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Abstract

In this report we describe development and implementation of a
general theoretical approach to describing the properties of defects and
impurities in non-metallic solid systems is well as its bulk properties.
This approach combines fully correlated, fully self-consistent
electronic structure determination of the electrical and mechanical
properties associated with neutral and charged defects/impurities in or
on a non-metal. The system remote from the defect is described by the
shell model which incorporates self-consistently, host polarization and
distortion. This results in our being able to obtain absolute energies
of the impurity ions in the host and their interaction. The model is
free of adjustable or undefined parameters. This project is of non-
trivizl magnitude and the current computer implementation, which is
functional in our laboratory, consists of a program, ICECAP, which is
about 100,000 statements long. This program is the result of extensive
collaboration between our group and that of Professor J.M. Vail,

University of Manitoba, and of Dr. A.M. Stoneham, Harwell, AERE.




Summary of Project

This proj@ct, since its beginning, has been dedicated to
understanding the fundamental properties that control the electronic
structure and also, ultimately, the chemical properties of energetic and
other molecular solids. This project began envisioning the need to
understand the fundamental electronic structure of energetic materials.
This was, and to an extent still remains, an area in which there are
very few definitive studies. The normal methodology employed by
researchers in the area of solid state physics would be to attempt to
determine the electron energy band structure of such systems and it was
here that this project began. Immediately, there is a point of
contention, namely what model should one adopt for describing the
electronic energy band structure of such a system. Conventional solid
state wisdom would imply that one should begin with a general first
principles methodology called density functional theory. However, past
experience in applying density functional theory to materials with
similiar electrical properties to most of the energetic materials, that
is, to molecular systems such as the solid rare gases or other
insulating systems such as the alkali halides has indicated that the
density functional methods provide an extremely poor initial guess as to
the band structure of the systems involved. Therefore, the likelihood
of obtaining a qualitatively correct and certainly a quantitatively
correct description of the electronic properties of such systems is
highly unlikely. It has also been known for some time, due to in part
the early studies of this principal investigator that Hartree-Fock
methodologies, although cumbersome, in application to metallic or near
matallic systems are nonetheless capable of providing extremely accurate
descriptions of the electronic properties of insulating systems
including the solid rare gases in the alkali halides. It is with these
methodologies therefore, that we decided to begin.

The type of electronic properties that one would wish to describe
accurately for the bulk of materials include the following. We would
like to have an accurate description of the shape and widths of the
occupied electronic energy bands. We would like to have a good estimate
of the non-occupied or virtual energy bands and shapes, in particular,
since their width extends from the point of inception to the positive
infinite. We are interested principally in an accurate description of
the density of states and also the absolute energy value at which the
onset of these continuous bands begin.

Next, we would like to obtain an accurate description of the optical
spectroscopy of such systeme. This does not just include some kind of a
convolution of the electronic occupied with the electronic virtual
bands, but also includes those modifications caused by the coulomb
correlations provided by the interaction of an outgoing electron, that
is, the electron being excited with the net positive hole left behind in
the valence band. Such excited states in solid state physics are
normally termed excitons and it was with these problems that we began.

In order to begin we initially sought to verify our methodologies
which consisted of the use of many body perturbation theory on top of an
unrestricted Hartree-Fock calculation and so our initial starting point
was with the free space methane molecule itself. In this study which is
described fully in appendix A we determined a basis set which was proven



accurate to be able to account for the total correlation and total
system energy of the methane molecule to within 2 tenths of an eV of the
experimental value. This is a calculation that was roughly comparable
in accuracy to the best available in the literature at that time. In
addition, this calculation was pushed through to provide a description
of the methane excited state spectrum. This again is fully described in
avpendix A, however, it is my intent to call attention to one very
significant and important fact which arose from this study and that is
in systems that contain extremely light and mobile ions such as the
hydrogen nuclei or protons in the methane m>lecule that the vibrational
amplitude of such protons is sufficient that there is considerable
overlap in the vibronic wave functions of Frank-Condon type excited
states and those of reduced symmetry. In fact, it has been demonstrated
here with the extremely accurate calculations available that the methane
molecule relaxes directly into a lowered symmetry than the ground state
and it is these states which in fact dominate the excited states
spectrum not the Frank-Condon states as we normally expect. This is
carefully documented in appendix A. Subsequent to the study on the
methane molecule we began a description of the local states of the
methane solid by constructing a cluster consisting of a central cell
methane molecule and the surrounding twelve nearest neighbor methanes.
This is a cluster consisting of 65 atoms in all. Again, studies were
made of the ground excited state, and spectral predictions including
relaxations into modified geometry excited states were obtained. From
this we began to construct an electron energy band model for methane.
Orbitals obtained from the molecular calculation were employed here and
appropriate block states were obtained from them in the Hartree-Fock
limit and as corrected by a use of the electronic polaron which is
really a weakly modified many-body perturbation theory method described
by this author approximately ten or twelve years in the past. These
band structures and their band gaps, band shapes and widths are
described in full in appendix B. In addition in appendix B we will also
find a description of the excited states of the methane system. The
excited states of the methane system, compaired with those that are
measured experimentally, are found to be excitations into relaxed,
lowered symmetry geometries not into the ideal geometry of the methane
crystal itself. Therefore, the important lesson of the molecular study
is found to apply here also. We believe that this is a significant
result and represents, to our knowledge, the first time the solid state
calculation where it was demonstrated that localized excited states of
different nuclear symmetry than the ground state were dominant in
obtaining a spectrum for the system. Subsequent to this, there have
been measurements of the virtual densities of state for the methane
solid made at the University of Sherebrook in Canada. We are happy to
report that these studies confirm the results of the calculation.
Particularly pleasant in our view is the fact that the calculations were
performed well in advance of the measurements. Ve realized at this
point that traditional solid state band theory was not going to provide
a sufficient basis for all of the necessary studies one needs and wishes
to do on energetic materials. At this point we recognized that the real
problems did indeed concern those properties which did not appear to be
simply periodic in the usual band theory sense. An example has also
been given, namely in necessity of including distortions in excited
nuclear geometries. Therefore, we decided to abandon further studies



based entirely upon translation of periodicity using, at best, weak
perturbated methods to modify this and to directly incorporate
localization in further calculations.

A next study performed was a study beginning with the nitro-methane
molecule and then extending to clusters of nitro-methane molecules meant
to simulate properties that could happen in the solid. A very complete
description of this is given in appendix C and is a reproduction of a
thesis submitted by Dave Lucas 1 graduate student entirely supported by
this project which was recently completed. In the case of the nitro-
methane following on the methane there were no significant surprises of
the nature elucidated by the methane study. However, there were some
features of this calculation that I would like to draw your attention
to, which are fully documented in the appendix C. These are that the
quality of normal Hartree-Fock basis sets applied for studies in nitro-
methane have in all likelyhood been less than optimal. In this
particular study as is seen in appendix C we were able to obtain a
substantial reduction in the Hartree-Fock ground state energy over other
calculations that are available. While it is true that much of the
energy is undoubtedly described to core electron it is also true that in
other studies in the absence of counterpoise type methodologies
descriptions of binding and bond energies are likely to be in reasonable
error. In addition to this, we are also able, even on this not
particularly heavy system, to see some effects, we believe, of the size
consistency problem. That is of current concern in areas of quantum
chemistry or solid state physics. That has led some workers to
adoptions of coupled clustered or many-body perturbation techniques.
This is reported and described thoroughly in appendix C, Prios work uses
techniques such as complete single-double CI's have been reported.
Furthermore, Davidson techniques have been used in general to take those
results and extrapolate them to what is a presumed correlation limit.
Nonetheless, you will see that the simple size consistent methods,
generally, considerably enhance the size of the presumed correlation
energies for this molecule. This causes us to question both the
validity of the CI method at least in its limited sense as applied to
this class of system, let alone heavier systems and also to the validity
and utility of the Davidson extrapolation techniques. We believe that
the use of such methodologies should be further studied and more
convincing cases made either for their validity or their non-validity.
Certainly, on the basis of the results demonstrated for nitro-methane
there is a sufficient reason to question the utility of these methods
for further extension in this type of area unless more complete CI type
calculations can be effected.

Finally, we have begun the development of the method which will
provide for a general description of the properties of defects in and
the defects on other properties of non-metallic systems. This general
method which was described rather thoroughly in our last annual
technical report is termed the ICECAP method. The ICECAP method has
recieved a much more complete analysis since then and an internally
consistent method of application has been developed that should be
applicable to the general class of non-metallic solid. This methodology
including the exact handling of the boundary region between the
classical and semi-classical region and the quantum mechanical region is
thoroughly described in a thesis reproduced in appendix_ D,.by another
student partially supported by this contract. In this appendix you will



see the full theoretical development of the TZECAP methodology and a
preliminary result for a very sensitive system consistirg of the lithium
impurity in a potassium chloride host. The dominant problem here is
that the lithium, because of its small size does not sit at the center
or the well, but goes off center distorting the surrounding well and
hopping back and forth. Even though this method is applied and this is
certainly a preliminar application which has not shown capable of
producing the exact frequencies, it has been capable of providing fairly
accurate estimates for the barries to the migration and also a set key
quantities as a Greuneiseu parameter. We believe that this development
will be of significant affect in future studies related to energetic and
other non-metallic solids and we believe that in general the ICECAP
implementation which is driven by and built on the previous developments
reported here is, in fact, a significant advance in the area of non-
metallic and certainly energetic materials.

{n summary then, we believe that this project has had a considerable
amount of success in developing, understanding and improving the
methodologies available to us for understanding energetic materials. We
have come up with an accurate and effective description of the bulk band
structure properties of such materials, presumably a two dimensional
slab type implementation would also permit accurate description of the
surface properties of such materials. We have demonstrated that we have
developed extremely accurate methods, even at the molecular level for
describing things such as total energies, excitation energies, even
changes of geometry upon excitation. Finally, we have discovered the
need for, and provided an implementation of, a very exact method for
studying defects in impurity properties in the general class of non-
metallic materials.
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Dynamic Effects in the Excited Spectrum cf Gaseous Methane
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Excitation energies for the lowest triplets and singlet-triplet
splittings in gas-phase methane including many-body effects

Donald R Beck and A Barry Kunz?t
Physics Department. Michigan Technological University. Houghton, M1 49931, USA

Recenved 31 January 19584

Abstract. {sing second-order Moller-Plesset perturbation theory, we have caleulated or
estimated f=est) the geometries (we aliow for Jabn-Teller distortion} and excitation
energies, AE, of the five lowest tnplets adl associated with the 2p - 3s transition of CH,
to be: Cu,. Doy, Coys Dy Ty tunrelaxed) with AE =874, 895.9.30 (est), 9.89 (est) and
1041 eV, The C,, and T singlets are (ound to be 0.33 and 0.22 eV above the respective
triplets. Based on these results, two expenimental singlet features at 9.65 eV and 10.33 ¢V
are assigned to the Dy and T geometries.

1. Introduction

There is much current interest in how energy is focalised and released in van der Waals
molecular crystals, of which solid methane is almost an ideal representative due to its
relative theoretical simplicity and because it is best characterised experimentally
(Righini er al 1981 and references therein). One hypothesis (Kunz 1983) is that the
lower lying excitons (electronic excited states, in molecular language), play a funda-
mental role in energy localisation in such solids.

Due to the nature of the chemical bonding (van der Waals) of the solid there should
be considerable similarity between solid and gas. as is confirmed by direct comparisons
of the fundamental spectral region from threshold (=8.5eV) to about 14eV
(Brongersma and Qosterhoff 1969, Koch and Skibowski 1971, Lombos et al 1967a. b,
Ditchburn 1955, Harshbarger and Lassettre 1973). So it is clear that knowledge gained
about gas-phase excitons will be significantly transferable to the solid phase especially
as regards basis set construction (very small, yet accurate sets are obviously needed)
and the role electron correlation plays for excitation cnergies. Moreover gas-phase
results are necessary to establish gas—solid phase trends in conjunction with results
already available on the rare gases (Moore 1949, Baldini 1962). Finally gas-phase
results are valuable in studying the effects of hydrostatic pressure on excitonic
properties.

Because of the computational method adopted, most of our attention will be
directed towards the triplet excitons (we should note that triplet excitons may have
been already observed in the solid (Brongersma and Qosterhott 1969}). As the
molecule is to be eventually part of a solid, our greatest interest is in equilibrium
geometries, including Jahn-Teller distortions of the ground-state T, symmetry upon
excitation.

+ Permanent Address: Physics Department. University of inois, Urbana, IL 61801, USA.
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A survey of the existing gas-phase literature reveals only a few fairly crude results
(Pauzet er al 1972, Williams and Poppinger 1975) for the lowest (2p - 3s) triplet (with
no investigation of Jahn-Teller effects): although the singlets have been somewhat
better investigated (Gordon and Caldwell 1979 and references therein, Pauzet et al
1972, Williams and Poppinger 1975) much of the extra attention has been focused
away from the equilibrium region.

In this work a much more thorough examination of the lowest gas-phase triplet is
presented using many-body methods, and including the effect of Jahn-Teller distortion.
Singlet-triplet splittings for the lowest excitons are obtained at the Hartree-Fock leve)
and used to partially clarify identification of some of the experimental features. Finally.
a small but well optimised correlated basis set has been developed which is suitable
for cluster modelling of the solid.

2. Hartree-Fock methods and results

While there are numerous methods of demonstrated practical utility for treating
many-body effects in the gas phase, our choice will be restricted to those which also
offer the greatest practical utility when applied to the cluster. Our current preference,
based in carlier experience (Kunz and Klein 1978, Beck 1981), work reported here,
and work in progress on the methane cluster as well as atomic excitation energies is
to use for a zeroth-order result the unrestricted Hartree-Fock (UH¥) solution for the
triplets. (=0.5% contamination of $ at the vk level was observed: the ground state
was pure $ =0) to which we apply second-order Rayleigh-Schridinger perturbation
theory to correct for correlation etfects (extension to third and fourth orders is in
progress).

We will represent the triplets with a single Slater determinant, whose elements are
one-¢lectron functions which are products of a pure spin and orbital function. The
orbital functions, which are not artificially constrained to be eigenstates of orbital
operators, are expressed as linear combinations of known atomic orbitals (i.e., the
standard 1L.oAO method is used). The Ao are themselves fixed linear combinations of
primitive (elementary) Gaussian functions (the process of establishing the combinations
is called contraction), associated with a unique type (s, X, y, 2, XX, ..., X2, XXX, ..., €lc}
and centre with exponent, £ Once the Ao are established. the vnit procedure seif-
consistently obtains the coeflicients preceding the Ao, for each M0, The computer
algorithms used to perform this task involve the ‘labels and integrals’ package of the
POLYATOM code (Csizmadia et al 1964, Neumann et al 1971) and a vnr algorithm,
developed primarily by one of us {ABK). In order to increase the flexibility of this
approach with regard to the cluster calculations, we have revised the integral package
so that £.oMmo caleulations can be done (i.e., contraction over Gaussians of different
tvpes and/or centres can be carried out).

In specifving the set of contracted A0, we will use a notation of which the following
1s an illustration: [S.1/1.1/1:2/1:1]. This is shorthand for using two contracted s
functions centred on C (consisting of 5 and 1 primitives respectively), two p on C (one
primitive cach), and one d on C (one primitive). Additionally. there is one s function
on H (two primitives), one p there (one primitive) and one s midway (unless otherwise
specified) between C and H (one primitive).

Our calculations began with the [7, 2, 174, 1] set of Dunning and Hav (1977 inb
the next to Jast £ of this work should be 0.4962 and not 4.4962) which were originally
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contracted from the 9sSp. in our notation [1, 1.1, 1,1,1,1,1.1/1, 1, 1, 1. 1] set of
Huzinaga (1965). which we then partially uncontracted to (5,1,1.1,1/1,1,1,1). To
this set, the four H-centred s primitives of Meyer (1973), and one s-bond function
were added. The position and exponent of the bond function was then optimised for
the T, ground state. and the vnr results contracted with minimal loss (only the H
contraction associated with the s orbital was excluded). The results of this process
are shown in table 1.

Table 1. Contracted” Ao from Gaussian basis sets for CH,.

'S Celo Ci2s) <5 Ce2py

42330 0.001 2184 0.000 242 1%.16 00102025 2004 0.004 2886 0.008 2458
GRER] £.009 3294 - 0.00] 8534 34986 00635277 .02 (030 [KRY (1.036 9433
1461 0.045 3934 00090173 1143 01659428 U 6RI6  (.093 394 (117 8185
428 01544573 0030 6R2IR 03594 0308178 0185 0.027 1863 0151 9823
1419 035K 3029 G071 1964 01146 01316708
S48 04367437 01471277 29

L9670 147 1783 GOS0 2061 153
04962 (.00] 1586 (.335 5736
01533 0.00] 384 04140564
022

44

X7

“The “tir space’ consists of 18 A0 und 70 primitives, to which we add 24 correlation functions. The Cs
and p virtuads are shown in the table. In addition. the virtuil space includes a d ({y =0.6) and an f ({ =0.5)
centred on C. The it space alvo ineludes an s function centred at the bond midpoint (£ = 1.0} For the
C., geometry. the larger .y, has a bond function with =075,

In an attempt to check the valence space saturation for the ground state. the
following function types were added to the set of table 1 one (in the absence of the
correlation f functions) at a time and exponent optimised: d on C ({ =0.3, -0.001 au
lower), f on C({ =04, =0.002 au lowert: p on H ({=0.75.-0.002 au lower) and p
at the bond midpoint ( = 0.45, =0.001 au lower). Due to over-completeness of basis
sets. interference of different effects, ete. we can not simply add these lowerings together
to produce 4 better value. On the other hand. by directly comparing the Huzinaga
and Saki (1969) 1157p set with the 9s5p set (Huzinaga 1965) we found that about
=003 au is lost”. Detailed comparison of the two sets shows that this is to be
associated with the Is electrons. which are of no chemical concern. Comparison of
our iy ground-state results with the accurate calculations of others (Meyer 1973,
Ortenburger and Bagus 1975, Frisch er al 1980, Bartlett and Purvis 1980) shows
{table 2) that we do quite well. and the remarks above suggest the bulk of the
discrepancy lies in the deep core region. The basis of table 1 also includes the diffuse
s of the excited state and the correlation primitives. These additions had little effect
on the UHE ground-state energy. Also included in this table is an estimate of the Hr
limit (Ermler and Kern 1974, Pople et al 1976) for the ground state.

The triplets of interest to us may loosely be described as those associated with a
2p to 3s transition on C. From previous (Meyer 1973, Dixon 1974) work on CH;
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Table 2. Hartree-Fock energies, E, in au.
Srate Method E(au) renlau) <HCH (deg) Basis
ground T UHF® ~30.19517 109.47 6-31G**
ground T, UHE* —40.206 59 2.065 109.47 (531/31)
ground T, Unrt 4020768 2.05 109.47 (9.9 1.1, 1/5.1.1/1/1:4.4:1]
ground T, RHF® -40.209037 2.05 109.47 {9.9,1.1,1/5. L, 1/1.1/1:4,4/1: 1]
ground T, RHF -40.214178  2.050 109.47 C: 12s6p3d11/H: 6s1p/CH: 1s
ground T, RHE® -40.214834 2.066 109.47
ground T, Est.

limit"  -40.219
Triplets
unrelaxed T, UHF* —-39.840 762 2.05 109.47 [9.9. 1.1, 1/5. 1. 1/1/1:4,4:1]
relaxed T, CHFY —39.846 921 2.149 109.47 [9.9.0,1,1/5. 0. 1/4/1:4,4:1]
Day uprd -39.896 76 2.1105 140.8 [9.9.1.1,1/5, 1, 1/1/1:4,4:1]
Cs, UHFY -39.909 494  2.03S; 121.9; (9.9, 1,1, 1/5.1,1/1/1:4,4:1]

2,221 56.3

? Basis set notation is that of the original authors.

" Frisch et al (1980). The equilibrium distance was obtained from the Unir minimum.

“ Bartlett and Purvis (1980).

4 This work. Basis set of table 1 (NBI =42).

€ This work. On C. v§ ({5 =0.2} and on H. v, ({, =0.50) were added to the basis of table 1 (NBF = 60).
“Meyer (1973).

® Ortenburger and Bagus (1975).

" Ermler and Kern (1974), Pople o1 al (1976).

and the excited singlets (Gordon and Caldwell 1979), it is clear that strong Jahn-Teller
effects may be expected in the excited state. which suggests we investigate several
different geometries. We choose to look at a subset of those which Meyer ¢1973)
looked at: namely the T, (relaxed and unrelaxed: the latter is likely to give the largest
Franck—-Condon factors), and C., and D,, as these were the two Meyer (1973) found
lowest in energy. Because our ultimate interest is in the solid, the equilibrium regions
of the potential energy surfaces are of greatest interest.

The uHF calculations for the unrclaxed excited state began with the original (prior
to the contraction shown in table 1) ground-state basis, to which a diffuse C-centred
s was added, and then optimised. Subsequent to this, an additional s and p primitive
was placed on the C atom and both optimised—with little effect. These were then
removed. Finally, the calculation was redone, using the contracted ground-state orbitals
of table 1 and the optimised diffuse s, with the net result that the energy was raised
0.006 au.

For the three excited states whose geometry could vary, geometrical optimisation
was performed (UHF level), beginning with the CH; bond angles and distances (Meyer
1973). Typically, bond angles were varied in increments of 5°, and distances in
increments of 0.1 au. In all cases, the CH; geometries (Meyer 1973) were found
optimal. For C,, it was found that the longer bond distance had a bond exponent
optimised of {; =0.75, while the shorter one had the ‘standard’ value of {,=1.0. (The
positions of the bond functions were optimised as well; all were found to be at the
midpoint of the bond.)

Our final UHF results for the excited triplets are presented in table 2. It may be
noted that the relative ordering of the results is the same as it is for the ion (Meyer
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1973). In this table, two extra Cs, p and one extra C d and f primitive GTO appear in
the basis which produced the quoted result. These are required by and optimised for,
the correlation part of the problem. Their presence at this stage is due to formal
requirements of the theory (they must contribute to formation of the uH¥, or zeroth-
order, Hamiltonian). In fact their presence is also efficacious at the uHF ievel, for on
average they lower the UHF triplet energies by about —0.008 au (probably their
largest contribution occurs from symmetry-breaking polarisation effects associated
with individual mo0).

3. Correlation method and results

We choose to correlate our results using second-order Rayleigh-Schrodinger perturba-
tion theory with the UHF energy operator used as a zeroth-order Hamiltonian—a
process called unrestricted Moller-Plesset theory (Ump2) by some (Pople et al 1976).
For us, the method possesses several attractions: (i) it is accurate, yet computationally
inexpensive enough to be applied to the v.usters of interest, (it) it requires less decision
making—as opposed to, for example, the symmetry-adapted independent-electron pair
approximation (sa-1Epa) we applied before (Beck 1981). This advantage will remain
in the short term, until enough experience is gained to expedite the decision-making
process (to this end, a full analysis. by pairs, is routinely output as part of the correlation
run), (iii) it is generally what is called (Pople et al 1978) ‘size consistent’ (as is SA-IEPA},
and (iv) extension to higher orders can be made with some ease (Bartlett and Purvis
1980, Pople et al 1978).
In uMe2, the correlation energy EL2),. is given by (Bartlett and Purvis 1980):

EQL=-1 3 ¥ Dudillab)’ (1)
45 o
where
Dapy=e,te,— &g 2)
and

1
(ifl lab) = JJ vHYFQ2) r—(wa(l)d/b(Z)— ¥p(1)¥,(2)) dry d7,. (3)
12

In the above, the i, j subscripts refer to the occupied UHF spin-orbitals, and the aq, b
subscripts to the unoccupied UHF spin—orbitals (called ‘virtuals’). The  are the output
molecular spin—orbitals obtained from the self-consistent UHF process, and the ¢ are
the corresponding eigenvalues. The absence of single excitations in equation (1)
presumes that a ‘good’ UHF solution has been constructed.

By far the most computationally expensive part of evaluating equation (1) is
transformation of the integrals from the Ao form to the Mo form. We have constructed
an algorithm to do this which replaces each of the quadrupole sums with four linear
sums (e.g. Shavitt 1977), uses random-access scratch files, makes full use of the
symmetry of partially transformed integrals, establishes a threshold for the Ao integrals
below which they are discarded (prior to transformation), and which uses an unpacked
set of labels. For the final function space which consists of 84 orbitals (42 in each spin
space), typical computation times were about 10 h on the VAX 11/750 equipped with
a floating-point accelerator.
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In developing a correlated basis, our procedure was to contract the UHF solutions
as much as possible (see § 2), to allow maximum control over virtual space convergence.
A set of primitive Gaussians was then added to this set to represent the virtuals (at
the UHF stage). The exponents of this virtual set were initialised by forcing the (r) for
the primitive GTO to be the same as the (r) for the carbon 2s and 2p functions, as
suggested earlier (Beck and Nicolaides 1978). These were then optimised by minimising
the valence part of E2) for the ground state. In almost all cases, the optimum
exponent was very close to the initial one, as had been suggested. It should be noted
that for each virtual type, GTO are just about as good as Slater-type orbitals {Meyer
1973, Beck and Nicolaides 1978) i.e., as rapidly convergent; about 70-80% of a pair’s
I-dependent correlation energy is obtained with a single primitive.

The virtual correlation set was developed with two general principles in mind: (i)
it must be small enough to be used in the cluster. yet (ii) accurate enough to account
for the triplet excitation energy as well. We began with a single optimised virtual s,
p and d centred on carbon, which gave us a gap (to unrelaxed T,) of 10.42 eV, and
which yielded a ground-state UMP2 valence correlation energy of —0.1357 au. As will
be seen from table 4, this excitation energy is in excellent agreement with our final
value—and it is in fact this set which has been used in the cluster calculations.

In order to test how converged the set was, and to provide a benchmark test of
the method. our virtual set was further augmented in two stages. First, an extra s and
p were added. along with one f virtual; all were centred on C and exponent optimised.
This set (42 aA0) turned out to be the standard gas phase one-—and all triplet as well
as the ground-state (see table 3) correlation energies were obtained using it. It can
be seen from table 4 that the T, gap changed by only 0.01 eV.

To provide a benchmark test on the ground state, this set was then augmented
with an extra exponent optimised Cd ({;=0.2) and p on the H({,=0.50), and

Table 3. Correlation energies* (in au) for CH,.

State Method Valence All electron
Ground state Ty umP2® —0.1640 -0.2018
Ground state T, RMP2° -0.1826 -0.2224
Ground state Ty ump2¢ —-0.18980
Ground state Ty UMP2© -0.1373 —
Ground state Ty pNO-CT ~0.2442
Ground state T, Expt® —-0.240 -0.293
Triplets

Unrelaxed T, ump2© —0.1484 ~0.1863
Relaxed Ty ume2® -0.1415 ~0.1794
D,y ump2® —-0.1461 ~0.1840
C,, ump2® -0.1410 ~0.1789

* Geometries and basis sets as shown in table 2.

" This work; NBF =42 (see table 1).

¢ Adding v5 on C. v, on H (see footnote e, table 2). Done at the restricted level.
4 Bartiett and Purvis (1980).

° Frisch et al (1980).

‘Meyer (1973).

* Pople and Binkley (1975).
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Table 4. Theoretical excitation energy (in eV) AE to Jowest triplets.

Upper state Method AE
Unrelaxed T, uMp2® 10.41
E2° 10.53
EOM® 9.97
UHF? 9,98
s—cr¢ 11.40
s-CrI¢ 10.55
Relaxed Ty ump2? 10.43
UHF 9.82
Dyy UMP2? 8.95
UHF® 8.46
C,. umMp2? 8.74
UHF? 8.11

* This work. Correlated values do not include excitations from the K shell. For the ground
state, NBF¥ = 42 results were used.

" Pauzet et al (1972).

¢ Williams and Poppinger (1975).

9 Kohda-Sudoh and Katagiri (1978); single excitation C1.

correlated using the RHF variant of the code (called rmp2). (Formally, there is no
difference between UHF and RHF correlation for closed-shell ground states; computa-
tionally there is a significant saving because there are half as many Mo orbital
functions.) This lowers the correlation energy by about —0.02 au as shown in table 3
(RMP2).

Let us analyse these Rmp results for the ground state. Firstly they surpass the other
two theoretical results (Frisch et al 1980, Bartlett and Purvis 1980) cited using this
method (as do the respective UHF results; see table 2). Next, our Rmp2 result for the
€145, pair is —0.863 eV (1l au~27.21161¢eV). If we assume that this should be
essentially the 1s® pair energy for the carbon atom, which is about 1.1 eV, we see an
error of about —0.009 au has been made in this pair. Of course, a substantial error
in this pair is not unexpected when we recall our virtual exponents were optimised
for the valence part of the correlation energy. A direct comparison with the valence
space PNO-CI results of Meyer (1973) whose results include certain of the effects of
higher order perturbation theory indicates a valence space error of approximately
—0.012 au (see also table 3).

Both Frisch et al (1980) and Bartlett and Purvis (1980) have estimated that
contributions of third- and fourth-order perturbation theory lower the ground-state
energy by —0.022 to —0.023 au (Bartlett and Purvis (1980) also contend that the
primary effect of basis-set improvement is on the UHF and umP2 contributions, which
seems reasonable so long as two reasonably accurate sets are being compared, as
appears to be the case here).

Pople and Binkley (1975) have provided us with an estimate of the total experi-
mental correlation energy of CH,, with relativistic and zero-point vibration effects
removed. Specifically, for all electrons they estimate about —0.293 au of correlation
energy is present (based on Emler and Kern (1974), Pople et al (1976} and the uHF
limit). In the above, we have accounted for —0.222 (ump2) —0.021 (ump2 error)
—0.022 (third and fourth order) = —0.265 au, leaving us —0.028 au short.

T —— — e

T TTw T v
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4. Excitation energies and singlet-triplet splittings

In table 4, the triplet excitation energies obtained by UnF and UMpP2 methods are
presented. It can be seen that correlation typically increases the gap some 0.5 to
0.6 eV. We feel that the triplets have a larger error associated with them then does
the ground state, due to the loss due to contraction (however some of the loss of about
+0.006 au may be recovered via the virtual s and p centred on C), the spin impurity,
and the fact that the virtual set has been optimised for the ground state (pair energies
associated with the 3s orbital will be most sensitive to this). If this error were larger
than that for the ground state, then our excitation energies would be larger than the
exact results. To check the size of the relative error, we have computed the 2p® P -»
2p3s 'P° excitation energy of the C atom using the CH, basis with the result that our
value is only 0.08 eV larger than experiment (Moore 1949). Similar errors in other
atomic excitation energies obtained using this method are found.

We may also compare our gaps with the related ones obtained by Meyer (1973)
for the CHJ states (ionisation process). Using C,, as a reference, his PNO-CI D,y is
+0.0062 au higher, ours (excitation) is +0.0077 au, his unrelaxed Ty is 0.062 au and
ours is 0.061 au higher. On the other hand, our ‘relaxed’ T, is actually slightly higher
than our unrelaxed value after correlation (at the uHF level, the ordering is reversed;
recall geometry optimisation was performed at this level). This appears to be a clear
manifestation of the errors referred to above.

In table 4, the lowest triplet excitation energy has also been compared with the
theoretical work of other approaches which were all computed using methods and/or
basis sets of perhaps less intrinsic merit. None the less, there are two other theoretical
values fairly close to our results—one obtained by Pauzet er al (1972) using second-
order perturbation theory and one by Williams and Poppinger (1975) using single-
excitation c1.

Rather than formulate and implement a uHF-based approach to open-shell singlets,
we will use an RHF approach implemented with the codes of Goddard et al (1972).
The results of doing this with the basis of table 1, without any virtuals (NBF = 18), are
shown in table 5. Typically the singlet-triplet splittings are 0.2-0.3 ¢V which are in
good agreement with most other ab initio theoretical work (Pauzet et al 1972, Williams
and Poppinger 1975, Kohda-Sudoh and Katagiri 1978). They also agree well with the
splittings observed (Moore 1949) in atomic C and Ne, for the 2p3s configuration.

We finally turn to the question of comparing our predictions with experiment. We
first note that there are at least two more geometries with friplets potentially below
the T, triplet (see Meyer 1973). These are the C;, and Dy, geometries and if the
spacings of CH, are maintained (as they were for C,.. D, and Ty), their estimated
positions would be at 9.30 and 9.89 eV respectively. The relative ordering of the
triplets is then C,,, Dy, Ca, Dan, Ty with excitation energies 8.74, 8.95, 9.30 (est),
9.89 (est) and 10.41 eV (unrelaxed) with singlets presumably lying 0.2-0.3 " above
these.

Harshbarger and Lassettre (1973) have measured the electron impact spectra and
found a broad diffuse spectra which is difficult to deconvolute in the 8.55-10.95eV
region. This region possesses two maxima, one at 9.65 eV and one at 10.33 eV which
they ascribe to a 2p- 3s transition (see also Koch and Skibowski 1971). Based on
energy considerations we might assign these to the Dy, and T, geometries respectively
{a more conclusive assignment would involve simultaneous comparison of oscillator
strengths; however, accurate ab initio theoretical ones seem currently unavailable).
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Table 5. Theoretical singlet-triplet splittings (eV), AE,,.

Species/state Method AE (eV)
3
CH,. unrelaxed T RHF* 0.215
s—c1® 0.21
g2¢ 0.34
EOM® 0.27
$—1° 0.41
CH..C,, RHF* 0.330
C atom, 2p3s Expt¢ 0.202
Ne atom, 2p3s Expt* 0.225

* This work (see text).

" Moore (1949).

¢ Kohda-Sudoh and Katagiri (1978); single excitation 1.
4 Pauzet ef al (1972).

€ Williams and Poppinger (1975).

Brongersma and Oosterhoff (1969) believe they have directly seen transitions to
two triplets at 8.8 and 11.0eV. This large splitting (0.7-1.0 eV) is supported by
Katagari and Sandorfy’s (1966) semi-empirical calculations but is in obvious contradic-
tion to all ab initio results. Kohda-Sudoh and Katagiri (1978) suggest that the larger
splitting would occur if the excited state orbital had a significant valence (i.e. compact)
component. However, an alternative explanation consistent with both the measure-
ment and theory is possible—namely, that the triplets have been assigned to the wrong
singlets. The 8.8 eV triplet feature could well be assigned to the C., singlet and the
9.80 to the Dy, feature; under these circumstances, the splitting would be no more
than a few tenths of an eV.
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THEORY OF THE ELECTRONIC STRUCTURE AND OPTICAL
PROPERTIES OF ORGANIC SOLIDS: COLLECTIVE EFFECTS*

A. Barry Kunz

Department of Physics and Materials Research Laboratory
University of Illinois at Urbana-Champaign
Urbana, Illinois 61801, U.S.A.

Abstract: In this series of lectures we briefly consider two
complimentary approaches to the study of organic solids: The
method of simulation by finite clusters of molecules, and the
methods of energy band theory. In both cases, the {1initial
starting point is the Hartree-Fock method, which, as expected,
turns out to be 1inadequate for any reasonable level of quanti-
tatlve accuracy. Solids, being essentially infinite sized
systems, restrict our choice of correlation methods to those
which are size consistent. We are furthermore {interested in
properties such as optical excitation and need to be able to
obtain the finite difference between extensive total energies.
This further restricts our choices. Methods based upon ordinary
Rayleigh-Schrodinger Perturbation-Theory are chosen and exten-
sive results for solid CH, are used as an illustration.

*This research has been funded in part by the U. S. Navy Office
of Naval Research, ONR-N-0014-81~K-0620, in cooperation with the
Department of Physics, Michigan Technological University, and by
the National Science Foundation, DMR-80-20250 1in cooperation
with the Materials Research Laboratory of the University of
I1linois.

I. Introduction.

Theoretical studfes on the electronic siructure of three
dimensional solids have largely excluded the organic or molec-
ular solids. The vast majority of existinf calculations have

been performed for the solid rare gases. More complicated
molecular solids, such as those with two or more atoms per molecu-
83
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lar unit, or more than one molecular unit per unit cell, have
been largely ignored. The principal exception to this tendency
has been for solid Ay It should be further noted, that the
interest in solid H2 stems largely from interest in 1its possible
transformation to a monatomic metal, exhibiting high temperature
BCS type superconductivity. In addition, a recent resurgance
of 1interest in the solid rare gases has been generated by
speculations that ”I%V" pressure (~0,3 M bar) metal phases of
solid Xe might exigt. In addition, some theoretical studies on
solid N," and Hy0" exist. In additipn, quite a few studies on
properties of polymer systems exist. There are probably many
reasons for the neglect of this interesting and technologically
interesting class of solids. Several of the reasons are likely
related to the complicated and at times 1ll-defined crystal
structure of such systems and the assoclated difficulties 1in
constructing adequate theoretical models. A second and perhaps
more serious problem relates to the question of which approach
one might use to determine the electrical structure, As an
example, the spectrum of solid CH, has been determined over an
energy range of 8 to about 35 eV, The fundamental spectral
region of from threshold (>8.5 eV) to about 14 eV shows marked
similarity 1in both solid and gas phase. It 1is generally
conceded that the gas phase spectra 1in this energy region is
dominated by transitions from the bonding to ancibosding bound
state orbitals or to Rydberg series like transitions. It seems
reagsonable to expect that the crystalline spectrum 1s likely to
be similarly dominated by transitions to bound rather than free
final states. That 1is we do not expect the contributions from
energy band theory to play a major role 1in the 1low lying
excitations of solid CH,. On the other hand the spectral region
above 14 or so eV may well be dominated by band to band
transitions and this may account for the apparent differences
between the high 1lying spectrum of gas phase CHA and solid
CHy,. Similar consfderations apply to many other molecular
solids.

The previous theoretical study on solid methane lends cred-
ibility to this argument, as the calculation of Pilela,
Pietronero, and Resta finds a band gap in excess of 27.2 eV for
solid methane. It is not 1ikely that this result is quanti-
tatively accurate as these authors used a very abbreviated basis
set in their calculation and found the conduction results to be
highly sensitive to the virtual basis set. A further source of
error in this early study 1s the use of the Hartree-Fock approx-
imatfon uncorrected for any correlatfon corrections. Similar
studies by Mickish and Kunz on the somewhat similar solid rare
gases have found that the Hartree-Fock method consistently over-
estimates the band gap of these systems by about 4 or 5 ev.! In
addition all band methods are inaccurate, in that, all neglect
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the formation of local excited states called excitons.

We believe new approaches are needed if one 18 to truly
interpret the electronic structure of such systems as solid
Methane. Recert ther~atical results of Kunz and Flynn bhave
demonstrated that it .s possible to 1include the effect of
electron-hole 1interaction and exciton formation without violat-
ing Bloch's theorem 1in calculations of the optical properties of
such divergent solids as LiF and Mg or Ca. This is accomplished
by means of a degenerate perturbative calculation using the k-
conserged one body valence to conduction band excitations as a
basis. This model retains the periodic symmetry of the lattice
avolding complications introduced by the use of finite cluster
models to describe the local excitations. These finite cluster
models, nonetheless, are useful and accurate approximates as we
shall see. The formulationm of the problem in this way by Kunz
and Flynn causes one to wish to begin with Hartree-Fock descrip-
tions of the solid since a well defined Many-Body wavefunction
is needed. The Hartree-Fock model neglects all correlations and
the limited basis set used to describe excitonie effects does
not describe properly the relaxation or polarization properties
of the system. In these lectures, the correlation effects are
incorporated by means of a simple Many Body Perturbation Theory
Model (MBPT). The necessary theoretical methods are described
ia Section II. The numerical calculations are described in
Section IIT, and conclusions are given in the final section.

11. Theoretical Development

The initial step in this development 1is the choice of the
Hartree~Fock method. This choice 1is largely determined by the
need to perform extensive correlation calculations 1in addition
to the initial Hartree-Fock study. To facilitate development,
we employ variants on the familiar Linear-Combination-of-Atomic-
Orbitals method (LCAO). In the case of cluster calculations,
these AO's are first rotated into molecular orbitals (MO's)
spanning the entire cluster, and in the case of the band calcu-
lations, the AO's are rotated into MO's spanning the crystallo-
graphic unit cell. This rotation into MO's is advantageous be-
cause for unit cells of ever increasing size or complexity, an
adequate description 1in terms of AO's yields rather large
secular determinants., The LCMO scheme reduces substantially the
size of the secular dfterminant. This method was first intro-
duced by Pilela et al.” for studies on solid methane. In such a
simple case the basis set for the occupfed orbitals is reduced
from 9 to S orbitals. Furthermore, the MO's nay contain polari-
zation functions in them and therefore yleld far greater
accuracy than a much larger set of AO's.
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The essential features of this approach 1is this. Let each
unit cell be divided into molecules (real ones or not), and we
devise a basis set to represent the MO's of these molecules.
The primitive basis set used are spherical~harmonic Gaussian
Type Orbitals (GTO's) centered about different origins, and have
the form

X (E-Ry) = exp (-2, (3-R)D?] ¥,™ (6,4). (n

The R, are the origins about which these functions are centered
and tHeed not be an actual nuclear site, the Ylm are the usual

spherical harmonics. The orbital exponent Z, 1is chosen by
energy minimization. The MO's 1in turn are just linear
combinations of these GTO's,

by (BR = ] o] xy(E-Rp, 2)

The §u's are the locations of the molecules in the system. From
the MO0's, one forms Bloch orbitals which span the entire system:

1k%
wj(k,}) = N1/2 e
Qa

The MO's (Eq. (2)) or the Bloch functions (Eq. (3)) form the
basis by which we solve the HF problem or its extensions.

® o (E-Ry). (3)

The first point {is that the Hartree-Fock equation need be
solved self-consistently. For a finite molecular cluster, this
is achieved by conventional 1terative means. However, the
infinite periodic system imposes special difficulties. These
are simply that the occuptied canonical Bloch orbitals are
infinite in number and therefore enumerating the contribution of
each orbital to the Fock operator imposes a strain on ones com—
puter budget. Two options are available. The first 1s to use a
finite mesh 1in k- space and use some form of quadrature to
construct the Fock operator. The second 1s to rotate into a
basis set of local orbitals.w‘“'12 In the early stages, both
methods were tried with negligible differences 1in numerical
result between them. However, at the current stage of our code
development, the 1local orbitals method enjoys a substantial
speed advantage.

The intent of the present study 1is to obtain spectroscopic
information and hence we need examine the meaning of the energy
bands. The occupied bands are the negative of the ionization
energy for that band for the state of wave vector k. The
virtual bands are similar representations for the electron
affinities. In this event one 1is assuming the use of the
Hartree~Fock eigenvalue and also of Koopmans' theorem as 1is
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usually done. The essential physics here refers to ionization
properties, nmnot to excitatfon properties of the n-electron
system.

In order to improve upon the Hartree-Fock results one must
include correlation corrections. In doing this, initially the
author will malntain the same physical definition for the energy
bands as in the Koopmans' case. That is, the bands now become
quasi-particle bands in which the energy of an occupied level is
the negative of the energy needed to create it, and the energy
of the virtual states are the negative of the energy recovered
in creating 1it. This is in keeping with (he earlier usage of
the electronic polargy %odel and 1its extensions as discussed by
Pantelides et al.l3+141

It 1is now necessary to discuss correlation corrections.
The first problem 1is that %f %}ze consistency (The total energy
is an extensive quantity).l o1 In fact the total energy of an
infinite solid 1s 1infinite and only the energy/molecule 1is
finite. Unfortunately, the energy change upon {fonization is
also finite and the energy change/molecule vanishes. That 1s
the energy difference 1is still finite. Similar considerations
apply to excitations of the n-electron system. A simple clas-
sical wav to view this {s to realize that the size of the wave
created by hurling a brick into a pond is largely independent of
the size of the pond. Therefore we must establish a size con-
sistent framework for the system total energies in such a way
that formally we can obtain differences in extensive quantities,
cancelling the infinities before we compute finite differences.
Alternately, we may reduce the size of the systems so that total
energy determinations are possible,

Let us work in a local representation here. This 1is appro-
priate since many molecular solids are filled shell systems.
For notational  simplicitiy, designate the Wannier function
W N(?) as Lhe 1Lh Wannier function about site ﬁN‘ Form a com-
plete set of Wannier orbitals describing the ground state of the
neutral, N~electron solid in the Hartree-Fock limit. We will
use them to generate the ion states as well. For a system of N-
electrons the Hamiltonian is

i
2 y M Z.e° N N 1 2
R & g § I 1 c
1=1] <m

- I S y
121 121 (3-R, YTk b N
The electronic has mass m, and {s charge e, Z; 1is the atomic
number of the nucleus at site 1. The {1 electron has coordin-
ate }1 and the 1% nucleus has coordinate RI‘ In terms of
Wannier Functions, in the single determinant Ilimit, the energy
of the system iIs

(4)

-
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The symbhol (N) on the surmation implies sums over all states in
the occupied N electron space. To keep the physics of the en-
ergy bands discussed earlier we need to look at the N-1 and N+l
electron system next.

et the ground state of the N-electron Hartree-Fock system
be designated as N> and let at v Yo create or destroy a
Wannier function at site 1 with other quantum numbers p. We
adopt the conventive that quantum numbers i, i, k etc., refer to
occupied orbitals, a, b, ¢ to virtual oarbitals and o, p, q to
either/both. A Slater determined of the N-1 body system is

IN-1: iB > ,xw!x > (6)
This will by symmetry adapted later. The energy expectation
value of this state is simply

A N IS SR
hN-I hN g ij‘F(N)‘wjg) 7
Here F(N) 1s simply the N-electron ground state Hartree—Fock
operator. Similarly one may obtain the off diagonal matrix
eJements between two states |N-1, tA> and |N-1, jB>. These are:
1A§B
To= BACHY . 8
LIV Cw g lFOD e o (8)
One mav project on the state !N—1N &h> to form a proper transla-
tional invariant Bloch function, wa_ (k):
ike R ‘
(N-1) _ i B 1. 3 0
v ky = 8 }g e IN-1; iB> (9)

In terms of eqs (5)~(9) one may construct a band structure in
terms of Wannier-functions and Slater determinante for the
occupled orbitals. These are yet uncorrelated. One may treat
the N+1 body states similarly. Furthermore, recognizing that EN
in eq (11) 1is infinite and also irrelevant, since energy changes
are needed, we proceed to define En as 0, and thus simplify our
computation.

A framework 1is needed 1in order to simply correlate this
problem since the simple single Slater determinants ]n~l, iB>
are highly degenerate, and within a band, the vy (E) are nearly
degenerate. Consider the problem 1in a general framework
{nftially. H {is a Hamiltonian,

w = g —

—

—
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R = Ho + V. (10)
We assume that the eigenstates of Ho are known as

Ho, =woé,. (11)

The projector onto a given eigenstate of Ho say ¢1 is P1 and 1is
given as

Py = lo><,
Furthermore a projector onto the first n states say is P and
n

P= ] e, <,
=1 Ay

P,. (12)
1

| I d=}

Assume we order our eigenfunction of Ho so that the states of
interest lie in the range 0 to n. Furthermore no other states
are degenerate with these states. Now let us solve the desired
equation:

Ry = Ey = (HO*V)w- (13)
Let us chose a wj for I < § € n, then:

(A=) (H w0 b = (1-P)(E-w =)y (14)

R
One may commute (1-P) with Ho-w1 and proceed to see

=P -1 3 y
b = Py + (Ho-wj) (1-P) (E vy V)b (15)

Furthermore;

P = mybys Ty = <ol
so Lhat

_ n

Py = k2=1 TP = b (16)
Therefore

(1 - (Ho-wj)_l (1P (B, =) [¥ = 0. an
If one defines

T={1- (Ho-wj)—l (145)(E—wj—V)}", (18)

- —w



w . T

9 A.B.KUNZ
then

Vv o= th. (19)
Furthermore one can show that

n
(Bwg)my = Me Vike (20)
k=1

where

Vi = <®1|VT|¢R>. (21)
Eqs. (20) and (21) define a perfectly good algebraic elgenvalue
equation for the system energies. To proceed further, one
expands the inverse appearing in T. That is,

l —_
=N+ - - ~
VT = N 4 Vo (1-P)(E vy V) + (22)
I
?_‘V,

or

vV, =V, + } 2_y v.. (23)

ik 1k a=N+1 wj v ia "ak

The structure of the elgenvalue problem defined by Egs (20),
(21) and (23) 1is now clear. The matrix elements to lowest
approximation are similar to those of second order R.S.P.T, and
this 1is clearly a size consistent approach. If all the eigen-
vectors in the first n are degenerate, one recovers normal de-
generate perturbation theory. Consider our problem, where we
use Wannier functions, this framework makes our approach
clear. First correlate the single Slater determinant of Wannier
functions, then proceed with Bloch symmetry projection to remove
the degeneracy. The N~body wavefunction has proper Bloch
symmetry for closed band systems. By using a proper choice of A
in the Adams—Gilbert local orbital formulation called AY one may
obtain Wannier orbitals. The actual choice of AY 1is not
important, only that such exist. Then

[F + PA"P] w (24)

11 T S
The first order Fock-Dirac density matrix is p. From this one
constructs a zero order Hamiltonian. For a system of M-
electrons, H0 is defined as

H, = 15 (F(ty) + 0 4A ™, ] (25)

1
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and then the perturbation, V becomes

VIH- Ho (26)
EN) = E + § ] 11)J . 2n

11357 aa>bB “111€30 %aa"%aB

Here the summation (N) indicates all Wannier orbitals in the N-
electron state. The matrix element is simply
2

aAbB e e
1150 = 11ij|r12| Yaa¥bB” <“11“jJ|r12|”bBWaA> (28)
The N-body orbitals will be used to describe both the N-1 and
N+1 body states. Brillouin's theorem is not valid for such
states. Consider first the N~1 body problem. Let Wannier
orbital wig be deleted from the N~body ground state. Then to
second order one finds that

<w

2
e (NFD IF(N-I;iB)??l
E(N-1,{B) = E =D~ = + ¥ —_——
i1 aA il aA
(N-1) IvaAbB |2 (29)
+ 2 y kK, jJ

kK>33  aa>be Sk 5072 be
In Eq (19) the V is still as defined in Fq (18) and F(N-1;iB) is
obtained by deleting terms referring to orbital Vi from F(N).
Therefore

aA- -
F(N I,iB)jI = <ijfF(N l,iB)lwaA>. (30)

One proceeds in 1like fashion for the M1 electron case, adding

W to the N electron state.
CB
pep  (NHD |F(N+1,c3)?3|2
E(N+15cB) = B + D§+i + 5 ) ——1
jiJ  aA jJ aA
31D
aAdD 2
(N+1) |v |
. JkK
+ ) / J

JISKK aa>dD 50t kk " aa %D

In Fq (21) V remains as in Eq (18) and F(N+1;cB) is obtained by
adding terms referring to orbital V. to the N-electron Fock
operator.

One may obtain the physically interesting energy
differences from these expressions. The 1onization potentials
are defined by E(N) -~ E(N~-1;1iB). This difference called
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here A is given as
iB aA,2
ipip | D |F(N-1,18) /]
18 = Dy-1 * 1 E——
jJ  aA 3J aA
1BjJ 3JkK

+ )

J3# 1B aa>cc S18* 30 Fan~ccC 135K A Cy k18 % ar

Likewise the electron affinity terms are obtained by letting

A = E(N+1;CB)-E(N). Then
cB (N+1) (F(ner, cB)222 (v

cBcB iJ

8¢B = Dnwi = + ]

3J aA 3jJ aA iI aA>dD#cB
(33)
aAdD ;2 cBaA 2

Vites! D Vi1y5

i1 Y %8 T %aA T %ap 11547 aatcB i1 T €35 T feB T faa

It is these formulas we will use in this study.

One final pilece is needed to complete this theory. This is
to include the actual effect of electron~hole 1interaction upon
excitation. An accurate method of doing this for both tightly
bound or loosegy bound excitations has been recently given by

Kunz and Flynn.

The essential point is to use the Hartree-Fock bands as a
basis set after 1incorporation of correlation corrections into
the band energiles. The Fock ground state [N> is then used to
describe schematically the process. Let av(ﬁ) annihilate a
valence electron of wavevector k and let at(k) create a conduc-
tion electron of wavevector k. Consider the state then:

(N> = af(R) a (k) (N> (34)

It is only states like this which can he reached from the ground
state via optical processes. Furthermore all such ground
states IN,?) correspond to the same total crystal wavevector;
that of the ground state. The most general excited state that
one may access is then [N, E>, where

IN,e> = E at In, k> (35)

In this sum, the ground state |N> is excluded because it differs
in parity from the excited state. By finding the ag and <N,
E|H|N, E>, one may determine the spectrum of the solid including
electron-hole 1interaction. This is achieved by means of a CI
calculation among the states |N, k>. The formation of such ex-
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citon states 1is not an extensive property and size cogsistency
1s not a problem as demonstrated by Kunz and Flynn. Exact
implementation of such an 1infinite CI 1is of course {impossible
and we use a finite number of states, some 270 configurations.
A second approximation 1is made as well. This is to truncate the
coulomb interaction at the boundary of a unit cell. This is not
unreasonable for tightly bound excited systems as in the case of
CH, particularly since the large lattice constant (11.14 au) en-
closes a substantial volume in a unit cell. The dominant conse-
quence of this is to allow the formation of only a single bound
exciton, not an entire Rydberg series below the bands. However
when the coefficients af, are used to evaluate the optical re-
sponse one finds substantial adjustment over the Hartree-Fock
results. These changes are due to the redistribution of
oscillator strength to the bottom of the conduction band due to
the inclusilon of electron-hole interaction.

The alternate approach employed is to use a finite molecu-
lar cluster simulation. This is also done using the method of
local orbitals. 1In this case one partitions the system into the
cluster and the environment. The environment imposes {itself on
the cluster by means of a bounding potential. The methods of
doing this are well represented in &ge literature, and a general
approach is given by Kunz and Klein which need not bhe repeated
here. Correlation is imposed using the technique of this sec-
tion and in particular eqs. (20), (2{) and (23) as needed. For
non-degenerate states of course, these reduce to ordinary second
order RSPT. Most cases considered here are not degenerate 1in
the cluster limit, but for those cases for which degeneracy i% a
problem, we have found the full approach to be very powerful.1

IIT. Results for Solid CH,

A Gaussian basis set was first developed for the CH, mole-
cule in free space and then reoptimized for the crystal to allow
accurate description of the enerpy bands, occupied and virtual.
It was found easy to obtain accurate valence bands, but that the
conduction bands were quite sensitive to the choice of outer or-
bital. The variational principal applies to the solution of the
one particle states in a LOMO formalism, and the selection of
the basis 1is quite easy. In practice, the conduction bands are
found to be stable against small changes in bhasis set. The va-
lence structure here agrees well wit hh3L obtained after
corrections to formalism by Piela et al. 220,721 The conduction
bands are in very poor agreement however. This 1s due to the
far too restrictive basis set employed in the Piela et al.” cal-
culation of the virtual bands. In performing this calculation,
some idealizations are needed. A lattice constant of 11.14 au,
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in agreement with Piela et al. 1s used and the C sub lattice is
fixed as a fcc one as per experiment. The four H's form in
tetrahedra about the C in a unit cell. In the real world, the
tetrahedra do not allign from one cell to another but have
orientational disorder. We, as did Piela et al. fix the H's in
an ordered fcc lattice as well. The current calculation uses
the same geometry as does Pielazgi_gll The C-H distance is ob-
tained computationally from Beck and for a lattice constant of
11.14 au, the equilibrium constant, is essentially the same C-H
distance as in the free molecule.

Although the Hartree-Fock band results overestimate any
reasonable band gap, they do reduce the Piela gap by about 13.6
eV however, and one need add correlation along the lines
suggested in Section IT. In performing the correlation correc-
tion computations, the author deviates from the ideals expressed
in the preceding section to the extent that instead of solving
for a set of rather complicated, orthogonal Wannier functions as
implied by the derivations, one approximates these by a set of
local orbitals. 1In obtairing these the unit on which localiza-
tion occurs 1s the CH, molecg&e is used, and also the appropri-

ate multicenter localization. These orbitals are quite local,
the valence-valence overlaps being .03 or less here. First
order overlap corrections are made in the inter molecular terms
for further precision. Due to the procedure adopted, all orders

of overlap in the large intra molecular overlaps are included
exactly. The inclusion of these corrections is essential if one

wishes to achieve quantitative accuracy. In evaluating the
perturbation sums, d orbitals on the € atom and p orbitals on
the H atoms were added to the band structure basis set. The

effect of the several contributions to Fags (32) and (33) are
glven In Table |. There we call the second term on the right
hand sides of Fqs (32) and (33) the relaxation and the sum of
the second and third terms, which come from two electron virtual
excitations, clearly represent correlation terms.

The energy bands for CH, including correlation are shown in
Figure 1. The density of electron states is also seen in these
figures. As 1s clear from these figures, the band pap is in-
direct and from FlSv to Xgr1ne The direct gap is at the X point
and 1is XS'V to XS'C' The correlated indirect gap is found to be
13.0 eV, and the correlated direct gap is found to be 13.3 eV.

Finally, one computes the position of the exciton levels in
CH,. This 1s accomplished using the method given i{n Sectfon I1
which has been more fully described in Ref. 9. In this calcu-
lation the coulomb interactive 1s treated as a one molecule
{nteraction. The effective electron-hole interaction {s here
computed to bhe 5.4 eV, This is the value of the v, discussed in

T W T T T T Tt

-
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Table 1

Contributions to the ionization potential and electron
affinity of solid CH, are shown as a function of lattice
parameter. Results are given for the correlation correction and
the relaxation correction. Results are in eV.

a ~ [ 11,14 au 10.50 au 10.00 au
valence correlation [ 0.1 eV 0.2 eV 0.4 eV
valence relaxation | 1.2 eV 1.2 eV 1.2 eV
|conduction correlation -.7 eV -.8 eV ~.9 eV
|conduction relaxation ~0.0 eV ~0.0 eV ~0.0 eV
{net gap change 2.0 ev | -2.2 eV | -2.5 eV

CH
L r 4 X r K 20 0 N

Correlated 2.0

a=Il.14 gu
L
| r _

=

x

>

-1 o

| -

L+ %]

c

W

N(E)arb
fguree 1 the correlated band structure of solid CH, and

density of states 1n shoun for lattice puramecter =

11,14 au.
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Ref. 9. Using this value, the exciton 1is found 51 be at 10.9 eV.
The optical spectrum of Koch and Skibowski does find a
spectral peak at 11.0 eV and this may well be our exciton. A
more quantitative analysis of the optical response 1is not
possible at this time because the highest valence and lower
conduction bands are of 1like symmetry and the techniques
developed in Ref. 9 and currently available do not permit a cal-
culation of the optical response for the case in which the band
to band transitions are dipole forbidden only the positions.
Therefore, the author reluctantly contents himself with using
only the % conserved joint density of states 1in comparison with
the measured reflectance spectrum shown in Figure 2. As 1is
clear from this figure, even if one were to include the exciton
at 11.0 eV, a fair degree of discrepancy remains. This 1s
largely at low energy. This discrepancy is expected. A similar
result 1is seen 1In the free CH, molecule and 1s due to the
mobility of the H nuclei and their large zero point motion. The
excited CH, molecule can lower {its energy by about 1.6 eV by
relaxing from ideal TD geometry to D2h geometry. Due to large
zero point motion it may be possible to excite from the ground
state TD geometry directly 1into the relaxed, distorted D h
geometry directly. This certainly appears to be the case in Lﬁe
free molesgle and a discussion of this 1is being prepared by Beck
and Kunz. If one assumes the same type of Jahn-Teller distor-
tion 1is present in the solid, a distorted exciton line would
then appear at about 9.3 eV. This is shown as & dotted line in
Figure 1. Since the first experimental peak 1in solid CH, lies
at 9.6 eV, this 1inclusion greatly enhances the comparison of
theory and experiment, In addition the low energy continuous
spectrum between about 12 and 14 eV would be enhanced in
strength by the redistribution of 8sci11ator strength due to
exciton formation as was seen in 1iF.

lLarge scale cluster calculation for bulk CH, (13 molecules
or 65 atoms) and for the CH, surface (9 molecules or 45 atoms),
including all electrons and correlation via _the perturbative

route, have been recently performed by Beck.<" These calcu-
lations are for the excitons alone and tend to confirm the
energy band results qualitatively and quantitatively. The

specific details of the perturbation treatment for large systems
is well described in the literature.

1V. Conclusions

The essential conclusions are few and simple. These are
one can construct a satisfactory, self-consistent Hartree-Fock
band structure for molecular solids, including the conduction
bands, {f one carefully optimizes the basis set. 1If one wishes
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to obtain quantitative comparisons with experimen., the
inclusion of correlation corrections is essential. Furtherr :re,
in describing the {on states in terms of the neutral system
orbitals corrections termed relaxation corrections are needed.
It is seen here, using a Wannier basis, how such arise and may
be included. It 1s also seen that inclusion of electron~hole
interaction is needed if one 1is to quantitatively study the
optical spectrum. In addition, due to the light mas of H one
need also be prepared to include Jahn-Teller distortion 1if one

is to be fully quantitative.
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ABSTRACT

THE ELECTRONIC STRUCTURE OF NITROMETHANE (CH3N02)

David J. Lucas
Department of Metallurgical Engineering
Department of Physics
Michigan Technological University
Houghton, Michigan
1986

Ab initio methods are used to investigate the glectronié
structure of the energetic molecule, nitromethane, in the gas
phase as well as in dimer, trimer and small cluster (central
molecule plus 8 near-neighbors) configurationc in the crystal
géometry. Both ground and excited states are investigated,
resulting in the lowest reported energy for the ground state,
confirmation of a low-lying excited ‘state, and never before
reported work on ground and excited stétes in configurations of
more than one molecule. The dipole moment of the free molecule
is ca;culated and compares favorably with evperiment.
Electronic transition moments and oscillator strengths for the
ground to first excited state reported are calculated and
interpreted. The ordering of the outer orbitals. for the free
molecule calculated in this work supports previous semi-empirical
work and conflicts with experimnental results, all of which are

subject to difficult interpretation.

An investigation is also carried out on the effect of a
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single free charge on the carbon-nitrogen bond strength of

the molecule. It is shown thaf witﬁ the free ion situated'at a
location where a neighbor molecule would exist in the crystal
configuration, this bond, on the central molecule, may be
strengthened or weakened by nearly 0.2 eV out of a total

calculated bond energy of 2.57 eV.

Work on both the CH3 and NO, fragments is also discussed,

2
the N02 results being the:lowest yet reported energies for the
ground state.

A methodology and approximations are discussed for working
with more than one molecule. It is found that scrubbing of
integrals over atomic functions to a tolerance of 10-6 vields

excellent results for the dimer when compared to the case

where all integrals are included.
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Chapter 1

Introduction

The theoretical study of the electronic structure of ﬁitro

compounds {XNO is interesting from both the computational and

5!
practical points of view. These compounds are highly reactive
because of the nature of the electronic structure of the N02 group

and modifications to the structure that occur for different forns

of X (i.e., BHz, CH H, NH Nitromethane (CH Noz) is an

3 2) - 3
explosive material. We sfudy the electronic nature of
nitromethane with the hope of better understanding the initiaticen
and sustenance of the detonation process. It is the theoretically

2

group and CH3 group are known as radicals because they contain

simplest compound of this type in practical use. Both the NO

unpaired electrons which allow them to be reactive.

These compounds are characterized by low-lying excited
electronic states (excitons)l. It has.been proposed by A.B. Kunz
(1983)2 that excitons play a key role in energy localization
within these compounds and therefore may be fundamentally rz=lated
to the detonation process. Kleier and Lipton 1 indicate that
excitons can cause weakening of the N-0 bonds in the cowpound with
the possibility of bond scissionincg.

3 on shock induced

Work has been done by Zerilli and Toton
molecular excitation in solids. Their shock wave study involved
the excitation of low-lying vibraticnal states in energetic solilds

apd indicate that relaxation time for thermal equilibration of the
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internal mcdes in the energetic molecule is the controlling factor
in the initiation of reactions. Excitations of vibratiocnal modes
by optical phonens in nitromethane occur at frequencies of abcut
1014 sec-l. The shock wave produces acoustic phonons which raise
the temperature of the lattice through acoustic vibrational
branches (i.e., excite intermolecular modes in the weakly
interacting system) wnhile leaving the optical branches
(intramolecular vibrations) at the initial temperature. The
critical issue 1is the rate ét which acoustic mode energy is
transferred to the intramolecular modes.

Rotational excitations and their pressure dependence have

. 4-6
also been studied.

The relation éf these excitaticns to the
detonation process is not indicated although these modes can bé
excited by acoustic phonons and therefore may be intrinsically
related to shock-induced detonation.

Tsai and 'I‘revino?—9 have done molecular dynamics studies on
thé initiation and propagation of the detonation process in
energetic mol=2cular crystals. These studies involved the
hypothetical heating of one end of a molecular crystal capable cf
undergoing exothermic dissociation. The heating leads to
dissociation of molecules and subsequen.: propagation of a shock
wave leading to the detonation of the crystal.

Shock wave experiments by Guirguin, et.al.10 investigated the
decomposition of gaseous nitromethane. ' They indicate several

different pathways by which the molecule can decampose follcwinz

an initial step of breaking the C-N bcnd of several moleculoes aldld
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observing the effect of the products (CH3 and NOZ) on other
molecules in the gas.

Although, as indicated above, the excited vibrational and
rotational states of nitromethane have been studied, little work
has been done on its low-lying excited electronic states. These
states can be attained by photon absorption in the uv region.
Experimentally, photo-electron (PE) absorption studies were
performed on nitromethane in 1960 by Nagakurall. He observed an
absorption band at 270 nm (4.6 eV) but attributed it to a
nitromethyl anion in_the solution. In 1971, PE work12 showed a
band at 220 nm (5.6 eV) due to an excitation in nitromethane.
Rabalai313 saw the band at 270 nm and algé one at 198 nm (6.3 eV)

In 1959, McEwenl4 performed semi-empirical calculations on”
nitromethane, indicating a host of possible transitions at
relatively low energies. éleier and Lipton1 performed what they
called "approximate ab initio" calculations using a minimal basis
set and also found several low—lying.excited states, but indicate
little confidence in their energies, although they feel the
ordering of the states they found is correct. No work has been
done on nitromethane excitons using extended basis sets and
electron correlation calculations and r~ one has investigated the
effects of the crystal environment on excitons when conpared to
the molecule in the gaseous phase.

Ab initio studies using extended basis sets and electron
éorrelation have been done on other smaller energetic crystals.

, . 15 .
Particularly noteworthy is the work douw: by Beck and Kunz cn tha

P




methane molecule (CH4) and the solid simulation. They demonstrate
the ability to apply cluster techniques (to be discussed later) to
energetic systems and obtain excellent quantitative results.

Ab initio calculations on energétic molecules, while ,
important in helping to gain insights into the electronic
behavior, are also interesting and challenging from the
computational point of view. The Unrestricted Hartree-Fock method
used in this study is an iterative technigue which leads to a
self-consistent field approximation for the molecular systenm.

When applied to energetic systems such as nitromethane, there is
sometimes a tendency for the method to exhibit erratic behavior
and difficulty in gzining convergence~to an appropriate sﬁate.
Although it is said to have a relatively simple chemical
structurelo (it being one of the simplest explosives in terms of
chemical composition) it is a rather large and complicated system
when speaking in terms of ab initio calculations. Also, there is
little symmetry iﬁ the molecule with.which tao help reduce the size
of the calculaticn. The task of investigating a cluster of
nitromethane molecules using ab initio techniques is a formidable
one and in fact, ab initio calculations of this size have rarely
been attempted.

Finally, a comment should be made on the relationship of this
study to energy transport and localization in solids. There are
many mechanisms by which energy transfer can occur. 1% Two well
known mechanisms are resonant enerqy transfer and the exciton,

Usually, these two phenom2na can be distinguished. The first




involves electromagnetic coupliné between molecules with the
possibility of the creation of a phonon to conserve energy. The
second involves the creation of electron-hole pairs which may move
about the lattice. Excitons may experience scattering, radiative
decay, dissociation or trapping, all of which result in energy
transfer within the crystal. 17
This work primarily involves the ab initio study of
nitromethane's electronic structure in both the ground and excited
states. 1Included in this invéstigation are studies of both the
CH3 and N02 fragments, electronic structure of nitromethane dimers
and trimers oriented in near-neighbor crystal geomeéries and a
discussion of the procedure and difficulties involved in working
with a cluster of 9 near-neighbor nitrdmethane molecules in the.
crystal configuration. The primary focus in this work is to see
how near-neighbors affect the electronic structure of the molecule
of interest.- Also, an investigatidn'into the effects of free
charges at specific lattice loéationg on the strength of the
carboh—nitrogen bond in the central mclecule will be discussed as
will the dipole moment. None of the mechanisms mentioned in the
previdus paragraph will be investigated in this work other than a
brief look at the transition probabilicty (oscillator strength)

between the ground and first excited state in the molecule.
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Chapter 2
Theoretical Techniques .
Hartree-Fock Theory

In order to undertake the formidable task of calculating the
properties of solids, one nééessarily must make some
approximations. We are primarily interested in the nature of the
electronic characteristics of materials. One can divide the
problem up into two parts involvihé the motion of the nuclei (or
ijons in a lattice) and the electrons (see Madelung 18 for a more
complete discussion).

The Hamiltonian is, upon neglgcting external fields and

relativistic effects:

H=Hoy * Hiue ¥ Hel-nue _ (2.1,
where in atomic units ([e(=%=me=1),
n n
H (electron) = ¢ —lv? + 1 T ——l (2.2)
el . 271 2.°. 1< ~
i=1 izj {ry - rJl

where n is the number of electrons and r defines the electron

coordinates.
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N N z2.2
H (nuclei) = - Z—l-v? + 1 b __dk (2.3)
nuc - 2M. i 2. =
i=1 i Jzk R.
jk
where the two terms represent the kinetic energy and nuclear
repulsion energy and N, Mi' Z and R represent the number of
nuclei, nuclear mass, charge and position, respectively.
N n Zk
H {electron-nuclei) = -I L —po==m—oe- (2.4)
el-nuc k=1 i=1 Rk - ril
The decoupling of the Hamiltonian is usually justified by the
adiabatic approximation (Born-Oppenheinmer method).19 Due to the

large mass difference between the electrons and nuclei, the nuclel
are slow to respond to changes in electron configurations while
the electrons respond to changes in nuclear positions almost

instantaneously.

To describe the motion of the electrons we can replace

< 0 s - ‘ﬂ L) )
Hel—nuc by H el-nuc involving only the average positions of the
nuclei.18

The Schroedinger equation for electron motion is then
(Hey + HOo1onuc)¥(F) = Eqaw(T) (2.5)

assuming the total wavefunction, ¥, can be approximated by a

- . 20
product of nuclear (4) and electron (y) wavefunctions and the

nuclei are assumed fixed in position at their mean values. @ is Qa



function of the electron's position and spin.

Hartree-Fock theory (HFT) approximates ¢y as a finite linear

combination of Slater determinants, i.e.,
v =5 C.A, ' (2.6)

where Ai is a Slater determihant.21 :The Slater determinant 22
(SD)} is a convenient way to invoke the Pauli Exclusion Principle.
The minimal approximation here is to use only a single SD which

consists of products of spin orbitals, e

1 ] ¢ (1)...0 (1)
ot no (2.7)
in! . :
¢1(n)...¢n(ﬁ)
where the prefactor is for normalizétion purposes, n is the number
of electrons, the subscripts refer to electrons and the ¢ are
functions of position (r) of the electrons. This determinant
allows for all possible permutations of electrons since each
electron is equally likely to occur in #ny spin orbital due to
their indistinguishability. Also, upon exchanging two electrons,
one interchanges two columns resultirg in a change of sign for 4,
i.e., the wavefunction is antisymmetric with respect to the
Interchange of two particles., If two electrons have the sane

space and spin coordinates, two columns of 4 are identical and tus

wave function vanishes. We use the unrestricted variant of HF
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wave function vanishes. We use the unrestricted variant of HF
theory, whepe no symmetry restrictions are imposed on ¢ other than
that they be eigenstates of ;z {electron spin) .
A single determinant of doubly occupied orbitals is an
appropriate representation of a totally symmetric singlet ground
state of an atom or molecule ('closed shell'). Most molecular
ground states are of this type.23
It can be shown that the'expectakion value of the energy for

a given Hamiltonian and wave function is an upper bound to the

energy of the first state of corresponding symmetry 23:

E = wmmmmmmmee——— > El(energy of lowest state). (2.8)

Application of the variation method allows one to minimize the
energy yielding the best approximation to the wavefunction in the

energy sense. In this case, the ¢'s are varied until the mininrmum

energy occurs.

We have:

4 E _ .
-a-"si = 0 ‘ (2.9)

It can be shown that the spin orbitals, ¢;., can be assumed to

. 21
be orthonormal without loss of generality in what is to follow.
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The Hamiltonian is, from above, in atomic units:

n N n 2
2 .
H=-1¢ % Ve + T L -—:*!':“":" + % L “:-'-l-:'"— (2.10)
k=1 k=1 i=1 [Rk - ril k,1 1rk - rll
kel

This can be written in the abbreviated form,

n ;1 B .

H = L F + - T g,. . (2.11)
=1 1 21=j 13 ’

where Fi is the one electron operators and gij contains the two

electron operators (coulomb and exchange).

The energy may then be written as:

n n
= -1 -
B= I 0g(IFleg(1)> & 3 L (<0y(1105(2)1ayple 1)04(2)>
<03 (1)05(2) (g ,10,(1)0,(2)>) (2.12)

and %A{A> = 1,

Use of the enercy variational principle with variation of E with
respect to the 0; and the necessity of invoking Lagrange
multipliers to implement the constraint of orthonormality of the

solutions results in the following:
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*
fn = E + A . . dr 2.13
s [ o) e, | . (2.13)
where fn is the functional to be varied, E is the energy
expression in eguation (2.12), Aij is a Lagrange multiplier and
the integration is over the electron's spatial coordinates.

The variation
4fn
-z = o0 (2.14)
6o - )

results in the following equation:

*
[ar oL (1) (F o (1) + L tfo (219, 0, (10 (2)ar, -

9
[ ©(2)g, 0 5(1)0y (2)dT ] + § Aey®3(1)) =0 (2.15)

Since the terms within { } are independent and the variation

]
°°k(1) is arbitrary, it follows that:

- ® *
Fiol) b L Lo5(2)e5(208T 0, (1) - o t21g,,0, (21dr 0 (1))

+ L AN ¢ (1) = o0 (2.16)
kj J
j J
A unitary transformation of oj can be found whic
diagonalizes the Ahj
are the energy eigenvalues (Ek) for the ¢k orbital.

matrix (i.e., & Aijoj(l) - Akkok)'

The Akk
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Finally, one can write the Hartree-Fock equation:

. * o *
Fiop(1) + 1 (Jos(2105(2)ay o, (1) = [o,(2)g),0, (2)d7,0,(1))

= Ek¢k(1) {(2.17)

This can be written in the simplified form,

o = Ep 0 . (2.18)

£ is the self-consistent field Hamiltonian operator. The

where H-©
set of integro-differential eguations is solved iterativel? since.
the Hartree-Fock Hamiltonian operator is a function of the
solutions, o,. )

For molecular calculations, one expands the oy in terms of a
set of analytic basis functions. Sihce it is not possible to use
a mat?ematically complete set of functions, we can obtain only
approximate solutions to the HF equations. The best (lowest
energy) single determinant wave function constructed within a

finite basis set is the self-consistent field (SCF) wavefunction24

Restrictions on symmetry of the spin orbitals and eguivalence
Y L

of spin up and spin down space lead to solutions of the equations
which are the Restricted Hartree-Fock wavefunctions.24
Unrestricted HFT, used for most calculations in this thesis, does
not force these types of requirements, allowing for more

fJexibility in the SCF wavefunction and a lower energy. These
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wavefunctions are not eigenfunctions of orbital angular momentum.

The UHF theory is useful in studying excitation energies in
that it is not necessary to force spin up and spin down spaces to
be identical. If one begins with a closed shell ground state and
excites a spin down electron into the spin up space, one may
perform a UHF calculation on this determinant. The resulting
energy and wavefunction are the best single determinant
description of the (new) exciéed state (which differs in symmetry
from the closed shell ground state). The energy difference
between the two states is the excitation energy for the new state
{ASCF method).

The UHF calculations performed in this work utilize the
linear combination'of atomic orbitals (LCAO) approximation in

constructing the spin orbitals.

The Xij in this work were Gaussian-type orbitals (GTO's) of

the fofm,

xj = aj [x1 ym 2" exp(-bjrz)] (25) (2.20)

The aj and bj are input parameters in the sequence of codes used
to calculate the integrals over atomic orbitals and the =.,vy. and

z, raised to their respective powers indicate the type of atomic
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orbital (s,p,d etc.).

The Xj are what are called primitive Gaussians. The
iteration time in the UHF procedurevis heavily dependent on‘the
number of Gaussian functions used. Calculations carried out using
primitive functions can become very time consuming depending on
the size of the basis set,26 Contracted functions consist of
fixed linear combinations of primitives.27 Use of contracted
functions only requires the calculation of the orbital
coefficients of the contracted functions at the SCF stage (the aj
can be absorbed into the cij for a given function). ‘One can use a
large number of primitives within a-fﬁnction which enables one to
take advantage of the analytic properties of Gaussians, while |
alloﬁing the orbital to span a reasonable part of configuration
space and yet keep the iteration time down. The disadvantage of
contracted functions is that the iﬁtegrals over atomic orbitals
become more complicated and time is iost during their calculation.
Usually, however, this is a one step calculation since the
integrals are saved and the large gain in SCF computation time
generally outweighs the loss in integrals calculation time.

GTO's have the advantage over Slater-type orbitals (STO's) °n

that integrals involving GTO's are generally much easier to

perform. However, STO's are carpable cf describing the orbitals in

a more physically realistic manner and one usually needs

relatively more GTO's than STO's to obtain comparable results.

T TR I
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Electron Correlation

Electron correlation effects are corrections to independent
electron models or orbital theories of molecular electronic
structure.28 In the Hartree-Fock approximation, the motion of
each electron is solved for in the presence of the average
potential created by the remaining electrons and therefore
neglects instantaneous repulsﬁons between electrons. The
contribution to the total energy due to instantaneous repulsions

29 )

is called the correlation energy (E_) This energy is usually

c
accepted to be the difference between the Hartree-Fock energy and
the exact non-relatlvistic energy of the system.26

The method employed in this work to calculate Ec is many-body
perturbation theory (MBPT). (Technically, second order Rayleigh-
Schroedinger perturbation theory is gsed here. RSPT and MBPT are
identical to 2nd order. The difference lies in higher orders
where* RSPT has size-inconsistent terms which mutually cancel in
the higher orders, resulting in a size-consistent theory. MBPT is

based on the Linked Diagram Theorem (see Wilson, ref. 28) and

involves only size-consistent terms. RPT is an N electron theory

whereas MBPT is RSPT specialized to spin orbitals.) Although Ec
is usually a small percentage of the total energy of a system, it
is often larger than the energy needed to break many chenmical

bonds.28 Since energy differences between states of systems arc

of primary importance, and since different states do not generally
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have the same electronic structural characteristics and perhaps
even different relative atomic geometries (in molecules), the
electron correlation energy of two states is not the same and does

not entirely cancel upon subtraction.

We assume 21 the Hamiltonian to be split into two terms, cne

which yields known solutions;

(2.21)

and the other (V) assumed to be small such that the, total

Hamiltonian is given as;

(2.22)

The perturbation, V, represents an addition to the energy of the
unperturbed system and is the difference between the exact energy

of the system and the approximate (Hartree~Fock in this case)

energy.

v = H - HO (2.23)

Note that H is the exact non-relativistic Hamiltonian

and Ho may be any Hamiltonian for which known solutions

exist.

Ho is the Hartree-Fock Hamiltonian. The zeroth order encrgy
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is the Hartree-Fock energy:

E = W = <<:>j | H j&.> . (2.24)

The 1st order correction is the expectation value of the

perturbation for the unperturbed state;

1 X
Ej( ) = <¢j | VvV ¢j > = Voo (2.25)
and '
o (1) _ _ ’
Ej + Ej = Eyp (2.286)

However, the second order correction can be shown to require the

wavefunction corrected to first order;

(2) _ : (1) .
E, @ 1 vie ; . (2.27)

where-éj(l) is the first order wavefunction.

In principle, one could solve the equation

(Ho + V)Y =EY (2.28)
or eguivalently,

(Ho - WY=(E-V-WYVY (2.29)

to get ¥ by using the inverse operator (Ho - W)—l . However, the

possibility exists that this operator could be singular. Therefore
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we need to project out of ¥ the part of the wavefunction
proportional to 9 (Hooj = wjéj) so that singularities will not
occur. The projection operator (1-P) defined for an arbitrary
function (F) as
(1-P) F = F - <% | F> . (2.30)
does this.

It can be shown that P commutes with Ho' Then equation 2.29
becémes;

H - W, 1-P)Y, = (1-P.)Y(E, -V - W_.)Y. 2.31
(Hy= W, ) (1-P 0¥, = (1-P ) (E, Ry (2.31)
aésuming no degeneracies. Invoking intermediate normalization
(<¢jle>=1) and using the fact that Pjo = ®j, equation (2.31) can

be solved for Yj {an expansion of the inverse of Yj's prefactor is

also necessary) resulting in the following expression for Y _;

) J
1
¥ = PR Y P.)(E.~W,~
3 b5+ qasman) (1PN (EHVIeg
— e (19RO (E,-W.-V)ontone (1-P ) (E.-W.-V)9
(Ho‘wj) J J (W) J J o3 J
J
+ higher order terms _ (2.32)
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Note that care is taken when expanding to preserve the proper
order of the operators. Simplification of equation 2.32 is
possible since Ej and wj can be factored through to yield
expressions such as (1~Pj)¢j which have been shown to be zero
above. To first order in V including ?j(O) (= ¢j) we have;

(1) 1
Yo = ¢, - sm--m- 1-P .YV, 2.33

3 ;7 TR TR TRV (2.33)

J
This is the corrected wavefunction necessary to calculate the
second order correction to the energy.
From equation 5 we have;

(2) (1) -1
E = <& . |VIY, > = =< | V|75===- 1-P.)Vo > 2.34
Both operators (Ho-wj)- and (I—Pj) can be shown to be hermitian.
Also, it is useful to introduce the identity element;
W= I |¢k><¢k| (2.35)

k

where the ¢k is a complete set of functions.

E (2) = —g<o |V]o ><o [~-1eac (1-P )V]e > (2.36)
3 e k k (Ho—wj) 3 J

For k=j, (1—Pj)®k=0 as shown above.

For k=j, (1-Pj)¢»k=ok
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Using the hermiticity and commutivitiy of (1-Pj) and
" -1
(Ho—wj) we have
(2) 1
E = -~ <. |V|d, ><755-=-, (1-P )&, [V[& >
J kej I kK™ (H Wj) i’k J
1
= ~F <¢.)V Somme=mm<d V]G > .3
Using a more compact notation we write;
V.. Voo
Ej(?)= s - 38t . (2.38)
k= j o k'~

to second order in the perturbation, V.

If oo is the total zeroth ordef wéve function (Hartree-Fock

in this case), the total correlation energy is then;

_ ’ Vox Vko_ "
E = WOO + Voo + ¥ TW ROy . (2.39)

to second order in V.

It can be shown that;

-. _ 1 1
B IVIa > = - =5- L {<®i(1)¢j(2)|FI;!®1(1)®j(2)>
i,jeAk

1
- <0y (10521 57-105(1)0,(2)>)
1
= - = s e .40
2 1%3 J1J;1J . (2 )

where A, is a Slater determinant whose elements are orthonormal

k

spin orbitals.
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‘"The second order expression has matrix elements of the fornm
Vok = <A0|y|Ak> where Ao represents the Hartree-Fock space. The
Ez(z) expression contains all possible double excitations due to
instantaneous repulsions of electron pairs in the HF space to
possible configurations in virtual space (Ak). Since unrestricted
Hartree-Fock is used, it can be shown that single excitations
(matrix elements between two determinants differing by one spin-
orbital) vanish. The only surviving terms occur where Ak differs
from Ao in two spin orbitals (i,j (HF) go to a,b (virtual)).. Each
Jij:ij then is replaced by Jij;ab and the'sums must go. over all
occupied pairs {i,j) and all virtualvpairs {a,b). Also, the total

energy difference between the HF and virtual space for a given

pair is €3 + eJ - €, T € which replaces the denominator in the

second order expression.

Combinihg all of the above we have;
¥ J
g (2= _ __1 % T --L----ii;éEL:___ (2.41)

Bartlett and Purvis 30 showed that 60 to 70 percent of the
total correlation energy and 70 to 80 percent of the valance
shell correlation energy in simple molecules could be provided
using contracted HF basis sets augnented by well chosen virtual
functions. A finite basis set of m functions is used in the

calculation. There are n occupied sclutions and m-n virtual
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solutions to the HF calculation. The summations go from 1 to n
for the occupiea space and from n+l1 to m for the virtual space.
The virtual space created in the UHF calculation is not syitable
for investigating electron correlation effects or excited states.

They represent states of an (n+1) electron system (negative

1on).31

That is, they describe state of an electron moving in the
field of the neutral molecule whereas an excited state of the
molecule would have the electron moving in the field of the n-1
other electrons. Therefore the HF virtuals are removed by
contracting over basis functions and ﬁhe virtual spéce is rebuilt
and designed to minimize the correlation energy. This is done by
forcing the functions of the virtual space to spatially overlap

the functions of the HF space by appropriate choice of the

exponent in the virtual GTO's. A good starting point for this

exponent is proposed by Beck and Nicolaides.30 Their expression,
2 x4 ... 2n 1

Kp> = ST Zloe gl ——— ———Eaoo (2.42)}
3 x5 ... 2n-1 (2Ha)1/2

gives the virtual space exponent, a, as a function of the
expectation value of the orbital you wish to overlap. The integer
n is representative of the angular momentum of the wvirtual orbital
(n=1,2,3, etc. for l=s,p,d etc.).
For atomic calculations, the application of this expression
6

f,
is straightforward. For exanmple, given the neon atom (13223“2p Y.

possible double excitations are:
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2s2p -» VsVp + Vpvd + VdVf

For neon, <r> is about 1 au for the 2s and 2p orbitals.
Application of equation 2.42 would yield a=0.62662 for the Vs
exponent and this would be the starting point in the creation of
the Vs correlation space. Exponent optimization would then be
done to find the minimum value cf the correlation energy. The
application of equation 2:.42 to molecular systems such as
nitromethane is not gquite so useful since molecular'orbital
construction is based upon combinations of atomic orbitals.
However, one can maximize the overlap to the largest atomic
constituent and use this as a starting point in the creation of

the virtual space.
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Counterpoise Method

The counterpoise method (CP) evolved 33 to reduce the'error
in calculating medium range interatomic or intermolecular
potentials. One primary source of error was attributed to basis
set superposition.34 _Traditionally, the binding energy of a dimer

was calculated as follows:

' 1) Calculate the erergy of the separate molecules at
infinite separation where each molecule is characterized by its
own basis set.

2) Combine the basis sets and calculate the total energy of
thé dimer at the equilibrium intermolecular separation (which may
have to be determined by energy optimization).

3) The difference in energy, E(dimer)—(zl(o) + Ez(w)} gives
the binding energy of the system. ' .

This method, however, does not yield accurate results when

35 The error results from the fact that

compafed to experiment.
the calcu;ations on separate molecules were not strictly
comparable to that of the dimer. The dimer calculation contains
compensation, using orbital- (basis functions) located on one
center, for the deficiency of the wavefunction in the neighborhood
of the second center (and vice versa).34

The correct calculation is to allow the presence of the basis
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functions>of the second molecule (without its associated nuclear
charge) when calculating the energy of the first molecule and
doing the same for calculations on .the second molecule. The
individual calculations are then comparable to the dimer
calculation in that all functions are present all the time as are
their effects on the energy and orbifal structure of both
molecules.

The effect of basis set'suparposition error, while often
times small, is extremely important in work where intermolecular
potentials are small. KXolos and co~workers 38 used the CP method
effectively in work on the methane dimer. Dacre s work ?4
indicates that basis set superpcsition error should be considered
when calculating small correlation effects. The inclusion of this
effect in his work did not tend to overcompensate but resulted in
a more accurate description of the-system in which he was working.

The CP method was found to be useful in the work presented in
this ‘thesis under several circumstances. It was an aid when
making comparisons between all-electron versus pseudopotential
calculations for both the CH3 and N02 groups in nitromathane and
also in helping to converge the nitromethane molecule when using

pseudopotentials by using CP Hartree-Fock orbitals as input

guesses for the two pieces.
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Chapter 3

Computational Methods

Calculations on nitromethane were done in two stages:
1) gas phase (free molecule) and 2) molecular groups {dimers and
trimers with work begun on a cluster of 9 molecules).

In order to perform some .of the calculations, modifications of
existing Fortran codes was necessary as will be discussed below.
All éalculations weré done using Michigan Teci University's Center
for Experimental Computation Floating Point System FPS/164 Max in
conjunction with a Digital Equipment Corpcration Vax 11/750. The"
FPS/164 is an attached processor which uses the VAX as a host for
access purposes. It has progided computational speed-ups by
factors of six to ten times over the VAX depending upon the stage
of the calculations. ’

Gas phase calculations were done using the Labels and
Integrals portions of the POLYATOM 37 sequence of codes as well as
unrestricted Hartree-Fock (UHF) and many-body perturbation thzory
{MBPT) codes developed by A.B. Xunz and modified by D.R. Beck.
These codes were adapted for FPS use by students at the University
of Illinois. 38 The MBPT code was run in a mode that allowed for
only part of the calculation to be done on the FPS since at that
time it did not have sufficient.mémory to handle the entire

calculation. D.R. Beck made additional modifications to this code

to provide for corrections to spin eigenvalues. Dimer and trimer
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calculations were done using the same codes except without

correlation.

Cluster calculations required extensive program modifications
L

. and some code development by the author in view of the

approximations which were used. No correlation calculations were
done due to size and time limitations. A key approximation,
neglect of neighbor-neighbor (n-n) interactions, forced extensive
restructuring of the way in which input files were handled at the
UHFzstage. Also, in order to facilitate storage of labels and
integrals, codes had.to be written which scrubbed the integrals
while at the same time created small"labeis flag files which
contained information to help recreate the labels files while
being much easier to store. A cluster calculation used to be
performed by setting up the entire cluster in the labels and
integrals input files, calculate all integrals and then perform
the UHF calculation using the labels and integrals (2 separate
files). Three hundred and thirty seven basis functions were used
in the preliminary cluster calculations (9 nitromethane
molecules). This would require the computation of about 1.6 X 109
integrals. It took 6 hours to calculatz 8 X 106 integrals on the
FPS, therefore over 200 hours (8.3 days) of cpu would be necded
for the total calculation. It is difficult to estimate the amount
of time per iteration that would be required at the UHF stage.
However, it could be up to 8 days per iteration based on
comparisons of single molecule to dimer calculations.

It is clear that the neglect of n-n interactions was

A
~
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necessary in order to make calculations at all feasible using
current computing capabilities. Eight separate dimer calculations
weré done, a dimer consisting of the central molecule plus one
neighbor. This resulted in eight éeparate labels and inteérals
files. The integrals involving pure central site functions had to
be removed from all but one of the integrals and labels files.
This step was actually done at the labels stage where no label
which involved purely the central site was included in the list.
The integrals also were scrubbed to a 10—6 tolerance in absolute
value (to be justified lafer). Once scrubbed, the integrals.were
stored on disk since it was impractical to recalculate them each
time a run was desired (6 hours of cpu per dimer). The labels
calculation was relatively inexpensive (about 20 minutes of cpu
per dimer), However, since fhe integrals had been scrubbed and
since the labels files were larger than the integrals files, (and
therefore requiring a lot of disk space alsc), it was necessary to
create an intermediate flag file which was much smaller than the
labels file but contained enough information to help recreate the
scrubbed labels file at a later stage. [Note: If the tolerance had
not been invoked, all that would have been necessary was to

recalculate the labels and use the entire labels file each time.]

Renumbering of the new labels had to be done in order to convert
the eight separate dimer runs into one cluster run. One other
modification had to be done to the potential energy integrals for

the central site. These had to be calculated in the presence o.

all the eight neighbors at once and stored in a separate file.
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This file was read whenever the UHF code needed one electron
integrals from the central site.

The block diagrams of figures 3.i through 3.4 will clarify the
above comments. Figure 3.1 represents the normal sequence of
events in carrying out the UHF procedure. Figures 3.2 through 3.4
show the necessary modifications to this procedure in order to
work on the nitromethane cluster. The UHF code had to be modified
to handle the new fiie structure.

. Neglecting n-n intergctions, the total number of two electron
{2e) integrals is approximately 56 X 106. The tolerance criteria
reduces this number to about 12 X 1osl The storage reguirements
for the eight separate integrals files and labels flag fiies was
about 200,000 blocks of disk ocut of an 880,000 block disk (475
Mbytes). If the labels themselves had been stored as well, the
requirement would have increased b? a factor of 2., The UHF stage
took about 45 minutes per iteration Qith 337 basis functions and
12 million integrals.

Finally it should be mentioned that several other ideas were
explored to help limit the problem size. These included heavy
contractions of neighbor basis functions, neglect of any integrals
involving-more than two centers (up to four centers are possible
in the 2 electron integrals) under the éssumption that thesa would
be small, and use of local symmetry operations on Gaussian
primitives within a spin orbital during the calculation of

integrals to reduce the total number of integrals. Integrals code

modifications by D.R. Beck to investigate the latter of these
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ideas indicate that some savings could be made in the total number

of integrals that need to be calculated but that the savings were

not great enough for nitromethane to warrant further investigation

L

at this time. Also, it was determined that the neighbor molecules

could be described well enough without the necessity of having to
use heavily contracted functions (which increase the calculation

time of integrals). Finally,it was decided that neglect of all n-

n interactions was a more consistent .first order approximation

than the neglect of multicenter integrals.
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Give list of one and two electron
labels for the entire cluster.

Calculate all integrals over atonmic
basis functions based on the labels.

Calculate energy and eigenvectors
of the cluster

Block diagram of the normal procedure.

Calculate labels for dimer 1 (D1). A dimer
consists of the central nmolecule + one
neighbor. ’

Calculate integrals for D1.

Scrub and save the integrals file (PO1)
and create the labels flag file (LO1)

Remove any pure central one electron
labels and integrals from PO1.

Calculate the one electron labels
for the central molecule only.

ADF10rLY

Calculate the one electron integrals for
the central site in the presence of the

charge of all the neighbors. Note, the
one electron labels are stored on and read
from the integrals tane at the UHF stage.
The one electron labels need not be saved.

Figure 3.2 Preparation of special labels and

integrals files for Dimer 1.
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Calculate dimer labels, but do not add to

the one or two electron lists any labels

which involve the central site exclusively.
' RECELAB These labels contain pure neighbor one

and two electron and central-neighbor one
and two electron.

, ADF10PLY ; Calculate integrals for D2 through D8, 7
separate files each of labels and integrals.

Scrub and save each integrals file
(PO1 through P08) and create and save
‘ INTFLAG ! labels flag files (LO1 throught LO8).
' Note: The labels files are used exclusively
at the UHF stage for two electron integrals.

Figure 3.3 Prepération of integrals files and labels flag
files for the other 7 dimers of the cluster.

D1 D2-D8
‘ AP1OLAB ‘ Recalculate all the ‘ RECELAB i

labels for all dimers

' LABCRE l Use labels files and [

flag files tc create
new labels files rep-
resenting the scrubbed
integrals.

LABCRE '

L1.DAT L2.DAT,~» L8.DAT

Cony all i 1

into the array oz

POl - P08 and PO
i

Run srecial li7 cude

Figure 3.4 Procedure for running the cluster with
the special file structure.
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The codes INTFLAG, LABCRE and INTREAD were created by the author.
RECELAB is a modification of the existing labels code as is
AP1OLAB. NIAUHF is a modification of the existing Hartree~Fock
code. The only change required for the integrals code was 'to
redimension it to handle a single dimer of 92 functions. Table3.1
is a summary of the files used and their contents when running the

modified system of codes.

Table 3.1

Files and Contents When Using Special Codes

pcle pc2e bpnle pn2e c-nle ‘c-n2e
=TT S
PO1
i X X X X X
PO e
p=pure

c=central
n=neighbor
le=one electron
2e=two electron
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Chapter 4 .
Results for the Nitromethane Monomer

Gas phase calculations for nitromethane were performed using

the geometry determined by Cox and Waring. Figure 4.1 is a

schematic diagram of the molecule. The only symmetry operations

that can be used to reduce the number of integrals is:

{applies to the entire

.

“1.) Reflection in the ‘x-y plane

molecule.

2.) Reflection in the x-z plane (applies to the C—Noz
group).

3.) Two-fold rotation about the x axis (C—HO2 group) .

4.) Three-fold rotation about the x axis (CH3 group) .

The system has a total of 32 elect}ons (16 spin up, 16 spin

down for the ground state).

Basis Sets

This section will briefly describe the basis sets used in all

the calculations performed on the molecule.

Initially a Dunning 40 (3s,2p), (7,1,1/4,1) contraction of
Huzinaga's 41 95,5p) primitive set for the oxygens, nitrcgen and

carbon with Dunnings (2s), (4,1) contraction of Huzinaga's 4s set



STRUCTURE OF NITROMETHANE

. CH3NO,
- 1.489 A
C =
107.2°
1.224 K
02

Ref. Cox and Waring: J. Chem, Soc, Far, Trans, 68, 1060: 1972

Figure 4.1
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was used for the hydrogens (The notation (7,1,1/4,1) indicates the
3s functions consisted of 7,1 and 1 primitive Gaussians, the 2p
functions of 4 and 1 primitives, etc.). Also, s bond functions
were placed midway between atoms on the six main bonds (C—N, N-01,
N-02, C-H1l, C-H2, C-H3). For various reasons, this set evolved to
57 functions (adding p bond functions), 81 functions (adding 4
correlation functions on eaéh atom except the hydrogens) and 84
functions (upon uncontracting the s functions on 01, 02 and N
{(7,1,1) » {(6,1,1,1)}. Some experimentation was done on each of
thesé basis sets, inéluding exponent optimization. Appendix C
contains listings of the basis sets uéed in calculations
throughout this work.

A comment concerning the usefulness of exponent optimization
1s.in order. The basis sets used in the molecular calculations
are optimized for the individual atoms in the system. However,
this does not mean that these functions, when brought together %o
form a molecule, will be energy optimiied. It is sometimes useful
to va;y some of the more diffuse exponents in the molecule on an
individual basis to see if a lower energy results. An example of
this occurs in the calculation of a low-lying excited state of
nitromethane (to be discussed in more detail later). Figure 4.2
shows how variation of the z exponents on the oxygen and nitrogen
atoms on an ingividual basis cause the energy to drop somewhat.
For the oxygen z functions, the minimum energy did occur at the

original value of the exponent (Energy= -243.5876 Hy). However,
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Figure 4.2
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an additional 0.0008 Hy (0.022 eV) at the HF stage was acquired by
changing the z éxponent of nitrogen"from 0.1654 to 0.1800, which
appeared to yield a minimum. In this example, the gain is'small,
but this may not always be the case. Ditchfield, Hehre and Pople
42 have done work in basis set optimization for both atoms and
molecules. Their work involved the variation of both the
coefficients and exponents in minimal basis sets whose functions
consisted of sums of Gausssian type functions (GTOs} .

- As stated earlier, GTOs are generally easier to work with
than STOs. Others (Stewart 43, Clark and Miller 44: Adams 43 and
Hillier }6 and co-workers) have done some work on Gaussian
approximations to STOs using various fitting schemes resulting in

a mixture of fair to poor results. Ditchfield's work indicates

that a few well-chosen GTO's can yield very good results.

Ground State Characteristics of the CH3N02 Monomer

A basis set of 81 functions was used to study the ground
state (gs) of the monomer. This set evolved from the 48 function
set derived fror: Dunning's 40 basis sets. It is interesting to
see how the energy varied as more basis functions were addad to
the set. Table 4.1 compares the gs energy, including electron
correlation effects (2nd order MBPT) for 48, 57 and 81 function

sets which were previously described. At the HF stage there was a

large decrease in energy of about 0,058 Hy (~ 1.58 eV) from 48 to
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§7 functions and an additional decrease of 0.025 Hy (~ 0.68 eV)
upon going to 81 functions. This demonstrates the importance of
the p bond.functions and diffuse d.functions in acquiring the
minimal energy state. The d functions, which were added as
polarization functions helped lower the energy considerably at the
HF stage. This shows the importance of polarization functions in
properly describing systems in which atoms are brought together to
form molecules. There was also a large lowering in energy due to
eleqﬁron correlation. From 48 to 57 functions a gain of ~0.081 Hy
(2.18 eV) was made wnhile the 81 function set picked hp an
additional 0.089 Hy (2.45 eV). It’is’quiée clear that the p bonds
and diffuse atom-centered d's are extremely important as there are
substantial energy gains at both the HF and MBPT levels when they
are added.

Table 4.2 shows previous work done on the monomer gs. It
should be noted that the §7 fuhction'set used in this work is well
below. the energy reported by anyone else at the HF stage. Both
Murrell and Murdoch use the same geométry as in this work.
However, Mezey's work involved geometry optimization to his basis

set, resulting in some slight differences in bond lengths and

angles. MNo attempt was made here to optimize the gs geomeiry.
. : ) 60
Kaufman's work utilizes the crystal geometry of Trevino
which differs slightly from that of the free molecule. Her work

consisted of varying the C-N bond length distance and involved

calculations at 4 different stages of accuracy; SCF, CI,
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Table 4.1
Energy (hy) Comparison Between Basis Sets
Basis Functions. 48 ; 57 81
Energy (HF) -243.640710 -243.698453 -243.723297
Correlation (MBPT) ~0.429168 -0.509799% -0.598611
Total Energy -244.069878 -244.208252 -244.321508
Spin (S) 0.412 ' 0.338 0.345
Table 4.2
Comparison of Ground State Energies: Nitromethane Monomer_
Reference ' Energy (hvy) Method
Murrell (47) -243.2590 SCF-MO, DZ nocor
Mezey (48) -243.2630 STO w/4.31 EGé,nocor
Murdoch (49) -243.2721 SCFr-M0/4.31 EGS,nocor
Kaufman (50) ;243.6505 CASSCF
Kaufman (50) -243.5903 SCF, 49 con. GT fns
Kaufman (50) -243.8135 MRD-CI, 4449 SCs
. Kaufman (50) -243.8749 Ext. CI
Kaufman (50) -243.8962 Full CI estimate
This work -243.7233 SCF-M0,81£fns,151GPs
This work ~-244.3219 SCFE+IBPT 81/151A

SCF=self consistent field, DZ=double zeta, nocor=no correlatiocn,
STO=Slater tyne orhitals, EGS=2xtended Gaussian set,
CASSCF=complete active space SCF, con.=contracted, GT=Gaussion
type, fns=functions, MRD-CI=nmultireference determinant
configuration interaction, SCs=selected configurations, Ext.
Cl=extrapolated configuraticn interaction, GPs=Gaussian
primitives. Kaufmwan's values calculated at equilibrium C-N
distance (2.8 au).

T S
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extrapolated CI and a full CI estimate. The extrapolated CI
calculation is An approximate way in which to add in the effects
of other configurations. She also shows work using Complete
Active Space SCF (CASSCF) and was interested in determining the
configurations necessary to yield accurate descriptions of the
system along the decomposition pathw;y of the C-N bond.

It is interesting to note that the energy shown by this
author (-244.321915 Hy SCF+MBPT) is about 0.426 Hy below Kaufman's
'full CI' estimate. At first glance this is rather startling in
that full CI is supposed to account for all possible excitations
and the total energy of the systeh: Several comments are in order
here. The correlation energy for CHS' as given by Pople 63 is
-0.248 au. A CI calculation done by Schaefer 64 using a small

basis set gives a correlation energy for NO, as ~0.357 au. When

2

accounting for the CH3N02 bond energy, the total correlation
energy for the system is at least -0.7 au. Neither Kaufman's or
this work has reached that value although the correlation energy

reported here (-0.598611 au) is gquite a bit more than that
reported by Kaufman. It should also be noted that Kaufman also
used a much sme.ler basis set (55 functions)‘than used in this
work. It is unlikely that the calcdlated second order correction
in this work has overshot the true Jalue. Added configurations
(MCHF) would have the effect of lowering this author's HF energy.
Kaufman tries to account for the multiconfiguration n%turg of tl:

system whereas this work does not. However, the SCF wvalue
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reported ﬁere is above the full CI estimate made in Kaufman's work
(tﬁis is reasonable). Also, CI is not a size consistent theory.
The Davidson equation used by Kaufman is an approximate correction
for size consistency (see Paldus 52) whereas MBPT is already a
size consistent theory. The second order MBPT correction is
complete.

A problem does arise in the calculation of the spin of the
gs. Nitromethane has 32 electrons and is a closed shell molecular
gs (S = 0 where S is the spiﬁ). Spin calculations at the HF~étage
yield values on the order of 0.35. An attempt was made to
determine corrections to spin valués at the MBPT stage. D.R. Beck
modified the MBPT code to calculate spin corrections using the
corrected first order wave function. Table 4.3 shows that these
corrections were small. Indications in other work (Kauffman 53,
Marynick 54 énd Xleier 1) are that.g.better description of the
nitromethane system is one of ﬁixed configurations, requiring
multi~configurational Hartree-Fock techniques. No attempt was
made here to carry out MCHF calculations. A method proposed by
A.B. kﬁnz 55 indicates that spin purification using projection
operators may lower the energy of the gs by ﬁp to 1.0 eV.

A restricted Hartree-Fock calculation was performed using the
output of the 84 function UNF run as iﬁput. This run resulted in
an RHF energy of -243.715959 (0.0072 Hy or 0.196 eV above the ULF

value), spin = 0 {(as expected) and orbital composition very

similar to the UHF run. Furthermore, the output of this RHF run
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was input as a UHF run. The result was a spin=0 UHF state at the
same energy as in the RIF run, i.e., 0.196 eV above the original
UHF gs. Table 4.4 compares the 16 occupied spin up orbital
energies and general characteristics of these runs. A brief word
On notation is in order. Nitromethane has 2 oxygen atoms (denoted
01 and 02, see Figure 4.1}, 1 nitrogen atom (N), 1 carbon atom (C)
and 3 hydrogen atoms (H1, H2 and H3). 01S refers to the s type
orbital on oxygen 1, etc. The orbitéls labelled 'Z' are p
function orbitals with lobes in the z direction as referred to the
schematic diagram of the molecule (Figurej4.1). It should be
noted that none of the point group o; locél symnmetry operations
transform the z functions into x or vy functions. Therefore, oniy
X~y mixing with orbitals will occur, the z orbitals being separate
(H1S and H2S may also occur within the z orbitals since these
transform in the same way as the z functions). There are 3 z-type
occupied orbitals. The orbitals which-are unlabelled as to type
consist of mixtures of p or s functions on different sites, or
combinations of p+s functions, attributable to the presence of a
dipole moment within the molecule.

By studying Table 4.4 it is very & fficult to determine what
characteristics cause the RHF and UHF results to be so different
in overall energy and spin and particularly why the UHF run with
RHF input didn't converge to the lowest energy at the UHF stage.

The general characteristics of all three runs are very similar.

Table 4.5 compares orbital energy differences between the
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UHF s2

MBPT Correction
32 Total

Spin (S)

S

S(S+1)

Table 4.3

MBPT Corrections to Spin

48 Basis

0.603

-0.021

0.582

0.412

57 Basis

0.452

0.006

0.458

0.338

Table 4.4

Tw o~ - e -

Ordb.

Orbital Comparisens, MNitromethane lonomer,

Ground State Energies "onverged to 10_

All Energies in hartrees

WoONOON~WNR

84 fn RHF 81 fn UHF 84 fn UHF 84 fn UHF-RHF
E=-243.71596 E=-243.,72329 E=-243.72316 =~243.71556
Spin =0 Spin=0.35 Spin=0.35 Spin=0
~20.6128 Ols ~20.6302 Ols -20.6324 Ols -20.6123 02s
-20.6092 02 ~20.,6061 0235 =-20.6084 02s -20.6093 Ols

+ -15,8655 Ns ~15.8055 Ns -15.8109 Ns -15.8656 Ns
-11.3215 Cs ~11.3075 Cs -11.3084 Cs -11.3216 Cs

-1.6083 ~1.6015 -1.6016 -1.6083
-1.4016 ~1.3985 -1.3985 -1.4016
"=1.1052 ~1.0877 -1.0878 -1.1053
-0.8681 -0.8656 -0.865¢ -0.8681
-0.7538 ~0.7483 -0.7485 - -0.7538
-0.7323 2 ~0.7465 2 -0.7464 2 -0.7323
-0.7330 ~0.7290 -0.7287 -0.7330
-0.6260 -0.6170 -0.6172 -0.6260
-0.6068 Z ~0.6093 2Z -0.6093 Z -0.6066
~0.4954 -0.5121 -0.5123 -0.4955
~0.4%41 ~0.4890 -0.4891 ~0.4%242
~0.4536 2 ~-0.4631 2Z -0.4634 2 -0.4536
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original UHF run, the RIF run and the second UHF run (UHF1l refers
to -the original run, RHF1l refers to ‘the original RHF run and UHF2
to the second UHF run). This table indicates that the RHFI and
UHF2 runs are almost identical in orbital energy. Also, 11 of the
16 orbitals in these two runs are lower in energy than their
counterparts in UHF1. All but orbitél 3 (NS} are within about
0.5eV of their counterparts. NS is quite different in energy
(1.49 eV). A comparison of étomic orbital (ao) coefficients in
molécular orbital (MO) 3 between RHF1 and UHF2 shows them to be
identical to 5 decimal places (as is .to be expectéd}. Comparison
of this MO between UHF1 and UHF2 shows all 84 coefficients to be.
identical to at least 3 decimal places. The largest coefficients
are those belonging to NS. Table 4.6 compares the major
coefficients in UHF1 and UHF2 for MO 3. The coefficients other
than 33 and 54 are so small they are essentially negligible.
Again, it is difficult to determine whére the differences in these
two runs occur.

A comparison of the z aorbitals (10,13 and 1€) reveals sone
intereéting features. Table 4.5 shows energy differences of -0.22
eV, -0.07 eV and -0.27 eV for each of these (UHF1-UHF2). Table
4.7 shows all major contributing coefficients to these 3 orbitals.
MO 10 is a reasonably well matched orbital between the two.
However, there are some substantial diff{erences in orbital make-up

for M0 13 and MO 16, particularly in the 02Z, N2 and CZ

contributions. MO 13 for UHF1 has much less 02Z and NZ character




Table 4.5

Orbital Energy Differences, UHE vs

Orbital

CONOOR W

Coe

33
3¢
35
36
44
50
52
67

02s
Ols
Ns
Cs

o

AE(UHF1-RHF1) hy, (eV)
-0.0196 -0.53
0.0008 0.022
0.0546 1.49
0.0131 0.36
0.0087 0.18
0.0030 0.080
0.0175 0.48
0.0027 0.07
0.0053 0.140
-0.0081 -0.27
0.0043 0.12
0.0088 0.24
-0.0027 -0.07
-0.0169 -0.46
0.0050 0.14
-0.0098 -0.27
Table 4.6

HF, 84 Functions

AE(UHF1-UHF2) hy, [(eV)

-0.0197 -0.542
0.0009 0.02
0.0547 1.49
0.0132 0.36
0.0067 0.18
0.0030 0.08
0.0175 0.48
0.0027 0.07
0.0053 0.14

-0.0081 -0.27
0.0043 0.12
0.0088 0.2¢

~0.0027 -0.07

-0.0168 -0.46
0.0051 0.14

-0.0098 -0.27

Nitromethane MO3: UHF1 vs UHF2 Coefficients

UHF1

0.593736
0.445983
0.001786
0.0008¢%5
0.000081
0.000968
0.000527
0.000318

UHF2

0.593838
0.446088
0.001038
0.000753
0.00029¢
0.00C763
0.000422
0.0007 174

Type

Ns
Ns
Ns
Ns
Ngd
Cs
Cx
BNNO1x
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20

41

42

56

4 76

( _ 17

79
g2’

83

Table 4.7

Type

01z
01z
02z
02z
Nz
Nz
Cz
Cz
Hls
Hils
H2s
H2s
BCH1ls

BCH2s

MO
UHF1

-0.451

-0.154

~-0.162

~0.058

~0.424

-0.133

-0.195

-0.031

0.095

0.021

-0.095

-0.021

0.006

-0.006

10
UHF2

-0.278
-0.098
-0.275
-0.096
-0:439
-0.143
-0.247
-0.042

0.122

0.028

-0.122

-0.028

0.008

-0.009

. Mo
UHF1

0.344
0.147
0.024
0.012
0.073
0.028
-0.467
-0.117
0.272
0.082
-0;272
-0.082
0.013

-0.018

Z-Type MO Coefficients; UHF1 ys UHF2,

47

4 Functions.

13
UHF2

0.194

0.081

0.207

0.092

0.207

0.086

~0.450

-0.118

0.273

0.085

-0.273

-0.085

0.01¢.

~-0.019

MO
UHF1

0.489
0.282
~0.377
~0.209
-0.369
~0.197
0.112
-0.003
~0.093
-0.089
0.092
0.089
-0.006

0.006

16 -
UHF2

0.512
0.291
-0.502
-0.291
-0.001
0.013
-0.012
-0.062
0.003
-0.052
-0.003
0.052
0.00:.

-0.001
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where MO 16 for UHF1 has much more NZ and CZ character. These

outer orbitals will be discussed in more detail in the next

section.

»

From the engrgy variational viewpoint, UHF1 is the best
ground state since its energy is lower the UHF2 by 0.2 eV. It has
not been determined in this study if the UHF2 result is actually
an excited state of this system. However, since UHF functions are
supposed to be spin eigenfunctions aﬁd since this is a closed
shell molecular system, UHF2 is a more accurate description of the
system from the energy/spin viewpoint if it truly.is the ground
state. In any event, the spin differénces must be tied up in the
difference in character of these outer orbitals. It should be
noted that the RHF value of‘—243.715959 (with correct spin) is

also lower than any previously reported UKF or RHF value.
Outer Orbital Characteristics

There has been some discrepancy on the ordering of the outer

orbitals of nitromethane. Experimental work (photoelectron

-

spectroscopy (Pi'S)) done by Kobayashi 5° (1977), Dewar 56 and
Rabalais 1 (1972) indicate that the ocutermost occupied MO is a

bonding o-type orbital of a, symmetry while the second orbital is

1

an anti-bonding m-type orbital of a syﬁmetry {see Appendix B for

2
a brief discussion of these symmetry and bond types). The r

orbitals are what were referred to as the z orbitals which are
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perpendicular to the x-y plane of the molecule. However,

Fujikawa S8 ({1974) indicates these two are reversed. Orbital
assignment§ in both Fujikawa'é‘and Kobayashi's work were iqitially
determined using CNDC methods (Complete Neglect of Differential
Overlap) and both indicated that the m anti-bonding orbital was
the least bound. Kobayashi's mistrust of CNDO methods caused him
to reverse the assignment based on experimental results of PES on
nitrobenzene. Fujikawa (while comparing ultraviolet and x-ray
spectra of nitromethane) did not reverse the assignﬁent but
commented that these bands are superimposed on one another in the
X~ray spectrum, leaving one to question his assignment of these
orbitals. Rabalais also reassigned the top orbitals (originally
based on INDO calculations) and made the o orbital outermost.
Semi-empirical work done by McEwan 14 in 1959 also assigns the w
orbital as outermost with a statement indicating the difficulty in

147

ordering such closely spaced orbitals. Work done by Murrel and

co-workers in 1975 suggest that the mw,0 ordering is correct based

on the small energy difference between the a, (w) and a lower-

i

lying orbital of b2 symmetry. The a,. a,, b2 ordering suggasted by

Kobayashi and Rabalais requires a 3.4 eV difference in energy
between the a1 and b2 orbitals based on their band energies.
Murrel indicates all semi~empirical work done on nitromethane

shows this 3plitting to be small (nearly degenerate) and therefore

the a, orbital could not possibly lie between them. They use

Koopman's Theorem and neglect correlation, two approximations
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which could result in errors of level assignment not to mention
energy values. Niemeyer 59 also places the m orbital as the
outermost. He uses Ci:d0 methods also. As questionable as some of
these theoretical methods may be from the accuracy point of view,
work done by this author assigns the order a, (), a, {oc) for the
two outermost orbitals, in agreement with the semi-empirical work.
At the UHF-MBPT stage, these orbitals are only about 0.7 eV
apart. The orbital b, lies énother 6.63 eV below the a, orbital.

1
Since the RHF work done by this author on the ground state also

results in the same ordering for these orbitals support is given
to previous theoretical work on the system. However, a

wavefunction which is corrected to first order may really be

necessary to determine the orbital ordering with confidence.

Plots For Ground State Molecular Orbitals
13, 14, 15, 16
The following pages display molecular orbital wavefunction
amplifude plots for the four outermost MO's of nitromethane. 3oth
RHF and UHF plots are shown. All diamoads in the diagrams
represent atoms of the molecule not lying in the plot plane. Any
'%' represents an atom of the molecule in the plot plane. All
plots have contours spaced every 0.05 aﬁ'within the range of *1.0
au for the wavefunction. Solid lines indicate positive regions ol

the wavefunction while dashed lines indicate negative regions.

T T T s — ~
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UHF MO 13 shows a strongly localized m orbital on carbon with

a Qeaker lobe on nitrogen. RHF MO 18 has a much stronger
contribution at the nitrogen atom. Both are of b1 symmetry. MO's
14 and 15 are of a, in both the RHF and UHF calculations. There
is very little difference between the UHF and RHF orbitals in this
case. The orbitals are bonding at tﬁe oxygén lobes with strong x-
y character. MO 16 shows thg largest discrepancy between the UHF

and RHF runs. UIF shows the m orbitals of a, symmetry localized

on the oxygen atoms but it also shows a strong nitrogen

contribution (See Orbital Plot 10) whereas the RHF run shows no
nitrogen contribution (The =x-z ploé for 16 RHF which would show
the nitrogen contribution is not shown here because it contained
no information, i.e., no localization at all on the nitrogen
atom.). It is probably this orbital at the UHF stage which causes
the spin to be incorrect. .

Rabalais 13 shows the top three orbitals as having symmetry

a b

a 5r by Both UHF and RHF runs indicate them to be as, ay, 3y,

1'

i.e., an orbital of b2 symmetry does not show up here. The a,

orbitals are anti-bonding as are the b2 orbitals. Orbitals of a,

symmetry are bonding. The a, orbitals shown nere are similar to
the one shown schematically by Rabalais 13 except he indicates

that the oxygen lobes have less tilt with respect to the x-axis.
Both up and down spin spaces were shown for UHF orbitals 14 and 15

to indicate the orbital symmetry.

The lack of an orbital of b2 symmetry poses a problem in that
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two experimentalists claim it is there (Rabalais 13 and

7 .. .
Kobayashi > ). However, Fujikawa °8 merely characterizes these
three outer orbitals as lone-pairs, one out-of-plane and two in-

plane. This is essentially what is shown in the orbital plots.
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Orbital Plot 3

X-Y Plane
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Orbital Plot 4

X~Y Plane
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Orbital Plot 5

" X-Y Plane
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Orbital Plot 6
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Orbital Plot 7

- X~Y Plane
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Orbital Plot 8
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Orbital Plot 9
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Orbital Plot 10
- X-Z Plane
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Orbital Plot 11 .
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Ionization Potentials
., IS

First and second ionization potentials were calculated
through the HF stage using 4é, 57, and 81 functions. The 48 and
67 function sets were also correlated. As can be seen in Table
4.8, the results are in reasonable agreement with experiment. The
discrepancy in ordering betwéén experiment and theory is indicated
by the symmetry type of the ionized orbital. The values reported
in this work are closer to the experimental values than those
previously reported. However, the 57 function data is anomalous
in that its values appear to be reversed. This may have something
to do with the orbital ordering problem and may be an indication
that the outer orbital is that of a, symmetry. Also, a more
precise calcuiation involving relaxagion of bond angles and
correlation of these relaxed s?stems after ionization should
realli be done. Although some bond angle and bond length
relaxation work was done by the author on the first ionized state,

it was not correlated. The indications were that the 0-N-0O bond

angle relaxed from the ground state value of 125.3% to about 123¢

at the HF stage. The values listed in Table 4.8 by this author

are for fixed ground state geometries only.
Also shown in Table 4.8 is a comparison of the 48, 57 and 81

function HF results. The 81 function set has a tendency to give

the lowest value of the three sets for both ionization potentials.
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Table 4.8 ' .
Nitromethane 1st and 2nd Ionization Potentials
Reference I1st I.P. (eV) Sym 2nd I.P. (eV) Sym
This work 48 fns 11.186 a, 11.33 a,
V4
This work 57 fns 11.53 a2 11.39 a1
Murrel (47) 10.95 a2 12.39 a1
Murdoch (49) 11.98 : 13.38
. *
Rabglais (13) : 11.32 a, 11.73 aé
" .
Kobayashi (57) ' 11.31 a1 . . 11.81 a2
Fujikawa (58) " 11.50 |
48 fn HF only 9.51 ' 9.88
57 fn HF only 9.61 10.06

81 fn HF only 9.49 3.76

Fujikawa was unable to resolve these two peaks individually
using x~ray spectroscopy. Rabalais and Kobayashi used Hel ,584 &,
21.22 eV as their ionizing source for photoelectron spectroscocuy
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Excited States

»
Excited states of nitromethane have not been well studied.

66

McEwen did semi-empirical work and arrived at a list of possible

exXcitation energies, the lowest-lying state at 3.01 eV
representing a transition of az_1 - bl* (m = n* :an electron is
removed from the a, orbital and excited to an orhital of b
symmetry, both orbitals being m-like). Kleier and Lipton 1,_in
what they term an 'approximate ab initio method', report a lowest
lying excited state of 1.45 eV. They also stéte that this value
is not expected to be accurate but that the symmetry of the
excitation is w - w‘ . They also state that evidence for the
existence of such a low-lying excited state of this symmetry is

-

inconclusive. Rabalalils insists the lowest lying excited state
is the o - n* transition and that thé ™ - n* transition is at a
higher energy. Again, this goes back to the discrepancy in the
ordering of the outer ground state orbitals. His prediction is
that the m - n* excitation lies at about 6.27 eV. This author
calculated a correlated low-lying excited state at 3.46 eV using
both the 48 and 57 function basis sets. The excited orbital was
m-like and of b1 symmetry, indicating a m = n* transition. The HF
energy yvielded a difference of 1.4 eV with respect to the 43

function ground state, 1.8 eV for the 57 function system, and 1.8

eV for the 84 function system, all values being similar to that
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reported by Kleier. Electron correlation brought the difference
in both the 48 and 57 systems with respect to the correlated
ground states, to 3.46 eV. The 84 function system was not
correlated. Also, the spin for these results was S=1, indi;ating
convergence to the triplet. Further confirmation of the existence
of this state came from two RHF runs (uncorrelated) using the 57
function and 84 function sets.

Very recently, Kaufman 50 did séme calculations using CI
methods for several low-lying excited states of nitromethane. (see
Tablé'4.9). Her lowcét state lies at 0.1763 (4.8 eV) above the
ground state, using the full CI estiﬁéte..:ner singles+doubles CI
work shows this difference to be 0.2029 Hy (5.52 eV) and her .
extrapolated CI calculation lowers this to 0.1802 Hy (4.9 eV).
The.value reported in this work for the lowest state (3.46 eV) is
not in good agreement with her work. It is difficult to determine
the reason for this relatively large discrepancy. One possibility
is that the excited state in this work is the triplet whereas it
is assumed Kaufman converged to the singlet in her CI calculation
(the singlet lying above the triplet). Also, there could again be
differences due to the relative sizes of the basis sets used in
her calculation compared to those uszed in this work. The
difference could be related to either the multiconfiguration
character of the system or to the approximations in Kaufman's CI

values. It is unlikely that higher orders of M3PT would make

repulsive contributions as large as 1.5 eV, the difference in
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Table 4.9 . 68
Summary of Excited State Results
and Comparison to Other tork
Pror 98] Erop [e¥e:) & Energy hy (ev)  spin
*This work 48 -244,0699 -243.9428 0.1271 (3.46) , 1.0
*This work 57 -244.,2082 -244.0725 0.1277 (3.47) 1.0
**Kaufman ~-243.8135 -243.6106 0.2029 (5.52)
**Raufman ~243.8749 -243.6947 0.1802 (4.90)
**Kaufman ~243.8962 -243.71389% 0.1763 (4.79)
M.DR -242.2547 : : & 0.0390 (1.06)
M.DG ~-242,3082 - _ && 0.0925 (2.52)
M.DRO . ~242.2157 '
M.PDR ~242.4234 ' # 0.0681 (1.85)
M.PDG -242.4712 . ## 0.1105 (3.01)
M.PDRO : ~-242.3606
* =
Evot = Eyr * Eumpr
EMBPT = ~-0.429168 (g.s. 48), = ~0.509799 {(g.s. 57)
= ~0.354409 (exc. 48), = ~0.449676 {(exc. 57)
s*xKaufman's work shown at three levels of calculation,
CI, Extrapolated CI and 'Full CI Estimate’.
M.=Marynick 77, gs=ground state, D=double zeta,P=polarized,
G=GVB, R=RHYF,RO=ROHKHF &value=M.DRO-M.DR, &&value=M.DRO-M.DG,
#value=M,PDRO-I1.PDR, ##value=!,PDRO-M.PDG
Table 4.9a
Singlet-Trivlet Splitting: Excited 3tate of Nitromethane
x « Energies in hy (oV)
E gs E s Et AE s-gs AE t-gs AE s-t
57fn -.690 -.607 -.621 .083 (2.3) .069 (1.9) .014 (.38)

84fn -.7186 -.629 -.644 .087 (2.4) .073 (2.0) .015 (.40)

57fn,84fn (this work, RHF),

* values shown to be prefived with 243., i.e., -243.690 for gs 57.
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energy between the excited states of this work and Kaufman's. It
should also be noted that Kaufman's quoted values are the roots
extracted from the diagonalization of her CI matrix. This ﬁay not
yield accurate results unless the basis set used was a very good
one.

For 57 functions the open shell.singlet lies at 2.26 eV above
the ground state and 0.39 eV above the triplet. The triplet lies
1.87 eV above the ground state. For 84 functions the singlet is
2.3%Hev above the ground state and 0.40 eV above thg triplett
which is 1.97 eV above the ground state. These results were
uncorrelated. A better estimate of the energy difference between
the ground state and excited singlet would be to use the value of
3.46 eV (48 functions + correlation) and add the 0.40 eV singlet-
triplet splitting since the triplet is the state converged to in
this_work {to be shown later) and the singlet is assumed to lie

above the triplet. This shows a value of 3.86 eV for this energy
difference. Recent work by Marynick 52 and co~-workers using GVB
methods indicates the splitting between the ground state singlet
and the first excited state triplet to lie somewhere between 1.0¢
and 3.01 eV. The large variatibn in values (see Table 4.9) is a
function of the method used. His best calculation, which gives

the result of 3.61 eV supports the work done by this author (3.47
eV) for the energy difference between the ground state and first

excited triplet state.

Kleier and Lipton show the lowest lying state to be a
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triplet (1.45 eV above the ground state) followed by a triplet and

'singlet (2.54 eV and 2.64 eV) separated by 0.1 eV.

The work done by this author is strong confirmation of the
existence of a low-lying excited state, 3.46 eV above the ground
*
state with the symmetry of a m - m transition. A summary of the

above discussion is given in Tables 4.9 and 4.9a.

Plots For Excited State ﬁolecular Orbitals

14,15,16,17

€

3]

The following pages show wavefuﬁctioﬁ amplitude plots for th
top four spin-up orbitals of nitromethane in its first excited
state. As in the ground state plots, there may be more than one
view of an orbital to see all of its character. Again, the
individual contours are in increments of 0.05 au with 'x' implying
in~-plane atoms and diamonds, out-of-plane atoms of the molecule.

MO 14 has strong carbon character and also oxygen lobes. The
orbital is of b1 symmetry and consists of m bonding lobe§ on the
oxygen. This orbital is similar to MO 13 of the ground state
except that a nitrogen lobe occurred in chat MO. It appears thaF
charge was transferred to the oxygens in going from the ground to

the excited state. MO 15 is of b, symmetry. It appears to be a

modification of the ground state MO 14. ' In that orbital a spin-up
electron was primarily centered on one oxygen. In MO 15

(excited), this electron is shared by the two oxygens. MG 16
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(excited) is another modification of MO 14 or !NO 15 (ground

stéte). This is of a, symmetry and looks somewhat more like the

a, orbital Rabalais proposes for the outermost ground state

1
orbital. The oxygen's lobes are aligned more along the x
direction. Three views are shown of the outermost excited state
orbital, MO 17. Plots in the -z and y-z plane show a large
nitrogen n double lobe. A plot through a plane containing both
oxygens shows them both holding m lobes also. The orbital

poséesses b1 symmetry, and the oxygen lobes are bonding to each

other and non-bonding to the nitrogen lobes.
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Orbital Plot 12
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Orbital Plot 13
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Orbital Plot 14

X-Y Plane
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Orbital Plot 15
X-Y Plane
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Orbital Plot 17
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Orbital Plot 18
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Plots For the Singlet and Triplet Contributions
To fhe First Excited State of Nitromethane
[ 4

The first four plots of this section show MO0's 15, 16 and 17
for the triplet contribution to the first excited state of
nitromethane. These should be compared with the same orbitals of
the previous section to see that the excited state referred to
there was the triplet state (both se{s of orbitals are identical).
Thehfollowing four plots show the same 3 orbitals for the singlet
contribution. It should be noted thgt the singlet contains 2

orbitals which are identical to the triplet except in order. That

Y

} is, singlet 16 is the same as triplet 15 (b2 symmetry) and singlet
17 is the same as triplet 16 (a1 symmetry). Singlet 15 consists
of double laobes on only one oxygen and a lobe on the nitrogen
whereas the triplet 17 orbital is double lobed on both oxygens as

well as the nitrogen (lone-pairs).

.

4
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Orbital Plot 19
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Orbital Plot 20
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Orbital Plot 21
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Orbital Plot 22
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Orbital Plot 25
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Dipole Moment

The dipole moment ~f nitromethane was calculated to bé 1.45
au (3.696 Debye) using the 57 function set. No effort was made to
determine correlation effects on this value. Current work by

Beck 21 on methanol (CH_OH) indicates that correlation effects on

3
the dipole moment for that molecule are small. The experimental
value is given by Tannenbaun 61 as 3.46 * 0.2 D. The calculated

result is in good agreemeﬁt with experiment indicating the charge
distribution within the }MMO's of the 57 function set give a

reasonable representation of the nitromethane molecule.

Oscillator Strength

The oscillator strength (f) is a measure of the transition

probability between two states. The f value is given by:

2
fab = 2/3 (Eb - Ea)*|<a|r|b>[ (Ref.24, pagg 102) (4.1)

Where Eb and Ea are the energies of the states of interest and the
matrix element is referred to as the transition moment.

The calculation of f values is difficult because highly
accurate wavefunctions are necessary to get reasonable agreement

with experiment. It is even quite difficult to measure f values




)

C

89

experimentally in molecular systems. Part of the problem lies in
the fact that the radiation the molecule in the solid actually
sees is modified somewhat by the medium through which it travels.
Corrections involving the index of refraction and dielectric
constants of the bulk material are required in order to interpret
results. The mediun. also has an effect on the molecule of
interest (see Fowler, reference 74, for more details).

Another problem in the calculatéon of f values is a result orf
the ‘Born-Oppenheimer approximation. The f value is proportional

to the transition moment:
f c <Y|Lr|Y¥'> (4.2)

where ¥ is the total (electron + nucleus) wavefunction for the
ground state and ¥' represents the excited state. The Born-

Opperheimer approximation separates nuclear and electronic motion:

Y|LT|Y'> - <¥ .

elynuc

LEELY )Y e (4.3)

The separacion of the wavefunctior allows for the approxinmate

calculation of the electronic portion and it is the electronic

part of the transition moment,

Del(R) = <?el;:r1?'el> (4.4)
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which is calculated. Schaefer 24 shows that this can vary widely
with internuclear separation. Therefore, for accurate f values,
it is also necessary to calculate vibrational wavefunctions and

their effects on De i.e.,

l;

¥ L RID I (R, ; (4.5)

Beck and Nicolaides 32 show that the approximation used for
the transition moment (Dei) can vary.from 10% to factors of 10 and
that correlated wavefunctions yield much better resplts. There
are also computational problems of non-orthonormality effects
between ground state and excited state wavefunctions and the
calculation of transition moments. However, these effects have
recently been accounted for by D.R. Beck in the codes used to
calculate f values.

The transition moment pdrtion of £, where 'a' and 'b‘
represent the RHF ground state and excited state wavefunctionc
{Hartree-Fock) discussed previously, was calculated to be 2.8 for
nitromethane. The difference in energy between these states at
the RHF level w.s 0.06684 au (1.87 eV). Combining all terms
vields thé f value of 0.125 for nitromethane. It should be
emphasized again that this could be off by a factor of up to 10
{more likely to be around a factor of: 2 (Beck 21)).

The interpretation of this value in terms of classifying the

strength of the transition is a difficult one. In comparing to
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atomic systems, it appears that a value of 0.125 may be considered
to represent a moderate transition. For example, measured f
values for several transitions in nitrogen range from 0.093 to
0.350 (Ref. 24, page 105) where 0.350 would represent a strong
transition. It appears that the traqsition studied here for
nitromethane is not particularly strong and may, in fact, be very
weak if errors due to wavefunction inaccuracy and the Born-

Oppenheimer approximation are accounted for.
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CH3 and N02 Studies

During the course of investigation of the CH3N02 molecule it

was of some interest to study the CH_, and NO, fragments

3 2

individually. 1In deing so, some investigation into the energy of
these two systems occurred as well aé the implementation of the
counterpoise (CP) method to aid in convergence as well as to be
used to compare the two systems with and without pseudopotentials.
Also, the C-N bond energy‘in‘the ground state was determined.
Another hope here was that combining the UHF ocutput of the

separate systems into a single UNF input would result in-improved

spin for the nitromethane molecule.

Binding Energy of the CH3 and N02 Fragments
Two different approaches were employed to investigate the
energy associated with the C-N bond (rragmentation inte CH3 and
N02 groups}. First, this energy was calculated for the free

molecule and then it was calculated in the presence of a +1 or -1

au charge, situated at the location a neighbbr nitrogen or caroon
atom would have in the crystal. This step was suggested by A.B
Kunz to see what effect ions moving in:o vacancies in the lattice
would have on the strength of this bond., The CP method was used

for all calculations. It should be recalled that, in this mertiicd,

one calculates the energy of a fragment in the presence of the
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functions of the other fragment, these functions being situated at
thé location they would have in the whole molecule, but without
assoclated charges. The analogous calculation is done for ‘the
second fragment. The sum of the energies of these two fragments
subtracted from the energy of the molecule, gives the energy
required to break the bond.

Tables 4.10 and 4.11 summarize these calculations. The first
calculations done, using the 81 funcfion set and MBPT, indicated a

value of 82.8 Xcal/mole for fhis bocnd energy (multiply hy/moiécule

.

. 6o
by 627.07 to get Kcal/mole). Work done by Corey and Firestone >«

show a number of possible ways in which the molecule may fragment..
They indicate that irradiation of gaseous or liquid nitromethane
with photons of wavelength 253.7 nm results in C-N bond breakage.
This is equivalent to absorption of 112.8 Kcal/mole. Their work
suggests the molecule first makes a fransition to an excited state
and then the bond breaks. The value of 82.8 Kcal/mole is not in
good ;greement with experiment. A better calculation of ground
state .correlation energy may help to bring the calculated value
close; to experiment. Also, rotational and vibrational
excitations as well as electronic transitions could be considared.
Results of the effect of the presence of a single charge near

the molecule are shown in Table 4.11, The motivation behind this

study was the possibility of changing bond strength within the

molecule if a nearby lattice site was occupied by a free ion. Th=

C-N bond was of primary interest. Calculations were performed




Table 4.10
gﬁs and ggzz HF-!BPT CP Results 81 Function
?{_Enffgz ihy) MBPT Total
CH3 -39.560296 ~0.125111 -39.685406
N02 -204.016393 ~0.488029 ~-204.504422
CH3NO2 -243,723297 -0.598611 -244.321905

AE {CH3N02 - (CH3 + NOQ)} 0.13208 hy/molecule = 82.8 Kcal/mole

Experiment = 112.8 Kcal/mole
Comparison with other work is given in the following section of text.

Table 4.11

Effects of Ion (*1lzu) on C-N Bond Strength: 57 Fns, Crystal Geon.

Ch Loc CH3N02 CH3(CP) NO2(CP) Bond Energy ,hy

0] ~243.6974 —39.5491 -204.0538 -0.0946 (-2.57eV)
-1 -11103N ~243.7100 -39.5491 "=204.0603+ch -0.1007 (-2.74eV)
+1 -11103N -243.6910 -39.5491 —20{.0493+ch -0.0927 (~-2.52eV)
-1 -1%103C ~243.7036 -39.5504+ch -204.0538 -0.0994 (-2.71eV)
+1 =-11103C -243.6933 -39.5495+ch -204.0538 -0.0901 (-2.45eV)
-1_L C}N ~243,7048 -39.5491 -204.0538 -0.1020 (-2.77eY)
+1_L C-N -243.6933 -39.5491 -204.N0538 -0.0905 (-2.46eV)

Ch=charge(au), loc=location of the charge (see Appendix A for
notation), CP=counterpoise, +ch=energy calculated as charge stayed
with fragment, |=perpendicular to the C-N hond length midpoint of
the main molecule, about 8 au towards -.1103.

Coordinates: -11103N=(-1.7023,-0.0854,7.4013)au (x,y,2)
-11103C=(-2.5127,-1.68703,9.6919)Aau
] =(-1.3320,-0.8750,8.5450)au
Note: The main molecule's nitrogen is located at (0,0,0)
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using a single molecule in its crystal geometry and a *1 au charge
located at a position in the lattice where a nitrogen or carbon
would exist in a nearby molecule. 'In particular, the main.
molecule used was (000 01) and the charge was placed at the
nitrogen or carbon position in molecule (-111 03). See Appendix A
for an explanation of this notation. The charge was also placed
at a position perpendicular to the C-N bond of (000 01l) at a
distance and in the directioﬁ of (-111 03). The bond energy was
defined to be the difference between the energy of the molecule
and the sum of the counterpoised fragments. The additional charge
was assumed to be a part of a fragﬁent (either CH3 or NOZ) for
counterpoised runs except in the perpendicular case where the
charge was assumed to separate independently of'the other
fragments. The bond energy was determined to be 2.57 eV for the
free moleculé {no correlation). A gather large strengthening
occurred by placing the -1 charge at (-111 03)N, (-111 03)C and at
the ﬁerpendicular location (increases of about 0.2 eV). The +1
charge had a tendency to wealen the bond, especially if located at
(-111'03)C or at the perpendicular position (by about 0.2 eV). It
should be noted that the distance from the charge locations to the«
center of the nitromethane molecule was about 8 au. The effects
of charge rearrangement on the central molecule due to the
presence of a single charge are rather pronounced when considering

the distance involved.
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These calculations indicate that free ions within the crystal

lattice may have a substantial effect on the C-ll bond strength of

nitromethane.

»

CH, and NOZ

The energy of the C}I3 group ét the UHF and MBPT level was
-39.560296 hy which is in.good a,reement with Pople’s 63 exact
value of -39.57268 hy. No effort was made in this work to improve
upon this value. The spin for this fragment was 0.5, a correct
value for the one unpaired electron in the systen.

A bit more work was done on the 2A1 ground state of NOZ'
Handy 64 and co-workers, using a (4s,2p,1d) set and the
configuration interaction method (CI) found an energy of -
204.42460 (~204.06816 SCF) where they froze the 5 lowest MO's. A
56 fuhction set (4s,2p,1d) was developed in this work, also
freezing the 5 lowest MO's and using 2nd order MBPT. A total
energy of -204.47773 (-204.082902 SCF) was calculated, about
0.0532 Hy (1.45 aV) below Handy. The s3in was 0.5, correct for
the single unpaired electron in this system. The geouetry useaed

was that given by Bird 65 et.al.

It is interesting to note that upon combining counterpoised
CH3 and NOZ outputs, both of which vield correct spin, th2 spin at

the UHF level for the entire molecule is still incorrect. This
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indicates that it may not be possible té get a correct spin for
this system without using more than one configuration. Kleier and
Lipton 1 make reference to this problem in obtaining a ground
state singlet using GVB descriptions where they claim these states
cannot be described at the RHF level. No mention is made of

problens at the UHF level.

Comparison of Pseudopotential to All Electron Fragments®

Since pseudopotentials were té be used in place of core
electrons on neighbor molecules in the calculations involving
larger groups of molecules, it was useful to develop a basis for
the molecule which would be small, use pseudopotentials and still
maintain somé semblance of the orbital characteristics obtained
from the 81 function set. It was practical and convenient to work

on the individual fragments (CH, and NOZ) since good spin couid be

3
obtained at the UIF level for both. Eventually, a 35 function set
plus péeudopotentials was developed for the neighbors. A (2s5,Ip)
set for each of C,N, 01 and 02 (8 functions on each) and a (1s)

set for each hydrogen was chosen. Some experimentation had been
done with even smaller sets but it was clear they were not
adequate to properly describe the molecule. Of the 35 functions,
11 were on the CH3 group and 24 on the NOZ group.

Table 4.12 shows, for a given set of exponents, the orbital
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energies and major contributors for those MOs which exist in both
thg CH, 81 function, CP set and the"CH3 11 function set. Of
course the‘total energy of the CP group is much lower since there
are more functions and the core electrons are removed from the
small set. There is about a 0.1 eV difference in orbital
eigenvalues between the CP and all electron cases for CH3 (This is
also true for the NO2 fragment). The CP values are forced lower
in value. Ideally, one would hope the pseudopotentials which
replace the core electrons would have minimal effect on both the
character and eigenvalues of the outer orbitals. This could
indicate a need for work to be done on pseudopotentials which mors
correctly describe the inner orbitals of molecules. However, the
table shows reasonable agreement in characteristics between the
two (also in orbital energy). The spin for both cases was 0.5,
The 1t MO for the 11 function set borre;ponds to the 2t MO for the
81 function set since core orbitalé‘(lt and 1:) are removed from
the smaller set. Table 4.13 shows the same information for the
N02 spin up space fragment. Here, the 41t orbital for the large
set carresponds to the 1t orbital in the small set. The CH3 data

compares quite t1icely, The N02 data”shows some ordering problers,
especially in the 5 middle orbitals (3t through 71r). There are
also some discrepancies in the character of at least 2 of these.
Note that 3, 4 and 7 for the small set are very similar to 10, 9

and 8 respectively cf the larger set. Orbitals 5 and 6 for the

small set have no clear counterpart in the large set. The spin in

~
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both cases is correct and the Mulliken populations are very
reasonable. These discrepancies are probably due to the minimal
basis set used. N02 is an active fragment which is probably
difficult to describe using a small number of functions.
Nevertheless, since the outer orbitals looked reasonable and the

expense of including nore functions on the NO, group would be

2
prohibitive, computationally, the small set was deemed acceptable.
Upon ccnbining the two fragments baéis sets with pseudopotentials,
exp6nent variation resulted in a UHF output wihich, in orbital
character, compared favorably with the 81 function ;utput for
nitromethane., In particular, the érﬁitals which were purely z-

type were ordered identically to the corresponding z orbitals in

the output of the large set.
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Table 4.12
Orbital Cowparicon: CH CP) vs CH, (11}

MO(CP} MO(11) Char.(CP) Energy (hy) Char.(11) Energy (hy)
21 11 csicx  -0.e45 cs+Cx  -0.837

31 21 Cy ~0.579 Cz -0.668

4 1 31 Cz -0.579 Cy -0.668

51 4 1 Cx -0.387 Cs+Cx ~-0.494

2 1 1 Cs+Cx .~-0.855 Cs+Cx -0.798

3 2 4 Cy -0.565 Cy -0.654

4 13 31 Cz -0.565 Cz -0.654
Total Energy -39.56 -6.44

Spin 0.5 0.5
CP=counterpoised 81 function set.

11=11 function set plus pseudopotentials (core electrons removed)

H2

H3

BCH1

BCH2

BCH3

Total

0.82

0.82

0.82

0.08

0.08

11 function set has no bond functions.

11
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Table 4.13
Orbital Comparison: ygz (CP) vs ggz {24) (Spin up only)
MO(CP) MO(24) Char. (CP) Energy (hy) Char.(24) Energy (hy)
41 1t 0s,0y,Ns -1.681 Os,0vy,Ns -1.726
5t 21 Os,Ny -1.499 Os, Ny ~-1.571
61 3t Os,Ns -0.970 Ox, Nx -1.130
71 41 Ny -0.835 0z, Nz ~1.083
8t 51 Os,0x,Ny —0.802: 0x,0y -0.887
o1 61 0z, Nz  -0.766 Os,0x, Oy -0.837
11 71 0x -0.596 .Os,0y,ly - -0.3358
11 81 0z -0.528 oz  _0.808
121 91 ox, Nx -0.503  Ox,Ns,Nx ~0.759
Total Energy -204.083902 -36.619178
Spin 0.51 0.51
Mulpops Ccp . 24
T 6.35 s.64
01 8.15 6.18
* 02 8.15 6.18
BNO1 0.17
BNO2 0.17
Total Charge ' 22.99 17.0

NO2 has 23 electron (6 core electrons).
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Chapter 5
Nitromethane Dimer Calculations *

This section discusses ab initio calculations performed on
dimers of nitromethane oriented in the relative positions they
would have in the crystal configuration. Crystallographic work on

66 and

solid nitromethane was done brimaril§ by Trewvino
associates. Appendi»x A describes the general method used to
transform crystallographic coordinates into the cob}dinates of the
molecules in the crystal. The geometry of a single molecule
within the crystal differs slightly from that of the free
molecule, The primary reason for working on dimers initially was
to:

a) show that convergencevcould.be obtained for the dimer
system. There is no reported work at all on interactions
of more than cne nitrcmethane molecule.

b) develop a basis set that would be mnanageable and

| adaptable for larger groups of molecules.

¢} observe the excited state detersined in the gas
phase calculation to see what effect (if any) the
presence of one near neighbor might have.

Since the intermolecular system is'assumed to be weakly

67 68

interacting (see Trevino and Pastine ), the presence cf thi=

near neighbor is not expected to have much effect on the exciton
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of the other molecule in the dimer.

The study of dimers followed a path which would lead up to
the study of larger groups of molecules. A minimal cluster of
nitromethane molecules would contain a central molecule su;rounded
by 8 near neighbors (see Figure 5.1 and Appendix A for the
geometry involved). One can view th;s cluster as being comprised
of essentially 8 dimers, the central molecule plus each neighbor.
It was desirable to use a basis set for the dimer which, when
applied to the larger groups would still be reasonably manageable.
An gi function set oﬁ each molecule would certainly not be
feasible from the computational point of View. Tﬁegefore it was
decided to use the 57 function basis set for the central site.
This set yields a good description of the molecule as shown
préviously in this thesis. A reduction of this set to 35
functions was done and applied to the neighbors (see the preceding
section). This set evolved after considering many different basis
set c?ntractions. Also, in all calculgtions involving dimefs of
larger groups of molecules, the core electrons on the neighbors
were removed and replaced with pscudopotentials develcoped by
Topiol 69 {See Appendix C for basis sets and pseudopotential
parameters used in these calculations). Christopher Woodward's 70
extensive tests indicate that the use of pseudopotentials in place
of core electrons give excellent agreement with experiment when

investigating excited states in metallic clusters. The use of

pseudopatentials reduces the numb2r of basis functions required in
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the system since core electrons no longer exist. The argument
here is that only valence electrons are important in determining
the chemical characteristics of the system as core electrons are
bound too tightly to the nucleus. Pseudopotentials represent the
effects of core electrons on outer shells of electrons.
A brief summary of the dimer basis set follows.
i) 57 function set applied to what would be the central
molecule in a cluster (designated CEN). The 57 functions
consist of (3s),[?,2(1] and (2p),[4,1] on each cf 01, 02,
N and C, (25’,[4,1] on each hydrogen, and one s and one p
bend function on each of the'bondé N-01, N-02, !N~C and
finally, one s function on each C-H bond. (a total of

57 functions and 127 Gaussian primitives.

2) 35 function set applied to any molecule which would be
a near neighbor in the‘clustér, designated NEI1 through

. _NEIa. This set consists of a (2s),{1,1) and (2p).,(1,1]
on each of 01, 02, N and C and (1s),[1) on each hydrogen,
with no bond functions for a total of 35 functions and
35 Gaussian primitives. The certral molecule and any
near neighbor would constitute a dimer (e.g., CEN-NEIl=

dimer 1 = D1, etc.)

3) Any neighbor in a dimer (or larger group) will alsc have

pseudopotentials to replace the core electrons. Since
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a single nitromethane molecule has 32 electrons, an all-
electron dimer would have 64‘electrons. Removing the two
1s ‘electrons from 01, 02, N.and C (8 electrons all
together) reduces the total number to 56 electrons in a

dimer (32 on CEN and 24 on any NEI).

Figufe $.1 is a schematic diagrém of the nitromethane
cluster, the geometry being derived from Trevino's 66 work
(Appendix A). The central molecule (CEN) is shown surrounded by 8
near neighbors. There is:eséentially no symmetry ip this cluster
to aid in reducing'the number of integrals required by the UHF
method. Based on the basis sets mentioned above, each dimer has
92 functions (57+35) and 162 primitive Gaussians (127+35). This
results in a total number of two electron integrals equal to
8822323. In;tially, a very limited amount of symmetry was invol:ed
for CEN, a coordinate transformation placing the x-axis along the
C-N bond and the NO2 group in the x-y plane (same orientation as
the f;ee molecule~-see Figure 4.1). This reduced the total number
of unique integrals to 83170390, not a great reduction. Much later
it waé realized that the oxygens don't see quite the sane
electrostatic potential and the potential energy integrals
involving them were slightly incorrect. It may be useful to
invoke a symmetry test in the POLYATOM integrals code at the
potential energy stage (VINTS) to catch this problem.

A major gain was made, however, in the realization that a
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great deal of the two electron (2e) integrals were extremely small

(<107% in absolute value). A tolerance of 10~°

in absolute value
was placed bn the two electronvintegrals. This resulted iq a
reduction for D1 from 8822323 inteérals to 2453781. This value
varies with the dimer referred to since none of the 8 dimers are
geometrically equivalent. The FPS164/MAX takes approximately 6
hours to calculate the 8.8 willion 2e integrals. This reduces to
about 1.7 hours when they are scrubbad at 10 °. Using
counterpoised input data fron the 57 and 35 function sets,
relatively rapid convergence.occurred for D1. In 37 iteratiéns
the energy converged to -290.5625804 Hy for the unscrubbed case.
Again, there was a problem with the spin as a value of $=0.43
wascalculated for an S=0 systém. The Mulliken populations were
very reasonable (see Table 5.1). The scrubbed integrals vyield
convergence in 37 iterations to a value of -290.562599 and spin of
0.43 with reasonable Mulpops. - The uﬁscrubbed case showed an
iteration time at the UHF stage of 13 minutes/iteration while the
scrubbed case toolk only 3.8 minutes/iteration. Neither case was
correlated due to the excessive ccmputation time that would be
required to do so. It should be noted that the same calculation
performed on tha VAX would take approximately 5 to 6 times longer.
As noted above, since each dimer was geometrically different, the
scrubbed integrals savings varied, as shown in Table 5.2 (the
total number of unscrubbed integrals is the same for each dimer).

. . . -6
Convergence criteria was based on an energy difference of 10 .
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Table 5.1

Mulliken Populations for Dimer 1 and Dimer 8

Compared to the Monomer ’

Center D1l (unscrub) D1 {scrub) D8(scrub) Monomer
N {CER) 6.3482 6.3487 6.3365 6.3675
01 " 8.0965 8.0962 8.1022 8.0876
02 ' 8.09650 8.0962 8.1056 8.0876
o] v 5.9775 5.9774 6.0061 5,9794
H1 " 0.8093 0.8093 0.7904 0.7945
H2 " 0.8285 0.8287 0.8139 0.7906
H3 " 0.8043 0.8043 0.80Q06 0.7945
BNO1 0.3150 0.3151 0.3154 0.3147
BNO2 " 0.3149 0.3150 0.3153 0.3147
BNC M 0.0770 0.0770 0.0771 ° 0.0761
BCH1 " 0.1305 0.1305 0.1309 0.1309
BCH2 * 0.1302 0.1302 0.1310 0.1311
BCH3 " 0.1306 0.1306 0.1306 0.1309
N (NEI) 4.6254 4.6254 4.6214

01 " 6.2519 6.2519 6.2518

o2 " 6.2455 . 6.2455 6.2658

C " 5.3438 5.3498 5.3649

H1 " 0.4926 0.4926 0.4933

H2 v 0.4859 0.4859 0.4933

H3 0.4899 ©0.4899 0.4603

- ..
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Two Llectron Integral Savings Due to 10_° Scrubbing

Dimer Total Integrals : Total Saved
1 8822323 2453781
2 " . 2483156
3 " 2122725
4 " 2179175
5 " 2217949
6 o 2164527
7 ' " 2392283
8 " 2406099
Totals 70578584 18419705

*x
Total Unigue

1999469
2028844
1668423
1724863
1763637
1710215
1937971

1951787

14785209

* Unique integrals apply only when symmetry operations are allowed
on CEN. As noted in the text, these operations introduce slight
errors in the potential energy integrals involving the oxygen

functions. . ’
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There is nearly a 4-fold savings in total integrals when scrubbing
is implemented.

' Table:5.1 shows there is little difference between the

B .

monomer and Dl's CEN Mulpops, indicating little charge
rearrangement upon dimerization in this geometry and therefore a
relatively weakly interacting system. Dimer 8 Mulpops are also
shown in Table 5.1. The oxygen and carbon atoms have made slight
gains in charge at the expense of nitrogen and hydrogens. This is
due‘to the difference in orientation of the two molecules in the
two different dimers. .

Table 5.3 is a suamary of the dimer characteristics. There
are 28 spin up and 28 spin down electrons, 8 removed by
pseudopotentials. The molecular orbitals showed minor CEN-NEI
interactions. They separated into primarily CEN or NEI centered
MOs. Of course, there was adequate contribution within any
orbital from both molecules to indiéétg they were weakly
interacting. Table 5.3 also shows the energy and character of thne
top 5 orbitals of the dimer. The z-type orbitals remain with the
central mclecule but not with the neighbor since the coordinafe
system was oriented to favor the central site in this respect.

The relatively smnall error induced by the use of symmetry on the
central site did not warrant recalculation of this systems energy.
The largest error in any VINTS integral was 1.63 eV. While this

may seém like a large number, it must be remembered that the

symmetry problem involved only the oxygen atomic orbitals and of
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Results for Dimer 1 Grownd State

Molecules (000 012 and {-111 03)

T ——————— .
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92 Functions, 86 Electrons and Pseudopotentials

Unscrubbed Integrals

————

Total integrals

Energy (hy)

Convergence

Jterations

Minutes/Iter.

Integrals Calc time

Spin

ORB

24
25

26

27

28

- e -

Ox,0y,Nx,Cx
Z-type

Ox,0v,02,N,
Cz,CEN H2s

O»,0y,Nz,Cz2

0:¢,0y,0z

£822323

~290.562404

0.65 X 107 °
3i

13.8

6 hours

.33

Scrubbed Integrals

- ——— v, v fae o —_—

2453781
-290.562599
0.66 X 10-°

37
3.8
1.8 hours

0.33

Top 5 Orbitals

—— o -

-0.463247
~0.434348

~0.399734

-0.396385

-0.370488

Char
CEN Ox,0y,Nx,Cx
CEN Z~type

NEI Ox,0vy,0z,Nz,
Cz,CEN H2s

NEI Ox,0y,0z,Cz

NETI 0Ox,0y,02

Energy
~0.463264
~0.434359

~-0.229749

-0.396331

~0.370494
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these, errors this large occurred in very few. Also, due to the
means 1in which these ao's are combined at the UHF stage to create
the:Haniltoﬁian matrix elements, these errors are not expected to
contribute to a significant error iﬁ the final result. ’

Table 5.2 shows the approximation of scrubbing the integrals
at 10_6 tolerance is an excellent one. It also shows the distinct
separation of neighbor orbitals from central ones and also the
large number of nearly degenerate orbitals. In this orientation
the most wealilly bound MO is primarily centered on the neighbor.
Note, the system was not geoﬁetry optimized since the primar; goal
here is to worl: wifhin the ¢crystal geometry.

Each of the other dimers in the cluster were also briefly
studied. D8 was also brought to full convergence with its
scrubbed integrals. Its eneféy was =-290.565751, spin=0.42. The
orbital ordering was identical to D1 except 16 and 15 were
reversed (they are nearly degengratéi. Dimers 2 through 7,
althoygh not brought to convergence, after 10 iterations exhibit
good Mulpops and orbital eigenvalues (see Table 5.4). It is
interesting to note that although none of the dimers is
geometrically equivalent, they all appear to behave in a very
similar manner. This is an indication that this energetic system

is a weakly interacting one.
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Table 5.4

Ground State Energy After 10 Iterations, Di - D8

»

Dimer Its., Con. | Energy (hy) Mulpops
1 | 37 converged -290.562404 OK
2 10, 1073 ~290.555154 oK
3 10, 1072 ' ~200.556447 OK
4 10, 107% :290.567864 OK
5 10, 107% -290.579741 0)'4
6 10, 1071 -290.566704 . 0) 4
7 10, 107°% -290.566730 oX
8 49 converged -290.565751 OK

Note: Under 'Mulpops', OK implies that the Mulliken populations
looked reasonable, i.e., there were noc charge imbalances with
respect to the monomer case.

* Its. = Iterations, Con. = convergence. 10—6 was considered to
be converged.

*
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Molecular Orbital Plots for the Nitromethane Diner
in the Crystal Configuration
Orbitals 25 and 28
The following three_plots show 2 views of D1 MO 25 up and one

view of D1 MO 28 up, M025 is localized on CEN, atoms 01;.02, N
and € and is mw anti~bonding of bl symmetry. Plot 27 (xz) shows
the nitrogen and carbon lobe§. The seven diamonds to the right
are the atoms of NEI1l. Note some sharing of charge between CEN
nitrogen and NEIl oxygen. The contours are at intervals of 0.005
au resulting in an extremely dense plot near the atoms but
necessary to show the slight interaction between molecules. The
neighbor in these plots is oriented in such a way as to look

skewed, i.e., the NO2 groun points in, to the left and slightly

down in the xz plot. The yz plot shows the oxygen lobes of Ciil.
Also, the lower lobe shows some nitrogen contribution. This view
shows a little more clearly how the weak bonding occurs between
the two molecules. Plot 29 shows the outermost orbital (28) of

the dimer, which is heavily localized on the oxygens of the
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neighbor. There is some charge shown distributed near the
nitrogen and oxygens of the central site but a finer contour would
be needed to show the interaction more graphically. The orpitals

of the dimer all had similar character, heavy localization on one

or the other molecule and weak interaction with the neighbor.
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Orbital Plot 27
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D1 Excited State

An excited state of the dimer was determined by removal of
the 28:¢ orbital and the addition of 29t, The input guess for this
orbital was that it be located on thé central site and have z
character. An overlap criteria wias used which, after each
iteration, determined which éf the HF orbitals would be 29rt.

After 40 iterations, convergence to nearly 10-5 in energy
difference was attained. The energy of the exciteé dimer was -
290.493572 Hy. The top most orbitél was localized on the central
site and exhibited the same n* character as the monomer excited
state. The system spin was calculated to be S=1, indicating
convergence to a triplett. The difference in energy with respect
to the ground state dimer is Q.068832 Hy (1.9 eV), close to the
value recorded at the HF stage (1.8 eV) for the monomer. The
cent;al molecule had a total of 4 z-type orbitals in the spin np
space for the excited state and 2 in the spin down space, the sanre
as fo; the monomer. In the dimer these orbitals were numbers 29,

21, 19 and 13 with symmetry bl’ b a, and bi respectively. The

1 ’
monomer z-type orbitals were 17, 14, 12 and 9 with the same

relative symmetry as in the dimer. A good comparison can be made
between monomer orbital 17 and dimer orbital 29 by looking at
orbital plots 16 and 17 (wmonomer 17 up, %2z and yz) and crbital

-

plots 30 and 31 (dimer 29 up, %z and yz) shown on the following
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pages. In both cases, the xz plots show major nitrogen
contribution and some carbon contribution and the yz plots show
nitrogen and oxygen contributioﬁs at the yz plane. The app?rent
difference in density of the plots is due to the fact that the
dimer plots have contours of 0.005 au while the monomer plots have
contours of 0.0lau. Since the energy difference from ground to
excited state is essentially the same at the Hartree~Fock level
for both the monomer and dimer and the relative ordering and
symmetries are also the same, it appears the presence of a single
neighbor molecule oriented in the crystal configurqtion has little
effect on the evcited state of the céntrai molecule. The excited
orbital remains heavily localized on the central site. It is this

type of phenomena which is amenable to study by cluster methads.
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Chapter 6
Preliminary Trimer and Cluster Calculations

The computational procedures outlined in Chapter 3 have
recently undergone preliminary testing to determine if:

a.) the fortran codes aﬁd complﬁcated file structure

and bookkeeping reguired was working properly.
b.) the approximations used (scrubbing of inteérals and
- neglect of n-n interactiohs) were reasonable in their
applications to the nitromethane system.

Initial attempts to converge the cluster of 9 molecules were
unsuccessful. The general tendency in these rﬁns was to cause a
slight charge imbalance in the oxygen atoms of the central
molecﬁle which resulted in a convergence hang-up between two
différent energy values on alternate iterations. There were about
15 X 106 integrals used for this cluster (reduced from 1.6 X 10g
by neélect of n-n interactions and scrubbing at 10—6 tolerance).
Care was taken o ensure a correct potential energy calculation ac
the central site. The expected energy. for the cluster is on the
order of -619 hy based on the energy of a single dimer (-290 hy of
which -47 hy comes from the neighbor and -243 comes from the

central molecule: (8 X -47) + (-243) =-618). The HF code took

about 1 hour per iteration for the cluster. Dimer orbital output
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was used as the input guess for the cluster under the assumption
that all 8 dimers acted in the same manner in terms of orbital
structure and energy {(This was‘showﬁ to be the case in Chapter 5).

Since the dimers converged quite well, it was expected that
the cluster would also and that one would see a weakly interacting
system with orbitals characteristic of either the central molecule
or a neighbor with essentially the same types of Mulliken
populations an the central site as in the dimer. The charge
imbalance which occurred on the oxygen atoms (shown to degrade
after each iteration) was not expected. A careful theck o} the
code to see if all the labels and infegrals expected to be
available were actually present indicated the codes to be
performing properly. The problem was then scaled down to a
calculation of trimer characteristics to see if the convergence
problem could be pinpointed. Thisvalso failed to converge. The
.tendency here was to attain a very reasonable value for the energy
after one iteration (expected to be about -337 hy), show
inclinations to converge and then again become stuck between two
energf values. The chargs imbalance on the oxygens again showed
up and appeared to be the cause of this problem. Also, a
calculation involving all interactions (including n-n) but
scrubbed at lo_s.tolerance and run uéing the original file
structure with a code which was known to function proper;y lead to
the same type of results.

A final attempt was made to develop reasonable trimer input
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by stripping the central molecule of all but core electrons (32-8
= 24 electrons removed), and performing a counterpoised run in the
presence of both sets of neighbor functions. The trimer being
investigated contained the central molecule plus neighbors
{-11103) and {C1103); see Figure 5.1). This also failed to
converge. This is extremely puzzling. The core oxygens refuse to
settle into a stable orientation. The tendency in these runs is
to show slight convergence aﬁd then to malite a circuitous route
around where convergence should be. The current effort is aimed
towards getting this ionized central molecule to converge with the
aim of creating better input for the triner.

It should be mentioned that a trimer of lithium atoms run
under a geometry similar to that of the nitromethane trimer and
spaced such that the overlap of functions between atoms was
similar to tgat between molecules of the nitromethane trimer,
resulted in a converged system when run under both the original
compﬁ%ational method employing all interactions and the new method
utilizing the new labels and integrals file structures, scrubbing
and néglecting n~n interactions. This was an indication that the

codes worked pruperly since with the small basis set applied, ali

the integrals and corresponding labels could be monitored to be
sure the appropriate ones in the limit of the approximation were
all there. The lithium runs also indiéate that the'approximations
used show some promise. It should be noted, however, that a very

small basis set was used for the Li trimer (6 fully contracted
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functionsf and that there are only 9 electrons (and 9 protons) in
this system. The nitromethane trimer has 127 functions and 80
electrons (96 total electrons minus 16 core electrons on the
neighbors). The cluster has 337 functions and 224 electrons with
the core electrons removed from the neighbor moulecules. So direct
comparison betlween these two systems should be made with caution.
There is a great deal of electrostatic potential involved at the
central site of the cluster and this'may have an affect on the

delicate charge balance of the NO, group there. There may be a

2

very fine region of stability in terms of N02

when working with the limited cluster of 9 molecules.

electron population

The trimer and cluster work is quite impertant. If the
convergence problems can be pinpointed and overcome, a lot will be
learned about the way in which systems of this type must be
handled from'the computational vieﬁppint. If the cluster can be
converged and reasonable resulfs extracted under the given
apprdximatiouns, the ability to perfor:m ab initio calculatione on
systems of large molecules will have been demonstrated. It is
important that an effort be continued to study convergence

problems in sysvems of this type.
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Chapter 7
Conclusions »

Hartree-Fock and many-body perturbation theory have been used
to investigate the electronic structure of the energetic molecule,
nitromethane. Both ground and excited states have been studied in
the free molecule (wonomer) és well as in a dimer configuration.

A preliminary investigaticn ﬁas been done on *he molecule in’
trimer (3 molecnles; and cluster (9 molecules) configurations in
the crystal geometry. In order to make these investigatiohs
feasible, new computer codes (as well as modifications to existing
Hartree-Fock codes) were necessary.

Studies of the monomer have resulted in the lowest reported
gfound state energy (—244.3219 hy) and the first correlated result
using extended basis sets and many-body perturbation theory for
the fowest lying excited state (3.47 eV above the ground state).
The outermost orbital of the ground state was found to be a pi-

type anti-bonding orbital of a, symmetry and the second orbital in

2

to be a sigma—type bonding orbital of a, symmetry. This is in

1
contradiction to experimental results which have these reversed.
All results have been disputed due to the close energy spacing

between these orbitals. It may be neceésary to use a correlated

wave function to determine the proper order of these orbitals

since they are so closely spaced in energy (about 0.5 eV).
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Calculatiogs of first and second ionization potentials vyield
the best reported results so far when compared to experiment.

The correlated excited state shows its outermost orbiéal to
be a pi-type bonding orbital of b1 symntetry. Other recent work
using small basis sets places this state either higher in energy
by about 1.3 eV than reported here o% lJower by about 0.5 eV. The
exclted state converged to in this work was a triplet. The
singlet-triplet splitting for this state (singlet above triplet)
was“calculated to be‘appfoxihately 0.4 eV, results which weré
consistent using both a small and ;arge basis set..

The calculation of nitromethane's dipole moment resulted in- .
an uncorrelated value of 3.6%6 Debye, which compares weil to
e#periment {3.46 £ .2 D).

The electronic transition moment for the ground to first
excited state was calculated. Based on this value (2.8) an
oscillator strength (f value) of 0.125.was calculated for this

transition. Arguments are presented to indicate this to represent

a moderate to weak transition. This transition has not yet been

observed experimentally.

An investigation was done on both the CH, and N02 fragments

3
of the molecule. A calculation of the C-N bond energy resulted in

a value which was low compared to experiment (82.8 Kcal/mole vs
112.8 Kcal/mole for experiment).
An important analysis was made concerning the effect on the

C~-N bond strength due to a free charge near the nitromethane
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molecule. A crystal configuration was used where the main
moiecule was located at the central position of the proposed
cluster and the single +1 or -1 aufcharge was located at vdrious
positions within what would normally be near-neighbor (-11103).
It was found that the C-N bond strength of the central molecule
could change by up to 0.2 eV depending on the location and sign of
the single charge. The jmplications are that withig the crystal,
it may be possible for free ions located at vacancies to cause
weakening of the C-N bond of;other molecules resulting in a -
possibility of bond scissioning and release of enérgy into the
crystal.

Calculations on the N02 group resulted in the laowest reported
energy for that molecule. It was also demonstrated that the use
of atomic pseudopotentials gave reésonable descriptions of the CH

3

and N02 fragments.

This thesis also reports the first known computational work

.
~

on gfoups of more than one nitromethane molecule. It was shown
that it is possible to gain convergence for a dimer in the crystal
confiéuration. It was also demonstrated that a large reduction it
the size pf the problem could be attained by scrubbing the
integrals over atomic functions withcut a very great loss in
accuracy; The dimer system was demonstrated to be weakly
interacting in that molecular orhitals are well deiiﬁeated vith

respect to central or neighbor domination.

The first excited state of the dimer was also studied. The
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excited orbital was of b1 symnetry as in the ground state with

possibly a slightly greater contribution from the carbon atom than

in the ground state. This orbital was very well localized,on the

central molecule with anly a weak interaction with the neighbor.

A methodology was developed for studying much larger groups

of molecules. Scrubbing of integrals (highly successful for the

dimer) as well as the neglect of neighbor-neighbor interactions

are proposed as initial steps to rediice the problem size while

hopgng to gain reasonable physical results for study of the

cluster. Problems in gaining convergence for the g¢luster and a

trimer configuration have currently refocused the effort on the

(?\ study of convergence criteria for energetic systems of this tybe.

The approximations mentioned above were shown to be highly

successful in studying a lithium trimer. Extensive code

modification and development was necessary to attempt the cluster

calculation.

The initial proposal for this study, the investigation of

excited states in nitromethane and the effect of the environment

on them, has been partially successfully completed (dimer work]).

Many other successes were attained in t! 2 mean time as noted

above.

ae.

Suggestions for continued work are:
a.) an investigation of the presence of free charges on
excited states of nitromcthane and, and once the cluste

is successfully completed, the same sort of study where
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c.)
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a neighbor is replaced by a free charge.

work on molecular pseudopotentials to attain better
descriptions of outef orbitals when core electrops

are removed,

most importantly, to gain convergence of the trimer

and cluster. Success here. will demonstrate that the
methodology developed can be applied to systems of
relatively large, weakly iﬁteracting molecules. Also,
much can be learned about the subtleties of convergence

problems in energetic systems.
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Appendix A
Calculation of Cartesian Coordinates From Crystallographic Data
24

This appendix is intended as a tutorial on how to determine
the cartesian coordinates of any molecule in a crystal given the
fractional coordinates of the atoms of one molecule, data which is
derived from diffraction studies. Much of what follows evolved
from private communication.with S.F. Trevino, who along with E.
Prince and C.R. Hubbard hés done the primary work on the structure
of solid nitromethane. .

.

The crystallographic data (at T = 4.2K) was taken from
Trevino's 66 paper. Neutron diffraction data yield what are
called fractional coordinates, i.e., X, y and z coordinates of an
atom within a molecule in terms of fractions of the lengths of the
sides (a,b,c) of the unit cell. Also, a, b and ¢ are determined
from the data.

.The unit cell dimensions for soclad CHaNO2 were determined to
be:

a = 5.1832 A b = 6,2357 A c = 8.5181 A
Table Al.shows the fractional coordinates (X,Y,Z) of each atom
(C,N,01,02,D1,D2,D3) in nitromethane. The D's represent the
hydrogen atoms. The cartesian coordinates of any atom is then
simply given by the product of the fractional coordinates and the
corresponding lattice paranmeter:

®' = X*a y' = Y*b z! Z*c

1
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For example, the cartesian coordinates of carbon are given by:

x'c = 0.1330 * 5.1832 = 0.6894 A
y'c = 1.,0548 * 6.2357 = 6.5774 A
z'c = 00,3772 * 8.5181 = 3.2130 A

where X, Y and Z are from Table Al. These coordinates are with
respect to the origin of the unit éeil. All other atomic
coordinates are given in the same manner. .

Nitromethane has 4 molecules in the primitive cell. The
above procedure gives the position of one of them. The othér
three are determined by the space group symmetry of the unit cell.
Nitromethane was determined to have orthorhombic space group

symmetry, P The International Tables for X-ray

21 212¢°
: 1
Crystallography 71 give pertinent information regarding all

possible spac= groups. Page 105 of that reference pertains %o
P212121 symmetry (see Figure Al). Four transformations are shown
in this figure, representing the four molecules in the unit cell.

These transformations are given in matrix representation as:

1 0 0
K,¥,2 »===~ | O 1 0 (1)
0 0 1

L6
which corresponds to the original molecule as calculated above.
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-1 o o H

1, 5. L 2
A e LT L B I (2}

0 0 1 3

1 o 0O L

1 1 - , 2
T+ X, =~ Y., 2 o 0 -1 0 + 1 (3)

2 - 2 =

o -1 2

o}

. -1 0 °

- 1 1 1
X, -2- + Y, § - Z A 0 1 0 + 2 (4)

1

0 o] -1 3

Each transformation is used to find the coordinates of the other
atoms f{and therefore molecules) in the primitive cell.
As an example, to calculate the coordinates of the carbon atom cf

molecule 2 we do the following:

xi -1 0 0 »l %
2 - - 1

Ye = 0 1 G * Ve + 0

2 1 1

0 =

zc 0 1 zc 2
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x? -1 0 o 0.1330 3 0.3670
y2|=| o -1 of *| 10848 +| o =|-1.0548
2’ o o 1 0.3772 : 0.8772

The results on the right are the fractional coordinates, which
then have to be multiplied by the lattice parameters to give the

final cartesian coordinates of molecule 2's carbon atom.

x2 = 0.3670 * 5.1832 = 1.9022 A
y2 = -1.0548 * 6.2357 = ~6.5774 A
22 = 0.8772 * 8.5181 = 7.4721 A

Applying this transforﬁationfto the other atoms creates the
position of mmelecule 2. Molecules 3 and 4 are obtained
aﬁalogously ﬁsing transformations 3 and 4 above. The molecules in
adjaéent unit cells are determined by édding to the coordinates in
the ﬁrimitive cell a vector joining the origins of the two cells.
The above coordinates are for unit cell {0,0,0). For the (1,0,0)
coordinates of carbon in molecule 1 {((1,0,0) is the unit cell

adjacent’to {0,0,0) in the.direction of a} we have:

x1(1,0,0) = 0.6894 + (1 * 5.1832) = 5.8726 A
Y3(1,0,0) = 6.5774 + (0 * 6.2357) = 6.5774 A
22(1.0,0) = 3.2130 + (0 * 8.5181) = 3.2130 A
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or.in general:

%o(h,k,1) = x0(0,0,0) + (h * a)
vo(h,k,1) = y2(0,0,0) + (k * b)
zg(h,k,l) = 22(0,0,0) + {1 * c}

where h, k and 1 are allowed 2ll integer values and n represents
the transformation involvgd.. Application of the above procedure
will allow one to obtain the location of any atom in any molecule
in the crystal. A

Molecule (0,0,0)01 was used as the central molecule. Its 8

nearest neighbors were determined to be:

(-1,1,1)03, (0,1,1)03, (0,2,1)03, (-1,2,1)03

.{0,0,0)04, (0,-1,0)04, (1,-1,0)04, (1,0,0)04
Note that molecule 2 (02) is not one of the nearest neighbors.
The coordinates of (0,0,0;03 and (0,0,0)04 were determined as

above and then translated to corresponding unit cells.

A coordinate transformation was performed to place the origin
at the nicrogen molecule of (0,0,0)01 and the x-axis along the C-N
bond with atoms 01, N, 02 and ¢ in the x-y plane. This was done

to invoke what little local point group symmetry there was on the

e

o«
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central site. It was later determined that the oxygen atoms in
the central molecule don't quite see. the same potential and use of
symmetry introduced a slight error in the potential energy »

integrals.

The general procedure for perfofming this translation and
rotation is as follows. Determine the coordinates, in A, of
(0,0,0)01 atoms from the fractional coordinates. Subtract the
nitrogen coordinates from- those of each atom to translated the
molecule to the new origin. Trevino 66 also gives the interatonm
distances and bond angles. From these, it is easy to determine
what the x, vy and z coordinates in the final reference frame
should be. One then determines the direction cosines for the

rotation from the following:

o
I
[~

11 * x) + (112 * v) + (113 * 2)

%]
[
-
—t
[
>

* x) + (122 * v) + (l23 * 2)
(1

"N
|

31 T X (g Ty 4 {1y *o2)

where the lij ere direction cosines, x, y and z are the original
(translated) coordinates of the atom and %', y' and z' are the
desired coordinates. Both the unprimed and primed coordinates are
known for each atom of (0,0,0)01, the first from the
crystallographic data (after conversion to cartesian coordinates

and translating to the nitrogen atom) and the second from the

re
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relative positions of the atoms in the molecule.

There(ore, one can obtain 3 equations in 3 unknowns for each
of X', y' and z' using the desired.and known coordinates of 3
atoms. The direction cosines are then solved for.

Once the positions of the other molecules of the clustér are
determined from the crystallographic.data, bne then translates
them based on the coordinates of the central site nitrogen atom.
Then the rotations given aone are applied, based on the
calculated direction cosines: Finally, all coordinates are -
converted to atomic units (au) to be used in the POLYATOM

integrals code (1 au =0.529 A).
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Table Al.
/
Atom Parameter | 4.2 K 78 K
c X 0.1330(5) 0.1290(9)
. Y 1.0548(3) 1.0527(5) o
. z 0.3772(2) a.3973(5)
Uy 0.0149(6) 0.0217(10)
Un 0.0115(5) 0.0198(11)
Uss - 0.0075(7) 0.0177(16)
U vV <0.0055(5) ~0,0029(11)
Uy ~0.,0001¢Q} —~0,0000(0)
Uas 0.0001(0) 0.0000(0)
N X 0.3626(3) 0.3609(5)
Y 0.9135(3) 0.9128(5)
z 0.,37¢9(3) 0.3771(5)
B 0.31(4) 0,78(7)
01 X 0.5179(6) 0.5158(10)
. Y 0.9271() ©.92758(10)
z 0, 4804(4) 0.4309(6)
B 0, 82(4) 1.72(8) *
02 X 0.3817(7) .7 0.3520(11)
Y 0. T546(5) 06.7335(9)
z 0.2674(5) 0.2699(7)
B 0.82(4) 1,72(8)
C ja)} X 0, 0755(6) 0, 0686(12)
. Y 1. 0B18(5) 1,0730(11)
- 4 0,2577(4} 0.2694(9)
Uy, 0.0325(7) 0.0G98(18)
: Uy 0.0438(10) 0.1118(27
Uy 0, 00835(6) 0.90320(16)
. Uy 0.03183(9) 0,0637(21)
U, -0.0013(1) ~0,0063(2)
Uy -0.0015(1) -~0,0089(2)
D2 X ~0.0156(3) ~0,0071(5)
¢ Y 0,9737(4) 0,9808(7)
Z 0,4420(4) 0.4433(8)
. Uy 0.0205(6) 0.0415(11)
Un 0.0211(3) 0, 0553(14)
’ Uy 0.0434(11) 0.1169(31)
e 0.0019(5} 0.023C(13)
Uy 0.0133(3) 0.0362(9)
U 0.0175(F, 0.0479(12)
D3 X 0.1875(4) 0.1775(s}
Y 1.2022(3) 1.1934{6}
z 0.43135(4) - 0.%268(9)
‘ Uy 0.0188(1) 0.0336(10)
Usn 0.0193(3) 0.0442(12)
Un 0.0469(32) 0.1359(35)
Ui a_noon(o) - 0.0141(12)
Uy -0.0116{4) -0, 0276(N

U+ -0.0153(6) -0.0406(11)

Fractional Coordinates for Nitromethane
From Trevino (Ref. 66)
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Orthorhombic 222 P2,2,2, No. 19 P 21 2l 214
2
O1- 1 ?
O+ O+ ¢ . —3
0O +O g
» + .
_O ! l *—- _ —-—'1'
8. -
: O%_ _ [ . 3
O’ O* * l l —"i
Van .

L Origin halfway between three pairs of non-intersecting screw axes
Nv“?;‘c’i‘;grng?:g:;?‘v Co-ordinates of eqﬁivalcnt positions Conditions limiting
and’ point symmetry possible reflections

4. a 1 xp5 Cy-xgi+z bxiops Ritni-z hkl.
' %5 No conditions
. CRKO: | -
h00: h=2n
0k0: k=2n
00/; I=2n
.Symmctry of special projections

(001) pgg; a'=a,b'=b (100) pgg; &'=b, ¢'=c (010) pgg; ¢'=c,da'=a
Figure Al.

Orthorhoubic Space Group Symmetry P2, 2121

From Ref. 71

s
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Appendix B

Notation and Meaning of Synmetry Operations and Orbital Bonds

»

When discussing the character of molecular orbitals, mention
is usually made of the symmetry of a given MO. Table B1l.is the
character table for CZv symmetry operations. This group has for
independent operations; identity (E)E 2~-fold rotation about the
symmetry axis (Cz), and reflection in two different planes (av and

cv'). Figure B1, shows these'Operations when applied to the C-ii-

01-02 group of atoms in nitromethane..

Symmetry element a, implies that whenever any of the four

1

operations are applied to the molecule, the molecule looks exactly

as it did before the application. Symmetry element a, indicates

2
the the identity and 2-fold rotation operations leave the molecule

unchanged but either of the reflection operations reverse the sign

of the wavefunction {(orbital) of the mdlecule. An example is

shown in Figure B2. Applving a 2-fold rotation about the x-axis
(symmetry axis) brings the (-) lobe of 02 into the (-) lobe of 01
(and + - +), i.e., the molecule is unchanged. However, reflecticn

in the x-z or the x-y planes cause a (+, lobe of an oxygen to go

to a (-) lobe on the other oxygen, etc. Therefore, a -1 is
associated with both g{xy) and o({xz) in the character table.

Similarily, bl symmetry implies the identity and o(xz) operations

leave the molecule unchanged and C, and o(xy) cause a sign change.

2

For b2 symmetry, the identity and ¢(xy) operations leave it
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unchanged while 02 and o(xz) cause a sign change.

Figure B3. shows what is meant by o and w bonding. The top
part of the diagram shows how a ¢ Bond may be formed by the
overlap of various types of orbitals. A molecular orbital which
is symmetric about the line joining the two atoms is called a
sigma (o) bond. Pi (n) bonds are shown in the lower half of
Figure B3. These are created by the lateral overlap of orbitals
and result in the line joining th=s t%o atoms to be free of
electronic charge. Also sthn is a o bond formed by 2 p-type.

" arbitals. Combinaticns of more p orbitals can yielé the toroidal
charge distribution of the overlap of two m bonds as shown at the
bottom of the figure. Again, no charge overlaps the interatom
radius vector. The diagrams of Figure B3. were taken from
reference 72 and the character table from reference 73.

Table Bl

Character Table for ng Symmetry

C2v E C2 cv(xz) cv(xy)

a, 1 1 1 1 X

a, 1 1 ~1 -1 RX
bl 1 ) -1 ‘1 -1 Z,RY
b, 1 -1 -1 i 1 Y.R,

Note: x is the axis of svmmetry.

——— v—————
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01— *01 or +02

C- *C < _X 2-fold axis
K-S

QZ-—vtOZ or 01 .-
| . Figure Bl

1 . The sign change depends upon the type and orientation
( of the function located at the atom as well as the
applied symmetry operation.

Figure B2

2-fold rotation about X places the (-) lobe of 0Z at
the (-) lobe of Ol whereas reflection in the x-z pland
places the (-) lobe of 02 at the (+) lobe of Ol.
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From Ref. 72
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Appendix C
Tables of Basis Sets
This appendix lists tables of basis sets used for g

nitromethane monomer, dimer, trimer and cluster calculations in
this thesis as well as molecular coordinates for these systems.
Main features shown in the tables are the atomic center (oxygen =
01 or 02, etc.), the type of function [(Gaussian) associated with
that center (s, x,v.z (p~-type), etc.), and the exponent and
coefficient used in the function. The column containing the much
larger numbers (such as 7317. for 01, s) holds the exponents. The
beginning of each table shows the x,,y and z coordinates of each
center (in au) as wall as the charge-associated with that center
and sonetimes a code {such as NLP) which indicates that
pseudopotentials are to be used to replace the 1s electrons for
that center (in which case the corresponding charge is reduced by
2). '
Table C1. ... ... ee...48 functicn set used for the monnner.
. (Note: The final four bond coordinates
<BNC,BCH1,BCH2,BCH3> are not correct
in this table.)

Table C2. ....¢c¢ve:.4.57 function set used in both the free
molecule and crystal geometry (shovm)
and for the central (nzin) molecule
in calculations involving more than
one molecule..

Table C3. ....¢c¢v4v....80 function setAused for the monomer.
Table C4. .............81 function set used for the monomer.
This set is the same as the 80 function

set except for the addition of the
carbon d function (YY}).

Table C5. .............84 function set vsed for the mcnomer.
This set is slightly uncontracted
{oxygen and nitrogen s functions)
caompared to the 81 functicn set.

Table C6. .............Coordinates (au) of the central molecule
and 8 nearest neighbors in the cluster.
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Table C7. ....ceceev....,.35 function set used for neighbors in
: calculations involving nore than one

molecule This table shows the free
moleculeée coordinates as it was used
for basis set development. Also shqwn
are Topiol pseudopotential input
parameters for nitrogen, oxygen and
carbon.

Table €C8. .............92 function set used for the dimer runs
with the crystal geometry. The neighbor
coordinates shown in this table are those
of (-11103). Pseudopotentials are also

L shown for the neighbor. This set is a

] combination of the 57 and 35 function sets.

Table C9. ....... ve....127 function set used for the fully
interacting trimer. This set is a
combination of the 57 function and 2,
35 function. sets. leighbor pseudo-
potentials are also shown. The neighbor
coordinates are those of molecules

‘ (f‘ (~11103) and (01103).

Table C10. ............56 function set used for the NO, fragnment
when converging to the low energy reported
in this work.

R ——— Y
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ABSTRACT

Theoretical models of off-center isovalent suhstitutional
impurities in alkali halides are examined. Calculations have
been performed on Li' in KC1l, 3 representative system kiown
2xperimentally to exliibit off-center behavior. The potential
seen hy the Li+ ion in the lattice has been calculated within the
shell model using the computer program HADES and Ly means of 1-
UInrestricted Hartree-Fook [UHF) cluster embedded inn a shell mo 3wl
lattice using the computer program ICECAP. For the case using
HADES, off-center behavior was predicted, and tlhe resulting
potential was used to predict the tunnelling splitting of the
system and the Grueneisen parameter. The tunnelling splitting
was calculated to be 1.19 meV for 7LiT and 1.26 meV for 6Li+,
compared to experimental results of 0.10 meV and 0.14 meV,
respectively. The Gruenejisen parameters were found to be 80 for
7117 and 66 fou SLE*, compared to experimentzl results of 150 for
both isotopes. For the c¢ases using ICECAP and UHF, off-center
behavior was predicted, but the quantitative agreement with

experimental harrier heights was not as good as that for HADES.
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CHAPTER 1

INTRODUCTION

The computer program ICECAP promises to offer a reliable
method to calculate energies of point defects in ionic
crystals. (1) The approach used by this program is to perform an
Unrestricted Hartree-Fock self-consistent field cluster
computation embedded in a lattice described by the classical
shell model. An important problem in such embedded-cluster
calculations has to do with guantum~-mechanical cluster boundary
conditions, since the classical shell-model lattice does not
provide any Pauli exclusion of the cluster wavefunction. A
mechanism called Xunz-Klein localization(2) has been implemented
to provide a systematic, mathematically rigorous houndary for the

guantum-mechanical cluster,

Considerable work, hoth theoretical and experimental, has
over the past two decades gone into investigating low-lying
energy levels of defects in crystalline solids. (3) These levels
may arise when the potential seen by a defect in a crystalline
solid possesses two or more equivalent minima rather than a
single minimum at the site of substitution. Tunnelling between
these minima may then split the yground state of the defect into
two or more states with very closely spaced energies.(4) These

level splittings= may be very small compared to the excited energy
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states of the impurity which remain thermally inaccessible at low

temperatures. These energy levels may also be very small with

respect to the Debye energies of the crystalline lattice, making

it possible, in many cases, to separate the tunnelling behavior

from the lattice phonons.(3) Among the systems which exhibit

these properties are certain systems of small isovalent

substitutional impurities in alkali halides, the classic example

be ing Li* in KC1. Due to the relative simplicity of these

systems, it is hoped that they will be particularly amenable to

guantitative theoretical analysis. Such a theoretical analysis

has been undertaken, using ICECAP or the classical shell-model

to obtain potentials for these impurities, and

program HADES(5)
the computer programs DYNFIT and DYNNUC to solve for the dynamics

of these impurities in the potentials so calculated.

1.1 Background to ICECAP

In 1984 Vail et. al.(6) analyzed the F' center in Mgo, a

single electron trapped in an oxygen vacancy. Because of the net

positive charge of this defect, lattice relaxation and

polarization could not be ignored. A relaxed, polarized lattice

was generated by the classical shell-model program HADES(5) in
response to the multipole moments of a second-nearest neighbor
Hartree-Fock cluster determined by the ATMOL program.(7)

Qualitative agreement with experiment was obtained, but it was

noted that a more systematic approach to quantum-mechanical




cluster boundary <onditions was necessary, and that automation of

the iterative cycle was desirable.

Such automation was achieved in 1985, with the computer
program ICECAP.(1) This program combines the HADES classical
shell-model lattice program with the UHFABK(8) Hartree-Fock
cluster program, under the control of a driver program which
automates the iterative interaction bhetween the two. Since it
was written, it has been tested and enhanced, but the need for
systematic boundary conditions for the quantum-mechanical cluster
has remained. In the absence of such systematic boundary
conditions, the Pauli exclusion of the cluster wavefunction by
the point ions in the classical shell-model lattice must bhe
provided for by using suitably localized cluster basis functions
ov by choosing the quantum-mechanical region so that it is

surrounded by cations which bear complete-ion pseudopotentials.

1.2 Background to Off-Ceunter Impurities

It is now understood that in ~ertain systems of small
isovalent substitutional impurities in alkali halides, the
impurity tunnels between equivalent off-center minima. The
existence of off - center minima is due to the fact that for these
small impurities the gain in polarization energy due to locating
off-center is not cancelled by a corresponding cost in Pauli

repulsion energy. Since in the pressure regime of interest (less




than 10 kbar) the alkali halides are cubic crystals, symmetry
dictates that there be either 6, 8, or 12 equivalent minima,
corresponding to displacement along the <100>, <111>, or <110>
directions, respectively. The known off-center systems and the
directions of their displacement are summarized in Table 1.1A and
Table 1.1B. Let us review the experimental and theoretical work

which has led to this level of understanding.

1.2.1 Existing Experimental Resultsx

The first indication of the unusual properties of ri’
defects in KC1 was in 1964, when a dip in the low temperature
thermal conductivity, indicating a strong resonant scattering,
was reported. (9) Subsequently a large polarization in an applied
electric field(10) and an electrncaloric effect,

i. e. paraelectric cooling,(11) were observed. That the
potential minima in this system lie along the <111> direction was

confirmed by measurements of the sound velocity(12) and by

nuclear maynetic resonance experiments. (13)

The energy level diagram for the ground tunnelling multiplet
of Figure 1.1 results from very general assumptions concerning
the form of a potential with minima along the <111> direction.
The splittings, however, depend on the relative importance of
tunnelling along edges, face diagonals, and body diagonals.

Unfortunately, most experiments are unable to distinguish the




TABLE 1.1A

List of systems with substitutional alkalis
exhibiting off-center behavior
{Blanks imply no experimental data)

System Off-center?

Li in NaF

L1 in NacCl no
Li' in NaBr no
LiT in NaTl

Li¥ in KF

1i¥ in KC1 <111>
Lit in KBr no
Lit in x1

Li* in RbF

it in RbC1 no

I in RbBr

Li in Rbl

Na in KF
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TABRLE 1.1B

List of systems with substitutional halides
exhibiting off-center behavior
(Blanks imply no experimental data)

System

in

Licl

Nacl

KC1

NaBr

KBr

RhBr

Nal

K1

RbI

Rb1

Off-center?

no

no

<110>

no

no

no

<110>

110>




FIGURE 1.1
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Energy level liagram for the ground tunnelling nultiplet
f a system with minima along the <111> direction
{dipoae allowed transitions indicated)




individual splittings. However, an unique phonon spectrometer
experiment(14) has determined that for 7Li+ equal splittings of
about 7A = 0.095 meV are appropriate, whereas for eLit uneqgual
splittings were found, with §A;, = 64a; = 0.121 meV and

€A, = 0.086 meV. Specific heat measurements{15) interpreted on
the basis of equal splittings have determined 7A and fA to he

0.102 meV and 0.143 meV, respectively.

A very interesting feature of these off-center impurity
systems is that due to the delicate balance of polarization and
Pauli repulsion energies, they are very sensitive to changes in
the lattice constant, e. g. by hydrostatic pressure. It has been
observed by Kahan et. al.(16) that a pressure of about 4 kbar,
corresponding to a strain dr’'r of 0.58%, suffices to drive Lit
back on-center in KC!1. This experiment, far infrared
spectroscopy in a pressure cell, produced data only for strains
dr/r greater than abvout 0.2%, corresponding to pressures greater
than about 1.3 kbar. To obtain information on the zero-strain
dependence of the tunnelling states, Dobbs and Anderson(1i7) have
determined the Grueneisen parameter for a single Li’ in KCl by
specific heat and thermal euwpansion measuremenis. For these
purposes we may define the Grueneisen parameter [ due to a single

impurity with energy levels Ei contributing a specific heat Ci as
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(L7050 (2 Cy)

where

Fi = —d(lnEi)v'd(ln\/)

For equally spaced levels with splitting A this simplifies to

= -d{lna) /d(1nV)

They obtain M = 150 for both §Li’ and 7Li+, which they contrast
with the value obtained by extrapolating the previously mentioned
results of Kahan et. al.(18) to zero strain of [ & 300 and
previous measurements of the thermal expansion(18) which also

yielded ' = 300.

1.2.2 Existing Theovetical Work

. S+
Theoretical work for ILi in KC1 and related systems takes
two forms, attempts to determine the nature of the potential well
. . Lt
in which the Li ion moves, and attempts to calculate the

tunnelling splittings.

Several attempts have heen made to apply classical lattice
methods to the calculation of the potential wells in which such
ions move. The displacement of such small substitutional ions to
off-center sites depends on a balance between overlap and

polarization terms in the lattice energy, and the successful
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r=3ivti oot this effect in lattice calculations is therefore a
very .ritical test of the lattice model used. Wilson

et. al.(19), using a polarizable point ion (Born-Mayer) model and
an ad hoc modification to the Lit-c1” potential inferred from
LiCl, founi stable minima along the <111> direction for Li’ in
N¥Cl. Quigley and Das(20) alsc used a polarizable point ion
model, with a Born-Meyer-Verwey repulsive potential for Li+—Cl-,
and obtained stable minima along the <111> for Li” in KC1, and
predicted that at a strain dr/r of about 1%, corresponding to a
pressure of about 7 kbar, the Li+ should be driven on-center.
Catlow et. al.(21) applied the shell model to Li’ in kcl us ing
potentials as given by standard prescriptions and also found
stahle minima along the <111>; they obtained values for dr/r the

. . . .+
strain required to drive the Li on-center of 1% for one standard

potential and 2% for another.

Attempts have also been made to calculate the potential well
in which Li  moves in Krl 'y fitting to the experimental
absorption lines. Devaty and Sievers(22) reported such fits for
lattice strains from 0.0% to 0.6%. They used the approximation
Vix,y.2} = Vglx) + Vy(y) + Vy{z) and tit to forms

Vg = Ax¥?2 + Bx4 and V; = AxS + Be

F 11y, the tunneling in such systems has been modelled by
Gomez, Bowen, and NKrumhansl.(4) They modelled the potential by

harmonic wells centered on the minima, and considered minima

—_— e -



11

1

along the <100, ~110> and <111> directions. Thelr wavefunctions
were harmonic oscillator functions also centered on the minima.
They obtained explicit expressions for the energy levels within
tnis model in terms of the overlap and Hamiltonian matrix
elements, and considered two cases. For the case of isotropic
harmonic wells with minima along the <111> (edge tunnelling
Aominating) they obtain a tunnelling multiplet consisting of four
equally spaced states with legeneracies 1-3-3-1, 1. e. Figure 1.1
with all Ai equal. For the case of wells highly elongated along
the body diagonal (diagonal tnunnelling dominating) they obtain a
tunnelling multiplet consisting of two states, each quadruply

degererate, 1. e. Figure 1.1 with &, = 43 = C, A; nonzero,.




CHAPTER 2

CALCULATIONAL TECHNIQUES

The goal of this study is to construct a theoretical model
for an isovalent substitutional impurity in an ionic crystal. Of
particular interest is the motion of the impurity. One can
imagine the exact solution W(%,%) of the full system Hamiltonian.
However, such a solution is neither practical nor useful. Even
if the caiculational difficulties could be overcome,

interpretation of the results would be nearly impossible.

These difficulties are overcome by a series of
approximations tu be described in this chapter. The first of
these is the Born-Oppenheimer approximation, (23) which separates
the nuclear from the electronic coordinates. This allows the
electronic structure to be calculated for a frozen lattice,
giving the energy as a function of the lattice configuration.
The nuclear motion can then in principle be calculated by
treating this function as a potential for a quantum mechanical
calculation. The section on the computer program ICECAP
describes how the energy as a function of the lattice
configuration is obhtained, and the section on the computer
programs DYNFIT and DYNNUC explains how nuclear motion is

calculated from these potentials.
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2.1 ICECAP

A computer program has been developed which combines a
quantum-mechanical treatment of electrons in the vicinity of a
point defect with & classical discrete-ion model for the rest of
the crystal, which is only weakly perturbed by the defect. This
program is named ICECAP: ionic crystal with electronic cluster,
automatic program.{1l) The portion of ICECAP responsible for the
quantum-mechanical calculation is called the UHF sequence of
programs, (8) which implements the Unrestricted Hartree-Fock
equations, with extensions implementing Kunz-Klein
localization.{24) The classical discrete-ion portion of ICECAP
is called HADES, (5) and implements the shell model of Overhauser

and Dick. (295)

2.1.1 The Hartree-Fock Approximation(26)

The immediate <icinity of the defect whose properties are
being calculated is treated in the Unrestricted Hartree-Fock
(UHF) approximation. This approximation can be derived from the
non-relativistic Schrouedinger equation for the total system
wavefunction: HY(?,%) = EW(%,%) where the lower-case variable
(2) refers to electronic spatial and spin coordinates and the
upper-case (i) to nuclear coordinates.(27) The Hamiltonian is

written as a sum of electronic, nuclear and interaction parts:
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= H,. + H.
H He * N Hlnt
1 1 ‘
= - = 2 = e e e
He E v * 2 .Z. -r" =
L j=1i |r, ri|
] z.Z
By = L) -gy 92 g L cioiies
I { I Jz1I }RJ - RI)
-2
. = T S
int ; - =
i I ;ri - RI}
where we have adopted Hartree atomic units (b = e =m_ = 1).

e

The next step in obtaining the UHF equations is to make the
Born-Oppenheimer approximation, (23) separating the nuclear and
electronic parts of the wavefunction. We calculate only the
latter, in this context approximating the former by a fixed
lattice which contributes to the total energy a constant shift

called the nuclear repulsion energy.

The Schroedinger eguation to be solved is now of the form

HY(§1,...§U) = EY(QI,...QD) where ;i represents the space and

spin coordinates of the i-th electron. We now approximate the

wavefunction ¥ by a single Slater determinant of one-electron

spinorbitals wj(i):
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wl(xl) wg(xl) wn(xl)

o . 172 Vi(Xy) Wy(x,) v (%)
VX ®pooxy) = (nt) —moeoe

wl(xn) wz('n) wn(xn)

The Slater determinant form is selected because it automatically
provides the antisymmetry required by the Pauli exclusion

principle.

The Hartree-Fock equations result from an application of the
variational principle. The one-electron spinorbitals are varied
to minimize <¥|H[¥> subject to the constraint that the
spinorhitals form an orthonormal set. This constraint is

enforced by introducing Lagrange nmultipliers Aij' The result of

the minimization i« ij(ﬁ) - Zhijwj(i) , where F is the Fock
Jperator:
T (T
- z o{ylw (y
T-,s - -
F(p)wi(*) = s ve - L 4"'14 + L l 'J;- ‘% — dy Wi(X)
I |% - Ryl j [ - vyl
v (Vv (Y)
S LG | A e ay
J Ix - vl
and integrations include inner producte over spin space. A

unitary transformation will leave determinantal wavefunctions

unchanged, so we apply a transformation such that the matrix of
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Togroags aaltipliers is diagonalized. This gives us the standard
form of the Hartree-Fock eguations Fwi(ﬁ) = eiwi(ﬁ).(28) Because

the Fock operator depends on the one-electron spinorbitals, these
equations must in general be solved by iterating to self-
consistency. Koopmans' theorem suggests that we may interpret
the €5 in these equations as an approximation to the ionizatijion

energy of the i-th electron.(29)

Applying the Hamiltonian to the Hartree-Fock wavefunction
thus defined gives us the expression for the energy of the system

in the Hartree-Fock approximation:

7
" %2 i %) dx
E = ¢ vilxip - 5 vE -1 "T'I"" Vy(x)dx
i I 'X-RI!
J
T T (e (R)
o (e oyl sy (2
. '12'3: 2 2o % - dydx
: I - ¥
- *(_.) *(—o) (") (")
_ é ; i ,UJ; *-i" R T dyd=x
i [% - v
. z.2
+ % I3 -
I,J |Ry - Ryl

We can use the Hartree-Fuok equations to eliminate the Coulomb
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anl exchange terms from this expression in favor of the Hartree-

Foock eigenvalues. We then obtain:

— - |
1 * “ -+ -
E==7¢ €. + ¢, () -:I,Vf - L I ‘W-(I’-)'iX‘
2 ] i b ‘ I ’??I i |
: | |
, .7
+ % L "j"l‘j“
I,J !R\T - RII

The final term is the nuclear repulsion energy meintioned earlier.

One further simplification is made in leriving Unrestricted
Hartree-Fock. The one-=lectron =zpincrbitals wi are chosen to be
the »rodunct of a spatial functvion and an eigenstate of spin (S7).
Becauze of the orthouarmality of o and B the spin disappears from
the probilem alnost complet=17. In ¢ etrast to the Restricted
Hartree-Fock (RHF! =quati.as, no requirements of symmetry are
imposed on the spatial functions, nor must there necessarily be

iy correspondence between the spin wp and spin down

orbitals. (30)

Numerical integration can be nsed to solve the Hartree-Fock
equations, but the calculations become much more tractable when
the orbitals are expanded as linear combinations of basis
functions. This separates the problem into an integration phase
in which integrals over pairs and quartets of basis functions are

calculated and an iterative phase in which standard numerical
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matrix technigques are employed.(31) Calculations are performed

using basis functions of Cartesian Gaussian type, i. e. of the

g.om_n_-ar? -
form X'y z e : These have the advantage of exact analytic

integrability, even for functions on different centers, although

the disadvantage of lack of resemblance to hydrogen orbitals must

Le recogniced. (32)

Lz Kuanz Klein Localization(24)

In princinle we would like to solve the Unrestricted

Hartree-Faock (UHF) equatinng for an entire solid-state

system, (33) in this case an ionic o123, These egquations are:
F(r')t'i o= I]
‘(;::’y" = Z : ' C
i= <
. ’ $.2 Z, | poy.y) - -
Felb.(x) = | - . o2 z Aoes | - dy ¢, (%)
' | I S BN A !
. I
el%,Y) ..
- CoL o ey (y)dy
[ vl

where the summation in the definition of p is over occupied
orbitals only.  The solvw! ion of this eguation for an ionice
crystal of realistic sire is clearly impossible; we wish to treat

gquantum-mechani-~ally only A finite cluster which we shall call A
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Aand Yo treat with a vlassical discrete-ion model the remainder of

the system, which we shall caull the environment of A and denote

Let us obtain a physically moutivated derivation of the
bourdary vonditions which must be zpplied by considering the
local-orbital formalism of Adams and Gilhert. (34) A derivation
which is mathematically erxact als exists, and 1s given in an
appendix to this work. Let us use F to denote the Fock operator
for the entire system. We will assign m electrons to A, where
for the sake of physical reasonability m will be taken to be the

number of electrons on the ions inside A. We will write

where FA is that part of ¥ which includes the kinetic energy,
nuclear attraction of the electraons and nuclei inside A, and the
electron-=lectron potential including Coulomb and exchange parts
for the electrons. Since we are considering an ionic crystal let
us divide ”A into two parts, VZ, the lang-range ionic (Madelung)
contribution, and Vi, the short-range remainder. Vi may bhe
considered to be made up of additive contributions from all the
ions in the environment, It falls off very rapidly with

distance, and so only contributions from ions in the immediate

vicinity of the cluster need to be considered.




Let us ~onsidier the Adams-Gilbert equation:

(F + 0 S T YL =y
{ a 3 lvll W

1 -

ad

wheve T i- any Hermitian operator.  They have shown that when =
comron T ijs use2d for all the electrons one can ohbtain orthonormal

spinorbitals satisfying:

$ +
-, = ¥ SERNY = T~ v,
b i T Vv
i=vcc i=oco
vilieng e Toare thee spincrbitale obtined by solving the normal

Hartree Fook eqgiation for the entire system:

R RN A SR T Y = .
A & 1 ‘ 1
<
>
We choose T = VA and rearrvange to o yet

PO AL A - 4
{ / N U LI
A i

9]

In the limit of self-consistency the terms involving V

=

cancel, leaving an effective Fock ope=rator for the localized

cluster:
(P, ¢+ VR
3 .o =D
A AT Vi
We wish to go heyoad this level of 4apprroximation.  Since we will
always solve these eqguatig, by eo o sjon in terms of basis




fonctions, let us consider the following matrix element between
two basis fuunctiocns X and X3 which may be thought of as the
<

correction Yo thics effective Fock operator:
S S
< _—
Xl Va m PVaRIxg?

The overlap between those nrbiitals in p from cutside A and the

basis function X located inside A will be small, so approximate:

o= ‘:A = Z }«Dl:<®1]
1=0CC
i in A
to obtain:
X ]Vs‘x - L L <KW,y fvghu P N B
TelValNg S - c'vi iR jtta
Pz j=occ

i in A j in A

which upon writing orbitals in terms of basis functions and their
. . i
expansion coefficients p. becomes:
<l

S .
<XclvA IXg> -

- L = . iod JjJ
s Y | :
AR R SN b S L LR SN B P RS B PO L L L )
ab ca''b =00 RN
1 i A J . A

Let us now obtain an expression for E, the energy of a

system within this formalism. (35) We make the following
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definitions, where we hav m states in our cluster A, and N

states in total (recall we are using units in which

= e =m = 1)
e
Z
£ = { - % vz - % -:~_£~:*;
I {ri - RI|
_ 1
g - ) = 77—-—-?0*
T - r
, z.2Z
I,J IRI - RJ[

Applying the Hamiltonian to our wavefunction and expressing the
result in terms of our definitions, we obtain:
N -

Ci{f]i> o+ I <ijjg(1-P)[ij> + V
1 i,j=1

71
I
nMe

[ SR

nn

Rewriting the Kunz-Klein localization equation in matrisx element

form using our definitions, we obtain:

N -
<i]fli> + 'Z UJlgll-P)ig> = . o+ <i|pATpA|i>
J::l
We define:
B my i>m
m, =71, + <i|p,Tp,li>
! ! ATTA Moo+ <iT(i>  i<m

Note that the value of the matrix element <i|Tli> for i in A is
known. We could eliminate the Coulomb and exchange terms in this

expression in fevor of the localization eigenvalues "y tao obtain:
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E = 2 g [ﬁi+<11f|i>"
“ i in A,W ’
However, let us instead consider this as motivation to define E

as follows:

L | moo+ <areri> |
A 1 ' |
i in A
Note that each of the terms in this definition originates within
A and is knewn. To find its relationship with E it is useful to
rewrite E as:

E = T <i)f]i> + L <iitg(1-Pyrig>
i in A i,J in A

LS R

+ L <ijlg(1-P)|ij>
oin oA
Join W

We now break up our expression for E into parts due to A and W,

respectively:

Es L <ilf[i>+ 3 L <ijlg(1-P)jip
i in A i,j in A
¥ L <i|fli> + ;- T <ijlg(1-P)|ij>
i in W i,j in W
" ZIZJ
+ T <ij|g(1-P)ij> + I S
i in A I in & IRI - R.J
J in W J in W )
77 7.7
1 ~ “ 1 bt dhed
+% Z ___;_ ..I._%~H +% Z — P _g____
I,7 in A zRI - RJ] I,J in W ]RI - RJ|
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Tdentifying F in this expression gives:
E=E«+ L <iffli>+ 3 <ijlg(1-P)[1]>
i in W i,j in W
. z2.2 . 2.2
N T I G I
I,7 in A |RI - RJl I,J in W [RI - RJI
A
T S
I in A |R. - R_|
J in W I 7
We obtain a computationally tractable formula for E by deleting
terms which remain approximately constant through the physical
process under consideration. Recall A has been chosen to be
large enough that the only terms which change are in A. |
i. The kinetic energy part cf the terms <ijfji» for i in W {

does not change.

ii. The exchange terms <ijjg]ji> for i and j in W do not

change.
Then:
= K3 1
E = E + ) <i) ¥ o S I S 5 L <ijlglij»>
i in W I ]rl - RI; i, in W
e 5 T S
2 . - : 2 . _
1,7 in A [Ry - Rl I,J in W |§I §J|
ZIZJ
* .S
I in A |R. - R.|
7 W I J
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I we -all NI thie number of electrons at site I and recognize
that <i|-_ -7 [i> does not change for i on site I and <ij|g|iJ>
[T, Ryl

does not change for i and j on the same site, then we can

rewrite this as:

N_Z N_N
~ 1 J 1 ]
F - E .t I . g A
— - i
I,J in W {R, RJI I.J in W lRI RJ|
1 o ZTZJ o LIZJ
T o L LTS T Y, £ LT
I,J in A lRI - RJI I,J in W ]RI - ij
Z.2
T
I in A JR, - R_}
J in W I 7
Then 1f we define :I - NI to be the net jionic charge II the terms

ran be grouped together as follows to give our final expression:

_ ] I IT ' P
E = E + ;1)— z -;’ I-i . + % z s:_w-_I_n'{,
I,7 in W |[R, - R.| 1,7 in a |R; - R
Z TT
T in A |R. - R,
J in W T J

Note the similarity to the expression for the Hartree- Fock energy

for a cluster in an array of ionic charges without Kunz-Klein

localization.

It is envisioned that these Funz -Klein potentials will be

associated with the discrete ions nearest the gquantum mechanical

R A

———— e
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region, and thus would reflect the non-coulombic part of the
interaction betweeln, the electrons «f this region and those of the
neighboring ions. Herein lies a prohlem; in the classical
discrete-ion model used, the shell model, (25) an ion is
represented by two point charges, the core and the shell, and the
net charge of the ion is distributed hetween the two in an
empirical manner. Thus it is not obvious where to locate the
coordinates of the center of the Kunz-Klein potential for an ion
with respect to the coordinates for the core and shell of that
ion. In a related context it was suggested to introduce a
parameter a which would determine where along the line from the
core to the shell to center the potential. (36) Of course, this
simply restates the problem as one of determining the proper
value of . (There is not even any reason to expect the same
value of « to be optimum for every ion, or even for different
shell model parameterizations of the same ion.) Initially,
however, the program has been written in such a way as to
associate the center of the potential with the position of the

core (i. e. fixing o = 0.0).

2.1.3 The UHF Sequence of Programs

Calculations are performed in three stages. First the
labels generation program LABRELS uses any available information
on the symmetry of the problem to generate a list of integrals to

be computed. Then the polyatomic Gaussian integrals evaluation
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program POLYIN evaluates the listed integrals. These two
programs are from the Caltech POLYATOM program package, as
modified by Kunz and his collaborators.(37) POLYIN also permits
the user to replace the core electrons of one or more atoms in
the problem with an effective potential or pseudopotential.
Pseudopotentials may be of either Phillips-Kleinman(28) or norm-
censerving(39) type. Finally the iterative program UHFABK of
Kunz and his collaborators uses the intecrrals to form a self-

consistent solution. (8)

The Kunz-Klein localization potentials appropriate to a
particular crystal are generated by the program LOPAS written by
A. B. Kunz.(8) The output of this program consists of a
potential in tabular form, which is then fitted with Gaussians.
There are two main reasons why we fit the tabulated HNunz-Xlein
localization potentials generated by LOPAS to Gaussians. First,
evaluating the integrals in POLYIN is computationally more
convenient when the potential is expressed in terms of Gaussians.
Second, although the potentials are of interest in their own
right, the publication of the number of pairs of mesh points and
values required for a tabulated potential would be impractical
because of both the excessive amount of space reqguired and the

proneness to error of the typesetting process.
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The program KKLFIT of P. B. Keegstra performs the fitting
process.(40) This program performs a linear least-squares fit to
obtain the linear coefficients for n Gaussians, and then uses a
nonlinear minimization subroutine to optimize the values of the
Gaussian exponents used. Two minimization subroutines are
available: the subroutine MINI which uses the quasi-Newton
method and the subroutine MINPBK which uses the gradient method.

The latter subroutine seems to be more dependable.

~.1.4 The Shell Mcodel

The region to he treated quantum mechanically is embedded in
a classical point-charge shell-model lattice. In the shell model
an ion is represented as a point charge core coupled harmonically
(force constant F) to an uniformly charged (charge Y) massless
spherical shell of indeterminate radius. The cores and shells
are treated as independant entities, referred to as species.
Coulomb interactions apply between all species with the exception
of the core and shell of the same ion. Short-range repulsive
interactions may also be defined between any pairs of species,
although they are conventionally chosen to act only between
shells. The form of such interactions v{(r) is exemplified by the

Buckingham potential:
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vir) =B e P . crys

where B, C, and p are parameters.(25%) Tabulations of shell-model
parameters, usually fitted to reproduce perfect-crystal bulk
properties, are widely available. (41} The shell model has bheen
widely successful in describing perfect-crystal and certain
simple defect properties in ionic crystals. Some recent
applications have been reviewed by Catlow and Mackrodt.(42) One
significant shortcoming of the shell model is that, as a central
force model, in rocksalt-structured crystals it cannot reproduce
the departures from the Cauchy relations (C;, = C44) actually

observed. (43)

2.1.5 HADES

In applying the shell model to point defects, we use a
concept first proposed by Mott and Littleton(44) in which the
crystal is divided into an inner region T and an outer region IT.
In region I, which contains all the defects, the ions forming the
lattice interact according to a specified model and the
equilibrium distortion of the crystal is calculated by explicitly
relaxing each ion until it is subject to no resultant force. The
response of region II, comprising the remainder of the crystal,
is calculated by considering the lattice as a dielectric
continuum so that the ions are displaced in response to the

electric field of any charyged defects. Even for an ionic
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crystal, these interactions need to be considered explicitly only
for a small finite part of region II adjacent to the defect
(called region Ila). The interaction with more distant ions
(called region IIb) and any induced polarizations are calculated

using lattice sums or continuum integrals.(5)

These methods have been implemented in the Harwell computer
program HADES. (5) Two significant features of this program are
its use of symmetry and its efficient minimization technique.
The program applies all symmetry operations of the cubic or
hexagonal group (set by the user) to the defect and crystal to
see under which operations the system is invariant. HKnowing the
symmetry properties, the program works only with interactions
differing in symmetry, together with weighting factors. The
program carries cut its minimization using a fast matrix method
developed by Norgett and Fletcher.(45) This method uses first

and approximate second derivatives of the energy function, which

are easily evaluated for pair potentials of the forms used.

2.1.6 Interactions within ICECAP

The program ICECAP has been written to automate an iterative
cycle containing both HADES and UHF and to keep track of the
interactions between them. The system inder investigation is

partitioned into an environment which is controlled by HADES and

a cluster to be treated guantum mechanically, where the cluster
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contains any excess electrons (e. g. in a color center) and those
ions whose positions or electronic structure are significantly
perturbed by the defect. ICECAP is intended to perform a
minimization of the total system energy with respect to the
lattice configuration (shell and core coordinates to be varied by
HADES), electronic configuration (linear coefficients of the UHF
wavefunction), and the cluster configuration (coordinates of UHF
and pseudopotential ions within the defect cluster). In practice
a global minimization routine samples cluster configurations.

For a given cluster configuration the excess electrons and UHF
and pseudopotential ions are first simulated by fixed point
~harges, from which HADES determines the polarized, distorted
lattice configuration. The shell-model point charges of the
lattice, along with the nvclei and pseudopotentials of the given
cluster configuration, are applisd as & background potential for
an UHF calculation, which yields the appropriate electronic
configuration. Tdeally, the point-charge simulation of the
cluster in the HADES calculation should have all its electric
multipole moments identical to those of the UHF cluster, but this
is obviously not practical. One therefore matches only a finite
set of low-order multipoles. This is accomplished by introducing
into the HADES calculation additional point-charge simulators,
representing a small dipele, guadrupole, etc., thus correcting
for the discrepancies between HADES and UHF up to a given
multipole order. After introducing these simulators, HADES is

once again asked to determine a lattice configuration, which is
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nsed as background to UHF, and the HADES/UHF seguence is iterated
to censistency. This gives a value for the total energy
associated with this cluster configuration, and the whole
procedure is repeated until the cluster configuration of minimum
total energy is found. A diagram of this procedure is given in

figure 2.1.

There are two subtle "bookkeeping" matters pertaining to the
different  lasses of defined entities which had to be dealt with
inn the construction of ICECAP. The first is that entities of
ea~h ¢lass must have their coordinates wvaried only in the
appropriate portion of the program., The second is that the
interaction between any two entities must be taken into account
exactly once, that is, neither omitted nor double-counted. The

classes of entiti=s defined in ICECAP include:

1. Ions that will be replaced by bare nuclei plus electrons
in UHF.
2. Ions that will be replaced hy core pseudopotentials plus

valence electrons in UHF.
3. Ions that will be replaced by complete-ion
pseudopotentials or Kunz-Klein localization potentials.
4. Shell-model ions that will be explicitly moved about in

minimizing total enerygy.

5. Point cherges simulating excess electrons.
6. Point charges simulating multipole moment corrections.
7. Shell-model ions of the surrounding lattice.
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FIGURE 2.1
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Classes 1 throuygh 6 are defined as the cluster, and classes 1

through 3 as the gquantum-mechanical region.

The portions of the program within which entities of each
class have their coordinates varied are as follows: Classes 1
through 4 have their coordinates varied by the DRIVER, that is,
the overall minimization routine. By convention class 5 is never
moved; the positions of these point charges are fixed as part of
the input data. Entities in class 6 are regenerated by the
multipole fitting routine each pass through the multipole
venslistency cycle, and also the magnitude of their displacements

is user-selectable. Entities in class 7 are moved by HADES.

The proper counting of the interactions between entities of
the variocus classes is insured by the way the total energy is

defined. This energy is:

In this expression E{ denotes the energy HADES calculates

F

simulating the guantum-mechanical cluster by point charges.

Eé and Eé are the shell-model short-range and Coulomb energies,

respectively, of the quantum-mechanical cluster which are
subtracted out because these interactions are accounted for in

the quantum-mechanical calculation. EA is the total electronic

energy from the gquantum-mechanical calculation. Ec is the
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Coulomb energy between nuclei, pseudopotential centers, and Kunz-
Klein localization centers. ED corrects for the energy of the
dipoles modelling the polarization of Kunz-Klein localization (or

whole-icn pseudopotential) sites.

2.2 DYNFIT and DYNNUC

The computer programs DYNFIT and DYNNUC calculate the
response of a substitutional jon in a potential which may be
calculated eithe: by TCECAP or HADES. The program DYNFIT takes
the potentials as given by ICECAP or HADES and Jdetermines certain
parameters necessary for the dynamical calculation and generates
potentials of a form useful fer the dynamical calculation. The
program DYNNUC then takes these parameters and potentials and
calculates the spectrum of motional states of the substitutional

ion.

For computational efficiency, hoth HADES and ICECAP make
heavy use of symmetry and are prohibitive in their use of
computer time for systems without useable symmetry. Thus it is
reasonable to restrict the computation of potentials by these
programs to systems which exhibit useable symmetry. Such systems
are those in which the substitutional ion is displaced along the

<100> direction, the <110> direction, or the <111> divection.
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he other constraint imposed on the potentials obtained from
HADES or ICECAF has to do with the coordinates of the ions other
than the substitutional ion under consideration. The complete
treatment of the problem would require that the potential be
plotted out in a 3N-dimensional space where N is the number of
ions in the crystal, and that this poteatial be used in the
Schroedinger equations for nuclear motion. In the interest both
of computational feasability and of simplicity of interpretation
we plot out the potential only for displacements of the
substitutional ion, but we allow the crystal to relax fully
during the energy calculation at each displacement. Thus these
Jdisplacemeants may be thought of as an "effective coordinate." We
assert that this "effective coordinate" exhibits the full

symmetry of the cubic crystal.

2.2.1 DYNFIT

The computer program DYNFIT takes the potential seen by a

substitutional ion in a cubic lattice and determines parameters

and potentials necessary to calculate the dynamics of that

substitutional ion. The potentials used as input are along the
symmetry directions of a cubic crystal, that is, <100>, <110>,
and <111>. In order to perform the calculation it is necessary

to define the way in which these potentials are to be
interpolated off these axes. An interpolation scheme widely

used(16) is to write the potential as a sum of one dimensional
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potentials in the x, y, and z directions, respectively:

VIxX,y.z) = Vo (x) + Vg(y) + Vg(2z2)

This form is calculationally very tractable, as the three-
dimensional Schroedinger equation decomposes into three identical
one-dimensional Schroedinger equations. The first calculation
performed by DYNFIT is thus to construct such a V, to match the
potential along one of the symmetry axes, as selected hy the
nser. Following that the program finds the value of o which
defines a hasis of harmonic oscillator functions which gives the
lowest energy for the ground state. Next the nrogram calculates
a correction to the form involving Vo. The way that is done is
to o add in a spherically symmetric potential V5 and a Correction

potential ¥V _ such that:

[

"

Vix.,y. ) (Vo (x)+V _(x)) + (Vo(Y)-f\/C(Y))

+ (Vo (z)tV (2)) + V_(r)

Given a table of values for VS, VC is chosen such that the fit is
still exact along the same symmetry axis along which V, was
defined. The best form for VS is then obtained by means of the
minimization routine MINPBK, which uses the gradient method.
Following these calculations, the user has the option of having
the program calculate the best approximations to Vo of two

different forms. The two forms are those used by Devaty and
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Sievers; (22) the first form is Ax? + Bx4 and the second form is
X

2

Ax2 + Be . The way these fits were generated assumes that V,

has its minimum away from the point x = 0. For the first
potential form, Ax? + Bx4, parameters were fit by requiring that
the splitting between the first two states be the same for the
original and fit potentials, and that the minima be in the same

~-Cu¢
, parameters

PPlace. For the second potential form, Ax?2 + Be
were fi1t by imposing the same two conditions imposed on the first
form, and in addition the condition that A be related to the

optimum value of o by the relation 2A = Mw?2 for M the mass of the

L:otope of the don for which the fit was computed. That is, Ax?

the harmenic potential in whih the ion has natural frequency

o202 DYNNUC

The computer program PYNNUC calculates the spectrum of

-

motional

[V}

tates of the substituricnal 1o using the parameters
calculated in DYNFIT. The first stage is called the one-
dimensional calculation: There the one-dimensional Schroedinger
equation with potential VvV, (2, is «ulved nsing matrix techniques
with a basis set of harmonic oscillator functions with the
frequency w calculated in DYNFIT. The resulting one-dimensional
orbitals are combined to form what we refer to as three-
dimensional basis functions, so-called hecause of the way they

will be used in the second stage of the calculation. The
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addition of the energy eiygenvalues for each component oue-

Jdimensional orbital gives the enerygy for the three-dimensional

basis function in this approximation, which we call the energy

from the one~dimensional calculation. The basis fuanctions are

sorted by the value of this energy, and grouped into multiplets.

The multiplets of lowest energy, conprising up to 100 basis

functions, are used In the second stage. In the second stage the

Hemiltonian matrix with the potential (Vy(x)}+V (=) +
[N

iz cal-ulated using these

(vo(y)+vc(y)) + (Vo(x>+Vc(2)> + VS(r}

functions as a basis, and it is then diagenalized. This gives

the final results, which are called the energies from the Tthree-

dimensional caloulation.

———— -
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CHAPTER 3
CALCULATIONS PERFORMED

Calenlations have been performed on Li+ in KC1, a
representative system exhibiting off-center behavior.
Calcorlations performed entirely within the classical shell model,
using the -~omputer program HADES, will be presented first. Then
calculations performed with an Unrestricted Hartree-Fock cluster
cobed lod within a classival shell-model lattice, using the

computer program ICECAP, will be presented.
3.1  HADES -Generated Potentials

Catlow et. ... have o Ionlat=d the equilibriaom position
for displacements along the <100>, <110>, and <111> directions
for Li' in KC1 and related systems.  We have extended their work
by mappinrg out the potentijial =ez2n by the Li* for displacements
along these symmetry directions. This mapping was accomplished
by fixing the position of the HADES core for the Li+, leaving the
HADES shell free to polarize. The potentials used for this
calculation were identical to the Type I (Buckingham) potentials
of Catlow et. al. with one exception: the Lit-x’ short-range
interaction we used varied slightly frcm the form used by Catlow

2l., but the difference in results was negligible.

e
it

Calculations were performed at three lattice constants to model
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the effect of hydrostatic pressure on off-center behavior. The
lattice constants used were 3.116 A, 3.105 A, and 3.096 &,
corresponding to strains dr/r of 0.00%, 0.35%, and 0.64%
respectively. The lattice constant of 3.116 A was obtained by
extrapolating measured values to absolute zero(21,46) and the
shell-model parameters used were fit to this value. The
calculated potentials are presented in Tables 3.1A, 3.1B, and

3.1C.

These potentials were then used as input to the programs
DYNFIT and DYNNUC to obtain the energy levels associated with the
nuclear motion. The symmetry direction <111> was fitted exactly.
The one-dimensional calculation was performed with 40 basis
functions, 1. e. harmonic oscillator functions with quantum
numbers through 39. At least 64 three-dimensional basis
functions were used in the three-dimensional calculation, with
enough additional fun=tions included to complete the last
multiplet. The results for 7Li’ for the three lattice constants
are presented in Tables 3.24A, 3.2B, and 3.2C; those for 6Li+ are
presented in Tables 3.3A, 3.3B, and 3.3C. The results gquoted are
for the first three tunnelling multiplets. In some cases states
from the fourth tunnelling multiplet were lower in energy than
some of the states from the third tunnelling multiplet; these

states have not been listed.
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TABLE 3.1A
R R
Li in KC1 rLattice constant = 5.116 A
X V100 V110 V111l
(A {eV) (eV) {eV)
0. ~1.07444 -1.07444 ~1.07444
0.1558 -1.08256 -1.09054 -1.09887
0.3116 ~1.09136 ~1.11038 -1.12567
0.4674 ~1.08563 ~1.10594 -1.12685
0.6232 -1.06012 -1.06844 ~1.09442
0.9348 ~0.93592 -0.87808 -0.93588
1.2464 ~0.70860 -0.56621 -0.73841
1.249516 -0.70580 ~0.56266 ~0.73695
TABLE 3.1B
L3t in KG1  Lattice constant = 3.105 A
X V100 V110 V111
(A) (eV) (eV) (eV)
0. ~1.11852 -1.11852 ~1.11852
0.15525 ~1.12507 ~1.13134 ~1.13671
0.31050 ~1.13084 ~1.14480 -1.15501
0.46575 1.12267 ~1.13549 -1.14826
D.62100 21,00423 ~1.09319 -1.10854
0.32150 ~0.96541 ~0.892173 ~0.93806
1.24200 .0.73011 ~0.56696 ~0.73530
1.245105 ~0.72190 ~0.56327 .0.73381
TABLE 3.1C
Lit in KOl Tattice constant = 3.006 A
X V100 V110 vill
(&) (eV) (eV) [eV)
0. 21.15606 ~1.15606 ~1.15608
0.1548 ~1.16107 1.16569 ~1.16953
0.3096 ~1.164710 ~1.17461 ~1.18057
0.4644 1.15448 -1.1R111 ~1.16750
0.6192 ~1.12400 ~1.11486 ~1.12146
0.9288 ~0.99075 ~0.90660 ~0.94025
1.2384 ~0.17%080 ~0.56916 ~0.73362
1.24149€ .0.74787 _0.56535 ~0.73212
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TABLE 3.2A

Spectrum from HADES 7Li’ in KC1 Lattice constant = 3.116 A

Symmetry Multiplicity Energy Energy
(1-dim) (full)
(meV) (meV)

Alg 1 0.00000 0.00000

Tlu 3 1.00333 1.23948

ng 3 2.00666 2.38085

A7 1 3.01000 3.69150
2u

A 1 12.70836 12.4191%
1g

T1u 3 13.71169 14.31878

Eg 2 12.70836 16.392985

T 3 14.71502 16.46385
2g

T2” 3 13.71169 17.57417

A ? 20.37060 21.20711
2u

T 3 18.36726 22.985823
29

Tlu 3 18.36393 23.66323

Tlg 3 19.36726 25.74398

Eu 2 20.37060 26.43655

Absolute energy for ground state:

1l

(1-dim calculation) -1.10862038 eV

-1.10445106 eV

(full calculation)
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TABLE 3.3A

. Lt
Spectrum from HADES §Li in KC1 Lattice constant = 3.116 A

Symmetry Multiplicity Energy Energy
{1~-dim) {full)
(meV) {meV)

Alg 1 0.00000 0.00000
Tlu 3 1.35553 1.68724
ng 3 2.71106 3.230867
A2u 1 4.06659 4.91045
Alg 1 13.72994 13.52077
T1u 3 15.08547 15.86670
Eg 2 13.72994 17.71742
3 16.44099 18.47260

2g
T2u 3 15.08547 19.30920
Ao‘J 1 23.16726 24.31652
T 3 21.811713 25.98957

2g
Tlu 3 20.45620 26.53393
3 21.81173 28.98501

1g
E z 23.16726 29.92402

Absolute energy for ground state:

(1-dim calculation) -1.10742789 eV

(full calculation) -1.10308212 eV
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TABLE 3.2B

 +
Spectrum from HADES 7Li in KC1 Lattice constant = 3,105 A&

Symnetry Multiplicity Energy Energy
(1-dim) {(full)
{meV) ({meV)
Alg 1 0.00000 0.00000
Tlu 3 2.06491 2.63369
T2g 3 4.12983 5.07227
AQU 1 65.19474 7.48192
Alg 1 12.49671 12.90000
Eg 2 12.49671 15.58098
Tlu 3 14.56162 15.83729
T 3 14.56162 18.06673
2
T2g 3 16.62653 18.86246
T1u 3 20.09107 26.11011
A 1 24.22090 26.21371
2u
T 3 22.16598 26.57104
2g
Tlg 3 22.15598 29.01482
Eu 2 24.22090 30.65382

Absolute energy for ground state:

it

(1-dim calculatiorn} ~1.13760747 eV

it

(full caloulation) -1.13480878 eV
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TABLE 3.3B

+
Spectrum from HADES 6Li in KC1 Lattice constant = 3.105 A

Symmetry Multiplicity Energy Energy
(1-dim) (full)
(meV) {meV)
A1g 1 0.00000 0.C0000
Tlu 3 2.58874 3.28484
T 3 5.17748 6.32304
2g
A 1 7.76623 9.28258
2u
Alg 1 13.82501 14.46373
Eg 2 13.82501 17.29709
Tlu 3 16.41375 17.98298
T2u 3 16.41375 20.37503
T2g 3 19.00250 21.57985
Tlu 3 22.47613 29.36914
A2u 1 27.65361 30.00528
T 3 25.064871 30.15016
2g
Tlg 3 25.06487 32.80254
E 2 27.65361 34.83988

u

Absolute energy for ground state:

~1.13673195 eV

(1-dim calculation)

-1.13382648 eV

i

{full calculation)
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TABLF 3.2C
Spectrum from HADES TLit in KC1 Lattice constant = 3.096 A
Symmetry Multiplicity Erergy Energy
(1-dim) (full)
{meV) {meV)
Alg 1 0.00000 0.00000
Tlu 3 3.35972 4.07720
T2g 3 6.71945 8.07992
Aﬁu 1 10.07917 11.81300
Alg 1 13.26197 14.60429
Eg 2 13.26197 16.01807
T111 3 16.62170 18.57240
T 3 16.62170 19.948617
2u
T 3 19.98147? 22.63419
2g
T’u 3 22.17439 26.86913
T 3 25.53412 30.68311
2g
A2u 1 28.89384 31.89225
T 3 25.53412 32.58917
lg
2 28.89384 35.54164

Ahsolute energy for ground state:
{1-dim calculation) = --1.16379057 eV

-1.16540975 eV

(full calculation)
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TABLE 3.3C

rom HADES 6Li® in KCI

Symmetry Multiplicity

Alg 1
Tiy 3
Tog 3
Poy 1
Lo 1
£y 2
T, 3
Ty 3
Tyy 3
T, 3
Toy 3
L 1
Ty, 3
E, 2

Lattice constant

Energy

(1

-dim)

(meV)

0.

4

8.

12

14.

14.

18.

18.

22.

00000

.00281

00562

.00843

81755

81755

82036

82036

82317

.77582

.77863

. 78144

.77863

.78144

Energy
(full)
(meV)

0

4.

9.

13

16.

17

21

22.

40.

Absolute eneryy for ground state:

{1-dim calculation)

(full calculation)

[

it

. 00000

83966

56692

.96878

41344

.96893

.07897

60192

.B1806

.11480

.5899h

.12143

18444

~1.16466578

~1.1629324¢

eV



49

To test the effect of changing the direction of exact fit,
calculaticns were also performed for rLit using the data from
lottice constant 3.116 A as fitted exactly along the <100>
direction. The results of this test are presented in Table 3.4.
While this caused results from the one-~-dimensional calculation to
vary by a factor of two, the results from the fuil calculation
differed by only 10-20%. Note that since the minima are located
along the <111> direction, we expect the results to be the most

reliable when this is the direction fitted exactly.

3.2 ICECAP-Generated Potentials

Difficunlties were encountered in attempting to apply ICECAP
to the poblem of ri¥ in xcl. Specifically, HADES had trouble
converyging for certain cases, among which were all the cases
involving Kunz-Klein localization. Thus all the cases for which
numbers have been obtained were calculated using localization by
means of orbitals with restricted spatial range and variational

freedom. These cases are summarized in Table 3.5.

The gquantum-mechanical cluster in each of the cases

X . . .
considered consisted of the Li ion surrounded by its €6 nearest-

neighbor C1~ ions. The basis sets used for each ion were taken

.  + . -
from Huzinaga. (47) For I,i , 4 S Gaussians were used; for Cl1 , 9
S and 6 P Gaussians were used. Basis Set I consisted of just

these functions, and used BHS norm-conserving pseudopotentials to
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TABLE 3.4

Spectrum from HADES  7Li’ in KC1

Symmetry Multiplicity

Mg 1
T,y 3
Tog 3
Ayl 1
Ay 1
Tiy 3
E 2
g
Tog 3
T,, g
T
Ty 3
2g ?
L 1
Tig 3
E 2
u

Lattice constant
Potentials fitted exactly along the <100> direction

Energy
{1-dim)
(meV)

0

2.

15.

17.

15.

19.

17.

26.

28

26.

28,

.00000

01398

.03796

.056594

28251

30149

28251

32047

30149

.44353

46251

.48149

46251

48149

Fnergy
{full)
{meV)

0]

1

13.

15.

16.

17.

17.

23.

24.

24.

26.

Absolute energy for ground state:

(1-dim calculation)

(full calculation)

n

-1.10094867 eV

-1.10538334 eV

.00000

.03885

.98211

.1576%

39703

33606

12112

05272

14770

10798

7.15310

71604

73500

14873

3.1186 A
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replace the cores of the c1 ions.(40) In Basis Set II no such
pseudopotentials were used, also an additional Gaussian was

placed at the midpoint of each Li* - c17 bond.

The BADES potentials used were the same potentials used in
the HADES-only phase of this investigation, that is, Buckingham

potentials from Catlow et. al.(48)

All the cases reported were run with a lattice constant of
3.116 &. In the calculation listed as "Mobile QM Region" the
overall minimization routine within ICECAP was allowed to vary
the positions of the guantum mechanical cluster; this calculation
used considerable amounts of CPU time. To reduce the amount of
CPU time reguired, other calculaticns were performed with the
quantum-mechanical cluster fixed in the positions given by the
HADES-only run from the first part of this investigation. The
UHF-only run was performed in this same manner; the same nearest-
neighbor guantum-mechanical cluster was embedded in a charge
array extending out to the 15th shell of neighbors. The quantum-
mechanical cluster had positions as determined by the HADES-only
calculation; the point ions in the charge array were all at the

perfect-lattice positions.




52

Due to constraints on available computer time, the complete
potential predicted by UHF or ICECAP could not be mapped out;
only the barrier heights along the <100> and <111> directions
could be determined. Hence, DYNFIT and DYNNUC were not used in

these cases.

A e
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Calculation

<Q00™

<100>

calculation

<Q00>

<100>

<000 >

53

TABLE 3

in KC1

HADES alone

= ~1.07444 ¢V

= -1.08536 eV

~1.12885 2V

It

ICECAF

Basis set I
rized QM Region
= -0598,0567683
= _2597.857179

= -2597.45252

TCECAF

Basis set 11
Fixed QM Region
- -748RG.10010
= ~74885.79120

- -7488%.12722

.5

eV

eV

eV

eV

eV

Lattice constant

UHF alone
Basis Set II

3.116 A

E = -76154.670 eV

E = -76154.736 eV

E = ~76154.924 eV
ICECAP

Basis set I

Mobile QM Region

E = ~2598.51849 eV

JONNE -2538.40526 eV

. L+
with L3 at

<100~

<111>

Configuration

Q. 0. 0.

configuration

0.15% 0. Q.

configuration
0.15

0.15 0.

lattice constants.

. » +
with Li at

lattice constants.

. .+
with L1 at

1% lattice canstants.
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CHAPTER 4
CONCLUSIONS

The goal of this study has been to construct a theoretical
model for an isovalent substitutional impurity in an ionic
crystal. Two approaches to the construction of such a model have
been presented, one using the classical lattice program HADES to
gJenerate the needed potentials, and the other using the embedded-
v luster program ICECAP. Conclusions from each approach will be
presented separately, followed by conclusions pertaining

specifically to the programs DYNFIT and DYNNUC.
4.1 Conclusions from HADES Work

A classical shell-model approach with interactions defined
by Buckingham potentials has been shown to reproduce well the
qualitative behavior of Li+ in KC1 and other off-center systems.
That is, it predicts off-center behavior in the systems known to
be off--center, and similarly for on-ceuter behavior with a few
exceptions, and it successfully predicts that slightly decreasing
the lattice constant will drive off-center systems back on-
center. The two serious discrepancies reported by Catlow
et. al.(21) were predictions of off-center behavior for Li' in
RbCl and F  in Nal where on-center behavior has been indicated

experimentally; they suggest further experimental investigation
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is warranted in these cases.

But that is not all we can learn from the paper of Catlow

We can compare the difference in energy between on-

et. al.

irt

~enter and off-center positions they report to the barrier
heights calculated from measured absorption lines Ly Devaty and

Sievers. (22) The results from Devaty and Sievers for the case of

zero strain are that the barrier height is 7.4 meV for their fit

to the form Ax? + Bx4 and 9.9 meV for their f.t to the form

-Cx2
Ax? + Be Cox . The average of the results for the three symmetry

directions from Catlow et. al. is 16 meV. Computing the

tunnelling splittings provides & more stringent test of the form

of the potential generated by HADES. Thus we compare the

multiplicity-weighted average splittings

(as defined in Figure 1.1) calculated from the HADES data at

3.116 A:
7A = 1.19485 meV
§A = 1.26201 meV

to experimental data of:
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0.102 meV

N
"

0.143 meV

(o3
[
1l

from specific heat measurements(1%) and

7A = 0.095 meV
§A = 0.100 meV
from phonon spectroscopy.(14) We note that the discrepancy in

splittings is around a factor of ten, significantly worse than

the factor of two discrepancy in harrier heights.

We are also interested in calculating the Grueneisen
parameters at zero strain, as defined in Chapter 1. Calculating
these from the multiplicity-weighted average splittings at
3.116 A and 3.105 A, we obtain & = €6 and 7" = 60. This can be
compared with the best experimental determination, by Dobbs and
Anderson, (17) of = 150 independant of isotope. It can also be
compared to a naive calculation using the model of Gomez
et. al.(17,4) In this model the potential is taken to consist of
isotropic harmonic oscillator potentials centered at the <111>
minima (edge tunnelling dominating). It is assumed that small
changes in the lattice parameter change only the separation

between wells and not their oscillator frequencies wp. The

splitting can then be written:




3
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A = 2x5S({Xg )K

for 2x; the separation hetween wells along a cube edge, K a

parameter independant of X3, and S(x¢) the overlap integral
between wavefunctions on wells connected by a cube edge:

- 2/

S(Xo) eMUJO(XO) /A

. St ; . .
where M is the mass of the Li ion. Assuming %y is proportional

to the lattice constant, the logarithmic derivative can then be

computed:

T o= -d(1nA)/d(1nV) = -3d(1nA)/d(1nxg) = 3[2Mug (%0 )2 /% - 1]

Evaluating w; from the observation of a second tunnelling
multiplet at about 4.5 meV above the first tunnelling multiplet,
taking %X = 0.7 A frem in estimate of 1.2 A for the distance from
the origin to the minimum, (3) and using M = 7 u, we obtain

= 19. Thus the HADES data does significantly better than this

naive model at predicting the Grueneisen parameter.
4.2 Conclusions from ICECAP Work
Consider the barrier heights as given by the UHF and ICECAP

calculations with basis set II. The barrier heights (for V, the

one~dimensional potential) from the UHF calculation are
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<100> 309 meV
<111> 324 meV
and those from the ICECAP calculation are
<100> 66 meV
<111> 85 meV
which may be compared with the previously cited fits to

experimental data of 7.4 meV or 9.9 meV.

We must conclude that UHF and ICECAP in its present form are
unable to match HADES for quantitative prediction of off-center
be .avior for Li+ in KC1, In one sense, that is not surprising,
as the energy differences between the on-center configuration and
the off-center configuration along the <111> direction are on the
order of 30 meV. Noone is claiming that even the component parts
of ICECAP, i. e. HADFES and UHF, are routinely capable of
accuracies on that scale. With extreme care accuracies of a few
“enths of an eV can be obtained with UHF when a correlation
correction (MBPT) is applied. On appropriate classes of problems
HADES may also be capable of accuracies on that order.
Nevertheless, for this particular system we might hope that the
random errors in both methods as used within ICECAP and in the
interaction between them would remain constant. The main reason
these errors might be hoped to remain constant is that the
electronic wavefunction is in its grouné state throughout this

problem, and the changes in the wavefunction are not drastic.




59

Approaching the matter from another perspective, both HADES
and UHF in principle include all the essential physics for a
qualitative prediction of off-center behavior. Specifically,
they each model Pauli repulsion and attraction due to induced
polarization. The shortcomings of each model are different. The
customary way of constructing an UHF model for this problem would
be to use a point-charge array for sites not treated gquantum-
mechanically and ignore relaxation and polarization of these
sites. HADES picks up this relaxation and polarization, but
cannot model the changes in the interactions near the origin due
tu relaxation of the electronic wavefunction. Thus a combination
of the two methods along the lines of ICECAP is an obvious way to
attempt to overcome the shortcomings of both methods. With that
in mind we may conclude that the features neglected by UHF are
more important than those neglected by HADES for obtaining
numerical predictions. As for why ICECAP is worse than both
models taken separately, that can probably be ascribed to a
mismatch between the HADES and UHF interactions. 1If the
effective interaction between the quantum mechanical sites is
different than the HADES interactions, a nonphysical strain will
be observed at the boundary hetween the two regions. Since no
attempt was made to ratch the HADES and UHF interactions, it is
easy to assume that such an unphysical‘strain was affecting these
calculations, causing ICECAP to give numerical results less
reliable lhan either of its constituent models taken separately.

Nevertheless, in conclusion, I suggest that when ICECAP is better




60

understood, and a way to insure consistency between the HADES and
UMF portions of ICECAP is well developed, that this problem be

taken up again as a test case because of its extreme sensitivity.

4.3 Conclusions Pertaining to DYNFIT and DYNNUC

The computer programs DYNNUC and DYNFIT seemed to work quite
well within the approach used in constructing them. If a more
efficient way of evaluating the Hamiltonian matrix elements for
the three-dimensional calculation could be found, that would
allow more three-dimensional functions to be used, which would
improve convergence in the higher tunnelling multiplets. Beyond

that, two improvemsnts in the approach could be contemplated.

First, since three arbitrary functions are used as input to
DYNFIT, one might consider whether it might generate a third
independant function. Thinking along the lines of expanding the
discrepancy between the form Vg (x) + Vg(y) + Vo(z) and the exact
function in angular momentum functions and recalling that the
first functions consistent with cubic symmetry following % = 0O
are 8 = 4, leads one to suggest adding a term Vg(r,ﬁ,¢). This
might be expected to be especially important for systems with
F  off-center, as the minima in these s?stems have been
determined experimentally to lie along the <110> direction.

Hence the approximation Vg (x) + Vg(y) + Vo {2) is not as good a
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starting point for such systems,

Second, consider a way to take into account the motion of
the nearest-neighbor nuclei. Let the effective coordinate g
denote a spherically symmetric displacement of the nearest-
neighbor nuclei from the configuration of minimum energy. The

Hamiltonian then becomes:

Ho= Ho(F) - 5= 92 + V(qg.F)
q

Pick V(qg,r) harmonic in g:

V(g,r) = % MqQZ(?)

Define Q2 (0) to Ye (Qg)2 and expand the wavefunction associated
with g in harmonic oscillator functions of frequency Q. Then

the potential energy matrix element simplifies to:
1 - — -
2 My wr)ez(ri|v'(r)> <wlg)lqg?lv'(q)>

The matrix element involving g is trivial from properties of
harmonic oscillator functions. Choosing QZ(;) = (g )2 will leave
the level structure unchanged, so to make this calculation
physically significant we must include some non-constant term.

An obvious choice is:

02 (T) = ()2 (1 + furz)

where a is determined from 02(;) evaluated at the stable minimum,
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Note that there is no obvious reason the o so defined must be
positive. Since r2 = x2 + y2 + z2 this form will allow the
matrix element <w(?)]02(;)}w(;)> to factor into one-dimensional
integrals, so it will be computationally very tractable. The use
of only the basis function n=0 for the wavefunction in g ought to
be sufficient, but n=2 might be included, if only to check

convergence of the series.
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APPENDIX

Mathematically rigorous derivation

fous Honzo-Hledn localication eguations
Tt
<
P F, VM + v
A A A
21
- S|
R Z “ ‘I‘i (:':/ k'; :
IET j= . ~c : Y
Lo PO v ‘i A and
i W J in W

and consider the exact solutions to the eguation

S - —_
(Fp t Vp t Vg~ pTe)0, = 7,0,

where T is an arbitrary Hermitian operator.

We again denote the cluster by A, and we define

Py = L ¢ (%) o7 (%)
i=occ
i in A

We recognize that for any k in the occupied snace

PO = &) and P = 0y

and choose T to satisfy

]

T = Va Pa

Pa

Then the eguation we are solving becomes
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M S 3
+ + V - . = . A
(FA VA A ppAVA vo)tbl ™o

which can be rearranged into the form

s s _
A~ PaVa Pl = T0,

(F i

M
+
A + VA \Y

1

et v

which is the same equation derived approximately in the bLody of

this paper.




10.

11.

12.

13.

14.

16.

M.

@

65
REFERENCES

H. Harding, A. H. Harker, P. B. Keegstra,
R. Pandey, J. M. Vail, and C. Woodward,
Physica 131B, 151 (1985).

Barry Kunz and David L. Klein, Phys. Rev B 17, 4614
(1978) .

Narayamurti and R. 0. Pohl, Rev. Mnd. Phys. 42, 201
(1970) .

Gomez, S. P. Bowen, and J. A. Krumhansl, Phys. Rev.
153, 1009 (1967).

J. Norgett, Harwell Report No. AERE - R.7650
(1974).

M. Vail, A. H. Harker, J. M. Harding, and P. Saul,
J. Phys. C 17, 3401 (1984).

R. Saunders and M. F. Guest, Rutherford Laboratory
Reports, ATMOL 3 (1976).

B. Kunz, University of Illinois and Michigan
Technological Jniversity, unpublished.

C. Baumann, Bull. Am. Phys. Soc. 9, 644 (1964).

S. Sack and M. C. Moriarty, Solid State Commun.
3, 93 (1965).

Lombhardo and R. 0. Pohl, Phys. Rev. Lett. 15, 291
{1965) .

E. Byer and H. S. Sack, J. Phys. Chem. Solids
29,677 (19868).

W. Alderman and R. M. Cotts, Phys. Rev B 1, 2870
(1970} .

C. Hetzler and D. Walton, Phys. Rev. B 8, 4801
{1973) .

P. Harrison, P. P. Peregsini, and R. 0. Pohl,
Phys. Rev 171, 1037 (1968).

M. Kahan, M. Patterson, and A. IT. Sievers,
Phys. Rev. B 14, 5422 (19176).




17.

19.

20.

21.

22.

24.

27.

28.

29.

66

N. Dobbs and A. C. Anderson, Phys. Rev. B
(in press); J. N. Dobbs, Ph.D. thesis
(University of Illinois, 1985) unpublished.

R. Case, K. 0. McLean, C. A. Swenson, and
G. K. White, in Thermal Expansion, M. G. Graham
and H. E. Hagy, (eds.), (AIP, New York, 1971)
p. 183.

D. Wilson, R. D. Hatcher, G. J. Dienes, and
R. Smoluchowski, Phys. Rev. 161, B88 (1967).

J. Quigley and T. P. Das, Solid State Commun. 5,
487 (1967); Phys. Rev. 164, 1185 (1967);
Phys. Rev. 177, 1340 (1969).

R. A. Catlow, K. M. Diller, M. J. Norgett,
J. Corish, B. M. C. Parker, and P. W. M. Jacobs,
Phys. Rev. B 18, 2739 (1978}.

P. Devaty and A. J. Sievers, Phys. Rev.
B 19, 2343 (1879).

Born and R. Oppenheimer, Ann. Phys. (Leipzig)
84, 457 (1927).

Barry Kunz and David I.. Klein, Fhys. Rev B 17, 4614
{1978); A. B. Kunz and P. B. Keegstra,
“An ICECAP User's Guide to Kunz-Klein
Localization Potentials", unpublished.

J. Dick and A. W. Overhauser, Phys. Rev. 112, 90
(1953); W. Cochran, The Dynamics of Atoms in
Crystals, (Edward Arnold, London, 1973).

A. Bethe and R. Jackiw, Intermediate Quantum
Mechanics, (Benjamin/Cummings, Reading, Mass.,
1968), p. 51 ff.

Schroedinger, Ann. Phys. (Leipzig) 79, 361, 489;
80, 437; 81, 109 (1926).

R. Hartree, Proc. Cambridge Phil. Soc. 24, 89, 111

(1928); V. Fock, Z. Physik 61, 126 (1930);
J. C. Slater, Phys. Rev. 36, 210 (1930}.

Koopmans, Physica 1, 104 (1933).




30.

31.

33.

34,

35.

36.

37.

38.

39.

40.

41.

42.

67

0. Lowdin, "The Projected Hartree-Fock Method, An
Extension of the Independant Particle Scheme" in
Quantum Theory of Atoms, Molecules, and the
S$01id State, P. 0. Lowdin, (ed.),

{Academic Press, New York, 1966) p. 601,

C. J. Roothaan, Rev. Mod. Phys. 32, 179 (1960).

F. Boys, Proc. R. Soc. London Ser. A 200, 542
(1950) .

F. Marshall, R. J. Blint, and A. B. Kunz, Solid
State Commun. 18, 731 (1976); Phys. Rev. B 13,
3333 (1976) .

Adams, J. Chem. Phys. 34, 89 (1961); T. L. Gilbert,
in Molecular Orbitals in Chemistry, Physics,
and Biology, edited by P. 0. Lowdin and
B. Pullman (Academic Press, New York, 1964).

0. Lowdin, Adv. Phys. 5, 1 (1956); A. B. Kunz,
"Total Energy Algorithm for KKLP",
unpublished.

Harding and A. H. Harker, private communication.

Csizmadia, M. C. Harrison, J. W. Moskowitz,

$. Seung, RBR. T. Sutcliffe, and M. P. Barrett,
Quantum Chemistry Program Exchange 11, 47
(1964); D. K. Neumann, H. Basch, R. L. Kornegay,
L. C. Snyder, J. W. Moskowitz, C. Hornback, and
S. P. Liebman, Quantum Chemistry Progranm
Exchange 11, 199 (1971).

%]

¢C. Phillips and L. Kleinman, Phys. Rev. 116, 287
(1959).

B. BRachelet, D. R. Hamann, and M. Schluter,
Phys. Rev. B 26, 4199 (1982).

B. Keegstra, University of I1llinois and Michigan
Technological University, unpuolished.

M. Stoneham, (ed.), Harwell Report No. AERE-R.9598
(corrected) (1981).

R. A. Catlow and W C. Mackrodt, (eds.), Computer
Simulation of Solids, (Springer-Verlag, Ferlin,

. _




. AD-A174 012 msﬁ;s

UNCLASSIFIED
s

END

EE

P

)

RANS IN
2 12-31-1{—
F.

ICAL
/G /3

T =T
v

NL




“\“’L——g—?‘ E 'EE \\\\\;:z
(e

=" pe

25 it s

NATIONAL BUREAL OF STANDARDS 1963




o

43.

44.

45.

46.

47.

48.

68

Schroeder, Solid State Commun. 4, 347 (1966);

C. R. A. Catlow, M. Dixon, and W. C. Mackrodt,
"Interionic Potentials in Ionic Solids" in
Computer Simulation of Solids, C. R. A. Catlow
and W. C. Mackrodt, (eds.), {(Springer-Verlag,
Berlin, 1982).

F. Mott and M. J. Littleton, Trans. Faraday Soc.
34, 485 (1938).

J. Norgett and R. Fletcher, J. Phys. C 3, L190
(1970).

B. Ghate, Phys. Rev. 139, Al1666 (1965).

Huzinaga, (ed.), Gaussian Basis Sets for Molecular
Calculations, (Elsevier, Amsterdam, 1984).

R. A. Catlow, K. M. Diller, and M. J. Norgett,

J. Phys. C 19, 1395 (1977).




e o

69

VITA

Phillip Brooks Keegstra was born in Paterson, New Jersey on
23 July, 1959. He graduated from Eastern Christian High School
in North Haledon, New Jersey in 1977. He attended Calvin College
in Grand Rapids, Michigan from 1977 to 1982, receiving a B. A. in
Math and a B. A. in Physics. In May, 1982 he enroclled in the
Department of Physics at the University of Illinois at Urbana-
Champaign. From May, 1982 to May, 1983 he was a departmental
fellow. He served as a graduate teaching assistant during the
1982-1983 academic year. From May, 1983 to December, 1985 he
served as a research assistant. In January., 1984 he received the
M. S. degree in Physics. From January, 1986 through April, 1986
he served as a consultant to the Department of Physics at
Michigan Technological University in Houghton, Michigan. He is a

member of the American Physical Society.







