ?,-:A !: -:-I:L'.-, A;">: -i,



ISTRUCTURESUBSTRUCTURE

ELEMENT

Figure 3.4.1. Hierarchical Data Model

S USTRUCTURE Level 1

p 
ELEMENT ELEMENT ELEMENT ELEMENT ELEMENt Level 3

Figure 3.4.2 An Occurrence of a Hierarchical Data Model

'...

44 - 4 (* .4, -q 4.



d,'

53 S

any number of immediate dependents. The network model allows many-to-

many relationships. A network structure is said to be simple if each

directed logical association is functional in at least one direction.

This means the model has no line which has double arrows in both

direction. Complex network will have double arrows in both

directions. Examples of network model for a finite element and node

relation is shown in Figs. 3.4.3 and 3.4.4.

3.4.3 Relational Model

A data model constructed using relations is referred to as a

relational model. A relational data model has a tabular form of data

representation. Figure 3.4.5 represent a relational model of data. The

rows of the table are referred to as tuples. The columns are referred

to as attrioutes. Relations of degree (defined in Section 3.3) one are

said to be unary. Similarly relations of degree two are binary,

relations of degree three are ternary, and relations of degree n are n- I>

ary. The relational model provides an easy way to represent data and is

simpler 1-o use than hierarchical or network data model. The relations

s jn easily manipulated using special relational operators such as

PROJECT, JOIN, etc. The operator PROJECT yields a 'vertical' subset of

a iven relation, i.e., subset obtained by selecting specified

attributes. The operator JOIN puts together columns from different

reltins. An example of relatioial model in finite element analysis is

nude-coordinate relation snown in Fig. 3.4.5.

% %

AL



54

II~ 

IELEMENT 

"

,, NOE

Figure 3.4.3 A Network Model

ELEMENT ELEMENT ELEMENT ELEMENT
1 2 3 4

Figure 3.4.4 An Occurrence of a Network 
Model 

."
'-q ,.

% %.

"#. ' ',. " - '. '- - - ' S.' o" ,,- .
-- .. . '.W ," .' ,.% ." -'. " ." %' ". '%, '-'~ ° % % ' ". " .'. % '= - '.' ' " " ". 'w.' ' " ' ", % " ,,.\ -*%.

,
*

' -



55

Figue 3..5 Rlatinal .de

Ilk.



56

3.4.4 Numerical I'del

Most of the computations in design optimization involve operations

on matrices like matrix addition, multiplications, solution of

simultaneous equations, and eigenvalue calculations. The data models

discussed earlier are not tailored to handle matrix data effectively.

It is necessary to provide a user-friendly facility for defining such

numerical data and manipulating a numerical database. It is possible to

provide such a facility by defining a new data model called numerical

model (Sreekanta Murthy, Reddy, Arora, 1984). This numerical model is

basically a variation of hierarchical data model having two levels of

data representation. At the first level information pertaining to type

and size of data is placed. The seconl level contains the actual

numerical data. This model is shown in Fig. 3.4.6. matrix is

referenced through a user defined NAME or NUMBER. Various levels of

submatrix organization can be defined through parameter called LEVEL.

TYPE indicates the type of matrix: square, lower triangular, upper

triangular, banded symmetric, banded nonsymmetric, diagonal, etc. ORDER

indicates user's view of matrix storage; e.g., rows, columns or

submatrices. For storage or retrieval of matrix data, the init f

transaction will be in terms of ORDER; i.e., row, column or full

matrix. Dimension of matrix is represented by the number of ROWS or

COLUMNS. PRECISION parameter specify the tolerance required whil.,

performing floating point operations. NULL parameter sPecifm fis if

matrix is null or not. By checking this parameter Lnrec ssary

operations on null matrices can he eliminated, thereoy sivin 

considerable storage and execution time.

o,% ' * " .#. ., " ."- " -" . " " -"; ._ . " . . ' . " -. ' " .- . '. " . " " . " . - ,



57 4.

AIO 1 SQUARE ROW 20 20 10

(i) A Square Matrix

BI 0 S-BAND ROW 20 5 10- 10  0

..

(ii) A Symnetric Banded Matrix

TI 0 U-TRIAN ROW 15 15 10
- 10  0

_.

(iii) An Upper Triangular Matrix

Figure 3.4.6 Examples of Numerical Data Model

-4.5

,. -,



58 fn

Examples of numerical model are shown in Fig. 3.4.6. Submatrix-

organization for level I is shown in Fig. 3.4.6(i). The 11atrix

information for level 0 can be described in the same way as shown for

level 1. Symmetric banded matrix organization is shown in Fig.

3.4.6(ii). Note that rows or columns are of variable size. Figure

3.4.6(iii) shows an upper triangular matrix represented in the model.

3.4.5 Choice of Data Model for Structural Design

It was seen that various types of data models described in the

previous sections could be used for structural analysis and design

optimization applications. However, it is not possible to expect

effective use of any one of the models in all situations. jierarchical

data model is clearly superior in organizing general engineering data

which occur naturally in hierarchical form. For example, large order

matrices can be assembled using submatrices. These submatrices can he

organized at various hierarchical levels. Network model handles more

general situation than hierarchical model. The disadvantage of this

model is the complexity associated with its use. Both hierarchical and

network data models use a fixed structure and offer little flexibility

to change for alternative structure. Another drawback of tie

hierarchical model is the complexity of database design requiring

tedious process of establishing links between data. If new kinds of

data are to be added or new information must be generated from a

database, it is necessary to add new links. Generally, this process

requires redesigning the entire database. However, a relational dati

%>

'~*



59

model uses a less preconceived structure and provides user-friendly data

representation. This model can provide easy access to data for the

user. Also, the tabular structure of the model provides a convenient

way of representing structural design data that are generally in the

tabular form. A major advantage of this model is the ease with which

database can be changed. As the design evolves, new attributes and

relations can be added, and existing ones deleted easily. It is

possible to support simple query structure in the relational model. In

situations where application programs require a complete set of related

items together, retrieving parts of information is not useful. In such

a case the relational model which is set oriented provides a suitable

%" way to organize the design data. Numerical model appears to be quite
Z.A

-l." effective in representing matrix data structure.

Relational and numerical data models are therefore selected for

detailed study for design of the database and the development of

database management system for structural analysis and optimization

app] icati,)ns.

'4. o3.5 Normalization of Data

was seen in the previous section that data items are grouped

e- t form associations. An issue of concern here, is how to

-e-e Y data items have to be grouped together? In particular,

e 'ationa: ',model, deter min':n whit relations are needed and what

r.r attrixutes should oe? t was evr: )nasized in Chap:tr 2 that

st ct,. aI (iesin data 5 ets , .r.r , udified, updated and deleted.

A•.,

'. -tit.



60

As database is changed, older views of data must be preserved so as to '

avoid having to rewrite the programs using the data. However, certain

changes in data associations could force modification of programs, and

could be extremely disruptive. If grouping of data items and keys is

well thought out originally, such disruptions are less likely to occur.

Normalization theory (Date 1982) provides certain guidlines to

organize data items together to form relations. The theory is built

around the concept of normal forms. A relation is said to be in a
.4m

particular normal form if it satisfies a certain specified set of

constraints. Three normal forms - 1st, 2nd and 3rd - are described

below.

First Nonnal Form (1NF). A relation is said to be in first normal

form if and only if it satisfies the constraint of having atomic values.

As an example, Fig. 3.5.1 shows the relation CONN between four

attributes ELMT#, E-NAME, NODES#, and DOF/NODE with domains D1, D2, D3
21* 3

and D4. The relation is first shown not in 1NF and then it is shown in

the INF.

Second Normal Form (2NF). A relation is in the second normal form

if and only if it is in 1NF and every non-key attribute is fully

functionally dependent on each candidate key.

Let us see if the relation CONN of Fig. 3.5.1 in the 1NF is also in

2NF. Consider a non-key attribute E-NAME:

ELMT#, NODES# + E-NAME

ELMT# + E-NAME

NODE# ,A E-NAME

V%



rqw wm w -

61

Domain D, Domain 02 Domain 03 Domain D4

ELMT1 I BEAM NODE#I No. of DOF
NODE#2 per node

ELMT12 TRUSS NODE#3 6
NODEI4 3

jELMT#3 PLATE NODE#5 2

Key Key Key Key

CONN EI.MT# E-NAIIE NODES # DOF! NODE ELMT# E.-NAME NODES I DOF/NODE

11 BEAM 1 6
BEM 2 61 BEAM 2 6

2 TRUSS~ 3 2 TRUSS 3 3
____ 5 2 TRUSS 5 3

3 PLATE 3 PLATE 2 2
3 23 PLATE 3 2

2 3 PLATE 4 2
5 3 PLATE 5 2

Not in 1NF In 1NF

Figure 3.5.1 First Nkrmal Form for a Relation CONN

I'.4

Id, Rw =6§0 k



62

Therefore, ELMT#, NODES# > E-NAME, i.e., E-NAME is not fully

functionally dependent on (ELMT#, NODES#).

Similarly for the non-key attribute DOF/NODE:

ELMT#, NODES# + DOF/NODE

ELMT# + DOF/NODE

NODE# A DOF/NODE

Therefore, ELMT#, NODES# i> DOF/NODE. Since neither E-NAME nor DOF/NODE

are fully functionally dependent on candidate key (ELMT#, NODES#) the

relation CONN is not in 2NF.

Conversion of the relation CONN to 2NF consist of replacing CONN by

two of its projections (refer to Fig. 3.5.2).

NAM-DOF + CONN (ELMT#, E-NAME, NODES#, DOF/NODE)

ELMT-NODE + CONN (ELMT#, E-NAME, NODES#, DOF/NODE)

Relation ELMT-NODE does not violate 2NF because its attributes are all

keys.

Third Normal Form (3W!). A relation is in third normal form if it

is in second normal form and every non-prime attribute is non-

transitively dependent on each candidate key of the relation.

For example, consider the relation NAM-DOF (Fig. 3.5.2) to see if

it is in third normal form. It still suffers from a lack of mutual

independence among its non-key attributes. The dependency of DOF/NODE

on ELMT#, though it is functional, is transitive (via E-NAME). Each

ELMT# value determines an E-NAME value and in turn determines the

DOF/NODE value. This relation is reduced further into relations NAME

and DOF. These relations (Fig. 3.5.3) are in third normal form.

4W,

%... ,.

m II'mi IT l ~ mlmm N



63

NAM-DOF ELMT# E-NAME DOF/NODE ELMT-NOOE ELNT# NOE.

I BEAN 6 1 1
2 TRUSS 3 1 2
3 PLATE 2 2 3

2 5
3 2
3 3
3 4
3 5

Figure 3.5.2 Second Normal Form for Relation CONN

DOF/NODE

NAME ELMTJ E-NAME DOF E-NAME tOF/NODE

1 BEAM BEAM 6
2 TRUSS TRUSS 2
3 PLATE PLATE 2

Figure 3.5.3 Third Normal Form for Relation NAM-DOF

z, 
' 

N,%

,. p

ir



64

From the above examples, we see that the concept of normalization

of data provides a good basis to group different data items of

structural design. Therefore, the concept of normal forms of data are

used in this study to develop a methodology to design a database for

structural design. Drawback in using this concept is that its use

requires a rigorous analysis of data dependencies and their

associations. This analysis of data looks complicated at this stage of

research on database management for structural design optimization.

Also, these normal forms of data do not suggest how large matrix data

should be organized in a database. However, normalization concept is

useful in organizing general data used in finite element analysis and

de,'jn optimization.

3.6 Global and Local Databases

Computer-aided design of complex structural systems uses several

application programs during the design process. Many of these programs

require common information such as geometry of the structure, finite

element idealization details, material properties, loading conditions,

structural stiffness, mass and load distributions, and responses

resulting from analysis runs. Also, it is common that data generated by

one program is required for processing in subsequent programs in certain

predetermined pattern. These data do not include transitory information

such as intermediate results generated during an analysis run. The

transitory information is highly unstructured and its usage pattern is

known only to applications that use them. Generally, the transitory

*~i



65

information is deleted at the end of a run. Therefore, there is a need

for systematic grouping of the data.

A network of databases offers a systematic approach to satisfy the

need stated above. A network of databases consists of a global database

connected to a number of local databases through program data

interface. Application programs which use them may be thought as links

connecting the databases (Fig. 3.6.1). A global database contains

common information required for all applications whereas a local

database contains only application dependent transitory data. Data in

global database is highly structured and integrity of the database is

maintained carefully. However, data in local database is extremely

flexible and integrity is not of importance.

This network of databases offers considerable aid in structural

design process. Any changes made to the data in global database is

imnmediately available for use in other applications of the system. Any

new application program can be added to share the common data. The

data views in global database are clear to all applications and any

modified v'ews can be easily incorporated to suit a new application.

ocal datan)ases are dependent on application programs and are highly

efficient in data transfer operations since no overhead is involved in

maintaining complicated data structures. It supports trial and error

design process by providing scratch pad work space which can be erased

f~orn the local database at a specified design stage. Any intermediate

results can be stored in a local database. Summarized and final results

of design can be transferred to a global database.

~~%CON
AS



66

4 APPLICATION /,

LOA

AP APPLIIATIO

m 4

4/...,p

2|

GLLOCAL

DDATABASE

LOCA

Figure 3.6.1 Network of Databases

. . .. ..



67

CHAPTER 4

DATABASE DESIGN METHODOLOGY FOR
STRUCTURAL ANALYSIS AND DESIGN

4.1 Introductory Remarks

A methodology for designing databases for structural design is

proposed in this chapter. The methodology is based on the database

management concepts described in the previous chapter. Background for

developing the database design methodology is given in Section 4.2. In

the proposed methodology relational and numerical data models are

used. Three levels of data organization -- conceptual, internal and

external are suggested for structural design database. In Section 4.3,

a methodology for constructing a conceptual data model is described.

The c(nceptual model enables us to find out the inherent nature of

struc'tural design data irrespective of computer program constraints.

Since large amount of data storage and speed of accessing data are

requi4red ir, finite element analysis and optimization, we need to

consider efficiency of storage space and I/0. This aspect is considered

i; Se-tion 4.4. A methodology for developing an internal model is given

there. in Section 4.5, a methodology for developing an external data

model is iescribed. External model provides data needed for multiple

users *jr application programs according to their individual perspectives

f data. Matrix data constitutes a large portion of finite element

analy;,is and optimization data. Such data needs special considerations 4



68

for accommodation in a database. A methodology for organizing large

matrix data is given in Section 4.6. Finally in Section 4.7 algorithmic

modelling is given. Based on this work, a paper has been recently

submitted for publication (Sreekanta Murthy and Arora, 1985b).

4.2 Aspects Considered in the Proposed
Methodology and Background

Several methodologies for designing databases for business

applications have been researched in the past few years. However, in

engineering database management area, there does not exist any rigorous

study on design of a database. The existing finite element analysis and

design optimization programs use primitive data organization techniques

for their out-of-core data storage needs. The drawbacks of such schemes

were pointed out earlier.

The question is -- is it possible to develop a methodology for

designing a database for structural analysis and design? If possible,

how do we begin to develop a methodology? Are the methodologies used in

business application suitable for our purpose? If not, what aspects

should be considered in developing a methodology for structural design

databases? All these questions have to be considered to arrive at a

methodology for database design needs.

At this stage, we know that it is possible to identify and group

the data used in finite element analysis and design optimization. We

also concluded that relational and numerical data models are suitable

for organizing the data. The basic problem is that once all the data

items have been identified, how to combine them to form useful



69

relations. In business applications database design follows some well

defined steps. First step is the extraction of all the characteristics

of the information which is to be represented in the database. Analysis

of the information and their integration into one conceptual model is

the second step. The concept-al data model obtained by this process is

abstract. It is independent of any computer restraint or database

management software support. In order for the conceptual model to be

useful, it must be expressed in terms compatible with a particular DBMS

ty considering efficiency of storage space and access time. An internal

model is developed for this purpose which is compatible with the

conceptual data model. Finally, the database design requires

accommodation of different users of the database by providing an

external data model. The systematic process by which one traverses the

different steps of database design and performs the mapping from one

level of abstraction to the next is called a database design

methodo I ogy.

Suitability of some of the rethodologies used in design of

databases for business applications to design databases of computer-

aideo design applications has been investigated by Buchman and Dale

(1979). Tne investigators analyzed three existing methodologies --

BubenKo's methodology, Kahn's methodology, and Smith and Smith .%-V

methodology with reference to applications in engineering design of a

chemical plant. A list of criteria for evaluating the methodologies is

given. Salient characteristics of these methodologies are outlined

riere. In Bubenko's methodology, entities are identified and classified

V. % -%



70
S.',

from query and transaction descriptions. A strong point of this method

is the provision for two levels of abstractions. Grouping of entities,

however, is highly intuitive and application dependent. Kahn's approach

has characteristics of separating the database design problem into two

perspectives: information structure perspective which describes the

interconnection of information, and the usage perspective which deals

with processing requirement of information. The method requires design

of two schema - one processing and the other information oriented -

which are merged at the end of database design to get a conceptual

model. This methodology merges local views into the global view by

aggregating entities. Designers intuition is required in this

methodology to form nonredundant entities and relations. Smith's

methodology ignores information analysis and considers only abstract

objects of interest. An object can be viewed as entity, attribute, or

relation depending solely on the view point of the user. The

abstraction step used in this method is highly intuitive. Grabowski and

Eigner (1979) pointed out the necessacity for a semantic model

construction in CAD application. They described three available

semantic models using the example of a geometric model of a line: (i)

based on binary association, (ii) based on entity and attribute

association, and (iii) expanded relational model.

The methodologies described above are at the research state in

busir s data management field and are not suitable for engineering

appli,:ations. Also many of them do not discuss details of the procedure

or implementation aspect and hence cannot be directly used for designing

J-...-



Dr

* 71

an engineering database. Therefore, it is necessary to adopt good

features and guidelines provided by existing methodologies and arrive at

.3 suitable one to design databases for finite element analysis and I
structural design optimization applications.

The proposed methodology to design databases (Sreekanta Murthy and

Arora, 1985b) considers several features and requirements of finite

element analysis and structural design optimization applications. Some

ii iportant features of data considered in the methodology are -- tabular

structure, matrices, static information, operational information,

multiple views of data for different application, and iterative changes

in data. Tabular structure of data is organized using relational data

model, whereas large matrix data needs is organized using a numerical

data iodel . A simpler approach to design a database is by considering

Ktatiu aci operational information seperately for an initial design and

later 2derging them to arrive at a final design. Multiple views of data

necessary to accommodate theoritical, implementational and user's

requirements are considered. Conceptual, internal and exLtrnal views of

data ,qggested by ANSl/SPARC is considered to accommodate multiple views

of data. The methodology uses entity set, relationship set and

attrioutes to form syntactic basic elements of the conceptual model.

In summary the methodology developed here considers the following

aspects: i) Three views of data -- conceptual, internal, and external

as suggested by ANSI/SPARC; (ii) Entity set, relationship set, and

adLrihutes to form syntactic basic elements of the conceptual model;

(iii) Relational data model; (iv) Matrix data; (v) Processing

requireients; and (vi) Normalization of data for, relational model.

%".'

5 , %' -. - "-



72

4.3 Ipthodology to Develop a ... ,

Conceptual Data Model

4.3.1 Basic Considerations

Our objective now is to develop a methdology to form a conceptual

data model at a suitable level of abstraction regardless of whether or

not the available database management software supports such model

directly. The conceptual data model should serve as a central reference

point for all applications using the database. It changes only if

changes in the structural design process occur. Any change in the

database management software of application program should not affect

the conceptual data model. The model should be capable of supporting

new applications with the existing types of data as well as

incorporating further data types as needed. Therefore, an analysis of

data used in structural design is required to incorporate the features d.

of data model described above. In the analysis, the information in use

or needed in future is identified, classified and documented. This

forms a basis for the conceptual data model to represent structural

design data and design process as a whole.

Two basic approaches are proposed to develop a methodology to form

a conceptual data model . One approach considers the general data of

finite element analysis and design optimization such as geometry,

material properties, element connectivity, element level vectors arid

matrices. A conceptual model is developed for these types of data.

Since large matrices such as assembled stiffness, load, and mass

matrices have basically different characteristics a separate approach is

proposed in the later sections of this chapter to construct a conceptual

VI% -~.

%*~



73

.4. .lita iode•l The two approaches together form a methodology to develop a

conceptual data model for both types of data used in finite element

analysis and design optimization.

The following steps are proposed to develop a conceptual data model

for general data. These steps are discussed in detail in Subsections

4.3.2 to 4.3.5. 6. 6

Step 1. Identify all the characteristics of data used in

structural analysis and design optimization.

Step 2. Data identified are stored in a number of relations. They

are reduced to elementary relation which represent inherent association

of data.

Step 3. More elementary relations are derived from the ones formed

in Step 2. This step uncovers more relationships between basic data

collected in Step 2.

Step 4. Redundant and meaningless relations obtained in Step 3 are

rerioved to obtain conceptual data model.

The conceptual model obtained by this process is abstract and is of

snecrecical interest representing inherent nature of structural design

(ldtd and is independent of any computer restraint or database management

so)ftware support.

4.3.2 Identification of Conceptual Data Objects

The following steps are proposed to ioertify the conceptual data

objects used in structural design:

:.,. , , ,, ' 'd €.,' .-.,- . ...-, -. .., .., , , , -, . . . .. . .. .. -,. .. , .. . . .. ., ..'... .- . ..



BD-A174 458 COMPUTER-AIDED STRUCTURAL DESIGN OPTIMIZATION USING A 2/4
DATABASE MANAGEMENT (U) IOWdA UNIV IOWA CITY OPTIMAL
DESIGN LAB T SREEKRNTAMURT4V ET AL 30 SEP 86

m hhhhhhhhDL8h1hFORTR8m26hAFR-2832F/ 8/ l
mhhhhhhhhhhhhl

smhhhhmhhhhhl
omhhmhhhhhhhhlo



]iiiIIIIiiii" $1&2~
1j6

6CROCOPY RESOLUTION TEST CHART

etNAI MRtFAU OF ';TANDARDS-1963-A

L I I I r

1 z.II- .

, 
%. 

.-

,



74

Step 1. Identify each type of entity and assign a unique name to

it.

Step 2. Determine the domains and assign unique names to them.

This step identifies the information which will appear in the model,

such as attributes.

Step 3. Identify the primary key for each type of entity depending

on the meaning and use.

Step 4. Replace each entity set by its primary key domains.

Determine and name relations corresponding to association between

primary key domain and other domains. Also, include relations

corresponding to association between entities themselves. This step

gives a collection of relations forming a rough conceptual data model.

Modified definition of domain and attribute are suggested as

follows to suit correct identification of structural design information.

Domain. A domain is the set of eligible values for a property. A

domain has same characteristics as a set, i.e., the values belonging to

a domain are distinct and their order is immaterial. A domain can

contain vectors or matrices. Thus domain Di is defined as
Di ={ili

D fV

where vi represents a value, a vector, or a matrix satisfying the

predicate Pi ,

S'

IENU 5,7,,u3'. - ---.....



75

Attribute. Columns of a two-dimensional table are referred to as

attributes. An attribute value can contain relation names and null

values.

Example. We consider the sample structural design problem given in

Section 2.2, to describe these steps.

Step 1. The following entity sets are identified for the structure:

STRUCTURE (S)

BEAM (B)

TRUSS (T)

MEMBRANE-TRI (TR)

MEMBRANE-QD (QD)

NODE (N)

ELEMENT (E)

Step 2. We identify the following domains:

STRUCTURE# Structure identification number (integer)

B# Beam element identification number (integer)

T# Truss element identification number

(integer)

TR# Triangular membrane element identification

number (integer)

QD# Quadri Iateral membrane element

identification number (integer)

NODE4 Node number (integer)

E# Element number (integer)

A-.

40 %~



76

EL-TYPE Element type {BEM2, BEM3, TRS2, TRS3, TRM2,

TRM3, QDM2, QDM3} (character)

MATID Material identification code, e.g.,

{STEEL.1, STEEL.2, ALUM.5, COMP.1}. It

also refers to relation or table of

material properties; for example, STEEL-1

refers to relation STEEL and material

subtype 1 (character)

MATPRO Material property {E,U,G,...} (real)

CSID Cross-section type identification code;

e.g., THICK'1, THICK.2, RECT.1, CIRC.5,

ISEC*6, LSECo15}. It also refers to a

relation of cross-sectional details. For

example, RECT-1, refers to a relation RECT

and cross-section subtype 1 (character)

CSPRO Cross-sectional property {H,W,T,R, ... I

(real)

DOF# Degrees of freedom numbers (integer)

LOAD-TYP Load type {CONCENTRATED, DISTRIBUTED,

TEMPERATURE, ACCELERATION) (characters)

X X coordinate (real)

Y Y coordinate (real)

Z Z coordinate (real)

DESCRIPTION Description (characters)

VEC Vectors {Integer, Real and Double precision

vectors} (vector)

w',.;'" " ", "' " " " .- " "" '" '" -.Y " " -" -' "'." . ,." .'" "-' ."." . --' -" ":" .')'.:-.'', '.''.''/ -" ". ". "- '-""-""-"","",. ". "- ".'-'



77

MATX Matrices {Integer, Real and Double

precision matrices} (matrices)

VECID Vecto identification code (character)

- {x.yj x = vector description, y =

number}; e.g., FORCE.5, LOAD.lO

MAXID Matrix identification code (character)

- {x.yj x = matrix description, y =

number}; e.g., EL-STIFF-1O, EL-MASS.5

Step 3. The following entity keys are identified

STRUCTURE# for entity set structure

BEAM# for entity set beam

TRUSS# for entity set truss
TR# for entity set TR

QD# for entity set QD

E# for entity set element

Step 4. In the association between entity sets and domain, the

entity sets from Step I are replaced by their primary keys. Attribute

names are derived from domain names to provide role identification. The

following relations are identified:

For Entity Set STRUCTURE

STRUCTURE (S#, DESCRIPTION, MAXID, MATX)

The structure is identified by a structure number S#. Name of the

structure and other details are given in DESCRIPTION. Matrices

associated with the structure are identified by MAXID.

For Entity Set BEAM

" . ,;V 'w' W' 'v , . ' .[. - ' "~m .Nm" , "'" "---'. 'W; " ..



78

BEAM (B#, E#, EL-TYP, MATID, E, u, G, NODE1#, NODE2#, CSID,

H, W, LOAD-TYP, LOAD#, VECID, VEC, MAXID, MATX)

A beam is identified by a beam number B#. Element number E# uniquely

identifies the finite elements of a structure. Attributes NODEI# and

NODE2# are derived from domain of node numbers. Similarly, E, P, and G

are role names for domain of material property values. CSID identifies

the cross-section properties H, and W. Vectors and matrices associated

with the element are identified through VECID and MAXID, respectively.

Similarly the relations TRUSS, TRM, and QDM are as follows:

. TRUSS (T#, E#, EL-TYPE, MATID, E, NODE1#, NODE2#, CSID, H, W

LOAD-TYP, LOAD#, VECID, VEC, MAXID, MATX)

TRM (TR#, E#, EL-TYPE, MATID, E, NODEI#, NODE2#, NODE3#,

CSID, T, LOAD-TYP, LOAD#, VECID, VEC, MAXID, MATX)

QDM (QD#, E#, EL-TYP, MATID, E, NODE1#, NODE2#, NODE3#,

NODE4#, CSID, T, LOAD-TYP, LOAD#, VECID, VEC, MAXID,

MATX)

NODE (NODE#, X, Y, Z, DOF1#, DOF2#, DOF3#, LOAD-TYP, LOAD#,

VICID, VEC)

ELEMENT (E#, NODE#)

From the above example, the following points unique to structural

design databases should be noted:

1. The attributes in the example contain relation names (e.g., MATID,

CSID). These relations are again association between an entity

set; e.g., STEEL and domain of material properties.

., . % " 5% w . " w " . " . . .. . . . - . . . - . - . • W . • -, . . . - . . . w ,



79

2. Null values of domains (which are attributes in the relations) are

allowed. For example, in relation TRM, LOAD-TYP and LOAD# may be

null if no loads exists.

3. A row and a column intersection may not be a single value; it can

be a vector or a matrix.

4.3.3 Reduction to Elementary Relations

In the previous section, we described a method to identify

entities, domains and relations to produce a rough conceptual model of

data used in finite element analysis and design optimization. Our idea

is to develop a conceptual model which contains all the facts and each

fact occurring only once. For this purpose, we suggest the use of

concept of elementary relations (Vetter and Maddison, 1981) to transform

the rough conceptual data model into a better model .

A relation is irreducible if it cannot be broken down by means of

project operations into several relations of smaller degree such that

these relations can be joined to reconstitute the original relation. A

relation which is not reducible is called an elementary relation.

To see how elementary relations satisfy the requirement that one

fact is recorded in one place, an example is given below:

LOAD (N#, LC#, Fx) .' '

' nere N# is node number

LC# is load case number

Fx is force in the x-directior.

. .7

e%4

V~~~~~~~~~~~~~~ .. % ~ ~ ~--::$ TN.-§-Q.:.:~



80

LOAD N# LC# Fx

N1 L1 10.0 .
NI L2 15.0
NI L3 10.0
N2 L2 20.0
N2 L3 20.0
N2 L4 10.0
N3 L3 20.0

Note that this relation describes two facts--load cases, and load

values for each node. Now, to see if this is an elementary relation,

suppose we split the relation LOAD by means of project operations into

following two relations RI and R2:

RI(N#, LC#) R2(LC#, Fx)

N# LC# LC# F

NI Li Ll 10.0
Ni L2 L2 15.0
N1 L3 L2 20.0
N2 L2 L3 10.0
N2 L3 L3 20.0
N2 L4 L4 10.0
N3 L3

On joining R1 and R2, RI*R2 we get

%, %.,

J W, v



£..

81

R3 N# LC# Fx

NI LI 10.0
NI L2 15.0

+ NI L2 20.0 + This value comes from
NI L3 10.0 <NI,L2> and <L2,20.0>

* NI L3 20.0

+ N2 L2 15.0
N2 L3 10.0
N2 L3 20.0
N2 L4 10.0

+ N3 L3 10.0
N3 L3 20.0

The rows marked with + are not in the original relation LOAD and hence

not correct. Thus, the relation is irreducible, and it is an elementary

relation. Observe that in the relation LOAD the attribute Fx is fully

functionally dependent on N# and LC#. N# alone or LC# alone doei not

determine Fx . Therefore, it is possible to identify such dependencies

and establish rules for reducing a relation to an elementary relation.

Using the concept of functional dependencies, full functional

dependencies, and transitive dependencies, the following steps are

identified to form elementary relations:

Step 1. Replace the original relations by other new relations to

eliminate any (nonfull) functional dependencies on candidate keys.

Step 2. Replace the relations obtained in Step 1 by other

relations to eliminate any transitive dependencies on candidate keys.

. .
.... 4Zm #'. ' ...

"
.. '#'.. .'. . . .' .. " " . . ." " " " . ."-". . . .r . ,% ": . -.. " . . . . . . . . .. . .



vW V,'

82

Step 3. Go to Step 5 if

(a) relation obtained is all keys, and

(b) relation contains a single attribute that is fully functionally

dependent on a single candidate key.

Step 4. Determine primary key for each relation which may be a

single or composite attribute. Take projections of these relations such

that each one contains a primary and a non-primary key.

Step 5. Elementary relations obtained.

Example. We can see how these steps are applicable to relations of

the example problem in the previous section. Consider the relation TRM:

TRM (TR#, E#, EL-TYPE, MATID, E, NODE1#, NODE2#, NODE3#, CSID, T,
LOAD-TYP, LOAD#, VECID, VEC, MAXID, MATX)

Dependencies Remarks

TR# Primary key

TR# + E# also E# TR# Secondary key E#

TR# + EL-TYPE Element type is functionally dependent

on TR#

TR# + MATID Material identification code MATID is

functionally dependent on TR#

MATID + E Material properly E is functionally

dependent on MATID

4 TR# * MATI) * E Material property E is transitively

dependent on TR# through MATID

I46



83

,a.

TR# identifies NODE1#

TR# * NODE1#

TR# * NODE2#

TR# - NODE3#

T# + CS-TYP + T Thickness is transitively dependent

on TR# through CS-TYP

TR4 + LOAD-TYP

TR + LOAD#

TR# + VECID + VEC Any vectors, such as load, force,

stress vector are transitively

dependent on TR# via VECID

TR#- MAXID + MATX Similarly matrices such as stiffness,

mass, are transitively dependent on TR#

via MAXID

Reducing relation TRM to elementary relations

Step 1.

ER1 (TR#, E#)

ER2 (TR4, EL-TYP)

ER3 (TR#, NODE1#)

.ER4 (TR#, NODE2#)

ER5 (TR#, NODE3=)

ERi4 (E#, T,,#)

,. V ... .
" ,Y ,,,.'.'.;,"i ,'", .'..-:'''" ''''''- .. -,,W. .,.



- ~ 7 - W7 . - 9 ~ .~.

84

Step 2.

ER6 (TR#, MATID); ER7 (MATID, E)

ER8 (TR#, CSID); ER9 (CSID, T)

ER1O (TR#, VECID); ER11 (VECID, VEC)

ER12 (TR#, MAXID); ER13 (MAXID, MATX)

Step. 3 The above relations contain single attribute, so go to

Step 5.

Step. 4. Skip

Step 5. ERI to ER13 are elementary relations.

These steps are used on the rest of the relations identified

earlier to get a set of elementary relations for the sample structural

problem.

4.3.4 Determination of Transitive Closure

We generally obtain hundreds of elementary relations when the steps

given above are applied to actual finite element analysis and design

optimization data. While deriving a large number of relations for

j obtaining a conceptual data model , it is possible that some relations

might have been missed. In general , it is possible to derive further

A elementary relations from any incomplete collection of such relations.

To explain in a simple way, how such additional relations can be

C' derived, consider two relations ER1(A,B) and ER2(B,C), which imply

functional dependencies: A + B and B + C. We know that product of

functional dependencies leads to transitive dependencies (Vetter and

% 4^

,-' -'A, W , - , - " - ' " -, " . " " . - " ; " . " " " . " -.. .. . . . ." - " -" • - " • ." - " - . ' . - " " - - .



S.o

.55

S-.

Maddison, 1981). Taking product of above functional dependencies, we

yet A C. Therefore, from suitable pairs of elementary relations

representing functional dependencies further elementary relations can be

derived. Deriving all such relations from initial collection of

elementary relations yields a transitively closed collection of

elementary relations called transitive closure (Vetter and Maddison,

191 ). This set of relations includes both derived and original

elementary relations. It is complete in the sense that all elementary

relations equivalent to transitive dependencies through others are

included. There is always a unique transitive closure for a given set

of elelentary relations. A transitive closure usually contains many

redunuant relations. We say that an elementary relation is redundant if

it i. derivable from other relations.

There are problems associated in interpreting relations in

transitive closure. For example, consider relations ERI (TR#, MATID)

* where TR- MATIO and ER7 (MATID, E) where MATID + E. Transitive

clostire fur this set yields relation ER (TR#, E) implies TR# identifies

E. Tnis relation does not, however, represent true information as

iihtrial property E is dependent only on material number and not on

a'e,, n- rn' ,er. Tne relation could be wrongly interpreted. Therefore

.,ch seiarticaly meaningless dependencies must be eliminated. %

's poss;ble to determine transitive closure using directed

ram; anf tne connectivity matrix (defined in Section 3.2). The nodes

.-.-. t yap ccrrespon(d to entity Keys and arcs correspond to elementary

1 'el ations.

" . . .



-~ ~ ~ ~ ~ W - -----

86

2NioN Nk
3

Transitive closure is formed by adding arc 3 if arcs I and 2 already

exist. A diagraph for the elementary relations formed in the previous

section is shown in Fig. 4.3.1.

A connectivity matrix for this diagraph is shown in Fig. 4.3.2. In

the connectivity matrix, we can see for example, TR# + MATID is

indicated by 1 in the corresponding row(3) and column(7) of the

matrix. Derived transitive dependence of example TR# * E is recorded by

assigning 1 to C (3,11). Such derived relations are denoted by 1 in

the Fig. 4.3.2 and are denoted by new arcs 'in dotted lines of Fig.

4.3.1. An algorithm for determining transitive closure is given in

Appendix I.

The transitive closure for the example produces additional

dependencies given in Table 4.3.1. We have eliminated meaningless

dependencies from the list.

4.3.5 Selecting Elementary Relations to
Form a Conceptual Data Model

In the previous section, we derived additional elementary relations

from a set of original elementary relations of Section 4.3.3. Now, we

have all the data items and their associations in terms of a large

number of elementary relations. We will see that many relations are

redundant and therefore they should be removed to provide a minimal set -..

of elementary relations.

.....



87

ww
w4

100

L

4.

0c I m4 p

I~ l( 

% %.

AAMI.4.



i

1 2 3 4 5 6 7 8 9 10 11 12 13 14

N N N M
E 0 0 0 M C V A M

E L T 0 OD A S E T E T V A
T R E E E T I C X E T
P 1 2 3 1 0 1 I C X

III D D D

IED 1* 1 1" 1* 1* 1* 1* 1* 1*

2 EL-TYP

3 TR# 1 0 1 1 1 1 1 1 1 1 1 1 1

4 NODE Il

5 NODE2#

6 NODE3

7 MATID

8 CSID I

9 VECID 1

10 MATXID

11 E

12 T

13 VEC

14 MATX

Figure 4.3.2 Connectivity Matrix C for Elementary Data

.44p.

oPA.

4%i
4,%-? ,: / , : ,, : " " " : "- " " " .-." " . - -" ' .- -'' '; . * - """',," - ,-' - . , . .v , . , , . . -



89

Table 4.3.1 Transitive Closure for Elemientary Relations

Derived Semantically%
Relations Dependencies CompositionMeaninyful

EkI5 E# EL-TYP E# +TR# *EL-TYP YES

ER16 E# -NODE1# E# + TR# + NODE14 YES

ER17 *E NODE2# E# +TR# +NODE2# YES

ER18 E# +NODE3# E# +TR# +NODE3# YES

IERl9 E# + MATID E# +TR# + MATID YES

ER20 E# * CSID E# +TR# +CSID YES

ER21 E# LOAD-TYP E# + TR# +LOAD-TYP YES

ER22 E# *MAXID E# *TR# +MAXID YES'1-

ER23 TR# *E TR# + MAXID + E NO

ER24 TR# T TR# +CS-TYP +T NO

ER5 TR# VEC TR# +VECID + VEC NO

[R26 TR# MATX TR# MATXID MATX NO

o AA

7P 'AA., .' -A d~ IN* ~



90

One method of removing redundant elementary relations is by finding

a minimal cover (Vetter and Maddison, 1981). A minimal cover is a

smallest set of elementary relations from which transitive closure can

be derived. This method removes redundant relations by eliminating I

elementary relations which are composition of other elementary

relations. The composition having maximum distance (defined in Section

3.3) is removed first and process is repeated iteratively to obtain a

minimal cover. This method is illustrated in Fig. 4.3.3 and Table

4.3.2. However, the method is too tedius to use in practical situations

where hundreds of elementary relations are formed. ,

We suggest an alternate methodology to select the elementary

relations to form the conceptual data model. Information about

processing sequence of data in finite element analysis and design

optimization data should be used for eliminating redundant elementary

relations. For example, consider the set of transitive closure of Fig.

4.3.3. E# in the example uniquely identifies all elements used in a

structure, whereas TR# identifies only the element numbers in a

triangular membrane element group. For example, to compute element

stiffness matrix data, two processing sequences are possible. One

processing sequence computes stiffness for all types of elements using

E#. In this case, selection of relations ERI, ER19, and ER7 is more

appropriate because material data is obtained in minimum number of

accesses. On the other hand, if stiffness computation is carried out

seperately for each type of element (for example TR#), then alternate

choice of elementary relations ERI, ER6, ER7 is suitable. Thus, in

e -..

% N



91

ER I ER 19 ER 7

TR# E# MATID EJ -;

ER 14 /

ER6
.. ER23 - -" IREMOVED 

ER23

(i) Transitive Closure

ER1

TR# E__ _

ER6 E9 FR1
.,.,

MATID

ER7

E

(ii) Rearrangement

'" R E " TR E ".,

3T%

MAT ID MATID

E E

(iii) Minimal Cover

Figure 4.3.3 Digraph Representation of Minimal Cover

16.--"

% %.



92

00
u Lu wU

LU

,a LU Lu

F0 IIJ

c uI-..W/ LU L

CaCC

eaL I -z ct 0 L

im .Lu 0 4-

0 eo
EW

V)

LL

LUJ
LU LLI

OfI I C\J -4 1 1 1 1 1 I 1 1 1

0

W)-4 cljM cd) ILO) .4 CJi crLO M

0
CL)N Ln

a!-4 C\J

LL%



93 .

selecting a set of elementary relations to form a conceptual model of

data, a certain amount of judgement is necessary on the part of database

designer. By considering the processing sequence of data while removing

redundant elementary relations will considerably reduce effort required

to form a final set of elementary relations representing a conceptual

da-a model for finite element analysis and design optimization data.

4.4 Methodology to Design an Internal Model

Once we have a conceptual (theoretical) data model of finite

element analysis and design optimization data, the next step is to

design an internal model. Internal model shows how the data should be

actually stored in a database using a database management software. An

internal model specifies which attributes have to be combined together

as a unit forming relations that are actually stored in a database.

in this section, a methodology to design an internal model is

proposed. The methodology is based on two important aspects: (i)

normalization of data, and (ii) processing requirement of data. Three

normal forms of relations, i.e 1st, 2nd and 3rd normal forms are used

to arrange attributes selected from various domains. It is known that

the use of normal forms of relations helps in avoiding inconsistency in

data storage and update operations (Date, 1977). The second aspect of

the methodology suggests the use of processing requirement of finite

element analysis and design optimization data. The processing needs of

analysis and design specify how various attributes should be derived

from their underlying domains and combined together forming a n-jry ' "

a'.-L-

..5 .. Y ""' ' ._, '' _m"- , "
•

"""- ." - . , . ' -' '. , ."." -"""''" . , - ; "- . ". "-""'""-. . " - ". . '



94

relation. Therefore, it is necessary to identify all the processes used

in finite element analysis and design optimization computations.

After an internal model is developed, it should be verified for

consistency with the conceptual model. Also, efficiency aspect of the

model should be considered in the design. This aspect requires

modification of the internal model to reduce the number of accesses to

get the data. Finally, the internal model developed should be A0

accommodated with a particular database management system that will

actually be used to store and retrieve data. All these aspects of the

methodology to design an internal data are discussed in the following

paragraphs with the help of an example.

Design of an internal model to support element stiffness matrix

generation process is described here. Methodology for designing

internal models for other structural analysis and design process would

follow similar steps. We assume that a conceptual model for element

stiffness generation is already available. Our aim is to produce an

internal model that is consistent with the conceptual model given by the

following elementary relations:

ERI (TR#, EL-TYP) ER9 (NODE#, X)

ER, (TR#, NODE1#) ER10 (NODE#, Y)

ER3 (TR#, NODE2#) ER1I (NODE#, Z)

ER4 (TR#, NODE3#) ERI2 (TR#, MATXID)

ER5 (TR#, MATID) ER13 (MATXID, MATX)

ER6 (MATID, E) ER14 (E#, NODE#)

ER7 (TR#, CSID) ER15 (TR#, E#)

ER8 (CSID, T)

* ,." _NC L.-.-;\ U e A- A

: . . .. .. X , . . .-. . . ., . ... . . . . - . ...* ...* . . . , . . . ..& * . . . ... -.,



* J*" ,'

95

Data needed for generation of element stiffness matrix are derived

from various domains and represented in a single relation TRM-D as shown

in Fig. 4.4.1. Our main intention is to get all the data required for

generation of stiffness matrix for a triangular membrane element in one

access or minimum number of accesses.

Observe from the relation of Fig. 4.4.1 that it is not in the first

normal form. Therefore, this unnormalized relation should be replaced

by a semantically equivalent relation in 1NF as shown in Fig. 4.4.2.

The following points have to be noted for normalization procedure

in structural design context:

1. Row and column intersection of a relation in 1NF is atomic (i.e.,

consists of single values). Exception to these rules are vectors

and matrices and they are considered to be atomic. In Figure

4.4.2, a set of values of MATX is identified as a unit.

2. Values for attributes are also derived from a non-simple domain. A

non-simple domain is one which contains elements that themselves

are relations. In Figure 4.4.2, STEEL refers to another relation

which contain material properties.

The advantage of 1NF over the unnormalized relation are that LM

operations required for application programs are less complicated and

easy to understand.

The elementary relations identified earlier contain all the

information required for generation of element stiffness matrices. This

information should be reflected in some way in the internal model that

is to be developed. There by we can ensure that internal model is

N;

%* %% N ~**



Do- -n r 0mai n r Domain Domi Dmi n

M~uL) CSD NODSX, _ __j

MAIXI)

Doai Doai nai Domain DomainI
C EL-TYP Material Property Cross-sectional Property E k, AIX

IRO ED EL-TYP 14ATID E CSII) T NOI)EIX 1 MATXII) MAIX

.1.

1 15 TRM3 STEEL'5 1 8  THICK6 0.1 / 3. 4. 8. SF'I lV
8 2. 6.3...

// 12 5.I9. 8.
2 16 TRM3 ALUM'4 O.qxlO7 TICK4 0.2 14 714. 1. S1F.2

18 3. S .. ...

Figure 4.4.1 A Tentative Internal Model

4 .:

TRD to El.-TYP MAru E CSID I OF Y I MAI X 1) MT1, 1 1 --- -- ){ A"
TRM3 STEEL-5 lo8 IIICK-8 0.1 5 I. 5. 7. Sill-I

I I5 TRM3 STEEL'S 108 THICK*8 0.1 1 3. 4. 8. STF-I

1 15 TRM3 STEEL'S 108 TIIICK*I 0.1 8 2. 6. 3. SIF-I

2 16 TRM3 AL ()H' 0.9x0O T11CK*4 0.? 1 ? 5. 9. R. SIF?2

2 16 TRM3 ALLIM*4 0.9d017 ICK-4 0.? 14 1. 4. 1. Sit,-2 2

2 16 TRM3 ALUW-4 0.9xlo7 IIIICK-4 0.? 18 3. 5. 8. STI -2 ::
y. -- - - ------ - ------- - ------ _A- -- --- ----

Figure 4.4.2 Relation TRM-.D in INF

S%
% %

z .. %. .,

Fiue442 ReainTMP n1F""

1K- ". .



--- V M F

97

consistent with the conceptual model. Internal model of Fig. 4.4.2 has

all the attributes providing information for generation of element

stiffness matrix. To check the consistency of this model , first we

identify the key attributes. Candidate keys are compound, consisting of "-:.--

(E#, NODE#) and (TR#, NODE#). Primary key is selected as (TR#,

NODE#). Secondary keys are TR#, E#, MATID, CSID, NODE#, and MATXID.

These key attributes of the relation are consistent with those in the

elementary relation. Secondly, we need to identify whether all the

attributes in internal model and dependencies between them are

consistent with the conceptual model. Observe that attributes NODE1#,

NODE2# and NODE3# do not appear in the relation. Therefore, these three

attributes should be included in the relation. Relation TRM-D is now

written as

TRM-D (TR#, E#, EL-TYP, E, CSID, T, NODES#, NODEI#, NODE2#,

NODE3#, X, Y, X, MATXID, MATX)

The functional dependencies reflected by elementary relations ERI to

ER15 are satisfied in the internal model with the values shown in the

Fig. 4.4.2. Therefore, at this instant the internal model is consistent

with the conceptual model. However, it would be no longer consistent,

if arbitrary changes in the values of the table are made. Also, note

that many values in the relation TRM-D are redundant. These

inconsistencies and redundancies occur because of the following .

anomalies in the INF:

J..

:.-~- *-* .*J7.: ..

.........................................................



96

1. INSERT operations: User cannot store details concerning a finite

element without knowing at least one node of the element. The

reason is that one part of the primary key (E#,NODE#), i.e, NODE#

is not known.

2. DELETE operations: If user deletes a particular material type -
',

MATID, the database automatically looses all the data about those

finite elements using the material. Similarly, if user deletes a

particular finite element, then database looses data about a

A particular material.

3. MODIFY operations: To change information about a particular

element number, all rows containing that element number have to be

modified. Otherwise functional dependency MATID + E will not be

valid any more.

Therefore it is not desirable to use the relation in Fig. 4.4.2 to

represent the internal model. Modification of this relation to 2NF is

necessary to avoid these anomalies in the storage operations. For this

purpose, first we need to identify non-key attributes of TRM-D and check

their dependence on the candidate keys. The non-key attributes are EL-

TYP, E, T, X, Y, Z, MATX (refer to definition of full functional

dependency). For example, consider the non-key attribute EL-TYP:

E#, NODE# + EL-TYP

E# + EL-TYP

NODE# A EL-TYP

Therefore, E#, NODE# #> EL-TYP

-. "2_5,

-W" ' #' m
M

' - '#. ',e " " '" =.'€ -' ', ',' , 4, ' " w4",. , , .' -.- ',-. . ,, .. ,- , ' . ,'. ,- "... -'.-', . . ., ..• " . '5



99

Thus, EL-TYP is not fully functionally dependent on (E#,NODE#) Note

that E is transitively dependent on E# through MATID. Similar argument

leads to

E-,.. NODE4 > E, T, X, Y, Z or MATX.

Therefore, relation TRM-D should be converted into a set of

-4 semantically equivalent relations as follows:

TRM-D1 (TR#, E#, EL-TYPE, NODE1#, NODE2#, NODE3#,

MATID, E, CSID, T, MATXID, MATX)

4. TRM-D2 (NODE#, X, Y, Z)

TRM-D3 (E#, NODE#)

The above three relations TRM-D1, TRM-D2 and TRM-D3 are all in 2NF

because first two relations do not possess any compound candidate key

and thnird relation has all keys. Note that by splitting the relation,

TRM-D no information is lost and they still are consistent with the

conceptual model. However TRM-DI relation is still not satisfactory as

it can lead to anomolies in storage operations as follows:

1. INSERT operation: It is not possible to store the fact that a

particular material - MATID has a property - E without knowing at

least one finite element using the material.

. DELETE operation: If only one element is using a particular

material and if that element is deleted, we loose all information

aDo: tre mater:al U
1. ODFY operation: If several finite element use a particular

'ateria, anj if the property of the material is changed, then

Mod I1fijcdlon must be done to alI the rows of the material used by

tnose ,eients.

% •7,

#"#'............................................................. ---."-.,--" '-.....-....." + ,'- ',.'. - -. . ." ."+" ,+ -" -"-."". '"

. . . . . . . . . . . . . . .. . . . . . . .- --..



100

Therefore it is not feasible to use TRM-DI relation in the internal

model. Modification of this relation is necessary to 3NF to avoid

anomalies in storage operation. Non-key attributes must be non-

transitively dependent on candidate keys to avoid these anomolies.

Observe from the relation TRM-D1 of Fig. 4.4.3 that attributes E, T, and

MATX are transitively dependent on TR# through MATID, CSID, and MATXID,

respectively. Removing these transitive dependencies, we get the

following relation:

TRM-D4 (TR#, E#, EL-TYP, NODEI#, NODE2#, NODE3#, MATID,

CSID, MATXID)

TRM-D5 (MATID, E)

TRM-D6 (CSID, T)

TRM-D7 (MATXID, MATX)

The above four relations together with TRM-D2 and TRM-D3 constitute

the internal model for element stiffness matrix generation purpose.

This internal model is consistent with the conceptual model identified

earlier. Also, note that number of relations in the internal model is

only 6 as compared to 15 elementary relations in the conceptual model.

In summary, the following steps are necessary to derive an internal

model that is consistent with the conceptual model. Normalization

procedures have to be adopted at each step to reduce redundancy and to

eliminate undesired anomolies in storage operation. At each step

unsatisfactory relations are replaced by others.

Step 1. Form relations with attributes derived from a set of
-- "

domains.

. . .,.. . ......... -,....... .... .. ,.



101

TRM-D1 .

1RDJ EOTEL-TYP NOVDLl NODE20 NOI)EM MAr11) E CSID T MAMXID MATX

1 15 TRM3 5 1 8 STELS 0 IHICK-8 0.1 STF-I

2 16 TRM3 12 14 18 ALUM'4 O.9x1O7 THICK-4 0.2 STF-2 1

TRM-D2 IRM-03

5 1 . 5. 1. 15 5
7 3. 4. 8. 15 7
8 2. 6. 3. 15 8

12 5. 9. 8. 16 12
14 7. 4. 1. 16 14
18 3. 5. 8. 16 18

Figure 4.4.3 Relations in 2NF

woo



Step 2. Eliminate multiple values at row-column intersection of

relation table. Vectors and matrices are considered to be single

data items for this step.

Step 3. Result of Step 2 is the relations in the 1NF. Take

projections of 1NF relations to eliminate any nonfull functional M

dependencies and get relations in the 2NF.

Step 4. Take projection of relations obtained in Step 3 to

eliminate transitive dependencies to form relations in the 3NF.

Thus a set of relations in the 3NF is the internal model.

The next question in the design of internal model is the

process an efficient one to use? This question posed in another way --

is it possible to get the data required for a particular process in a

minimum number of accesses to the database? If not, how to reduce the

number of accesses to get the data. The answer to these questions is

obtained by a study of the individual processes and their data

requirement needs.

Again, consider the previous example of internal model consisting

of relations TRM-D2, TRM-D3, TRM-D4, TRM-D5, TRM-D6 and TRM-07. To

access the thickness data T of a particular element TR#, one has to
w'

first access the CSID data from TRM-D4, then retrieve TRM-D6 relation to

get the required data. Thus two database accesses are required.

Similarly, to get the coordinates of an element TR#, first the node

numbers of the elements have to be identified, then from relation TRM-D2

9

'- . . ,,, ,. - . .-. . . -' . , - . . . . . , . . . . , .,,. . . . . S
_. , ,. . ... ... ... . .. , -f . -< . -. ,. . -... -. .. ..



103

coordinates of nodes are retrieved. In this case, four database .

accesses are required including three accesses to relation TRM-D2. One

possibility of reducing the number of accesses to the database is by

combining relations TRM-D4, TRM-D2 and TRM-D5. Such combination

increases efficiency at the expense of redundancy in data storage and

anomolies in storage operations.

Therefore, it is suggested to use normal forms of relations for the

internal model and introduce redundancy if required to improve

efficiency at the actual impelmentation stage. But such redundant and

unnormalized relations should be carefully noted to avoid erroneous

operations on database.

4.5 Some Aspects to Accommodate
an External Model

One of the important requirements of a database is to provide
I.-.w.

facility for data retrieval by different application programs depending

on their needs. Different application programmers can have different

views of a database. Data structure as seen by an application program

or interactive user is called an external data model. Generally, user's

perspective of a database is only a subset of the actual contents of the

database. Data retrieved from actual physical storage in the database

undergoes transformation till it reaches the user. Transformation

involves rearrangement of data from internal level to external level

into a form acceptable to the application program. In the following

paragraphs, considerations required while designing an external model

suitable to structural design applications are given.

**' *Pe

;' w,

, '-.".'. .. ', '.".. " . . .-' < ,"-..'. - ",".-""."-,. ,'-. ,'.< -'", [."- -. " -.-..- . -. -." . 4".' ''-..'' . .'".'".'" .;."1



1 04

Some constraints have to be observed while designing an external

model. Constraints arise while rearranging data from internal data

structure to an external data structure. An important constraint is

that internal data structure must be consistent with the conceptual data

structure. Any retrieval and storage operations specified on external

model must be correctly transformed into corresponding operations on the

internal model and at the same time data must be consistent with the

conceptual data model. Also design of the external model must fit the

database management system capability. An example of how an external

model is derived from an internal model is given below. A

Suppose a particular user would like to know the coordinates of

nodes of each triangular finite element for generation of element

stiffness matrices. This means that the external model:

EL-CORD (TR#, E#, EL-TYPE, Xl, Y1, Z1, X2, Y2, Z2, X3, Y3, Z3)

has to be provided for that particular user. Note that the external

view EL-CORD contains data items from two different relations -- TRM-D4,

TRM-D2 (refer Section 4.4). Therefore, a procedure is required to

transform internal data model (relations TRM-D4, TRM-D2) to the external

data model (relation EL-CORD). Data from TRM-D4 and TRM-D2 have to be

rearranged to obtain relation EL-CORD. Procedure for rearrangement is

formulated by using JOIN and PROJECT operations as follows:

TRM-A (TR#, E#, EL-TYP, NODE1#) TRM-D4

TRM-B (TR#, E#, EL-TYP, NODE2#) - TRM-D4

TRM-C (TR#, E#, EL-TYP, NODE3#) TRM-D4

TRM-D (TR#, E#, EL-TYP, Xl, Y1, Z1) = TRM-A*TRM-D2

. % % % %

OFv~v--%- *4 .... ,.~~,- ~ ~
2 .A



1 , .t , * '

105

14

TRM-E (TR#, E#, EL-TYP, X2, Y2, Z2) = TRM-B*TRM-D2

TRM-F (TR#, E#, EL-TYP, X3, Y3, Z3) = TRM-C*TRM-D2

EL-CORD (TR#, E#, EL-TYP, X1, Y1, Zi, X2, Y2, Z2,

X3, Y3, Z3) = TRM-D*TRM-E*TRM-F

NOTE: indicates PROJECT; * indicates JOIN

The above procedure (algorithm) yields EL-CORD relation. Observe

from the algorithm that we did not modify the original relations TRM-D4

and TRM-D2 to retrieve the data required for a particular inquiry. The

relations TRM-D4 and TRM-D2 are still consistent with the conceptual

model. Therefore, pure retrieval operations for rearrangement of data

does not cause any inconsistency in data values. 9"4

Now, consider the reverse process of transforming external data

structure to internal data structure. Suppose, a particular user wants

to insert the nodal coordinates of a finite element using the external

view EL-CORD. Here, relation EL-CORD has the only key TR# and has no

reference to the node number to which the element is connected.

Insertion is not consistent with the conceptual model which requires

N that coordinate of nodes which are dependent on keys NODE#. This -.

restriction is also reflected in the internal model -- TRM-D2 which

requi res NODE# as key values for insertion. Therefore, the

transformation of relation EL-CORD into internal model is not

possible. From this example, it follows that there are restrictions for

rearranging data from external model to internal model.
7.'7

. ..

. . . . .. . . . . . . . . . . . . . . . . . . . .



106

4.6 Methodology to Incorporate Large Matrix
Data into a Database

In finite element analysis and structural design optimization, we

encounter problem of storage of large order matrices. These matrices

are generally banded and sparse, and require careful consideration in .','

organizing them in databases. This special nature of matrix data is

unique to structural design database and therefore no attempts have been

made to study this aspect in business database management area.

However, a few matrix schemes have been implemented on disk files, but

they are highly tailored to meet only specific application program needs

and not suitable for general use. Consequently, there is a need for the

development of a generalized and a new user-friendly technique to deal

. with large order matrices. In this section, we discuss various types of

large order matrices and develop a suitable methodology for organizing

them in a database.

4.6.1 Identification of Matrices

Various types of matrices are identified and defined below. Note

that matrices considered for our purpose are of large order which

implies a matrix A(m,n) where m and n about 1000 or more. For the

purpose of our discussion, matrices are grouped into five types and are

referred by the type number.

(i) Square Matrix A

A - a(i,j) i 1, 2, ... n, j = 1, .. m

A square matrix A is symmetric if A AT

.• 
. °,

~~- ,'o



107

A square matrix A is diagonal if

a(i,j) * 0 for i j

a(i,j) =0 for i j

A square matrix A is upper triangular if

a(i,j) *0 for i s j

a(ij) =0 for i > j

A square matrix A is lower triangular if

a(i,j) *0 for i > j

a(i,j) = 0 for i < j

(ii) Banded Matrix A

a(i,j) = 0 for ji-jI > m

where m << n; n = matrix size

a(i,j) 0 for li-ijl m

Consider bi = 1 + (j-i) for all i, where j is the column number

for last nonzero entry in row i, then semi-band width B = max

bi (refer to Fig. 4.6.1).

(iii) Hypermatrix H

H H h(k,Z) k = 1, ... p, X=i, ...p

where h(k,L) - square nonnull matrix A for some, k,X

square null matrix A for some k,..

and A a(i,j) i = 1, ...m, j = 1, ...m

A is known as submatrix of H. k and x are known as hyper-rows

and hyper-columns (refer to Fig. 4.6.2).

H is upper triangular if

------- .....



o.'

108

h(k,t) A for k < X

0 for k > x

H is lower triangular if

h(k,t) A for k > it

0 for k <X

(iv) Sky-line Matrix S

For symmetric upper triangular matrix

S a(i,k) i = 1, ... n, k = 1, ... n

mj = row number of first nonzero element in column j; mj,

j : 1, ... m define the skyline.

(j-mj) = column height

a(i,k) = 0 for k > (j-mj); (refer to Fig. 4.6.3).

(v) Sparse Matrix P

P = a(i,j) i = 1, ... m, j = 1, ... n

P is sparse if

a(ij) = 0 for most values of i and j. As a rule of thumb,

only about 5 to 20% of the matrix contains

nonzero values at scattered locations in the

sparse matrix.

4.6.2 Methodology for Design of a Numerical Model

We identified various types of matrices commonly encountered in

finite element analysis and design optimization procedures. It is

necessary to establish a methodology for organizing these matrices in a

% %-..

Z



-- - - - - - - - o W W I qg

109

Figure 4.6.1 Banded Matrix

L~1 2 3 4

k=1
____ 1, 2,3.4 _ __ ___

2.e

3

Figure 4.6.2 Hfyper Matrix

Figure 4.6.3 Skyline MatrixJ



110

database. A numerical model is proposed in this section which consists

of conceptual, internal and external views of large matrices. Recall

that a conceptual view represent inherent nature of data independent of

any computer constraints. Therefore it is necessary to first study true

nature of a large order matrix. Later, the internal representation of a

matrix are considered to deal with storage efficiency, processing

sequence, matrix operations, and flexibility of data modification. j
Since different applications and users view the same matrix in different

form, suitable external views have to be provided.

Conceptually, a matrix is a two-dimensional array of numbers.

These numbers appear in a certain pattern; e.g., square, sparse,

" symmetric diagonal, banded, lower triangular form, upper triangular

form, unitary form, tridiagonal form, hyper matrix form and skyline

form. A matrix is uniquely identified by a name. Rows and columns of

the two-dimensional array are used for identification of data elements .-

in the matrix. A conceptual view of a matrix is represented by the

following elementary relations:

ERI (NAME, MATRIX TYPE)

ER2 (NAME, NUM-OF-ROWS)

ER3 (NAME, NUM-OF-COLUMNS)

ER4 (NAME, ROW, COLUMN, DATA-ELEMENT-VALUE)

ER5 (NAME, NUM-OF-HYPER ROWS)

ER6 (NAME, NUM-OF-HYPER COLUMNS)

ER7 (NAME, HYP-ROW, HYP-COLUMN, ROW, COLUMN, DATA-FLEM-VALUE)

ER8 (NAME, BAND-WIDTH)

.... ~.*- ,. .o..pt. POW
1P %



ERIO ( NAME, SUB-NAT-ROW-SIZE)

ERIl (NAME, SUB-MAT-COLUMN-SIZE)

ERi2 (NAME, VECTOR OF SKYLINE-HEIGHT)

ER13 (NAME, HYP-ROW, HYP-COLUMN, NULL-OR-NOT)

The attributes of these elementary relations are self descriptive.

These elementary relations completely define a matrix and provide the

conceptual structure of the matrix. Note that the data values assigned

to a matrix do not depend on whether a matrix is in banded, skyline or

Snyper matrix form. But they are located using on the row and column

nu:;iber of a matrix. Therefore, additional information such as banded,

skyline, hyper matrix, bandwidth, and submatrix size are useful mainly

to tie advantage of the special nature of a matrix for storage and

conputational purpose.

Internal "storage) structure for large order matrices have to be

devel )ped which is consistent with the conceptual structure. The

I :l ntary relations defined above could be stored in a database, but it

woJ.,i reqiiire, an awful number of accesses to get the required matrix

catd. Therefore, storage schemes have to be developed based on

efficiency considerations. Also, storage space consideration is

important to save disk space. Special nature of matrix, i.e., is

cparse, dense, symmetric, should be used to provide storage

efficiency. We can classify various matrix types considered in the

i're/vim.js section into two basic types - sparse and dense. Note that

K )n. , or :ia.jonal matrices are not to be mistaken as sparse. Many

:)()ssi.)Io st)rage schemes are availaole to store dense and sparse

•iatries. First, we consider storage of large order dense matrices. 'P.

S'.

',' -- '.-.- -.- --.-" .- -'-"-. . ."- -t ,.-....'....,.,'.-'''''.- '"-,- ' '-. .""'''-.''';1'' ;-i ."%"-



112

Conventional storage schemes -- row-wise, column-wise, submatrix-

wise are useful for storing dense matrices. Row and column storage are

considered to be similar for purpose of our discussion. Thus, out of
. 4

,.V. these storage schemes, only two schemes -- row-wise and submatrix wise

are considered for evaluation. Figure 4.6.4 shows the row and submatrix

storage schemes. Again, it is stressed here that we are considering the

internal storage schemes and not the users view of a matrix - such as

row-wise, column-wise, submatrix wise, skyline wise, or upper-

triangular. Choice between these two storage schemes should be based on

consideration of several aspects - storage space, processing sequence,

matrix operation, page size, flexibility for data modification, ease of

transformation to other storage schemes or user's views, number of

addresses required to locate rows or submatrices, and availability of

database management system support. These aspects are considered in

detail below.

Storage Space. Row storage scheme can be used for square, banded

and skyline matrix types. However, this scheme is not appropriate for

hypermatrix. Symmetric, triangular, and diagonal properties of square

matrix can be used in saving storage space if variable length of rows is

used. Similar schemes can be used for banded and skyline matrices to

store data elements that appear in a band or skyline column. Submatrix

_ storage can be used for all matrix types. Submatrix storage is most

appropriate for hypermatrix data. Both schemes have disadvantages when

zero elements within a row or submatrix hde to be stored.



113 j

I I 1 1,2 ",n

3 2,1

Figure 4.6.4 Row and Submatrix Storage Schemes

%.":,

, ". .I I{ M / i" \p.

lP _ ,r- + + w . ,. __ ,r- i • . • • , , . . . ' + , . + , - . • • •' w

* -,*- .- *-". - . *-*.< . * '.:-4,: ." +.-s +. -. v ,0 '.:
*"* *6 % .J

6
+% " -P' "+ " ' ' , , " ",,+ " " - " ", ". -. , . ,



: g

114

Processing Sequence. Row storage requires assembly of matrices,

storage and retrieval be made only row-wise. This becomes inefficient

if row-wise processing cannot be made. Subinatrix approach is suitable

for all types of processing sequence -- row-wise, column-wise, or in any

arbitrary order.

Matrix Operations. Operations such as transpose, addition,

multiplications and solutions of simultaneous equations are frequently

carried out at various stages of structural design. Row storage scheme

is highly inefficient for matrix transpose when column-wise storage is

required. During multiplication of two matrices A and B, a column of B

can only be obtained only by retrieving all of rows of B. Therefore,

row storage scheme become inappropriate for such operation. However,

submatrix storage scheme does not impose any such constraints in matrix

operation, thus provides a suitable internal storage scheme.

Page Size. A page is a unit or block of data stored or retrieved

from memory to disk. A more detailed definition will be given in the

next chapter. For a fixed page size, only a number of full rows or a

number of full submatrices together with fractional parts of them can be

stored or retrieved at a time. It is clear that fragmentation of rows

or submatrices takes place depending upon the size of rows or

submatrices. Large row size will overlap more than one page in memory

and cause wastage of space. Submatrix scheme has the advantage of

providing flexibility in choosing submatrix size to minimize"

fragmentation of pages.

, , . - -



115

Flexibility for Data Modification. For modifications of rows of a

matrix both row and submatrix storage schemes are suitable. But row

scheme would be more efficient than submatrix storage scheme. For

modifications of a few columns of a matrix, row storage scheme requires

a large number of I/0.

Transformation to Other Schemes. Submatrix storage scheme requires

minimum number of data access to transform to column-wise storage

scheme.

Address Required. Submatrix storage requires less number of

addresses to locate data than row storage scheme provided submatrices

are reasonably large.

Thus, for internal storage of large order matrices in a database,

the above mentioned aspects should be carefully considered. It appears

that )oth submatrix and row storage schemes can be appropriate for

various applications.

in order that internal storage scheme be consistent with the

conceptual model, we need to store additional information about the

properties of the matrix. Those additional informations are given by

the elementary relations ER1, ER2, ER3, ER5, ER6, ER9 to ER13. They can

he combined together and stored in a relation with key attribute NAME. !%.

Rel3tions required for internal storage are indicated in Fig. 4.6.5.

So far we considered schemes for internal organization of large

matrices. Since different users view the same matrix in different forms

- banjed, skyline, hypermatrix, triangular, or diagonal - it is

%%. %

• , ., , . , . ,', . w 
,

, ' , . . , .. . ", -, , . . . . . . , . . .



MATRIX NO. OF NO. OF SUIINATRIX SUBMATRIX VECTOR (#
NME TYPE ROWS COLUMNr ROWE COLUMN BANDWIDITH SKYLINE

SIZE SIZE HE I G11

. 116

- .

HYP-ROW SYP-COLUMN NULL or SUBMATRIX
NO. NO. NOT

I FSIZieIII[

% %

6.v.

J4.e;6

Figure 4.6.5 Relations for Matrix Storage

' 4
/i%

.4-I

• -9/ , . . , " ,' ., : 2" : . ''' ." 5":' . :'. , , ¢ ._. -,-



117

necessary to provide the external views to suit individual needs. Unit ',

of transactions on various views of a matrix may be row-wise, column-

wise, submatrix-wise or data element wise. Internal scheme is A

submatrix-wise, where as external view need not be submatrix wise.

Therefore, transformation are necessary to convert the internal matrix

data into the form required for a particular user. Such a .

transformation is schematically indicated in the Fig. 4.6.6.

Next, we consider sparse matrix storage scheme. Several storage

schemes have been suggested by Pooch (1973) and Daini (1982). They are

bit-map scheme, address map scheme, row-column scheme, and threaded list

scheme. Out of these row-column scheme is simple and easy to use.

Also, row-column scheme can be easily incorporated into relational

model. Therefore, this scheme can be considered for storing sparse

matrices encountered in design sensitivity analysis.

Row-column storage scheme consists of identification of row and

column numbers of nonzero elements of a sparse matrix and storing them

in a table. This scheme provides flexibility in modification of data.

Any nonzero value generated during a course of matrix operation can be

stored or deleted by simply adding or deleting a row in the stored .." .y

taole. The row-column scheme is schematically shown in Fig. 4.6.7.

External view of row-column storage scheme can be provided through

suitaole transformation procedures. An external view of this scheme is

shown in Fig. 4.6.8.

.~....*..,



'A '.

EXTERNALNTVREWLEXTNAGVEW SCE EXENLVW

Figure 4.6.6 Transforming Internal Storage to External Views

ROW COLUMN VALUE 9

NO NO

Figure 4.6.7 Row-Coliinn Storage Scheme (internal)



119

BANDED MATRIX UPPER TRIANGULAR MATRIX HYPER MATRIX

SPARSE MATRIX ;

ROW COLUMN VALUoENO NO _
, S

-.

INERA STRG

Figure 4.6.8 External View of Sparse Matrix

=,I -=.,-, T,. , L-, % - ,- -,.- : , ,, , -, ,, 
•

. - . .- , : .- .- ." ,,, - , . , •, , ', , <-.' -, -. V .

[' " ' .. . ' s 
"' ', ' ' '

"- ". .-"-.. . ..., ., '. .. .i .' ,, , .'.'".'., ,'- --""," ', ' ', ' .'' . ' ,. ,,. '.:, ..,'." \ ' V.,,



120

4.7 An Algorithm or A Data Model?

So far we considered various methods anj procedures for data

organization, wherein, actual storage of data in a database was

necessary. Many procedures in structural design, such as element

stiffness matrix routines, generate huge amounts of data. Generally, it

is unlikely that a user would want them to be stored in a database at

the expense of disk space and data transportation time. The advantage

of being able to query or possibly modify individual data items does not

apply to stiffness matrices, which are more or less meaningless, except

to the analysis program for which each matrix ias been assembled. In

order to save disk space and data transfer time, it is preferable to

store only those data that are required for generation of element

stiffness matrix. An algorithmic model is one where a data model is

replaced by (i) an algorithm that generates the user requested

information and (ii) a set of (condensed) data which will be used by the

algorithm to generate the user requested information. Therefore, in an

algorithmic model, data are not stored but are generated whenever they

are needed. Algorithmic model suggested with a mixture of algorithms

and stored data in a way that is most efficient for any given

application.

Study of resource aspects must be made for deciding suitability of

an algorithmic model or a data model. In cases where the items being

modeled is rich in empirically derived data (for example, steel codes

for allowable stress calculations) the algorithmic model uses a simple

algorithm with a conventional data model . At the other extreme, where

/*j. .. ... . .-L- L - . -. -. ..m~v~ ,--. . . ,. . . \. . -. , ... ,"" ". .-. -. .' ..-



121
.'

all properties of an item can be generated (for example, element ?

stiffness matrix calculations) the algorithmic model uses a complex

algorithm with minimum data. A data model is preferable when storage

capacity, processing costs, usage rates are high and time to transport

data, rate of change of data are low. An algorithmic model is better if

storage capacity, processing costs, usage rate of data are low and

transport cost are high.

Methodology for constructing an algorithmic model is proposed based

on (i ) design of a suitable algorithm, and (ii) design of a (condensed)

data model. Design of algorithms is dependent on the standard method of [.'f

computational techniques used in finite element analysis and design

optimization. These algorithms must be acceptable to all users of the

model. Data transfer between algorithm and (condensed) data model can

be provided through database management system support. Interface

between algorithmic model and applications must be designed based on

consideration of simplicity and ease of use. Design of (condensed) data

model is dependent on the algorithm itself. If the condensed data model

uses a conventional data model, then schemes for ensuring correctness of

data values in the model must be provided. This is necessary because if

this condensed data model is allowed to be modified arbitrarily then

resultIng data generated by algorithms will become meaningless. If

several algorithms are in operation each using only a portion of

condensed data model, then decomposition of the data model into several

low level forms will enable efficient access of data values.

. . .o. .



122

N *16

CHAPTER 5

DATABASE MANAGEMENT SYSTEM FOR
STRUCTURAL DESIGN - A PROPOSAL

5.1 Introductory Remarks

We need a software to use a database that has been designed based

on the methodology given in the previous chapter. A software that

handles requests of users to access and store data in a form compatible

with data organized at various levels between physical storage level and

application program level is called a database management system. A

database management system conceals the complex data storage details and

provide a simple view of database to the users. Such a software enables

structural design application programmers and interactive users to store

and retrieve required data in a simple way and thereby relieving them of

unnecessary burdon of managing physical storage details.

This chapter is intended to identify various components of a DBMS

and to formulate requirements of data definition, data manipulation and

query language in view of implementation of a good DBMS for qtructural

design optimization. A DBMS should have many components such as command

processor, input-output processor, file operation routines, addressing

and searching schemes, and memory management schemes in order to provide

simple and efficient means of data storage and retrieval. Functions and

requirements of these components are described in Section 5.2 with

reference to structural design applications. In Sections 5.3 to 5.5

A. -c *. --- ~.*N~*



123

a proposal of syntactic rules (grammer) for languages used by

structural designer to define data view, manipulate data and query data

are given. Data definition, data manipulation and query language

requirements are formulated. Finally in Section 5.6, existing database

management systems are reviewed and their features tabulated.

Requirements of a DBMS are also summarized in Section 5.7.

5.2 Components Required in a

Database Management System

In this section components required in a database management system

,or structural design optimization are identified. Various components

necessary in a DBMS and their functions are described. An overall view

of the workings of a DBMS are given below to show main events that take

place while an application program uses a DBMS:

1. 4ri application program calls a DBMS to define a database, relation,

ar matrices.

. D)d, cnecks the user given definition for syntax.

3. ;ser requests DBMS to store and retrieve data.

S i , transfers data from user buffer to disk and vice versa.

. uLM' stirs data on disk in files at addresses allocated for data.

, yste'i buffer of DBMS is used as an intermediate storage to avoid

)) ~iany dJiSK I/0 operation for data transfer between user buffer

.i',: S sk S. t on.e

* ,{ a S is to only perform operations as described above, then

.n 1 Tlp',-,en tatian for such a DBMS would be very simple. But the

r+e1 r o1ent, )f structural design application programmer and the usage

%. %- -* %* %. N %.-**



124

pattern are highly sophisticated and require a general purpose DBMS to

satisfy their needs. Such a DBMS should have components -- command

processors, input-output processors, addressing and searching routines,

file definition and operation routines, memory management routines,

relational operators, and security schemes. These are identified in

Fig. 5.2.1. In the following subsections, functions and requirements of

these components are described.

5.2.1 Comand Processor

User given commands have to be checked before they are executed by

a DBMS to avoid erroneous operations on a database. Commands of DDL and

DML involve subroutine call statements, whereas query language commands

contain character strings. It is necessary to verify these commands for

syntax and also against illegal use of commands in any database

operations. In the case of subroutine call statements, the number of

arguments, type of arguments and value of arguments have to be

verified. For example, if user has requested operations on a

nonexistant database, command processor must issue an illegal operation

flag. Interactive user is bound to commit a large number of mistakes

while issuing commands spontaneously. Therefore, a more sophisticated

command processor is required to verify query commands. Such a

processor has to provide functions for verifying character strings,

storing strings, separating data items from a command string,

identification of integer, real and character data types in the string, -"

finding the length of a command line, locating next item in a command

77..

. ' * .' . * .°%C'. *".-* *



N~ W.ll

125

INPUT- ADDRESSING
CO14ANDOUTPUT AND

PROCESSOR PROCESSOR SEARCHING

Pill-

FILE
DEFINITION MEMORY RELATIONAL
AND FILE MANAGEMENT OPERATORS
OPERATION

SECURITY

SCHEMES

Figure 5.2.1 Components of a Database Management System

pW~



126

line, automatic generations of new commands, and finding repetitions of

previous command line.

5.2.2 Input-Output Processor

Input-output processor is the basic component of a DBMS which

handles all requests of the users to store, retrieve, modify and delete

data. Storage and retrieval of data are done using data sets anrd

relations as a unit. Data sets are nothing but sets of data stored in

row, column or submatrix order. Relation is a two-dimensional table of

data. User requests to store or retrieve portions (for instance a set

of rows) of data set or relation are satisfied by providing data in the

user buffer. Functions of I/0 processor are to verify the correctness

of data manipulation operations and to perform data transfer between

user buffer and disk files. Existence of data sets, and relations are

verified before any data is transferred between user buffer and

database. If the data manipulation is based on primary keys, then I/0

processor checks the existence of key values. Most of structural design

applications, operates on rows of data set and relations. In such a

case, I/0 processor is required to verify the row numbers of data sets

and relations. If data manipulation is based on certain conditions of

data value in a data set or a relation (for example, modify coordinate

values of nodes 5, 21, and 27) then I/0 processor is required to provide

capability for such manipulations.

W*0A



127

5.2.3 Addressing and Searching

Input-output processors cannot directly get the required data from _

a data set or a relation till the address to the stored data is

determined. Addressing routines determine the physical storage location

for a data set or a relation given a particular row number or primary

'key values. There are several methods to determine the addresses.

Important methods that can be considered for implementation are indexing

and hashing methods. When index is used for addressing, address to

blocks of records are maintained in a table. In hashing method, the .-

primiary key or row number is converted into a random number and is

consicered as the address for the data.

Index for addresses are generally large if database is big.

Locating a particular index efficiently is important to save time of

search. Out of several search techniques, B-tree search is popular.

One index is placed at each node of a tree. Search begins at the top of

a tree to locate a particular index. Depending on whether the given

index is less than or greater than the index at a node, search is made

ti)ward left or right of the tree.

5.2.4 File Definition and File Operations

At tie physical storage level, database consists of either a single
4-

s,","otored file containing data or several files linked together as a

Lnit. File definition and file operation routines are required in a

,bVIS. Frnction of file definition routine are naming of files,

allocitrnj logical unit numbers, specifying type of file access (random 4'"

-)r serienti, l), specifying physical storage block size, etc.

? .. J. . -. . .. . . . . . . . . . . . . . . . . . .--.

~%*J 4*~**4~ ~ ~ 4. -- . -- . . --. ;.4.



128

Actual data and data definitions (name of data set, attributes,

sizes) may be stored in a single file or can be separately stored in

different files. File operations consists of opening, closing and

deleting files. A file once opened for reading and writing should be

closed at the end of file operations. File compression is needed to

recover unused space.

5.2.5 Memory Management

Structural design application programs use data from several data

sets and relations at a particular design stage. Also, they use data of

different portions of the same data set and relation in arbitrary

sequence. In such situations, we are faced with the problem of

accommodating the required data in the primary memory and at the same

time reduce I/O activity to lessen computation time. Efficient use of

primary memory is possible through judicious allocation of available

space. Memory management scheme dynamically controls the available

memory space. The memory is organized into pages (which is a unit of

transfer between the database and primary storage) and page sizes are

assigned. The size of the page is set to multiple of a physical

record. Larger the page size, better the performance as less I/0 is

needed to get the required data. However, space may be wasted if there

are too many partially filled pages. Small page size leads to increase

in page replacement activity and maintenance of large page size table.

Variable length pages require tedious programming effort.

.. ;



129

Another important function of memory management routines is page

replacement activity. Memory management scheme should keep count of the

pages in the memory. Paging scheme may adopt some page replacement

algorithm. Least recently used (LRU) page replacement is the most

commonly used method. In LRU algorithm, a page counter is maintained

for each page and updated each time the page is used. When a page is to .

be replaced, the page with the highest 'ounter value becomes the

candidate. A page replacement is needed when no free pages are

available. A page not modified is over written instead of replacement.

Memory management scheme should be developed such that user has

some control over the size of pages. This feature helps in determining ,.

the appropriate page size while operating on larger matrices of finite

element analysis and design optimization problems. Fragmentation of

large matrices on pages can be avoided by using page size in multiples

of matrix size. Matrix operation algorithms for addition,

multiplication and transpose by row operations can use page size in

multiples of number of rows of a matrix. The algorithms that solve

large order simultaneous equations by submatrix approach require at

least a few submatrices to be present simultaneously in the memory. In

such a case, allocation of one submatrix per page induces fewer page

faults. This leads to reduction in I/0 activity of iterative algorithms

and brings down the execution time.

5.2.6 Relational Operators

A DBMS which operates on a relational database must have relational

),)orators L manipulate the database. Relational operators manipulate V

V

A '., .' ...-............ ...-... < ...-.g -g ; -. ... .. .. ., .. • • . -.... , . .., . - . .., . ..., , , ., %

,% %"" , _" 
%

S" 
' _' 

-,o-, 
- , 'm ,W

'
# ' - - ' '' " ' ' ' '-'- ''"',' 4 ''".'' # -- ' - "J o



130

data in terms of entire sets or relations and not in terms of individual

rows or columns at a time. Three types of relational operators are

INTERSECT, PROJECT and JOIN. Each of these operators take either one or

two relations as its operand and produces a new relation as its

result. INTERSECT operator constructs a new relation by selecting rows

of two relations satisfying certain conditions of specified

attributes. The PROJECT operator forms a vertical subset of an existing

relation by extracting specified columns and removing any redundant U
duplicate rows in the set of columns extracted. The JOIN operator,

joins two relations, each having common column (attribute), and produces

a new wider relation in which each row is formed by concatenating two

- rows, one from each of the original relation, such that two rows have

the same value in those two columns.

,.,. -5.2.7 Security Schemes

Structural design database is used by a number of application

programs and users. It is necessary to ensure that database contents

are not destroyed or manipulated by unauthorized users. Therefore, DBMS

must have special scheme to ensure security of a database. Security of
a database against unauthorized use can be provided by allocatiny

password schemes to access contents of a database. Users of database

are provided with read and modify passwords to use the database
accordingly. These passwords can be assigned both at database level and

individual dataset or relation level.

?"%..



131

5.3 Requirements of Data Definition Language

Data definition language (DDL) is used to define database, relation
p..F

and matrices. For the application programmer, DDL is a conventional

language like FORTRAN; for interactive user it is the query language.

It is necessary to build data definition language such that they do not

contain reference to physical storage details on disk. Thereby any

change in storage structure of data on disk will not force modification

of application programs.

Data definition language for the application programmers consist of

those declarative constructs of FORTRAN needed to declare database

objects: Variables and arrays, FORTRAN data types, extensions to

FORTRAN to support objects not handled by FORTRAN. Data is defined by

application programmers using relations and/or matrices. Since FORTRAN

does not provide facility to express relations and matrices, we need to

provide extensions to FORTRAN to define data. Such an extension is

possible through FORTRAN CALL statements and is provided as a part of

DBMS. Arguments of the subroutine call statements, for example, specify

database name, re'ation name, attribute name and size, etc.

Development of a DDL for structural design application should be

based on several considerations. One of the major consideration should
.N-'

be to keep syntax of DDL concise and to be easily understood by

application programmers. Furthermore, since, the DDL is used in

structural design computing, all the data types of FORTRAN must be

allowed -- integer, real, double precision and character. Data elements

al]owed by the DDL also include those of FORTRAN scalars and arrays.

i ., , ... ' : ,..,..,-....- -, e , - <.., , . .,. ... .- , .L-' , ......- ,, .-. ':.:,' .... ,, , ,' ,. -....- .- < ... '--...,- . ...-.- .-..-.



132

DDL should support both relation and matrix definition. Relation
j', -v

definition require specification of relation names, attributes (names,

type, and size), key attributes, and variable length attributes. Matrix

definition requires specification of matrix name, matrix type, row size,

column size and/or submatrix size. Large order matrices are organized

in banded, hyper matrix or skyline form. Special facilities must be

provided to define these large order matrices. There are many instances

in structural design data where maximum size of data is known. For

example size of stiffness matrix is known in advance. In such a case,

provision in DDL for specification of maximum number of data occurrence El
will enable DBMS to conserve storage space and provide maximum

efficiency. Another feature that should be included in DDL is data

redefinition capability. This can be accomplished by providing several

transformation of the same data to different application programs. It

may be convenient, for instance, to represent a matrix in two different

ways in different external views. In one view the matrix might be -

defined as two-dimensional array and in another view it might be defined

as a vector. One important feature that should be incorporated in DDL

of structural design application is compilation independent data

definition facility. This means that DOL must have facility to define

data types and relationships during run time. This feature is necessary

because data definition in many instances are not known till certain

stage of processing is complete. An example of this is number ot

degrees of freedom which is not known to define size of assembled

stiffness matrix, till input data is processed. Finally, consideration

~* -* * -. *,.. .•-,



133

for development of DDL should include database security. Mechanisms for

security such as read and modify password must be provided at both .

relation and matrix level.

Based on the above requirements a DDL for structural design

application is proposed and its syntax given in the Appendix II. DDL

syntax of Appendix II uses Backus-Naur Form (BNF) as a tool for defining '.

.r

syntax of languages. BNF is a common tool for formally describing a

programming language syntax. A syntax is nothing but grammar of a

language. The data definition language has following features:

1. Database definition with provisions to define global and local

databases. Each database can be either permanent or temporary.

Temporary meaning that database is deleted at the end of execution.

2. Database user identification provision. Database can be used

either by a owner or a user. Database access is defined either by

read or modify rights. qk
3. Data set definition facility with integer, real and double

precision data types. Scalars, vectors and matrices can be

defined.

4. Relation with attributes of interger, real and double precision I_

data types. Attributes can be scalars, vectors, and matrices.

Provision for key attributes and variable length attributes are

rade.

5. Termination of data set definition and data redefinition facility

is available.

i4

. . % -



134

6. Numerical data definition with provision to define square,

triangular, banded, hyper and skyline matrices is provided.

5.4 Requirements of Data Manipulation Language

Data manipulation language (DML) is used to store, retrieve, modify

and delete data in a da tabase. For application programmers DML is

provided through subroutine call statement; for interactive user it is

provided through query language.

Development of a DML for structural design application should be

based on several considerations. The DML commands should be simple as

they are frequently used in an application program. The DML should not

J contain any reference to the storage structure details. DML should have

capability to access data from different databases. Relations and

matrices are frequently accessed and stored row-wise. Therefore,

commands in DML must facilitate this operation. Also, it should be

possible to store and retrieve rows in a sequential order or in a random

order. Further, each row can contain data from a set of attributes each

belonging to different data type -- integer, real, double precision.

Therefore, commands should be designed to accommodate multiple data

types for data manipulation operations. Many structural design

application programs require data of a particular attribute of a

relation. For example, some programs need only degree of freedom

attributes in a node-coordinate-degree of freedom relation.

Consideration in design of DML should include data manipulation in terms

of single attributes or a set of attributes. Further, it should he I;N

~ ~ . . * a ~** - . -.

- a . -K.Q-&,-<..

S, , - .l a4 . .. . . . . .. . . , . . . , . . . . . , . . . . . -



135

possible to select any required values from an attribute that satisfies

certain conditions. Special commands must be provided in DML to specify

conditions on data values that are to be manipulated.

r rther consideration in the design of DML is based on matrix

manipulation requirements. Large nrder matrices are generally

s stored and retrieved row-wise, column-wise and submatrix-wise. Data

i,,anipulation commands must include operators to manipulate matrix data

in terms of rows, columns and submatrix order. Matrix operations such

as transpose, multiplication require column-wise retrieval of data

stored in row-wise pattern. Special provisions should be made in the

commands to indicate null rows (zero elements in a row), null columns

and null submatrices.

There are a number of other considerations for designing DML.

Commands should include utility and data definition list facility.

-, i Utility commands of DML are open database, close database and error

display commands. Commands should be able to provide facility for %

opening and closing of a number of databases at various stages of

execution. Data definition list command will enable application

pro ra~muer to check and use detailed definition of data objects stored

in the database. Error display commands facilitate application

programmer to investigate the cause of errors.

Based on the above requirements a DML for structural design

application is proposed and its syntax given in Appendix III. DML

syntax of Appendix III is given in Backus-Naur Form. Description of BNF
are same as those given for DDL. The data manipulation language has the

following features:

..........



136

1. Commands to open and close a database.

2. Retrieval command. This has facility to retrieve data set a-d

relation.

3. Store command to fill data set and relations with values.

4. Command to delete parts of data sets and relations.

5. Command to modify parts of a data set or a relation.

6. Remove command to eliminate a data set or a relation.

7. Command to copy data from one data set or relation to another.

8. Store, retrieve, modify and delete commands for matrix data.

9. Rule command to specify conditions on data values that have to be

retrieved.

5.5 Requirements of Query Language

Structural designers often want to use a database interactively to

find out various parameters of design and to modify them by using simple

commands. Query language provides a simple set of commands to

interactively define and manipulaLe data in a database. It can be used

by any nonprogramming user and does not require knowledge of high level
languages like FORTRAN. Data definition of query language includes

database, relation and attribute definition, rule specification, and

authorization procedures. Data manipulation of query language includes

store, retrieve, modify and delete commands. In addition to these

commands relational operators like INTERSECT, PROJECT and JOIN are

required.

E€" %"



137 ;

A query language should satisfy several requirements. These are k,,

data independence, simplicity, nonprocedurality, extendability and

completeness. Data independence refers to independence of logical data

structure and storage structure definition. Query language should not

contain any reference to storage structure. Nonprocedurality means that

user should be allowed to give commands in any arbitrary order and

should not restrict them to follow procedures to query a database.

Query language should be easily extendable to incorporate any special

function into it. Query language should be complete in the sense that

it possesses all the required commands to query all types of data in the

database. Query commands must be general and not limited to any special

case. Query of large order matrices requires special features in query

language so that data can be displayed in parts. .,

General syntax of a query language is:

<command> <Expressior, clause> <conditional clause>

The command is a name interpreted by a DBMS to execute certain procedure

for defininj and manipulating data. Some typical commands required for

structjrai design are SELECT, LIST, CHANGE, RENAME, OPEN, CLOSE, LOAD,
PEFTb, ain, ZXIT. The second component is expression clause which is a

k ro~ip of wor-ds specifying names of relation and attributes. The third

component, conditional clause, allows a user to specify a condition on

tr.e data for which command is executed. The conditions may be, for

example, GT.100; L.T.20, ROWS.EQ.I0.

%p.



",.

A 13N

5.6 A Review of Database Management Systems

In this section, a review of existing database management systems

is made. This review (Sreekanta Murthy and Arora, 1985a) enables us to

evaluate, select and modify a database management system so that it

could be used in computer-aided structural analysis and design

optimization. The following fifteen database management systems are

reviewed. The capability of these systems are emphasized and importdnt

features are tabulated.

DELIGHT - Design Language with Interactive graphics and a Happier

Tommorow

DATHAN A data handling program for finite element Analysis

EDIPAS - An Engineering Data Management System For CAD

FILES - Automated Engineering Data Management System

GIFTS - GIFTS Data Management System

GLIDE - GLIDE Language with Interactive graphics

ICES - Integrated Civil Engineering System

=r IPIP - Information Processor for IPAD

PHIDAS - A Database Management System for CAD

REGENT - A System for CAD

RIM - Relational Information Management System

SDNS - A Scientific Data Management System

SPAR - SPAR database management system

TORNADO - A DBMS for CAD/CAM system

XIO - A Fortran Direct Acess Data Management System

N__
% :m:.:.:.:.. -.... ...... ,..: .:.. ..:.. ... -: >. - a. ' / * ..

:" ;- "-.'." " .,,"' ">:,:-' -. ..;.L." - -% , '-.; "" ,- ,", .: - - : "": ... :.' -':':>' -." -, ." , : ,4-0'



139

DELIGHT. It stands for Design Language with Interactive Graphics

and a Happier Tomnorow (Nye, 1981; Balling, Piester and Polak, 1983).

In its philosophy, the DELIGHT system is very close to the GLIDE system

(Eastman and Henrion, 1980). DELIGHT is an interacive programming

language. It has good extension and debugging capability. It provides

nigh-level graphic commands, a built-in editor and a well-defined

interface routines. A single statement, procedure or part of an

algoriln~n can be tested without having to write and load/link a

program. The system relies on virtual memory management of the

operating system. It is difficult to use the system with large scale

ragra,s. Multiple users are not allowed in the system.

DATHAN. It stands for data handling program. It is written mainly

;or finite element analysis applications (Sreekanta Murthy and Arora,

1933). The program has some basic in core buffer management scheme. It

nas capability to store permanent and temporary data sets. Substructure

files can be arranged quite easily with same data set names for

different substructures. Both integer and real data types can be

odndled. Drawback of the system is that the user has to keep track of

tie >ication from which a new data set has to begin. The system has

FOL)TkAN data manipulation commands which are simple to use.

EDIPAS. It stands for Engineering Data Interactive Presentation

annI A-alysi System, (Heerema and van Hedel, 1983). It is a tool for

i'j ianage'lent, analysis, and presentation. The data management part

provides a utility to initalize a project database, input programs to

% 
'",

., .j
- .- .,,-, ..- - €...-, . . . - - . - -.-. - - , ..- -.- , - .,-. .. -. •.•. U- • -.- ,-,., . .. , . ,,-,.. , '.-



14U

load data from files into database under user controls, and a set of

routines to extract data from and load data into database in a

controlled way. EDIPAS allows users to name a database, a data

structure, and data entities. It allows user to employ one or more

hierarchical levels. The data is stored in entities called blocks. A

data block allows matrices, single values and characteristic values as .
data elements. A database administration support provides

initialization of database, access to users, deletion of data

structures, audit database contents, and back-up facility. The system

does not have data redefinition facility. Improvements are being done

to include redefinition facility in order that the data structures and

their levels can be manipulated. Extension of authorization provision

from database level to the level of data element is being incorporated.

FILES. It is an automated engineering data management system

(Lopez, 1974). It is extremely flexible with respect to the

definition of a database and methods of accessing it. Information

storage and retrieval may be performed using problem-oriented

languages. Hierarchical data structure is provided. For example matrix

type of data encountered in finite element application can be organized

using hierarchical data structure. The first two levels in hierarchy

may contain pointers to the third level containing actual matrix data.

The program allows dynamic memory allocation. Data transfer takes place

between FORTRAN common block and database. FILES has a data definition

language. The system does not have data mapping language to specify

mapping of data items and arrays to an external device. The data e

N %~%**VQY &

%- o



141

(lefinition language (DDL) depends on tne problem oriented language

,POL). Therefore DDL cannot be used independently. The system requires

, distinct data management compiler.
,

GIFTS. It is an interactive program for finite element analysis

(Kamel McCabe and Spector, 1979). ,t is a collection of modules in a

prgraI library. Individual modules run independently and communicate

via the unified database. The database manager processes requests for

opening a file, closing a file, storing data set in a file, and

retrieving data set from a file. The program has memory management

scheme. Each data set is stored in a separate random access file.

Paging is carried out within the working storage. A unique set of four

ro-tines is associated with a data set for opening and initializing the

working storage, for reading a data set, for creating/modifying the data

set, and for- realizing the working storage. Drawbacks of the system is

t hat. every new data set requires created four new routines to be

written. Each data set is associated with a separate common block,

qn,_-re: y increasing the number of common blocks in the system. The data

-1ar. a jr is application dependent and cannot be used as a stand alone

,' t1i

GLI.DE. it is a context-free database management system (Eastman

an n rr , 1 O)n It is designed to provide a high level facility for

devl :)inj 1w0ividual i zed CAD system. It can be viewed as a language, a

iaaa.'i, mdnasjleit system,, and a geonetric modelling system. It allows

.vwr' -o ,o ine new re.)ord types Known as FOkM that consist of a set of

V_



14?

attribute field. It provides primitive data type set to organize a

database. It provides excellent geometric modelling system or a graphic

4. system. Drawback of GLIDE is that it does not allow multi-dimensional

arrays.

ICES. Integrated Civil Engineering System is a computer system

designed for solving civil engineering problems (Roos, 1966). ICES

consists of a series of subsystems each corresponding to an engineering

discipline. It provides a Problem Oriented Language which can be used to

write subsystem programs (e.g., coordinate geometry program, stress

analysis program). Command Definition Language is used by a programmer

to specify the structure and required processing for each subsystem

commands. A Data Definition Language is used to specify the subsyte i

data structure. It uses its own programming language called ICETRAN

(ICES FORTRAN) and has a precompiler which translates ICESTRAN to

FORTRAN statements.

Dynamic data structuring capability is provided in te system

which helps to organize dynamic arrays in the primary meiory.

Hierc'chical data structure is used for data modelling. Three

hierarchical levels: equivalence class, members, and attributes are

provided. Data is stored on secondary storage using random access

files. Data management program uses buffers to convert logical records

to physical records. Identifier is supplied by the programmer which is

a pointer giving the position on secondary storage of physical record.

The programmer has a choice to store data using dynamic arrays or using

data management system depending on amount and use of the data,.

U%
%'., %.,



143

Drawback of the system is that it uses precompiler ICETRAN to convert to

FOiTkAN program instead of directly to machine language. Physical

storage of data requires knowledge of address and pointers which the

progjraimners have to give. Only three levels of hierarchy is adopted and

it is difficult to extend to many levels of hierarchy.
.4.

IPIP. It is a state-of-the-art database management system

satisfying engineering requirements (Johnson, Comfort and Shull,

1980). It offers a number of capabilities ranging from support for

multiple schemas and data models to support for distributed processing, Z
%.

and data support for distributed processing, and data inventory

1:1anagemlent. An integrated software architecture supports all user

interfaces: progranning languages, interactive data manipulation and

schemd languages. IPIP supports a multiple-schema architecturE of

ANSI/SPARC database group. Three types of schemas -- conceptual ,

extrntI and internal schemas are supported. IPIP schema and data

:iai l P13ti.on languages exhibit a high degree of integration and

Wj,1u hil ity. The logical schema supports both the network and

rli r i i I data ,odels, and, functionally, the hierarchical data

model. The internal schema of IPIP is written using the internal schema

lar ,j, je compiler. The internal schema language overlaps that of the

lgical scheia language to the greatest practical extent to minimize the

ainoiir% of sche:na language with which the administrator must deal. IPIP

;,-.rj sihconponents consi sts of user interface, and data manager .

Y)ftwdre of user interface is !nade of precompilers, query processor and

rpl er, . Da ta i;ianager software is made of scheduler, message

%; .,, . , .. ,. , . . , , . . . . . . . . . . . . . . . . . .. . . . . .. . .. .. - . .. . . . . -



144

procedure interface processor, immon semantic processor, database

control subsystem, data manipulation subsystem, record transldtor,

presentation service, access module, resource manager and stubs.

PHIDAS. It is a data management system specially designed for

handling a collection of structured data on minicomputers (Fischer,

1979). The architecture of PHIDAS is in accordance with the ANSI-3

schema. It has an external subschema based on network model of CODASYL

and an internal schema for physical tuning particularly suited for

engineering database. The data description language is provided to

describe schema and sub-schema. PHIDAS also has a storage structure

description language. Data manipulation language is FORTRAN call

statements to subroutines. Drawback of the system is that it is

difficult to represent matrix type data.

RIM. It stands for Relational Information Management system

(Comfort, Erickson 1978). RIM has capability to create and modify data

element definition and relationships without recompiling the schemes or

reloading the database. RIM provides capability to define new types of

data for use in special application such as graphics. RIM supports

three types of data: real, integer, and text. Data definition and data

manipulation languages are available to define or manipulate

relations. The user has capability to project, intersect, join and

subtract relations. RIM has good query language. RIM's modification -

commands permit the user to update relation definition, change data

values, attribute names, delete tuples and delete the entire relition.

.- ".

....,,..," ~ ~ ~ ~ ~ ~ J ,.,'- ' . " ," "", " ". " " ,. %"W . . 4 . . - . . , , 4,, ' , ' - , - 4,lN, .. ' "% . . " ," . . W ° w . . ' .- -. . .4 " " "-



145

Utility commands such as LOAD, and EXIT are provided to load a new

database and close an existing database. Drawback of RIM is that it

does not allow relation having row size more than 1024 computer words.

The application oriented FORTRAN call statements do not have capability

to define attributes, relations, rules, etc., required in defining a

schema. The system does not support management of a temporary

database. Simultaneous operations on a number of databases is not

possible.

REGENT. It is a system for the support of computer-aided design ""

(Leinemann and Schlechtendahl, 1976). The main goal of the development

was to provide a so-called "system nucleus" in the sense of ICES.

Improvement claimed for the system is that it has a powerful base

language PL/I instead of FORTRAN. Interactive use has been considered

in system development. The database management of REGENT provides

facilities to compress a database, copy data between databases, and to

change naire and size of data elements. The database of REGENT is not a

database in the usual sense. It is some sort of partitioned data set

concep, built up using a tree structure of sequential files, but the

internal structure of these files is known only to those programs that

SDMS. It is a database management system developed specifically to A

support scientific programming applications (Massena, 1978). It

consists of a data definition program to define the form of databases,

an,! FJ T TRAN conpatible subroutines to create and access data within

p

'-- - .:



146

them. Database contains one or more data sets. A data set has form of

a relation. Each column of a data set is defined to be either a key or

data element. Key must be a scalar. Data elements may be vectors or

matrices. The element in each row of the relation forms an element

set. Temporary database capability that vanishes at the end of a job is

provided. A scientific data definition language provides a program-

independent data structure. Both random and sequential access of data

set is possible. Data elements include scalars, fixed and variable

length vectors, fixed and variable-size matrices. Data element types

include text, real and integer. Drawback of the system is that it does

not have a query language. Generalized database load/unload is not

available. Double precision data type is not allowed. The system is

implemented only on Cyber series computers.

SPAR. The computer program is a collection of processors that

perform particular steps in finite element analysis procedure

(Whetstone, 1977). The data generated by each processor is stored on a -

database compiler that resides on an auxilIary storage device. Each

processor has a working storage area that contains the input aril the

computed data from the processor. Allocation of spaces in the storage

area is a problem dependent and is dynamically allocated during,

execution. Data transfer takes place directly between a specified

location on disk using a set of data handling utilities. SPAR database

complex is composed of 26 data libraries or data files. Libraries I to
. s.*.

20 are available for general use. Libraries 21 to 26 are reserved for

temporary and internal use. The database manager uses a master directory

: .": . * - *- - - - --- .

'- ~~~~~~~~~~~~.'-,,,,.,.,.,, ,-.,...,.,..,....,."...".-..........,........- ............ . ..-. • , .....- ,.....-.



147

to locate the table of contents which in turn is used to locate the data

sets in the database. Physically, the auxillary storage is divided into

sectors of fixed size and each read/write operation begins at the

neginning of a sector. Drawback of the system is that it does not

provide either hierarchical or relational data structure. Excessive

fragmentation may take place if the sector size does not happen to be an

integral multiple of the data that is stored.

TORNADO. It is a DBMS system developed for CAD/CAM application

(I1fs,)y, Steiner and Oian, 1979). It is a CODASYL network system

written in FORTRAN and is very useful for handling complex data

structures. It handles variable object length and dynamic length

records. System allows different data types - integer, real, character,

double precision, double integer, complex and logical data. The system

has easy to use data definition language and data manipulation

language. TORNADO system is highly portable. Data in the database can

iw ac,:sessed by name. There is no restriction on data set types and

al Iows many-to-many relationships. Drawback of the system is that the

size -f a data object defined by the system is limited by the largest

integer value that can oe represented in the computer. The size of the

lata,)as, is i. ited by the maximum size of a file. A multi-file version

is nut avai13:)le. The Jatabase cannot be used by multiple users at the

X1O. t is a sot )f sunroutines that provides generalized data

Hdan i ion t Caan I i ty for FORTRAN programis using a direct acces file

11 .....

" . . - - -..- ""•"'" .,- ':' ' .. '"""-"- • ''-, '""''"" .--- -'
" Z - 

"''.- - ' " . - ".' ' " " ". -' " ,"-",

+","" " % " m
" +

"" ' " " " " " "+ " " " % +' """ ' II ;"" %""m•'.% " ".,"., " '"" """" ," '""-'-



(Ronald, 1978). The system allows arrays of integer, real double I
precision and character data storage. Both random access and sequential

access of data is provided. Variable length record I/0 is allowed in

the system. Bit mao scheme is used to identify the unused space for

storage of data to minimize disk storage requirement. The program- ___

allows restart facility using saved file following completion of a

partial execution or after a program termination. The system at present

is only implemented on IBM360 or DEC POPl computing systems. The

4 system does not provide data definition language. It does not provide

either hierarchical or relational data structures.

5.7 Sunnary of Requirements of a DBMS

Capabilities of various systems are summarized in the Table

5.7.1. We identify the following requirements of a DBMS for computer-

aided structural design otpimization (Sreekanta Murthy, Shyy and Arora,

1985):

1. As FORTRAN is the host language for majority of the engineering

applications, it is necessary to provide application interface with

DBMS through standard FORTRAN statements.

2. Data model provided in DBMS must be easy to understand and apply

for design application programmers and users. Data model must be %%

flexibile to suit the requirements of different applications.

Relational and numerical data models are desirable.

3. Since the system will be used for design optimization in

multidisciplinary environment, it must be an application-

independent DBMS.



149

I. Design data consists of arrays and matrices to a large

extent. Often matrix data are in the form of banded, submatrix,

and triangular. A suitable data model is therefore required to

organize matrix data.

5. DBMS should be able to deal with various data types such as

characters, short integers, long integers, single precision, double

precision, and complex numbers.

. Sieed of storage and retrieval is one of the most important

requirements of a DBMS in design optimization. Short access time

will considerably reduce the total execution time in an iterative

nature of design process.

7. Simple to use data definition and data manipulation languages are

required. Applications often define data dynamically. For

example, size of various matrices, length of data, etc., are not

known at compilation time. They are also modified frequently. It

is necessary to provide data definition capability to cater to

these special needs.

8 . I)RHS should provide additional capability to organize the available

prifidry memory. A suitable memory management scheme should be

in ;orporated .

A jooI query language is required for interactive design

applications. Query language snould be general to cover all

dpplications.

% .'. ,



10. Provision for managing a temporary database will considerably help

designers in evaluating trial designs and transfering the

acceptable final design to a permanent database. Temporary

databases will also be needed in iterative design optimization

process. Thus, DBMS must be able to handle multiple databases

simultaneously.

%.P ~~ - *,- P-.6



151 ;
'vp."!l

) 0 . ~" '.

.4

: ,- ... ,

4 .-

C I

LU o o -a - -

,-, ,_ _

" ". "" '2¢.. "'_."" "'.. °" .""- "" " '""' " " ' ""2 '. '',2 2 " °" ",2 ,.''. .g. ..' .,." '."'..''. ...'' ...''..''-.''"-,''. '.-" ...' '.2 -,'4' :



152

CHAPTER 6

IMPLEMENTATION OF A DATABASE
MANAGEMENT SYSTEM -- MIDAS

6.1 Introductory Remarks

A database management system - MIDAS* has been implemented for

finite element analysis and structural design optimization applications

(Sreekanta Murthy, Shyy, and Arora, 1986). The MIDAS implementation is

based on the requirements of a database management system given in

Chapter V. MIDAS has two subsystems - MIDAS/R and MIDAS/N. These

subsystems are capable of organizing data of relational and numerical

models, respectively. The system has been installed on PRIME computer

system. It was decided to use an existing package as much as

possible. RIM is the most advanced system available for scientific

database management. It supports relational data model facility, so it

was decided to see if the system could be extended to satisfy the

requirements stated in Chapter 5. It was found difficult to extend RIM

to have multiple databases, to organize large matrices, and to be

efficient in handling large data sets and large memory. It essentially

meant rewriting the memory management, and data definition and

manipulation parts. So, it was decided to use RIM as is but add new '.'-

data definition and data manipulation subroutines that could be called

•(Management of Information for Design and Analysis of Systems) -S.

0.~
"%" z,,



. , .,.

153

from a FORTRAN application program. Also a memory management routine is

added. This sybsystem is called MIDAS/R which stands for MIDAS-

Relational Data Management System.

A second subsystem called MIDAS/N was designed (Shyy, 1985) which

stands for MIDAS-Numerical Data Management System. MIDAS/N supports

numerical data model facility. This subsystem can handle multiple %

databases, small and large matrices, and small and large memory

environment. Large matrices such as rectangular, square, upper-

triangular, lower trinagular and hypermatrices can be defined in the

database. Matrix data can be arranged in row, column or submatrix

order. MIDAS relieves the burden of managing data for application

programmers by providing user-friendly application commands. The system .

has sophisticated interactive commands to query the database. The MIDAS

system can be used either interactively or through application

programs. The implementation details of MIDAS/R and description of

MIDAS/N are given in Sections 6.2 and 6.3, respectively. ,

6.2 Implementation of MIDAS/R Ilk

!n this section, capabilities, database organization, data

definition, data manipulation and query commands of MIDAS/R are

described. Also, details of the system architecture are given. MIDAS/R
:* 2-,

database inanagement system is based on relational data model. The

system is developed by modifying and extending the RIM program

'ela ional Information Management System). j

kk%. Ike

WN%"' Ai



154

6.2.1 Capabilities of MIDAS/R

MIDAS/R is written in FORTRAN-77. The system does not have any

machine dependent instructions and therefore it is highly portable. It

has data definition and data manipulation commands which are simple to

use for application programmers. It has sophisticated interactive

commands to query the database, modify the database and display the

database schema. The system has capability to store, retrieve, modify

and delete a database using both application call statements and

interactive commands. The data can be integer, real, double-precision

and character words. The data can be organized in the form of

relations. The system has powerful relational algebra commands like

INTERSECT, PROJECT and JOIN. MIDAS/R has capability to provide access

- to the database simultaneously for multiple users. Database security is

provided through two level password system. Error recovery mechanisms

are available.

6.2.2 Database of MIDAS/R

MIDAS/R has capability to create a number of databases. The

databases can be used one at a time. The database can be either

permanent or temporary. The size of a database is unlimited but depends

only on the availability of disk space. Database of MIDAS/R can hold

any number of relations each of which is identified by a unique name. A

relation can store data of a number of attributes. An attribute value

can be a single data item, a vector or a matrix. Variable length rows

of a relation can be stored.
." ,.'-.



155

6.2.3 Data Definition Commands of MIDAS/R

Data definition commands are used in an application program to

define a database, relations and attributes. These commands are FORTRAN

subroutine call statements. These commands were not available in RIM

program. The data definition commands of MIDAS/R are described in the

following paragraphs.

Database Initialization.

CALL ROBINT

This command initializes MIDAS/R. Before using any other commands

of the system, this command must be used.

Database Definition.

CALL RDBDFN (NAME, STAT, IERR)

NAME = Name of the database

STAT = Permanent or temporary status of the database

[ERR = Error Code

A unique database can be defined using this command. A temporary

latlahdse is deleted when it is closed.

Relation Definition.

CALL kELDFN (NAME, RNAME, NCOL, CNAME, CTYPE, IELM, JELM, KEY,

IERR) "w'" w*

NAME = Name of tne database

R N AE Relation name

NIS0L = Nucier of attribute olumns

NAME = A vector of attribute names

_A - -'I %-

,-' 4. .. ........ -... .. .- --.......-......-... ,..,.-....... ....... .,,



156

CTYPE = A vector of attribute type

IELM = A vector of row size of attributes

JELM = A vector of column size of attributes

KEY = A vector of key attribute indicator

IERR = Error code

A relation can be defined using this command. Relation name and

attribute names must be unique in a database. A row and column I
intersection in a relation table can contain either a single data item,

a vector or a matrix. Details of data type and layout of data in a

typical relation are given in Figs. 6.2.1 and 6.2.2, respectively.

Data Set Definition.

CALL RDSDFN (NAME, DSNAME, DTYPE, IELM, JELM, IERR)

NAME = Name of the database

DSNAME = Name of the data set

DTYPE = Data type (see Fig. 6.2.1)

IELM = Row size of a attribute (see Fig. 6.2.1)

JELM = Column size of a attribute (see Fig. 6.2.1)

IERR = Error code

A data set is defined as a collection of data belonging to same

data type such as single data item, vector, or matrix. In a sense, a

data set is a relation having only one attribute. Name of data set has

to be unique in a database.

Oqf

- .1



157

Description TYPE IELM JELM

Integer INT 1 1

Real REAL 1 1

Double Precision DOUB 1 1

Integer Vector IVEC n 1 .
Real Vector RVEC n 1

Double Precision Vector DVEC n 1

Integer Matrix IMAT m n

Real Matrix RMAT m n

Double Precision Matrix [MAT m n

Text or Character TEXT n I

NOTE: Values of IELM and JELM if 0 indicate that data is of variable
length.

Figure 6.2.1 Data Type and Size of a Relation

:. 

N

44

#. " "1 3J% ,', 'W'"" " 
"t, 'w' m

#" .... ., . "" ".' m '" '" . .m , W'." '.'.#- . ,', c. .. ,." '.Fm , -. .. ,.', , "" v- . """ " ,."" , "W ' "" "4. " . 4 * " " ,,I%. 4



158

Attribute A Attribute B Attribute C Attribute D
Key Type INT IVEC IMAT

x x xx x x x x x

x xx x
X XX X
x X X x

2 xx x x x xx x x

x x x x

x xx x

xxx x

.44

r x x x x x x x x x

x xx x -

x x x x

x xx x

NOTE: For Attribute A IELM = 1, JELM = 1
Attribute B IELM = 1, JELM = 4
Attribute C IELM = 4, JELK = 4

Figure 6.2.2 Layout of Data in a Typical Relation

4--

X X X X .m



159

Data Set Redefinition.

CALL RDRDFN (NAME, DSNAME, DTYPE, IELM, JELM, IERR)

Arguments are same as in data set definition. This conmmand

redefines a data set using new data type, and new attribute size. Old

data set definition and its data is lost.

Data Definition Ending.

CALL RDSEND (IERR)

IERR = Error Code

After database, relations and data sets have been defined, data

definition process is ended by calling this routine. During execution

of this call statement, the data definition is verified and compiled

internally.

6.2.4 Data Manipulation Commands of MIDAS/R N-4

Data manipulation commands open, close, store, retrieve, modify,

and delete data, rename a relation or a data set, rename an attribute

and copy data sets in a database. These commands were not available in

the RIM program. The function and description of these commands are

jiven in the following paragraphs.

Open a Database.

C.ALL RO3OPN (NAME, STAT, IERR)

NAML = Name of the database

ST,\IT = Permanent or temporary status of the database

[E.RR = Error code

% %



160

A database closed earlier can be opened using this command. A

database has to be opened before any operation on the database is

performed.

Close a Database.

CALL RDBEND (IERR)

IERR Error code

A database is closed using this command. Execution of this command

transfers the system buffer data into the database and closes the file.

Store Data in a Relation.

CALL RDSPUT (NAME, DSNAME, KROW, UBUF, IERR)

NAME = Name of the database

DSNAME = Name of a relation

KROW = Row number

UBUF = User buffer which contain data

IERR = Error code

Data can be stored into a relation from application program work

area (user buffer) by using this command. Data is transfered from user

buffer to the specified row of a relation. Tf more rows have to be

stored, a FORTRAN DO loop over the row number in the application program

will transfer all the required rows. More details of this command are

given in the user's manual (Sreekanta Murthy and Arora, 1984).

Retrieve Data from a Relation.

CALL RDSGET (NAME, DSNAME, KROW, UBUF, IERR) is

4,



161

Data can be retrieved from a relation into a user buffer using this

command. Requested row of a relation is transfered from a relation into

user buffer. FORTRAN DO loop over the row number is necessary if more

than one row has to be retrieved. Data can be retrieved in the same

order as it was stored by initializing row number as zero. Data of a

relation satisfing certain condition (for example, attributes having

certain values) can be retrieved into user buffer. User specifies the

condition on data values that must be satisfied for retrieval, by using

RDSRUL command (explained later). The details for various ways of data

retrieval is given in the user's manual (Sreekanta Murthy and Arora,

1984). Arguments are the same as in RDSPUT.

Modify Data in a Relation.

CALL RDSMOD (NAME, DSNAME, KROW, UBUF, IERR)

Once a database is loaded using RDSPUT command, it can be modified

by calling RDSMOD. This routine modifies a row of the relation. RDSGET

routine is called before calling this subroutine. A row of a relation

is retrieved into user buffer and this row or a part of the row can be

iodified and stored back using the command. Arguments are the same as

in RU)SPUT.

Delete Rows of a Relation.

CALL P WDEL (NAME, DSNAME, KROW, IERR)

Rows of a relation can be deleted using this command. This is

usef:ji in eliminating unwanted values in a relation. Arguments are the

sane as in RDSPUT.

.
% 

..



Delete a Relation. 

162

CAL' RDSDEL (NAME, DSNAME, IERR)

This command deletes a relation from a database. Arguments are the J,

same as in ROSPUT.

Rename a Relation.

CALL RDRNAM (NAME, OLDNAM, NEWNAM, IERR)

NAME = Name of a database

OLDNAM = Old name of the relation

NEWNAM = New name of the relation '

IERR = Error code

An existing relation's name can be changed to a new name using the

Rename an Attribute. 

4

CALL RRNATT (NAME, DSNAME, OLDATT, NEWATT, IERR)

NAME = Name of a database

DSNAME = Relation name

OLDATT = Old attribute name

NEWATT = New attribute name

IERR = Error code

Copy a Relation.

CALL RDSCPY (NAMEI, NAME2, OSNAMI, OSNAM2, IERR)*#AM2, IERR)

NAMEI = Name of a database containing data

NAME2 = Name of a database where data has to be copied

DSNAM1 = Relation name containing data

N~

I.



163

DSNAM2 = Relation name to where data has to be copied

IERR = Error code

Using this command, data from one relation can be copied to another

relation. Both the database and relation must have been defined before - ,.

copying the data.

Condition Specification for Retrieval of Data.

CALL RDSRUL (NUM, ATNAM, COND, VALUE, BOOL, IERR)

NUM = Number of conditions

ATNAM = A vector of attribute names

COND = A vector of logical operator (EQ, GT, LT) p

VALUE = A vector of attribute values

BOOL = A vector of Boolean operator (AND,OR)

IERR = Error code

As mentioned in RDSGET command, data values satisfying certain

conditions can be retrieved. The conditions can be specified using

RDSRUL command. This command must be executed before calling RDSGET

routine. A maximum of ten conditions can be specified at a time. The

followiny example, illustrates use of this command.

Condition on a relation X:

Attribute A-GT-16.3 .AND- Attribute B.LT.20.1

Nse UM = 2; ATNAM(1) 'A'; ATNAM(2) = 'B'

CONO(1) 'GT'; COND(2) = 'LT'',

VALUE(1) = 15.3; VALUE(2) = 20.1;

t300L(1) ='AND'

.. -

001a

a *=_. .W%



164

6.2.5 Interactive Conunands

MIDAS/R provides interactive support for creating, updating,

modifying, and deleting a database. Interactive commands are general

and can be used in any application. The system provides terminal

prompts for the users to respond with appropriate commands. The

interactive session starts with a display of MENU and requests the user

to choose one of the five options: CREATE, UPDATE, QUERY, COMMAND and

EXIT. The interactive session ends with an EXIT command. The detailed

commands for each of these options are entered at appropriate instant.

They are given in the following paragraphs.

Database Definition.

CREATE XXXX

Create command branches out to interactively define a new

database. System responds by requesting database, relation and

attribute names, and authorization access details. User can supply

'5these data at the prompt. Details of using this command are given in

user's manual (Sreekanta Murthy and Arora, 1984).

Loading a Database.

After a database has been successfully created, it may be loaded

before ending 'create' session, for user response 'Y' for the load

prompt, the list of existing relations that may be loaded are -.''

displayed. The values of attributes are entered corresponding to each --

attribute type.

N .mbm 
'

v.5. m



-- 71

165

Querying a Database.

A database defined and loaded as specified in the previous

paragraphs can be queried. Query will be in the COMMAND mode of

interactive session. There are a number of query commands which allow

users to query a database. They are described in the following

paragraphs.

SELECT. Select command is used for displaying data of a

relation. Options to display all or selected attributes are

available. Several possible select options are given below: ,

SELECT ALL FROM [relation name]

SELECT [attribute name] FROM [relation name]

SELECT ALL FROM [relation name] WHERE [attribute name] [condition]

[values] [AND/OR] ...

continuation dots indicate that upto ten conditions can be specified.

The conditions have to the one of the following

(a) [attribute name] [EQINEIGTILTILEIGE] [value] N
(b) [attribute name] [EQINEIGTILTILEIGEI [attribute name]

(c) ROWS [EQINEILTILEIGE] [row number]

LISTREL. List command allows user to display information about

relations and attributes. The following options are available in

LISTREL command.

LISTREL

L[STREL [relation name] .

LrSTREL ALL

P...-



166

CHANGE. Data values in a relation can be changed using this

command. The following options are available

CHANGE [attribute] TO [value] IN [relation name]

CHANGE [attribute] TO [VALUE] IN [relation name]

WHERE ...

DELETE. This command can be used to delete selected rows in a

relation:

DELETE ROWS FROM [relation name] WHERE ...

RENAME. Attributes and relations can be renamed using this

command:

RENAME [attribute] TO [attribute] In [relation name]

RENAME RELATION [relation name] TO [relation name]

REMOVE. A relation can be deleted frGn database definition using

'. -. REMOVE command:

REMOVE [relation name]

PROJECT. This is a relational algebra command. The function of

PROJECT is to create a new relation as a subset of an existing

rel1ion. The new relation is created fro n an existing relation by

removing attribues, rows or both.

PROJECT [relation name] FROM [relation name]

USING [attribute] [ attribute] ... WHERE ...
"," :In

'"I i

- In.-- - -- In..-...In ~ - ~ -*n ~ . . . . . ..

- - n'. . . . . . .. . . . . . . . . . . . . . . . . . . In n -I',I

* - .~I..Inn I~ nI~~n.I . . In



167

JOIN. The purpose of JOIN command is to combine two relations

based on specific attributes from each row. The result of JOIN command

is a third relation containing all the specified attributes from both

the relations.

JOIN [relation name] USING [attribute name]

WITH [relation name] USING [attribute name]

FORMING [relation name] WHERE ...

INPUT. This command assigns input file for MIDAS/R to read data

without user interaction

INPUT [file name]

OUTPUT. The output of execution may be placed in a given file

name. If file name is TERMINAL, then all messages and data are

displayed at the terminal:

OUTPUT [file name] -..

EXIT/QUIT. The system buffer data is transfered to database files

and database is closed.

HELP. User can obtain a description of the available commands on

n the terminal

6.2.6 System Design of MIDAS/R

Database structure of MIDAS/R is same as the RIM database. Each

database consists of three files. The first file stores relation and ".

attribute names and their details. The second file contains the actual

'r V~

4*'~~~~~~~ %.. *VN V~/.4~%.



168
/..'

data. The third file contains pointers to keyed attributes. The

program is written in FORTRAN77. It consists of a number of subroutines

having well defined functions. Functions of these subroutines can be

generally classified into (i) command processors, (ii) input-output

processor, (iii) file definition and initialization routines, (iv)

memory management routines, (v) addressing and searching routines, (vi)

conditional clause and rule processing routines, and (vii) security

routines.

Extensions to RIM program are made to include dynamic data

definition facility. The command processing routines were changed to

incorporate this facility. Any new definition of a relation or an

attribute during execution of a program is stored in a file for

processing. Command processing routines are used to verify syntax of

the relation and attribute definition. Later, the data definitions are

compiled and stored in the first file of the database. ,.

Modification of the application interface commands are made to

simplify the data storage, retrieval and modification of data. The

original set of conventional data manipulation commands in RIM were

found to be tedious to use in applications such as finite element

analysis programs. This was because, even for a simple retrieval of

data at least two or three DML calls had to be made. In the r41I)AS/R

program, such storage and retrieval of data is made generally using one

call statement.

MIDAS/R data manipulation commands use relation and database names -

for data manipulation operations, whereas in RIM, users are required to

-. t



169

assign integer numbers to refer to predefined relations of a database A
that are to be manipulated. The use of database and relation names in

data manipulation commands reduces programming errors on the part of

users which otherwise may cause reference to a wrong relation. Also, by

specifying database and relation names, user is allowed to refer to a

relation in another database directly without using commands for opening

and closing of database files. Arguments of data manipulation commands

of MIDAS/R for storage, retrieval and modification have provisions for

specification of row number of a relation. The routines for storage and

retrieval internally use the row numbers to transfer users data to

specified locations in a relation. This provision of row number

specification in the argument has facilitated in simplifying application

program logic.

To improve the performance of MIDAS/R, an additional memory

management interface is added, The memory management scheme allocates

available memory into a number of pages of fixed size. 'Least recently

used' page replacement scheme is used for replacement of pages. The

page size and number of pages can be altered by changing certain .**..

parameters in the system.

6.2.7 Limitations of MIDAS/R

There are a numoer of limitations of the MIDAS/R program. One of

the li:mitations is that program does not have capability to operate on a

nunier of .atabases simultaneously. Secondly, th- maximum size of a row

in a relation cannot exceed 1024 words. it zne size ?t a row excf-eds

%- ,,*

~~ :: s



BD-A174 458 COMPUTER AIDED STRUCTURAL DESIGN OPTIMIZATION USING A 3/4
DATABASE MRNAGEMENT (U) IOWA UNIV IOWA CITY OPTIMAL
DESIGN LAB T SREEKANTAMURTHY ET AL 38 SEP 86

UNCLASSIFIED 0DL-85-i7 AFOSR-TR-86-2869 AFFSR-82-8322 F/G 18/3 NLEhhhhhhhhhhil
mhhhhhhhhhhhml|mhhhhhhhhmhlm

mmm_mmmmmmmmmmm



IL' . I ,128 .25

L3

1111111-1111111.25llll lll III.8

kCROCOPY RESOLUTION TEST CHART
N TIONA TROJFAIJ OF STANDARD 163- A

d f



170
this limit, user should split the row suitably and operate on portions

of a row at a time. Also, the number of attributes in a relation cannot

exceed 20. The memory management scheme has fixed block size. User has

no control over the block size to tune it according to the relation

size. At present only five relations can be operated at a time in the

system buffer as only five pointers to current relations are maintained

by the DBMS. Detailed evaluation of efficiency of MIDAS/R is given in

Chapter IX.

b.3 Description of MIDAS/N

MIDAS/N is a database management system (Shyy, 1985) to support

data organization of numerical computations. MIDAS/N is implemented

based on numerical data model. It has data definition and data

manipulation commands to define large order matrix data and manipulate

them. Large matrices such as rectangular, square, upper triangular,

lower triangular and hyper matrices can be defined in the database.

Matrix data can be arranged in row, column, or submatrix order. Data

can be short integer, long integer, real, double-precision and character

types. Data mainpulation commands of MIDAS/N can store, retrieve,

modify and delete matrices. Data can be accessed in row column or

submatrix order. Also individual data elements of a matrix can be

accessed. Database security is provided through a password access.

Error recovery mechanisms are available.

MIDAS/N has capability to create a number of databases, upto a

maximum of 20 in the current implementation. These databases can be

%."-

K: > Qm"'



171

accessed simultaneously. The databases can be permanent or temporary.

A database can store data of a number of matrices, upto a maximum of

20. The size of a database and a matrix is unlimited, but only depends

on the availability of disk space. Databases can be organized at a

number of hierarchical levels and can be accessed using a path name.

Databases and matrices are identified by a unique name.

In MIDAS/N, the available memory (called the buffer) is divided

into pages. Data set is also divided into pages of the same size when

it is defined or transferred into the memory buffer. MIDAS/N handles

all access requests and transactions against data sets. Each

transaction is in terms of pages. Once part of a data set is requested,

some pages must be assigned to it. When there is no free page, some

page must be freed. Page replacement strategy decides the page to be A_

freed. MIDAS/N chooses the 'least recently used' page for

replacement. For handling transactions, information about data sets and

page usage must be kept and managed. Information about data set is L

stored in the 'data set information' table. Information about page

usage is stored in the 'memory buffer information' table. Page size and

number of pages can be altered by changing certain parameters in the

system.

The MIDAS/N system maintains an index table to provide address of ,..

stored records. Index table provides a pointer to the data definition

block which contains details of a data set such as name, type, order,

and size. Data definitiot, block is stored at the beginning of actual

data in a file. Data set is mapped on to physical storage space in a

linear address sequence.

.. -. ,



172

MIDAS/N has been evaluated for solving equations using skyline

storage scheme (Shyy, 1985). The efficiency of MIDAS/N will be compared

with that of MIDAS/R in solving large equations. The results are given

in Chapter 9.

p ,.

- 4

........... 5 ,~



173

CHt TER 7

A DESIGN OF DATABASE FOR STRUCTURAL

ANALYSIS AND OPTIMIZATION DATA

7.1 Introductury Remarks

A database is designed for finite element analysis and structural

optimization computation and its details are given in this chapter.

Methodology developed in Chapter 4 is used in designing the database.

The database design is carried out in three phases. In the first phase,

a conceptual database is designed to provide a theoretical basis for

Lrganizing finite element analysis and structural optimization data.

The design of the conceptual data model is given in Section 7.3. In the

v second phase, a generalized internal model is designed which is used

later to implement a database for structural design optimization program
2discussed in the next chapter. The design of the internal model is

given in Section 7.4. In Section 7.5, some relations are suggested to

form an external data model. Finally, the methodology used in designing

the database is evaluated.

7.2 Identification of Data Used in Finite
Element Analysis aid Structural

lDesign I Optimizat on

Database design is initiated by identifying data required for -

' finite element analysis and optimal structural design. In Sections 2.2 ,

and 2.5, we have already described in detail the data used in structural

" -': wW " "e --, ' ,€ .. I' ' : , " "f% . . ." " "' ' ""r "' " "d ".e " r , " - ,, - -a



.

174

analysis and optimization. Here, they are identified again from the

database design point of view. For the design of a conceptual data

model, we need to identify entities, attributes, domains and entity

keys. In the following subsections, a list of entities, entity keys,

and domains of data are given.

7.2.1 A List of Entities of Analysis

and Design Data

The following entities are identified from the data used in finite

element analysis and optimal design computations (see Sections 2.2 and
*

2.5):

1. Structure

2. Substructure

3. Element

4. Node

5. Material

6. Element type

7. Material type

8. Cross-section type

9. Degree of freedom

1 10. Load case

11. Design Group

12. Design Variable

13. Global constraint

14. Element constraint

15. Node constraint

*jv NV V..)~



175

16. Structure constraint

17. Mode

18. Matrix name

19. Vector name

20. Constraint type

21. Load type

22. Member

The following entity keys are identified. Note that an entity key

uniquely identifies an entity.

1. Structure number (or name) S#

2. Substructure number SUBSTR#

3. Element number E#

4. Node number N#

5. Material number M#

6. Element type number (or name) ELTYP

7. Material type number (or name) MTTYP

8. Cross-section type number (or name) CSTYP

9. Detree of freedom number DOF# "

10. Load case number LC#

11. Design group number DG#

12. Design variable number D#

13. Global constraint number GC#

14. Element constraint number EC-

15. Nodal constraint number NC#

r .;V •% e

r P•4



176

16. Structure constraint number SC#

17. Mode number MODE#

18. Matrix name MN

19. Vector name VN

20. Constraint type CTTYP

21. Load type LDTYP

22. Member ME#

7.2.2 A List of Domains of Analysis

and Design Data

The following domains are identified:

1. Assembled structure level matrices; e.g., K, M, C STRMAT

2. Assembled structure level vectors; e.g., P, U STRVEC

3. Structure level parameters, indices, flags, etc. STRPAR

e.g., No. of substructures, No. of load cases

4. Assembled substructure level matrices SUBMAT

e.g., Kii, Kbi, Kbb)

5. Assembled substructure level vectors; e.g., Ui, Ub  SUBVEC

6. Substructure level parameters, indices, flags, etc. SUBPAR

e.g., No. of elements, No. of nodes

7. Element level matrices; e.g., Ke, Me ELMAT
'Ke

8. Element level vectors e.g., ae' e T Ue ELVEC

9. Element level parameters, indices, flags, etc. ELPAR

e.g., Nonlinearity index, damage flag

10. Node related vectors; e.g., boundary condition codes NODVEC

..... . . .: ' . , . . .; .. ...



177

11. Node related parameters, indices, flags, etc. NODPAR

e.g., coordinate, temperature

12. Material property tables MATTAB I-

e.g., Nonlinear material property tables

13. Material property vectors MATVEC

e.g., stress limit vector

14. Material property parameters MATPAR

e.g., Density, Young's Modulus

15. Vectors associated with degree of freedom DOFVEC

e.g., velocity at specified set of time points

16. Parameters, indices, flags associated with DOFPAR

degrees of freedom; e.g., Prescribed displacement,

constraint values

17. Vectors associated with a design group DESVEC

e.g., Vector of element numbers

18. Parameters associated with a design group DESPAR

e.g., fixed design flag

19. Vectors associated @ th a design variable DEVVEC

e.g., upper bound, lower bound, current value

20. Parameters associated with a design variable DEVPAR

e.g., fixed design index

21. Matrices associated with global constraints; e.g., GLCMAT

22. Vectors associated with global constraints; e.g., GLCVEC

23. Parameters, indices, flags associated with GLCPAR

global constraint; e.g., active constraint number

" ,. ,



178

24. Matrices associated with element level constraints ELCMAT

ee.g., ,

25. Vectors associated with element level constraints ELCVEC

e.g., Ti

26. Parameters associated with element level constraints ELCPAR

e.g., Normalized element constraint value,

oe/ aa-1

27. Vectors associated with node constraints NDCVEC

a
e.g., = zj/z. - 1 j = 1, no. of dof/node

28. Vectors associated with structure level constraints STCVEC
aKz M am

e'g., -'-- -a Z-)

29. Parameters associated with structure level constraints STCPAR

e.g., = -1

30. Vectors associated with frequency/buckling; e.g., y MODVEC

31. Parameters associated with frequency/buckling MODPAR

e.g., ,

32. Names in characters NAME

e.g., matrix name, vector name, element name

33. Numbers in integers values INT

e.g., element numbers, node numbers

34. Numbers in real values; density, temperature REAL

35. Numbers in double precision values; e.g., frequency DOUB

p

- 9 . -- - - . 2 ,".. -. .". .

._ m '.Z m ' #. . _..-. -# ... . .r-- -9...-... -- ... .-. ,-..-..-- .-... ......-. ,..

-* , _¢,~r 2 . .
"r

.' ' . . . . . .... . . ..,". . .."-" """ """ ," - @ . , , , """'', # ". ,." " ",



179

A 7.3 Design of a Conceptual Data Model

Following the methodology, a rough conceptual data model is

designed by associating entities with domains. Details of this model

are given in Section 7.3.1. Later, this model is refined by introducing j
additional relations derived from transitive closure. Details of this

step are given in Section 7.3.2. From the obtained set of elementary

relations a set of semantically meaningful relations are selected. A

refined conceptual data model is finally obtained by removing redundant

elementary relations.

7.3.1 Elementary Relations and
Diagraph Representation

By associating the entities given in Section 7.2.1 with the domains Ag.

listed in Section 7.2.2, we get a set of relations. For example, by

associating entity structure with domains STRMAT, STRVEC, and STRPAR and

with entities MN and VC, we get the relation:

R1 (S, MN, VN, STRMAT, STRVEC, STRPAR)

Note that S, MN, VN, STRMAT, STRVEC, and STRPAR from attributes of this

relation. Entities MN and VN are assigned with entity S to identify the

actual matrix and vector associated with STRMAT and STRVEC. It is

possible to further derive several attributes from domains STRMAT,

STRVEC and STRPAR to provide role identification in relation RI. For

example, attributes K and M can be derived to provide role

identification for domain STRMAT. But , at this stage of database

design, such details are omitted to maintain generality of the

conceptual data model. Details are introduced at the actual

'01

.,



180

implementation stage of database design. Therefore, STRMAT is

considered here as a generalized attribute which actually represents K,

N, C, etc.

Reducing this relation to several elementary relation we get

STRUCTURE - MATRIX (S#, MN, STRMAT)

STRUCTURE - VECTOR (S#, VN, STRVEC)

STRUCTURE - PARAMETER (S#, STRPAR)

Here, the attribute STRMAT is fully-functionally dependent on S# and IN.

A diagraph representation of the association between entity

structure and various attributes (for example - assembled stiffness

matrix, mass matrix) derived from domain STRMAT and STRVEC is shown in

Fig. 7.3.1. Similarly other elementary relations are derived and they

are listed in Fig. 7.3.2. The list also includes the relations between

entities themselves. This list of elementary relations forms a rough

conceptual data model to represent finite element analysis and

structural design optimization data.

7.3.2 Deriving Additional Relations

U- An initial connectivity matrix representing the elementary

relations of Fig. 7.3.2 is made. This is shown in Fig. 7.3.3. Using

the algorithm of Appendix 1, additional relations are derived. The

algorithm uses the initial connectivity matrix and produces a final

connectivity matrix shown in Fig. 7.3.4. From this matrix, additional

elementary relations formed are identified. Several hundred new

relations are obtained as indicated in Fig. 7.3.5. These additional

, ," .. . . ,Y' , . .- - .. -. . . . . ..,...-', , -. . ,. .... .',. ...... '....',,.,.'.



181

.9.

CL

- 4

.9-

0~x



r- - -W W Wv
182

.1.

ILL

c.. I'



* 110

S. -0 j 0

V 4 04 .1

I.-X

4u



184

0~

II

v 6vc I. 0 a .I
U0 0

2 0

0.. 4 ..

41

6. :

p A

0 ita

ILIL ~

.-. I- cJ

05 0 4.

\, S -

05 CC O



185

r) C V4 c -9 c(

t 0 0 1 2. ~ 0

M u

z r 1 0 

Sa > z

AN P.4



186

I~~ c--
Is Ca I- .O . .C C

9%

Ne
aC

A161



187

INITIAL ELEMENTARY RELATIONS
ER 1 CSO,MN ,SC ER 46 ( DO DOFPAR
ER 2 CSO, MN .STRMAT ER 47 ( LC* ,LDTYP
ER a SO sVN SOER 48 C DCC. MN .DESNAT
ER 4 ( 1, vN * STRVEC ER 49 ( DG*, 'N * DESVEC
ER 5 SC sSRPAR ER 5.0 ( DO* DESPAR
ER 6 so .SUBSTRO ER51i CDO, VN *DEVVEC )
ER 7 (SC .CC* ER 52 CODO , DEWAR
ER 8 CSC . MODE* ER 53 ( COCMN GQLCMAT
ER 9 CSUBSTRCMN *SUBSTRO ER 54 C C, '.N G LCVEC
ER 10 CSUBSTRC PN *SUBMAT ER 55 C CC QLCPAR
ER 11 CSUBSTR*.VN *SUBSTRO ER 56 C C EC*
ER 12 CSUDSTR*.VN ,SUBVEC ER 57 ( CC .NCOIVN
ER 13 CSUBSTRO ISUDPAR ER 58 ( C 'SC*
ER 14 CSUBSTR. *EC.ELTYP ER 59 C 0CC .CTTYP
ERi 15 SUBSTR* ,Do ER 60 (ECCMN .ECMAT)
ER 186 SUBSTR* 8SCC ER 61 ( ECCYVN *ECVEC
ER 17 (SUBSTRO .MODE* ER 62 ( EC* *ECPAR
ER 18S SUBSTR* MPE* ER 63 C NCC.VW PADCVEC
ER 19 (EC,ELTYP.MN *CELTYP ER 64 ( SCCVN .STCVEC
ER 20 C EC. ELTYP. MN *ELMAT ER 85 C SCC STCPAR
ER 21 C EC.E-LTYP.VN .E*,ELTYP E 6 CMDCV MDE
ER 22 ( EC.ELTYP.VN .ELVEC ER 87 C MODE*-' ,PODPAR 0
ER 23 C EC.ELTYP -ELPAR ER 68 C MEC .ECELTYP ..

4ER 24 C EC.ELTYP IN* ER869 C SC,LCC so 5.
ER 25 ( ECELTYP McmArTYP ER 70 C SU.STR. LCC SUBSTRC
ER 26 C E*,ELTYP ,ELTYP ER 71 C EC.LCC *EO,ELTYP )
ER 27 ( ECELTVP ,MATTYP ER 72 C NC,LCC N
ER 28 C EC.ELTYP .CSTYPE ER 73 ( QCC.LCC IO
ER 29 C EC.ELTYP -DO* ER 74 ( DOFC.LCC ,DOFO
ER 30 ( EC.ELTYP *ECC
ER 31 C EC.ELTYP .CTTYP)
ER 32 C NCVN 140DVEC
ER 33 C NO. NODPAR

ER 34 ( NO .DOF*
ER 35 C NC .NC#.VN )
ER 36 ( N CTTYP
ER 37 ( M., MATTYP. MN MC. MATTYP
ER 38 ( M., MATTYP, MN, MATTAB
ER 39 ( Mi MATTYP, VN, M.MATTYP
ER 40 ( MAE MATTYP VNMATVEC

ER 41 C( MCMATTYP .MATPAR
ER 42 ( MCMATTYP MATTYP
ER 43 ( ELTYP EELPAR
ER 44 ( CSTYPE ELPAR E
ER 45 C DEF1.VN ,DOFVEC

Figure 7.3.2 Initial List of Elementary Relations

I.N,

1AA

vR 7 , S# -C C -F Rr %2 D E
ER -? S#MdE R5 C) I 4I

JER % USR N SBT.E 4 Q.V ICE
ERINUSR N SBMTE 5 0: LP

E% N1SBT. VN-1T, R CE, J

ER 12 UBSTR, VN SUVIEC E 57 .N,.N



188

INITIAL CONNECTIVITY MATRIX
SI * P 0 00 0010OO 0OOOOO 00O0OOO 0O00OOOOOOO0oOoO0oOO0o0ooo00o0oooo0oo0oO0ooooooooooooooooo
SI W 0010100000000000000000000000000000000000000000000000000000000000000000000000o0
of 00000100 1 ooooo0000000(00000000000000000000000000 0000000000000001000000000000
STRMAT 0000000000000000000000000000000000000000000000000000000000000000000000000000000
STRVEC 000000000000000000000000o000000000000000oo000000000000O0O000000oo0O00o0ooooooO
STRPAR 3OZ3000000000dJ(00000000000000000000o 0 00000ooo0oooooooooooo00000000oo
SIUSTRI.MPN 0000000011 000000000000000000000000000000000000000000000000000000000000000000000o
SUSTR*. VN 00000000101 00000000000000000000000000000)000000000000000000000000000000000000000
SUBSY RI 00000000000100100000000000000000000000000001 00000000000000000100010000001000000
SUBMAT 0000000000000000000000000000000000000000000000000>000000000000000000000000000000
SUB VEX CC0C0C33C003 ooooooooooooo00ooo0000000000000000O00OO00000O00000000000000000000
SUBPAR 000000000000000000000000000000000000000000000000000000000000000000000000000000
El. ELTYP. P9 000000000000001 1000000000000000000000000(00000000000000000000000000000000000000 -

E*. ELTYP, VN 0000000000000010100000000000000000000000000000000000000000000000000000000000000
Ef. ELTYP 00000000000c 000:o 00~00i00l I 100000001000000000O0000001(000000000oO0000100000000-
EL MAT 0000000000000000000000000000000000000000000000000000000000000)000000000000000000
ELVEC 0000000000000000000000000000000000000000000000000000000000000000000000000000000
ELF AR 0000000000000000000000000000000000000000000000000000000000000000O000000000000000
NI. VN 000000000000000000001 0000000000000000000000000000000000000000000000000000000000
NI 000000000000000000000100000000001000000>0000)0000000000000001 00000000000 100000000
NODVEC 0000000000000000000000000000000000000000000000000000000000000000000000000000000
NODPAR 00Q000o0o000000'0000000000000000000'0000
MI, MATTYP. P1000000000000000000000001 l00000000000000000000O000000000000000O0000000,00000000.'.
MI. MATTYP.*VNOOOOOOOOOOOOOOOOOOOOOOO1010000000000000000000000000000000000000000000000000000
II*,MAT TYP OoO0ooooo0o0ooooo0000000000 101 0000000000000000000000000000000000000000000000000

MAT TAD 0000000000000000000000000000000000000000000000000000000000000000000000000000000
MAT VEC 000000000000000000000000000000000000000000O0000000000000000000000000000000000000
MATPAR 0000000000000000000000000000000000000000000000000000000000000000000000000000000
EL TYP 00000000000000000 I0000000000000000000000000000000000000000000000000000000000000
MAT TYP 0000000000000000000000000000000000000000000000000000000000000000000000000000000
Cs TYPE 000000000000000001 0000000000000000000000000000000000000000000000000000000000000
DOF*, VN 0000000000000000000000000000000001 00000000000000000000000000000000000000000000o
DOE I 00000000000000000000000000000000001 00000000000000000000000000000000000000000000 .^ ZL
DOE VEC 0000000000000000000000000000000000000000000000000000000000000000000000000000000
DOEPAR 00000000000000000000000000000000000000000000000000000000000000000000000000000
LC I 00000000000000000000000000000000000000000000000000000000000000000000000 10000000
D06. P9 0000000000000000000000000000000000000001 000000000000000000000000000000000000000
DG*. WI 0000000000000000000000000000000000000000 100000000000000000000000000000000000000
DG4 00000000000000000000000000000000000000000 10000000000000000000000000000000000000 .*.'.

DESMAT 0000000000000000000000)000000000080000000000000000000000000000000000000000000000oo
DESVrFC 000000000000000000000000000000000000000000000000)0000000000000000000000000000000
DESPAR 000000000000000000000000000000000000000000000000000000000000000000000000000000
DI. VN 000000000000000000000000000000000000000000001 0000000000000000000000000000000000
Do 000000000000000000000000000000000000000000000 1000000000000000000000000000000000
DEVVEC 000000000000000000000000000000000000000O0000000000000000000000000000000000000000
DEYPAR 000000000000000000000000000000000000000C00000000)00000000000000000000000000000000
GCI * P9 0000000(000000000000000000000070000000000000000000O000000000000000000000000000
CCI* WI 000000000000000000000000000000000000000000000000001 0000000000000000000000000000
cc* 000000000000000000000000O000000000000000000000000000 1001000100100000000100000000
OLCMAT 000000000000000000000000000000000000000000000000000000000000000>0000000000000000
QLe VEC 0000000000000000000000000000000000000000000000000000000000000000000000000000000
CtCPAR 0000000000000000000000000000000000000000000000000000000000000000000000000000000
Ed. PIN 0000000000000000000000000000000000000000000000000000000 10000000000000000000000
ECI. VI CC33Z0000I00000000000000000000000000000000000000000 0000000000000000000000o
ECo I 0000000000000000000000000000000000000000000000000000000 I000000000000000000000
ECMAT 0000000000000000000000(00000000000()00000000000000000000000000000000000000000000
EC VEC 000000000000000000000O000000000000000000000000000000000000000000000000000000000
ECPAR 0000000000000000000000000000000000000000000000000000000000000000000000000000000
NCIVII 00000000000000000V)000000000000000000000000000000000000000001I0000000000000000000
NDCVEC 0000000000000000000000000000000000000000000000000000000000000000000000000000000
SC I *VN 00000000000000000000000000000000000000000000000000000000000001I0000000000000000
SC I 000000000000000000000000000000000000000000000000000000000000000 I 00000000000000
ST CVEC 0000000000000000000000000000000000000000000000000000000000000000000000000000000
STC PAR 000(00000000000000000(000000000000000000000000000000000000000000000 000000000000
MODEl*.VC 000000000000000000000000000000000000000000000000000000000000000000 1000000000000
MODES 000(000000000000000000000000000000000000000000000000000000000000000 I00000000000
HODVEC 0000000000000000000000000000000000000000000000000000000000000000000000000000000
MOOPAR (100000000000000000000000000000000000000000000000000000000000000000000000000000o
"N 000000000000000000000000000000 )0000000000000000000000000000000000000( )0000000 * -

VN 0000000000000000000000000000000000000000000000000000000000000000000000000000000 *

CTT VP 000000000000000000000000000000000000,000000000000000000000000000O000000000000O0000
LDT VP 00000(0000000000000000000000000000000000000000000000000000000000000000000000000
ME U 000000000000001 000000000000000000000000000YO0000000000000000000000000000000000
SO. IC 001 000000000000000000000000000000000000000000000000000000000000000000000000000 . .

SUBSTR. LC@ 000000001 0000000000000000000000000000000000000000000000000000000000000000000000 o- ~
EN. LCI 000000000(000010000000000000000000000000000000000000000000000000000000000000000
NI. ICI 00000000000000000001000000000000000000000000000000000)00000000000000000000000(00-
ccI* LCo 0000000000000000000000000000000000000000000000001000000000000000000000000000000
DOFE, IC 00000000000000000000000000000000 I000000000000000000(000000000000000000000000000*.o2~

Figure 7.3.3 Initial Connectivity Matrix a

% a.'

a ,.\. a%



189

FINAL CONNECTIVITY MATRIX
6Ia MN 001 1012001001001001000000100221 100000002001020200000I00112 0101010100101000000

*4mSm.Vw 00101o10001001001000000100I1I10000000100202010ol02000l00111010li02020010100000
so 00000100100100100100000001220000000oool00101020010010010011101010010101000000oo
S TRMAT O000000000000000000000000000000000(OOOOOOOOW O0000000000000000000000000000000000o
S TRVEC 000000000000000000000000(000000000000000000000000000000000000000000000000000000
SIR PAR 00000oO00O0000000000000000000 OO0O000000000oooo 0000 O000000000O00000000ooooo
SODSTRO.MN 000000001101001001000000100111100000001001010100000000100200010102010020I000000
S119STR*,VN 000000001022001001000000100l1100000100tol0I01000000002002000101010200101000000
SUBSTRO 0000000000010020010000001001l10000000100202i01000000001002000202010100101000000
SUBMA T 00000000000000000000000000000000000000000000000000000000000000000000000000)00000
SUB VEC 0000000000000000000000000000000000000000000000000000000000000000000000000000000
SUBP AR 0000000000000000000000000000000000000000000000000000000000000000000000000000000 W
EU. ELTYP, MN 0000000000000011010000001012l000000020010ol000000000002001000000000000200000000
(I. ELTYP. VN 00000000000000101 1000000100112 1000000010010000000000100100000000000010000)0000
El.ELTYP 000000000000000001 000000100111100000001001000000000000100200000000000010)0000000
ELMA T 0000000000000000000000000000000000000000000o0000000oo0000000000000ooooo00000oo
E LVEC 0000000000000000000000000000000000000000000000000000000000000000000000"00000000
EL PAR 0(00000000000000000000000000000000000000000000000000000000000000000000000000000
NI. UN 0000000000(0000000002 0000000000000000000000000000000000000000000000000000000000
NO 000000000000000000000 10000000(00010100000000000000000000000120000000000100000000
NODVE C 000000000000000000000000000000000000000000000000000000000000000000000000000000
NOOP AR 0000000000000000000000000000000000000000000000000000000000000000000000000000000
MMAT T VP.MNOOOOO000000000000000000110101000)0000000000000000000000000000000000000000000000

MU. MAT T VP.VN000000>000000000000000000 2022020000000000000000000000000000000000000000000000000
MU, MATT VP 000000000000000000000000000102 0000000000000000000000000000000000000000000000000
MAT TAB 000000000000000O0000000000000000000000000000000000000000000000000000000000000000
MA TVEC 0000000000000000000000000000000000000000000000000000000)0000000000000000O0ooo0o
MAT PAR 0000000000000000000000000000000000000000000000000000000000000000000000000000000 .

ELTYP 0000000000000000010000000000000000000000000000000000000000000000000000000000000
MAT T P 0000000000000000000000000000000000000000000000000000000000000000000000000000000
CSTYPE 00000000000000000 10000000000000000000000000000000000000000000000000000000000000
DOF:IVN 000000000000000000000000000000)0001 000000000000000000000000000000000000000000000

* DOF I 0000000000000000000000000000000000 I000000000000000000000000000000000C )000000000
DOFVE C OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO0oo0oO0oOOOOOOOO0oooo0oo0ooO
DOF PAR 00000000000000000000000000)00000000000000000000000000000000000000000000000000000
LC U 000000000000D0000000000000000000000000000000000000000000000000000000000 20000000
DG: : MN 0000000000000000000000000000000000000(01000000000000000000000000000000000000000
DCI VN 00000000000000000000000000000000000000(0200000000000000000000000000000000000000
DG* 000000000000000000000000000000000000000002 000000000000000000000000000000000000o
DE SMAT ooooooooooooooooo00000000000qoo00000o0000000000000000000000000000000000000000
DE SUEC 0000000000000000000000000000000000000000000000000000000000000000000000000000000
DESP AR 0000000000000000000000000000000000000000000000000000000000000000000000000000000
01. UN 00000000000000000000000000000000000000000000 0000000000000000000000000000000000
DO 000000000000000000000000000000000000000000000 2000000000000000000000000000000000
DEVVEC 0000000000000000000000000000000000000000000000000000000000000000000000000000000
DEVPAR 0000000000000000000000000000000000000000000000000000000000000000000000000000000
GCC*.MN 0000000000000000000000000000000000000000000000000 I 0000000000000000000000000000

* GCCI.VN 00000000000000000000000000000000000000000000000000 I0000000000000000000000000000
C,- * 00000000000000000000000000000000000000000000000000010010011 101010000002 00000000
G[~C MAT 00000000000000000000000000000000000000C0000000000000000000000000000000000000000o
CL_ C VEC 0000000000000000000000000000000000000000000000000000000000000000000000000000000
rCCPAR 0000000000000000000000000000000000000000000000000000000000000000000000000000000
ECI. MN 00000000000000000000000000000c00000000000000000000000001 0000000,joooOOOOOOOODO
ECU. VN 0000000000000000000000000000>000000000000000000000000000020000000000000000000000
ECU 00000000000000000000000000000000000000000000)00000000000001 000000000000000000000
EC MAT 000000000000000000000000000000000000000000000000000000000000000000000000000000o

/ECVEC 0000000000000000000000000000000000000000000000000000000000000000000000000000000
SC PAR 0000000000000000000000000000000000000000000000000000000000000000000000000000000

NCOU. N 00000000000000000000000000000000000000000000000000000000000100OOOODOOOOOOOOOOcOO
NDCVEC 0000000000000000000000000000000000000000000000000000000000000000000000000000000
SdG, N 0000000000000000000000000000000000000000000000000000C00000000010000000000000000
scI OOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO000000000000000000000000000000lcO (Oooo.O0000
STCV.EC 000000000000000000000000000000000000000C00000000000000000000000000000c0G0000c40o -

STCPAR OOOOOOOO0000000000000000000000000000000000000000000000000000000000000000ooocooo
MC'DEU. VC 0000000000000000000000000000000000000000000000000000000000000000oiocn4no00
NODE I 00000000000000000000000000000000000000000000000000000000000000000002 000 CCOC'n1

MODPAC 0000000C00000000000000000000000000000000000000000ooo00000o000OooCnr)n0e(o 0'0
MNOA cOoooooooooo0000000000000000000000000000000000000000oo00ooo0oooon(ol
VN oco00000000000000000000000000000000000000000O0000000000000000o00gOO0, Oc-oooo"e
TNY 10000000000000000000000000000,1000000000o~o~~o0000co0000ooo0oooocoooon- l (vv(j,

C-TY~P '.OO,00000000O0000000000000O000000000000OO0000000000000000O00O00000nc 00nooor0oe

MF* 0000000000000000000001001 2 100000001001000000000001001000000000u):I C~.)f

511.P CI G -OIC000000010010000001002 I I 1000000(,0000000C(y01000)01000Cl('0C'C'V,
44tC "I 000000000000000000O0001001 0000000 tool000000000O0(10010000000001nln')( :. 11(4C

NoI I TI a 4.r'O0ooooooooOOOOPIOOCOO00000000000000000000C0C4000O00l022412 00tC00, 0If) l)0C,
DCE U. C 0000n:000000000000000000000(00,000020000000000000001000000011 00 0000,1 0 0000000(

Figure 7.3.4 Final Connectivity Matrix



190

TRANSITIVELY CLOSED RELATIONS ER66 CS.CTP

ER 1 cS.19 soe ER 67 (CSO a"0
ER 2 ( 88.MM .STRMAT ) ER 68 C SO .DESP^R

ER3(S.fISRA ER 69 SO9 .00ER 4 C SOMN SUBSTUC ER 70 C SO ,OEVP^R
ER 3 C 50.14 .SUBPAR I ER 71 ( SO I C
ER 4 C SO, PMN .E*'LTYP ) ER 72 ( SO .QLCFAR
ER 7 C SO. MN .ELPAR ER 73 ( SO ECO
ER 9 SO.MN MO.MATYp ER 74 ( S0 ,ECPAR
ER 9 ( SO. PIN .MArPAR I ER 75 ( S0 .NCO. VN I*-
ER 10 C SO. MN CJ.TYP I ER 76 ( SO .NDCVEC
ER ii( O PIN~9 mATYP ) ER 77 ( SO .8C#
ER 12 CSgo, PN .CSTYPE ER78 Vo 90STCPAR
ER 13 C SO.194 .000 ER 79 ( $0 ,MODE*
ER 14 C SO. P94 .DESPAR I ER 80 C SO 'MOOPAR
ER 15 C SO.MH .00I ER 81 ( S4 .CTT'YP
ER 16 ( S8.194 .'EPAR ER 82 ( SO POE*
ER L7 ( SO.194 * C1 ER 83 C SUBSTRO. MN SUBSTRO
ER 18 ( SO.19POO QLCPAR I ER 84 ( USTRO. PIN *SUBMAT
ER 19 ( 90.194 E1CO ER 85 C SUBSTRO.MN -SUB8PAR
ER 20 C SO.194 ECPAR I ER 86 C SUUSTRO. MN E*. ELrYP
ER 21 ( 88. MN *NCO. VN I ER 87 ( SUBSTRO. MN * ELPAR
ER 22 C 88. MN * NCVEC ER eS( SUBSTRO. MN , MO, MArTYP
ER 23 ( so. M *SCO I ER 89 C SUBSTRO. MON *MATPAR
ER 24 C SO. MN S TCPAR ER 90 ( SUBSTR*. MN EL0.TYP
ER 25 ( SO. MN *MODE* ER 9t C SUSSTR*. MN , ?4ArryP
ER 26 C SO. MIN *MGDPAR ER 92 ( SUBSTUO. MN *CSTYPE
ER 27 C(8 MN *M Crryp ER 93 ( SUBSTRO. MON , 000
ER 23 C 88. MN . PE* ER 94 C SUBSTRO. MN * DESPAR
ER 29 C 88.$4 as0 ER 95 ( SUBSTRO.MN .00
ER 30 C 88. VII STUVEC I ER 96 C SUBSTRO. MIN - DEVPA'R
ER 31 C 88. VI .STRPAR I ER 97 ( SUBSTR*.MN -C*
ER 32 C 88. VN .SUBSTR* ER 98 C SUSSTRO. MN *ECPAR
ER 33 C 90. VN *SUBPAR ER 99 C SUBSTRO. MN - 8CO
ER 34 C 88. VI * . ELTYP I ER100 C SUNSTRO. MIN S TCPAR
ER 35 C 88. VI ELSPAR I ERIot ( suBSTR*. MN -MODE*
ER 36 C 88. VII MO. MATTYP I ERt02 C 9U3STRO. MN *MOOPAR
ER 37 ( 88. V1 . IUATPAR I ER103 ( SUBSTRO- MN *CTTYP
ER 33 C 88.VN .ELTYP ER104 C SuBSTROMN , PE*
ER 40C39 I CATTPE ER105 C SUBSTRO. VII SUBSTRC
ER 390 SO VI *MATYP I ERW6 ( SUBSTR*. VN ,SUBVECR
ER 41 C 8.VN .004 ERW0 C SUBSTROVN .SUBPAR
ER 42 CSO. VI . DESPAR I ER 108 CSUBSTRO. VN , E0. ELTYP
ER 43 CSo. VS .00 1 ER109 CSUSSTRO.V4 .ELPAR
ER 44 CSO. VII D"VAR L Ri 10 CSUBSTRO. V1 - MO0- MATTYP
ER 45 SO.VN .CC*I EpliI ( SUBSTR*.VI ,MArPAR
ER 46 CSO.VN .OLCPAR ) ER112 C SUDSTRO,VN *ELTYP
ER 47 C 88VN *EcO ) ER113 C su8SrRo.vN , MArlYP
ER 4e C S8.VI .ECPAR I ER114 C SUBSTRO.VN .CSTYPE
ER 49 C S*.VN .NCOIVN I ER115 ( SUBSTROVN , 004
ER 50 C 88.vN INDCVEC I ER116 ( SUDSTR*-VN IDESPAR
ER 51 C S0. VN .5CO ER117 ( SUJ8STRff.V .00
ER 52 C S0. VI .STCPAR I ER119 C SUBSTRO.VII .DEVPAR
ER 53 C SO.VII IMODEO ERh19 C SUBSTRO.vM ,EC*
ER 54 C S*,VII .MCDPAR I ER120 C SUBSTRO.VN ,ECPAR
ER 55 C SO.VII .Crryp ER£121 C SUBSTRO.VI .SCO
ER 56 C ( I ME* ER122 ( SUSSTRO.VN .STCPAR
ER 57 C O S7RPAR I ER123 ( SCJ8STRO-VN -MODE*
ER 58 ( 50 EUSR R124 C SUSSTRO.vN *MODPAR
ER 59 ( SO SUBPAR ER125 ( SUBSTRO/N ,CTTYP
ER 60 SO .E*,ELTYP I ER126 CSUBSTROUVN , PCO
ER &1 90S ELPAR E R127 CSUBSTRO SUBPAR
ER 62 CSO .Me,MATTYP ) ER128 CSUBSTRO .E*.ELrYP
ER 63 C0 S mArPAR I ER12q CsuaSTRO .ELPAM
ER 64 90 S ELTYIP ER130O SUBSTRO MO, MATTYP

Figure 7.3.5 Derived Elementary Relations

4

.-6 %.-. - - -.I, . .~.----.- . - . -,- . -...--. - .-...... . .



191

ER131 5UBSTRO .,ATPR ER197 M*,MATTYP,VN,MATPAR
ER132 SUBSTRW .TELrPy ER198 MC, MATTYP, VNMATTYP

ER133 SUBSTR* .MArTYP ER199 MC.MATTYP MATPAR

ER134 SUBSTRe , CSrYPE ER200 M*, MATTYP MATTYP
ER135 CSUBSTRO .00* ER201 ELTYP .ELPAR
ER136 SUBSTRe * DESP. ER202 CSTYPE ELPAR
CR137 SUISTr , D.0 ER203 CDOFC, VN IDFVEc e
ER138 SUBSTRU . DEWAN ER204 DO*' , DOFPAR
ER139 C SUISTRC .ECo ER205 LCC LDTYP
ER 140 CSUBSTRO ECPAR ER206 DQ PiN DESMAT
ER141 SUBSTRO * SCO) ER207 DCC. VN *DESVEC

ER142 SUS9P-o ,STCPAR ER208 DGC DESPAR
ER143 SUBSTR .MODE* ER209 DON V, u.IEVVEC I
ER144 SUBSTRO . MODPAR ER210 DO DEVPAR
ER145 SUBSTR* .CTTYP CR211 C C, PI O-CMAT
ER146 CSUjSTR* ME* E (

ER147 CEO.ELTY.,IN. E*.ELTYP ER212 ( C.VN GLCVEC e

ER148 E .ELTyPMN .LiAT ER213 ( GC QLCPAR

ER149 CoC. ELTYP, m. ,EtPA ER214 (C* , EC,
CR150 C CCELTYP.iN ,m . MATTYP ER218 ( 0CC ECPAR
ER181 E .CLYP.MN .MAPAN ER216 ( QCC N*VN
ER182 C CC.ELTYP.,m ,ELTYP ER217 ( 0CC IN CVEC
ER153 ( EC.CLTYP.N MATTYP ER218 ( GCC Isc.
ER154 C EOCLTYPIN .CSTYPE ER219 ( CCC STCPAR I
CR135 C CCELYP, MN . DC ER220 GC ,CTTYP I
ER186 ( CC, ELTYP. PIN DESPAR ER221 ( C, PN ECKAT ,
ER187 EC. ELTYP, PN , ECOI ER222 EC, VN E CCVEC
ER36 ( C . ELTYP. MN ECPAR ER223( EC* C ECPAR
ER159 EC, ELTYP, PN . CTTYP ER224 ( NCC, VN , NDCVEC
ER110 ( C, ELrYP VN .ECCLTYP ER225 ( SCC. IM STCVEC
E 162 ( CO.ELTYP,VN ECLPAR ER226 SC* ,STCPAR

% ERI63 C E.LTYP VN M LANYP ER227 M3DEC, VC . :.3DVEC
ER164 ( CC.ELTYP, VN , M ATP ? ER228 ( MODE* MODPAR

CR168 ( E .ELTYP, VN . ELTYP ER229 ( MEC E* CELTYP

.C166 C CC.ELTYP, VN M iATTYP ER230 (PEC ELPAR

ER167 ECELTYPVN ,CSTYPE ER231 ( ME* .M,MATTYP
R E168 ( C ELTYP, VN D O ER232 C PE MATPAR

ER169 C CC.ELTYP. VN . DESPAR ER233 C ME* ELTYP
ER170 , -CECLTYPVN .ECC ER234 ( ME# MATTYP
ER171 C E.LTYP,VN ,ECPAR ER233 MEV CSTYPE
ER172 C CC. ELTYP. VN .CTTYP ER236 C 11C , DOC
ER173 ( CC.ELTYP , EL.PAR ER237 C MEC DESPAR
ER 174 CC. ELTYP .PC. MATTYP ER238 ( ME* EC# C
ER17 ( CO ,ELTYP MArPAR ER239 ( ME ECPAR
ER176 ( CC ELYP ELTP4
ER177 (ESC ELrYP .MATrYP ER240 ( ME* CTrYP

ER178 C E,ELTYP .CSTYPE ER241 ( SCLCO So

ER179 EC, ELTYP I OG 1 ER242 C SC, LCC STRPAR

R180 ( ECELTYP DESPAR ER243 ( SC.LCC SUBSTRC
ER181 ( ECELTYP .ECO) ER244 ( SC,LCC SUBPAR
ER182 C(C. ELTYP E CCPAR ER245 ( SC, LCC EC, ELTYP '
ER183 ( E. ELTYP , CTTYP ER246 C SC LCC ELPAR
ER184 ( NOVN .NODVEC ER247 ( SC,LCC MCMATTYP
ER185 ( NC NODPAN ER248 C SCLCC MATPAR
ER186 NC .DOFo ER249 ( SCLCC ELTYP
ER187 ( NC .DOFPAR ER250 ( SC LC .MATTYP
ER188 C NC NI, VN ER251 ( SC. LC . 3TYPE
ER189 C NC .NDCVEC ER252 C SCLCC .DOC
ER190 NC . CTTYP ER253 CS, LeC DESPAR
ER 1 M.NATTYP, MN. MO, MATTYP ER254 ( SC.LCC 1DC I
ER 12 MO, MATTYP, MN, ATTAB * C5 C CV
ER:93 MO, MATTYP, MN. MATPAR
ERL 4 M*,,MATTYP, M.N MArTYP ER256 C SCLCC .0CC

CEPI5 MO.MATTYP.VN.?,CMArTYP ER257 C SCLCC GLCPAR

ERClql, MO, ATTYP. VN. MATVCC ER238 C SCLC# EC# .
ER259 SCLCC .ECPAR -

I ER260 C SC. LC# NEC# VN
ER261I SCLCC oNDCVEC
CR262 CSC.LCC 5C

Figure 7.3.5 (Continued)

4-.

Ile.', .,'.**- '...p~-

X s.

A ,, %4



192

ER263 ( SN LC* *STCPAR )
ER264 ( 94. LC* M DODE* p
ER265 ( SS.LCO MIODPAR
ER266 C ( LC: CTTYP
ER267 ( S.LC :ME*
ER268 ( SUBSTR:LCO :SLIBSTR*
ER269 ( SUBSTR LCO .SUBPAR ...
ER270 ( SUBSTR. LCS ESFELTYP
ER271 ( SUBSTRLC* .ELPAR
ER272 ( SU STR. LC* I 115 PIATTYP
ER273 ( SU:STR LC0 MPATPAR
ER274 ( SUBSTA. LCS* ELTYP
ER275 ( SUBSTR.LCO MIATTYP
ER276 ( SUBSTR. LCS CSTYPE
ER277 ( SUBSTR. LCO DG*
ER278 ( SUBSTR.LCO ,DESPAR
ER279 ( SUBSTR.LCO D*5
ER280 ( SUUBSTR LCS* DEVPAR
ER281 ( SUBSTR. LCO ECO
ER282 ( SUBSTR. LC: *ECPAR

ER283 ( SUDSTR LCO .SC
ER284 ( SUBSTR.LCO *STCPAR
ER205 C SCUSrf.LCE :mIove#
ER286 ( SUBSTR.LCS ,IIODPAR
ER287 ( SUUSTR.LCO *CTTYP
ER209 ( SVOSTR. LCO * E
ER299 ( ES. LCO *,ELTYP
ER290 ( ES. LCO I ELPAR .' (
ER291 ( EO. LCO M*,SMATTYP
ER292 C ES LCO * PATPAR..
ER293 C ES. LCO ELTYP)
ER294 C El, LCO n IArTYP
ER25 ( ES.LCO * CSTYPE
ER296 ( EO.LCO .DO
ER297 ( ES. LCO DESPAR )
ER298 C Ef,LCO ECO
ER29V C E.LCO *ECPAR
ER300 C ES. LCS .CTYP j
ER301 C OCS. LCO a oC)
ER302 C OLC* .QLCPAR
ER303 ( GC*-LCO .EC#
ER304 C GCS.LCO .ECPAR
ER305 ( OCS.LC* IMCO.VN
ER306 ( OCS. LCO * NOCVEC .
ER307 CQCO,LCO ISCo
ER308 C O.LCO ,STCPAR
ER309 C GCOLCO cTyP
ER310 DOF*.LCO ,DOF*
ER311 CDOFO.LCO .DDFPAR )

Fi gure 7.3.5 (Continued)

p..,.%



193

relations together with original elementary relations are shown in the

diagraph of Fig. 7.3.6. Derived relations are shown in dotted lines in

the figure.

7.3.3 Selecting Elementary Relations

to Form a Conceptual Data Model

Now, we have uncovered all possible association between data used

in the analysis and design computation. From the diagraph of Fig.

7.3.6, we see that several paths for accessing a particular data are

available. Out of these paths, suitable ones are selected according to

our needs in the finite element analysis and optimization

computations. The following paths are identified for some important

data, and paths selected are discussed.

Material Property Data. Available paths are (a) S# + SUBSTR# +

E0+ M# - MATPAR, (b) S# + SUBSTR# + M# + MATPAR, and (c) S# + M# +

MATPAR. Paths (b) and (c) are generally not useful unless all elements

in a substructure or structure use the same material property. Path (a)

identifies material property for each element and therefore it is

selected.

Cross-Section Data. Available paths are (a) S# SUBSTR# E#

CSTYP CSDET, (b) S# + SUBSTR# + ELPAR, and (c) S# + ELPAR. Paths (b)

and !'c) are meaningless. Path (a) is appropriate to find cross-

sectional property of a particular element.
S°.

Degree of Freedom Data. Available paths are (a) S# + SUBSTR#

E4 N# DoF#, (b) S# , SUBSTR# > E# , DOF#, (c) S# + SUBSTR# + N# +

" " • " " " • ' " " " "' -- -- ' " "' ." " .



I4" %,

1 94

I 
e

/ i 
f

A -- 
**

7- , -

1 -

. - - :::

T* r

N .. t,.. ?,r

. .... . ... .,.z" " ". "" "" "'=, "" " .... '-,." .".' -". ".- ,': ' "-': :" :"' '."",, '... ""t'..'....-. .. -."• ." I....

:;. , .,.,''-'...,', ' ..,.'-'. ... :''-,'.'..:-...N .-',"-,-' ."': .'- .... , .-".v .v -'.... .:.



------ - - -- -W -W -l - -r----

195
.rl

DOFf, (d), S# E# +DOF#, and (e) S# + DOF#. Path (a) is useful if

nodal degrees of freedom are available. Path (b) is useful for assembly
.4

of stiffness matrix. Path (c) is useful for assembly of global ..-

matrices. Paths (d) and (f) are appropriate when substructures are not

used. Paths (a), (b) and (c) are selected.

Coordinate Data. The coordinate data belongs to domain NODPAR

and/or ELPAR. Available path to access NODPAR are (a) S# - SUBSTR#

,N# NODPAR (coordinates), (b) S# - SUBSTR# + E# + ELMVEC (coordinates),

(c) S7 + NODPAR + E# + N# + NODPAR, (d) S# + ELPAR, and (e)

S+- NODPAR. Paths (d) and (e) are meaningless. Path (a) just gives

nodal coordinates of a substructure which may not be directly useful.

Path (b) gives element coordinates which are useful for element

stiffness computation. Path (c) is longer than path (b) to know

coordinates of an element.

Design Variable Data. Available path to access data such as design

value, upper bound, lower bound associated with D# are (a) S# - SUBSTR#

Esx >, DG:t 3 4 DEVPAR, (b) S: -SNBSTR# * DG 4 + D# + DEVPAR, (c) S#

SUBSTRe 51a -DEVPAR, and (d) S, + D# + DEVPAR. Path (a) is useful to

know the values of cross-sectional geometry of elements. Path (b)

(dentifies the design values for each design group. Design variables of

a srstructure or structure are obtained by paths (c) and (d) . All

thee pdl- are usec in computation.

Displacement Data. To access displacements data (DOFPAR), the

available paths are (a) Sw + SUBSTR# E N# + DOF DOFPk (h) S

-.'..--

N ALA -



196

+ SUBSTR# + E# + DOF# + DOFPAR, (c) S# + SUBSTR# + N# + DOF# DOFPAR,

(d) S# + SUBSTR# + DOF# + DOFPAR, and (e) S# + DOF# + DOFPAR. Path (a)

is longest to access displacement data. Path (b) is useful to know

displacements of elements. Path (c) gives displacements of nodes.

Paths (d) and (e) give displacement of a substructure or structure.

These paths are used in computation and are retained.

Similar arguments are made in selecting various paths needed for

computations. Each of the paths represents a set of elementary

relations representing the conceptual data model for finite element

analysis and structural design optimization. A

7.4 Design of Internal Data Model
An internal data model is designed for storing data of finiteC.

element analysis and structural design optimization data. The

methodology developed in Chapter 4 is used to design this data model.

The design of the internal data model is initiated by identifying the

data needs of various computations listed in Section 2.3. The data so

identified are arranged in a number of relations. These relations are

refined by the normalization procedure. By this procedure, a new set of

relations are obtained which are later checked for consistency with the

conceptual (theoretical) data model. Note that this internal data model

is used for implementing the database of structural design optimization

program. Details of the internal data model design are given in

Sections 7.4.1 and 7.4.2.

bj..

C o" , .

~p*~I ~ ~ C. -. .J ' C.



197

7.4.1 Data Needed in Computation Process

The data needed and generated in various steps of analysis and

design computation (see Section 2.3) are identified. They are arranged

in a number of relations.

Elemnent Level Computation.

RI (E#, S#, SUBSTR#, N#, M#, ELTYP, MATTYP, CSTTYP, LC#, MN, VN, LDTYP, '

ELMAT, ELVEC, ELPAR, NODVEC, NOOPAR, MATTAB, MATVEC, MATPAR)

Substructure Level Computation.

R2 (SUBSTR#, S#, E#, N#, DOF#, LC#, MODE#, MN, VN, LDTYP, SUBMAT,
SUBVEC, SUBPAR, ELMAT, ELVEC, ELPAR, NODVEC, NQDPAR, DOFVEC, DOFPAR,
MODVEC, MODPAR)

Structure Level Computation.

*R3 (S#, SUBSTR#, E#, N#, DOF#, LC#, MODE#, MN, VN, LDTYP, STRMAT,
STRVEC, STRPAR, SUBMAT, SUBVEC, SUBPAR, ELMAT, ELVEC, ELPAR, NODVEC,

* NODPAR, DOFVEC, DOFPAR, MODVEC, MODPAR)

Recovery of Element Response.

R4 (E#, S#, SUBSTR#, N#, M#, ELTYP., MATTYP, CSTYP, LC#, MN, VN, LOTYP,
STRVEC, STRPAR, SUBVEC, SUBPAR, ELMAT, ELVEC, ELPAR, NODVEC, NODPAR,
MATTAB, MATVEC, DOFVEC, DOFPAR, MODVEC, MOOPAR)

Design Problem Formulation.

R5 'z S-, SUBSTR#, E#, N#, M#, ELTYP, MATTYP, CSTYP, DG#, MN, VN, ME#,
STRAR, S'i3PAR, ELVEC, ELPAR, NOtJVEC, NODPAR, MATTAB, MATVEC, DESVEC,
JESPAi), DEVVEC, DEVPAR)

R6 (GC=, St, SUBSTR4, E#, N#. M, , ELTYP, MATTYP, CSTYP, DOF#, LC#, DG#,
H-4,~ NC-*, Sro, MODE#,, MN, VN, CTTYPE, LDTYP, ME#, SIRPAR, SUBPAR,

ELVEC, ELI-AR, NODVEC, NODPAR, DOFVEC, DOFPAR, DESVEC, DESPAR, DEVVEC,
HEVPAk, GILCVEC, GLCPAR, ELCVEC,, ELCPAR, NDCVEC, STCVEC, STCPAR, MODVEC,

MJDP~r%

- * %



198

Constraint Checks. 
,t..

R7 (GC#, S#, SUBSTR#, EC#, NC#, SC#, GLCPAR)

Design Sensitivity Analysis.

R8 (GC#, S#, SUBSTR#, E#, N#, M#, ELTTYP, MATTYP, CSTYP, DOF#, LC#, DG#,
D#, EC#, NC#, SC#, MODE#, MN, VN, CTTYP, LDTYP, ME#, STRMAT., STRVEC,
STRPAR., SUBMAT, SUBVEC, SUBPAR., ELMAT, ELVEC, ELPAR, NODVEC, NODPAR,
MATTAB, MATVEC, DOFVEC, DOFPAR, DESVEC, DESPAR, DEVVEC, DEVPAR, GLCMAT,
GLCVEC, GLCPAR, ELCMAT, ELCVEC, ELCPAR, NDCVEC, STCVEC, STCPAR, MODVEC, %

MODPAR) .

7.4.2 Relations and Matrices for

Internal Data Model

The relations RI to R8 formed in Section 7.4.1 are not in normal

form. But they contain all the relevant data needed for the

computation. Therefore, they are normalized using the methodology

developed in Chapter 4. The normalized relations are shown in Fig.

7.4.2. These relations are consistent with the conceptual model

designed in Section 7.3. The relations shown in Fig. 7.4.2 are grouped

into several categories to identify them easily. The groups are (i)

Element, (ii) Node, (iii) Material, (iv) Element Type, (v) Nodal

Constraint, (vi) Element Constraint, (vii) Structure Constraint, (viii)

Global Constraint, (ix) Mode, (x) Design Variable, (xi) Matrix, and

(xii) Vector. Since, many of the relations are required independently

for each substructure, substructure numbers are assigned to the

relations to identify them.

The matrices used in the computation are organized using numerical

data model. The internal model for numerical data is shown in Fig.

7.4.3. The model uses hypermatrix scheme to organize large matrices

~~~~~~~~~~~~~~~~~~~~~ ....... .. -: , . .. .. .-.. ...... .-... .. ... .. ...."... .... . .... 
.- . . -.-- - .

- - -- -..-- 4- rw.-wn .. w-w- - - -- - -.-. 199 -

I t H . IVtAl UIf i ff zI

I'm I1 1 it -u3 ~ l IC Ai2D I t H

I Ils U O1.lH 43111 > " 3 10 1 lt H
-H lIIf > 1 i> itR I 1 II 1-

H E .e 4 0 1- 0 f3f4 N D14 up
HIlC In NO, t4 u -4 034 '11 1 It Ha z1

If3 a0 r eIf~1W -1 Ii i i z H 41

H 4 lift H, 1it HI. Itec Hc I~ 3I U 4

II~ ~ ~ ~~I If3g UcuIC H U 0 H-

ula---------------- a H n > 3 1# 0 U A I 3-II

Ii.~i H W I ~ '- CIIfj It >
luti-I H InH. 1- LH H

If H1 H1 H a HIf

lo a >I If wH I H (fu I II Z tu f

I- 0 I H C HH I If3 r i I I .- III,.N
3Ii .H 1-U H N H UI

I H - --1 -- - - - - - ---- Iff In H

rl 1I H I~S a 143 H. Ht Hit

'll r "a He1 1 n E H. H, 0. 1,3 It U l i

(21. H, H WHu H 9 If Z I z i -

-.H 1 1 H 31 z4 1 H H110

-' -- - - -z - - - --f4C Ill Iilh II

= I 1 Dff 11H l H ~ .if-11I

If > R-I 1 (-1 11 > ZHH H H iff 11
Cj a- II VI li If 0- - - - - - - - - -

call~~I H IOI H f HIfCI II

Hi ZE~I EnI E i If II [K lIf ZiI E

r- - -- t----- lJ -- H--

Wa- II af II31 aI H Li H 4 t'

ff I

II U U it N HRIH IH 4

1:3I HH I H H II Z I HHS

Q~~lI U I L E III H 04 i UC

it It

0 If It5 H Hy i" Q H I v fu EU'

HO, , H H 1 UCU H- H 1 0 4 .H U H
'I Z I- U HZC If *11 UV>1CL 11 ff14-

0I Iin C m II If- H1 1-Hi in 0 11H 1H HC;

H I H 4U7 H - It ICOiL 011 INfI H ;: ;11N

l~l 43 i It HI H If LD HE aCU L 0 H HC U-

* L C5UW I t ff.11 1 H'l H N0 I HO Ho"

E IL OC NC U; wH H1, UQJHIH SU 4

'tON I? UIl 11 CH ZH N w U Hoz ILu I It

'isI ff4- I' ZH UNIHOU HU -

.- 11.14 U I U Ht l) H 43f U 413f HI
H UDIU~~~~lI H .IsU f40H 6~f Iff- U

C I I'l rtH fII -C M, vlf 0 H UO

Z 'I I H U1 1 IfH 1 0 II

US" He !!l I 4 ~ - ' U I 9
1' UI

4- ' If 1 4 IIf- 11 k II4 I If P13 II

L.A aC A Ut U t U HO U U0 I

%°-

N---. I . ..---- N
N N N I. . . . N;B I N N- ..- -. .- - - - 2 0 0

. l -- I I N B 4 B1 s I sl

, . . N- 0t N E> Nt C I ail

•0 0 +. . , + :: : . '* ~ ~ Sil NE N * I LE- 0 B4 B0~a - Na rC- -

a:ly iI iS a- -N n S I >tl l er" i -wi .1

L1n C/IO "1 u -C 0 11 , L ,i ,,90 , rt 10 Nf

-N .I ,,,-C jB B> flu a It N I , B

>"~~ rI ' L w !
'.

J .I ,- 111 11+Jc 0,,z mlt fl 4 , In

'-N> NMCEC+ a , . *,-,, o,", -Be-SB-
IS N11- N iS E0S N S t I> 0 e > f

.BC. EEC I Z a *"C ''+s~ EBB- NM4'SE n SB-nB• B

1i1 UJSi - B I Er E O L t I-uniaefl E m.CBi
M...............E NmrEM N , BEs S E,,SE.. >," EyB

-E - E, -. i NI NH M a e - U LE B-B--Cu>N C" N' 4 n LB- B..y.- ,. .. .a.w" 0"O B -L at -
E l- - E L I S - IN, I NNI I Pm I I 1 S I -_ a -Z l 1 1 D N ES a, r SB I 0Bl SIB

Z N I N I B- N a. I B II
IB I0 C N N aU-UN !N B_ -_ n_ .- i- t

I l a I Z I N - - C II 1,I I - B_ .- -_ _
N 4 W U >- It lit " It I n t ,3 B

B IJ N WB B 0 S I l B H I

B aO I II O a - UI - il -

BC- N N IC B. U lIB ' l BI I t I B I

BOS .- W ?! -_ I L It -- B It B U

I 1 0 B I B
I -B B" "L B BII.

Ir 1~ 0 m I, If _j If 41, 41 , 1

_j I r1~ f II I
+

I x .1 r I,_ 11 1

Lla B Bf l. B- - -----H LU U..ii ,.- - - - - -

Z . B W N I B- I B

-I ~ a UI E N N ItS U i E BI

UN +w B' =. CE ' BI B L" II B LI - .. B I

IO E O N ~ 4 iIt LIAt I It
Na~~ Na ~ - N I-tB Ba -lli"

,B B , Bm JI Btilt, B..tu.I-i U t+,

ON U I "NI I BN BB IB

Zt I B . a B " t I ,," I- B B t

4 1 ,, '1 0 W " , 0 Irt tIt 4
BC" U II I-NE B14+ l N BE B Zi BEU[.

I-B B 0 4 B Bi 0 U,,%It

B"ItNE N U flu B U

111 B IN B BIt BB U U

"B L B ;1 NN ic " N)("

N B R > 'NC U U B LU. U U
Ia Bt 40 I N -e I B (I t w B

4- nB I-I Bt E n-B N B I IB6

L B U) CU I B 0"0 m N B N LN N Bo B B - B r 1

N In C. It N N_ N CC N IO Ut N 'B U U
1 0 0- II I,_ B 4 14 i i 6 iL I
II N. B- B IE Us !;M B M t NU ~ - a 0

B aCO N4 NB By UL E 0 Bt Ua> B

NEC B a B . 0 11 B! BJ i i t >B1 K O 2 0N 2N " ~ C N BC B itBBu
U. Nn~ N NU BC CW B z II BC i >-

Ba1 12 W B f By B.--B a Ba 9 B C- B11if B C-S m il IB a0 B BZ It Bt ZiI B -I~ u 11 BE I EB BIf y ei r B1 >I B-ea

PIt 16 BO N U Z IE vS 4 B B B B 11B Iby B
!I , Ib N 0 C I B-B N Lo1C I U B B. B a. I

BOB N 0C U an00 Baa CIn BU I B B I- " Iia 1

11U zIB BOEU il q n BC B O C> B W .. 4

liI B-n I* a 3 B- at- B >B B- z U a - -- -- - - -'c-I E ~ UU SWCU nil a i " B
IC U O B IN BC C inBS UI

j a n o a S B N .C BB W a l I 1", 1--

HI B B 1 W BB i 1t j

B S - W Bt BU - - - - - - - - - - - - - - - - - -
ft BlaS B B Bi

LB NC N 0B- 0 N UBE Bt I B

CU B N On B B. C1 B" it
0C 1B z I I II u B 11 z n0

-~~~~~~4 ZBBs----------Ml

BC-~ ~~~ ~~ % L NN B- ~ B

.. 201

If I It N I I i
Ii N K N it i If i

ii I IIK IiIiIt h O C I
IIn N K K K I K II '

11~~~~~I XKN K i K i Il' 'N I

n"IK K M 1I K it I If. ho r III

-'Ii, 1 hi if 1 u5 iK 1 -

11K i K O N K K K K ~ N-4~U
2i1~I It r M N A K ii NKN O

ii~ ~~~~ it 11 ii KS C0 Km~i iK i - n

it 11 Ii SIt ccK S N It 11 u CK

in I iIl KItS D '15 Km 0 KIfK ---

'j II III ItK ItJ I Z It II -- If u(K ii 14

:1 1i K1 MiS I- K K 0 K K0I It

If KW Nn K ItWK 4 K

* ~~ ~ Itt 1, ii m u KK K -K > -1 0
El I- 2 f K KK K N K 1 K
mi 112 KaKK)K K W -

4 MOO ii t- s Kz K1 _-- - - - Zj B It
K UK N 0I ~ t Ki

01 .u, m Ii - - - - - -tt- ui W IKO K i

- z I9 1 K 1K- K1 K S.1 0 KitK -

~~~>1 iN 1200 K It D c i Z ~

ii- M0 . Kt it K S i

if inE N1 K0 N ,, NC It K t K -6

*~~4 ti- 40 ii W l C n KI 0 I v l
r: 1i 11 K IK IE ONK ' 2 K E

if-- - - - - ifl - - -v- - - - LIt

11 1 1K 1(0 01 K I I - U 4' K MK i
a ' '41 K 1-K K> M K K K I-N K' K I I-K
*0 '-i 'N K MN K K hio K M K if It " 9 9

LU 11- N 0K 000 1-N K K 2 110 iif

K~~~ ~ ou KC .> Kt IUnKtK (0 K 1

±1 "IfS 11 KM N Smu o KS uI ->s- KK

- I 1 Kit n0 :1 I ' Kt W o K 2- f u -1-

If 11 Zil D KM IK- K;i2 K )0O - K, t~ "

""-10 1 OK2 K Cto 11 L 4 4- u K .
4. ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ A 3i2 .- K 1 ' -C- i IS K-

- *' 00c KM K st-i K 0K K . DM - '101 - U L.
- [U . 0~ K 010 I, m .'-. K ii 0 KM C~fl" 'U4 -' K1.00

' t o :f it0K ~ 1 -1 0 1 ( ( 0 - K ~ K M b c

'I ~ ~ ~ ~ ~ ~ ~ ~ . InC0 (or U-.c K M D K - K i H~ -
I ~ ~ ~ ~ I I I mc I W KK ml) K'" M K 4K2 K C

ii K K K £11 Kms-o-N EEK 7 Ky -
flies-I ~ ~ ~ ~ ~ ~ I 11-4K- w K K ~ cc W K

* IS 110 06, K II 1 Kf it 1-1- )-

K~~~~~~- 6o %it. K Ai i K K* -l

-~1-1 ' iI-*i - - - - - - Ur -



0 11 it

I r N i N II

U. . ' B ' ,

iI in,, -1 r '

CaM, H i 1 I1< '

N I !1I I! i !!5 I 202

H I ,

n a - ' I in Jii

IS it c lCEI

. . . ... I- I I to H
.JH 4i ILLI I-

e O 
'

H B1 N0UIf
II I I ' I E H" If >INIs

tN I; B t- .II Lii-1 11-i' II il,.

B N "C N H- Ut IN
1, Z If 1 H . ZU" I..

. . . . .. . . . . . .u l.. . . . . . . . . . . O3 ) I 4 -

II i I >BOS, U -4'N U - II

BE. 1- i1 I IN, I I1
I I H zn I S I I 1

IS No >

>B

U......I........ . .. I

UUU" I II fl' BI II € I

t I0 C H UoHD 3 U0 z it I (1 U" n1

r.JU,,- I ,-EU> Hl I- NW I IO I

N I ZB B ZN"B" "u I LL L

u11 Nn f oi DU

if H N IftJ Ir I1 1 U Il

In, , I, I OH 'I 0 W l

0Il II I,, ]I No L K IIIN,

l-U~nU IN N.N OI.--H I
1fUE IIN H N U>UNI U t

1101 1 Hf UNU oH H - 1U

CHZZH U .,J It h H N-U II H

L' 1U w il U -if

III N > I

21' " a" CI B.+ B '-"14' ,

. . . . U lAIN N N: It, II ,- -

Ii ' r B u Ii a 11- U1 It

q11 N It O ,, 1 1 rU 1 .. . .. . .. .

f11 U1 UU Ht ZaU 2 1 I

8% It a a AI EnH H IH' U 4

( 0 1 n I It a B 4 u IU

U. i-U N 12- 'U UCHl S U 0

B u~ittil B Zit.'aI

.,n I >I a aD _Ij It % + -

IIOUZZU II 0 II n l U 0

8 . N.. .

U I N U H" U H CII

U4 U IIt U UU U I
Un n j Nt UL NI W B I II -

11~~~~ -.:1 ,11 11i n :

* U1 N H N B U U UR Uf U. OH 7 1
Uf N Ut B 0 114 UE U

UC B N IN U1 ifZBH UC -

If H a 1 it U US U Ut

Un B H Un S H Nj U1 0 US
fI I I B i. N a i n N ItO iiI 0 1

U 9 A I I a a an a i tI HI

it No I i U t U IF

U I a SI 0U 00 U Q~UU C

% '.

AME,,.; +' z . A X r _,4 .-n ' " - + " " ,- . -. - - ' - --- - -" ' - ' . " .-".C l " - "- ." " " . . - ' j .+ ", .+ .z"" "

rII' ' , N H - - ' - t-'. N. ' -'. U. ' U- ' . ' 
. +  " N' - . - . " -'S

+
" " ------------------------- .. ' .. . . " . . '+

ra + , , , # . . . . . .*. . ... . . . . . N U t U. . H,. . . . . . . . . - U . . . . . .. . .U . • - . -U-.t B N,,, . . . .., .,.E, .W. B., - . -S.,-t,, , . . . ., , ., , U ., .. U . . U. . H.. . . . . . . . , . .. . . .. ., .. .. U. , , , . .+ '- :' :



: 203
H N N £ U U NIH,

ii N£ A A N N i I

* ii A NN A

A NA A IA I i

ii A ii A AIf i i
A U H ii N N I i

A iiA A A A ii i

At 1, A N o I :i A A H

11 c f N 1 r it

N1 N1 Na Itib U

Ai AVC ~ i t iiIf

ii ilm c c x- S C If( i

LL A EC ii At it

An a i aqri IN, IC A IE I D
ii~ ~~~ ~~ iiv W A Z C n u A A. A C i

w i iiA1 11~ i A a i

liti Iuf.4i If C A ) U.'.

0 E IIt4 Cli NW N li ni a
AL ~ ~ m DL i- - - -- - A UiA

AC AX~S ni A 8 AN : A1

lit U w c~~ I'l A) U U if Q 1 0
lbN 11 it li t A 11 1A "i I

11 0 At A 'A1 A A CA A i

A ~~ OH IiA ~ N Ai

WA~1 Ii itWlO UA A i

IA~I If It> 4 A >

Cii AA AU A N Ui At
It- - - - - C ii

ii iiA C A > Af ~"I U, Ao CA AL6Di i

Az i If aCA I, N U

ItC A A V- A IC U

< Ifb ii 11 W il it IsN

ait A1 Ut CU A a R ~ R
CU 0A1>P~~~I r- -- - -- - If WA AiiN-

it 1.0 I'l I. f
0 a it

-I Af A A .Af A A A
.1 At If A Z

0 i U5 (1 A Ow Ai H A0H:
I -A t Af 1 .A A AA

A z A H A C A

0 1 0 1
ii A A NA ND A E
ii~~ A1 It A N -

A~Il At Ah C A
I ii ii i A > iiii -

ii~i > A AA A A -

*ii N0 A 0 AA A I 9
ii A AA A A Al AS

IF A1 AZ 1" A 0
A NiIA HI I

Z, 11 N A1 ii A z
IA Ai At A 1 A A l Un

LII A A A H CA



"," .... .... .... .. :2 0 4
1 IN

H itf

N

-f H HK 20

8 a
1 U K III It

0~~ IllD
'4

1

i H- I K I I

H.K U K K I

e K It K K

*[ III K}H t s < Kfl

o K I; , II Ko "I~
ItK

K M K H I.. ,

S-K II II S t K I1

.0 KI II UI( K
2K K3 K I IKE KI H ,

IV,

It K

U ,I I >-K'2• K II

K I"I K.' UiK !''

Itflt It

a11 K-ii KU U1

WK K- KII I ZI - K Kl *r

I -II I,-K K -t U K

ZII K E if tO H .11.

>IL< CDK.. . . .. ....K MU K I

-0 a U It

M If IK1

0' 11 1 mZn UK aW H H

ccK II U 4K N I.- K

i t II N K U- I I

0it fl N toit IU CI

- I , " a f- , H." 'L , U". . ' H ",U, , II...- ,-K . . • " , . .

11~I INI -H ,.I O

Nf ItHH .N KI

E1 H- H I N HI

U-Kl Hf H <K KIi

'~U~ U K~-uIO Ut

C1 a

H K K It K U If

(11~~1 0 W IU Kit

II -'K U U1 K K

2Un K H

60K K IK KI 4-
o 'IK K If K KI

"I- 11 If I ~ .

9U it"K, " U--•, K K"U

",I ,"-. "" "" KK - - -

Q 41 a. H K H1 Kt



205

assembled at substructure and structure level. Skyline and banded

scheme for large matrix data organization are also shown in Fig.

7.4.3. Varicus structure level and substructure level matrices are

shown in Fig. 7.4.2.

7.5 An External Data Model Design

Building a complete set of relations forming an external data model

is entirely dependent on the requirements of new applications that will

use the database. Considering all possible new applications and their

requirements are beyound the scope of this study. Hence, no further ,.

attempt is made here to derive all possible relations for an external

data model. However, some specific examples are given below to describe

exterial model design.

Suppose, a new application needs the data of element degrees of

freedom numbers. Assuming that this data is not already stored in the

database, a new relation is constructed containing the required data.

In this case, a new relation ELMDOF is derived as shown in Fig. 7.5.1

from existing relations ELMVEC and NODVEC. Similarly, if another

application needs the element connectivity data separately for each type

of element, then relations BEAM, TRIANG, and QUADRAL are derived as

snown in Fig. 7.5.1.

7.6 Evaluation of Database Design Methodology

Dataase design methodology developed in Chapter 4, is found to be

extremely useful in designing the database given in Sections 7.2 to ]
• . .. .... -.,..... • .,.. ... . .... - . .. . K:'-. -. .% - ... .. . . . .-. ..... . . -. ... . -->



" . . . 3. 206
IHZ N N US N Nn Na ItI r
If. NL 1 N10NNO I D D arnto Nt Nt NO No :N It- o U 0 t

* itO I N N ZNi NI Itt-. If U ,
HI N:: ft II N N i N O t U 0 0.
N NI I Nt NI NI NI 'N 0 0 *

N If N N If 0 U E S W A
f N N N I a >NI W W 1 L L

it- N N u I' N A1 It Z CNILI. N A" A A n
"  

ii w -1 -1NO N N Uo ft--N .--- N>N 1 z i9
to

'  
it N tO N I I --- NNI -- ll'- i -1Z - a,

II NN N -Z I N t l I J f UE - r '
US ft fli--N NI itN N a t II II 1 0 a 0 ft,,, Er0 XA". N H--- N it ft N V it N 0 0 0 a X

f ItN AI N N N NI I N ENS U N Ut 1", it 0
NCON I N I - I i NI U W It II S- . F : a
N0 MN N N-d I N.N.W----------------------------- Cl U

* N N Nt N ft W W WI1

1t NN N1 f W C O N-i
W1 ft N 0 17z) a i

If NI a30 ILL 0 3 I 0

N - - I Z I I N W>NI I I Z 0 Z>

a Iz 9 " 11 It o1 1 11 cr I L4-

4II~t N N J ICON A N J Nal n l> ?J Z tO N'

0N 1tti A AIUO it E5 Nt 0I T
C Z N ift ft N At it N0 N0 I US0

I. N N ONN N C N It L)i Ui S

In, • I Ni ...- i A W
iiIf In I I f

Clvi~i sif N. lU Aw l NI n

Il- U . Il Nl U N N Z

... 111' 1-t1 A I u

....... , Q, , o

It U Cit ft NO t II

UI N U ONi I U

zi If U- a t NU C
W" U Ot N NL 10. tU '

11 Ifn-it N> it U .If'

II~ ~ ~ ~~~~~~I .... c- Iol > _C r z

U..IfIt - AN-.J
LfU ft U. L tO A it f-INU ft H, n 0 -

1..1 It 0 ii aON 1 4tW N U 1 Q C
> a l i i N O ft N U ES r Al

S i . .it . it E H N htit N 0 I - .1 U U

UV'IW
' ' .  

LLJ P II f ;I--/ Za t I0 I' 0

it w

It-- - - - - - -
A 0v 0L
I I z-- ,

a.' IO it 0 z

NUN N 0

A m N N zc
NO Nd 0 l f-H

t N NIS NW i
U t A4 it NU A C

I ID U I N) II-

S' ,I NV > No W i " " - " "-

* -1 Un N N -N ON N W 0 C 0
II Rt At N-- N N C Al J 1 C

N Il 0 N Ai N Il -' Il Ill
nO IN Nf N l N N in W t LLI

'N ft C N N f 0 >- 1 > Af
It I t N N1 "1C i t 1 , m e 0

110 N N W j 0 -1 IL0

UZ t ft z N 1 ZL C, -

tC ft m N I it N Ut WI WI
4" ii :1 Nr AN A i C DC

iC a. U------ itM m W 1 S 3 1

"a ".C In ft ZN U
Ut 0 U AN WtIf.

'p l- W. A ft1 U. 0 U0
W,> -U 1 N1 '-'f NX N ( W

" U 'I I U I NI-f- F-i
1W~~~ 11 f A A wA N L U 9

F II U No U "I W i



207

7.5. The methodology is used to the design the conceptual data model j
for finite element analysis and structural optimization data. It uses

information about entities, domains, functional dependencies in data to

obtain the data model. The conceptual data model enabled us to

understand the inherent nature of finite element analysis and structural

design optimization data. Thus, we are able to associate different data

items depending on their characteristics. Many associations of data

items which cannot be readily identified by the database designer was

brought out by the use of transitive closure principle and connectivity

matrix procedure. Thus, the methodology to develop the conceptual data

model for finite element analysis and design optimization data is found

useful. This conceptual data model serves as a theoretical database to

check the database that is designed using the internal data model.

However, in using the methodology to design the conceptual data

model, some difficulties are encountered. One of the main difficulties

is in tne proper identification of entities and domains of finite

element analysis and design optimization data. For example, data of

element type -- is it a separate entity or just a property of entity

element? Similarly, data of cross-section type faces the same

problem. The methodology of database design did not suggest suitable

schemes to classify such kind of data. Another problem was to what <'

extent tie generality, of domain identification should be maintained.

At )ne extreme, domains may be identified as integer numbers, real

characters, vectors and matrices. At another extreme, domains

r e identified in great detail , for example: a set of element

7 2.'

''.e*- Z- ,



208

numbers greater than I and less than 100, a set of stiffness matrices of

size nxn; a set of load vectors of size n; a set of truss element member

connectivity vector. Too much generality will not bring out clear

identification of characteristics of finite element analysis and design

optimization data. Detailed approach in identifying domains will lead

to confusion and tedious database design process. Further, in selecting

a suitable set of elementary relations from the transitive closure, some

difficulties are encountered. Since, there exists several path to 

access data, selection of a suitable path depends on the judgenlent of

database designer. Use of processing sequence has helped in resolving .

selection of elementary relations to some extent.

The methodology to design an internal data model for finite element

analysis and structural optimization data has provided us with a tool to

design a database and implement it using a DBMS. The methodology is

found very useful in separating general tabular type of data and matrix
data used in analysis and optimization computations. The use of

normalization procedures in internal database design has enabled us to

obtain a set of relations which were consistent with theoretical model

and thereby eliminating redundancy in data storage.

One of the problems encountered in using the methodology to design

relations for internal model is in deciding whether all attributes

associated with a particular key attribute be combined in one relation

or separated into two or more relations. For example, in the relation
4 -S

ELPAR, is it useful to include attributes: Nonlinear index and dimage-.

flag, even when nonlinear analysis or damage members are not used in

- .-S. ,-, ., - -. .4-, ,, .. .. .. *-. .-*4***. .- . "- , ,-...-... .. ,.... .... .- ,. ." ... ..



209

cuiputation. If included, they introduce redundancy in data storage, j
but nelp in using the same relation for other types of computations.

Another problem is faced in deciding how many relations to use for

storing data; for example, connecting nodes of an element. If

connecting nodes of all types of elements are stored in one relation,

then we need to use variable length vectors which requires more overhead

information to access data. On the other hand, if separate relations -'C

are used for each type of finite element, then number of accesses to

different relations increases introducing inefficiency in data access.

The methodology suggests schemes to satisfy data requirements of

different applications by using an external data model. Even when the

iinpleinented database does not have the data required by certain

applications in the form they need, the methodology suggests adding new

relations to provide the required data. But by adding, new relations -

containing data derived from existing relations introduces redundancy in

data storage. The methodology does not suggest solution to this

4i s'um:i ary, the database design methodology developed for finite

eu_,-n_ analysis and structural design opcimization is found to be

tre siely Asetu . intuitive methods of datan)ase design can be replaced

,y a syste,3tatc approach for the mosc part.

% Ad

..,

/ ,di~~~~~~~~. .. .. ..... ', ', ' ;,'l -,...£,.-..:...-..,.......-........ -- :-.-.......-,



210

CHAPTER 8

IMPLEMENTATION OF A COMPUTER-AIDED STRUCTURAL
DESIGN OPTIMIZATION SYSTEM USING DBMS

8.1 Introductory Remarks

A computer-aided structural design optimization system is

implemented using the database designed in Chapter 7 and the database

management system MIDAS. This implementation is carried out to

demonstrate use of the database and the database management system in

finite element analysis and structural design optimization

applications. Also, the results of the implementation will be used in

evaluaitng DDL, DML, query language, ddtabase design, performance of

DBMS in equation solving environment, and performance of design

optimization program.

This chapter describes details of the computer program for

structural design optimization. The program is developed in two

parts. The first part is a general purpose finite element analysis

program. The second part is a design sensitivity analysis program. In

Section 8.2, the capabilities of the program are described. The program

design is discussed in Section 8.3. Finally, the example problems

solved using the program are given in Section 8.4. Evaluation of DBMS

is discussed in the next chapter.

.,.



w m nn~ w r-n -. -. - - -",-

211

8.2 Capabilities of the Program

The general purpose finite element analysis and design sensitivity

programs have the following capabilities:

1. The program can perform static analysis, design sensitivity

analysis and optimal design of a structure.

2. The program can compute displacements, stresses, cost and

constraint functin values, cost and constraint gradients, impose

stress, displacement and design variable constraints on a

structure.

3. The program has an element library consisting of two and three

dimensional truss, beam, triangular membrane, quadrilateral

membrane and shear panel elements. New elements can be easily

added into the library.

4. Hypermatrix scheme is used for assembly of large matrices in

finite element analysis and design sensitivity computations.

D. Out-of-core solution of equations is carried out using ,K

hypermatrix scheme.

6. The program has modular structure. Modules in the program are

functioqaily independent. Modification of existing modules and

addition of new modules are simple to carry out.

7. The program uses a well designed database and the database 6-'

management system MIDAS.

8. Any large size structure can be analyzed and designed using the

program.

>



212

9. Program uses IDESIGN3 (Arora, et. al•, 1984b) for finding the

design change and optimal design computation. The program

IDESIGN3 has options to select mathemtical programming methods,

like Hybrid, RQP and cost-function bounding.

8.3 System Design

In this section, details of computer program design for finite

element analysis and structural design optimization are given. Function

and description of modules used in the program are given.

8.3.1 DBMS Used in the Program

Data Management System - MIDAS/R is used in implementing the finite

element and design sensitivity programs. The subroutines listed in

Section 6.2 are used for database management operations. The use of

MIDAS/R enables us to evaluate its performance in design optimization

applications. In a parallel research study, the performance of MIDAS/N

for finite element analysis and optimal design is being evaluated.

8.3.2 Finite Element Analysis Program

The general purpose finite element analysis program developed has

several modules. They are (i) input module (INPUT), (ii) data

generation module (STRMGN), (iii) module for element stiffness

computation (ELSTF), (iv) module for assembly of stiffness matrix

(STIFF), (v) module for assembly of load matrix (LOAD), (vi) module for
..

solution of equations (SOLEQ), and (vii) module for recorvery of

- %
- " .



213 >1

displacements and stresses (STRESS). These modules are functionally

independent. They directly interact with the database for input and

output of data using DBMS. Various modules used in the program are

schematically shown in Fig. 8.3.1. The function and description of the

modules are given in the following paragraphs.

Input Module. The input module reads the data used in the finite 4,

element idealization such as material property, element connectivity,

nodal coordinates, boundary conditions, and cross-sectional property.

The data read is stored in the database for further processing. Data

for each substructure is given seperately. The module has subroutines

INTIAL, DATAIN, DATELT, DCORNS, DATEPR, DATCON, ESRELT, SETDF1, SETDF2,

and SEiDF3. Subroutine INTIAL, reads the general data needed for a .

structure such as material properties, element types, and number of

substructures. DATAIN reads general data of a substructure such as

number of elements, and number of nodes. Element connectivity data and .

cross-sectional properties are read in DATELT. Coordinate data and

boundary conditions are read in subroutine DCORNS. Subroutines DATEPR,

DATCON and ESRELT store the input data in various relations.

Subroutines SETDF1, SETDF2, and SETDF3 define relations in a database.

These subroutines are again functionally independent. They call MIDAS/R

routines for database management operations.

.- - , - . .. , . . . .. .- e- AL



214

ESTFD 4GNi

A

T
SMART [ ]LIBRARY ] A '.

(MIDAS, STIFF
IDESIGN, B
OTHERS)

A

LOAD EW1

S"OEQ

--

'5 STRESS ,

Figure 8.3.1 Modules in Finite Element Analysis Program

il5'.

".' -' 
"

':-.- .-' " .-' " * . -" "5 . o - - " " " " " -..-. " "* . " "" " " - "- * S S. - % -" 
"



215

Module for Data Processing. This module generates data such as

degrees of freedom numbers for nodes, degrees-of-freedom numbers for lei

elements, element number participating in submatrices of assembled

stiffness matrix, address of submatrices of the hypermatrix (stiffness)

and degrees-of-freedom numbers for internal and boundary nodes of a

substructure. The module has subroutines INBDDF, PRSCDF, ELTBOL,
*. ..

ELTPGS, FMNEIP, LAHMYT, ENISMP, SETDF4, SETDF5 and SETDF6. The module -,

uses the relations created from the previous module to generate data and

stores them in new relations. Subroutine INBDDF and PRSCDF generate "'A

degrees-of-freedom numbers at various nodes of a substructure.

Subroutine ELTBOL generates degrees-of-freedom numbers of elements.

Subroutines ELTPGS, LAHMYT and ENISMP are used for generating

information about nonnull partition numbers in assembled stiffness .

matrix, element numbers contributing stiffness to submatrices of the

hypermatrix etc. Subroutines SETDF4, SETDF5 and SETDF6 are used for

defining relations in the database.

Module for Element Stiffness Computation. Element stiffness and

transformation matrices are computed in this module. The module has a

library of subroutines to generate stiffness matrices for various finite

elements used in the program. The library contains routines for two and

three dimensinal finite elements - truss, beam, triangular membrane, -

.uadrilateral membrane, and shear panel elements. The subroutines used

in the nodule are ETRUSS, EBEAM2, EBEAM3, ETRMEM, EQDMEM, SMSPAR, ESSP,

TRANSI, TRANS2 and TRANS3. ETRUSS generates element stiffness matirx

for two and three dimensional truss elements in local and global

V:"

SR ""-



216

coordinate system. Element stiffness matrix for two and three.I

dimensional beam elements are generated in subroutines EBEAM2 and

EBEAM3. Element stiffness matrix for triangular membrane, quadrilateral

membrane, spar and shear panel elements are generated in ETRMEM, EQDMEM,

SMSPAR, and ESSP respectively. Transformation matrices required for

these elements are computed in TRANSI, TRANS2 and TRANS3. Options are

available either to store the element stiffness matrix or to generate it

as and when required. New elements can be added easily into the

library.

Module for Assembly of Stiffness Matrix. This module assembles

stiffness matrix of a structure. The module has capability to assemble

any type of finite element used in a structure. The program assembles

the stiffness matrix in a hypermatrix form. The submatrices are

numbered as shown in Fig. 8.3.2. One submatrix is assembled at a time

using information about element stiffness matrices contributing to the ,. t

submatrix. This scheme, therefore, reducues the number of I/0 required

to assemble a matrix. The program has capability to assemble internal

and boundary stiffness matrices required for substructure analysis. The

module has subroutines ASMBLY and SETDFII. ASMBLY subroutine actually

assembles the stiffness matrix for a substructure in the hypermatrix

form. Options are provided in the module either to use the element

stiffness matrix data from the database or compute them when required.

Null submatrices are not assembled. -,

VM

["'I
[ 7* " . " . -" " -" ." / -" ." . " .* . , . .. . , " . . . . . . . . . . . . , ; _ #



217

kINTER NAL P-----rABOUNDARY-1
DOF DOF

1 2 4 7 11 16 22 28

3 5 8 12 17 23 29

6 9 13 18 24 30

10 14 19 25 31 NATSIZ

SUB14ATR I X
15 20 26 32-

21 27 33

34 35 -

36

Figure 8.3.2 Assembled Stiffness Hypermatrix .

i .'* .SV

):,- -ww ''"'.'J-] '  w "," "l "d " '-",' Y % """- "" " ","". "e ." . "" -""- "" .. "" " .-. . "" ."".-." .","".-" .-". . "" ."" .'.;2 €

. , € . , ..,W ..r , < V -2 " - 2. " -• f . " . . , * .' . . .' . ' " ' -. 4 " , -.. . .... ..



..,. -.

218
., .-.-

Module for Assembly of Load Matrix. Load matrix is assembled in

this module. Any number of load cases can be assembled using the

module. Again the assembly of load matrix is in the hypermatrix form.

This module reads the load data and stores them in relations. The load

data is processed according to degrees-of-freedom and load case numbers,

and stored in relations. The load assembly routines assembles one load

submatrix at a time using the data created by an earlier routine. The -.

module has capability to assemble internal and boundary load matrices of

a substructure seperately. The subroutines in the module are LOADI,

LOAD2, LOAD4, LOAD5, SETDF7, and SETDF8. Subroutine LOAD1 reads the

loads acting at various nodes of a substructure for different load

cases. Subroutines LOAD2 and LOAD4 process the load submatrix numbers

and other intermediate data required for load hypermatrix assembly.

Load matrices are assembled for each substructure in subroutine LOAD5.

SETDFll routine defines relations needed for LOAD module. The load

submatrix numbering is schematically shown in Fig. 8.3.3. Null

submatrices are not assembled.

Module for Solution of Equations. Large system of simultaneous

equations are solved in this module. The module uses the stiffness and

load matrices assembled in the hypermatrix form. Out-of-core solution

of equations is used. The program decomposes stiffness matrix and

performs forward and backward substitutions on the assembled load

matrix. Subroutines used in the module are DRIVE, FRMVEC, FRMVEX,

MODIFY, GETHYP, PUTHYP, TRIPLE and MLTPLY. Subroutines, DRIVE and

MODIFY decompose stiffness matrix.

!..-""



219

LOAD CASES--.j

1 7 13 19

2 8 14 20

3 9 15 21 INTERNAL

DOF

4 10 16 22DF

5 1 1 1 7 2 3 - - B I
___ SUBMATR IX

6 12 18 24
-1,

25 27 29 31
____ BOUNDARY

DOF a

26 28 30 32

Figure 8.3.3 Load Hypermatrix

N

N'

" • - , - ' w " . ,' • - - . . - ' . - . . " w w ' ' 
"

. . % w . . . . . .r .#, . a' ,



220

Subroutines FRMVEC and FRMVEX perform forward and backward substitutions

on the load matrix. PUTHYP and GETHYP store and retrieve submatrices of aIaJ

assembled matrix. Subroutines MLTPLY and TRIPLE are used for

multiplication and triple multiplication of submatrices.

Module for Recovery of Displacements and Stresses. This module

recovers the displacement results from the solution module and

rearranges them node-wise and load case-wise. Again the nodal

displacements are rearranged to get displacements at the element

level. The module also computes stresses in the elements using the

element-displacement information. The subroutines used in the module

are DISPI, DISPE, ETRMEM and ETRUSS. Nodal and element displacements

are recovered in subroutines DISPI and DISPE respectively. Stresses for

triangular membrane and truss elements are computed in ETRMEM and ETRUSS

respectively.

8.3.3 Design Sensitivity Analysis Program

Design sensitivity analysis program has several modules. They are

(i) cost function module (COST), (ii) constraint function module

(CONFUN), (iii) cost gradient module (CSTGRD), (iv) partial derivatives

of element and node related constraints (PARDV), (v) assembly of dh/db

matrix (DHDB), (vi) solution for dz/db (DZDB), and (vii) constraint

gradient module (CONGRD). These modules are functionally independent.

They directly intereact with the database for accessing data required

for computation. The various modules used in the program are shown in

%m

'. - '¢ ' " " ;' "' '." ', .'-' '-" " -" " -" -' ' -" -" '." '" . ... -' " " '-" - "" " " "- ". % ". -". .- '-.

: ?", .- ;' ' :¢''/4'., ,-".-Z. . .,.,"-". ,"' , ,- .'-"- ."* . .. " , .-- .'-'-... "."." . ---.- '-. 4



1-, 7- ...... ,V V0 7

221 771

Hig. 8.3.4. The function and description of these 'nodules are given in Ii
the following paragraphs.

Cost Function Module. This module computes the cost of a

structure. The module computes the volume of each element used in the

structure and multiplies by its material density to obtain the mass of

the structure. Subroutine CSTTRS is used for computing mass of each

truss elements. Module has provision to add cost function for other

types of elements.%

Constraint Funtion Module. This module computes constraint

function of element related and node related constraints. The module

generates constraint numbers corresponding to element and node related

constraints. Also, global constraint numbers are generated. Element

related constraints are stress limits on elements. Node related

constraint functions are displacement limit at various degrees of

freedom. The module has subroutines CONFUN, ELMSTR, and ETRUSS.

Subroutine CONFUN generates constraint numbers and stores them in the

datdoase. Subroutine ETRUSS computes stress constraint for each truss

element. Stress constraints for other types of elements can be added

ino this module.

Cost Gradient Module. Cost gradient of a structure is computed in

this module. The cost gradient computation are carried out with respect

to eacn design variable and stored in a vector. Cost gradients for

truss eleiments are computed in subroutine CSTTRS.

4 W

% % ..-



22

III1

.J..

CONFUN

(ELFNC,
NDFNC) 

-J

D

A

SMART
LIBRARY 

A

MIDAS, 
B

IDESIGN A

SS- *N S

DZDB ,,..

Figure 8.3.4 Modules in Design Sensitivity Analysis 
Program

%-%

.. b.

5/



aii

223

Partial Derivatives of Element and Node Related Constraints. The

partial derivatives of element and node related constraints wih res)ect

to displacements are computed in this module. The module has

subroutines ELMSTR and ETRUSS to compute deriatives of constraints for

truss element. The derivatives are stored in the database.

Module DHDB. The module assembles dh/db matrix for a structure. I
The module computes unit stiffness matrix of various elements in the

structure and multiplies with corresponding displacements and assembles

the matrix. The matrix is assembled in the hypermatrix form. The

module has subroutines ASMDHB, STFGEN, and ETRUSS. Subrouinte ASMDHB

assembles the dh/db in hypermatrix form. Assembly procedure is similar

-,. to that for the stiffness matrix. Here the rows of the assembled matrix

correspond to degrees of freedom numbers and the columns correspond to

design variable numbers. Subroutine STFGEN calls ETRUSS or other

routines depending on the lement type. Subroutine ETRUSS computes unit

stiffness matrix for truss elements and multiplies with the

dkcorrespondiny element displacements and returns the matrix d z. .

Module DZDB. This module obtains solution for dz/db using

decomposed stiffness matrix and dh/db matrix. The solution procedure is

the same as described for solution of displacements. Out-of-core

souion of equations is carried out usiny the assembled

hyreri;atrices. The module has subroutines FRMVEC, FRMVEX, MLTPLY,

-IPLb, PJTHYP and GETHYP. Subroutine FRMVEC and FRMVFX perform forward

an, b&d:<ward substititions on rigJht nand side matrix. Subroutine MLTPLY

.. .

"-" ..'. - -4Z . - -" .'. -"-" > -' - ' " " "- " "- - - " . ." * """"""; " - - - ", - " -. . . "" " *

,-,-.. ., --.... .-, - .:...--...-- -...- -. . -..--.--.- - .. --. ..- ;- :,..-. . .... -• ?,:, # b '!, ',-... "



224

and TRIPLE perform multiplication and triple multiplcation of

submatrices. PUTHYP and GETHYP stores and retrieves submatrices in the

database.

Constraint Gradient Module. Constraint gradients of a structure

are computed in this module. The module multiplies the

vectors D4/az and dz/db to obtain constraint gradients d/db of a

structure. The constraint gradients are stored in the database for use

in IDESIGN3 program. These computations are done in subroutine SENSTV.

IDESIGN3 Program. IDESIGN3 program (Arora and et. al., 1984b) is

used to solve the minimization problem. The cost and constraint

functions and their gradients are supplied to the program through the

database. The design change values returned by the program are stored

in the database. With the new values of the design variables, the

finite element analysis and design sensitivity computations are

repeated. CPL commands of PRIME computer system are used to run the

program iteratively.

8.4 Example Problems Solved Using the Program

Several example problems are solved usign the structural design

-' optimization program. These examples enable us to evaluate several

aspects of the computer-aided structural design optimization process.

First of all, the examples show that many practical structural

optimization problems can be solved using the program. Secondly, the

performance of the program can be evaluated. Thirdly, it is possible to

~ -. *4 * -- 4- - * .- -. -

.4. . ~ - . . . . . . . . .



225

evaluate the use of database and database management system in the

program.

Problems solved using the program are (i) 10-bar truss (ii) 25-bar

truss (iii) 47-bar truss (iv) 72-bar truss (v) 200-bar truss (vi) 108- N

bar helicopter tail boom. The problems solved are shown in Figs. 8.4.1

to 8.4.6. Data for these problems were obtained from Thanedar, Park and .- ;'

Arora (1985). The optimum cost results obtained using the program was f

found to agree with those given in the reference. The intention of

solving these problems was to evaluate the use of database, database

management system and the computer program efficiency. Results of

evaluation are given in Chapter 9. .

'41

J ° p

>,.

. .4.

m'

" A

-- 1 ~ /
-. .....



226

360" - - 360"

3- 

104, 4...

6 360T 9.

.n4

Figure 8.4.1 Ten-Bar Truss

_.Vt

,.,. -..

S.; ,,.

-5

4 %44 ." ." ,4, '.%



227

74t

04s

x (1

% %



5 @ 5'-o" 228

15 068K 5 568

5-7K 0 20(D 12 14 6

S 21 2 22 2'-0"

2 -- "
1215

7 
.32 5 0-0"

X T 35'

19

G 19, -

6 37

40

3 6410-O

o 38

43

24

=9X v-

145

".'-, Figure 8.4.3 Forty-seven-M~ember Plane Truss
1 V5

44;

Z..",' , '.y-

"/ ; ;,,;"':b '< .- ;''" "''" ', '<;1" "8 1"0 "1-"0" '-" '1,"rV-. -'V . ,V '-, """¢



229

1 1

16 1

2 3

34 ~ 13

60 I7
.5 - 6 32 21

2 b 26

60 19 23 425

_j 10 39.,

(6 L --- - .. *

60* 37 " 3 .

60 55 5 19

12 o'
120

Figure 8.4.4 Seventy-two-Nember Space Truss ..

% ........ -. .... " ... -



240'Ll230

2 3 4

18 11 20, 21 2 p 3 24 2

I0

34 35 6 177 3a 19~ l 2-

7 *.l -. t

to a'N-

70 17'-IWO 17~1.V 1 7 17

562 25 3'5 0 6 2 6
21, 25 2 360"

I,.

9iue45 Two 99nrd-eue 99an Truss

34 35A -1 _)G 30 1 .42 -*

132 13 3 111 .515 7137 1 n 1

48~ 4 51 525



231

II-

CDC

LLa

LO 0

CD 0) ___0;

C4 I

0))

.4/
S..i

-C-. II



X2 232

3,4 7. 8 11, 12 15, 16 19,20 23,24 27,28 p

25.26

1, 2 5,6 9,1 lo3, 14 17, 18 21,22 2.2

-35"33" 33" 28" -1 24" 22"

99.5"74"

Top view

2,4 6,8 10, 12 14, 16 18.20 22,24 26,28

Front view

i .r3

0.14 0.14 1.4903 1.4903

131 115 251/ 27/

1.6918 116918

S,2.

X1.3658 X, 1.3658
X, 4- __ X---

14 16 /26 /28

0.14 0.14 1,4903 1.4903 *>

L~oads at Loads at
Section A Section 8

5.- Figure 8.4.7 Arrangement of Members for Open Truss-Helicopter Tailboom

% e - - - - -



233

CHAPTER 9

EVALUATION OF DATABASE, MIDAS AND COMPUTER
PROGRAM FOR STRUCTURAL DESIGN OPTIMIZATION

9.1 Introductory Remark .4

In this chapter, the database, the database management system -

MIDAS, and the computer program for structural design optimization are

evaluated. This evaluation is intended to bring out suitability and

drawbacks associated with the use of the database and the database

management system in the computer-aided structural design optimization

environment. Note that the suitability and drawbacks of various

database management concepts have been already discussed in Chapter

3. Also, the methodology developed to design a database was evaluated

in Section 7.6. Evaluation of the database used in the structural

design optimization program is given in Section 9.2. The database

management system - MIDAS is evaluated in Section 9.3. The MIDAS/R data

definition, data manipulation and query language of MIDAS are ,

evaluated. Performance of MIDAS in engineering applications is given.

Fina' ly the performance of the computer program for structural design

optimization is discussed.

9.2 Evaluation of the Database .,*-

Used in the Program .4

The design of the database and the computer program were

discussed in Chapters 7 and 8, respectively. Several criteria are

AV -I - - .A



234

selected to evaluate the database. They are (i) Simplicity, (ii) Ease

of use, (iii) Ability to represent structural design data, (iv) Data

redundancy, (v) Data consistency, (vi) Efficiency of data access, (vii)

store additional data, (ix) Accommodation of various data types, (x)

Representation of large vectors and matrices, (xi) Iterative data

organization, (xii) Data independence, (xiii) Ease of database design,

and (xiv) Implementational requirements.

Simplicity. The computer program used the simple tabular structure

of the database which was designed using a relational model. The

general tabular from of data such as element connectivity, nodal

coordinates, and material property, was found simple to organize using .- -

the relational data model. The program was able to organize large

matrices and vectors in a simple way using the numerical data model.

The simplicity of data organization was realized from the point of view

of users of the database.

Ease of Use. The database was found easy to use in the structural

design optimization application program. Rows of relations were stored .'V,

and retrieved easily. Large vectors and matrices were stored and

retrieved easily in row or submatrix order.

Ability to Represent Structural Design Data. The computer program

used the database to store all the data used and generated in the finite

element analysis, design sensitivity and design change computations.

The database was able to represent both the tabular and matrix type of

4.1.

L -, -,-

r**•-
: < '.S . ,; . ; ; '.''.-'..;-" "-''--.'.,'' '. . ' '..;"-''-"'. "., . X''. ' '',, 5 - " "" %." "- ", "" - -. ". . , .. j . -



235

data used in the computation. Tabular type of data was appropriately

represented in the database using the relational data model. Large

matrices and vectors were suitably represented in the database using the

numerical data model. However, it was found that the database design

was not adequate to accommodate some particular data, such as

intermediate data needed for assembly of large stiffness and load

matrices. This was because, these types of data were not included while

designing the conceptual and internal model of the database. Examples

of intermediate data are - element numbers contributing to submatrices

of assembled stiffness matrix, and load case numbers corresponding to

load submatrices. In such cases, additional relations were added at the

implementation stage to store the intermediate data. Data belonging to

a structure, substructures, elements and nodes was represented using the . .

relational data model. Even though, the relational data model was able

to accommodate these data, the model did not take advantage of the

hierarchical pattern of data. The relational data model accommodated,

for example, data belonging to substructures by assigning substructure

numbers to the relation names. Representation of data belonging to
different loading cases was possible by including an additional

attribute in relations corresponding to loading case numbers. However,

this was found inconvenient to use, since it neccessiated use of

pointers to rows to identify data of a particular load case. In

general, most of the data used by the computer program was represented

in the database.

". " ' -' -' -' ' -'-.'. '. ', ', ', " . ". "_ '." "; .""-""."","".""., ." € '. "- "- "- " - " "" ""4
' ' 

" ],' - ,"4 " " - ''" " , . -'"-'"-'" '" '" '" '" '"

""- . "-". .- -.- 4 " "-"," " " ." '.B ." '..-.' .'-.. ' ." . " ' '""" " """ " ' r 
'" -" °.e". ''-"-" - . " ' " ' .".' "'""



.,.

Data Redundancy. It was found that the data redundancy in the

database was minimum because of the rigorous methodology used while

designing the database. In some instance, data redundancy occurred

because of the addition of new relations during the implementation stage

of the computer program. New relations had to be included in the

database either because of faulty database design or to minimize number -.'

of access required to retrieve the data. For example, it was necessary
°' 1

to include a relation EPRD containing data derived from relations ELVEC

-and NODVEC to minimize number of accesses to the database. In another

instance, when only one load case is used in the computations, then load

case attribute in relations ELRES, SUBVEC and STRVEC become redundant.

STherefore, it was realized that it was impossible to avoid total data

redundancy in the database. But, the database as such satisfied the

requirement of minimum data redundancy.

Data Consistency. To a large extent, the data in the database was

stored consistently. Some inconsistency in data may still occur because

of the redundant data in the database. As explained earlier, redundancy

in the database was present due to addition of new relations such as

EPRD. To see if the database is consistent, consider modification of

the relation EPRD due a change in cross-sectional property. data. If

cross-section data is changed in this relation and if corresponding

changes are not made in the relation ELVEC containing the same data,

then the data in the database becomes inconsistent. To overcome this

problem, the application program was designed to keep track of the

redundant data and make proper changes in the required relations.

:*<:

* ~-,-.-,-.---,.

• N . 'P
"

." ' " " ' -' ' , +''" -" " """ - ", + . "" '"" " - --""" -" " """
"

"" " ' :



237

Efficiency of Data Access. The computer program for structural

design optimization was able to access the data required for computation

to minimize the in a minimum number of accesses. It was possible to I.
minimize the number of accesses to database by designing various

relations using the methodology discussed in Chapter IV. For example,

one access to database was sufficient to retrieve data of element

displacements. With two access to the database, material property of a El
particular element was obtained. In this case, first access retrieved

the material number used by an element, and the second access retrieved -.

the actual material property values. Again, two accesses were required

to get data for assembly of stiffness matrix. Here, one access was

required to obtain element degree of freedom numbers and another access

, to get element stiffness matrix. Assembly process was made more

efficient by not storing element stiffness matrices in the database,

thereby reducing the number of accesses to the database to only one.

Element stiffness matrices were generated as and when they were

needed. This computation of element stiffness matrices needed data from

three different relations. For example, to get coordinates of nodes and

material property of a particular element, access was needed to the

relation containing node numbers and material number of the element; to

tne relation containing coordinates of nodes; and material property

values. For an n node element, n accesses to relation containing

coordinates of data were necessary. To increase the efficiency of

accessing data for stiffness comptation, element nodal coordinates and

cross-sectional properties were stored together at the expense of data



238

redundancy. In case of large matrices, the database design, however,,•
lacks efficiency in accessing a matrix data in column order which was

stored in a row order or vice versa. This kind of operation requires a

very large number of accesses to the database. In general, the database

was able to provide data in an efficient way.

Ability to Satisfy Data Needs of Future Applications. The

relations used in the database are capable of expanding both

horizontally and vertically to satisfy the needs of future

applications. Addition of new attributes at the end of existing

attributes in a relation brings about horizontal growth of a relation.

Addition of new relations will provide vertical growth of the

database. For example, consider the need to use the database for

nonlinear analysis. Assuming that the existing relation ELPAR does not

have an attribute, for example nonlinearity index, then this attribute

is added into the relation. By this method, both the existing and the

new application program will be able to use the same database. This

addition of new attributes does not require any modification of existing

application using the relation. This addition of a new attribute which

is associated with a particular entity (in this case-element) is

possible only when the implemented relation has this entity key; ,.
'.N

otherwise, a new relation is added to the set of existing relations to

make the database grow vertically. Thus, we see from the above

discussion, that the database has capability to satisfy the data needs

of future applications.

",Nk,.

U'_,

N ...



239
.% .

Ability to Store Additional Data. The relations used in the

database have almost no limitation in storing any number of rows of

data. Also, the relations have the capacity to store data as and when

they are created during various stages of computation. This capability

was achieved since the database uses hash addressing scheme to specify

storage location of rows of various relations. But, it was found that

this scheme has disadvantage in not locating particular rows of a

relation in minimum number of accesses. Later, in Section 9.4, it will

be shown that the number of accesses to the physical database is very

high using this scheme. Further, for a particular implementation of

relations in the database, number of attributes in a relation is

fixed. Therefore, it is not possible to add additional attributes after

a relation has already been defined using DDL. But, by modifying dXta

definition call statements, new attributes can be added easily.

Ability to Store Different Data Types. In the computer program for

structural design optimization, several different data types - integer,

real, double precision and character words were used. Data belonging to

these data types were stored in relations. Attributes of the relations

in the database used these data types in many different combinations.

Therefore, the database has the ability to store different data types.

Ability to Store Large Vectors and Matrices. The database was able

to store large matrices and vectors neeJed for computation. Systematic

organization of large matrices and ve,tors was possible by using the

numerical data model. Vectors were st)red in row order. Matrices were

1 . -I-"-' . .- - . . .. "- .. Q6- -



240

stored submatrix order. The database was able to accommodate variable

length vectors. Database, however, does not have the capability to

store vectors in column order. The size of a row is limited to 1024

words. Number of elements in a submatrix cannot exceed 1024 words. The

database design, also lacks the capability to avoid storage of zero

values within a row, or submatrix.

Ability to Organize Iterative Data. The database has the

flexibility to accommodate iterative data of structural design

optimization. At the implementation stage of the database, the

relations and matrices were classified into two groups, one group

containing data which remained unaltered at various iterations, and the

second group whose data changed in each iteration. Where data of

previous iteration was not needed they were deleted at the beginning of

the current iteration. The concept of global and local databases was

used to support the iterative data.

Data Independence. The physical storage structure of the database

is transparent to the user. The user or application program operates

only on the logical database. The physical storage structure can alter

without affecting the application program. Hence, data independence is

* achieved in the database design.

Ease of Database Design. Even though, the conceptual data model

was found tedious to design, it was found very useful to design

-.,- relations in the database. Relations for the internal data model were

easy to construct simply by specifying various attributes in a

-%
+ + ,,- ,~ ~~.*.. .,:.,+,, .,,



241

relation. Also, modification of one relation generally did not force

reorganization of other relations that were already designed. It was

found easy. to add new relations into the database, since no pointers or

links were needed to other relations. Also, large matrix data

organization using numerical data model was found easy to incorporate in

the database.

Implementational Requirement. The database design did not impose

any special restrictions on the use of a particular database management

system. Even though, the database for the structural design

optimization program was implemented using MIDAS/R, it is also possible

to use MIDAS/N.

9.3 Evaluation of DDL, DML and Query

Language of MIDAS

The data definition, data manipulation and query languages of

MIDAS/R were used in the computer program for structural design

optimization. The subroutines needed for using these languages were

described in Section 6.2. These subroutines/commands are evaluated here

to see if they satisfied the requirements specified in Sections 5.3 to

5.5. This evaluation brings out the suitability and drawbacks in using

these languages in computer-aided structural design application, the

evaluation is based on the experience in using these languages in the

computer program described in Chapter 8.

Evaluation of DDL of MIDAS/R. The computer program used the data - .

definition language of MIDAS/R to define various relations and matrices

S 4....



242

needed for computation. Subroutines of DDL were found simple to use.

MIDAS/R could define and use only one database at a time. The database

and relation names had to be less than 6 and 8 characters,

respectively. It did not impose any restrictions in defining any number

of relations in a database. There was some restriction in the

definition of the length of a row of a relation which was limited to

1024 words. Because of this, large vectors and matrices could not be

accommodated in a relation. This problem was overcome to a certain

extent by the use of submatrix approach to store data of large

matrices. The language satisfied the requirements of dealing with

various data types integer, real, double precision and character

words. Since the number of rows in a relation is not required to be

specified during data definition, MIDAS/R provided flexibility in

allowing any number of rows in a relation. The DDL did not provide any

facility to define relations and matrices for several substructures in

the same database. Because of this, same relation and matrix names

could not be used for data definition of substructures in one

database. This problem was overcome by concatenating substructure

number with the relation or matrix name. Redefinition of attributes in

a relation, neccessiated definition of a new relation and copying

portion of data from the existing relation to the new relation. The DDL

did not provide any facility to allow the user to specify number of

pages and page size for efficient utilization of available memory.

Since the application programmers generally have the knowledge about

particular relations and matrices needed at various stage of

r, ',' 'g," "," 2oj ", r,,2............... ,. "...... -..... ... .. . .,........ .. "" .- .. ... "'

w 4 -4 .%, -Pr' % " """ - " -" -" % ." .- w . .. " "- •" "-.



243

computation, control in deciding the page replacement should be made

available to the application programmers. Other than some of the

restrictions discussed above, the DDL satisfied the requirements

specified in Section 5.3.

Evaluation of OML of MIDAS/R. The computer program for structural

design optimization used the data manipulation language of MIDAS/R. The

DML provided a set of subroutines which were useful and convenient in

storing, retrieving, modifying and deleting data in the database. The

language satisfied the requirements specified in Section 5.4. Several

points are noted after using the DML in the computer program. MIDAS/R

could only operate on one database at a time. If several databases are

needed then they have to be used one after another by opening and

closing the databases. RDSGET and RDSPUT routines operate on one row at

a time. Even though, these routines have a less number of arguments,

some penalty has to be paid in terms of efficiency when several

successive rows have to be stored or retrieved. From this point of

view, it is better to have starting and ending row numbers in the

arguments of these subroutines to minimize number of calls to the

database. The DML of MIDAS/R requires a call to RUSGET before actually

modifying the data using RDSMOD. This was found inconvenient to use.

Evaluation of Query Language. The query language of MIDAS/R served

two purposes. First, it was found very useful in developing and

debugging the computer program for structural design optimization.

Secondly, the query language provided a simple set of commands to

V N,

* .~ . ;:~- ~d~ %



244

interactively define and manipulate the database. While developing and I
debugging the application program, query commands of MIDAS/R such as

SELECT, LIST, CHANGE and DELETE were used to see if the application

program has correctly defined and manipulated a database using the

subroutines for DDL and DML. Sometimes, the incorrect data stored in a

database due to erroneous application program logic was rectified using

the query commands. Display of assembled stiffness submatrices on the

terminal was sometimes useful in checking the correctness of the

assembly procedure. Query language of MIDAS/R was found very useful for , .*

pre- and post-processing of data. Commands like 'SELECT STRESS GT ,.

100.0', 'SELECT DISPLACE GT 10.0 AND LT 100.0', 'SELECT COORD-X FROM

NODE DATA' was found very useful. Query language provided a simple set

of commands to see the contents of the database. The language satisfied

the requirements specified in Section 5.5.

9.4 Evaluation of MIDAS in Structural

Design Applications

In this section, evaluation of MIDAS in structural design

applications is made. Out-of-core linear simultaneous equation solvers

are developed to evaluate the performance of MIDAS. Two types of

equation solvers are developed, one using skyline approach and another 12

using hypermatrix approach. First, the performance of MIDAS/N and

MIDAS/R are evaluated using skyline approach. Later, they are evaluated

usina hypermatrix approach. This evaluation brings out several aspects

such as efficiency of MIDAS/N and MIDAS/R in equation solving

environment, suitability of skyl ine and hypermatrix approach for large

7,

" , J" " -. - " -' " ." " - .'," ." . .' ."" ", ." " ''.. w'; '' 'v" '. ' "'" "",*4 " .' ' • " *



245

equation solving applications, use of memory management in engineering

application, and design aspect of structural optimization program. In

the following subsections and details of evaluation are given.

9.4.1 Skyline and Hypermatrix Approaches

Computer programs for solving equations using skyline and

hypermatrix approaches are developed. The skyline approach uses left

hand side coefficient matrix in the skyline form. Each column of the

LHS coefficient matrix is of variable length storing only nonzero

values. Each column, however, includes zero values within it. The

right hand side and solution for unknowns are stored in a column

vector. Numerical data model consisting of two levels of matrix data

organization is used. First level contains details about skyline height

and addresses of diagonal elements and the second level contains actual

matrix data. Two separate programs are developed for solving equations,

one using MIDAS/N and the other using MIDAS/R system.

Computer program for solving equations using hypermatrix approach

use LHS coefficient matrix in the hypermatrix form. Large matrix is

divided into number of submatrices. Only upper symmetric portion of LHS

matrix is stored. Similarly the RHS matrix is also divided into a

number of submatrices. The solution vectors are also stored in .

submatrix form. Null submatrices in LHS and RHS hypermatrices are not

stored and manipulated. Partially full submatrix, however, stores zero

coefficients within it. Again, numerical data model is used for matrix

data organization. First level, contains nonnull submatrix numbers and

ILn



246

their sizes, and second level contains actual matrix data. Another two

programs are developed; one using MIDAS/N and other using MIDAS/R

system.

Both the approaches use Gaussian elimination scheme to decompose

the coefficient matrix. Forward and backward substitutions are carried

out to obtain solution of equations. W

Thus, totally four computer programs are developed for solving

equations. Program SKYSOL solves equations using MIDAS/R by the skyline

approach. Program SKYSOLB (Shyy, 1985) solves equations using MIDAS/N

by the skyline approach. Program HYPSOL uses MIDAS/R to solve equations

by hypermatrix approach. Program HYPMDN uses MIDAS/N to solve equations

by the hypermatrix approach.

Two sets of large equations are solved using the four computer

programs SKYSOL, SKYSOLB, HYPSOL and HYPMDN. First set of equations has

1000 unknowns and half band width of 10. Second set of equations has

1000 unknowns and half band width of 30. For hypermatrix approach

submatrix size of 10 is used. These equations are solved with different

memory management schemes. Performances of these programs are measured

by noting central processing unit time (CPU), number of reads made on

physical database (NREAD), number of writes made on physical database

(NWRITE), and number of calls made to database management subroutines

(NCALL).

The details of performance of these programs are given in

subsequent sections.

I,,



247

9.4.2 Performance of MIDAS/R

The two computer programs SKYSOL and HYPSOL using MIDAS/R were used

to solve the two sets of equations. The results of CPU, NREAD, NWRITE

and NCALL are given in Table 9.4.1. The table shows the results for

different cases of page size and number of pages. Three different cases

(i) 20 pages of 256 short integer words, (ii) 20 pages of 1024 short

integer words, and (iii) 2 pages of 20480 short integer words are used.

The following points are observed from the table. As the page size

is increased CPU time for solving equations using skyline and

hypermatrix approaches reduces. Number of reads (NREAD) for large page

size is less than for small page size. NWRITE also had similar trend

except for the case of hypermatrix approach with page size of 1024

words, where NWRITE increased when page size is increased. The number,

of writes is much smaller than number of reads. This may be due to the

hash index scheme used in the MIDAS/R addressing and searching

routines. The MIDAS/R program makes a huge number of reads to search

and locate the required data. Further, note that number of calls to

MIDAS/R routines remained same for all page sizes, as expected. Number

of calls to MIDAS/R increased as bandwidth increased.

Skyline approach for solving first set of equations with a page

size of 256 words took 228.55 seconds, whereas hypermatrix approach for

solving same equations with same memory management scheme took 2720.87

seconds. The hypermatrix approach is about 10 times slower than the

skyline approach. In solving the second set of equations with band

width of 30, skyline approach used 3138.66 CPU seconds, whereas iI.I
9 r,



LN

248

Table 9.4.1 Performance of MIDAS/R

Number of equations : 1000
Half band width : 10

Page Number of Skyline Approach Hypermatrix Approach
Size Pages

CPU NREAD NWRITE NCALL CPU NREAD NWRITE NCALL

256 20 228.55 16103 218 12984 2720.87 92312 564 12082

1024 20 119.00 13970 74 12984 1623.00 50678 619 12082

20480 2 50.75 303 65 12984 928.00 26644 495 12082

Number of equations 1000
Half band width 30

Page Number of Skyline Approach Hypermatrix Approach
Size Pages ._

CPU NREAD NWRITE NCALL CPU NREAD NWRITE NCALL

256 20 3138.66 65602 530 32594 8207.61 275060 1157 24117

1024 20 1576.16 31417 191 32594 3717.68 115788 1327 24117

20480 2 1297.96 27481 145 32594 1311.56 27497 2598 24117

c :.K ,e .. . , , - .-.--. -. . . .,. . .. .....--. - - ,-L-.- - -.



249

hypermatrix approach used 8207.61 CPU seconds. In this case, the

hypermatrix approach is about 3 times slower than the skyline

approach. Thus, we see from the results that as band width is increased

the difference in CPU time between skyline and hypermatrix approaches

reduces.

9.4.3 Performance of MIDAS/N

The two computer programs SKYSOLB (Shyy, 1985) and HYPMDN using

MIDAS/N were used to solve the two sets of equations. The results of

CPU, NREAD, NWRITE and NCALL are given in Table 9.4.2. The equations

are solved for different cases of page size and number of pages. Two

different cases (i) 20 pages of 256 short integer words, and (ii) 20

pages of 1024 short integer words.

The following points are observed from the table. As the page size

is increased from 256 words to 1024 words, the CPU time for solving

equation using skyline and hypermatrix approaches reduces, but not to a

considerable extent. Number of reads and number of writes for large

page size is much less than for small page size. Number of writes is

smaller than number of reads. This is due to replacement of unmodified

pages by new data causing more reads than writes. Note that number of

calls to MIDAS/N routines remains same for all page sizes as expected.

Numbe- of calls to MIDAS/N increased as band width increased.

Skyline approach for solving equations of 1000 unknowns with a half

band width of 10 and page size of 256 words took 33.05 seconds, whereas

hypermatrix approach for solving same equation with same memory



250

Table 9.4.2 Performance of MIDAS/N

Number of equations 1000
Half band width 10

Page Number of Skyline Approach Hypermatrix Approach
Size Pages _____

CPU NREAD NWRITE NCALL CPU NREAD NWRITE NCALL

256 20 33.05 340 127 16262 248.10 22698 1001 11487

1024 20 30.69 70 30 16262 211.40 6013 339 11487

Number of equations : 1000
Half band width : 30

Page Number of Skyline Approach Hypermatrix Approach
Size Pages _____

CPU NREAD NWRITE NCALL CPU NREAD NWRITE NCALL

256 20 125.36 1394 480 38688 486.02 39545 1326 22939

1024 20 114.73 337 120 38688 411.42 10370 435 22939

-Uf

*1' ' °- ' , _ -" ' " ' ' ' , ' l -, ,, ' ..-.- -' ' , -' " , ''% - ' " , ''' - - '".. ' """""""""" "" . , " ," ,

" . .- ,mo ." , ',' . " " ," .." m , " ." # m
m

4" r . ; m , .m a - .- ., - ,,.. ., ,- . .. , .- .. •



25"

management scheme took 248.10 seconds. The hypermatrix approach is

about 8 times slower than the skyline approach. In solving the second

set of equations with a band width of 30, skyline approach used 125.36

seconds, whereas hypermatrix approach used 486.02. In this case,

hypermatrix is about 4 times slower than the skyline approach. We see

from the result that as band width increases the difference in CPU time

between skyline and hypermatrix approaches reduces. The reason being,

percentage of nonzero elements within the nonnull submatrices

considerably reduces as band width increases in the two sets of

equations. Arithmetic operations on nonzero elements reduces with less

percentage of nonzero elements bringing about reduced CPU time.

9.4.4. Comparison of MIDAS/N and MIDAS/R
Using Skyline Approach

In this section, the efficiency of MIDAS/N and MIDAS/R is compared

in solving equations using the skyline approach. The two computer

programs SKYSOL and SKYSOLB were used to solve the two sets of

equations. The comparison of results is given in Table 9.4.3.

Equations are solved for different cases of page size and number of

pages. Two different cases (i) 20 pages of 256 words, and (ii) 20 pages

of 1024 words are used for comparison.

The following points are observed from the table. MIDAS/N used .

33.05 seconds of CPU time for solving 1000 equations with half band

width of 10 and page size of 256 words, whereas MIDAS/R for solving the

same eluations took 228.56 seconds. Thus, we see that MIDAS/R is about

3 times slower in this case. For page size of 1024 words, MIDAS/R is

.-



-:.

252

Table 9.4.3 Comparison of MIDAS/N and MIDAS/R Using
Skyline Approach

Problem details:
Number of equations : 1000
Half band width : 10
Skyline height : 10

Page Number of MIDAS/N MIDAS/R
Size Pages

CPU NREAD NWRITE NCALL CPU NREAD NWRITE NCALL

256 20 33.05 340 127 16262 228.55 16103 218 12984

1024 20 30.69 70 30 16262 119.00 13970 74 12984

Problem detail s:
Number of equations : 1000
Half band width : 30
Skyline height : 30

Page Number of MIDAS/N MIDAS/R
Si ze Pages

CPU NREAD NWRITE NCALL CPU NREAD NWRITE NCALL

256 20 125.36 1394 480 38688 3138.66 65602 530 32594

1024 20 114.73 337 120 38688 1576.16 31417 191 32594

IdI



253

about 4 times slower than MIDAS/N. The number of writes in MIDAS/R is

about 2 times more than in MIDAS/N, and the number of reads in MIDAS/R

is very high compared to MIDAS/N. We could attribute this high value of

reads to the nature of addressing and searching used in MIDAS/R.

MIDAS/N uses indexing scheme to locate the data whereas MIDAS/R uses

hashing scheme which uses a large number of reads and searches to locate

the required data. Number of calls to MIDAS/N, on the other hand were

higher than in MIDAS/R. This is because, MIDAS/N uses addresses of

diagonal elements to locate the columns of a skyline matrix which is

stored in a single row vector. MIDAS/N is required to locate this

address before accessing the skyline vector. MIDAS/R does not require

such addresses, since skyline vectors are stored in variable length

rows, thereby using less number of calls to MIDAS/R. In the case of the

second set of equations with half band width of 30, similar trends of

CPU, NREAD, NWRITE and NCALL are observed.

Therefore, from the above results, we see that MIDAS/R is

inefficient compared to MIDAS/N.

9.4.5 Comparison of MIDAS/N and MIDAS/R
Using Hypermatrix Approach

Here, the efficiency of MIDAS/N and MIDAS/R is compared in solving

equations using the hypermatrix approach. The two computer programs

HYPSOL and HYPMDN were used to solve the two sets of equations. The

comparison of results is given in Table 9.4.4. Equations are solved for

different cases of page size and number of pages.

," m

"4 ' - ' " ''"--,?'''"''''"' '' ';-". -" '.-"." ''-" '."-'-' ' . . .- ". . .-"-"-" . ' " ."; _



254

Table 9.4.4 Comparison of MIDAS/N and NIDAS/R Using
Hypenmatrix Approach

Problem details:
Number of equations : 1000
Half band width : 10
Submatrix size : 10*10

Page Number of MIDAS/N MIDAS/R
Size Pages

CPU NREAD NWRITE NCALL CPU NREAD NWRITE NCALL

256 20 248.10 22698 1001 11487 2720.87 92312 564 12082 j,

1024 20 211.40 6013 339 11487 1623.00 50678 619 12082

Problem details:
Number of equations : 1000
Half band width : 30
Submatrix size : 10*10

Page Number of MIDAS/N MIDAS/R
Size Pages

CPU NREAD NWRITE NCALL CPU NREAD NWRITE NCALL

256 20 486.02 39545 1326 22939 8207.61 275060 1157 24117

1024 20 411.42 10370 435 22939 3717.68 115788 1327 24117

M...,



255

The following points are observed from the table. MIDAS/N uses i'k
248.10 seconds of CPU time to solve 1000 equations with half band width

of 10 and page size of 256 words, whereas MIDAS/R takes 2720.87 seconds

of CPU time to solve the same set of equations. Thus, MIDAS/R is about

10 times slower than MIDAS/N in this case. For page size of 1024 words,

MIDAS/R is about 8 times slower than MIDAS/N. Number of reads in

MIDAS/R is about 4 times more than in MIDAS/N for page size of 256

words. On the other hand, number of writes in MIDAS/R is about 2 times

less than in MIDAS/N for the same size. For page size of 1024 words,

number of reads in MIDAS/R is about 8 times more than in MIDAS/N,

whereas number of writes in MIDAS/R is 2 times more than in MIDAS/N.

Number of calls in MIDAS/R are slightly higher than in MIDAS/N. This is

because, MIDAS/R uses 2 call statements - RDSGET and RDSMOD to modify

data whereas MIDAS/N uses only one call statement RDSPUT to modify

data. Similar trends of CPU, NREAD, NWRITE and NCALL are observed for

the second set of equations.

Therefore, from these results we can see that MIDAS/R is

inefficient compared in MIDAS/N.

9.4.6 Performance of Memory Management

of MIDAS/R

As mentioned in Chapter 6, the MIDAS/R program is based on

modification and extension of the RIM program. A new memory management

interface was added to assess improvements in performance of the RIM

program. Here, a comparison of performance of RIM's built-in memory

management system and the performance of MIDAS/R with the additional .

memory management is made. The CPU times to solve 1000 equations are

!0 p

°~~N r," " w -w . .,.
,

•" ,... " .. ,-



256

used to compare the performance. Table 9.4.5 shows the CPU time for

various size of RIM's built-in memory management scheme and additional

memory management scheme. Observe from the table that the CPU time does

.' not vary considerably by increasing the total memory of the built-in

memory management scheme of RIM. This indicates that the RIM program is

not capable of utilizing large memory of the computer effectively. By

introducing the additional memory management scheme in MIDAS/R we see

that CPU time reduces considerably. As page size increased from 256

words to 2048 words, CPU reduced from 228.55 seconds to 79.00 seconds

for RIM's built-in memory of 9216 words. Similar trends are observed

for other cases of memory sizes. Therefore, we see that memory

management plays a very important role in a dynamic environment of

engineering applications. Also, memory management of the RIM program

can be substantially improved.

9.5 Evaluation of the Computer Program
for Structural Design Optimization

Using MIDAS

The computer program for structural design optimization described

in Chapter 8 is evaluated here. Evaluation of the program is based on

several criteria (i) capability to analyze and optimize large structural

systems, (ii) modular program features, (iii) element library, (iv) out-

of-core solution schemes, (v) well designed database, (vi) database

management system, and (vii) performance of the computer program. The

general purpose capability of the program, modular program features,
'V%

element library and out-of-core solution schemes used in the program

are already described in Chapter 8. Based on the evaluation

i
o

%

,V

~ ~ i
.", ; <.,-, -.-. .: . , ,,. ... ;..>: ; ., . . . . . .* . .. ; -, ...... . -. . ... . ,.-, . -, ....



257

Table 9.4.5 Performance of Memory Management of MIDAS/R

Number of equations :1000
Half band width :10

Total Memory of With Additional M.M. Interface
RIM's Built-in M.M CPU ______ __________ CPU

Page Size No. of Pages

9216 1597.33 256 20 228.55
1024 20 119.86
2048 20 81.99

20480 1542.53 256 20 228.11
1024 20 115.63
2048 20 79.50

81920 1514.00 256 20 221.57
1024 20 112.31
2048 20 74.51

163840 1607.69 256 20 218.01
1024 20 115.72
2048 20 80.95



258

criteria (i) to (iv), the program is well designed and satisfied the

requirements. Also, the program uses well designed database and

database management system discussed in Chapter 7 and 6, respectively.

Therefore, no further discussion on criteria (i) to (vi) is made here.

Detailed evaluation of the performance of the computer program is based

on several example problems described in Section 8.4.

The performance of the program is measured by noting parameters

such as CPU time, number of reads and writes made on physical database,

and number of calls made to the database management system. These

parameters are noted while solving problems (i) ten bar truss (ii)

twenty-five bar truss, (ii) forty-seven bar truss, (iv) seventy-two bar

truss, (v) one hundred-eight bar truss, and (vi) two hundred bar

truss. The data of these parameters are collected and given in Tables

9.5.1 to 9.5.6. Tables show these parameters for items - input and

preprocessing step (1), finite element analysis (2), design sensitivity

analysis (3), and design change computation done by the program IDESIGN3

(4). The tables show the CPU, NREAD, NWRITE and NCALL for both the

total run for all iterations required for optimization and for each

iteration of the optimization computation. Also, the tables show the

total - CPU, NREAD, NWRITE and NCALL for the complete optimal design
-.

computation. The CPU time to solve the problems using the computer

program are compared with the results given by Thanedar, Park and Arora

1985.

The following points are observed from these tables. The CPU

required to solve the various problems using the present computer

%.* V d N

% % % %



259

Table 9.5.1 Sumary of Evaluation Parameters for Ten Bar Truss

Item For Final Solution For each Iteration
No.__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

CPU NREAD NWRITE NCALL CPU NREAD NWRITE NCALL

1 18.23 352 106 419 18.23 352 106 419

2 15.03 165 22 2299 1.36 15 1 209

3 18.42 220 121 1419 1.67 10 11 129

4 34.61 3.14

Total 86.29 737 249 4137

CPU time from Thanedar, Park and Arora (1985): 5.5 sec.

Table 9.5.2 Sunary of Evaluation Parameters for Twenty Five Bar Truss

Item For Final Solution For each Iteration
No.

CPU NREAD NWRITE NCALL CPU NREAD NWRITE NCALL

1 18.37 356 108 1005 18.67 356 108 1005

2 34.37 315 150 7365 2.29 21 10 491

3 32.89 390 390 4199 2.19 26 26 280

4 52.27 3.48

Total 137.9 1061 648 12569 -.

CPU time from Thanedar, Park and Arora (1985): 7.4 sec.

%e%
-*4% , -.

, . 4 ,'.

-"-..



260

Table 9.5.3 Summary of Evaluation Parameters for Forty Seven Bar Truss

Item For Final Solution For each Iteration
No.

CPU NREAD NWRITE NCALL CPU NREAD NWRITE NCALL

1 21.46 359 122 2405 21.46 359 122 2405

2 20.08 174 90 5862 3.34 29 15 977

3 47.52 312 426 7980 7.92 52 71 1330

4 51.30 8.55

Total 140.36 845 638 16247

CPU time from Thanedar, Park and Arora (1985): 64.0 sec.

Table 9.5.4 Summary of Evaluation Parameters for Seventy Two Bar Truss

Item For Final Solution For each Iteration
No.

CPU NREAD NWRITE NCALL CPU NREAD NWRITE NCALL

1 22.14 360 127 4862 22.14 360 127 4862

2 83.99 527 340 25483 4.94 31 20 1499

3 56.25 424 696 11208 5.11 38 63 1018

4 69.63 4.97

Total 231.01 1331 1163 41553

CPU from Thanedar, Park and Arora (1985): 29.3 sec. ;Ky

Nm



261

Table 9.5.5 Summary of Evaluation Parameters
for One Hundred Eight Bar Truss

Item For Final Solution For each Iteration
No.

CPU NREAD NWRITE NCALL CPU NREAD NWRITE NCALL

1 25.96 397 136 9107 25.96 397 136 9107

2 226.91 1320 870 67620 7.56 44 29 2254

3 379.84 1610 3128 60352 12.66 53 104 2011

4 230.75 7.69

Total 863.46 3327 4134 137079

Table 9.5.6 Sumuary of Evaluation Parameters for Two Hundred Bar Truss

Item For Final Solution For each Iteration
No.

CPU NREAD NWRITE NCALL CPU NREAD NWRITE NCALL

1 44.97 601 166 44081 44.97 601 166 44081

2 412.41 2070 1530 147870 13.74 69 51 4929

3 1210.21 27450 9810 135960 40.34 915 327 4532

4 330.00 11.00

Total 2000.5 30121 11506 327911

"-4 .' . , .4**.g-. j . , kw 4 W d . ?-w x p '.; . .'.' '. 2 . .-



262

program and the one used in the reference are much different. The

program used in Thanedar, Park and Arora (1985) performs finite element

analysis and design sensitivity computation using only the available -

memory in the computer. No out-of-core data storage is used by the

program. Whereas the computer program developed here uses the database

and database management system described earlier. Therefore, the CPU "

time taken to solve these problems are high compared with the results

given in the reference, as expected. For instance, CPU time of 86.29

seconds is used by the program compared to 5.5 seconds used by the

program given in the reference. Similar trends are observed from the

table for other problems.

Several other points are observed from the table. CPU time, NREAD,

NWRITE and NCALL increase as the size of problem increase as expected.

CPU time, NREAD, NWRITE and NCALL for input and preprocessing of data is

small compared to those of finite element analysis, and design

sensitivity computation. However, these values are very high compared

to one iteration of finite element analysis and design sensitivity

computation. One of the reasons is extensive preprocessing of data done

before assembly of large matrices and solution of equations. This

preprocessing has enabled us to achieve efficient assembly of matrices

and solution of equations. Another reason, can be attributed to the use ..

of hypermatrix scheme in the finite element analysis and design

sensitivity computation. The hypermatrix scheme uses large amount of

intermediate information such as element numbers contributing to

submatrices, n(inull partition numbers for assembly and other V

computations. It requires lengthy programming logic and use of database

% %



263

to generate such data. Thus, the input and preprocessing step consumes

more CPU time to generate the required data.

Further, note that as number of calls made to database management

system increases, so does the CPU time. This indicates that DBMS

consumes enormous CPU time which is much higher than the CPU time

required for actual computation. Therefore, it is very important to

reduce the number of calls made to DBMS. Several ways to achieve this

are (i) use as much incore data storage as possible, (ii) redesign

relations so that number of accesses required to retrieve necessary data

is minimum, (iii) include starting and ending row numbers in the data

manipulation routines to store and retrieve relations, (iv) use adjoint

sensitivity analysis method and (v) use skyline approach to design the

computer program.

-*.x-

l{W, - -'-'°,''*" "-"~~~.. . . . . .. ..'- " '' -.--. . . . . .... ..--. - . '- - . . .-. .- ,. .. . . ..- ,.--,,-, .-



264

CHAPTER 10

SUMMARY, DISCUSSION AND CONCLUSIONS

10.1 Swumary

Computer-aided structural design means integration of structural :4
engineering design methods and computer-science in a computer-based

system containing a database, a program library and a man-machine

communication link. With this definition in view, a new concept is

described for integrating finite element analysis and design

optimization methodology into a computer-based system. Emphasis is

placed upon database management concept for structural design. Several

reasons exist for emphasizing data management in design. First, the

iterative nature of optimal design process uses large amount of data for

computation. Secondly, existing finite element programs are not

flexible to use modified or generated data at various stages of

design. Thirdly, designer needs control over the program and data to

obtain optimum design. Finally, a good database will enable addition of

new of optimization and other programs without extensive modification of

database or existing programs. Also, several designers can be allowed

to use a common database to investigate alternate designs.

Structural design process is described to bring out various steps

involved in design optimization. Mathematical modeling of the design

process is presented to describe the nature of computation and data used

J. 4 w

--~** ~ 5 ~ 4, .-- .--mm mm 5 N ' - - . ..FJ~ ?1 _ ,t - , - - :<.. ':-. wt..- ,! -

% *' . ~ .4 '~



265

in design. Important components required to build a computer-aided

structural design system are described. Need for a good data management

system is emphasized. Users of computer-aided structural design system

are identified and their requirements are described.

A study of database management concepts applicable to finite

element analysis and structural design optimization is conducted. This

study is essential since the data managements concepts are relatively

new to engineering community. Definition of various terminologies is

given and described with reference to examples from finite element

analysis and optimization data. Hierarchical, network, relational and

numerical data models are described. The advantages and disadvantages

of these models are discussed. Relational and numerical data models are

found to be appropriate for structural data organization. The concept

of normalization of data is described. This concept provides certain

guidelines to group different data items to form associations. Global

and local database concepts are described and their use of design

optimization is brought out.

A methodology to design a structural design database is proposed.

Up until now, no such methodology has been used for data organization of

existing finite element programs. No scientific database management

techniques were available at the time those programs were developed.

Three levels of data organization -- conceptual internal and external

are suggested for structural design databases. Data organization at --"

the conceptual level represents inherent characteristics of data

regardless of whether or not database management softwre available

........ . . .. . . . ...... -



BD-A174 458 COMPUTER-AIDED STRUCTURAL DESIGN OPTIMIZATION USING A 4/4
DATABASE MANAGEMENT (U) IOWiA UNIV IOWdA CITY OPTIMAL
DESIGN LAB T SREEKANTAMURTHV ET AL 38 SEP 86

UNCLASSIFIED ODL-85-17 AFOSR-TR-86-269 AFFSR-82-8322 F/G 18/3 NL

IIIIIIIIIIIIIl
KEEEIIIIIEE



1111112 1111L

6CROCOPY RESOLUTION TEST CHART
NATIONAL RLINFAII OF SZTANDARDS -163-A

%

* .1 $.L'~J.



266

supports such organization directly. Various steps are identified to

develop a conceptual data model. Methodology for including vector and

matrix data in the conceptual data model is described. A methodology

for constructing an internal model is proposed. The internal model aims

to store the structural design data in an efficient way. Considerations

for reducing storage space and data access time are discussed.

Normalization of data is suggested to avoid various anomalies in storage

operation, A method for developing an external model is given. An

externa, data model enables us to provide data to several application

programs depending on their needs. One of the important aspects in the

design of database for structural analysis matrix data. A methodology

is developed to store large matrix data in the database. Various types

of large matrices -- square, triangular, banded, hypermatrix, and

skyline matrix -- are identified and their characteristics are

studied. Various aspects like storage space, processing sequence,

matrix operations, page size, flexibility of modification, etc., are

considered to develop suitable storage schemes. A numerical model is

developed to represent large order matrix data. Finally, an algorithmic

model is proposed to deal with storage and computation efficiency

aspects required for structural design optimization programs.

A proposal to develop a database management system for structural

analysis and optimal design is made. Components required for a good

database management system are identified. Some important components of

the database management system are -- languages, command processors,

addressing and searching, file definition and file operation, memory

....

iu~j~ .~. . -. - --

4 ;~e~,J ~' . . .A.



267

management and security routines. Requirements of data definition and

data manipulation languages are formulated. Query language is proposed

for an interactive user of a database. A syntax (grammer) for these

languages is given. A survey of existing database management systems is

conducted. Requirements of a database management system are formulated.

Implementation of a database management system -- MIDAS was done. -t

MIDAS program has two subsystems -- MIDAS/R and MIDAS/N. MIDAS/R is

based on relational model of data and MIDAS/N (Shyy, 1985) is based on

numerical model of data. MIDAS/R relieves the burden of managing data

for application programmers by providing user-friendly application

commands. The program has sophisticated interactive commands to query

the database. Relations can be defined and manipulated using data.
definition and data manipulation commands of MIDAS/R. Interactive

commands of MIDAS/R can also be used to define and manipulate relations

in a database. MIDAS/R has capability to store any number of relations

in a database. Numerical database management system -- MIDAS/N has

capability to store matrix data of finite element analysis and

optimization programs.

A database is designed to store data of finite element analysis and

structural design optimization. The design is completed in three phases

using the methodology developed. Conceptual data model is designed by

identifying entities, entity keys and domains and forming elementary

relations. Internal data model is designed based on needs of

computation process and normalization procedures. This model is used

for implementation of database. Also, some relations are suggested to

,-6-
-, 7->. ,.'- >. ,.'..,-.-......-.. --.. -,---, ,'-.-/-. -..- ., .-, , ..;. . . .% -. ,



268

serve as an external data model. The methodology of database design is

evaluated in view of the actual database design.

A computer program is developed for finite element analysis and

design sensitivity analysis. The program has several modules which are

functionally independent. The program uses the database and the

database management systems - MIDAS/R. The program is capable of

optimizing general structural design problems. Capabilities of the

program -- element library, hypermatrix assembly, out-of-core solution

of equations, imposing stress and displacement constraints are

explained. The modules used in the program are described. A number of

example problems are solved using the program.

Finally, the database, the database management system - MIDAS, and

the computer program for structural design optimization are evaluated.

The database is evaluated using several criteria. The data definition,

data manipulation and query languages of MIDAS are evaluated. Computer

programs for out-of-core solution of equations using skyline and

hypermatrix approaches are developed. The performance of MIDAS/R and

MIDAS/N is determined. The efficiency of both the systems are

compared. The computer program for structural design optimization is

evaluated.

10.2 Discussion

The study answers several problems facing data management in finite

element analysis and structural design optimization computations. The

following questions were addressed in the study: (i) how a database has

,Irl

A JS .



269

to be organized? (ii) what kind of information is to be stored? (iii)

what kind of database management system is suitable? (iv) how data is

manipulated? and (v) ,')w various finite element analysis and design

optimization applications use the data? Answers to these questions were

not available, since only a few research studies had been made on the

topic. Thus, we were faced with the problem of how to answer these

questions. In this regard, sophisticated techniques were available to

organize data of business applications. Our next question was, is it

possible to use those techniques to organize data of engineering

applications? Soon it was realized that data of business applications

were of different nature than the data of engineering applications. But

the question arose as to whether engineering data could be similarly

modeled? If so, do the structural design databases require different

considerations from database of business applications? These questions

were not adequately answered previously. Several different approaches

had to be taken; for example, a study of database management concepts, .0

use of available database management systems, and development of special

structural design database management systems.

Therefore, an attempt was made to study all the relevant data

management concepts. The concepts that were found applicable were

described with reference to examples for finite element analysis and

design optimization data. The database management approach presented in .

the study offers solution to many of these problems. The study shows

how data of finite element analysis and optimization can be organized

using various data models. Relational and numerical models were found

4-.

:, ** ' ,- 'p * '. ' ' ,' ,' *.,. -'. ','- ' .. . - .. ., .. - - .. . .* , / -. " ,- .' ., . ," . " , , ¢" ,r ... - .. .w - % , -- '. 4, '



270

to represent all the characteristics of structural design data and

therefore they were selected for detailed study. Questions were posed

as to how to decide what data items have to be grouped together? In

particular, using a relational model, how do we determine what relations

are needed? and what their attributes should be? It was shown that

normalization of data provides certain guidelines to group the general

data items. It was realized that the normal form of data did not

suggest schemes to group data of large matrices. Further, the concept

of global and local databases was found useful in organizing iterative

data of structural design optimization.

After, we formulated the database management concepts for computer-

aided structural design optimization, the next question was how to

design a database? Is it possible to develop a methodology for

designing a database for structural analysis and design? If possible

how do we begin to develop a methodology? Are the methodologies used in

business application suitable for our purpose? If not, what aspects

should be considered in developing a methodology for structural design

databases? A methodology was proposed considering several features and

requirements of finite element analysis and structural design

optimization applications. Methodology used relational and numerical

data models for designing a database. Special consideration was given

to incorporate large matrix data into the database. A database was

designed using the methodology. This database was used for actual

implementation of the computer program for structural design

optimization. The methodology was evaluated to see if it was suitable

% % J.
Pr



271 4 J.

to design databases of structural optimization applications. It was

realized that the methodology was to some extent dependent on the way in

which characteristics of data are analyzed. Detailed analysis of ?.-

entities, domains and functional dependencies were needed which was ,..

sometimes difficult to make. But, in general the methodology enabled us

to design a well organized database for structural design application.

Later, in the study, we dealt with the need of a software for

database management. What kind of database management program is

suitable? Is it possible to use an existing DBMS or develop a new

database management system? What modifications are required to existing

DBMS so that it can be used in structural design application? These

questions were tackled by a detailed study of requirements of a DBMS.

It was realized that data definition and data manipulation languages

play an important role in providing a communication like between

designer and computer system. MIDAS program for database management was

developed. The program was able to organize both relations and matrix

data. This program was found to meet most of the requirements of a

DBMS.

A finite element analysis and structural design optimization

program was developed using the database and the database management

system MIDAS. The program was able to solve complex structural design

problems. Modular program design, element library, hypermatrix assembly

scheme, out-of-core solution, stress and displacement constraint

capabilities of the program were found very useful. The program was

developed to find out the suitability of the database design, efficiency

A." -- w



272

of the database management system, and efficiency of the structural

design optimization program. Also, several different types of equation

solvers were developed using skyline and hypermatrix approaches

incorporating MIDAS for out-of-core solution. It was realized that

performance of DBMS needs careful consideration in designing a DBMS for

engineering applications.

10.3 Conclusions

Important conclusions of the study are listed below.

1. The study has shown that computer-aided design optimization of

complex structural systems can be attempted by integrating

finite element-based-optimal design methods and computer-science

methods into a computer-based system containing a database, a

program library and man-machine communication link.

2. The study has shown that database management plays a very .

,. important role in developing a computer-aided design system.

Several problems of data organization in finite element analysis

and optimization applications can be overcome by providing

sophi sticated database management systems.

3. The study has shown that various database management concepts

are applicable to data organization of structural design

problems. Several concepts such as relational and numerical

data model are useful to organize tabular and matrix type of

data used in computation. Suitability and drawbacks of these

concepts are explained. I
J. - ,,

W J

',. . . . ... . -p .-. ,-. - . -, . .- "- . - . . . ' . . " ' . ' ' '- - -- . • " . .< - . ,. - . . .-, :.,' " ' '. "



273

4. The methodology developed for designing a database for

structural design application is useful and this methodology

will replace the intuitive way of data organization in finite

element analysis and optimization programs. The methodology, to

a certain extent, is dependent on the analysis of

characteristics of the data. Such analysis of complex

structural design data is not easy. Methodology to organize

both tabular type of data and large matrix data was very

useful. More study is needed to consolidate the methodology

developed herein.

5. Formulation of requirements of a database management system has

enabled us to develop and use proper database management system

for structural design optimization. Formulation of requirements

of data definition, data manipulation and query languages has

helped in providing a good communication link between computer

and application programmer.

6. A suitable database management system was implemented by

selecting, modifying and extending an existing database .. v

management system to meet the requirements of structural design

applications. This implementation has enabled us to explain

suitability and drawbacks of existing DBMS.

-7

5~ii

is. . -. , , .. - . - ..- . -.- .-.-.-.. , .w ''.
- 
,-.-- .. 'k , -.- ' " - """- ' " " ' " " " ' """ """"

° "
" " ' '

. w.w .. , , .,_ -.% ._ " _ . ,_' '. 'w_._ ',.' ".' % .'--& '' ' ;,. , ,_, . W'. -' -- '-" ,w .. . ... ... ... .,.. ... . - , .- .- ... . "w



274

7. The database designed using the methodology is capable of

storing structural design data. The database is well organized

and meets the requirements of finite element analysis and

structural design optimization applications. This design of

database has enabled us to demonstrate the use of database

design methodology. Our objective of having a well designed

database for computer-aided structural design was met.

8. Implementation of a finite element program and structural design

optimization program using the database and database management

system has shown that computer-aided design of complex

structural systems can be attempted. It was realized such

systems can be developed easily and quickly with the use of

database and database management systems.

9. Evaluation of database management system has indicated that some

compromise has to be made for the use of sophisticated DBMS in -

terms of inefficiency in computer CPU time. More study is :-...

needed to improve the efficiency of DBMS for engineering

applications.

10.4 Scope for Future Work

This extensive study on database management for computer-aided .

structural design optimization has shown that there is great potential

for future work. Several areas are suggested for extending this work.

, i--



1. Dvelo a ore ophsticted275
1. Develop a more sophisticated database management system that is

capable of dealing with relational and numerical data model

simultaneously.

2. Develop a detailed conceptual data model by considering not only

the basic association between data but also processing sequence

of computation to obtain a complete theoretical analysis of

structural design data.

3. Improve the efficiency of database management system by

enhancing the memory management schemes.

4. Develop a methodology to integrate several existing finite
"=-

element analysis programs into a common database. A more

detailed study of external model is required.

5. Methodology for integrating several databases for existing

finite element analysis programs needs to be developed. Network

of databases appears to be very useful in engineering

applications.

6. Study how a database can be utilized in parallel processing of

data in structural analysis and design optimization.

7. Use of database and database management system in mini- and

micro computer systems needs to be studied.

8. Use of database and database management system in finite element

mesh generation and mesh display needs further study.

n. %



276

APPENDIX I

AN ALGORITH FOR TRANSITIVE CLOSURE

It ILA



277

An algorithm for determining transitive closure from a yiven

connectivity matrix C is as follows:

1. Form matrix J with

J(i,i) = 0 for I < i < n

= Ifor i * j

2. Form modified connectivity matrix CC

with CC(i,j) = C(i,j) 1 < i < n

1 •j •n

and CC(i,i) = 0 S

3. DO i = 1,n

DO k = 1,n
4',

DO j=1,n

If If (CC(i,j).EQ.1.AND.CC(j,k)-EQ.1)C(i,k) =1

End DO loop

4. Remove erroneous dependencies that were derived from the situation

N. + N. Ni

5. IS new matrix C obtained? If no, stop

6. Form modified connectivity matrix (as in step 2) using CC matrix ,,

derived in step 3

7. Go to step 3

8. End

'a 2222

.4'"2
'.-4%

• . ,4-" -, - " " * " - -"""" ' "
" " " " " "" ; -" " " " " " " """" " ' ' "



278

APPENDIX IT

8W DESCRIPTION OF THE PROPOSED
DATA DEFINITION LANGUAGE

• *,.l

V ..
1*' -,. ' ,2- Q / ,V WZX W ," -" - " . <' " ' " L.. " . . . , ,. -, ., ''' ,. . ,'-' .,, , , , - '. - , ' T -V

P ' ' . , Q ' , , . ,, , - 4 " , , , , , , ' '' . - . ' . , ' . . . . i. ', , , . , . . . - , "*, - ., ',, , - . - . "..' ,w . . . , ,
,-



279

<letter>:: = AIBICI ..... Z2

<digits>:: = 1121* .... 910

<basic symbols:: = <letters>j<digits>

<string>:: = <any sequence of basic symbols>

<variable>:: = <simple variable>l<subscripted variable>

<simple variable>:: = <identifier>

<identifier>:: = <letter>I<identifer><letter or digit>

<subscripted variable>:: = <identifer>[<subscript list>]

<subscript list>:: = <fortran subscript list>

<empty>:: = <null string of symbols>

<unsigned integer>:: = <digit>j<unsigned integer><digit>
<data definition statement>::=

o<database definition statement>

<database user specification statement>I
<database definition statement>-

<relation data definition statement>

<numerical data definition statement>I

<data definition termination statement>I

<data redefinition statement>

<database definition statement>- =

.<reserved procedure DBDEFN>

(<database definition parameter part>)

<database definition parameter part>:: =

<database name>

<database hierarchy>

, .~ * - - - --, -J,



280

<database status>

<database definition error code>

<database name>:: = '<name>' <variable>

<database heirarchy>:: = '<heirarchy type>'I<variable>

<hierarchy type>:: = GLOBALILOCAL

<name>:: = <letter><string>

<database status>:: = '<status type>'I<variable>

<status type>:: = PERMANENTITEMPORARY

<database definition error code>:: = <variable>

<database user identification statement>:: =

reserved procedure DBUSER>

(<database user identification parameter part>)

<database user identification parameter part>:: =

<database name>,

<database user type>,

<database access type>, <password>,

<user identification error code>

<database user type>:: = '<user type>'I<variable>

<user type>: = OWNERIUSER

<database access type>:: = '<access type>' <variable>

<access type>:: = READIMODIFY

<password>:: = <letter><string>

<user identification error code>:: = <variable>

<data set definition statement>:: =

.1p

L~°, °1b"



281

<reserved procedure DSDEFN> 4.

(<dataset definition parameter part>)

<data set definition parameter part>:: =

<database name>,

<dataset name>,

<dataset type>,

<data item row size>,

<data item column size>,

<data set definition error code>

<data set name>:: = '<name>' <variable>

<data set type>:: = '<type specification>'I<variable>

<type specifiation>:: = INTIREALIDOUB

IVEC I RVEC IDVEC

LNAT! RMATj DMAT

<data item row size>:: = <size>I<empty>IVAR

<data item column size:: = <size>I<empty>IVAR

<size>:: = <unsigned integer>I<variable>

a' <data set definition error code>:: =<variable>

<relation definition statement>:: :

<reserved procedure DRLDFN>

(<relation definition parameter part>)

<relation definition parameter part>:: =

<database name>,

<relation name>,

<attribute name array>,

'ft% 0K



282

<attribute type array>,

<attribute row size array>,

<attribute column size array>,

<attribute key specification array>,

<relation definition error code>

<relation name>:: = '<name>'<variable>

<attribute name array>:: = '<name array>'I<variable>

<name array>:: = <name>I<name><name array>

<attribute type array>:: = '<type specification array>'I<variable>

<type specification array>:: = <type specification>

I<type specification><type specification array>

<attribute row size array>:: = <variable>

<attribute column size array>:: = <variable>

<attribute key specification array>:: =

<key specification array>I<variable>

<key specification array>:: = KEYIKEY<key specification>l<empty>

<relation definition error code>:: = <variable>

<data definition termination statement>:: =

<reserved procedure DSEND>

(<data definition termination parameter part>)

<database definition parameter part>:: = <empty>

<data redefinition statement>:: =

<reserved procedure DSRDFN>
(<data redefinition parameter part>)'

<data redefinition parameter part>::

% -VN

--

I.



283

<data set definition parameter part> NA

]<relation definition parameter part>

J<numerical data definition parameter part>

<matrix data definition statement>:: =

<reserved procedure DSMATX>

(<matrix data definition parameters part>)

<matrix data definition part>:: =

<database name>

<matrix identification>

<matrix characteristics>

<matrix definition error code>

<matrix identification>:: = '<name>' <variable>

<matrix characteristics>:: 

'SQUARE', <S. Details>j

'BANDED', <B. Details>I p'-

'HYPERMATRIX', <H. Details>I

'SKYLINE, <K. Details>I

'SPARSE', <P. Details>

<S. Details>:: = <matrix storage type>

<matrix ordering>,

<matrix size>,

<empty>, <empty>, 2

<empty>, <empty>,

<empty>, <empty>,

<matrix storage type>:: = '<matrix storage string>' <variable>

,-.--.

00 11kI



284

<matrix storage string>:: UPPERILOWERIFULL .

<matrix ordering>:: = '<matrix ordering string>'<variable>

<matrix ordering string>:: = ROWICOLUMN '

<matrix size>:: = <row size>,<column size>IVAR,<column size>j

row size>,VARIVAR,VAR

B. Details>:: = <matrix storage type>,

<matrix ordering>,

<matrix size>,

<matrix band size>,

<matrix band size>:: = <number of upper codiagonals>,

<number of lower codiagonals>

<nme o=

<number of upper codiagonals>:: = <unsigned integer>

<number of lower codiagonals>:: : <unsigned integer> A.,

<H. Details>::= <matrix storage type>

<matrix ordering>,

<matrix size>,

<submatrix size>

<submatr4ix size>:: : row size>j<variable>,<column size>I<variable>. '-

<K. Details>:: <empty>,

<empty>,

<matrix size>, IA

<skyline definition> .

<skyline definition>:: <array of skyline height>

<P. Details>:: <empty>,
<empty>,' N

"air

5'' - X.
Z ~



285

<matrix size>,

<empty>,<empty>

<empty> ,<empty>

Note: 1) Vertical bar I denotes options for choosing items to the left
of the bar or to the right of the bar

2) [ I indicate items within it are optional

3) <x>:: = <y> I <x><z> denotes a recursive statement. x is
used repeatedly

4) ' indicates items within it taken as data

7-

N?...

2-

-A. '1-4

1 -.



~286

°-4-

APPENDIX III 2r

BNF DESCRIPTION OF THE PROPOSED

DATA MNIPULTIONLNUAG

.*.

p,,'Z .

'N . -. -, - , . , - , , . . . . , . ,, % , . . . . , . . , , , . . , , , -



287 "

<Data manipulation statement>:: '"

<database open statement>

<database close statement>

<data retrieval statement>

<data append statement>

<data modify statement>
.45

<data delete statement>

<data copy statement>

<matrix retrieval statement>

<matrix append statement>

<matrix modify statement>

<matrix delete statement>

<matrix copy statement>

<database open statement>::

<reserved procedure DBOPEN>
(<database open parameter part>

<database open parameter part>::

<database name>,

<database hierarchy>

<database open error code>

<database open error code>:: <variable>

<database close statement>:: =

<reserved procedure DBCLOS>
.(<database close statement>)

<databa tbe close statement>::

_~~~~~~.'........ ..... ............................... * , . .- . . .- . .........--. . "... ........ ... # .' -." .. . .. .'. - - -... --.. .-
' m ,-'- ' ' , "."", 7 --'/'m -'W % '", ".'4 ._._,' w ' €' #',;.Z... . -- - ,- - . ,- . , .."• . " " . . • .' -. ".", ,.



-' -. -. ~ ~ ~ jrrr r'r! rrr~r~r 'r rr -M 7ry r.r r r --P-,-i

288

<database name>

<database hierarchy>

<database close error code>

<data retrieval statement>:: :"I

<reserved procedure DSGET>

(<data retrieval parameter part>)

<data retrieval prarmeter part>:: =

<database name>,

<data set name>j<relation name>, r

<identification number>f<empty>,

<user buffer>,

<data manipulation error code>

identification number>:: = <tuple number>j<row number>

<tuple number>:: = <unsigned integer>I<variable>

<row number>:: = <unsigned integer>j<variable>

<user buffer>:: = <variable>

<data manipulation error code>:: = <variable>

<data append statement>-

<reserved procedure DSPUT>
(<data append parameter part>)

<data append parameter part>::

<data retrieval parameter part>

<data modify statement>:: =

<reserved procedure DSMOD>

(<data modify parameter part>)

.- % -



289

<data modify parameter part>:: =

<data retrieval parameter part>

<data delete statement>:: =

<database name>, I
<data set name>I<relation name>,

<identification number> <empty>,'i

<data manipulation error code>

<data copy statement>::

<reserved procedure DSCOPY>

(<data copy parameter part>)

<data copy parameter part>:: =

<database name-copy from>,

<data set or relation name-copy from>

<database name-copy to>

<data set or relation name-copy to>

<data manipulation error code>

<database name-copy from>:: = <database name>

<data set or relation name-copy from>:: = <data set name>i<relation

name>

<database name-copy to >:: = <database name> yi .. s

<data set or relation name - copy to>:: = <data set name>j<relation

name>

<data manipulation error code>:: = <variable>

<matrix retrieval statement>::

N%. 

-pd 

1,.



290

<reserved procedure MTGET> I
(<matrix retrieval parameters part>)

<matrix retrieval parameter part>:: = <database name>,

<matrix identification>,

<row number>,[<column number>],

I<column number> ,[<row number>],

S<empcy>,<empty>,

<user bu: er>,

<matrix manipulation error code>

<matrix manipulation error code>:: = <variable>

<matrix append statement>:: =

<reserved procedure MTPUT>

(<matrix append parameter part>)

<matrix append parameter part>::

<matrix retrieval parameter part>

<matrix modify statement>:: =

<reserved procedure MTMOD>

(<matrix modify parameter part>)

<matrix modify parameter part>::

<matrix retrieval parameter part>

<matrix delete statement>::

<reserved procedure MTDEL>

(<matrix delete parameter part>)

<matrix delete parameter part>::

=5'-"

=" %

V V .-. " |

*~ * J*~,.*,**,* 4 . 5 ~***.=~qJ ~ - .~ *- ~~t '~-V V-, 5 "



: . .. ... . , _ . . .. . , ... -. . . V V-. ,'W, WV IS . 4WV 7 . . . .. . . IV .. .. - . . . .. .. .. ."- '.,-

291

<database name>

<matrix identification>

<crow number>,[<column number>],

<column number>,[<row number>],

i <empty> ,<empty>,

<matrix manipulation error code>

<matrix copy statement>:: =%%

<reserved procedure MTCOPY>

(<matrix copy parameter part>)

<matrix copy parameter part>:: =

<database name-copy from>,

<matrix identification-copy from>,

<database name-copy to>,

<matrix identification-copy to>,

<matrix manipulation error code>

<matrix identification-copy from>:: = <matrix identification>

<matrix identification-copy to>:: = <matrix identification>

.'



292

REFERENCES

Allan III, J.J. (1972), "Foundations of the Many Manifestations of
Computer Augmented Design," Computer-Aided Design, Proceedings of
International Federation of Information Processing, pp. 27-58.

Afimiwala, K.A. and Mayne, R.W. (1979), "Interactive Computer Methods
for Design Optimization," Computer-Aided design, Vol. 11, No. 4, pp.
201-208.

Arora, J•S• and Govil, A.K. (1977), "An Efficient Method for Optimal "Structural Design by Substructuring," Computers and Structures, Vol.

7, pp. 507-515.

Arora, J.S., Ryu, Y.S. and Wu, C.C. (1984a), "A User's Manual for the

Computer Program DOCS: Level 3.0," Optimal Design Laboratory,
College of Engineering, The University of Iowa.

Arora, J.S., Thanedar, P.B., and Tseng, C.H. (1984b), "User's Manual for
Program IDESIGN Version 3.1," Optimal Design Laboratory, College of
Engineering, The University of Iowa.

Balling, R.J., Pister, R.S., Polak, E. (1983), "DELIGHT'STRUCT: An

Optimization-Based Computer-Aided Design Environment for Structural
Engineering," Computer Methods in Applied Mechanics and Engineering,
38, pp. 237-251.

Bell, Jean (1982), "Data Modelling of Scientific Simulation Programs,"
Int. Conf. On Management of data, ACM-SIGMOD, pp. 79-86.

Bennett, J.A. and Nelson, M.F. (1979), "An Optimization Capability for
Automotive Structures," Society of Automotive Engineeers
Transactions, Vol. 88, pp. 3236-3243.

Blackburn, C.L., Storaasli, 0.0. and Fulton, R.E. (1982), "The Role and
Application of Database Management in Integrate Computer-Aided
Design," Journal of American Institute of Aeronautics and
Astronautics, pp. 603-613.

Browne, J.C. (1976), "Data Definition, Structures, and Management in
Scientific Computing," Proceedings of Institute for Computer
Application in Science and Engineering, Conference on Scientific
Computing, pp. 25-56.

.~* . ~**.~*. * ., .~* . .. .' .%)



293

Bryant, J.C. (1978), "A Data Management System for Weight Control and
Design-to-Cost", NASA Conference Publication 2055. pp. 65-84.

Buchmann, A.P. and Dale, A.G. (1979), "Evaluation Criteria for Logical
Database Design Methodologies," Computer-Aided Design, pp. 121-126.

Comfort, D.L. and Erickson, W.J. (1978), "RIM-A Prototype For A
Relational Information Management System," NASA Conference
Publications 2055, pp. 183-196.:77

Cook, R.D. (1981), "Concepts and Application of Finite Element
Analysis," John Wiley and Sons, New York.

Czekalinski, L. and Zgorzelski, M. (1982), "Design Database Organization
and Access Problems in Large Scale Machine Manufacturing Industry,"
File Structures and Databases for CAD, Proceedings of International
Federation of Information Processing, pp. 297-308.

Daini, O.A. (1982), "Numerical Database Management System: A Model,"
International Conference of Management of Data, Association for
Computing "Machiner Special Interest Group Management of Data.

Darby-Dowman, K. and Mitra, G. (1983), "Matrix Storage Schemes In Linear
Programming," Special Interest Group Management of Application
Programs Bulletin Association for Computing Machinery, No.32, pp.
24-38.

Date, C.J. (1977), An Introduction To Database Systems, Addison-Wesley,
_S Reading, Mass.

Derwa, G.T. (1978), "Advanced Program Weight Control System," NASA
Conference Publication 2055, pp. 55-64.

Eastman, C.M. (1978), "The Representation of Design Problems and
Maintenance of Their Structure," Artificial Intelligence and Pattern
Recognition in Computer-Aided Design, Proceedings of International
Federation of Information Processing, pp. 335-366.

Eastman, C.M. and Fenves, S.J. (1978), "Design Representation and

Consistency Maintenance Needs in Engineering Databases," NASA
Conference Publication 2055, pp. 1-18.

___ Eastman, C.M. and Henrion, M. (1980), "The Glide Language for CAD," J.
Of the Technical Councils of American Society of Civil Engineers,
Vol. 106, No. TC1, pp. 171-184.

Eberlein, W. and Wedekind, H. (1982), "A Methodology for Embedding
Design Databases into Integrated Engineering Systems," File
Structures and Databases for CAD, Proceedings of International
Federation of Information Processing, pp. 3-37.

E'il} - " .- -. .-- .'-" 4''. , -'-.'v- ,.,., , - " r



294

Elliott, L., Kunii, H.S., and Browne J.C. (1978), "A Data Management
System For Engineering and Scientific Computing," NASA Conference
Publications 2055, pp. 197-222.

Emkin, L.Z. (1978), "ICES Cocepts-A Modern System Approach," Computing 47:
In Civil Engineering pp. 89-107.

Encarnacao, J. and Schlechtendahl, E.G. (1983), Computer-Aided Design,
Springer-Verlag, Berlin.

Felippa, C.A. (1979), "Database Management In Scientific Computing-I
General Description," Computers and Structures, Vol. 10, pp. 53-61.

Felippa, C.A. (1980), "Database Management In Scientific Computing-II,
Data structures and Program architecture," Computers and Structures,
Vol. 12, pp. 131-145. '-

Felippa, C.A. (1982), "Fortran-77 Simulation of Word-addressable Files,"
Advances in Engineering software, Vol. 4, No. 4, pp. 156-162.

Fischer, W.E. (1979), "PHIDAS -a Database Management System for
CAD/CAM Software," Computer-Aided Design, Vol 11, No. 3, pp. 146-
150.

Fishwick, P.A. and Blackburn, C.L. (1982), "The Integration Engineering
Programs using a Relational Database Scheme," Computers In
Engineering, Internation Computer Engineering Conference, pp. 173-
181.

Fleury, C., Ramanathan, R.K., Salana, M. and Schmit, Jr., L.A. (1981),
"ACCESS Computer program for the Synthesis of Large Structural
Systems," Proceedings of the International Symposium on Optimum
Structural Design, University of Arizona, Tucson.

Foisseu, J. and Valette, F.R. (1982), "A Computer Aided Design Data
Model: FLOREAL," File Structures and Databases for CAD, Proceedings
of International Federation of Information Processing, pp. 315-330.

Fulton, R. E. and Voigt, S.J. (1976), "Computer-Aided Design and
Computer Science Technology," Third Institute for Computer
Application in Science and Engineering Conference on Scientific - -.i.
Computing, pp. 57-82.

Galletti, C.U. and Giannotti, E.I. (1981), "Interactive Computer System
Functional Design Of Mechanisms," Computer-Aided Design, Vol. 13,
No. 3, pp. 159-163.

Giles, G.L. and Haftka, R.T. (1978), "SPAR Data Handling Utilities,""--. -.
NASA Technical Memorandum 78701.

,', % 4,'



295

Grabowski, H., Eigner, M. and Rausch, W. (1978), "CAD Data-Structures
For Minicomputers," Third International Conference on Computers and
Engineering, pp. 530-548.

Grabowski, H. and Eigner, M. (1979), "Semantic Datamodel Requirements
and Realization with a Relational Data Structure," Computer-Aided
Design, Vol. 11, No. 3, pp. 158-167. -

Grabowski, H. and Eigner, M. (1982), "A Data Model for a Design
Database," File Structures and Databases for CAD, Proceedings of
International Federation of Information Processing, pp. 117-144.

Haskin, R.L. and Lorie, R.A. (1982), "On extending the Functions Of a
Relational Database System," International Conference on Management
of Data Association of Computing Machinery, pp. 207-212.

Haug, E.J. and Arora, J.S. (1979), "Applied Optimal Design," Wiley
Interscience, John Wiley and Sons, Inc., New York.

Heerema, F.J. and van Hedel, H. (1983), "An Engineering Data managemet
System for Computer-Aided Design", Advances in Engineering Software,
Vol. 5, No. 2, pp. 67-75.

Jefferson, D.K. and Thomson, B.M. (1978), "Engineering Data Management:
Experience and Projections," NASA Conference publication 2055, pp.
223-242.

Jenne, R.L. and Joseph, D.H. (1978), "Management of Atmospheric Data",
NASA Conference Publication 2055, pp. 129-140.

Johnson, H.R., Comfort, D.L. and Shull, D.D. (1980), "An Engineering
Data Management System for IPAD," IPAD: integrated Programs for
Aerospace-vehicle Design, NASA Conference Publication 2143, pp. 145-
178.

Jumarie, G. (1982), "A Decentralized Database via Micro-computers a
Preliminary Study," Computers in Engineering, Int. comp. Engg.
Confer. ASME, pp. 183-187.

Kamel, H.A., McCabe, M.W. and Spector, W.W. (1979), GIFTS5 System -. "
Manual", University of Arizona, Tucson. :..

Koriba, M. (1983), "Database Systems: Their Applications to CAD
Software Design," Computer-Aided Design, Vol. 15, No. 5, pp. 277-
288.

Kunni, T.I. and Kunni, H.S. (1979), "Architecture of a Virtual Graphic
Database System For Interactive CAD", Computer-Aided Design, Vol.
11, No. 3, pp. 132-135.

-e 5-e-A .



296

Kutay, A.R. and Eastman, C.M. (1983), "Transaction Manageenrt 1 ";
Engineering Databases," Engineering Design Aplications, Proceedings A

of Annual Meeting, Database Week, Association for Coniputin ,
Machinery Special Interest Group Management of Data, pp. 73-80.

Lafue, G. (1978), "Design Database and Data Base Design," Third Int. i-*

"'
-

Conf. On compters in En g. and Building Design CAD78, Brighton
Metropole, Sussex, U.K., 14-16.

Lafue, G.M.E. (1979), "Integrating Language Database for CAD
Applications," Computer-Aided Design, Vol. 11, No. 3, pp. 127-129.

Leinemann, K. and Schlechtendahl , E.G. (1976), "The Regent System for
CAD," CAD Systems, Proceedings of International Federation of
Information Processing, pp. 143-168.

Lillehagen, F.M., and Dokken, T. (1982), "Towards a Methodology for
Constructing Product Modelling Databases in CAD," File Structures
and Databases for CAD, Proceedings of International Federation of
Information Processing, pp. 59-88.

Lopatka, R.S. and Johnson, T.G. (1978), "CAD/CAM Data Management Needs,
Requirements and Options," NASA Conference Publications 2055, pp.
25-40.

Lopez, L.A. (1974), "FILES: Automated Engineering Data Management
System," Computers in Civil Engineering, Electronic Computation, pp.
47-71.

Lopez, L.A., Dodds, R.H., Rehak, D.R. and Urzua, J.L. (1978),
"Application of Data Management to Structures," Computing in Civil
Engineering, pp. 477-498.

Manayaki, M. (1982), "Multi-layered Database Architecture for CAD CAM
Systems," File Structures and Databases for CAD, Proceedings of
international Federation of Information Processing, pp. 281-290.

Martin, J. (1977), "Computer Database Organization", Prentice-Hall.
Inc., Englewood Cliff, N.J.

Massena, W.A. (1978), "SDMS - A Scientific Data Management System," NASA
Conference Publication 2055, pp. 143-154.

Nye, W. (1981), "DELIGHT- Design Language with Interactive Graphics and
a Hdppier Tomorrow," Electronics Research Laboratory, University of
California, Berkeley, CA

Pahl, P.J. (1981), "Data Management in Finite Element Analysis,"
Nonlinear Finite Element Analysis in Structural Mechanics

Wunderlich, W., Stein, E. and Bathe, K.J., Eds., Springer-Verlag,_
Berlin, pp. 714-716.

*%,



tL.

ww..-.',,

297
R%

Pooch, U.W. and Neider, A. (1973), "A Survey Of Indexing Techniques For
Sparse Matrices," Computing Surveys, Vol. 5, No. 2, pp. 109-133.

Rajan, S.D. and Bhatti, M.A. (1983), "Data Management in FEM-Based
Optimization Software," Computers and Structures, Vol. 16, No. 1-4,
pp. 317-325.

1W
RIM User's Guide (1982), Boeing Commercial Airplane Company, P.O. Box

3707, Seattle, Washington, 98124.

Ronald, D.P. (1978), "XIO-A Fortran Direct Access Data Management
System," NASA Conference Publication 2055, pp. 155-162. -.

Roos, D. (1966), "ICES System Design", The M.I.T. Press, Massachusetts.

Roussopoulos, N. (1979), "Tool for Designing Conceptual Schemata of
Databases," Computer-Aided Design Vol. 11, No. 2, pp. 119-120.

Ryu, Y.S., Haririan, M., Wu, C.C., and Arora, J.S. (1985), "Structural
Design Sensitivity Analysis of Nonlinear Response," Computers and
Structures, Vol. 21, No. 1/2, pp. 245-255.

Schrem, E. (1978), "Functional Software Design and its Graphical
Representation," Computers and Structures Vol. 8, pp. 491-502.

Shenoy, R.S. and Patnaik, L.M. (1983), "Data Definition and Manipulation
Languages for a CAD Database," Computer-Aided Design, Vol. 15, No.
3, pp. 131-134.

Shyy, Y-K. (1985), "A Database Management System for Engineering
Applications," M.S. Thesis, Optimal Design Laboratory, College of
Engineering, The University of Iowa.

Sobieszczanski-Sobieski, Jaroslaw (1980), "From a Black-Box to a
Programming System: Remarks on Implementation and Application of
Optimization Methods," Proceedings of a NATO Advanced Study
Institute Session on Structural Optimization, Sart-Tilman, Belgium.

Somekh, E. and Kirsch, U. (1979), "Interactive Optimal Design of Truss
Structures," Computer-Aided Design pp. 253-258.

Southhall, J.W. (1980), "Requirements for Company-Wide Management of
Engineering Information," IPAD: Integrated Programs for Aerospace-
vehicle Design, NASA Conference Publication 2143, pp. 59-74.

Sreekanta Murthy, T. and Arora, J.S. (1983), "A Simple Database
Management Program (DATHAN)," Technical Report, Optimal Design
Laboratory, College of Engineering, The University of Iowa, Iowa
City, IA.

,X.,



'-.

Sreekanta Murthy, T. and Arora, J.S. (1983), "Database Mariayeer, .T
Concepts In Design Optimization," Technical Report, Optimal Design
Laboratory, College of Engineering, The University of Iowa, lowx.
City, IA.

Sreekanta Murthy, T., Reddy, C.P. and Arora, J.S. (1983), "User's Manual
For Engineering Database Management System EDMS," Technical Report,
Optimal Design Laboratory, College of Engineering, The Uniyvers1ty ji

Iowa, Iowa City, IA.

Sreekanta Murthy, T., Reddy, C.P.D. and Arora, J.S. (1984), "Database
Management Concepts in Engineering Design Optimization," Proceedings
of AIAA/ASME/ASCE/AHS 25th Structures, Structural Dynamics and
Material Conference.

Sreekanta Murthy, T. and Arora, J.S. (1985), "A Survey of Dataoast.
Management in Engineering," Journal of Advances in Engineering ,' .
Software, Vol. 7, No. 3, pp. 126-132. ""

Sreekanta Murthy, T. and Arora, JS. (1985), "A Methodology to Design
Databases for Finite Element Analysis and Structural Design
Optimization Applications," Proceedings of AIAA/ASME/ASCE/AHS 26th
Structures, Structural Dynamics and Material Conference, submitted
for publication in the Journal of Computers in Engineering.

Sreekanta Murthy, T., Shyy, Y-K. and Arora, J.S. (1986), "MIDAS:
Management of Information for Design and Analysis of Systems,"
Journal of Advances in Engineering Software, (to appear).

Sreekanta Murthy, T. and Ar'ora, J.S. (1986), "Database Management
Concepts in Computer-Aided Design Optimization," Journal of Advances
in Engineering Software, (to appear).

Thanedar, P.B., Park, G.J., and Arora, J.5. (1985), "Performance of Two
Superlinearly Convergent RQP Optimization Algorithm on Some
Structural Design Programs," Technical Report ODL-85.12, Optimal
Design Laboratory, College of Engineering, The University of Iowa,
Iowa City, IA.

Ulfsby, S., Steiner, S. and Oian, J. (1979), "TORNADO:A DBMS for CAD/CAM
Systems," Computer-Aided Design, pp. 193-197.

Valle, G. (1976), "Relational Data Handling Techniques in Computer-Aided
Design Process," CAD Systems, Proceedings of International
Federation of Information Processing, pp. 309-326.

Vetter, M. and Maddison, R. N (1981), "Database Design Methodology",
Prentice/Hall International.

Whetstone, W.D. (1977), SPAR Structural Analysis System Referenct,
Manual, System Level 11, Vol. 1, NASA CR-145098-1.

" o'. .,



D~j

~~e%% Z


