
AD-AI74 185 ON DETECTING EDGES(U) STANFORD UNIV CA DEPT OF COMPUTER 1/1
SCIENCE V S NLUR ET AL. MAR 96 STRN-CS-6-1136
NS0S39-84-C-0211

UNCLASSIFIED F/G 14/5

EEEEEEEEEEEEEI
EEEEEWWoimiWEJBEEEEEEEEEEllE

iIII__ pBB



i .

I

11111 '1- Al5

1111 2 1111= 11111.6

MCR0 SLUI TT C

NATIONALBUREAU O-FST-A.-'-N". .RDS 3-A

0



March 1986 Report No. STAN-CS-86-1130

In _..j

A" On Detecting Edges

0 by

Vishvjit S. Nahwa and "'honas 0. lBinford

,

.. %-

Department of Computer Science

Siiarord Uhniversity
Stairford, CA 94305 L-

* NOV 2 0 A986 f

%-'

N Z % ....-. .,

TbU~~~~~' douet a en 
e

vitar, ,abv.- ,= re ,,m , and, ani I . .'.0

V I
..... % IF



UNCLASSIFIED
SCCURITY CLASSIFICATION O

F 
TmIS PAGE (Win Dole Entored) %"1

REPORT DOCUMENTATION PAGE READ ISTRlUCTrIONS~
BEFORE COMIPLErTING FORM

1. REPORT DIUMlt 2i. GOVY ACCESION NO0. 3. ftCP *CNT'S CATAL.OG NUMItl -

4. TITLE (end SWjbIlel S. TyPe OF REPORT A, PXROO COVERO

Technical ReportON DETECTING EDGES TcnclRpr ,..

6. IRFORMiNG ORG. REPORT NUMBer R

7. AuTmOR(s) I. CONTRACT OR GRANT NUISER(o)

Vishvjit S. Nalwa & Thomas 0. Binford N00039-84-C-0211

S. PERFORMIN9G ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT. POJECT. TASK

Computer Science Department AA OUTN E

Stanford University
Stanford, CA 94305

It. CONTROLLING OFFICE NAME AND ADODRSS I. REPORT DATE

DARPA March 1986 - wl
1400 Wilson Boulevard 1,. NUM119ER11 Of PAGES

Arlington, Virginia 22209 48
_U4. MONITORING AGENCY N AME A ADORESSelI different from Controling Office) IS. SECURITY CLASS. (of this e port)

UNCLASSIFIED 4

ISO. DEC. ASSIF-ATION/ODOWNRADING r,
SCNkOU L."-a

16. DISTRIBUTION STATEMENT (of this Report) r

Distribution is unlimited.

S...' .

I7. DIST RIU@UTION ST ATEMEN T (of tho abstract entered in Blok10.1 it. ifferent from Rpoe")%

IS. SUPPLEMENTARY NOT-S

None.

19. KEY WORDS (ConTinue en revere. ede II neceoary nd Identify by' block number)

Edge-Detection Directional Edge Operator
Image Segmentation Sub-Pixel Edge Localization
Digital Image Processing Adequate Basis for Step-Edges L

One-Dimensional Surface Fitting

20 ABSTRACT (Continue atn reveree side It neceeoT and ldentify by block number) . %.

DO ,IAI 1473 UNCLASSIFIED

SECURITY CLASSIFICATION OF TNIS P&OE (Mom Doe, Ente--

. •... . . .......... ....... ,.....-........-....

....° ...,. .... ...,- .. .. . .,.. -.... .... ..... ..... -... .-.......-..-. . .. .. .. .. .-... .... . .-.. .. .... .....-.. ...... . ... .... ..... .-......_ ,_-.



UNCLASSIFT.n
SECURITY CLASSIFICATION OF THIS PAGE 'When Ota Entered)

19. KEY WORDS iContinued)

20 ABSTRACT (Continued)

ABS TRACT

An edge in an image corresponds to a discontinuity in the

intensity surface of the underlying scene. It can be approximated

by a piecewise straight curve composed of edgels, i.e., short, linear
edgdelements, each characterized by a direction and a position.

The approach to edgel-detection here, is to fit a series of one-

dimensional surfaces to each window (kernel of the operator) and

accept the surfacedescription which is adequate in the least squares

sense and has the fewest parameters. (A one-dimensional surface is

one which is constant along some direction.) The tanh is an ade-

quate basis for the step-edge and its combinations are adequate for

the roof-edge and the line edge.

The proposed method of step-edgel detection is robust with

respect to noise; for (step-size / uo;1 ) 9 2.5, it has subpixel posi-

tion localization (b , < 1/3) and an angular localization better ".-

than 10; further, it is designed to be insensitive to smooth shading.

These results are demonstrated by some simple analysis, statistical

data and edgel-images. Also included is a comparison, of perfor-

mance on a real image, with a typical operator (Difference-of-

Gaussians). The results indicate that the proposed operator is supe-

rior with respect to detection, localization and resolution.,

D ORM *T BACK)DD JAN 7314'3 UNCLASSIFIED
EDITION OF I NOV GS IS OBSOLETE SECURITY CLASSIFICATION OF THIS PAGE (When Dats Entered)

o~ ,%
"% % " . % , . %, . % - ."%% -..... % .. .0.:. -v - ,:-.:........:v :..-_,. , " ' -- - -- - -. . . . . .-. .. - --,.,,, , ...-.. :.. ,. .", ,.. • , .. . . '.'>.,'.,.,"-,o'..? :, - -.. '.'.'., .'.'.-,.'.-.. '....',, .%



Accession For 
IIk

NTIS GRA&I

DTIC TAB
Uziam~ounc ed

Justiffication4

ON DETECTING EDGES
By
Distribution/_--

Vishvjit S. Nalwa Availability Codes

Thma .ifodAvail and/or

Thoms 0 BinordDist Special

ABSTRACT %'

An edge in an image corresponds to a discontinuity in the

intensity surface of the underlying scene. It can be approximated

by a piecewise straight curve composed of edgels, i.e., short, linear ,

edge-elements, each characterized by a direction and a position.

The approach to edgel-detection here, is to fit a series of one-

dimensional surfaces to each window (kernel of the operator) and

accept the surface-description which is adequate in the least squares

sense and has the fewest parameters. (A one-dimensional surface is

one which is constant along some direction.) The tanh is an ade-

quate basis for the step-edge and its combinations are adequate for

the roof-edge and the line-edge.

The proposed method of step-edgel detection is robust with

respect to noise; for (step-size / o.,, ) 2 2.5, it has subpixel posi-

tion localization (u, oi. < 1/3) and an angular localization better

than 100; further, it is designed to be insensitive to smooth shading.

These results are demonstrated by some simple analysis, statistical

data and edgel-images. Also included is a comparison, of perfor-

mance on a real image, with a typical operator (Difference-of-

Gaussians). The results indicate that the proposed operator is supe- "

rior with respect to detection, localization and resolution.
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Page 2 On Detecting Edges

0O.

I. Introduction

An edge in an image corresponds to an intensity discontinuity in the scene.

Although it may correspond to an edge of an object in space, it need not. It

might well be the image of a shadow (illumination discontinuity) or a surface ,.-

mark (reflectance discontinuity).

It is hard to over-emphasize the importance of edge-detection in image

understanding. Most modules in a conceivable vision system depend, directly or

indirectly, on the performance of the edge-detector. Consequently, there has

been a substantial effort in this direction. Despite this effort, many in the com-

munity believe that the problem is largely unsolved. In fact, it may be claimed

with some justification, that research and motivation on other fronts (e.g., stereo

and line-drawing interpretation) has been dampened by the ineffectiveness of

existing edge-detectors.

Blicher [41 provides an insightful review of previous work on finding edges in

image data [see also 7, 11. Much of this work has been based on discrete approxi-

mation to differential operators [see 5]. Although step-edges do contain large first

derivatives and zero-crossings of the second, the mapping is neither one-one, nor

onto. It is well known that derivatives emphasize high-frequency noise. In fact,

the higher the order of the derivative, the more pronounced is the effect.

Further, operators that threshold on the first derivative respond to smooth shad-

ing. For example, the Nevatia-Babu Operator [14] and Canny's Operator [6]

return false edges oni smoothly shaded surfaces. Lateral inhibition has been pro- N..

posed as a solution by Marr-Hildreth [12] and Binford [3]. However, this may

involve taking 3d order derivatives.

. The noise-characterist ics of an operator depend on its size. The larger the

A' operator, the more it averages out random noise. However, it is also more likely -

to overlap several edges or corners simultaneously and thus degrade its resolution

capability. The detectability and localization of high-curvature edges also suffer.

Further, as the operator size is increased, the assumptions invoked in its design

. % % NA."It ill
':........;,, •.,,,.-.-.....,.....,..,.. ..................... i........, ..... , ,,...,,. . ,. ... ". "



Nalwa and Binford Page 3

may breakdown, introducing large and unknown biases. The operator size in the

foregoing discussion refers to the extent of the support used to make decisions.

For example, if a (3 x 3) window is used to estimate the gradient at a point and

then the decision is based on a local gradient maximum whose detection requires

considering at least three adjacent estimates, then the operator width is 5 pixels

and not 3.

Directional operators, like those of Nevatia-Babu [141 and Binford 131, intro-

duce implicit averaging which is largely along the edge rather than across it. Iso-

tropic operators, like Marr-Hildreth 112] and Shanmugam-Dickey-Green 1181, on

the other hand, offer simplicity and uniformity at the expense of smoothing ""

across edges. Gaussian smoothing has been employed by Marr-Hildreth [121 and

Canny [61 to reduce noise. This can be decomposed into two orthogonal 1-D

Gaussian smoothing operations : one along the edge and the other across it. Let

us consider the component along the edge. It is our claim that for a given sup- ...

port along a locally straight edge, Gaussian smoothing is less effective than simple

averaging. The argument runs as follows. Given N equal intensities, each with -

independently, identically distributed additive Gaussian noise : the standard devi-

ation of the weighted average of the intensities is minimized when the weights

are all identical (the standard deviation in this case is reduced by a factor of

V7N). This argument can be equivalently carried over to the Fourier Domain.

Gibb's phenomenon, although present, is not of any significance along the edge ..

(it might, however, play a role at terminations).

Surface-fitting is among the other methods used to detect edges. It has been

employed, both as a means to estimate derivatives, as by Prewitt [17] and Haral-

ick [09, and as a classification technique, as by Hueckel 110]. The chief problem W- 7

has been the choice of an adequate basis, i.e., a basis which can accurately

represent the feature sought to be detected. Further, these attempts have largely

failed to exploit the directional character of edges.

In this paper, a variant of the surface-fitting approach is used to detect

- ...

v.•..• . ..,. .., .. -- ..._.j , _-, -,._,'.,_._....:.._ '.,.". .:...':.. 7 1 ..,



Page 4 On Detecting Edges

step-edges; however, there are significant differences from most previous .

approaches. 1) An oriented one-dimensional surface, i.e., a surface constrained to

be constant along some direction, is used. This results in effective noise-reduction

without blurring the edges as severely as with circularly symmetric smoothing .

operators. 2) We do not seek to mark pixels as belonging to an edge, but to

detect edgels, i.e., short, linear edge-elements, each characterized by a direction

and position. Few [e.g., 10] have treated edges thus. The directional informa-

tion, we claim, is not only an essential descriptor of an edge at any point along

its length, but is also valuable for linking [see 19] and curve-fitting. 3) The

"blurring" effect of the imaging system, which can be approximately modeled by

Gaussian convolution, is taken into account. "Blurring" averts undersampling

and thus, as will be shown later, facilitates sub-pixel localization of the edge. ... .9.

Sub-pixel localization could also be achieved by deconvolution followed by the

localization of discontinuities. Deconvolution, however, is an ill-conditioned prob-

lem [see 21. 4) An adequate basis has been found not only for most step-edges, -

but also for roof-edges and line-edges. These are various combinations of the

tanh function with a constant. However, in this paper, we concern ourselves only

with the detection of step-edges, which are by far the dominant type. 5) A step- - .

edgel is declared to be present in a window if the basis constrained to have a .

step-shape has a better fit (in the least-squares sense) to the data than a rela- -

tively unconstrained basis with the same number of parameters. Binford sug-

gested (31 that it is desirable to do away with thresholds altogether. Any method

which selects a subset of candidate edgels has implicit thresholds (in our case this

corresponds to the selection of the best-fitting surface). However, the choice of , -

an explicit threshold (on the edge-contrast) does not play a pivotal role in our

scheme as in most others. This will be illustrated in Section VII. '., .A*.

We make no claim to "optimality." Time and again, such claims have been

made. Among others, the claimants include Hueckel [10], Shanmugam-Dickey-

Green 1181 and Canny [6]. However, often the analysis is in the continuous

domain, the assumptions and criteria questionable, and the extensions to 2-D ad

.. ;..

. .. .~ .J. -



Nalwa and Binford Page 5 j

hoe. An "optimal" solution is only as good as the optimality condition used.

We begin, in section II, by giving a definition of an edge in terms of the

intensity profile of the viewed scene. Then, in section IIl, some of the problems

associated with edge-detection based on zero-crossings of the second derivative .g.

are discussed. Much of the work to date has used a variant of this criterion.

Section IV contains the details of our approach and Section V outlines the algo-

rithm step-by-step as it has been implemented for step-edgel detection. This is

followed, in Section VI, by a detailed example.

The proposed approach to edgel-detection is robust with respect to noise. ..

For (atep -size / o 'a i )) 2.5, it has sub-pixel position localization (Orpo .  -

t < 1/3) and an angular localization better than 100. Statistical supporting

evidence in Section VII is accompanied by some simple analysis in Appendix III.

Further, our operator is designed to be insensitive to high intensity gradients

which do not correspond to edges. These claims are substantiated in section VIII

with pictures of edgels estimated from several images. This section also includes '.

a comparison between the performance of an implementation of the Marr-

Hildreth Operator [121 and our operator. The pictures presented indicate that

our operator is superior with respect to detection, localization and resolution. We

conclude with section IX. ,."

It should be pointed out that the problems of multiple scale and of linking

edgels into extended edges are not considered here. Reliable edgel-detection

should be expected to make these problems more manageable. Results on linked

edges will be forthcoming in a sequel. .1%

H. Definition of an Edge

Any extended edge in an image 'an be approximated by short linear seg-

ments called edgels, each characterized by a position and an angle. Edgels

correspond to local discontinuities of various order in the intensity surface of a

scene. A discontinuity of the n o, order is defined to be one whose n ' derivative

contains a delta function. Hence, a line-edge is a 0"L order discontinuity, a step-



Page 6 On Detecting Edges

Step-Edges

Roof-Edge Line-Edges

Fig. 1. Examples of edge-profiles, as they appear before being
"blurred" by the imaging system.

''....

edge is a I" order discontinuity and a roof-edge is one of 2" order. Some exam-

pies are shown in Fig. 1. However, the scene intensity-surface always undergoes

"blurring" when registered by any imaging device.' This "blurring" is often

assumed, for simplicity, to be linear-space-invariant and well-approximated by %

Gaussian convolution. "Blurring" is not completely undesirable, even though it

limits the resolution, because it also bandlimits the signal before it is sampled. .-

Its absence would result in severe aliasing. As a consequence of "blurring," there

are no intensity-discontinuities in the image. The importance of this will be

illustrated in the following sections.

IThere are two fundamental sources for the "blur" associated with any imaging system.........Out is the diffnection limit 191 and the other is the fiite sensor aperture. Optical aberra- .

tions and defocus may also contribute [see 8.
2A manifestation of aliasing in a picture would be the "staircase" appearance of edges

which are neither horizontal nor vertical. Beware of mistaking scanner-line jitter [see 21
'" for aliasing!

r''p

Ile r- r r'p. 4.4 . -%a-1. . ...
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Least-Squares Cubic-Fit

7-,

Step-Edge

...- .?. . ,,

1True Position of Edge

Zero-Crossing of 2nd Derivative

I- Window -[ I.

Fig. 2. Inadequacy of the cubic-fit for a step-edge cross-section
which is positioned near the edge of a window.

Ill. Zero-Crossings of the Second Derivative

Much of the work to date has used zero-crossings of the second derivative to -

detect and/or localize step-edges 112, 9, 6 etc.I. There are some problems associ-

ated with this approach. As indicated in the introduction, derivatives amplify

high-frequency noise. In fact, the higher the order of the derivative, the more

pronounced is the effect (taking the n t derivative of a function is equivalent to

multiplying its Fourier Transform by f ft). Further, if surface-fitting is used to

estimate derivatives and the basis is inadequate, then the zero-crossing can result

in extremely bad localization, e.g., consider the case of a cubic-fit for a step-edge

cross-section which is located near the boundary of an image- window (see Fig.

2). a.."

It is not hard to see that we can have zero-crossings in the absence of a

step-edge. Zero-crossings of the second-derivative are essentially points of

inflection and these need not correspond to edges, as in the case of a corrugated

% %.

-•. --. - o- V- .oeg



Page 8 On Detecting Edges

,% '

intensity surface. It is our claim that zero-crossing operators do not adequately S

exploit the local intensity-profile of step-edges. R

The intensity surface on the two sides of a step-edge will in general be

sloped, as indicated in Fig. 1. We will henceforth refer to such an edge as a gen-

eralized step-edge. In contrast, an ideal step-edge is constant on both sides and is

a subset of the former. Note that whenever we refer to an ideal or generalized

step-edge in an image, the imaging-system "blur" will be implicit. A simple

analysis (Appendix I) of a generalized step convolved with a Gaussian shows that, b

in the continuous case, the localization based on zero-crossings would be biased

by (AfOie otblur / step-size), where is the difference between the slopes on

the two sides of the step and abl.t is the standard-deviation of the effective blur-

ring Gaussian mentioned in the previous section. On more than one occasion,

authors have suggested Gaussian preconvolution as a method of noise reduction

[12, 6]. It can be shown that this would effectively amount to having a blurring ,'.--

function with a variance equal to the sum of the two variances and hence, it

w, 'd further degrade localization of generalized step-edges.
,* . '. j.*

IV. 7" . Details ",

A variant of the surface-fitting approach is used here to detect step-edges.

However, unlike previous work, our basis is constrained to be directional. This

results in effective noise-reduction without blurring the edges as severely as with

circularly symmetric operators. Further, we take into account the fact that the

image consists of samples of the true intensity profile "blurred" by the imaging "" " '.*

system. The standard deviation of the effective Gaussian blurring function can

be determined by an examination of the image of a point or a step-edge. As a

result of this "blur," we have an image with no underlying discontinuities. The

spectrum is bandlimited, avoiding aliasing and making sub-pixel localization pos-

sible. 
3

3 1n the absence of "blurring," a step-edge in the image can only be localized to lie
within the interval bounded by the samples on its either side. This implies a fundamental - '
uncertainity in its position and angle. Rephrasing the above argument, it is clear that

Ad. . ... ,....-.............................................................
=% ",,." .-'-.-,,.'-,".,- -,'-, .- .-,--.--- -• .-. -. .. --. .. a,' ."- ". -. "'' - -
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dy

Q.7

\ ~ ~Direction of Variation .-. ;.

Fig. 3. One-Dimensional Surface "".

The noise in an image could be reduced by averaging data in a direction '

A. '

parallel to the edge if the direction of the edge could be reliably found. This, of

course, relies on the fact that the window, i.e., the kernel of the operator, is small _

enough for the edge-segment in it to be modeled as an edgel. We achieve the

above mentioned smoothing by fitting to each window a one-dimensional oriented

surface, i.e., a surface which is constant in one direction, as shown in Fig. 3 (the --

direction of invariance would be parallel to the edgel). Fitting this 1-D surface is
A..'

equivalent to treating the data as strictly one dimensional by projecting it along

the direction of invariance onto a plane.

Now we address the question of a reliable direction-finder for windows

hypothesized to contain edgels. A first-approximation for the direction of varia-

tion can be obtained from the gradient of a least-square-error planar-fit to the -A.

any effective blurring function which allows a many-to-one mapping of step-edges leads to
an irretrievable loss of information about their position and angle.

. - . . - - - - - -.- - -

_ . . . . . . . .... . .. - ' - . - . . . ...A.-.



Page 10 On Deteing ~eEdges

window. However, this leads to a substantial systematic bias for rectangular win-

dows (151, which is what we have used. A more general surface can be used to

refine the first estimate and reduce the associated bias. We fit a least-squares .0

one-dimensional cubic surface to the nearest 51. To clarify, a 1-D cubic surface is

constant in one direction and is described by a cubic polynomial in the orthogo- 1'
nal direction. Starting with the initial estimate of the direction, which is

obtained from the planar-fit, the search for the orientation of the cubic-fit is gen-

erally not more than a few steps. It should also be pointed out that for a window

with an edgel, the plot of the square-error vs angle for a 1-D cubic-fit is bowl-

shaped and centered around the true angle. Hence, once within the bowl, stan-

dard techniques like Newton's Method can be used to find the minimum. Appen-r

dix UI contains all the relevant equations for the various least-square-fits per-

formed. .

It should be emphasized that there cannot be any one unique basis which is

appropriate to describe the image data in all windows. If we attempt to do this,

we will obtain incorrect results when the basis is inadequate and noise-sensitive .--

results if the basis is not minimal. Perhaps, a simple illustration of this impor-

tant observation is called for. Consider a hypothetical situation where we are

given some noisy samples of "y," which is a polynomial in "lx," and are told to

determine a description of the underlying curve. For the sake of argument,

assume that "Y" is a quadratic function of "x." Obviously, fitting a straight line

(y ao + a 1z) to the data is not going to give us an adequate description.

More importantly, fitting a polynomial in 'Y' which is of higher order than a.

quadratic, is going to have non-zero coefficients for xi , i > 2, owing to the noisy
nature of the data. Hence, even though polynomials of order greater than 2, give

a smaller least-squares-error than a polynomial of order 2, it is desirable to fit a

quadratic. The reader will probably recognize this to be a restatement of the

underlying principle of linear regression analysis in statistics. Considerations

similar to the ones just detailed have been investigated for one dimensional steps

by Leclerc and Zucker [11).

-el
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Step-Edge

tanh

Roof-Edge Line-Edge

A

/ I.A -

/I..I._

tanh tanh

tanh tanh ,,...

1- Window - I*- Window -- s.1

Fig. 4. Adequate bases for edge-profiles in the image are combina- .
tions of the tanh function with a constant.

Now, consider the choice of an adequate basis. For most step-edges the tanh

function with a constant, i.e., s.tanh(f[z +p 1) + k where s,p and k are the

parameters and f is a constant determined by the "blur" of the imaging-system,

will be adequate. As can be seen from Fig. 5, the maximum error in approximat-

ing an ideal step-edge by the tanh is less than 1% of the step-size. One impor-

tant by-product of employing the tanh is a reliable estimate of the contrast of the LL.

edge. From our case studies it seems that the contrast is helpful not only in link-

ing, but also in interpretation. For roof-edges and line-edges, combinations of the

tanh function, as depicted in Fig. 4, seem to be adequate bases.

It is obvious that the above choice of basis is non-linear in its parameters. It

is important for the reader to distinguish between a non-linear basis and a basis %

which is non-linear in its parameters: to illustrate, (ao + a Ix + a 2Z + aZ)

is linear in its parameters while (b + b 2) is not. Whereas any least-squares

surface-fitting method whose basis is linear in its parameters can equivalently be

"d~~ 
%#

V.-
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Page 12 On Detecting Edges

formulated as a convolution, surface-fitting with a basis which is non-linear in its

parameters cannot be thus formulated. Fitting a non-linear basis is necessarily

an iterative process and is therefore computationally more expensive than fitting

a linear basis.

For edges which have large deviations from an ideal step-edge, the tanh

basis is inadequate and a cubic or a tanh with a cubic might be adequate. The

latter has some problems because the tanh and cubic are not completely indepen-

dent. It should also be noted that the cubic is inadequate for most step edges

and that derivative estimates based on a cubic-fit can be quite unreliable due to

the wiggles which are characteristic of polynomials. It may be desirable to

employ splines when the tanh and the cubic are inadequate bases. We have used

a cubic, with a check for consistency in the position estimate with the tanh-fit, in

one version our detector. Our window is too small (5 x 5) for finding the parame-

ters of a tanh with a cubic or of splines, in the case of horizontal and vertical

edges. The position estimate based on the zero-crossing of the second derivative

for a cubic-fit is biased for reasons similar to those highlighted in Appendix I.

Hence, for large values of Aeope , refinement of the initial estimate may be desir-

able. If one uses a general basis like the cubic, it is also desirable to confirm that

a dominant component of the cubic-fit is indeed a step-edge. In our implementa-

tion we accomplish this by basing our estimate of the step-size on a tanh-fit even

when the basis used for detection is the cubic. We do not consider our handling

Sof non-ideal steps to be completely satisfactory.

'We compare the least-square-error of a quadratic-fit with that of a tanh-fit

and choose the one with the smaller error to determine the existence or absence

of a step-edgel.' This discriminates against smooth shading and reduces the

.k, significance of subsequent thresholding. In the initial stages, we had used the

4 lt should be noted that both the fits have the same number of unknown parameters.
This justifies our comparison of the two least-square-errors to determine which basis
describes the data more accurately. The formulation of the F-Statistic corresponding to
the tanh and quadratic fits is not possible, even if one ignores the non-linearity, because
the bases are not nested.

,4.
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X2-Statistie to determine the adequacy of the basis. It was found that this was N
unnecessary and perhaps undesirable because of inadequate modeling of the error.

A procedure similar to the one just described can be used to detect steps with

large deviations from an ideal step-edge. For example, if a cubic basis is being

used, then the 1, 20 F-Statistic corresponding to the quadratic and cubic fits

could be employed to verify the appropriateness of the cubic-fit.

At this juncture, we would like to bring to the reader's notice some of the

reasons to expect an improved performance from the use of a directional tanh-

surface. First, our basis requires the specification of only four parameters which

determine the orientation, the position and the upper and lower intensities of the

step-edge. It is immediately seen that this is the minimum number required to

describe a step-edgel with predetermined "blur." Contrast this with eight

required by Hueckel's Method [10] and ten by Haralick [9]. As a result, we can

use smaller windows than most previous equally sophisticated approaches. This i

implies better resolution capabilities and improved performance on high-
curvature edges. Second, the highly constrained nature of our basis (which is

borne out by the presence of only four unknown parameters) should be expected

to offer noise-robustness analogous to matched-filtering classification wherein

noisy patterns are categorized based on their closest "match" to noiseless

representatives of the different classes. Our approach distinguishes between two

ciasses: step-edgels and non-step-edgels. Step-edgels are characterized by a step-

component of variable intensity, orientation and position. Non-step-edgels can be

better described by quadratic surfaces. Of course, these assumptions may break -4

down as the window size is increased. %

As mentioned previously, we have carried out our initial investigation only

for step-edges, which are by far the dominant type. Numerically, it was deter- - .

mined that for ab61, = I and an ideal step-edge, the optimum scaling factor for

the argument of the tanh function was 0.85. This factor was determined by

minimizing the square-error. This is not surprising, as equating the slopes of the

two functions at the oriv n would give us a value of 0.8. Hence, a rule of thumb V-
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for the scaling factor is (O.85/orblar) where blur determines the scale of detec-

tion. The normalized error-profile, using this factor, is shown in Fig. 5. The

detection scheme is not particularly sensitive to this factor, as will be illustrated

in Section VIII

The window size is determined by the standard deviation of the blurring

Gaussian. It is not hard to see that the minimum window size, irrespective of the

"blur," has to be larger than (3 x 3) because, as illustrated in Fig. 6, there is no

way to distinguish a horizontal or vertical step-edge from smooth shading if we

take three symmetric samples of the edge. We chose (5 x 5) square windows.

Not surprisingly, detection of zero-crossings of the 2* derivative requires a

minimum lateral support of 5 pixels in the symmetric case. As the window size is

increased for a fixed "blur," we trade-off resolution for improved detection and

IF localization of locally straight resolvable edges. However, the detection and local-

ization of high-curvature edges will deteriorate because of the invalidity of our

implicit edgel-model. Resolution refers to the ability to discriminate between and

detect adjacent edges. It should be noted that we have not investigated the

trade-offs accompanying different window shapes. As an illustration, notice that
decreasing the window size along the edge will improve the response of the opera-

tor along high-curvature edges at the expense of deterioration in performance

along straight edges.

Before we outline the algorithm, a point about intensity quantization

deserves mention. Intensity quantization can cause planar (and other) surfaces to

have a "staircase" appearance. Hence, local examination of the image may indi-

N cate step-edges where there are none. To see this, notice that we can generate a

* "step" of 1 gray level by simply quantizing the samples of a linear intensity

profile with slope less than 1/2, e.g., (0.1x + 0.55) can be sampled and quantized

- .~.to give (0 0 0 1 11). In fact, quantization of the samples of a linear profile, with

slope in the interval (1/2, 2/3), can produce a "step" of 2 gray levels in a 5 pixel 47

window, e.g., (0.6x + 1) can be sampled and quantized to give (0 0 1 2 2). The

immediate implication of this phenomenon is that local edge-detectors cannot

714
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cope with fundamental ambiguities resulting from intensity quantization. Keep-

ing this discussion in view, it may be advisable to have a lower bound of 2 gray

levels for the edge-contrast threshold in a (5 x 5) window.

V. Outline of Algorithm for Step-Edgel Detection

The following is an outline of the procedure used to detect the presence of

an edgel in an image-window. This procedure is to be repeated over the whole

image by shifting the window in 1-pixel steps in the x and y directions.

(All the relevant equations and statistics are listed in Appendix 11.)

(i) Perform a least-squares planar-fit to the window and use the gradient of this

fit to obtain an initial estimate for the direction of variation in the window,

assuming that the underlying intensity surface is 1-D. K,

(ii) Refine the above estimate of the direction of variation by fitting a 1-D cubic

surface with the least-squares-error criterion. The resulting equations are

non-linear in the angle. However, owing to the reliable initial estimate, the

search is typically a couple of steps. We find the angle to the nearest 50.

(ii)' {Optional Calculate the 2, 20 F-Statistic for the planar and cubic fits .1**

obtained in (i) and (ii). If it is less than the 75% threshold, then declare the
..,1

absence of an edgel. This thresholding serves the purpose of reducing com-

putation by considering only those windows which exhibit a statistically

significant reduction in the least-square-error by employing a cubic basis

rather than a planar one.

(iii) Find the least-squares 1-D tanh surface oriented in the direction found in

(ii). The tanh-fit is localized to the nearest 0.1 pixel. As will be seen in Sec-

tion VII, for low and moderate S.N.R.'s the position accuracy is not deter-

mined by the quantization error associated with the search steps. %

(iv) Find the least-squares 1-D quadratic surface oriented in the direction found

in (ii). If the least-square-error in this case is less than that for the tanh-fit,

-' then declare the absence of an edgel.
4.,4

b. ,
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(v) The least-squares tanh-fit performed in (iii) determines the intensities on the

two sides of the step and its position in the window. The position of the t_

step-edge is given by the displacement of the tanh term and its intensities

are determined by the sum and difference of the constant term in the basis -"

and the coefficient of the tanh term.

(vi) Threshold on the step-size determined from (v). To improve the reliability

of the detection process, it may also be desirable to require the edgel to be

localized within some central sub-window, e.g., 2-pixel x 2-pixel.

N.B.If one wants to detect step-edgels which have large deviations from an ideal

step-edgel, steps similar to (iii) and (iv), but with a basis different from the

tanh, will have to be added. Of course, the appropriate statistical formula-

tion will have to be used.

VI. An Example

We now proceed to illustrate the algorithm outlined in the previous section Li
with an example. Consider the image-window in Fig. 7-b which is a noisy version

of that in Fig. 7-a. The underlying intensity step-edge shown in Fig. 7-a has

grey-levels 64 and 128 on its two sides and abl., = 0.6. The edge is located at a

distance of 0.2363 pixel from the center of the window and at an angle of 34.40 to

the x-axis. The noise in Fig. 7-b is additive white zero-mean Gaussian with

af,, eite 8. The detected edge is located at a distance of 0.1679 pixel from the

center of the window and at an angle of 300 to the x-axis. The error in position .

is 0.0684 pixel and the error in angle is 4.4'. Recall that the position quantiza-

tion error is ± 0.05 pixel and that the angle quantization error is ±2.5°. As men-

tioned in the previous section, the relevant equations are listed in Appendix H.

The z-axis shown in Fig. 7-c is the estimated direction of variation in the window

and is orthogonal to the estimated orientation of the edge.

* 9-
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(i) Least-Squares Planar-Fit

If[, y]-- 74.72 - 7.34: + 16.52y L

Least -Squares -Error = 2683, 00 tn - 7i_ -- 11-50 (to nearest 5*) ,,

00 is the direction of the gradient of the planar-fit and is used as a first esti-

mate for the direction of variation in the window.

(ii) Least-Squares I-D Cubic-Fit"..'
I I, y] 71.74 + 21.83z + 6.19z 2 - 2.16Z3

z= xCos($) + ysin(O), 0 =120" (to nearest 5*)

Least -Squares -Error -= 1295 :

0, a refined estimate of 00, is the final estimate of the direction of variation'"

in the window and is orthogonal to the direction estimate for the edgel, if

any.

(ii)' (Optional)

The 2, 20 F-Statistic for the planar and cubic fits is 10.7 and it does exceed

the 75% threshold which is 1.47. Hence, we continue with the rest of the

algorithm.

(iii) Least-Squares I-D Tanh-Fit along 0

x I = 95.57 +-32.52tanh - p =0.9 (to nearest 0.1 pixel)

z = zcos(120*) + ysin(1200)

Least -Squares -Error = 1203

p is the estimate of the position of the edgel along the z-axis.

0 (iv) Least-Squares I-D Quadratic-Fit along 0

I z, V I = 77.80 + 15.86z + 1.45z2

z = zcos(120*) + ysin(1200)

Least -Squares -Error = 2615

The quadratic-fit least-squares-error is more than the tanh-fit least-squares-

error. Hence, an edgel has been detected.

* .. . . . -
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(v) Edge Parameters

The intensities on the two sides of the step are estimated from (iii) to be

63.1 and 128.1 (i.e., 95.57 - 32.52). The orientation of the edgel is deter-

mined from (ii) to be 300, i.e., orthogonal to 0, the direction of variation. Its

position is determined from (iii) to be 0.0 pixel from the origin along the z-

axis or equivalently 0.1679 pixel from the center of the window.

VU. Statistical Data

We now present some statistical results obtained for our edge-detector. The

algorithm outlined in steps (i) through (vi), excluding (ii)', of Section V, was
implemented. Let us begin by clarifying our notation. Signal-to-Noise-Ratio

(S.N.R.) is defined as (atep -size / Or, ife) where o,i, is the standard devia-

tion of the noise. The noise is assumed to be additive white zero-mean Gaussian.
A false-positive occurs when no edge is present in the window and an edge with

contrast greater than the threshold is declared. A true positive occurs when an -

edge is present in the window and it is identified as such, with its contrast
greater than the threshold, the error in position (perpendicular distance from the

center of the window) less than 0.7 pixels (half the diagonal of a pixel-support)

and the error in angle less than 15'. or is the root-mean-square of the error

in the position and o.., is the root-mean-square of the error in the angle. We

use a to denote the r.m.s. values because they closely approximate the standard

deviation of the errors. This is a consequence of the bias in the position and

angle estimates being relatively small. The threshold is on the edge-contrast and

is always stated in units of a.i.,.-

Fig. 8 shows a plot of the false positives vs the threshold. Windows of size

(5 x 5) with a constant intensity surface, abur - 0.6 and additive white zero-mean

Gaussian noise were used for this simulation. The value of abl,, was chosen to

be 0.6 because this was found to be a typical estimate in the real images con-

sidered in the next section. It can't be much smaller than 0.5 as then we should

expect aliasing and if it's much larger, the edge is at a larger scale and we need a

,g..

"-4 . . . . . . . . . . . ... .... . . ..... -.--. , -.... .-- , , . , N -- .. ' "-
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correspondingly larger support. Notice, that even for a zero threshold, false posi-

tives are declared in only 31% of the cases. This is in sharp contrast with gra-

dient thresholding schemes which would give 100% false positives. The disparity

is a result of our detection scheme requiring a certain step-like "correlation"

among the samples for an edge to be declared. This requirement stems from our

choice of the tanh as a basis. We have F.P.< 2.5% for a threshold of 1.5,oi,,;"

F.P.< 0.2% for 2onoiee and F.P.< 0.01% for 2.5a,,,

Fig. 9 shows a plot of the true positives vs. the threshold. Square (5 x 5)

windows with ideal step-edges, ablu, = 0.6 and additive white zero-mean Gaus-

sian noise were used for the simulation. Each step-edge passed through the I-

pixel square in the center of the window and its position and angle were indepen-

dently uniformly distributed. Constraining the edge to pass through the central

pixel-support is justified because each segment of an edge, which is not near the

picture border, will pass through the center-pixel of one window or another. To

reduce the contribution of gray scale quantization effects, the edge contrast was

chosen to be 64 levels on a scale of 0..255. Notice, that even for zero threshold,

we do not get 100% detection for low S.N.R.'s. In contrast, gradient threshold-

ing schemes would give 100% true positives. But then, they would declare any

distribution to be an edge! Thus, they would have 100% false positives too.

Also notice the relatively flat profile of the plots when the S.N.R. is less than the

corresponding threshold (the "knee" of the plot for a particular S.N.R. occurs

when the threshold is equal to the step-size). If we synthesized images rather

than windows, we should expect somewhat higher detection since each non-border

edge-segment in a pixel-support is "scanned" 25 times and as pointed out earlier,

we detect edgels and not edge-points.

Fig. 10 shows the plot of a..& vs S.N.R. for the true positives which %

would be detected in Fig. 9 if the threshold were zero and the constraints in the

position-error and angle-error were removed. This curve decays to c,' 1.90

for large S.N.R.'s (the diagram is cut-off at S.N.R.=8). This is about 30% more
than what we should expect from the quantization error for a uniformly

-7-
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distributed random variable [see 16. It suggests that the bias associated with%',.'

cubic-fit angle estimates, from the (5 x 5) windows, is small in comparison to the

quantization interval, i.e., 50. 4.

Fig. 11 shows the plot of o,tin vs S.N.R. under the same conditions as

in Fig. 10. This curve decays to 0orpitio,, z 0.032 for large S.N.R.'s (the diagram

is cut-off at S.N.R.=8). This differs by about 10% from what we expect from

the quantization error for a uniformly distributed random variable. This suggests

that the position estimates from the (5 x 5) windows have a negligible bias in

comparison to the quantization interval. In Appendix III, we derive an expression

for aositio,, in the 1-D high-S.N.R. case under the assumption of known con-

trast. It can be shown that this is equivalent to a vertical or horizontal edge in

2-D, with the effective S.N.R. being v1" times the actual S.N.R.. It turns out that

the values of apositio, we would expect for vertical or horizontal edges using the

expression derived in the Appendix are are within 25% of those shown in Fig. 11.

This is despite the fact that the contrast of the edge is not available to the detec-

tor and the errors in the angle estimates propagate to introduce errors in the

position estimate. The asymptotic value is within 10%.

The reader may also wish to know the effect of the inclusion of step (ii)' on

the statistics. Although the shapes of the false-positives and true-positives plots

remain more or less the same, their sizes get scaled. The false-positives plot now

starts out at 11% for a zero threshold and decays to F.P.< 1% for a threshold
of 1.5o noje; F.P.< 0.1% for 2 and F.P.< 0.01% for 2.5o,e The plot

-., of true-positives for S.N.R.=8 remains unchanged, the plot for S.N.R.f4 now

starts out at 78% instead of 88%, S.N.R.=3 at 58% instead of 76%, S.N.R.=2 at

33% instead of 53% and S.N.R.-I at 11% instead of 22%. The plots of a°s,"

and Oposition remain approximately the same.

Comparisons of the statistics of various operators are valid only if the size of

the support used to make decisions is the same. Increasing the support size,

which in our case is (5 x 5), would increase the fraction of true positives and

N' ".4, No'.. N ' N.', . . .-. .. . ., " " ." .- . .. . -.. , ':- . .. '. '



S. -- 1

Nalwa and Binford Page 25

decrease the fraction of false positives, for any given S.N.R.. Also, p,,iti., and

053 gj, would decrease. This, however, would be at the expense of resolution

between adjacent edges and the detection and localization of high-curvature

edges.

We end this section with a word of caution. The analysis in the Appendix

and the statistical data of this section are for ideal step-edges. They can, at best,

only be indicative of the performance on real images owing to the numerous

simplifications and assumptions invoked. For example, non-constant intensity

surfaces have a higher likelihood of false positives than constant surfaces like

" those used for the statistics. The results are of no value if our edge-model is seri-

ously flawed. Hence, although theoretical and statistical support is desirable, in

the final analysis the edge-detector must also "work."

VIII. Three Case-Studies and a Comparison
A%

It is essential to point out some details concerning the photographs

displayed. a) Only the step-edgel detector outlined in Section V (including (ii)')

has been implemented. (The exclusion of step (ii)' marginally improves the detec-
tion of low-contrast edges.) b) The edgel-images have the intensity of their edges

proportional to the contrast. Owing to characteristics of the display system, the

high-intensity edges seem thicker than they actually are. (This artifact also

occurs in the highlights of the original images.) This can easily be confirmed by

an examination of the superimposed images. c) abl,, is not constant over most

images. This is particularly true of images with substantial "depth," e.g., Fig.

14-a. In such cases, it is desirable to use multiple values of abl., and then

integrate the resulting edgel images. However, we have restricted ourselves here IL'

to the use of a single value of ablu, for each processed image. The detection pro- 0 .
"%-

cess is not particularly sensitive to the value of abl,, used, although the localiza- P.'1"%

tion of the edgels may be affected. d) All edges displayed are composed of raw

edgels with no post-processing, like linking, thinning, cleaning etc.. e) Some of

the low contrast edgels have inevitably been thresholded out. A significant .

- .

: *. . " V .-..',-p. . .
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improvement in their detection is likely if we were to instead use two thresholds

at the linking stage as suggested by Canny [6], i.e., a high threshold to create a

new linked edge and a low threshold to extend it. This procedure exploits the

fact that isolated edgels are more likely to be false positives than those that are

not. f) Degradation resulting from the various reproduction processes would K

make it difficult to confirm some of the edges present in the original image. This

is particularly true in the high intensity regions which saturate the display well

below the highest gray level. g) The pictures with the edgels and the superim-

posed edgels are displayed on a grid with twice the linear resolution of the origi-

..V nal image because of our sub-pixel localization. Further, pixels in the vicinity of

edgels in the superimposed images have been reduced to the lowest gray level, for

clarity. h) It is important to bear the size of the original image in mind when

scrutinizing the pictures.

(i) Industri. Setting Bin of Parts (Size: 128 x 128; abl,, 0.6)

Refer to Figs. 12-a (the original image), 12-b (the edgel image) and 12-c (the

superimposed image). This picture was chosen to demonstrate the resolu-

tion capability of the detector and its performance on high-curvature edges.
' .

The pins of the various parts have false negatives. This is because they are

bounded by dark lines, and our edge detector has currently been imple-

mented only for step-edgels. The outer edges of the lines have been

detected although not well-localized, but the inner edges exceed the resolu-

tion capabilities of our detector. Notice that some of the circular regions "-4.4

,.4 detected have a diameter of just a few pixels.

(ii) Aerial View : San Francisco Bay (Size: 256 x 256; ua6 , ;, 0.4) "" 4'

Refer to Figs. 13-a (the original image), 13-b (the edgel image) and 13-c (the

. superimposed image). This picture was chosen because of its complexity.

On first glance, it may seem that there are a host of false positives. How-

• .ever, a closer examination of the superimposed image reveals this to be
, ...1'

0 .? . ", ". ". " . " " . " .' -",- ".- " ., ". " " ." '2 " ". ". " . ". ." " -" "- " ".' -'2 ¢ '-" " ' ' -" "-' .'. .° - '2 ' .'- "' ".' '.' ." ' " -° -'" '" -' -" g -'" " . -: ." -" ." ." " -.
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untrue. The long lines in the sea correspond to silt lines. It may not be

possible to confirm them in the photographs you will see. In any ease,

notice the continuity in most edges. Long continuous false positives are sta-

tistically unlikely. Also notice the detection of the small island in the mid-

right of the image. In the superimposed image, the edgels are seen to

impose a structure based on local intensity changes.

(iii) Indoor Scene : Telephone, Cup and Pencil (Size: 256 x 256; abl , ; 1.1)

Refer to Figs. 14-a (the original image), 14-b (the edgel image) and 14-c (the

superimposed image). This image has objur varying in the range [0.5, 1.5]

owing to the "depth," and the resulting defocus, in the image. The central

portion of the flower on the cup is not well detected because the resolution

capabilities of our detector are exceeded.

(iv) A Comparison : Bin of Parts (Size: 256 x 256; ob,,, P 0.6)

Fig. 15-a displays the original image. Fig. 15-b is the corresponding edgel

image with blur = 0.6 used in the argument of the tanh function. Notice

that the lower edge of the specularity on the head of the plunger (located in

the top center) has not been detected despite its very high contrast. This is

not surprising because the edge resulting from the "saturated" specularity

does not resemble an ideal edge. What is surprising is that the various

other edges of specularities have been detected despite their large deviations

from an ideal step-edge. In fact, the edges of the cylindrical portions, like

all lambertian folds, also deviate from ideal step-edges; the extent of devia-

• .' tion depending on the curvature of the cross-section. A careful examination

of the shaft of the plunger should reveal that two edges on either side of the

• ', specularity have also been missed. While the upper missed edge is a gen-

eralized step, the lower one is a roof edge. These conclusions were drawn

by an examination of the individual pixel gray levels. While, tuning ab.,

to 1 allows us to detect the missed edge on the plunger head as shown in

Fig. 15-c, we are still unable to detect the generalized step-edge along the

-. .. .. .___
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Fig. 12-c. Bin of Parts .Superimposed Image (tanh/
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Fig. 15-J. Close-Up of Superimposed Image - Our Detector (tanh/cubic)

Fig. 15-k. Close-Up of Superimposed Image - Alarr-Hildreth Operator
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plunger shaft. Fig. 15-d is the edgel image using the tanh/cubic fit to

detect generalized step edges, as explained in Section IV. The value of Obl,-

used in this image is 0.6 and not 1. Both the generalized step-edges which

were absent from Fig. 15-b have now been detected. We would also like to

draw the reader's attention to the false positives between the individual

coils of the plunger/spring assembly located in the mid-right. These false

positives suggest that it might be advisable to include in the algorithm a

check for the validity of the assumption that the underlying intensity sur-

face within each window is 1-D.

Fig. 15-e is the edge image for a version of the Marr-Hildreth

Operator 5  [12]. Figs. 15-f and 15-g are the superimposed images

corresponding to Figs. 15-d and 15-e respectively. In order to facilitate a

comparison between the two superimposed images, we zoom-in on (128 x •

128) subsections in Figs. 15-h, -i, -J and -k. For reasons mentioned in the

beginning of this section, it might not be possible to confirm all the detected r
edges. In any case, a careful examination is instructive to discover the

differences in performance between the two operators with respect to detec-

tion, resolution and localization (especially of high curvature edges).

IX. Conclusion

We dealt with the problem of edge-detection by using directional one- .

dimensional surfaces. Edges were defined in terms of short, linear segments L.

called edgels. Detection of edgels was claimed to be more appropriate than that

of edge-pixels. Some shortcomings of derivative operators were then presented.

SThe choice of the Marr-Hildreth Operator was based solely on convenience. It was
used by S.R.I. International for the I.T.A. Project in which Stanford was also a partici-
pant. As the displayed image was among those used in the Project, we expect that the
operator has been tuned for optimum performance on it. The implementation used the .-

Difference of Gaussians (D.O.G.) with ori = 1.6, with a (11 x 11) support, and
O'e = 1, with a (7 x 7) support. The choice of Ofi/ore = 1.6 results in a close ap-
proximation to the Laplacian of a Gausian 1121. The zer-crosings were thresholded on -.
their slope. It is conceivable that a different implementation of the operator will produce

better results, but it seems unlikely that the improvement will be dramatic. ..-.

r ee

. % % %
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NO
An adequate basis for most step-edgels was shown to be the tanh. It is likely

that other adequate bases exist and, in fact, if one were going to use a table

look-up to perform surface fitting, the exact profile of the ideal step-edge can be

stored. This is a functional of the Point-Spread-Function of the imaging system.

A detailed discussion on the design of the operator was followed by an outline of

the algorithm and an example. Robustness to noise, sub-pixel position localiza-

tion (O o <tion < 1/3) and better than 100 angular localization were statistically

established for S.N.R.> 2.5. This was accompanied by some simple analysis and

a variety of images demonstrating the performance of our operator. It was indi-

cated that it might be advisable to include in the algorithm a check for the vali-

dity of the assumption that the underlying intensity surface within each window

is 1-D, in order to reduce false positives. It was also mentioned that we do not

consider our handling of non-ideal step-edges to be completely satisfactory. .

The statistical data and theoretical analysis presented in the course of this

paper were intended to provide the reader with insights into the behavior of the

* proposed algorithm rather than numerical results applicable to "real" images.

We reiterate that the numerous assumptions invoked in Section VII and Appen-

dix III are only first-order approximations. For example, ideal step-edges were

assumed. Non-zero slopes on the two sides of the step would contribute to bias .'p

the position estimates. The imaging system was implicitly assumed to be linear-

space-invariant. It was also assumed that the "blur" of the imaging system could O-Co

be approximated by Gaussian convolution. Although the main lobe of the

diffraction pattern for a circular aperture closely resembles a Gaussian [see 8], *"5.

some modifications may be warranted by the particular sensor response and the

degree of defocus [see 81. It was further assumed that the noise was indepen-

dently, identically distributed (i.i.d.) additive zero-mean Gaussian. This is an

%1 accurate model for the thermal noise in electrical circuits [see 21. However, the

noise associated with photoelectronic emission is intensity dependent.6 At high

6The photoelectronic noise is often approximated to be Poisson distributed with its
-. standard deviation equal to the square-root of the mean signal Isee 21. For high light lev-

". els, the Poisson distribution converges to a Gaussian distribution with the same standard

,,, .*---'

S .S . .d'... . '. _.. '. . o.. . . . .o,,. .. % --. . . . . . . . -. o. - . . . . . . . - . . . . . . . . -. . . .. . . f0,,""..".-
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*.%

intensities photoelectronic noise may dominate thermal noise, rendering our

noise-model invalid. Under such circumstances it may be advisable to have a

signal-dependent threshold on the estimated step-size. Of course, if the thermal
and photoelectronic noise are both relatively low, then the intensity quantization

noise may become significant. Under general conditions, this noise has a uniform

distribution in the interval [-0.5, 0.51 and its standard deviation is 1/42i [see 16].

An attempt was made to highlight some of the issues and concerns in edge-,J
detection, as we see them. Analytical, statistical and empirical tools were

employed to demonstrate the performance of the proposed algorithm. Computa-

tional efficiency was not a criterion in the design of our algorithm. We concerned '%

ourselves solely with adequacy. The current implementation is in C on a

VAX11/780. The processing time is typically 3 C.P.U. minutes for a (128 x 128)

image. We expect that this can be reduced by a factor greater than 2. The algo-

rithm is implementable as a strictly parallel process and has natural extensions

for roof and line edges.

Appendix I : Zero-Crossing Bias

Let E (z) be a generalized step of height S at the origin, and G (z) be a normal-

ized Gaussian with "standard deviation" Cbl,t.

k I.x if X <0 '

E(z) = ik 2 .z+S if z>0

G (z) =..,

Then (E (z ) *G (z)) is the corresponding step-edge (where • denotes convolution)

and it can be shown, that (E (z ) *G (z))" -E (z)*G"(x).

E(z)eG"(z) f k.(z - u).G"(u)do + f-k 2.(z - U)+ SI.G"(u)do

- f k.(z - a).G"(u) do + f - kl).(z - u) + SI.G"() du

- IS - (k2 - k ).zI.Gzs) + (k2 - ki).I.G'(s) - G(z)j

deviation.

.4%
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= S.G'(z) - (k2 - k.).G(Z)

Equating this to zero we get, z --A.1ope .oA,/S where A.10, (k!- k 2)

and S is the step-size. This is the biased zero-crossing of the second derivative. .
".

Appendix H : Least-Squares Criteria and Statistics

Least-Squares Criterion for a Planar-fit:

= - (Image[z,y]-(ao+ a. .y )
1.1 =0

(minimize w.r.t. a0 , a, and a,)

Initial Estimate of 0 (used below) : 00 = tan-(a, /a.)

Least-Squares Criterion for a Cubic-fit:

=c L (Image [.Ty] - (a0 + a1.z + a 2.z 2 + a3.z)) 2

z = x.eos (0) + !.sin (0)

(minimize w.r.t. ao, a,, a2, a3 and 0)

0 is the angle by which the axes have to be rotated to align the x-axis with

the edgel cross-section. Its initial estimate, from the L.S.E. planar-fit, is

refined here. The equations to be solved are non-linear in 0.

Least-Squares Criterion for a Tanh-fit:

4

,= (Image [,],- (s.tanh (f.[z + P )+ k)) 2

a~=0

z = x.co8 (0) + y.sin (0)

(minimize w.r.t. @, p and k)

The value of 0 determined from the L.S.E. cubic-fit is used here. f is

determined from the rule of thumb mentioned in section IV i.e., (0.85 /
ubur ). The edge contrast is 2s and p is the position. The equations to be ,%*.

solved are non-linear in p.

Least-Squares Criterion for a Quadratic-fit:

C9 = E (Image [z,y] - (ao + a,.z + a2.z 2))2

'% % . . . . . ° . * • VV. C. . 4~ \~' ''C
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Z = X.Cos (e) + y.ain (0)

(minimize w.r.t. a 0, a I and a 2)

The value of e determined from the L.S.E. cubic-fit is used here.

Statistics:

fp 1o.,, follows the X-Statistic with 22 D.O.F..

4 /o,'., approximately follows the X2 -Statistic with 20 D.O.F..

f 01o e,4 approximately follows the X2-Statistic with 21 D.O.F..

fQ /ac2.j approximately follows the X-Statistic with 21 D.O.F..
{10.(p-fo)/c) approximately follows the 2, 20 F-Statistic.

{20.(fQ -fC)/fC } approximately follows the 1, 20 F-Statistic.

The above formulations are inexact because of the non-linearity of the cubic

and tanh bases (in 9 and p respectively) and the fact that the value of 0 used

in the tanh and quadratic fits is predetermined.

Appendix I • Localiation of Tanh-FIt

Let E (z) be an ideal step of height S at the origin, G(z ) be a normalized f %

Gaussian with "standard deviation" Obi., and E 6 (z - k) represent a discrete

sampling function.

./.",0if Z<O

( ) ,. .. ..

EW1) - Si, <> o4\
G(z) - i .

Further, let q (k) represent additive white zero-mean Gaussian noise with stan-

dard deviation o..,. Then, we can model a one-dimensional step-edge at posi-

tion p, as below (where * denotes convolution).

f (k) - E(z- ,)G(z) .6(z-k) + (k) k . 1 0 +1 ... .

*. ..

kh..

J, • o, . : . :- - ./ . '. . : . . ... < .... ..-. :.... -. :., ....... ;..:%..-.:....
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0..:.5

Let the fitting function be S.{0.5 + 0.5 tanh( 1.[z - p - el] )}, where e
0' blur

is the error in position-localization. The factor 0.85 was chosen to minimize the

total-square-error, in the absence of noise. Then, the total-square-error is

given by

[85 II ]
f y (k) S 0.5 + 0.5 tanh l [95 z -p -(1 6((z-k 2

Minimizing w.r.t. c by equating to zero, we get
085 I°f0 - ] ]

I L . Seeh 1Z - p - fl• 6 (z -k)) . ... 0

k
where .... represents the error term from the preceding equation

Now, let's assume the signal to have a high S.N.R.. Then, e is small and we can
substitute the 8ech2 and tanh terms by the first two terms of their Taylor series

expansion w.r.t. c. Dropping the C2 term and simplifying, we get ir -

Oech2- Ix-P 1 (z-k) () + + --A, #e h 4 b (z -k

1o.e-ch2- 1. .- -1Z Itanh 0-85--I) 6(z-k). fl(k) + t - 0

where fl(k) = !.E(:-p)*G(z) - t.5+0.stanbl 0."XP 6( 1
S 0 .8, J J.4

Notice that f0(k) are samples of the error profile shown in Fig. 5. Hence, the

magnitude of f(k) is bounded by 0.01. Invoking the high S.N.R. assumption
once again, for typical values of abl., ( 0.5), we can drop the last term by

comparison with the other c term. Then, r'

8ecL2f __ n
5
f i --iz-) ._10(k) +

- p+w

k *
0.425 h~ .85111PI .6 (z-k)

where fl(k) is as defined above

%..J
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., Taking the expected value w.r.t. i, the noise, it follows that c, the error, is

biased. The bias is a function of the position, p, of the original step and for a

typical bl., ( = 0.6), it closely resembles a sinusoid with a period of I pixel- .*Zf

width and amplitude 1.06E-2 pixel. In practice, we would be required to quan-

tize the position we determine from the tanh-fit and in all likelihood the quanti-

zation error will be an order of magnitude more than the bias. Taking the

expectation of c 2 w.r.t. q1, we get 
40

%: 2
SeCh 2----[z1 - 1j .6(z -k) . n(k)2

Ee 2 Ij 9.-1 ,,eh,, I + 04',1 -8 .
0.42 Seh 0.85 _P~j 6( -k) -,2 .eChl 0-8 X-I.6(-k)

Lk k ob

Now, let's obtain an expression for the root-mean-square of the total-error, tak-

ing position-quantization into account. Let the quantization interval, Af , be

0.1 pixel and the quantization levels be centered around the origin. Further,
consider p, the actual location of the edge, to be a uniformly distributed ran-

dom variable in the interval (-0.5 +0.5) and let abl., -- 0•6. Then, it can be '--

shown that the quantization error is approximately uncorrelated to the bias.

Hence, the mean-square of the total-error is the sum of the expectation of

E[ 1 p ] w.r.t. p and 2. The latter is the variance of the quantization

error [see 161. For the above choices of abl., and A,, the root-mean-square

error can be numerically evaluated to be V .'E- SR.• Perhaps, it

should be pointed out that the exact choice of the range of summation in the

above expressions does not matter, as the first two terms on either side of the

origin dominate the calculation. Under simulation with a 5-pixel-width window

centered about the origin, this expression was found to be in error by less than

5% for S.N.R. > 8 and less than 10% for S.N.R. > 4. Note, that intensity

quantization effects were neither accounted for in the analysis, nor present in

the simulations. Also, it was assumed that a step-edge of known contrast was

being localized.

. .. . ... . .. . .. . . . . . . ... . ... . . . . . .. . . .. .. . .... ... _. . . . ...
!.4 .*. .. .. :.. ... :..... .:......... ...... ::'
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