AD-A173 943 EVALUATION OF THE TOOLPACK FORTRAN PROGRAMMING 1/2
Eﬂglsgﬂﬂgﬁz(u) NAVAL POSTGRADUATE SCHOOL MONTEREY CA
UNCLASSIFIED F/G 9/2

M

.. SN AL ey v)
s e L ERAY hh-.-..v-..\ l-.- o \\\.-\\.
EAERAR B A0 L S S LA Y 2 F-Pr a .\\\\\ AR
J Il\bf_ h-.; L9 Y “1 P.; -\-nfu f-’\lv. 1 %
A N
1
4
)
3
.. ol ol O & «
. A S0l =l o2 5
- = === == == — c :
. = o= —= 5
. o = = 28
o _ R | H | 2 <
mE o= ;e 4 g%
0| Q) <l - '3 - m m
FEEFETI A | 2
u o S
N A
» L 1 .
; —_) 52 ;
. o~ g3 _.‘
3 . . «
e —— — 27 |
. —— — = -
4‘ | ,, r. |
R 4 -
“. .
4 |
‘ .
| A
0
:
e
3 |
; ...a
W ayh
K| ...
- ,...
. W
& |
| k
, Y..l
by -
| » B
) .
* .
Wll .{\f
» .\
« &
. (4

b

-
e

i
¥
¥
)
&
\
{

AD-A173 943

NAVAL POSTGRADUATE SCHOOL

Monterey, California

DTIC

ELECTE
NOV 1 7 1388

D

THESIS

EVALUATION OF THE TOOLPACK
FORTRAN PROGRAMMING ENVIRONMENT

by
Kim, Jung Sik

June 1986

Thesis Advisor: Gordon H. Bradley

Approved for public release; distribution is unlimited.

'
n"’. :

P
oD,

r
LY
N H

»
Y

v
ted /S,

\"-’ o &

P A AL

h)

AT Y

.
|
3

- T ..
AN U
AN '_‘- e« e
1] s o«

.« 0 -

e e

PF I N A RS

N
v
]

4

" . v < \ > ai e A Ak Bl Al Aed * aiS el S S Bl A SN
A) AR B BIORA AN DA A e AR At S e 2 R e A A it bt aie i S ke g4 [Saclta Sy S nyto ity A R SRR S Bl S A A e A A PR A .

(AAA
. [§ I3
.l ‘l ..l .
PN

- S
SECURITY CLASSIFICATION HIS PA | T

>, Ko
o REPORT DOCUMENTATION PAGE t,:",.'.
"- — Al
- Ta REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS ah
. UNCLASSIFIED P
. 2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT u_‘_.zl
Approved for public release; pa
» 2b DECLASSIFICATION / OOWNGRADING SCHEDULE distribution is unlimited e
») "-'
. A
- 3 PERFORMING ORGANIZATION REPORT NUMBER(S) § MONITORING ORGANIZATION REPORT NUMBER(S) »j:-j.:
vk
e L
' 6a. NAME OF PERFORMING ORGANIZATION 6o OFFICE SYMBOL | 7a. NAME OF MONITORING ORGANIZATION -
Naval Postgraduate School (it applicabie) Naval Postgraduate School
2 52
. - Y
. 6¢. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code) ‘ .
e Monterey, CA 93943-5000 Monterey, CA 93943-5000
. 8a NAME OF FUNDING / SPONSORING 8b. OFFICE SYMBOL | 9. PROCUREMENT INSTRUMENT (DENTIFICATION NUMBER
ORGANIZATION (If apolicable)
<
' 8¢ ADORESS (City, State, and ZIP Code) 10 _SOURCE OF FUNDING NUMBERS
rl PROGRAM PROJECT TasK WORK_UNIT
‘e ELEMENT NO |NO NO ACCESSION NO
"1 TITLE {Include Security Clamfiuuon)ﬁNCLASSIFj[ED
o Evaluation of the TOOLPACK Fortran Programming Environment
e 12 PERSONAL AUTHOR(S)
‘ Kim, Jung Sik 4
£ COUNT - ;
] . TYPE OF R RT 13b TIME COVERED 14 DATE OF REPORT (Year, Month, Day) 'S PAG T
- I\i%lstérs EI?gesrs FROM 10 1986 June 20 - .::.
-‘_- ’h-'.\.
C 16 SUPPLEMENTARY NOTATION r\._\.
s, AR
i LA
:::_‘ Potas
< i COSATI CODES 18 SUBJECT TERMS (Continue on reverse of necessary and dentufy by bilock number) 8 f--‘
; 5o GROUP 5UB-GROUP TOOLPACK, Programming Environment, Software .
Library M
:: "9 ABSTRACT (Continue on reverse if necessary and identify by block number)
" - » - .
ot TOOLPACK is a programming environment for the development of medium-
. size Fortran programs by scientists, engineers and mathematicians.
> TOOLPACK was developed by a confederation of computer scientists at
- several government labs and universities in the United States and
Great Britain; it was first released in 1985. This thesis is an
- evaluation of TOOLPACK. It includes a discussion of the installation
~° on the VAX/YMS, benchmarks of tool performance, and a comparison of
N the users' needs, TOOLPACK goals and TOOLPACK capabilities.
. 20T STMIUTION/ AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
% 03 NCLASSIFEOUNUMITED (T saMe as #eT (Jomic users | UNCLASSIFIED
v 2l NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE {Include Area Code) 22(5 (%FBF"SE SYMBOL
o4 Prof. Gordon H. Brdley 408-646-2359 e
3 DD FORM 1473, 84 MaR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF “wiS PACE
; :; All other editions are obsolete

=

Chat S We |

-

A A A A

.-

. ce ' - - . ! . 0 4. -
AL L YN RV et te® Mt SN it e Sl LR AL U R S S it S U LR LA e R I T e

Approved for public release; distribution is unlimited.

Evaluation of the TOOLPACK Fortran Programming Environment

by

. Kim, Jung Sik
Lieutenant, Republic _of Korea Navy
B.S., Korea Naval Academy, Jin Hae, Korea, 1979
B.S., Inha University, Inchon, korea, 1983

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE
from the

NAVAL POSTGRADUATE SCHOOL
June 1986

Author:

Approved

Lum, Chairman,
of Computer Science

e T. ar
Dean of Information and PolicC iences

P g N e e e

M - - PELACRICR RS
I PEP 0PN NN I RPN SRIT AN §

-3

2
’
]
»

PN At
) A% ‘-._.\.
LigF A AR €
CoA AN N,
/.4

T)
4
UM

WA
.

3

el

s,

Pl
CURRR B e
.

It S g Nl)
o
NN L N
NN .
2a 2 s a2

B
Y3
f{,

a0 1Y g0 gos g’ e QLWL s, e g Yl g v

-
.3 v ¥
-
2

e

Ay
n’:’l-a"

F"'

-
l“ l
[}

i
‘. ﬁ - o]
\ '.'-:'.::.
.
i
E N
ere
ABSTRACT !
.
- TOOLPACK is a programming environment for the develop- Hx
3 “-. .'-.
D ment of medium-size Fortran programs by scientists, engi- ;13;

g

neers and mathematicians. TOOLPACK was developed by a

[
! confederation of computer scientists at several government i}Qi'
o, Pos
> labs and universities in the United States and Great ;;j;
9 L
N Britain; it was first released in 1985. This thesis is an ,'{'3:',
“ - i
evaluation of TOOLPACK. It includes a discussion of the »Fata
y installation on the VAX/VMS, benchmarks of tool performance,
) and a comparison of the wusers' needs, TOOLPACK goals and
: TOOLPACK capabilities.
\
-F
o
’ ;
. T
.‘ A 1
Lo
3 Accesion For \ —~“§ :
: | S -
NTIS CRA&I 9 | -
) DTS TAB 0 l o
. Unannrou:.oed vl | ‘
N Justhcativn) ! o~
S— e S LI D » e
! ~
| CN
By N
Dist ibutio:n | |
' :\",'~;.:|‘;:.t)i|.-t;m’.“tx—\!es:‘ ‘
h Dist }A'J;xt:;(p;z;:!'. or 1{
. i \ .l
-
- i L |

3 { - ———

TABLE OF CONTENTS

I. INTRODUCTION .
THE IMPORTANCE OF FORTRAN IN SCIENCE,
ENGINEERING AND MATHEMATICAL FIELDS .
B. PROGRAMMING ENVIRONMENTS .
1. Some Programming Activities
2. ggme Functional Asgects of Programming
pport Environments
II. OVERVIEW OF TOOLPACK .
III. METHOD OF EVALUATION .
A. INSTALLING TOOLPACK .
B. RUN-TIME COMPARISON
C. COMPARISON OF THREE ASPECTS
Iv. GOALS FOR TOOLPACK .
V. MATHEMATICAL SOFTWARE : CHARACTERISTICS
PROGRAMMERS, AND PROGRAMMING ENVIRONMENTS
A. DEFINITIONS
B. PROGRAMMERS
C. LANGUAGE . e e e e e e e e e e e e
D. APPLICATION DOMAIN AND NEED FOR EFFICIENCY .
E. PROGRAMS .
1. Size .
2. Contents .
3. Use of Extensions
4. Programming Style
F. DEVELOPMENT ENVIRONMENT
1. The Program Library Concept
2. Tools
G. PORTABILITY
4
"'_. o u';._\- ;.A_.-s.’ et PRIV S S ‘\:,-.'i_-.(--l_-._-. ey

11

11
12
14

20

23

25
25
26
26

28

30
30
31
33
34
35
35
36
37
37
37
37
39
40

.-
)
!
LY

CYLIC O AN AT s e

- _ -
A

b\

.

vy
.

P e - ‘.f'v':i":r'ir"rf".“;"l")";'..:'.'-',"‘_ s ." ..’ ~ . -" n.‘

et

RN, SO

Y

, e Ty Y VW,
IR AL)

AN

VI.

VII.

VIII.

IX.

X.

H. HUMAN ASPECTS AND PROGRAM TECHNOLOGY .

CONFIGURATION OF TOOLPACK

A. THE TOOLPACK TOOL INTEGRATION CONCEPT.
B. THE FILE SYSTEM. e e e e e
C. THE VIRTUAL MACHINE (TVM) OF TOOLPACK

INSTALLATION ON VAX/VMS

CAFABILITIES OF SYSTEM AND TOOLS .
A. GENERAL.

B. EVALUATION AND OPERATIONS PROCEDURE UNDER
VAX/VMS .

1. ISTLX (Fortran=-77 scanner).
2. ISTYP (TOOLPACK Parser)

3. ISTPL (Pollshlng tool) /ISTPO (Optlon

File Editor)
4. ISTPT (Precision Transformer)
5. ISTAL (Documentation Generation Aid)
6. ISTAN (Execution Analyzer)

EVALUATION .
A. COMPARE USER NEEDS TO TOOLPACK GOALS .

B. COMPARE TOOLPACK GOALS TO ITS
CAPABILITIES

C. COMPARE USER NEEDS TO TOOLPACK
CAPABILITIES. . .

D. COSTS VERSUS BENEFITS

CONCLUSIONS

APPENDIX A: VAX/VMS COMMAND FILE (EXAMPLE FOR

BENCHMARK TE

APPENDIX B: USEFUL COMMAND FILES .

1. ISTDC
2. ISTFD
3. ISTEP
4. ISTLX
5. ISTPL (Simple Method)
5
----- N L L L TR L A e L e L e

-~
A

41

43
43
43
45

49

51
51

53
54
56

59
63
68
69

75
75

77

79
81

83

85

86
86
86
87
87
88

U ARGLOEAL Mt o0 AL 1SS K AL ALY AL AL a0 A A N A A N N A AR
.

The output of SYMBOL = STAND command . . 108 y-%};
The output of XREFERENCE command 109
The output of FULLXREFERENCE command . . 110

» o k
y
6. ISTPL (Complex Method) 88 AR
7. ISTPT (Simple Method) 89 S
8. ISTPT (Complex Method) 90 t}.'.ﬂ,
9. ISTID . « « « v v e e e e e .91 ”‘,‘:i;:
10, ISTVS & « v v v e e e e e e e e e 91 ooy
11. ISTYE « v v v v v v v o o« o « « « 92 . @fih
12 ISTYP .+« v« v v e et e e e e e . 92 b
APPENDIX C: THE RESULTS OF RUNNING IN ISTPL 93 ,\
1. The Source Program for Testing 93 :Eﬁ%
2. The Output of Polished Program(Simple ,
Method) 94 R
3. The Output of Polished Program(Complex e
Method)« S5 e
4. The Output of Polished Program(wWith S
Errors) 0. .. 97 P
5. The Output of Polished Program 99 5 o
APPENDIX D: THE RESULTS OF RUNNING IN ISTPT 101 S
1. The Output of Precision Transformation . 101 ;L N
| 2. The Output of Precision Transformation . 103 fiff“
APPENDIX E: THE COMMANDS AND OUTPUTS (ISTAL) 105 EE",::
1. ISTAL COMMAND 105 et
2. The output of CALLGRAPH 106 A
3. The output of COMMON command 106 ngy;
4. The output of WAPNING command 107 k%ﬂ?;
5. The output of SYMBOL = TEST command . . 107 ;Eif_
6. AN
7.
8.

APPENDIX F: THE OUTPUTS OF ISTAN 111

1. Fortran-77 SOURCE PROGRAM 111
The Instrumented program execution :533‘
result 0 .. 0oL oo 112 R NASKS
3. The output of LISTING command 113 R
The output of SEGMENT = 2* 115 RN

LA Gt o

LS

115
116
117

. .

?%

The output of TOTALS =

5.

The output of STATIC = TEST

6.

. . . .

The output of DYNAMIC = TEST . .

7.

118

LIST OF REFERENCES

120

INITIAL DISTRIBUTION LIST

VS -

R 2, 07"

WaTa T e ey,

P A i B P g
z;[
L% 4%

LIST OF FIGURES -

The Comparison Aspects « . « « « .« . . . 27 }f?
Sections of the TIE Library 47 i
WATFIV control structure 55 ‘;{

The Flows of ISTLX . . . « « « . « « « 56 N
The Flow of ISTYP « « « « « « « 58 <2
The Flow of the ISTPL (Simple Method) 60
The Flow of the ISTPL (Complex Method) 61 R
The Flows of ISTPT (Simple Method) 66

LCEERR NSNS Y XV YA YN Y s S

© ® O ®OO®OO 0w
O N O WD WD

: i
. The Flows of ISTPT (Complex Method) 67 Ko
" SRS
" VAX/VMS commands (to obtain the outputs of A
A ISTAL) (o obtain the outputs of 69 YN
? .9 ISTAL Operation Procedures 170 oy
.10 The Flows of ISTAN « « v v v v v v . v . 72 o

SN

.11l Operation Procedures of ISTAN (first step) 73 .

»
)
s

P
A
a

.12 Operation Procedures of ISTAN (second step) 74 ﬁf-~

O 0 ® © o
1L

i .1 Memory spaces of each tool 82 ooy
-, e
’ AN
-~ LA
-, i
- A
" PO
" 2N~
S - :.
3 R
AS RN
- N
' o'
': - '-

Zf jﬁt
'~ T
) .
"~ <IN
Po RERRNE
) SRS
) S
"l A
. A \
(a" ;:: T
K -
; i
-.' .~.'--.

. . . . F % & Y v [Y
i PN S R AR A A A R R A A R T R Ve N L adh WA N 0 e P R S R A B

SeT s TMENEA Fataa
XA ey
N
,

LIST OF TABLES

I CPU TIME COMPARISON OF ISTLX 56 Sl
11 CPU_TIME COMPARISON (USING SIMPLE METHOD) OF 2%
ISTPL. o oo o). .. 64

Pallalfs DV B0 1, S FL gy
I‘l
hj

III CPU TIME COMPARISON (USING COMPLEX METHOD) OF
ISTPL « o v v e o e e e e e e 64

Iv CPU TIME COMPARISON (USING SIMPLE METHOD) OF
ISTPT o o v v v o e e e e e e e e e 67

\ CPU TIME COMPARISON (USING COMPLEX METHOD) OF .
ISTPT « o o o v « v v« o v e 0. 68 A

P b WTARNENE N N |

e

25N
% v

.
e

g A Aty
oL

’
- ,
XN

RANEE WL PIVAFRIRE] 7 LR ALTATRERR

* '...“
=
‘ =
s, -
<.
o) o
' :_ ‘
. :'_.:' .
.
-, N
», '-"‘.'.
Lo -
) .
C N
‘- “. --.
t.

LT,
el et e
LI PN
S e

i W EE PP
(4

Bl o Ol SR

ACKNOWLEDGEMENTS

The author would 1like to express my thanks for the
support and guidance given by my thesis advisor, Professor
Gordon H. Bradley, and my second reader LCDR Paul Callahan,
in completing this thesis.

The author would also like to thank the Chairman of
Computer Science Department, Professor Vincent Lum, for the

SCAENEA LS S S P A S ALY .,

x

’
it

use of a lot of memory space in the VAX/VMS system; and to
thank Andrea Mc Donald, systems programmer of the VAX/VMS,
for her expertise and helpful suggestions in the use of the
VAX/VMS system.

Additionally, the author would like to thank Dr. Wayne
R. Cowell, Argonne National Laboratory, for his assistance

PP | AP . T O R

and provision of personal research papers.

Also, the author would like to acknowledge the assis-
tance of Mr. Larry Reed, of the National Energy Software
Center, for his support during the installation of TOOLPACK.

A very special thanks to my wife, Mee Jeong Kim, and my
son, Hak Min Kim, for their patience during these two years.

1
'{ l/'l)' L " .
St e
.I"'A OO

PP
,. "l { {l ”

»
'y ‘e e
[
P
»
.

e e & .
e 2 e

10

it LEOOAMY A AR ARMIKEE G S N a2l R

- .-'
RS NDEPEF VS W I N R Avs

PATAT PN

.................

.‘t’.n'
AN AR A
LR R AR

Ap-Apty Yy te v w7
EXAAAS

0
v
.

I. INTRODUCTION

Computer programs have become an indispensable part of
research, development, and practice in virtually every area
of science, mathematics, and engineering. The development
of software in these areas has all the problems with the
economic production of correct and reliable software systems
that other areas of computer applications have and some
special problems such as numerical precision, and the need
for significant computation, as well as some unique assets,
such as programmers and users with a solid understanding of
mathematics. Below we will argue that the scope of computa-
tions in this area together with a shared set of problems
makes the production of software for science, mathematics,
and engineering a prime candidate for the development of
software tools to lessen the problems and increase the
productivity of programmers working this area.

A. THE IMPORTANCE OF FORTRAN IN SCIENCE, ENGINEERING AND

MATHEMATICAL FIELDS

Wayne R.Cowell and Webb C. Miller emphasized the impor-

tance of Fortran in the science ,engineering and mathemat- BRHAN
ical fields as follows [Ref. 1: p. 3]: e
K

Numerical c¢omputation is a larger proportion of the ’}ﬁj

“y
.
'l

total computing activity than 1is commonly believed. To
illustrate, the Department of Defense, ~for which much
computation is of a numerical nature, operates more than

.l.l
7’
s s

‘llﬁ
'f.

twenty five times as many computers ~as the Internal RO
Revenue Service and the Social Security Administration SNCAL
combined. A study of <the matter led John Rice to

conclude that numerical computation accounts for about
50 % of the computing expenditures in the United States.

Fortran has been the language of choice for scientists,

mathematicians, and engineers for many years. Even through

the development of other languages (for example : Prolog, ?}{y
Pascal, and C-language), its position seems solid. For "
L
e
AT
11
.’
T e e e T e e e e e e e e e e e e T e T e T e e e e - . . NSRS e e N
T N P R .}:-_.‘_.-_\.“.‘..l_\‘_.‘.._. T .-‘\\ NI T ety T e N e e

A0

2

A ‘c ‘-' '- 'I .Iv "

S

LAIAPLINENENE afa s

XX AN

LN

:

example, a survey [Ref. 2: pp. 147-162] of commercially
available project control systems which are widely used in
the construction industry, gave the following data:

¢ Fortran 21 (41.1 %) ’

¢ Cobol 12 (23.5 %)
s Assembler 9 (17.6 %)
¢ others 9 (17.6 %) : several software systems were

composed of more than one language.

Finally, Fortran is viewed by many as an excellent
language for science, mathematics, and engineering computa-
tion. The primary reasons for this view are: the wide
availability of language processors accepting programs
written to the current standard (particularly for advanced
scientific machines); the stability of the Fortran implemen-
tations; the general purpose nature of many of the facili-
ties offered by the language; <the highly efficient object
code, particularly for scientific computation; the wide
availability of high quality programs and subroutine
libraries written in Fortran; and finally, the prevalence of
Fortran in scientific computing environments.

B. PROGRAMMING ENVIRONMENTS

It has been estimated that the cost of producing soft-
ware in the United States in 1980 was between $30 billion
and $40 billion [Ref. 3: p. 17]. Other estimates place the
cost of producing software at between $40 and $200 per line,
depending upon the size and nature of the problem and the
software development team. It seems clear that a major
reason for this high cost is that nearly all of the activi-
ties associated with software production are manual. It has
also been clear for well over a decade that many of the
manual processes could and should be assisted or replaced by
computer supported capabilities. Such computer assistance
invariably has taken the form of software designed to help
humans perform the activities which are necessary in order

12

LT IR IC PR o o e
LI A S e AR S R P
Y

AT SR T PP . S, e Y

for them to accomplish their software related jobs: coding,
testing, documention, transporting, designing and
maintenance.

The software programs created to assist in software
activities have come to be called software tools. There has
been a great surge of interest in creating software tools in
the past ten to fifteen years. Unfortunately there has not
been the expected decrease in the cost of producing software
nor the expected increase in the quality of software
products.

In fact, it appears that, despite the apparent appropri-
ateness of using software to help software people, few soft-
ware tools have been adopted enthusiastically or widely.

The term "programming environment" or "computing envi-
ronment" is often used denote the set of computer-based file
structure, system services (including languages), and system
access methods available to assist the programmer [Ref. 4:
.p. 39).

Recently there has been a rapidly growing interest in
Programming Support Environments (PSEs). While relatively
few such environments actually exist at the present time, it
would appear that over the next few years a number of such
systems will evolve. Although the development of PSEs is in
its infancy it is already the case that it is often very
difficult to compare two proposed or extant systems. One
problem which contributes to this difficulty is the lack of
agreed upon terminology. Another problem 1is the extreme
diversity of functionality which might be desired of or
provided by some PSE.

In the following section, there 1is a discussion of the
various kinds of programming activities which a programming
support environment might support.

13

....................

- Ce - -
A AT AR NS S A RN
VYW YR A A YR " PO >

R

g
[P
- . =
.','1:'1
NP I
e
L4
VL%
I_'.:‘-.'
S
PG
o

N
S S
PR

o e
P
LPL Y T N A A

| ."l";";“" ‘l
- ’n .l
E p]

AN
R -{"'r

."':.".: .‘

]

)
™

»
AT

Lt
1}

IR
]

LR L
[k]
v

ya

s A

.
'y
*

ARR
N

EACIR
‘.

oy

1.

Some Programming Activities
As a preliminary to proposing some terminology and
some comparative axes we will present some paradigms of the
kind of activities which might be carried out during the
life cycle of some engineering projects. We will rely
heavily on pictorial representation of the activities 1in
this section.
1) Revision

Editor

Here the left and right boxes represent text which
is modified by using some editor to, for example, make it
more complete or to correct certain errcrs which have been
discovered.

2) Compilation

| "9

Compiler

14

-."'W.'
s

e

D)

>
Ay
a

[

AL
Ty

4

s

.
Ta

y
l"
2ot .

‘s

‘“%5""
.I"I‘ PN
258,

rre A
a4, 8, 8 8 Ay
SR AR

rr

A

n‘. l'. -.- ..‘ N
S
s
S A

w v,
at -
¥ /TN

M W T
SRR

e s Y

N
PP,

..
'-
NS

- 4

’0’

]

[ACRENTALY

L] .
"
W

| &

RN

HEPROUUCED AT GOVERNHMENT € XPENSE

Here the box represents source text for some collec-

tion P of program entities and the bottom represents object

code.
Another picture~of compilation is

Compiler

Here the box 1labelled A represents the

results

derived by analysis of the program entities (for example, to

determine types, identify common sukexpressions,
relative frequency of paths, or what have you).
Yet another picture might be :

assess

P A G

Target=Vax

Compiler

P |Target=Vax

YUt ;
’?{ _F ;
¥)

.
[y
N L
‘aaa s A a,

Ay
% % %

PRra

.4

e e e
AP ‘f.
Nah Y .'v o ..l o

-
Y,

i
-

NN

‘e ." .'.. ‘r Y
‘:“:‘. ~ N
[ReU I A

a

PR
.

-
2%
«
'

v e v e
INONDA A
X

]

ok /
T |

/s

AP
" |
*’r

'.'.
L)
'y
'y
P ",

?
A

\5." v
e
.l‘l-

"0

Jd'ld! IRETC TR 00 T e 5 I S T T Ja R N N e S
m-\ b AA-f-.n-f\..f\I‘t- l&(\\\ vf\l.‘ \.u.--\ 7 CREAENEY [PLPLRE A A

oAt IEEENRMSCENCYON B AR RO WA S

AR A D 3 M Aol 4 A Y

w.. AN IR AR AN LS M WA gt O B AN Mt e N s T.. .’ ...‘.

' R LR

.“.

v s
v

4

YK GO SN

.
a

~

2 ~ o
- .
3 m % ”
o (o]
D Q 5
v 1 8] y
. e y
0 e ',
P u - g)
3 > H oo
0, <,
2 o o v,
A O Cm MDY
" v 0 .
YR o ’
o o ol o ‘o
0 W Q9 O .
(7] n A t /¢
v o o P v ",
4 T 4 o <] .
2, 0 o, = te .
)) o v -~ [o] "\
Y ot H m =~ 4
0 & n N
0 . & (o} m ;
k= o o, t .
T O ° (=)
% 8 * w2 5 e
— {¥o]
— a. . ~ g A A N
v o o ¥ N
Q P ° Q ~
[T o g
i — N &
4 o 5
» B " Ry
o u w a. >
aQ v '
[§) n e .
o P N
¢ N o
L oA m m -
3] .
o rs Y
[[o] .
o om - =]
0 g o 0 . L g
% P8} M O -~ O -
Ft) Q © Ay H N
TOR o] o 0 ~
v -~ o o] e
- M Lo B TR} .
- A g ~ K ~
0, -~ ~]
E PO Ry
S 5 X
. —_
v oo AP -
-'a
27
-I
"
s
~
15t 343 1N ‘%
—epge- . AGH dd ™ JIIHHTIAOD LY (150N REL L
by ’ LA LA g Cetal e AP M AR " v .-u 4. B_r_ v a . .
ARV Vo va: R PSR SOSODRE AP A | DR YXXORARAA PRI 53

‘_. ".“l -'.

OGELY

’
(i S SR A N

Py

ChiONG
S e,
.t

-

Pl
E
LI

GOVERNMENT EXPEHSE

:
P T]

LAY

<

3

ot

-
D“';"-' AR -

g

Ls LY

I R A P B4

ENCYOO O

‘ _, -
. ‘\
W te et

47,7,

Y

b nObLuc b A

Here we depict the refinement of some collection of
program entities (the upper box labelled P) by some trans-
formation (T). Examples include using preprocessors to
translate from a problem specific language into some stan-
dard high level language, derivation of a procedural speci-
fication from a non-procedural specification, using program
transformation to refine abstract constructs in a wide spec-

trum language, and so on.

5) Aggregate

Aggregate

Here we might be putting together some "system" (S)
composed of components P, @, and R.

At some later time, after revision of R, we might have:

P Q R - R’
Editor
Aggregate Aggregate

SO 0 -3

w

17

St
I T

.

PR

£

PR

A

PN

6) Analyze

'Y
P
Y
"
A3
4
o
) ® Analyzer
.-
AL
P
7
,'.
LA A
-
143 Here the upper box represents some collection of
-
;:3 program entities and the lower represents the result of
» o » .
= - analysis of these entities.
F.7 7) Probe
e s
ok
J:':) .
~F P
-~
:{ @® Probe
I__
- Y
v R
. Here the upper box represents some collection of
:i program entities and the lower represents the results of
& . . I3 . -
- probing these entities during program execution to gather
o various run-time statistics.
2!
'I
-,
v"
<.
N
) 18
e
N
C
n

~ -

’
CRTEEY e . P N . -« - - - - - - . P - LI
U PRI I R N S A SR A oA Ay D40 A ¢
N 2% AN SN R O AR GAG R ST W A S

s, AT ATNTRTE W N T e e Ny LY Ao b DAL A o AR SR A i R e 1 A% A A e, N, S,

i 8) Package e

P
S5
0

C)
L]

-+
\‘.

“ ‘v
(g
>

v A SN

)

"'-‘ <

4'\1'\
BN

X

W

Package

Here we depict the "packaging" of several components

GCOVIT(AMENT ¢ XPLNST
w

(P,. . .,Q) into some derived result (R). Examples include
linking object code preparatory to loading, preparing a
compiling context, and so on.

5 Q) Families

2yt
3

[
.
e

Target C T

s

Target
IBM4431 VAX

e A
Lor |
vy ey

AYNNNY

s

Tt

s

/.

,
L

o

5y
DR A

it
0

v o e

Transformer Transformer

AEAES

ot te

[y

Target Target
IBM4431 VAX

b

Here we depict the specialization of a general
compiler specification (the upper box labelled C) to two
particular compilers (the lower boxes) for, say, an IBM 4431
and a DEC VAX.

|
‘ 19

-'-):'. .o S _*\ TR I S Y .'T\.'l' AR el _ - ._~ - ._- .,'_ ,-_.A- ,-.'_- K

‘l.-..'l
AL AV TRV W HA S WS

e 1V s

A

TR P VT TPV YV TEEETYTY Y ST V7 T W R E EBR AT e e ™ Wy oy W T N N T @ e 10RO

. Oud Sl Al S fadk Sl Sndh S Al R Sadh Solile
AN AR Sl ATLALA A SA S S M AslNee

Another example is provided by the following:

T M T type=COMPLEX
precision=l1
type=REAL
precision=2
Transformer Transformer
type=REAL

precision=2

type=COMPLEX

precision=1

Here we depict specialization of some general mathe-
matical software package (the upper box labelled M) to two
particular packages for specific number types and preci-
sions. We shall speak of the two lower (C) boxes in the
preceding and two lower (M) boxes -in the above as two
members of a family.

2. Some Functional Aspects of Programming Support
Environments

Having armed ourselves with a collection of terms to
describe various aspects of programming support environments
and the activities supported by a PSE we now want to iden-
tify a number of axes along which we might measure and
compare environments.

1) Language Support

A first gquestion we might ask about a programming

support environment is how many programming languages are
supported and how well integrated is the support if there is
more than one language available.

A: o

L
S

£ 5 0 3
»
A 4
’
.’{‘:I*a :-

b

fl:
pRAY

[

']
‘y %

“

RS T
P v .
r
" *a
“p et
- 4

v
ki
g

L TR
vy .", (] A'v'v"
PO

. .. , ey
'.w_ W o 4 7,

..........
.....

O

TR A A ANy s WA,

R A R,V Y,

="K S Nl g Nl P EY Lol o

T EEFR LA AN WREE WY ey VT P oW

2) Target Configuration Support
It is becoming widely recognized that the computing

complex apprépriate for supporting the activities of program
development and maintenance must be reasonably large-guite
often larger than that appropriate for the operational
system being developed. Thus a PSE may support more than one
target configuration and, for example, use cross compilers
to support target configurations quite different from the
host.
3) User Interface

Having a user interface which makes a PSE easy and
natural to use is very important.
4) Command Language

By the command language for a programming support
environment we mean the set of expressions which the user
employs to direct the activities of the PSE. This may be a
special language similar to a job control language or may be
an extension of a programming language available in the PSE.
In general, it is important that the command language be
easy to learn and use and that its interpreter be robust.
" 5) Integration of the Tools

The tools of a PSE are always "integrated" in the
sense that they are part of the PSE and they take their
inputs from and deliver their results to the scftware tools.
Indeed, the set of programs which can be executed on any
operating system are integrated in this very loose sense.
Given that a PSE is more structured, it is possible that the
tools within a programming environment can be quite highly
integrated, resulting in a number of advantages.

21

e e e e e A e R

PR LR S S S SO AN S PR A, PR B B ST, - LT, . - D
IPIIREGI LR, WP W, W S I T L Yy ““*1 PRI, YA VLA I Y

b4

b Nt e

o

A o LU
.'

ofeae
»

.

RPN
» I‘ ".I.‘
X

I 'l, '4. ‘.. "n t,
RPRAAA
v

:

.. r:.v:.
e
#

v"f._l

B
*

[ol A]
A
4,‘:"‘l. ll

IR TR P
P et st
IR AX A

o~

a

R
.{*?2'
Pl AL ACs

18,7,
¢ el

.

v %o
.
.

6) Granularity of Tools

Typically the tools for program development provided

within the context of most operating systems are few in l:ﬁ
number and large grained. For example, a "compiler" is typi- ;ﬁ;:
cally a single tool which operates in several phases: :i;t'
parsing, analysis, optimization, code generation, assembly, ;:?H
and so on. Similarly, an editor typically operates on a) ibf”f

complete "file" and leaves no explicit record of what was
changed and what remained invariant.

7) Relationships Supported e
Conventional programming languages and .program »Tas

! development tools provide few facilities for explicitly 32::
L describing the relationships among the various program enti- j$f§
: ties comprising some software system. Rather, such relation- ;if
E ships are usually represented only implicitly. 125"
\ 8) Protection '_Z:-j’.:'
: There are a number of levels at which PSEs may I?if
. offer facilities which enable modules or parts thereof to be 3152
protected from alteration or use by unauthorized parties. LN

i 9) Documentation Support S
’ There is a great variety of documentation which is jfii-
associated with a program system during its lifecycle. . }}

Included are items as diverse as requirements documentation,
software trouble reports, user manuals, progress reports,
time and cost estimates, queries about status, and new
release updates. There are, in turn, diverse ways in which a

programming environment can support the preparation of and N
dissemination of documentation.

ST
AL
A

R

¢ :'_ c" 7, .".4 !
v

U B
.

ke AEA
R :

s & 2 4 Y PWE &S T."" AW v ¥ 5 """
PR N

<5

’

T AL
e ol s
A

A7
A)

(SRR NN TR Y
Fd

22 e

P
b

")
h)

e CEES ~.Ta o
I B

D N Y LT e T T JT T e A L T L R e T e e et e T e e]
.r'a\a‘.r_.- . .'_'.- A A D A S ST . ST T N e e U

II. OVERVIEW OF TOOLPACK

Since about 1970 a number of individuals and groups
developing mathematical software have begun developing at
least moderately elaborate software tools to assist in
making their software available on a variety of computers.

As mentioned in the previous chapter, Fortran has been
the language of choice for numerical computation, its posi-
tion seems more solid now than it was ten years ago.

The TOOLPACK project was initiated few years ago with
the goal of addressing the problem of inadequate and inef-
fective use of software tools to develop scientific, engi-
neering, and mathematical software.

The project currently is managed by a confederation of
researchers from seven different institutions (Argonne
National Laboratory, Bell Telephone Laboratory, Jet
Propulsion Laboratory, Numerical Algorithms Group,LTD.,
Purdue University, University of Arizona, and University of
Colorado at Boulder) [Ref. 4: p. 15].

. 'P'l‘l '. L
S
*y .' “ I"l'.-_‘ ‘0
PApl S S S

! ‘. '. Wt y

Thig confederation has concluded that the roblems of
ineffective and inadeguate utilization of software tools
is attributable to the generally poor guality of such
tools as well as to the absence of a unifying framework
within which they can be evaluated,coordinated compared,
and upgraded. Thus the TOOLPACK groject has, essentiall

since 1ts inception, been directed” towards the goal o

producing high quality tools, and imbedding them in an
effective integration framework. Further, the avowed
aim of the gro;ect has been to make this set of tools
and integration framework generally available to the A
mathematical and scientific software” community. ey

»

T,
P "
o
”
SO -'."
.
RN

U

o)
'y
o
PP
AR}

PR
PN
b

N

TOOLPACK/1l is the first release of the TOOLPACK Fortran
software tools suite. It is the result of an international
collaborative project started in 1979. The project was
supported by the Department of Energy and the National
Science Foundation in the USA and by the Science and

23

.......... -

. B T U e S RS R

.. - - . pd - - -~ o > i - » . - T - P e S > e T - - T e AT e " R P PR S "‘v. ~.-4
LT R T S A R RIS L I ORI LA e DRt LIRS CRIES S e U
AR AL ICIE I IS N IS IEIC P IEP I ST STOP SO IS IS ST S ST AP AT INTIT S0 ST SO S SIS ST G I S WA AT WA SV |

Engineering Research Council in the United Kingdom. In
making TOOLPACK/1l available, NAG (Numerical Algorithms

Group) 1is acting as a distribution agent on behalf of the
TOOLPACK council.

24

F L R TNt T PO S S P T

P S I I T S L N PR P B T
s PR Y PP e L PP S S/ T LT 7 Wi W Y, W W Dachadnd b el okt adnd el otal o b osold ok "8 R

»or W,

L X
4
.

oo el
R IR

.

sy

.............................

e e D A RS A A A Sl A A A8 bed gt iy A
- .
B

ROl e XYW R g gy
.~
b] s F,

rY,

R
AL

ITI. METHOD OF EVALUATION

A. INSTALLING TOOLPACK

An important issue in the use of programs, tools, and
environments is how easy it is to install and use thenmn.
Installing a system, whether a new one or an existing one
that has been modified, consists of the three primary activ-

ities of training, conversion, and post-installation review.

CHEN AT R AT AR v v

Training involves both system operators and users who
will use the new system either by providing data, receiving
information or actually operating the system. Training the
system operators includes not only how to use the system,
but also how to diagnose malfunctions and what steps to take
when they occur. The users need to be trained to operate

T TR 7 e v -

the system.

The conversion plan describes all the activities that
must occur to install the new system and put it into opera-
tion. It identifies the tasks and assigns the responsibili-

ties for carrying them out. The conversion plan should also ; aif
anticipate the most common problems, such as missing docu- :ﬁ;ﬁ
ments, incorrect data formats, lost data, and unanticipated klﬁ:
system requirements, and provide ways for dealing with them !xu_:

. AR
s Ty T
.

when they occur.

The post-installation review not only assesses how well
the current system is designed and implemented, but also is
a valuable source of information that can be applied to the
next system project.

We will evaluate the difficulty of installing and main-
taining the TOOLPACK environment 1in chapter 7 (Installation
on VAX/VMS).

25

> W = RN - N . KT N
- S ~~‘ N - - -
T N Ty \-L_\-g-..;...a.\.x 1-.-\.&11_x_p---_.L,;AuA\‘u;,.a‘;,-.\-.-\.n — R A P A ;-4:

f *5.'?.'--4‘*; '. LA

‘ﬁ}hﬁ“.

b ’.."-,"t.'-. wh e

J AN
NSNSNDDN

I

. &'I.’l."'-"-é:"‘.) N

,-'-‘-‘ " L "

a

SRR

£

Prioe s

<4

.
v,

LN

- v 4

B. RUN-TIME COMPARISON ﬂgs‘
This thesis uses the benchmark technique to compare the ,2§:
elapsed CPﬁ times of executing several of the TOOLPACK R
tools. The selected program sizes are classified into 85 Lv;#
lines of code (LOC), 700 LOC, and 1500 LOC. The overview of f;?

the benchmark tests and actual data analysis are described ﬁ*i’
in chapter 8 (Capabilities of System and Tools). C ol
Most operating systems and some special program tools
are implemented in their own system level languages or in
lower level languages (e.g., Assembler language) to increase

the performance. . But in order to be portable over several

different machines, the "'OOLPACK project uses high level fﬁu

languages (Fortran-77 and some Pascal); the use of high :i;i

level languages causes lower performance. &Eﬁ

C. COMPARISON OF THREE ASPECTS aﬂa
The TOOLPACK project was originally designed for scien- .

tists, mathematicians,and engineers not in the computer
science field. This thesis will compare the goals of
TOOLPACK with the needs of programmers of mathematical soft-
ware and compare the goals of the TOOLPACK project with the
actual capabilities of the TOOLPACK project (See Figure

3.1). To compare the three aspects, some knowledge of them ;&;ﬁ
is required. Therefore, the author will introduce each s
concept in the following chapters. Ek}_

Chapter 4 will describe user's view (views of scien- g%;s
tists, mathematicians and engineers). Chapter 5 will 'ﬁti

i

describe the initial goals of the TOOLPACK project. Chapter
6 will describe the configuration of TOOLPACK project,
chapter 7 will discuss the problems of installation on
VAX/VMS. Chapter 8 will describe the actual capabilities of
TOOLPACK project. Chapter 9 will compare the needs, goals,
and capabilities described in the preceding chapters.

P"!%
e

e "o fa v ey
P A A
l'r"- .‘0 .'l "-
R ey

%ﬁ;

o, ¢
[#

.

y

NS

26 R

‘.‘ \“.I.

= [

.::_.\‘.‘

AT e

AR

A

- -l

TEIET

‘-\.s\\

'~ _‘.

- L P S L R T T Ry T e S U R e ."_“‘-.'.."".“’.",'\'-‘.‘ et .
e S I N A G S SR R A A S A A L LA S LSRN .

0

, - s
L '- .-c ..- .n- .-...-.-\. \-.\.-\-.\-u\.-\uu\f A DA TR A N g - -\ LA AN v.-\ -\~\~<\~\ .\ o
" ¢« o ¥ 2 a a2 2

Tl .‘.ﬂ.M RARAARAITEE R AR R RANIASCARANAE S 0w N e
elalal N --« -f\fn\’.m. R 2o ot h SN

v
P4
(4
¢
L4
vnm 0
. o 0
. 3 o
= Q,
3 o !
/ & <
3 o
7 3]
2]
-~
9
7 «
. Q,
.vh m
’ 1] o 7
O]
z)
r Ko
3

Figure 3.1

.
LA P,

oy

- - -
"\'{1“:

-

¢

", 3SHIu> 3 JNIVINAIAOD 1Y QIDNOOMITIN AR
L PR) | a ¢ ’_ - o N vt | N N v %y N "o . * N AN PR X Y "
LAY RIS ZARIIII FPmahis OO DDOOPRA (DEENRRE SIRERIAY ANSEONT YOS LATADS ORI [0

.
..........

IV. GOALS EFOR TOOLPACK

From the workshop of the TOOLPACK project team came the
following outline of the capabilities that TOOLPACK could
provide to Fortran programmers [Ref. 1l: pp. 5-6]:

1) A structured Fortran language which enhances stan-
dard Fortran with modern control and data struc-
tures. Such a language can contribute swbstantlallg
to portablﬁltg bg permitting the use of “"environmen
parameters” (Such as the ost machine's precision
and overflow limit) and by permlttlng the generation
of both single-precision and ouble-precision
Fortran from e same version of the program.

C

2) Fortran program template processors which facilitate
the production of Fortran preprocessors for problem
statement languages.

3) Static _data~flow analysis. A tool based on DAVE
[Ref. 6] <can detect such data-flow anomalies as
variables that_ are assigned values but never refer-
enced, variables that are referenced before being
defined, ~and variables whose values may depend on
whether the values of local variables are retained
between subroutine calls. The static analysis capa-

SR
NI
. 3

QWL
r)

bilitg could include a way of testing executability

of paths in numerical programs.

4) Instrumention of Fortran programs with code to A
monitor execution characteristics. tiw?ﬁ

A

5) Formatting of Fortran text. iﬁ&ﬁ

6) Precision type _conversion (double to single and ::‘;ﬁ
single to ouble), for application to existing L
programs. h. -

7) Conversion of standard Fortran to structured Fortran :%?i:
with automatic selection of appropriate control ol
structures. ?in}

8) A eneral-purpose source to source_ transformation }ﬁij
system in the spirit of TAMPR [Ref. 5: pp. 542-546]. iﬂ‘

9) A text editor with built-in knowledge of Fortran -
syntax.

Besides requiring integration of the above caﬁabilities,
the pack fradition demands integration of the software
that supplies the capabilities.” For that reason, the
highest-level tools should rest on :

A
PR a0

7
LN

%

10) A common base of flexible components, including
lexical analyzers,parsers,table managers, and report
generators.

28

SRR -_-_5._‘,.’-.".\.' - _‘"_.;._.*. A) R ". e .

. §

v

vy

N

RN Yy

v
AV

PNOLNC

l...)_.')", l.

1|
L3

a

Lol QP

’
lar R o o 2

P v

\I.-\ AI..\I I‘ P LN -, w e . « T a AT e ATt T T, ?_"‘—v-'_’_f_;-.'__vl"f.f.?_?.i'"v.vl

A summary statement of the goals is continued in
[Ref. 19: p. 85]:

* The first 1is to provide a suite of tools to aid the
Fortran programmer in the production and maintenance of
medium-sized mathematical software projects.

* The second is to investigate the development of exten-
sible rogramming support environments built around
integrated tool suites.

The TOOLPACK architectural design document of 1982

[Ref. 7: p- 3] contains a list of objectives for the
project. Ordinarily one would not expect any additional
goals to be included in such a document. Portability (see

5, below) was elevated from a factor in the original project
to a full status as a goal. As we shall see in the discus-
sion, this decision to make portability an explicit goal has
had a major impact on the design of TOOLPACK and on the
utility of TOOLPACK:

1) The mathematical software whose,groduction, testing,
transportation and analysis will be supported ¥
TOOLPACK__is to be_ written in a dialect o
Fortran-77. This dialect is to be carefully chosen
to span the needs of as_ broad and numerous a user
community as is practical.

2) TOOLPACK is_ to provide cost effective support for
the production Yy up to 3 programmers of programs
whose length is ug_to 5000 lines of source text. It
may be less effective in supporting larger projects.

3) TOOLPACK is to provide cost effective support for
the analysis and_ transportin of programs _whose
length is"up to 10,000 lines of source téxt. It may
be less effective 1n supporting larger projects.

4) TOOLPACK is to support users working in either batch
%r interactive mode, but may better support interac-
ive use.

5) TOOLPACK is to be highly portable, making only weak
assumptions about its operating environment. It will
be designed, however, to make effective use of large
amounts of primary and seconda;Y memory, whenever
these resources can be made available.

YRS bﬁf-' .
A SOOI

Il
Wy

A
e Y RA
/

.I'.

LY
4

h)

&y
'
~
[

|

VAN R

v
8
i
LA

N R v &¢ g ‘ol 0 o e LT ST T AT,
T u T u W, T N Cur, «, L T i A, B 8 SR A St T Bl Rt T i R} E B Nl I A N T I} -

552
1]

PRIl .

.
,E This chapter discusses the current state and foreseeable
' evolutions in software development for scientific, mathemat-
bt ical, and engineering applications. In evaluating software
b support it is critical to identify the target user group and W
% to characterize their background, jobs, work conditions and gf?
;: attitudes. Consideration of the factors that are likely and i;i
: unlikely to change in the foreseeable future will make it T
2 possible to identify the feasible opportunities to improve ffi
= software development for mathematical software. ;ﬁ{
§ It is widely thought that there will be a steady growth ﬁiﬁ
S in the size and complexity of mathematical software. This o
; growth will present new problems and with them new opportu- .;i
;: nities to improve programmer productivity. i}i
. T
% A. DEFINITIONS s
~ The central focus of software for scientific, mathemat- ::;f
.j ical, and engineering applications is numerical computation. :igl
;E We want to define numerical computation rather precisely so %;E
:: as to distinguish it from business data processing, symbolic ' E:;
processing (such as compilers), and general utilities (such .
f as file manipulation systems or job schedulers) [Ref. 8: p.
\ 687] :
Numerical computation involves real numbers with proce-
=, dures at a mathematical level of trigonometry, college
- algebra, linear algebra or higher. S
s
% Some people use a somewhat narrower definition which E$€f
t restricts the term to computation in the physical sciences Efﬁ
E and a few people even think of numerical computation as &ii
G research and development computation (as opposed to produc- ﬁﬁj
;E tion) in science. :ﬁi;
P
e
¥ 30 uT
X

-
e
[A

L
::"él v
'..“—

- Another definition has been suggested by Wayne R. Cowell 3§Q
. P
= [Ref. 4: p. 37]: A
4 l- .
s Since about 1970, the term 'mathematical software' has S
thal been understood to mean computer programs that perform
. the basic mathematical computations of science and engi-
o neering. Someone characterizes the effort to produce
- mathematical software as the building of bridges between ;
AN the numerical analysts who devise "algorithms and the
computer users who need efficient, reliable implementa-
I tions of those algorithms.
2
>,
:? In what follows we use the term "mathematical software"
303 to refer to software for scientific, mathematical, and engi-
» neering applications and "programmer" for those people that
o write this type of software.
L
-
9 B. PROGRAMMERS
Mathematical software is primarily written by people
'Qj with little or no formal training in computer science or
‘if computer architecture. These people have training in
- science, engineering or mathematics and call themselves
Yy
r physicists, engineers, etc, rather than the less prestigious
] "programmer". Although many of them spend the majority of e
- . . " \'.n
‘e their time doing programming, they regard the computer and :{:H
SN
; programming to be a tool that they wuse in the work in their Qﬁy
AN
basic field. Throughout their careers these people will '"k]
ji retain their primary allegiance to the basic field of -
jf science, mathematics, engineering that they were trained in.
o There are relatively few computer scientists doing this ‘
>~ Y
kind of work because extensive training and experience in “;*
N K
) the area of application is required. In general, it is ALY
) G
r: easier to teach scientists, engineers and mathematicians §$Q
N programming than to teach computer scientists the basics of :iﬁ
. an area of application. There 1is a group of numerical o g
tﬁ analysts and computer scientists whose major interest is in 27§
:; mathematical software. Their contribution has been signifi- .i}ﬁ
s
:j cant and influential but they are and will remain a tiny ;?;.
~.l Y “u !
minority of the people developing mathematical software. »” .
~ N
» ‘\..j
,;: 31 NS
. >
" :\"\:
Iy o

E] - ——

PP

a0 A

.
et

LNRXS

2 .
N e A

[N NN

[

(M A of' b

(v e SR Qv -~ mre e e L T T TN AT A T LA TR T T AT TR

Our characterization of the majority of programmers who
work on mathematical software is that they have a mastery of
the basic aspecté of Fortran, a sophisticated view of algo-
rithms and performance analysis for programs in their domain
of interest, and a knowledge of structured programming. But
they are not aware of basic concepts in algorithms to do
symbol manipulation, 1language translation, and compiler
theory nor are they aware of contemporary software develop-
ment methodologies. For example, the concept, design, and
coding of a program that has a computer program as it input
data is beyond scope of their knowledge.

Since these programmers view computers and programming
as a tool to do their work, they are very reluctant to learn
new computer science ideas, concepts, algorithms, and tech-
nigques unless they are absolutely convinced that immediate
and significant benefits will follow. Although they are
very interested in innovative topics in their basic field,
they are very conservative in their approach to new program-
ming topics. Also their lack of basic training in contempo-
rary computer science makes it difficult for them to learn
new'topics by reading the computer science literature.

The ignorance of computer science of most people that
write mathematical software is equaled by the ignorance of
most computer scientists about numerical computation. Many
sophisticated scientists produce naive software just as many
sophisticated computer scientists produce naive science.

Another important fact is that most mathematical soft-
ware is written by a single programmer (or a small team).
Thus there has been little pressure for program standardiza-
tion. Also most mathematical software 1is maintained by the
person who wrote it, so there is no compelling reason to
develop documentation standards.

Most proyrammers in this area spend their entire profes-

sional career working in a single area of application. They

32

e

L)

a0
Py
RN

AR
»_a n
aff)ﬁ AN
Ley e

1)y

ey
P

1, 'y

.
:i
Il

R RMAANY e idelrod SR

<<Hl

[
's

B '.'lln"n.'.t.".('

BRNNSS

N
R R

A

L

o

S) S

e YTt T
2

¥y

i 2
b T Py

o !:.l"‘!' ;. '-‘:-.

atea

@ T
..

RN

therefore have little opportunity to see software developed
in other areas. This limited view of software together with
an absence of a literature to present mathematical software
has lead to their limited view of software development.

C. LANGUAGE

The most obvious feature of scientific programs is the
language in which they are written : an overwhelming
majority are written in Fortran. Some competition has come
from PL/I and Pascal, the latter being popular in some
circles especially for the implementation of prototypes,
"quick and dirty" versions, etc.; both, however, remain
marginal.

Many sites have done some experiments with Pascal in
order to assess the fashionable language, but few have used
it on actual projects, since most scientific programmers who
have tried it deeply resent the lack of features they
consider essential. Minor criticisms are of the absence of
exponentiation, separate compilation and the inefficiency of
run time checking. A major impediment has been the strong
typing of arrays that includes their dimension , this has
made it impossible to construct general purpose procedures
to do array manipulations. Although the ISO standard now
allows a remedy, it is still not widely available in Pascal
compilers.

So Fortran is still king. It should be noted, however,
that the world is not so simple as it used to be : Fortran
means different things to different people. The Fortran 77
standard has not completely taken over; it many cases, what
is available 1is still either a c¢ompiler based on the 66
standard, usually complemented by machine-dependent exten-
sions, or some hybrid between the 66 and 77 versions. At
the same time, some manufacturers are taking (high-risk)
bets on the next standard being concocted by ANSI, referred

to as Fortran 8X.

33

B S SR S L S I . P W e
. R . B LT L. R . . T T L AP IS
W RPN WO Wy WA Y PP DRDUAS PR DU SO A, T U T PO P | - a " I P R W U Y T YR

N A e P

[

€
3

Ry

"y

4
-

W - W ¥y & v & v

W VR e W Wy VW W B W W SeTevess v

When talking about Fortran with respect to mathematical
software, it is impossible not to mention an apparent
paradox: in spite of its almost undisputed position as a
vehicle for writing numerical software and its pretentions
to portability, Fortran does not as yet offer any tool for
controlling the numerical accuracy of programs in a portable
fashion.

D. APPLICATION DOMAIN AND NEED FOR EFFICIENCY

The application domains of mathemafical software are
matrix calculations, linear systems analysis, and simulation
of given engineering conditions in narrow applications. The
most complicated application domains are control systems of
nuclear power plants. These kind of applications need high
reliability. They also need high quality (i.e., optimiza-
tion) compilers.

There are two principle sources of the problems in the
application of mathematical software: mathematical models of
the physical world and the optimization of models of the
organization world. The scope and range of the sources and
the associated sofﬁware is illustrated by the following list
[Ref. 8: pp. 688-689]:

1) Simulation of the effects of multiple explosions.
The software 1is a very comglex program__of perhaps
20,000 Fortran statements. t is specially tailored
to this groblem and may have taken several years to
implement. The program requires all the memory and
many hours of time on he largest and fastest
computers.

2) Optimization of feed mixtures for a chicken farmer.
This is standard software of modest length (500-2000
statements) even with an interface for a naive user.
It might take substantial time to execute on a small
computer (for example, mini-computer and personal
computer).

3) Analysis of the structural vibration of vehicle.
The software is similar to that of example 1. More
computer time and memory would be used by this
approach.

4) Simple linear regression on demographic_data. This
is standard software, but classical algorithms are
neither reliable nor robust. Modern algorithms are
short %200-400 Statements) and execute quickly
except for exceptionally large data sets.

34

S

‘2’0

S

B o e

W

NS 224NN

BNyl PR

EENY YIS CCOEENS AN II BT AT YT

5) Optimization of design parameters of a gyroscoge. A
mathematical model of a complex physical system is
required and then optimization algorithms are
applied. Determination of the gyroscope performance
for a single set of parameters m;?h involve the
solution of a system of partial differential equa-
tions. Considerable human interaction is probabl
used to avoid astronomical computer costs and ye
achieve some reasonable progress toward the optimum.

6) Calculation of the capacit¥ of the wing tank of a
jet liner. This is a simple problem except for the
comﬁlex geometry of the wing tank. Once the wing
tank is broken into simple pieces (probably by a
person% then standard algorlthms are reliable, short
and efficient. The automatic processing of the
complex shape requires much more sophisticated soft-
ware of moderate size &perhaps 2000 statements), but
still gives a short calculation.

The demand for efficient compiled code has lead manufac-
turers to produce sophisticated optimized compilers. These
compilers are expensive to build and maintain and have
achieved some of their efficiency by developing manufacturer
unique extensions to Fortran that exploit unique character-
istics of the hardware.

The demand for efficiency has lead to a reliance on high
quality compilers for Fortran with extensions. This has in
turn lead to major portability problems with Fortran.

E. PROGRAMS
1. Size
Scientific programs vary considerably in size. A
typical range is between 2,000 and 50,000 source lines
(whether or not one counts comments usually has a marginal
influence on the evaluation). There are bigger programs, but

they are not so common; some packages reach 300,000 lines or

more, but one seldom hears about sizes comparable to what is

often quoted about e.gqg., telephone exchange software
(500,000 to million or more). Thus much mathematical soft-
ware can be characterized as "medium-size".

There are many signs, however, that these figures

may growing steady. The pressures toward larger programs

35

COC T EERTCL ALY EERA L 4L SRR TN
‘

4

4 %S Yl

S TR

B ISAATWRNE

.-. o f_‘;’.ﬁ'. DR (k{' '—'\h .-. (‘ ,. LA - N

N O R

N

L RPN
- \.{L’-.'!‘A.

- R ot e e . P T . S I M T N T L I
PRE TR S NP AR. ST, PR R S P, Sy U, Yy P N U SO N o

include : more extensive computations, more "user friendly

interfaces”", more error checking of input data and results,
and more extensive reports and high quality display of
results. This tendency 1is likely to bring about much
concern regarding the scaling up of the methods used for
program writing and project management.

In other areas of computer science the growth in the
size of programs has lead to new problems ; among these are
the problems associated with having more people involved in
the development and maintenance of the programs. Also the
development of programs for use by many people at many
different locations presents new difficulties with training,
documentation and maintenance.

2. Contents

We outline below some of thke characteristics of
mathematical and engineering software as we perceive them
and as they distinguish this type of software from others
such as business software (accounting, transaction
processing and the 1like), real-time software (command/
control etc.), systems software (compilers, operating
systems, teleprocessing etc.), or office information
systems. These characteristics relate to the form and
contents of the programs and to the way they are produced
and used.

There is still a widely held view that mathematical
programs are essentially computation-oriented. In our
experience, this is inaccurate. Of course, most mathemat~
ical programs include some non-trivial arithmetic computa-
tion. 1f, however, one looks at the actual code, one
frequently finds out that the part which actually performs

numerical computation is relatively small in size (if not in

execution time), the bulk of the program text being
concerned with manipulation of data structures, storage
management, input and output, pre- and post-processing,

36

AT TR PRI

error identification and exception handling, etc. In a
large part, mathematical programs are data manipulation
programs. In most cases, this part is growing much faster
than the purely numerical one, which is often relatively
stabilized; many developments have to do with improvements
in the user interfaces, inclusion of interactive facilities,
graphical input and output, uses of data base managements
system, etc.

This aspect of mathematical programs should be
understood by those who design new machine architectures,
programming languages, software tools or methods aimed at
this area.

3. Use of Extensions -

Most programmers are aware of the non-standafd
Fortran extensions on their computers and recognize that
their use restricts portability of programs. Despite this,
most programmers feel that the use of non-standard features
is necessary to achieve the maximum run time efficiency.

4. Programming Style

Mathematical software does not in general have a
consistent program style. There is not any standard or
commonly used programming style in mathematical software,
most programmers have developed a unique approach that is
not consistent with any contemporary approaches to software
development (for example, top down design, information
hiding, stepwise refinement). In addition, most programs do

not display any consistent approach to program organization.

F. DEVELOPMENT ENVIRONMENT
1. odra ibra c
The idea of building a library of modules that could
be reused in other programs was an early concept in Fortran
software development. It is still very important. This
concept has been surprisingly difficult to bring to fruition

in the same sense as a library of books. That is to say,

37

5 4y

S
e v, 4

Pt
.,.n..|
)

L
']

widely available and good quality libraries for basic mathe-

e
OENOR

matical procedures did not become available until the 1970's
and even now most computer- users lack access to a good
library of programs for mathematical scftware. This 1is in xi;
spite of expensive efforts by IBM and other computer ﬁ}n
manufacturers. T

The author would like to classify mathematical soft- i .

A NS SAAIW Y IR NS N
>
~l

ware libraries into three types : el

1) Low level (utility functjon) library.

The libraries of this type are basic mathematics, trigome-

trical functions and are widely used in mathematical

Y. AN

programming. The illustrations of this type library are SQRT

= (square root), SIN, COS, and EXP, etc. ol
i‘\ 2) Middle level library. i
E; The libraries of this type do rle mathematlcal statis- ;

- tical, and graphical functions. The algorlthms of ““*E‘*“u——_~_ﬁh*_h_

programs are simple and easy to understand. Most libraries v
are used independently by a single user and do not support :
an integrated scheme. Most wusers could write and modify

these programs. The illustrations of this type are IMSL

) ' O
1}
s

Ef (International Mathematical and Statical Libraries, Houston,

iy Texas) and NAG (Numerical Algorithms Group, Oxford,

! England), etc.

- 3) High level library.

SE The libraries of this type are large specialized application

o< packages which provide integrated algorithm schemes. The

!5 vast majority of the users of these packages understand the

‘: action of the algorithms but do not know the coding details.

: The examples of this type are LINPACK, EISPACK (a systema- .

< tized collection of programs for eigenvalue problems), and o)

%= NASTRAN (a structural engineering package), etc. ;ﬁs
t: The library concept is based on the fact that many :{ﬁ;
3: problems are of a somewhat standard nature and occur in many ;5:5
:: different contexts. This is especially true of numerical : }::‘
: O
- 38 RN
2 N
b

.
el

44 - - - I L e e a e e e e e e e T T S
......... T . - .

&
’
s
.
.
'
v
’
f
.
.
«
¥
¥
I

......

‘P

widely available and good quality libraries for basic mathe-
matical procedures did not become available until the 1970's
and even now most computer users lack access to a good
* library of programs for mathematical software. This is in

spite of expensive efforts by IBM and other computer
e manufacturers.

Yy
LSS

The author would like to classify mathematical soft-
ware libraries into three types :

2 1) Low level (utility function) library.
" The libraries of this type are basic mathematics, trigome-
- trical functions and are widely wused in mathematical
; programming. The illustrations of this type library are SQRT
€ { square root), SIN, COS, and EXP, etc.
” 42) Middle level library.
. The libraries of this type do simple mathematical, statis-
N tical, and graphical functions. The algorithms of the
E programs are simple and easy to understand. Most libraries
a are used independently by a single user and do not support
an integrated scheme. Most wusers could write and modify 7 f.
- these programs. The illustrations of this type are IMSL ;fzg
. (International Mathematical and Statical Libraries, Houston, ;Sﬁﬁ‘
j Texas) and NAG (Numerical Algorithms Group, Oxford, Eﬁii‘
England), etc. e,
: 3) High level library.
K The libraries of this type are large specialized application :f}ﬁ
i packages which provide integrated algorithm schemes. The EEEE
vast majority of the users of these packages understand the s
: action of the algorithms but do not know the coding details. e)
N The examples of this type = are LINPACK, EISPACK (a systema- .
- tized collection of programs for eigenvalue problems), and
4 NASTRAN (a structural engineering package), etc.
3 The library concept 1is based on the fact that many
y problems are of a somewhat standard nature and occur in many
- different contexts. This is especially true of numerical
38

N o N T T
L - . 0 () » f

‘g computation because scientists and engineers use the
Sﬁ language of mathematics in their analysis.

N The methods one uses seem to be independent of the
o particular computer and thus expressible in some machine-
‘Ej independent Fortran subset. Fortran, Algol and their
f: descendents have made it possible to attempt to develop the
= science, art and body of numerical computation software.
2 Even with these advances, the significant differences among
o4 compilers has hindered progress.

&£,

2 2. Tools

I The use of programming tools, beyond such standard
3: ones as editors and compilers, is fairly limited in many
'i: installations. It is remarkable to see, for example, how
=3 often the machine-format dump still plays the role of the
: basic debugging aid. Here again, the discrepancy in levels
lﬁ: of abstraction between the sophistication of the applica-
;:j tions and the people who conceive them , on the one hand,
;f and the characteristics of the underlying software, on the
f' other hahd, are striking. Also, one can again notice the
:% negative effect of the language : although Fortran is much
¥$ more primitive by its concepts than, say, Pascal or Lisp,
K it is often less amenable to language dependent tools such
' as syntax-directed editors, symbolic debuggers etc. because
i: of 1its baroque features, strange format and irregular
iz structure.
:Q Mathematical software has also been the prime target
; for other successful tools: Fortran static (and, to a lesser
:& extent, dynamic) analyzers. Again, these tools are unde-
E; rused; it is clear, however, that they can provide a host of
é services which, although conceptually limited, are extremely
) useful in connection with the development, acquisition,
‘I: debugging and documentation of mathematical software.

é Although it 1is true that some of the checks
i performed by Fortran static analyzers (for example, type

39

U VA AN

e
\

. . e - ea® . ey " ’
.. Mie T T T LT AT AT T e N n S e o« Eh LA N RO L G Yl SR R I R N A L T A T T

[ila"a o n

3
.

checking) are only needed because of the language's defi-
ciencies, this is only part of the picture; some of the
ideas could be profitably adapted to more elaborate
languages, which are still lagging behind Fortran with

4%l A

with error handling, precision changes (double precision to

“~
N respect to availability of such tools.
-
\ G. PORTABILITY
. While everyone recognizes the potential savings from
;: distributing good software, it has been hard to achieve even
g when good, usable software is written. The dependency of
j mathematical software on machine word length as well as the
" eccentricity of compilers and operating systems pose formi- .
3 dable barriers to the dissemination of gquality software. o
< It has been shown that portability and top efficiency 3
2 cannot be achieved simultaneously in a high level language ;f
like Fortran because of compiler variations. A 100 % loss in Lu
efficiency may be an acceptable price to pay for portability ﬁ:
\; in some instances, but there are even more severe problems }i
i single precision or wvice versa), and arithmetic unit :*5?
- behavior. These difficulties should be isolated and methods RO
f found to overcome them in an automated system. :}%ﬁ
; One method to obtain program portability is to define a E?Qﬁ
) standard widely accepted language and then write preproces- %1?4
; sors that translate programs written in it to a language for ;ﬁ£¢
'f which a good compiler exists. The most notable such effort éﬁ%é
’ in mathematical software is the RATFOR (Rational Fortran) i&:33
' language [Ref. 9: pp. 285-318] that extends Fortran and is Tfﬁf
- transformed into Fortran. There have been several problems ﬁi?ﬁ
- with this approach : Si;i
' 1) The preprocessors are somewhat difficult to write and }dti
Fofleda’on The tatolt machine * "ooP CUFTent ifh the r.
A AT
- 2) The resulting Fortran is very hard to read and thus it RN
» is difficult for the programmer to modify or optimize A
X . the Fortran directly. ;3:5:
g 3) Any error messages are reported in terms of the NN,
- Fortran program rather than the RATFOR program. 7
¥ 40 f("'_:':_'_-‘.
. RN
e
- Eﬁi?
T P b s Bt o ot e e e T AR A LA A R AR AT AT A" e A e

\.‘._J'."I_'-‘.'-‘_‘.'\n" S -’..-'_..'\-'..J'\-'..:"\.'\-‘._-'_.-' N A .~~;..-"\d'\-'xf._-',}q’\f.--r -"*\-\-. LT, OO TSN SN A AL AN
v W . P8 » 4 N g . o

ARRAR

ANy

AL 22 "-t"-\f#'s’

«
~

s
LA

PN
(LA

. .
i 2l S

»
o

TN

" ’
Catet n.“ A."A.’o. o

des

Another problem for portability is the spread of small
machines such as micro-computers (personal computers) and
mini-computers. These machines are so numerous that it is
not possible nor economical to do a careful job on the math-
ematical software (which may be permanently implemented as
micro=code).

The manufactures of such machines are frequently unaware
of quality software principles and portability software for
mathematical software. The result has been numerous
instances of inadequate algorithms-both in the hardware and
in manufacturer supplied libraries and systems (for example,
the Fortran built-in functions).

H. HUMAN ASPECTS AND PROGRAM TECHNOLOGY

Everyone agrees that human engineering of software is
important, but so few people do anything about it. There
have been instances of mathematical software that was widely
used because they had good human engineering even though the
results computed were unreliable. . These and other experi-
ences have convinced many (but far from most) developers of
numerical software that the human engineering (user conven-
ience) aspects are critical. This is, in itself is a mile-
stone; unfortunately there have been few advances in how to
do human engineering. It still seems to take a lot of hard,
patient work.

Professionals in mathematical software have always had
their favorite methods for various kinds of problems (there
is not a general methodology for mathematical programming).
Occasional surveys show that there is no consensus among the
experts as to which methods are best. Even worse, for many
years, most people did not distinguish between a somewhat
vague method and a computer program implementation of the
method. Now people realize that the implementation (soft-

ware) is as critical as the method, as there can be (and

have been) terribly poor implementations of good methods.

o
NN

,.
-l. .
Wy

-

A s

l"l

Al "" L
.IJ . 'l .
I‘I l. .

Y

Py
N

LY
.
r ‘)
L

.f 1"-' n‘.f.

2,

R NI
Y W AR P e

ALICICE N .'.“
()
.l' _l.:,'s) T

R

W AT RPI

There are two main variables here [Ref. 8: p. 688]:
different implementations of the same method and different
methods for the same problem. It is not at all easy to
design frameworks in which meaningful comparisons can be
made. However, in the late 1960's such comparisons were
started for ordinary differential equation software and now
the framework for this particular area is well defined.
Since then there have been significant accomplishments in
evaluating software for numerical integration, special func-
tions, linear algebra and polynomial root finding.

Finally, there is a notable lack in the use of "program
proof methods" for software for mathematical software. Some
reasons for this are :

¢ it 1is difficult to incorporate the uncertainties of
round-off into proofs.

¢ the software tends to be too 1long for current proof
methods

* most numerical computation software has parts whose
performance cannot be specified in terms of input-
output relationships

42

PORRTE
/A.v:'
I‘.’si ‘.,

-5' I.'
5

" e LN

0 i

» . . €
Ty “f.. R f,,‘..' 1

NN
PR
ASERL S

e L,
l'l.l

™,

<
ot
v

L
e &

YR 4

. :'.:‘

%" NA

NSNS
V!

R
v
L]
| -

oo ‘. .
"..- D.
P
et

[y
.

n‘.'-.“" A
LA
AR

11
&

»
o

s

. 'o"-’_\ |

o

o
[d
AN

Y

Ay agty
-thfataf

-,

A ., " 1"4\,' .'.'.' ..r.'.

Wtatataltet e

N Ol =
2) Tt

" a2
N .
ARAAAN

0

AN

L4

.
Y

’ 7

LSRN

A

e
P

VI. CONFIGURATION OF TOOLRACK

A. THE TOOLPACK TOOL INTEGRATION CONCEPT.

The TOOLPACK tool integration concept is centered around
the notion that software tools must be focussed on
supporting the creation and deep understanding of a large
and complex mass of information-namely the software under
development. It seems that software workers often attempt to
view their jobs in this way, but that they are most often
thwarted in their attempts to exploit this view by system
software.

Thus the TOOLPACK project is attempting to create a
Portable Software System (PSS) which can be profitably and
effectively viewed and operated as a system for the manipu-
lation and management of the large, complex and multifaceted
object which is the software program under development.
This section will present a necessarily brief overview of
the integration software which was developed for the
TOOLPACK project. The entire system of tools and the encom-
passing integration software has been named the Integrated
System of Tools (IST).

B. THE FILE SYSTEM.

As above indicated, the central focus of +the TOOLPACK
command language is the creation, accessing and maintenance
of the data repository whose aim is the faithful and suppor-
tive represention of all the data which the user needs in
order to perform needed software work. This represention
seems to be effectively achievable by portraying the soft-
ware are a structured, coordinated set of views and
versions.

In TOOLPACK these various views and versions are all
stored as files. Thus the heart of TOOLPACK 1is a file

.
2

[C
n
e

-"n’l ’a.

L%

LA

". ". {x 11."& AN

R

| S SR

{l)‘ (- ..\ I' ... i .

]

0 “' ‘7

system. This file system actually consists of two parts :
the host filestore (HFS) and the portable filestore (PFES)
[Ref. 14: p. 5].

HFS files are simply formatted files in the host system
filestore. They are always accessible to host system utili-
ties. The virtual machine makes no assumptions about an HFS
directory structure and the only assumption about the names
of HFS files 1is that they may not exceed maxpath-l charac-
ters, which maxpath is a virtual machine constant set by the
installer. To identify an HFS file, the user adds a one-
character prefix (usually '#' but installation-dependent) to
its name. This "host file-id" character is stripped off the
name before it is used.

PFS files reside 1in a tree structured directory system
similar to that provided by VMS system. A directory in the
tree structure may contain files or other directories.
Conceptually, the directories may be nested to any path, but
there are practical limitations, such as the maximum length
of name. PFS files may not be directly accessible to stan-
dard host system utilities. X

In addition to these disk files there are four precon-
nected files available to tools. These files are available
in all operating regimes. These files and their symbolic

»
L

AR

T

%

¢ &
Dk

AN

ol
A %,
A LS

atatar P YN YYN
"-l'_,J

R f

'_- " a% AR

-

g
AP
l..l'
" e

o
L

v
P

|

-.:_'.

AL
'.ll

S
A ,"'.l'_:". "c
s

.
e

e

)
&
ate e

names are as follows [Ref. 14: p. 6]: S
1) The standard jnput file ('stdin'), normally associated 'Eﬁﬁ
with the user’'s keyboard. A
2) The standard output file ('stdout'), normally associ- i
ated with the user’'s terminal. Pt
Ao gl
3) The standard error reﬁorting. channel ('stderr'). The e
associated of this channel”is host dependent but is ~T
often the user s terminal. R
4) The standard list channel ('stdlst'%. The association N
of this channel is host dependent for connection to a o
spooled system printer though it maK be connected to =
a fixed file that can be prinfed by the user. E‘v:"
Almost all files within the HFS and PFS are formatted '{f
LS
sequentia., but formatted direct access file capability is Lt
provided. e
‘v w

5
NS
\"\’.
\':'.'('
44 %4
ot
\J‘\-‘
pID
- 4
‘e _-AI:;;i;-::‘I:;‘I‘;":__-';L;;';;.':::‘?;;'j":;;. AN N R IR RN _.__‘,,.-

L L

B Y o9

|y F LS

v AN NOCORRER

‘..'-‘

oA LR et S Y

N

Tt

AR

C. THE VIRTUAL MACHINE (TVM) OF TOOLPACK

To provide the capabilities of the TOOLPACK tools and
command interpreters on as wide a range of machines as
possible, a definition of the TVM was produced to which all
TOOLPACK programs comply. The TVM includes definitions of
the character set, directly structured and minimum machine
capabilities that must be provided on the host computer
before TOOLPACK programs can be used.

The TVM capabilities are actually accessed by the tools
via the Tool Interface to the Environment (TIE) library. In
order to make the capabilities of the TVM available, it is
necessary to have an implementation of the TIE 1library on
the host machine. A portable version of the TIE library,
written in Fortran-77, 1is provided in the TOOLPACK software
suite to allow as many users as possible to at least try out
TOOLPACK capabilities.

It is probable that a single redesi?n of the portability
Jbase will be undertaken in the Ilight of experiences
gained as a result of the production, distribution and
use of the first release. . If this does happen, great
care will be taken to _provide a support mechanism for
all existing tools, with a compatible upgrade_path. Any
new-design would be aimed _at producing a smaller, more
agpropr;ate and more ea51l¥ 1mglementable core ilbrary
of routines for the TIE [Ref. 19: p. 91].

The main features of the TVM are as follows :

l) A stream-based input/output system for files and
preconnected units.

2) A fixed internal character set and variable-length
string handling.

3) A tree based directory structure and defined file
namln? convention in a Portable Filestore (PFS),
normally separate from the Host Filestore (HFS).

4) A defined process=-scheduling and argument-passing
capability.

5) Extensible capabilities by the use of supplementary
libraries.

By splitting the TIE library into several sections it
has been possible to allow greater environmental flexibility

45

o

YAALN

j
)

54 &

YN

5

s
5N A

?444;5
LA

'?.“Jl"‘l“{".

LY
T %

I
L3
I

£,
7 R

-.,Wﬁ._._,
LRV
s,

e ':{‘:"- *
o0
ee's

LY
.

|

ra
DA 2l ‘4

¢ o
‘.‘ﬂ

SN ._'...
l' L]

L

" ” ." '{ .{ -"
[y

I
1

’

R

]

A

i

for the use of tools. The split is shown in Figure 6.1,
i which shows that there are three sublibraries to the TIE;
common, input/output, and flow-of-control.
5 The common sublibrary contains general-purpose routines
to convert character types, manipulate strings and recover
the date and time. There is only ever one version of this
library in a TIE implementation.
The input/output sublibrary is concerned with the provi-
: sion of the stream based input/output routines and the
directory handling capabilities of the PFS. There may be two
separate implementations of this sublibrary, one of which
provides the full capabilities of the HFS and PFS, as
defined for the TVM, and the other which maps all input/
\ output and file access to host files and ignores directory

handling routines. The two versions of the sublibrary _
contain the same routines with the same apparent (to the héég
% tool) functionality so no code changes are required to use &;ﬁ&
either version. : AR

Cin

The flow=-of-control sublibrary is concerned with the
initialization and termination of TOOLPACK tools, process
scheduling and argument passage. There may also be two
versions of this sublibrary, one which allows process sched-
uling and the other which does not.

Dl e

The provision of multiple versions for some of the
sublibraries allows for a variety of levels of implementa-
tion of the TIE and lets the tools be used in a variety of
environments without modifications to the source code. This
flexibility can be wuseful during the TIE implementation
phase, during tool development and for those users who,
while wanting access to the capabilities of TOOLPACK tools,

are not interested in the provided command interpreters and

PES. The possible environments available are as follows N
[Ref. 13: pp. 3-4]. ;Z::.,
. A
l) Embedded : This is the full environment defined for oA
the TVM. Both the PFS and HFS are available and tools i;
may be scheduled from TOOLPACK command interpreters. L
N,
W
\J o
46 :‘-:‘:.
. N
Ll
l’ _____ '« " \‘ \ """ - L 2P I T P B Y - mI e e W e -

.L.l-.:;--‘)‘}1} 5 dm‘ T- ’l’lr‘r

T

B 5

AP e

]

B
ll"l"

R J
.
o |

TNNAS

J 8

)
sk

D)

o'

A AN

4 %
RN

. w_ 3
o 0
,;‘(‘_

D

M
5 s an

LA A
ANAE

Sa

s

4

ToOoL
_____ e ——_l TIE Routine o e e e
Definitions TOOLPACK Virtual
Machine (TVM)
|
Flow of
Control Common : I/0
Library ibrer ibrery
Direct Embcdd-Ld PPFS HFS
Portable
—
Filestore
Host Machine and Operating System

1) .";‘

4 .‘p..'\._‘-

»

>

A=
‘e b

B
RN

“ 'l ,| .

A 4

SASN

3 LA%

5

e

A

Figure 6.1 Sections of the TIE Library.

Stand-atog : Thig environment still allows tools to
access both the PES and the HFS but assumes that tool
schedullng is performed direct from the host operating
system. TOOLPACK command interpreters will not be able
to schedule tools in this mode.

Stand-astride : This_ environment provides the same
flow=of-control capabilities as the embedded mode but

N e A e g NS e e
BN L N T SR R I O R L G N L I U

et St A A A A A B TN A DA D S o A

. 1"
',
AR

5
A A

LR

(4
[

s

,

13

hJ

i Y Al' -. oot
. l. * AL [y
el e

S,
PR R
.

Ty

fl

4

L

LI I N e

vEREsTR 5 /7 2 AL AERST .

T RIASALRNYT IR A

AW TP

S
'
>
-
',
G
‘.
«
3
-

3
"
<
N

access to the PFS is not possible; all
are mapped‘automaticallY to the HFS and directory
management is not possible.

I1/0 operations

4) Stand-alone : In this mode, tool scheduling is
performed direct from the host operating system as in
stand-atop and the same file access restrictions apply
as for stand-astride. (The installation of this thesis
is stand-alone mode.)

The TVM definition can be extended in any area by the
use of TIE Supplementary libraries. The current
Supplementary library includes access functions for token
streams and parse trees, extended string handling, pattern
matching and data structure handling. The access functions
provided allow easy access to, and manipulation of the lower
level representations of program units. These 1lower level
facilities greatly ease the production of custom Fortran
manipulation tools by users; a tool writer may freely manip-
ulate a token stream knowing that it can be generated for
him and that the modified form can be easily returned to the
source text.

Before TOOLPACK tools or command interpreters can be
used it 1is necessary to have an implementation of the TIE
library available. The TIE implementation may be available
in the following ways :

1) The portable TIE implementation may be installed on
the host.

2) A customized TIE implementation may be produced,
either completely new or a modification of the
portable version.

3) An available customized implementation may be used.

While it may seem that providing an implementation of
the TIE is a lot of work, it is likely to take less effort
than mounting a comparable suite of monolithic tools that do

not conform to a portability base.

48

P
¥

el o St e
‘nt-_\t" Lot e T

vy

. e e - , ..-.. .
R A AR ' SR AERERRINER e,
s 't

AN
."'4" e ‘l. Lt
1

7]

RERT I

A
:

L |
L)

..................

T T s L S N e e s N R N R R R R o T o R R =y | 0 W N %™
ATAT T AT e e B RN k A P PN AT 2 e e Rt NN W TR Y

B o rme o o e e

VII. INSTALLATION ON VAX/VMS

The installation of TOOLPACK is a very difficult task.
On the VAX/VMS 11/780 VMS system it took several months to
get the most basic "STAND-ALONE" mode up and running. The
documentation is voluminous, difficult to read and the
material is not presented in the same order as the steps
that are necessary for installation. Without additional help
that was found only after numerous phone calls around the

4L EEEEE e, S %y TP YT MmN\ Y b

I country, it is not possible .to successfully install the VAX
version. As noted in the documentation, the NAG office can
not (and other than providing user telephone numbers did
not) provide help with the installation. The help of Larry
Reed of the National Energy Software Center was pivotal in
getting the installation completed. The author is indebted

TETY s e,

to him for the successful installation.

The expenditure of resources was quite large. The author N f‘
worked for several weeks reading the documents. It was then :
determined that the task was beyond the capabilities of
someone who was not an experienced VAX systems programmer.
Andrea McDonald, a systems programmer on the staff of the
Computer Science Development, then worked on the installa-

B - SRR ddd /LN PP

tion on and off for 2 months. During this period all the
files were established, corrections posted, programs
compiled and libraries established. It later was found that
much of this work was unnecessary to set up the VAX/VMS
STAND-ALONE mode. Finally with several calls to Larry Reed
and the simultaneous help of Andrea McDonald and my thesis
5 advisor both working full time for two and one half weeks we :"
were able to get several of the basic tools working. ;4'

" By the time the system was finally installed, a new
. version of TOOLPACK had been released. It was decided to
- start the installation completely from the beginning and

“.‘..“‘I‘ 'D‘ l-
AT ’
. l‘ N

LY
%4

..l'{ P,
)
»

Fonon
.'.'
rLd
el
.

"f"n".a" .

d

L&

install version 1.4. The VMS/TIE installation took ¢ e week
(60 hours plus) of full time work to establish the file
system, read in the files, post and document in the code all
the corrections for 1.2, 1.3 and 1.4, and establish the
libraries. An additional week was needed to post the correc-
tions in the individual tools, compile the tools, test the
tools and build VMS EXECS to eXecute the tools. This two
weeks of work was begun immediately after the first instal-
lation, so the full knowledges of that installation allowed
the second installation to be done in the minimum possible
time.

The author's advisor documented the second installation
so there would be a permanent record of the steps necessary
to install the VAX/VMS STAND-ALONE version of TOOLPACK. That
description is now in draft form; a decision on publishing
it as a technical report is awaiting TOOLPACK version 2. It
is likely that after modifications to accommbdate version 2
it will be published as a technical report. The present
draft is over 30 pages.

50

-
i

- r v
T,

CARL A B B 1 o O e it U

"

‘v.‘l\ »

DN Ry

DAAAS NS

P
PR

. -

Y Pt . I

AR

*. ’c.{'

-~

R

Sl

PR %Y

L4
e

»
(3]
o

T Y p o B VP
B APARL AR

et 0
- -

VIII. CAPABILITIES OF SYSTEM AND TOOLS

A. GENERAL.

There are basically two major classes of methodologies:
Single_module testing, and multiple-module testing (or
system testing). The goal of this section is to explain a
base line of understanding about the processes that apply in
typical quality assurance circumstances.

A way of determining how to work a testing methodology
is to examine the characteristics of various methods against
a backdrop of some typical situations. The four cases we can
employ for this purpose are:

l. Case a : A high=-criticality single module.

2 Case b : A medium-sized, medium-criticality system.
3. Case c : A large, medium=-criticality system.

4 Case d : A large, high-criticality system.

Case a is in a high~level language, it is may be 250 to
500 statements long, and it has a very complicated control
structure. It has many different things to do, and it must
be error free.

Case b 1is a set of about 25 modules that support an
on-line facility of some kind. If the software system fails,
there is no seriocus loss because there is an automated back
up system; however, it is expensive in terms of lost produc-
tion and associated waste. The system is written in a struc-
tured extension of Fortran and containes about 6,500
statements overall. The <calling depth in the structure of
the system is between 4 and 7 - not complex and not flat.

Case ¢ 1is a comprehensive system for control of a
facility, and it is 80 % in a high-level language 1like
Pascal, Fortran, or Ada and 20 % in an assembly language.
The total volume of code is in the range of 175,000 lines of

code. If this system fails, there is a substantial loss of

51

~ ruyr e
] "
.

.t
e

A

N e e,

e
l""
Ay

»

e

L

KXANS

:"-\

4

..

‘,u

......

value, but no lives would be lost, and the damage would not
normally be extensive and/or expensive to repair.

Case d is a geographically dispersed interactive control
system where human life is at stake-like an advanced air
traffic control system. The system approaches the limits of
current complexity in the sense that the latest methods are
employed in its design and implementation, perhaps 1,000,000
lines of code overall [Ref. 11l: p. 376].

We would classify the TOOLPACK into multiple_module and
Case ¢ (A large, medium=-criticality system).

Another software system evaluation methodology is bench-

mark testing. Benchmark testing is the application of

synthetic programs to emulate the actual processing work
handled by a computer system. Benchmark programs permit the
submission of a mix of jobs that are representative of the
users' projected work load. They also demonstrate data
storage amounts and provide the opportunity to test specific
functions performed by the software system. Through this
technique, the limitations of the system become apparent
early in the acquisition process. Sometimes user organiza-
tions will insist that the results are attached to software
system specifications, formally stating that a specific
number of transactions can be processed in a given period of
time, the response to an inquiry will be within a stated
amount of time, and so forth.

Benchmarks can be run in virtually any type of system
environment, including batch and on-line job streams, and
with the users 1linked to the system directly or through
telecommunication methods. Common benchmarks are the speed
of the central processor, with typical programs executed in
a set of subprograms, as well as multiple streams of jobs in
a multiprogramming environment. The same benchmark run on
several different computers will make speed and performance

differences attributable to the central processor apparent.

R T A o S
. A0 4.0 5 N Yy
NN
ol A S A UL
- Pl o sl P s

RO RO S

L)

AN

alse

2 a4 8 e

LN

Benchmarks also may be centered around an expected
language mix for the programs that will be run, a mix of
different types of programs, and applications having widely
varying input and output volumes and requirements. The
response time for sending and receiving data from terminals
is an additional benchmark for the comparison of systems.
Sometimes, rather than running actual benchmark jobs on
computer system, system simulators are used to determine
performance differences. In commercial systems simulators,
the workload of a system is defined in such terms as : how
many input and output operations there are, how many
instructions are utilized in a computation, and the order in
which work is processed. The specifications are fed into a
simulator that stores data about the characteristics of
particular equipment (such as instruction speed, channel
capacity, and read-write times). The simulator in turn
processes the data against the operating characteristics and
prepares a report of the expected results as if the actual
computer were used. Then the systems characteristics can be
changed to mimic another model of computer and a new set of
performance data produced for comparison. The time and
expense of running actual benchmark programs on a computer
is of concern to analysts and specification alike. Thus, the
use of commercial simulators 1is an attractive alternative
([Ref. 12: pp. 586-588].

B. EVALUATION AND OPERATIONS PROCEDURE UNDER VAX/VMS

Up to present, we have discussed the general principles
of evaluation techniques. I selected the evaluation method
benchmark testing for this thesis. As mentioned above, the
installation of TIECODE is not a Embedded regime, but it is
a STAND-ALONE environment.

Therefore, the STAND-ALONE regimes allows the tool
writer to make use of the TIE library without the need for
either the IST (Integrated System of Tools) command

53

AP . e - - e ey - LT
o e N T Oa e T A I T R S O R T S PR ke

‘

N
HBAS S

|...
A

,.,“
'l #
vy

N

At 2 ’
P
‘obA

‘e

-
1'-‘

o,
T
)

". l.{
»

‘l
&

]

PRI
\ -“ './"f"/‘:". ‘.
. AR

»
.

s
s

"

SIS

Rl

SO e NN R R VN R R YU WL IR RA A AL R I R I DS A) N et e A A A

interpreter (ISTCE) or the portable file system(PFS). In
this regime, all file I/0 is directed to host files
regardless of the manner of the file access requested. Tools
operating in this regime are executed directly from the host
operating system, to which control is returned on completion
[Ref. 13: PP- 3-5]. The appendix A of
TOOLPACK/l-Introductory Guide [Re€. 14: pp- 1-10]} has
examples for the Embedded regime, is not for the STAND-ALONE
regime. Therefore, the author followed the procedures of
Tutorial Examples of the TOOLPACK/l-Introductory Guide, but
some procedures do not work in the STAND~ALONE regime, as
will be pointed out in following sections. Some selected
TOOLS, for example ISTPL and ISTPT used the benchmark
testing technique (time comparison with different size
programs).

For the benchmark testing, the author produced the
programs thch are a modifications of a Command program
under the VAX/VMS System (Version 4.2). This program is
attached in Appendix A.. .

The TOOLPACK Manual has the descriptions of the input
parameters and the output parameters which are the parame-
ters in each tool. But this kind of expression is not very
helpful to the users. Therefore, this thesis uses the D.F.D.
(Data Flow Diagrams) conventions which are more understand-
able, readable, and extensible than TOOLPACK's [Ref. 17: pp.
47-124].

Especially, the D.F.D. conventions are very useful to
represent a lot of parameters which are combined for more
than two tools.

1. ISTLX (Fortran~77 scanner).

a. Description
ISTLX is a Fortran-77 scanner that converts
Fortran=-77 source text to a token stream and detects and

reports lexical errors. The scanner has been mechanically

54

e Wi aV,

Y
PSS 'K

Y Y

3 AL AT

Lo
" .'
R

5y

v
P
ay By by Yy
o€ s

P

A
-

ST .
LA A

'.Ai‘J).

. 2n 2% T
e .-‘.:_ o
oA

.. "v .‘l "-
yaRy

P
«

P

~

)
L

S
I

g "T x
.l .n .l s
Sttt
R
PR

N S T N T T T, W s

i NN

generated from a specification of the Fortran-77 language iﬁ}
N [Ref. 15: p. 1].
ISTLX reads Fortran-77 source text from the :;2
N source file. The resulting token stream is placed in the :ﬂu
f token file and the comments are placed in the comments file. ;{i;
? Any errors discovered are reported to the error file and an j%fi
- attempt is made to continue scanning by deleting or adding ;?Sf
- tokens. During operation the scanner produces a list file -
E which contains the input source text preceded by the token
3 number of the first token for each statement. ey
X ISTLX is the first step in using each tool. e
. Therefore, if ISTLX produces an error file, then the user R
:Z should correct the source text programs which are fﬁ;
- Fortran-77 source text. :
‘Q There are a lot of users who are using the e
y WATFIV source program [Ref. 16: pp. 65~101] at Naval .j:}
if Postgraduate School. The user must be careful with the ﬁ;;
ﬁ control structures of WATFIV programs which are not admitted Eﬁ;j
W by TOOLPACK. Figure 8.1 shows an example. P
N ‘ :_:‘. -r:
~ NN
-7 Y
N Y
R
& IF THEN DO IF THEN e
- ELSE DO ELSE
: END IF END IF
v
< (WATFIV) (STANDARD) e
- N
: Figure 8.1 WATFIV control structure. ;:a
P b. The Flow of ISTLX i
E Figure 8.2 shows the parameters using the D.F.D. ?3?
i~ -

Y A S A S et e gt e S e e i e il e s e IS Bt

List.file . Ealas
#SAMPLE . LIS .

error. file

. #SAMPLE . ERR
source. file

#SAMPLE . FOR
token. file
#SAMPLE . TKN

comment. file
#SAMPLE . CMT

Figure 8.2 The Flows of ISTLX.

i c. CPU Time Comparison Sy
- The CPU Time comparison of different size };b
programs is shown in TABLE I. RN

£ A

Apal -

LA,

s
v
A 0

TABLE I A
CPU TIME COMPARISON OF ISTLX A

2

PASLIA A A
k]
.
-

e

»

‘I
i

" (unit : secs)
7y program size | B85 LOC | 700 LOC | 1500 LOC
5 T 59T 5970 98,06

2 7.01 59.18 ‘ 97.05
3 7.00 59.55 97. 66

&
. "'.'J

PRI B
S

2’ &
ANANN

£ -~
£ 7
. .
sl .
4 .

‘
'

L)

’
)

P
'
o

o
4

N u S
v "a l.l"
l'/' F
»
¥

.’
/

v 7
& S

2. ISTYP (TOOLPACK Parser)
a. Description
ISTYP parses a Fortran-77 program. It takes as
its input a token stream produced by ISTLX (Fortran-77

1. ke e
L
LN
A oe, f 0
PR P

E.’“”

T S N T P R
SR e TR TR S

AR VA R R Y

Scanner) and produces a parse tree, symbol table and comment
index [Ref. 18: p. 3].

All error and warning messages produced by ISTYP
are written both to the standard error channel and the
symbol table file. When a tool which uses the symbol table
is executed, these warning and error messages are displayed
again. As many error conditions render at least part of the
symbol table or parse tree information invalid, it is impor-
tant that the wuser is aware of the possiblity that further
processing may be completly useless.

b. The Flows of ISTYP

To execute the ISTYP, the previous step which is
the running the ISTLX is required. Therefore, the users
would follow the Figure 8.3 (The Flows of ISTYP). The
command file which is to execute the ISTYP is Appendix B.

c. The Problems Using The ISTYP in the VAX/VMS
System

In chapter 7, the author already mentioned the
problems associated with the installation of the TOOLPACK.
The version of the distributed TOOLPACK is TOOLPACK/1,
Version 1.4. But, this wversion stills need a 1lot of
corrections.

The TOOLPACK programs are composed of many
modules. Therefore, if we correct some modules then we have
to correct the related modules. These kind of jobs are not
easy. If the installer is not careful in identifying and
applying all the relevant corrections, then errors arise
that are very difficult to trace. The difficulties in
installing and maintaining the programs seem all the more
ironic since the aims of the TOOLPACK project were to
provide a suite of tools to aid the Fortran-77 programmer in
the production and maintenance of medium sized mathematical
software projects [Ref. 19: p. 85].

One example of the problems encountered was the
attempt by the author to apply TOOLPACK to a 1500 1line

A I S A o S

<

5 ". ".
‘.. [AKS e _.".\‘ .

..
oyt L
e G
'A ". ,l .‘l '.l'

/
Ha e
e

19 0 Din’a4 e WL NN A A ACKS ah nabia i - N < ST AT AT LRACASAA Al
\y
W)
o
N
S
+ N
b list file
- #SAMPLE.LIS _¢”)
\ parse tree file
A #SAMPLE . TRE
N source f1 ; bol taple file '::4';
. #SAMPLE.FOR #SAMPLE . SYM ®
i #SAMPLE . CMT e —— N
L. . —
' error comment index file R
., b . :.\:
> #SAMPLE . ERR #SAMPLE. CMI e
g _.:__.:__.
- AN
> NN
~ .
.j anl
3
> ;{.:"J
|
. Figure 8.3 The Flow of ISTYP.
- BN
L Fortran 77 program. The program was executed by ISTLX ;j-:::::j
- N
» correctly, but it failed in ISTYP. The reason was that f-:}:'_.-
: e
"string_size" is defined to 7500 in the YPDEFS of ACCESS o
" FILES Directory (for example : define (string_size,b7500)). A
K A
- After the problem was found, the author changed .;:.‘_.:.j
- the definition statement from "define (string_size,7500)" to :5_::;:
> [N
; "define (string_size,15000)". Then, the execution times of ——
the ISTYP jumped to over 1.5 hours, eventually this program '_ \
;': was terminated. Until the problem is corrected, the users '.:j:L:“'.
. of the Naval Postgraduate School version must limit its use :',:::f-:
to less than 1,000 lines of code. . |
‘-"7'_-'1
: oo
X SN
X N
- s
- .-‘.-.;\
: 58 SN
\'_‘-‘_\
-‘: ‘\;..‘:.:‘
< \I\.“'

\u\i

R i e T e e R R M Y TR S A ""j.'.'

ISTPL (Polishi Tool) /ISTPO (Opti File Edj
Description
ISTPL is a formater for programs written
It takes a token stream produced by ISTLX, and
produces a text file containing the formatted program. It is
file (if the
the
any command-line options.

a.
in
Fortran=-77.
controlled by an option string from an option

option file 1is not supplied then the program uses

default settings), together with
The source program of Fortran-77 must be "lexically correct"
that analyzed by ISTLX without

producing errors [Ref. 20: p. 3].

in the sense it may be

As ISTPL makes no use of the original source
file,
token stream into text.

it may be used as an "unscan" program which turns the
When ISTPL detects an error,
sometime be able to recover

it may
from it and continue processing
In this case
the output file
"C*PL*ERROR*" (see Appendix C).

the user's program. the error message will be

inserted into as a comment beginning with

i There are two kind of flows to execute the

ISTPL. One 1is the simple execution with the default

settings. The time of the execution is faster than the
others.

The complex flow shows the more sophisticated

of the
The usage

But the time
of the methods is depen-

output possible with use option file.

of execution is longer.
dent on the The

users. simple flow is shown by Figure 8.4

and the complex one is shown by Figure 8.5. The command
files that are to execute the ISTPL are Appendix B.
b. Option File Specification
An option specification has the format
"Parameter = Value", The actual options available are
described in a later section. Options specified as ISTPL

parameters 5+ will

Because of the large

(command-line options) override option

specifications from the option file.

MR

5d
«

.

.
r
\-’
\\' »
.

gt X
P

LT,
’

- 2 . R
et P .
Sbar e e e
. [e e et
. I . P
R e oo
. LTt e e
e e (Y

-. ..-l

RGP

59 AR

RN AN

PR

DA

PN

-‘\-’.'1

F R T A

Tt e et N BRI R R RN . . oL

AT T N e BN ..
PLIPLA ., o - TN NP M T R T G LTI R

t
;
r

list file
#SAMPLE.LIS 9

output file
#SAMPLE . POL

source
#SAMPLE.FOR

error f1 L\ A)
#SAMPLE.QPT
#SAMPLE .ERR

Figure 8. 4 The Flow of the ISTPL (Simple Method).

number of possible options for ISTPL, an option file editor
ISTPO 1is provided and is recommended for option file
creation and maintenance.
c. Caution of Usage of ISTPL (with complex method)

As mentioned above, the c¢omplex method of
running the ISTPL uses the ISTDS (a declaration standardizer
that rebuilds the declarative parts of Fortran~77 program
units according to a programmable template [Ref. 21: pp.
3=-4].

Therefore, some errors do not occur in the
Simple Method but in Complex Method. Sometimes, the authors
of Fortran-77 programs do not define the names which are
External Subroutine Names (An example is shown by Appendix
C). Nevertheless, these programs work correctly under the
given Fortran-77 Compiler [Ref. 22: pp. 1-4].

60

B
]
'

.
.
e
DAY
g

e
ol
‘A

yyrv
s
-

YA
.y

)
)
Ay

G

DD O 2 K

l“‘?

v

SN

A MWV o

Shhd

e TR

7’

". ; 'l._1

lise file comment index
#8AMFLE. LIS #SAMPLE. CNX

token file

acamens file

$8AMPLE. CH3

error file

#8AMPLE . BRS opcion file

184MPLE. OPP

Figure 8.5 The Flow of the ISTPL (Complex Method).

But if the user wants to run these programs
using ISTPL then the following errors are reported:
¢ C*PL*ERROR Unexpected statement type
* C*PL*ERROR Unexpected <TZEOS>
¢ C*PL*ERROR Internal Error (GRIND1)-T2EOS confusion
The reason was that ISTDS was confused whether
the name of the subprogram was defined or not in the main
program declaration part. When the user writes the function
subprograms, tool ISTPL doesn't report this kind of error
message.
Therefore, if the users of ISTPL have this kind
of error, then they should correct the source program which
is the Fortran-77 program.

T

X/

LYY
L
1:' N

RN
S
ATINNX,

A
T

5 5%

]

e

L I A
XA
Sy

r
LA

AR e e
l’l

W F s
Xy
P s

’
Su

»

22!
Y %

Y

AL
NG) v
’,7,
P) .". l;

AR
282

)
4 _v_«

I'

'
.I
3

Yo,

2,

2

iV

d

’

~
ﬂrlﬁi“i
xS

XA

b

ol
SO
[N

o

4
%
.
[
!
~
b
“
“~
“~

ATAl

o RS

. . 8 4 s
L S

v

AL S A SSERE

PR . MNP

"5 W 8 ¥ & ¥
DR & AR

AWM PRRIOIOWICAL AR

d. ISTPO (Option File Editor)

The following are a summarization of the useful

contents for the users from ISTPO users' guide [Ref. 20: p.

12]:
1)

2)

3)

4)

Description : ISTPO is an editor for ISTPL option
files. It 1is menu-driven and has_ an inbuilt help
facility [Ref. 20: p. : The only parameter of the
ISTPO 1s the Name of the option file (e.g.,
SAMPLE. OFT).

The operation of ISTPO : When ISTPO is started it
will attempt to read the option file specified. fe it
can not_do this (e.q. because the file does not
exist)_ _ISTPQ assumes tﬁat a new file is being created
and all options are internally set to the ISTPL
defaults. "~ Options are changed by 81v;ng the ISTPL
option specification as a command. ption names and
values may be abbreviated so long as they remain
%ni?ue, apart from token names which must be given in
ull.

Command Format : The ISTPO commands are : Exit, Help,
Menu, Next, %uery, Quit, Read, and Write. Commands ma

be abbreviated so long as the abbreviation is no

ambiguous. Arguments to these commands should be on
the same line as the command itself, separated by a
space or spaces from the command name. Commands which
regulre arguments (rather than having optional ones)
will prompt for any missing arguments.

Command Descriptions.

The EXIT command writes out the option file as modified
and termingtes JSTPO. There are three formg of the HELP
command: HELP', "HELP?", and "HELP topic". The first
form displays the current ISTPO menu. ~The second form
lists the_topics on which help is available. = The third
form displays information about the requested topic.

The MENU command moves to the specified ISTPO menu. _1If
no menu name is specified following this command, then
the current menu is redisplayed.

The NEXT command advances to the ISTPO menu which
follows the current one.

The QUERY command toggles %uery mode, which is
1n1t;all§ off. In query mode, all parameter changes are
confirmed before being done.

The QUIT _command terminates ISTPO without writing the
option file. This command is same VAX/VMS QUIT command
in the EDITOR mode.

The READ command reads an option file. This will
completely replace the curren state of the option
memory.

The WRITE _command writes the option file but doesn't
terminate ISTPO. If a file name is specified after the

command, then that file becomes the option file being
edited.

62

LS
o

-',;‘J‘J ‘

'E;‘{zk
.~ L] .

CXA RS
R NOLS

* :‘
SN

et
Bl
ALY

P ‘. -
.

L%
2
\‘l‘

0
'

L)
Ry

’

o ... \ \

’

.
<
«

‘:‘4"'-:' .-"...".‘ .. B
A

) "'s.;j
|‘_ .

i
T]
Fo e

4

L Y
A
R

-
‘."

7
o

- - o B e “at e -~ " A S A SIS S I S T S AL IR IRPE AT N
R Ty A A gl A S S O ER AN GO R WL
- A » B al . 0 v .

C e
i L
. .;\"-s !
, SN
‘¢ 5) Menus : There are 8 menues in ISTPO. These are DIR, -?Qu
‘ BASIC, COMMON UNCOMMON, BLANK_LINES, LINE_ BREAK, el
" SPACING1, and SPACINGZ. Initially the user is at menu et
N DIR, which consists of a list of the other menus and el
" simple operating information. There are many options Lo
' for the ISTPO BASIC menu [Ref. 20: pp. 12-13]. o
'j The author selected some of them to demonstrate the results _ Cfﬁ:
- . ¢.<.\
- which are shown in Appendix C. The followings are the ti’*
N selected BASIC options : 5}&;
i « INDIF = 10 ; (Indentation within a block_IF) s .
3 IOTHCO = .TRUE, ; (Insert CONTINUE statement before A
0 prev1ously labelled executable statement) -
i, e LMARGS = 7 ; (Left margin for statements)
i * MOVEF =.TRUE. ; (Move Format statement)
~ * RLBFMT =.TRUE. ; (Relabel Format statement) . Aygf
S e SEQRQD = .TRUE. ; (Add sequence numbers) e
" RS 3
" ¢ SEQINI =0 ; (Initial sequence number) ;ﬁ%;
E e SEQINC = 10 ; (Sequence number increment) ﬁ!ﬁfi
E NOTES : If the user wants to execute the output é. -
N of ISTPL immediatly, then it is recommended that the user s
does not use the option SEQEQD. The output using the SEQRQD e
isn't accepted by the VAX/VMS Fortran-77 compiler. RIS
! ;
e. Elapsed CPU Time Comparison A

The execution times of the different size
programs are shown in TABLE II and TABLE III. To get the
results, the author used almost same procedures which are

F

N AR
¢ -
|

Jivalsnss,
.
2

listed in Appendix A.

’

4. ISTPT (Precjision Transformer)

a. Description

AR F A A LAMIAFLFLILS \ FAEN M

ISTPT (Ref. 23: P. 3] will transform a ”
Fortran-77 program from REAL to DOUBLE PRECISION or vice :
versa. The input program must have all names explicitly

.

typed for ISTPT to work correctly. The tool ISTDS [Ref. 21:
pp. 3-4] can perform this function.

[ACRTRERENES

r]
RS
Py
Ay

a 'y

63

"-"
celrele
R

AN

e
N
2

DU RERX S CR S RV . ey

£ EARNRAMAY ENENSL ARSI IR P ERNINE . B T Je L PR

Oy BOLSALAE) LAV

AN

Y%

VAN A0

-
»

W

TABLE II
CPU TIME COMPARISON (USING SIMPLE METHOD) OF ISTPL

(unit : secs)

program size | 85 LOC [700 LOC | 725 LOC
1 10.03 75.773 80. 89
2 | 10. 09 | 76.10 82.15
3 10. 11 76. 29 80.91
TABLE III

CPU TIME COMPARISON (USING COMPLEX METHOD) OF ISTPL

(unit : secs)

program size | 85 LOC | 700 LOC | 7425 LOC
1 21.03 165.87 193.28
2 ‘ 20.75 167.58 ’ 198. 85
3 20.90 168. 43 192. 85

ISTPT takes as its input the parse tree, symbol
table and comment index produced by ISTYP [Ref. 18: pPpP.
3-14] and the comment file produced by ISTLX [Ref. 15: pp.
1-5] and produces a new token stream file. The new token
and comment stream produced by ISTPT can be converted to
Fortran source code using ISTPL [Ref. 20: pp. 3-18].

All warning and error message produced by ISTPT
while converting the user's program are also inserted into
the ocutput token stream as comments. These begin with
"C*PT*WARNING*" and *C*PT*ERROR*" respectively.

64

P R Y S PL RPN G

....................

........

y

a A s & 4 &

-

TRNYTEE TR &

Lo,
a e

. .
IO

P

Any warning and error massage produced by ISTYP
while parsing the program will be displayed on the standard
error channel (In the VAX/VMS system they could be displayed
on the screen of the terminals. Therefore, if the user
wants to keep the errors and warning messages, then use the
VAX/VMS special commands. This technique will be discussed
in a later section.). They will not, however ,be inserted
into the output token stream as comments.

b. The Flows of The ISTPT

There are two Kkinds of flows to execute the
ISTPT. They were named the simple method .. d the complex
method. As mentioned above, the simple method doesn't use
the ISTDS (a declaration standardizer), hence the output of
using the simple method doesn't include action on the decla-
ration parts of the given source program.

But the complex method uses the ISTDS, the
output of using the complex method is more readable and more
understandable than the output which result from using the
simple method. The complex method takes more time than the
simple method (The time comparison charts are shown by TABLE
IV and TABLE V.). The user must decide on the trade offs
between the quality of the solution and the execution time.
The outputs of wusing both methods are shown by Appendix D.
The flows of the ISTPT are shown by Figure 8.6 and Figure
8.7.

¢. Transformation Details

This section lists the major details of the
transformation performed by ISTPT. ISTPT should always
produce correct output except when it detects an error, or
with complex arithmetic. Although ISTPT does not attempt to
ensure that the transformation will be reversible, the only
difference will be where the code was originally of mixed
precision, or an wunusal intrinsic function (such as MAX1)
was used.

65

N oo E R T
L 3 L) » C R ¥

-
B

...................

‘‘‘‘‘‘‘‘‘

'yj‘ﬂﬁ(yyn
,q-l'ﬂﬁyﬂg
KRARY AR
RS LA

g

2, .
L2
AR

P
oo

Pt RN

5
LA™

.
NN
[y

LA

OO

R
LR RN
\)‘v
b &ty

~
VN
L

L]
el
ey
LA

]
v s
N

vt

»
Wl
PR]

2

-4
‘g Y

PR AR
NN

IR YE:
] .‘| L "; _lr'l ~

v e

'

Y
"
it

- 3 g n .
PRI R M R G Y N A - M e

P

|~

SNNAA

lrst file parse tree
$SANPLE.LIS #SAMPLE. TRR

sowrce file 0 outout file
$SAMPLSE, POL

#SAMPLS.CNT comment file

#SAMPLE . CM3

comment nd
error file #8ANPLD. CMI option file
#8AMPLE. BRR aPTION STRING 98AMPLE.OPT

Figure 8.6 The Flows of ISTPT (Simple Method).

l) .The key word REAL is changed to/from DOUBLE PRECISION

2) Real constants are transforped to/from double preci-
sion and 1if appropriate DO" will be added to or

deleted from the end of the constant.

P
o
(]
“
L

3) The E-format descriptor 1is transformed to/fyom the S
D-format descriptor. This will not change the "Ew.dEe et
form of the E-format descriptor, as there 1is no N
D-format equivalent. '\gﬁ%

s

T

iy
A%

4) Complex variable usage will result in a warnin
message when converting to DOUBLE PRECISION (ISTP
does not attempt to transform complex expressions).

&
.

: e \‘
5) EQUIVALENCE statement are checked to ensure that their ﬂ{i&
meaning does not change during the transformation; if e

it does then an error message is produced. fb}f

2
"/

d. Elapsed CPU Time Comparison

5
il |

.
h]

3

The execution times of the different size
programs are shown by TABLE IV and TABLE V.

4

5 52

“

» ‘l
X

Ty
‘;"I:{. <, B
1
IR
YN
P

g

MUSIS
%

66)

PR

AT AT AT T e e e T RN AT T T T e T T e e T T ot
. ST . NP AN . RN RS R AR A SRS R A AN . .
LPC AL APCREPEWE V. PRV AT AL P8 I P 8 PRV ST TN W P i D W SN PR VAT P o T, W DUt A Dy

G
........
. s e

(e L Vs

DAACAN

At At

“~

MCAEALSELCALATACACR S AL AL
(unit : secs)
725 LOC

‘-

0

N

S = SAMPLE PFREGRAN

170K, TX?, 7X8 = TSOAEN PILB
CNT,QM8,CM8 = COMMENT PILB
CMI,CuI3 = COMMEBNT INDEX
TRS,IXR® = PARSS TRRB

AR A

RS

TABLE IV
CPU TIME COMPARISON (USING SIMPLE METHOD) OF ISTPT
85 LoC | 700 LOC |

ow
-

[

--1'

The Flows of ISTPT (Complex Method).

R T T e £ A

program slize

u'- o

.

Figure 8.7

NRRT ST IR

ot
oo

o~
~r

oM

Zle S U A e U i 4

D) LTI MUY PRI

AR s FEBL RN A N S Yl TR Y TCUNRRYEl Frye

67

A S

R e =

a4

PRSI

L]
L .

a
s

sy

PAE A

A

[

A A S A8 1 200 AL N N N A St Pl) Sl ag ol do 0 e 2= 0 BN M AL N AL AN AR SRIE AR Gt) APl A e At tind b gt S et R

TABLE V
CPU TIME COMPARISON (USING COMPLEX METHOD) OF ISTPT

(unit : secs)

program size] 85 LOC | 700 LOC | 725 LoC
T 30. 77 252. 36 305. 30
2 31.14 ' 252.59 305. 28
3 31.06 254.01 305.23

5. ISTAL (Documentation Generation Aid)
a. Description

ISTAL may be used to create a number of reports
on the static and dynamic analysis of a program unit o: set
of program units [Ref. 24: p. 3]. The reports may be auto-
matically inserted, as requested, into a specified user
document. ISTAL uses information created by other tools,
notably ISTYP and ISTAN {Ref. 25: pp. 3-16].

The tool ISTAN creates static analysis informa=-
tion and also instruments Fortran-77 to produce dynamic
information on program usage. Both the static and dynamic
information created can be processed by ISTAL.

b. The Useful Commands to Operate the ISTAL

There are 20 commands which are used to get the
results from ISTAL [Ref. 24: p. 9]. The commands are listed
in Appendix E. The author selected some of them to demon-
strate how to work the commands.

c. The Operation of ISTAL

Below these are several examples which are to
demonstrate the operation of the ISTAL [Ref. 24: pp. 10-21].
But the examples of the reference is the result of the
EMBEDDED regime [Ref. 13: pp. 3-4]. As mentioned above, the
installation of the VAX/VMS system is the STAND-ALONE

68

NaN
.

s
...‘ .

A N wy a2 e
S
£, & A8,

(RS

,"
:,‘“:‘1

4
S

o
L

Ao,
ﬁ{;

1..)5
(Y
*

";.‘;) "l r L .‘l *
S
R

k]
[
l".

="

AL’
" .. ls l.' l\
Aty

“.‘I ‘ “.' ..‘ ..' ."‘-, LR
/

&

N0/
RGP o]

7

L‘J‘J“} J‘.

e)
AR

P

n
AAANN

. IR NEAR
BTN of IRl oL

bff“' (..‘

@ -,

PANADSANY,

s

P

- .’.."--".."-' S
N T

regime. Therefore the operation procedures are a little
different. Especially, the file name convention is different
(see chapter 6).

The outputs of the ISTAL are displayed on the
terminals. To keep the outputs of the operation, VAX/VMS
commands are required. Figure 8.8 represents the commands.

$ SET HOST/LOG = RESULT. LIS CSVMS1
(If you issue the command, then the system will be
logged out. The user must log in again. After log
in, if you work anything, then all commands and
all outputs which are displayed on the screen
will be recorded at the list file RESULT.LIS.)

After finishing your jobs, type the following
commands.

$ LOGOUT
(This command returns control to the CSVMS1.)

$ PRINT RESULT.LIS
(This command prints your jobs.)

Figure 8.8 VAX/VMS commands
(to obtain the outputs of ISTAL).

The ISTAL requires the symbol table; to get the
symbol table, the tools ISTLX and ISTYP should be executed
first. The important thing is that the ISTAL operates under
the TOOLPACK command executor (ISTCE [Ref. 26: pp. 2-13]).
Before invoking ISTAL, therefore, the user must invoke the
ISTCE. The summarized procedures are shown by Figure 8.9.

6. ISTAN (Execution Analyzer)

69

ARt R ive Mg e Minchie S e S M o PRt An A SR N T S PR P I TRTETATY PP SEANL Y M LD Gl

L
.,:.',
‘J"‘
] ’

o]
2 '.n “l Pl

N4y
I
2 Ay 4y
".‘

| 4,
¢
iy

b

YR

1y

L)
st
»

B .'.’.’ .).—’

Fate

"1' .l [

.

B
'l'.
)

5
Ge Nt

- f

':. :‘f:’ ";.“;":. ".’:‘ :
ORIl
'L..ﬂ."l."&' 'y

ﬁ
LA
"/i

Pard

[
+
AL

"y s

s
7,

[§
a

-_\\L’Vz ':5"‘,.
il B

AL
Sed

7
()

‘ »
L
.' I,

’
h)

: ‘q e,
NS YN e i:.r »

]

-.r'~

BILPLE g

1:5_“. .

t $ISTCE to_invoke the command executor) \)
2 ce : ISTCE prompt) .
al 0,1 the inputs and outputs are standard .
» i/o channeli__termlnal i/o0)) AN
b al : (ISTAL prompt) LAY
. FOLDING = A
a : C_.f\@.\.
VERBOSE = YES NN
P al : .:':;j:
A CALLGRAPH = #SAMPLE. SYM &R ol table name =l
(The output of CALLG H is Appendix E e
i3 al : - 4\
L, COMMON = #SAMPLE. SYM . . AE
o8 (The output of COMMON is Appendix E) AT
al : :, ‘-}
- T?BLE = #SAMPLE. SYM >
al : —
SYMBOL = TEST s:TEST is the name of Main program) W)
’ (The output of SYMBOL = TEST is Appendix E) N
L] .'\.‘ ~
. al : Rty
. SYMBOL = STAND {_'S’I‘AND is the name of the subprogram) Ry
(The output of SYMBOL = STAND is Appendix &) PN
al : |
) WARNING = STAND . . o
: (The output of WARNING = STAND is Appendix E) e
b al : WO
- XREFERNCE .) e
- (The output of XREFERENCE is Appendix E) _5.;.'2
al : : ':"
FULLXREFERENCE . i N
. (The output of FULLXREFERECE is Appendix E) .;{.::._\
o al : Ao
- control 2 return to command executor) RO
. < ISTAL Normal Termination > AT
ce : i-_»'h_"
: QT (return to VAX/VMS system) 1-:?:-;.:}'
’f < TIE : Terminated > \‘C-.‘
. S A
: RO
. Figure 8.9 ISTAL Operation Procedures. -_lf_-“:}
W a. Description a
: ISTAN [Ref. 25: p. 4] takes as its input a ;\;
3 Fortran-77 program in token stream from (as produced by 3.}?.?
- ISTLX) and produces an instrumented Fortran source, a state- :",:_’,:)
X ‘-"'f":
N ment summary file for input to ISTAL, an annotated token -:.;-_.'_:‘
. stream and a summary report. \‘-:
5 o
‘- 70 o

...........

The annotated token stream lists the segment
numbers (a segment is a section of straight line code) wused
in later reports.

It is not necessary for the input to contain a
complete Fortran program. If only a few routines are to be
analyzed, they may be input to ISTAN and the instrumented
output combined with the rest of the program.

b. The Flows of ISTAN

The running of the ISTAN is quite complex. The
user must pay attention to the sequence of the execution
procedures.

First of all, 1ISTAN requires the comment stream
and the token stream. Therefore, the running of the ISTLX is
required by ISTAN. After getting the token stream and the
comment stream, execute the ISTAN, then you will get the
instrumented source codes which is a Fortran-77 program and
many additional lines are added to get the user's output and
some additional information named SEGMENT EXECUTION
FREQUENCIES (see Appendix F).

A third step is required to execute the ISTPL.
The results of this step is the polished output file which
is an Instrumented Fortran-77 program. Figure 8. 10 shows the
Data Flow Diagram of ISTAN.

¢c. The Useful Information of ISTAN
¢ The Instrumented Program : = The instrumented program
Bl giactun’8ata Pi1e? These Jarelin *2daiilon’Bs °Bay
output normally produced by the non-instrumente
program.
* The Listing File : The file contains a formatted report
of the execution frequencies of each segment in ~ the

instrumented program and a list of all segments which
were not executed.

¢ Single-Run Data : The single-run data file is written
by "the instrumented program upon _termination and
contains the segment execute frequencies for that run
in a form suitable for input to "ISTAL (The single=-run
gat?sgiée)ls only produced if the option is specified

o <)

LS
P A A
SRS

k]
I

“h Y Y
2

b Y
XA
o

[N

"
Py
{l

5

o« W a
-
77;5

‘.4’
&

4
4
i

o
l“ [

‘NAERNA

> L. 7

s e

A

Lo/ .

0

s S,

L R S O

e Ny

“e e

'

’

NS HNA

s

N
\.
L

-~

A A AL

N N s
Wt T R)

o
oA

instrumented prograa
SSAMPLE. FTN

lise file
#8A0PLEB. LIS

stacement qumaary
#8AMPLE . SUN

token file token file

source file ¢ - TEN . +ATEN polished PO

H8ANFLE . POR

comment file

comment file #SAMPLE. POL

error file

option file
#82MPLE. 322

JOANPFLE. OPY

susmary report
#8AMPLE. SUNFL

Figure 8. 10 The Flows of ISTAN.

d. The Operation of ISTAN

As mentioned above, the operational procedures
for ISTAL are little different with the given specification
[Ref. 14: pp. 8-16]. The author selected the options,

the results are illustrated by Appendix F.

and
The summarized
operational procedures are listed in Figure 8.11 and Figure
8.12. After executing the first step correctly,
must compile and link the

the user
instrumented source program. The
following are needed :

¢ $ fortran SAMPLE. FTN
¢ $ link SAMPLE. OBJ {(or SAMPLE)
* $ run SAMPLE. EXE (or SAMPLE)

72

)

N w
)

S e
AR

-
»~
L

-

A

NND
Y
.
ALY

- :'J‘ ')\) p

Y
» S

..................

- .m‘
.
s
: The output of the above execution is shown by Appendix F. I ;3&'
f recommend to use the ISTCE (Command Executor) for running §ﬂ:'
. the ISTAN. RN
A
. RN
; $ ISTCE to invoke the command executor) NN
: AN R s A7) ISTAN) ey
p Input token stream : #SAMPLE. TKN KR
S Input comment stream : #SAMPLE.CMT iffﬁ
» Output instrumented source code : #SAMPLE. FTN %<f3
2 Output statement summary : #SAMPLE. SUM RN,
% Output annotated token stream : #SAMPLE. ATKN ﬂ%ﬁ%
" Output annotated comment stream : #SAMPLE. ACMT Zﬁgj
Output summary file : #SAMPLE. SUMFL
: Options : RUNDATA='SAMPLE' -
<ISTAN Normal Termination>
: 5% : (return to VAX/VMS system)
- <TIE :Terminated>

- :;'_-:‘:'.
> . AN
< v . s Sy a\
+ Figure 8.11 Operation Procedures of ISTAN (first step). AN
- LTS
. e
" AT
- YR

;'-“- - v'
N .:__.:_'e
N :.:-:.' A3
: .-_:.‘:..-
e
= . '-':'..\".
3 . ¥
-~ g
&, E A
- -
- = .-.
N i
) S
-
= oA
S ol
~ ENEANS
- G
-~ J.'.\,_- o
. RSN
> O

1
'

i
Cd
L4
&
{ $ISTCE to invoke the command executor)
ce : ISTCE promgt) .
PL to invoke the ISTPL (polish tool))
W Input token stream : #SAMPLE. ATKN
o) (The token stream produced by ISTAN.)
Yy Input comment stream : #SAMPLE.ACMT
v (The comment stream produced by ISTAN.)
Polish output : #SAMPLE. APOL N)
Option file : (none) R
s, A
D <ISTPL Normal Termination> R
o ce : return to the command executor) e ls
- AL 0,1 to invoke the ISTAL, terminal 1/0) L
- al : ISTAL prompt) e
o V%RBOSE = 2N,
a H
F?LDING = YES
. a :
= A?NOTATED = #SAMPLE. APOL
- al :
. RUN = #SAMPLE. DAT]
': (This file produced by the ISTAN option.)
< al :
. SgMMARY = #SAMPLE. SUM
-, al : .
o LISTING])
. (The output of the LISTING command is Appendix F)
- al :
- SEGMENT = ?*] .
ot (The output of SEGMENT = ?* is Appendix F)
~ al :
" TOTALS = ?+* .]
. . (The output of TOTALS = ?* is Appendix F)
N STATIC = TEST , ,
.. (The output of STATIC = TEST is Appendix F)
. al :
= DYNAMIC = TEST . .
< 1 (The output of DYNAMIC = TEST is Appendix F)
, al :
By control 2 (return to the ISTCE)
~ <ISTAL Normal Termination>
y ce :
QT (return to the VAX/VMS system)
" < TIE : Terminated >

Figure 8.12 Operation Procedures of ISTAN (second step).

e

" EIRAN

Ty
«
@ 4

P

hl TS

IX. EVALUATION

A. COMPARE USER NEEDS TO TOOLPACK GOALS

The characteristics of mathematical software (defini-
tions, application domains, need for efficiency, development
environment, portability) and a description of programmers
of mathematical software were presented in chapter 5. One
way to compare the user needs with TOOLPACK goals is to
identify any discrepancies between the characteristics of
typical wusers of TOOLPACK and the assumptions that the
designers of TOOLPACK made about them.

Th2 TOOLPACK system assumes that users have a working
knowledge of terms like "lexical analyzers", "parsers”,
"table managers" and "report generators". As discussed in
chapter 5 the typical programmer (of mathematical software)
is not acquainted with these terms. The TOOLPACK documenta-
tion does not include definitions for these terms, tutorials
on them or even references into the computer science litera-
ture to learn about them. The typical programmer does not
have the background to easily access the literature on these
topics. It will be necessary for the TOOLPACK documentation
to close the gap between user needs and TOOLPACK gocals by
providing expository materials on all the pertinent
contents.

In addition to specific concepts that are unknown to the
typical user, the documentation contains phases and jargon
from computer science that will be difficult for scientific
programmers. It is probably not possible to remove all the
technical terms from all the documentation, but the documen-
tation could be improved greatly by identifying two distinct
readers:

1. typical users
2. software experts

4 - B
ar

T
RN

Sl

g SIS

A
5
L s

A 'r:. “y:""r/ e S
AN a s
AR

%'

)
.
i

N
AR
LA RN

e

DR

»”
[
‘\

" . "l’ oy .v./o./
AR AR

et 0 ‘
. Y

oty

(ARE AW HAWY LW SN IR

AR By

L g =

SO

4,8
2 a

.“ .“ h\

’ LI

-~

hje e B e dn)

e

WA {.'..".

Each separate document c¢ould be designated for the typical
user or for the expert (or perhaps installer). It would then
be necessary for the user documents to systematically either
remove or explain each technical term.

One specified TOOLPACK goal was to provide "a structured
Fortran language which enhances standard Fortran with modern
control and data structures". The need for these capabili-
ties is overshadowed by the need for code that can be easily
debugged, tested and maintained. Since the inclusion of a
production quality compiler is not a realistic goal, the
TOOLPACK goal could be accomplished only with a preprocessor
(like for example RATFOR). As discussed above, preprocéssors
have serious drawbacks including the inability to relate
error messages to the source code. So although users do not
need a preprocessor, the goal of providing better control
and data structures than available in standard Fortran is
important.: Some capability for an improved language are
provided by the non-standard extensions +to Fortran that are
unique for each computer manufacturer. TOOLPACK does not
have a goal to support these computer unique Fortran exten-
sions- that help provide the modern features needed by
programmers.

The most serious gap between user needs and TOOLPACK
goals is in portability. Although portability was only a
very minor part of the original TOOLPACK goals [Ref. 1: p.
5-6] it achieved major status in the architectural design
document [Ref. 7: p. 3]. Portability is only a secondary
goal of the vast majority of scientific programmers; more
important goals are runtime efficiency (including use of
computer unique Fortran extensions) and high programmer
productivity (use of simple, effective tools with low run
time expense). Programmers would like to be able to move
their code easily to other machines and to easily use

programs produced on other computer systems but they

76

A .

.?.f'-"'""f

.".l
54y

»
4
I3

J

O % ‘(.. »

DN
i .n' ‘:’ v .1' o

n‘ul“ o LhY

3

'y

S

’
h]

AN VAN

o
.

v
'0 .

A,

TR T Ty e F Yy WV NEEEE R W NS VIRV Y VTV "NV, ™. " e Th P Y v v

recognize that the main obstacle to portability is numeric
precision. No goals of TOOLPACK (or any theory the author
knows about) is going to solve the problem of moving high
performance numerical "algorithms from one computer to
another computer that has a different model of real
computation. It is possible to have portability for
non-numeric algorithms (like TOOLPACK itself) but is a
serious mistake to confuse the needs of NAG and the TOOLPACK
developers for portability with the needs of TOOLPACK users.

As discussed in chapter 5, most programmers of mathemat-
ical software have a very limited domain of interest. They
are interested 1in a limited set of software for a limited
set of science, mathematics or engineering problems. They
therefore need to be able to pick and choose the subset of
TOOLPACK that best suits their needs. Also the suite of
software tools that is provided by the computer manufacturer
differs widely from machine to machine. Given a choice
between a manufacturer provided tool (optimized to the
machine, integrated with the compiler) and an equivalent
TOOLPACK tool, most users will use the manufacturer supplied
tool.- Thus the TOOLPACK goals need to be subdivid.d nto
subgoals that will allow the user to pick, install and learn
subsets of the total c¢apabilities without commiting to a

comprehensive environment.

B. COMPARE TOOLPACK GOALS TO ITS CAPABILITIES.

It is difficult to compare the TOOLPACK goals to its
capabilities because there séems to be two very different
set of goals. The original goals of TOOLPACK [Ref. 1: p.
5-6] seem to be focused on providing tools for the vast
majority of mathematical software programmers that are
described in chapter 5. As can be seen in chapter 4, the
architectural design document [Ref. 7: p- 3] presents a
different set of goals; if the phase "mathematical software"
in goal 1 were changed to "non-numeric mathematical

77

SN

,.
8N

Z

I
’

SWRLJSSY

NVESE LY

AN NS

.

J}.‘)-’l/

3 P ¥ RN

A AF AP AR

l..‘ JoS

ol

software", the architectural design goals would be seen to
be focused on an entirely different set of users namely
those producing software like TOOLPACK.

If we accept the goals of the architectural design, the
capabilities of TOOLPACK version 1 fulfills most of the
goals. For a user population with a strong computer science
background in language translation the system capabilities
are well understood, the terms in the documents are
familiar, the heavy use of technical jargon makes the docu-
ments appropriately terse, and the installation while need-
lessly complex and ambiguous is within the skills of a good
systems programmer who has two weeks to spend on what should
be a one day job. The lexical analyzer, parsers, table
manager, pretty printer all work well and the "tool frag-
ment" design is well suited for those users who want to
build their own non-numeric mathematical software.

If we accept the original TOOLPACK goals the evaluation
is very different. For the vast majority of programmers of
mathematical software the capabilities of version 1 fall far
short of the goals. Aside from enforcing the use of standard
Fortran (the tools reject computer unique extensions and/or
produce code that 1is incorrect), there 1is nothing that
supports the portability of numeric software. As mentioned
above, easy portability of numeric software is an unreal-
istic goal, however, it is striking that there is no
discussion and no system capability directed toward this
important problem.

The goal of a structured Fortran extension of standard

Fortran was also abandoned. This was most likely a good
decision; in the 1last several years there has been an
increasing lack of enthusiasm for preprocessors. Likewise

the automatic conversion of standard Fortran to structured
Fortran is not a serious loss.

78

i

.",
(AR

'-“.' L)
v S

¢
"’ ot
PR

"Eﬁf

s

“a
K]
-

»
-
O
~

'.":-': ’
L
¢

,,,.....,1,
2 Ll RS)
'f?er ;fvg A
NS B0

2 "

peg B
h

v
AR
U

»

o e

]
e
» N

I

<
I~{ “

-
-

'fl

LR NI i N A I e e i e e A L A L Al SO N R P A T A L T

N)

S e RPN

ettt

YN AN

PNy

IR A B S

E g

. [s
OO aNte

Te Tw ™ e ™
'-," oAt -

The capabilities for precision transformation, static
and dynamic analysis tools, Fortran syntax editor, pretty
printer and the language translation tools (lexical
analyzers, parsers, etc) were achieved in version 1. These
tools represent a real contribution to the programmer that
knows how to use them.

An important and dominant capability that is not explic-
itly mentioned in the goals is the file handling and control
environment that comes with TOOLPACK. The author used only
the STAND~-ALONE mode of operation for several reasons:

1. The VAX/VMS system already has a good modern file
system.

2. The focus of the evaluation was on tools rather than
environment.

3. The installation of even the STAND-ALONE took so much
longer than planned (months instead of days) that
there was not time to evaluate other modes.

Despite the lack of direct evaluation, the author feels that
there is little in the other modes of operation that justify
the cost and effort of learning and installing them. Given
that the typical programmer wants to maximize his use of the
manufacturer supplied tools and given these are good (like
on the VAX/VMS), there is little incentive to use the

TOOLPACK file structure or command features.

C. COMPARE USER NEEDS TO TOOLPACK CAPABILITIES.

As discussed above, the human factors associated with
software products are important. Mathematical software
programmers are also not eager to learn new systems with new
messages and error reports. The author feels that the
TOOLPACK error messages are unsatisfactory. The following is

an example of TOOLPACK error messagdes:

C*PL*ERROR Unexpected Statement type
C*PL*ERROR Unexpected <TZ20ES>
C*PL*ERROR Internal Error (GRIND1l) - TZEOS confusion

79

~ - T Al - > Tw - . - - - - -
O o e T A e e R e N U P S e S

RN A A M R

N
e
Soa

L o W

S
YA
LJ

.sl

-
Yara

"

'’ e

.
L L A A
P

g

T
vA

R R AL ..".. .
EPRIRY U WO I NP P S P PO o

These messages, produced by ISTPL (the polish tool),
resulted from not defining a subprogram name in the declara-
tion part of a program. These messages don't help the user
identify the error. TOOLPACK needs to develop and use a more
clear error reporting system.

The TOOLPACK project consists of 33 tools. The author
thinks that most mathematical programmers won't use all

these tools. They will select the tools which are most
convenient and helpful to them. Some tools will never be
used by mathematical programmers. For example, various

computer systems have their own editor system (i.e.,
IBM: XEDIT, VAX/VMS:EDIT, and UNIX system :VI editor). These
editors are already familiar to its users and the users are
skilled in their editor systems. The author, therefore,
thinks that mathematical programmers will use their own
editor system rather than ISTED (editing tool) which is
provided by the TOOLPACK project.

The author suggests that the TOOLPACK project should
concentrate on suitable tools rather than unused tools, so
that the quality of tools will be more powerful than previ-
ously-distributed tools. The author recommends that ISTPL,
ISTPT, ISTAN, and ISTAL are very useful tools.

It is very hard to install TOOLPACK. Today most software
packages are not very hard to install in their own computer
systems. Generally speaking, even though the users are not
specialists in the software packages, if they follow the
given manual then they can easily install the package.

Sometimes, 1if the software packages are difficult to

install then the company of the distributed program makes

available installation services and/or good manuals. The
author understands that the TOOLPACK project 1is not a
commercial operation, but the installation guides (for

example: TIE code installer's guide and Tool installer's

guide) are not very easy to read and understand. Another

80

y e T TS T

l,-l
4}\
.\

‘_“_,.
¥l

WL LL
A AN
RALA

e
A.\

L
)

Lahabl
» s .
A L.

»
Al
="a

II'.I‘

DA S A PR

’
A

¢ o

3

-
.

" % r"'-' ‘Y
P
PR

.
s

- r
‘

¥y €
F 3

S

."/"4'.'.'.'."'.'
et e e

L5

Ny :-

v
o

o e 4’.-

'
)
L)
b
\
.
.

x

e T TN T T T o amm——
.

~ SRS A <.

TERE €. 5 0, 7,7,

[l SR RN b B ¥ R LRV / I

- s 8RNI,

¢« & W

T A e 2 O R

Y ¢.F T,T.

A

. ".;.. Tl S e ..

| 4.
}

thing is that to understand the TOOLPACK installer's guide
the reader needs a background of computer architecture and
operating systems. The author spent 4 months to install the
TOOLPACK with help from cur computer center staff. There is
an immediate need for a tool to help TOOLPACK users install
and test the system.

D. COSTS VERSUS BENEFITS

The system resources needed by TOOLPACK version 1 are
considerable. The memory requirements are significant, this
would have major impact for small computer systems. The
details of memory requirements are shown in Figure 9. 1.

The cost and effort involved in initially constructing
the tools are significant. Any modification of the programs
involves significant effort and modifications in the library
routines involves significant work. These jobs are all
tedious and time corsuming and are well beyond the patience
of a single mathematical software programmer. They can only
be justified if many people are using the system. The poten-
tial wuser population is reduced significantly if use |is
restricted to installaticons with a systems programmer who is
responsible for installation and maintenance.

The benchmarks in chapter 8 show that CPU times are very
large for even medium size programs. This will surely drive
users to using software provided by the computer manufac-
turer whenever possible. In particular, the users are likely
to use file handling and control features that are provided
more cheaply on their computer.

81

AP NI SROP I AT AT AN

LA
"-i o - 0 0 - . A - . s A -

,3»,-n
PO A
) Il'b'r.,
NN

oy
74?

b3

l"J'-:“) p
RS L A A |
N A

"ff{"""~f‘.l

S

1]

.

IR
.

'dw

s]
L

)
ﬁ§¢
,$\¥'~

b

L Fon)
nd

"

1'..

‘%

<

PR

1

Ay

Ay

L f.." f.‘ﬁl
.

A

...........

et T RIS A L PR S O S PR et T
L N I TP TP PR PR SR e S T A ‘.'.’.‘.‘-‘-\\\‘-".

L ' ¢ i ’ f .l. ot . A e e . '-, - . 1 g]
LA “%: O) \-. B -..) FAF)) 7 \~\<\ \.-\.\,._ .. s ..l ! ul‘--(\”-%”n\fluf.-.-

v s g . ’ b '

\-\\\\-- o N . TR NN W R A LA NN . i INCNCAE N R SR .

. _--»f .--..- --c ~u- .s 1\'L -4-- \)---\J\l--“\-l. i A \n“\-d\.(\- ._vnn ;.- ’ ...- -‘f\‘--\a-\. Qo oot e ..-4\- \- s \--\-'\r\-vv . -’

N AN ’-\h.\f. -.--.J-J A-\. &I-uf.. .--, 4\‘.-. AT .\-Q.-(.. A ,rﬁ‘-f.. \.-f.-u- . e A ?7--"{)‘- - .‘.w'“. JORCR AR .-r .

\t
— n ',
N o n .\.v
e Q)
o~ ™ —_ P .,
i . Q 11> i
DOWOIHONONHHONONOONNOOOHOWNVNIODNOW 1 O I] w s
WO OMONONHHN-NHOIDOOHFHOSO OIS 1 VOOON 1 H ;i -4
SOVHONOONHOIHIQODMO O VO DVHONHHMOWNOM | H [l Al N K N . '~
YOO NHONODIHNONMNNHNMNO O MOS0 1| OVOAHAH I 1N — .
O NOIONNANNOFONOHFO OO NFNIHFHOO | ANONN o . (o] -
— — NN — I A1 1N [¢) h
n R — 1<y + S
. 10 1o~ s
(5] P 191 Kot »~
" [} "> 1> N &) S
¥ 1.Q 1Q1 o ’
: >t 1 11 [} "
" Q 10 1901 .
1~ 10V) Lal ~
. o~ I 10t o) hd
: — 10 W0 0] (RN ny
. W 1~ [Y 1Nt] K
[<y 8] 1t (1)
. * N X (o) [| V) "
. 1 M — T | @ -
. n ! Q [Q, A
' 1M 1 m 1 n o S
nio 1 - WM 1M 1O (0] .
' 210 1 (W A0 OHF 1M 1N > R
s (ol K ! ~N —HiIOviIm H Y
, orQ ' &} 1l o ’
] (= 1 — v =] >
g 1 VO OOHHANNOVOHOFOIOHOWHEHNNIHOD 1y B [)
M 1 OO OO S OH S SN HOOWN OO0 | N [= RN
4 OirNA A HAAAN A Ll BN 1 N
2 < ¥ 0 (I Ty
[V 1 <l LI | s
.) 1 il | I | — ;
s (o] 1 (SN LI | . Yy
O 1 (o] LI | (o)) v
. Et 1 Ol MmMmmm 1+ |l N
A 1 [S e o Lo L N | [|| Q
_M +1:333M “ M ' ““ ~ o
1 - !
1 NZONJI T 1N w. .
L LMECSXDWILPIPPXPAILLORTFPVDCSFP 10 nozMm 101l -~ i
g o folalalals) FFFGGHLMNNNPPPPRSSTWVYY 1 EWIL tEHIEI e KB
. HEHHHHHHBEHHBRHHHHHHHHHHBRPBRHHERBHBHB 1 OSxmEIrm 1Ol
nnunnnunnnnnnnunnnnnninnnnnnnnnnnnng o OOHLHID 1HII .
2 [Lo Lo Lo L L Lo Lo L L L L L L D L e T e e e T e e e e L T e T T T e T R N D) CONBHI1WMY |l ..,.;
; o
. .~.~A
] .t
13 .”.\.
a .-..\
€ -..l

OGS) AMAAAAAA - XANANWS

a

1595

LA

L X AN

ry)

X. CONCLUSIONS

One notable lack in the TOOLPACK project is a comprehen-
sion user profile that would describe the user's needs,
capabilities and potential for learning new ideas. A well
known tenet in software engineering is that in the absence
of good user requirements, designers and implementers use
themselves as a model of the user. On several issues, most
notably portability, the TOOLPACK goals and capabilities are
heavily skewed towards users who are producing non-numeric
software to be distributed (NAG and the "PACK" developers)
and away from users who are writing numeric software for
their own use.

The vast majority of mathematical software programmers
are producing software for their personal use. They have a
strong preference for using software tools that are provided
by the manufacturer of their computer because these tools
are very efficient and are (and will continue to be) inte-
grated with the Fortran compiler and its computer unique
extensions.

For these users, TOOLPACK provides capabilities that are
not curvently available on their computer; <they are more
interested in picking and choosing specific tools than in
learning (another) total environment. Another (but
different) set of users is interested in producing portable
numeric software for general use, in the author's opinion
they are better served by having tools that help them
customize software to different environments (i.e.,
machines, compilers) rather than build software for a stan-
dard environment that is not likely to be widely accepted by
the vast majority of mathematical software programmers.

A third (and very small) set of users is interested in
producing non-numeric scftware (e.g., TOOLPACK) for general
use.

83

A
NS Y

ar- ARy
o
WA WS

</
«
’

L

AR

-

e
L4
*

i

4 b
.1.'

o

3 For these wusers (unlike the others) portability is both
] technically possible and economically desirable. While
. waiting for their computer manufacturer to produce new tool

X, these users are quite willing to pay the run time cost of

A

i using portable tools if they are not forced to pay a heavy

b cost to install and are not forced to use a new comprehen-

- sive environment. \

2 In conclusion, the capabilities of TOOLPACK release 1 do 5&:
- . R . -
" not fulfill the original goals of supporting scientific DS
?] programmers in the construction of numerical software. The j;i;
Cd *e

: system is much too hard to install, demands the user accept TR
. a new environment and does not make effective use of K
ij computer resources. The fundamental problem with the system

a is that it has been driven entirely by the goal of producing

L a portable environment- this is not a major need of scien-

c. tific programmers. It is difficult to see how modifications

5 of the present system can lead to a system that will meet

2 user needs, it appears that a major rethinking of goals is

: required.

- Dtry
/ X

Pl < "..

« l.\.v-‘
S 80
5 Rood
.' :.: &
.

N

- -

N
*0

“ :

N 84 AN
~ ..' .".,\
* NN
: ":":‘
% S
:: S O T T T P O S "~ IIRCIY \-'-.\".."

\-'._-'...;_-\'_q.;'_;..;'\.\-.-".'-;'.;_.;_-:‘_.~ N_..;_‘.-:'.:_. AT SR . -l .'.-.,'--. ot e N e, E N AT AT et 'J- R AR Y
A) : B B

.
APPENDIX A
' VAX/VMS COMMAND FILE (EXAMPLE FOR BENCHMARK TEST)
" !
X ; ISTLX.COM : command file to execute ISTLX
?IESERROR ="
4 'IF P1.EQS." " THEN INQUIRE Pl "NAME OF THE FORTRAN FILE"

> §How SYSTEM

| ISTLX #.B1).EOR #'P1'.LIS #'P1'.ERR #'P1'.TKN
‘ ,IF TIE$ERROR .EQS. "ERROR" THEN EXIT
SHOW SYSTEM

9 el T
Sl E A

Ll
"
[

B « A
Y T

[]
*at

. egterar
LN
A

L4

85

Ayt
it

P X
A
P

r'
i

e
NN

o 8 ai

'l."; AR

VAN

2oLl
vl“ ‘s-l

A}
[

-~
[y

S

APPENDIX B
USEFUL COMMAND FILES

P
by #in e o SuliN
A . A
ﬁaﬁﬁﬁ‘l
e Al

1. ISIDC

*»
»
-

4

DC.COM : Command file to execute the ISTDC b

egTects one parameter, the file name of the Fortran ~
file with no extension

o
PREREQUISITES : NONE _ _ .gv;§
NOTE : The name of the output file is DIFF.LIS Sy

;TIE$ERROR="" —

"IF Pl .EQS. "" THEN INQUIRE Pl "Name of Standard File" -
'IF P2 .EQS. "" THEN INQUIRE P2 "Name of Comparison FIlle" o

"ISTDC #'P1'.FOR #'P2' FOR _#DIFF, LIS -
IF TIESERROR .EQS. "ERROR" THEN EXIT “

- d s o S bt S o s

h; f .-' P

y 2. ISTFD

FD.COM : Command file to execute the ISTED R

'.-\ -
eggectg one parameter, the file name of the Fortran N
file with no extension Fat

PREREQUISITES : NONE ‘ :

| TIE$ERROR="" R
IF P1 .EQS. "" THEN INQUIRE Pl "Ng?eeﬁf First Token o
IF P2 .EQS. "" THEN INQUIRE P2 "N???egf Second Token v

! Y
ISTEFD g:g%;.g§g #'P1'.CMT #'P2'.TKN #'P2'.CMT L
1F TIE$ERROR .EQS. "ERROR" THEN EXIT e

LN

AW W S

EAC AP AP a8
'

.

-"n
afaty

la i

by N0
‘ ’

7

r XA
LA
)
A

[J
AL

v
a s

/s

&

A
PR

.4
.
9y

D.'
S
ety

DR
RN XXR
e

Y 5
-

= - hd bt LY
i
.f.-'~ {
L
:-P_:J‘:f
.:x::- K
3. ISTEP R
! Vg
! FP.COM : Command file to execute the ISTEP NI
! This tool is the fast polish program (Within the AR
! "GENERAL tools). et
g PREREQUISITES : ISTLX -\Iﬁ.';is_’.
| TIE$ERROR="" :xﬁtg
;IE Pl .EQS. "" THEN INQUIRE Pl "Name of Fortran File" ;_"
! AN
ISTLX #'P1'.FOR #'P1'.LIS #'P1'.ERR #'P1l'.TKN RN
#'P1'.CM pOSOTAN
 IF TIE$ERROR .EQS. "ERTOR" THEN EXIT YR
1 Ly ‘.f_'
ISTEP #'P1'.TKN #'P1l'.CMT #'P1'. OUT s

IF TIESERROR .EQS. "ERROR" THEN EXIT

4. ISTILX

LX.COM : Command file to execute the ISTLX

Expect one garameter, the file name of the Fortran file
with no extension

PREREQUISITES : NONE
;TIEsERROR=““
;IF Pl .EQS. "" THEN INQUIRE P1 "Name of Fortran File"

-t ot oo ¢ eam o= S

!
ISTLX z:g%:.gg% #'P1'.LIS #'P1'.ERR #'P1l'.TKN
'IF’TIE$ERROR..EQS. "ERROR" THEN EXIT

87

e ".r:. 'l{.": ;.r;.' > .-;",_0 A A AR ORI R R T T N T o T A A A A, WISCPIDRE T

g1 - . g - » - - -
2% RN MR v. o RO Sad il Mgt fudh Ak St R S AN AN BN SR g S AL AT IR N N I AN e L N e T W TN T e W € T Wu ¥

a

P
2}
A

ols
[/
Ny
.,

c e e AR R
-~
o_u;r 4
e o |
AT 'y

."-..'-.‘\" '}..\ Y
o

5. ISIPL (Simple Method)

PL1.COM : Command file to polish a single file of
Fortran-77 code

PREREQUISITES : ISTLX

NOTE : This_command file doesn't use the tools which
are ISTYP and ISTDS. Therefore, the output is
less readable than the other output which uses
the ISTYP and ISTDS. If the user wants to use the
option file then this command file needs .
minor correction which is to aEpend the option

PR o
ol

s ke

ASAANS
Arary
Le'a'as

.
o

- B S B o B G S Sem Sl Pl aom b Sem

file, that is get from the tool ISTPO. N
TIESERROR="" ' S
! IF P1 .EQS. "" THEN INQUIRE Pl "Name of Fortran File" A
; PP
ISTLX #'P1'.FOR #'P1'.LIS #'P1'.ERR #'P1l'.TKN by
P1l'.CMT SRS
'IF TIESERROR .EQS. "ERROR" THEN EXIT e
' Pt g
ISTPL #'P1'.TKN # P1'. CMT #'P1'. POL SR
IF TIESERROR .EQS. "ERROR" THEN EXIT i
2V
! R
3 ! PL2.COM : Command file to polish a single file of L
: ! Fortran-77 code et
. ,-' S
5 PREREQUISITES : ISTLX,ISTYP, and ISTDS i;?;V
{ NOTE : This command file uses the tools which are E;,:
) ! ISTYP and ISTDS. Therefore, the output is more A
] ! readable than the other output which doesn't use RN
r - the ISTYP and ISTDS. If the user wants to use the RIS
! option file then this command file needs a e
! minor correction which is to aEpend the option 'ﬁn{‘:
! file, that is get from the tool ISTPO. RN
| TIE$ERROR="" b
IF P1 .EQS. "" THEN INQUIRE Pl "Name of Fortran File" A

' IsTLX g;g%;:gog #'P1l'.LIS #'P1'.ERR #'P1l'.TKN
, IF TIE$ERROR .EQS. "ERROR" THEN EXIT

ISTYP ﬁ;g%;:gﬁ§ #'P1'.CMT #'P1'.TRE #'P1'.SYM
, IF TIE$ERROR .EQS. "ERROR" THEN EXIT

ISTDS #;g%;:%ﬁg #;g%;:gﬁg #'P1'.TKN #'P1l'.CMT
, IF TIESERROR .EQS. "ERROR" THEN EXIT

ISTPL_ #'P1'.TKN # P1'.CNMT #'Pl' POL
IF TIESERROR .EQS. "ERROR" THEN EXIT

88

: TR \ N X I O I PO R T PIREIY N SR S
"" "'\{ SRSy '\‘-'\'P\"\"- L, A SSATS -. LW NN .

:-.‘EA."‘;

2

[e Y 'u;."n ’

N

[

I CRENERN

.“ .'

IR RN A

> A S p S Pas S VD G S S ¢l S S O S S

7. ISTPT (Simple Method)

PT1.COM : Command file to Precision-transform from a
single precision file of Fortran-77 source
to double precision file of Fortran-77
source code.

PREREQUISITES : ISTLX lexical analyzer)
TYP (parser)
ISTPT prec1s1on transformer)
ISTPL olis
?(default options are none))

NOTE : This command file doesn't use the tool which
is the ISTDS. Therefore, the output is less
readable than the other output which uses the

ISTDS
'TIE$ERROR=""
;IF Pl .EQS. "" THEN INQUIRE Pl "Name of Fortran File"

' IsTLX #,21.- EOR #'P1'.LIS #'P1'.ERR #'P1l'.TKN
 IF TIE$ERROR .EQS. "ERROR" THEN EXIT
" ISTYP #121)- KN #' P1'.CMT #'P1'.TRE #'P1l'.SYM
 IF TIE$ERROR .EQS. "ERROR" THEN EXIT
"ISTPT #1B1,.IRE #)P1/.SYM #'P1'.CMI #'P1'.CMT

.TK2 #,P1'. CM2
, IF TTESERROR . EQS. "ERROR THEN EXIT

ISTPL_ #'P1'.TKN #'P1' .CMT #'P1'.
15 TTESERROR . EOS. "ERRORT THEN EXTT-

89

X
2

*x

..l ... '., -.I '.- '. -'-' T
PR RS N
PO S L A

ARARRARARN

_ I

2L AL
A4 0 s
b P
;iﬂﬂﬂ}p:

AR

o
«
[N

2

- 8. ISTPT (Complex Method)

Fd ' e

] . et

o ! PT2.COM : Command file to Precision=-transform from a ol
! single precision file of Fortran-77 source :
s to doub edprec151on file of Fortran-77 Ce-a

N i source code.

g ! PREREQUISITES : ISTLX (lexical anayzer)

-~ ! ISTYP (parser) .

[! ISTDS {(declaration standardizer)

3 ! ISTPT (precision transformer)
! ISTPL (polish) _
s %(default options are none))

-. ! NOTE : This command file uses the tool which is the

- ! ISTDS. Therefore, the output is more readable

- s than the other output which doesn't use the ISTDS

N ;TIEsERROR=""

il ;IF P1 .EQS. "" THEN INQUIRE Pl "Name of Fortran File"

. i

N ISTLX ﬁjg%;.gg% #'P1'.LIS #'P1'.ERR #'P1'.TKN

- 'IF TIESERROR .EQS. "ERROR" THEN EXIT

. " ISTYP #1B1,.TKN #'P1'.CMT #'P1'.TRE #'P1'.SYM

, 'IF TIESERROR .EQS. "ERROR" THEN EXIT

< " ISTDS ﬁzg%:.%ﬁg #:g%;.ng #'P1'.TKN #'P1l'.CMT

X 'IF TIESERROR .EQS. "IE:RR&)RX:,’l THEN EXIT

; " ISTYP #;g%;.g&%z #'P1'.CM2 #'P1'.TR2 #'P1l'.SM2

. 'IF TIE$ERROR .EQS. "ERROR" THEN EXIT

-

"ISTPT #'P1'.TR2 #'P1'.SM2 #'P1'.CMI2 #'P1'.CM2
. #'P1' TK3 #'P1' CM3
N IF TIE$ERROR .EQS. "ERROR" THEN EXIT
N

"ISTEL_ #'P1'.TK3 #'P1' CM3,_# P1 . POL

IF TIE$ERROR .EQS. "ERROR" THEN EXIT

2

o,

!

- =

. oK
E

- s

- POV

o n'.-f \Q.

N L

: N

> R

’ 90 oA

. NN

{l
o

TD.COM : Text Differencer . .
This is the standard text differencing tool)

eggectg one parameter, the file name of the Fortran
file with no extension

: PREREQUISITES : NONE
: ;TIESERROR=""

"IE Pl - EQS. "M THEN INQUIRE P1 "First Input File"
'IF P2 .EQS. "" THEN INQUIRE P2 "Second Input File"
"ISTID #'P1l'.FOR #'P2’'.FOR

IF TIE$ERROR .EQS. "ERROR" THEN EXIT

“' ‘?F T e K
RALS AN IS
';ffyfﬁﬁ
RN

A
3
)

10. ISTVS

VS.COM : Command file to execute the ISTVS

exgects one parameter, the file name of the Fortran
file with no extension

PREREQUISITES : ISTLX, ISTYP
 TIESERROR=""

) IF P1 .EQS. "" THEN INQUIRE Pl "Name of Fortran File"
ISTLX ﬁ:g%::gg§ #'P1'.LIS #'Plf.ERR #'P1'. TKN
'IF TIESERROR .EQS. "ERROR" THEN EXIT

ISTYP g:g%::gﬁN #'P1'.CMT #'P1'.TRE #'P1'.SYM
'IFﬂTIE$ERROR .EQS. "ERROR" THEN EXIT
#'P1'.SYM #'Pl'.L;S HEAD

8 s s tom ce vt v tem

-
s
-

VA Ay
o
b

'l"

o
Na e a
M

dAEL
5‘!

ISTVS eSa%
IF TIE$ERROR .EQS. "ERROR" THEN EXIT N
l&;ﬁ

91

i -
L% bl ¥

....................

LT Y ST d - - - - e R T i T LT SN ST P S N T LI S)
A A O S A A P S SR AP A AL AL S L T S e T T e e

‘
2 11. ISTYF
% .
" ! YF.COM : Command file to execute the ISTYF
! eggects one parameter, the file name of the Fortran
: ; file with no extension
o4 ! PREREQUISITES : ISTLX, ISTYP
3 , TIE$ERROR=""
;IF P1 .EQS. "" THEN INQUIRE Pl "Name of Fortran File" —
! | ISTLX #1B1)-EOR #'P1'.LIS #'P1'.ERR #'P1'.TKN 20
I- - _..-_ i o »
- IF TIESERROR .EQS. "ERROR" THEN EXIT
<, !
b ISTYP ﬁ;g%;.g§¥ #'P1'.CMT #'P1'.TRE #'Pl'.SYM e
- | IF TIESERROR .EQS. "ERROR" THEN EXIT o
: , ISTYE #.P1' IRE #'P1'.SYM #'P1'.CMI #'P1'.CMT #YF.TKN R
‘ "IF TIE$ERROR .EQS. "ERROR" THEN EXIT
:
; 12. ISTYP .
B ! - - ‘; 3
’ s YP.COM : Command file to execute the ISTYP (Parser) RN
\ s . --,..'.- i
> ! eggects one parameter, the file name of the Fortran A
T 5 file with no extension N
N ! PREREQUISITES : ISTLX 549
- TIE$ERROR="" .
- 'IF P1 .EQS. "" THEN INQUIRE P1 "Name of Fortran File" i
-, 1 - '.\' ._‘
- ISTLX ﬁ;g%;.ggR #'P1'.LIS #'P1'.ERR #'Pl'.TKN A
* . ’\'.'.
7 (IF TIE$ERROR .EQS. "ERROR" THEN EXIT OCX
| ISTYP #1B1,-TKN #'P1'.CMT #'P1'.TRE #'P1'.SYM s
> IF TIE$ERROR .EQS. "ERROR" THEN EXIT ;jil
5 e
4 Lo,
2 =
- el
- ..f.'l.
’\. :\ .:\ .:
- RO
4 .\‘. »
S AR
\‘ ‘-"‘.\ [y
« AN
S RSN
» 3
b)
& '.\n
~ A
: 1
) 92 thi
P N
N Ry
- -\
{ - TN
! RN

S B R N N T A AT S A A T I A 3 S

APPENDIX C
THE RESULTS OF RUNNING IN ISTPL 553?
. “

1. The Source Program for Testing o

PROGRAM TEST
REALSOM. \ RE&OLYCT N, ND3 I
WRITE(* D) P ense input ten integers : S
READ(*, %) X
RESULT = SUM(XEIO&

100 ?géﬁg (2§OO)T§eSgu£ is :', F7.2)
womn ey

150 FORMAT(2X, F%.Z v of them were even.')
RESULY = ND3§X
égx §E§U%gbs .0) THEN

160 FORMAT(2X, 'None were divisible by 3.')
%§§¥EI* &ggSULT.EQ.l) THEN

170 EEE%A&(QX,)One was diviuible by 3.')

WRITE&*,ISO% RESULT . ,
180 gggM?g(z , F7.2, were divisible by 3.)

STOP
END

REAL FUNCTION.SUM(A,N)
INTEGER N,A(N),I
SUM = 0
DO 100 I = 1, N

SUM = SUM + A(I)
END

INTEGER FUNCTION NEVEN(A,N)
INTEGER N, A(N), 1
N

100

NEVEN = O
DO 100 I =1
100 ENDIF (MOD(A(I),2).EQ.0) NEVEN = NEVEN + 1

INTEGER FUNCTION ND3(A,N)
éggEEEg N,A(N),I

DO 100 I = 1, N
D IF (MOD{A(I),3).EQ.0) ND3 = ND3 + 1

93

e,

L':, LN R e S . Sl e T e i A T R e T R s Rt . e l‘;l;:‘:
2 o
> PROGRAM TEST e
v INTEGER X(10), NEVEN, ND3 e
¢ REAL SUM, RESULT —
WRITE (* *) 'Please input ten integers :' it
2y READ (%, %))% P ? g
o~ RESULT = UMSX 10) ot
- WRITE (*,100) RESULT oo
A o,
e 100 FORMAT (2X, 'The sum is :', F7.2) %
RESULT = NEVEN(X, 10
WRITE (*, 150) RESULT e
- 150 FORMAT (2X, F7.2, ' of them were even.') N
3 RESULT = Nb3§x 16% o
- IF (RESULT. EQ. 0) THEN e
o WRITE (*,160) o
~ .’
0 160 FORMAT gzx 'None were divisible by 3.') N
ELSE IF (RESULT.EQ.1) THEN —
o WRITE (*,170) o
[170 FORMAT (2X, 'One was divisible by 3.') ::{
-~ ELSE i
}: WRITE (*,180) RESULT ol
> 180 FORMAT(2X, F7.2,' were divisible by 3.') .
ps END IF L
% STOP BN
- END i
~ REAL FUNCTION SUM(A,N) .
INTEGER N,A(N), I o
- SUM =0 . :,':
DO 100 I =1, N N
100 SUM = SUM + A(1I) -
END -.i\'
INTEGER FUNCTION NEVEN(A,N) _
- INTEGER N, A(N),I ooy
- NEVEN = O o
- DO 100 I = 1,N T
- 100 IF (MOD(A(I),2).EQ.0) NEVEN = NEVEN + 1 R
".’, END e
INTEGER FUNCTION ND3(A,N) ey
INTEGER N,A(N), I 1
- DO 100 I = 1, N o
- 100 IF (MOD(A(I),3).EQ.0) ND3 = ND3 + 1 e
-~ END AN
- !-'l
N e
- o
-" :.)\
- v
o
2
. 94 =
};f
< -

5

N . - . P ey e e . P TP S PN St N RN AN TN VLI VI R Ul W el
P B A N R e S R R e AT T e e T T N e e e R A I S T S T AT
. nt

AD-A173 943

UNCLASSIFIED

EVRLUATION OF THE TOOLPACK FORTRAN PROGRAMMING
lRONHENT(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CR

F/G 9/2

272

20 [IO IGO0 IR

T ¥

-

)
]
/]
7
4
)
B
f
T o
; o] g -
. |. Hl,
: — c &
j —_— — &
— [V I =t
g .
o - _
~ A
== =k = 4_____ z = :
, ¥
/ SOAJ . I. ns 0.
: p—hn_n_.._h_..._..._n —t 2° _
-. — mm\. :
) ;2
4 0. —) -
= =l S ¥
— E 3
— —— —— @z
_— == =

Y
»
2
£
A S S R TR

{

-.'.
8

Rl WY
RPN
SN

»

.J_:.’

e e
4

PR AR LRI “ M o adadiodd i = -

b
')
{
i
+
P
k3
L]

oA~ a [

o
ER "
- .b :‘
L
c . R
v 3. The Qutput of Polished Proagram(Complex Method) 0,
] "}5(5
PROGRAM TEST ey
C Local Scalars .. >
c REAL RESULT <
|
A (o] cal Arra . LIS 8
Y c INTEGER X(10) " _ :)::i'-t:
. N
§ c .External Functions .. NI
REAL SUM e
\ INTEGER ND3, NEVEN g«ﬁ
- c EXTERNAL SUM, ND3 NEVEN : Y
. ;
, WRITE (* * Please input ten integers :' AL
R READ &S,, g)x ° | =3
: RESULT = SX 10 & (4]
WRITE (* 102 LT Aefn)
- -‘.t-'.-
' 100 FORMAT '"The sum is :', F7.2) ;:_«;.ji
RESULT = NEVEN(x 10 RN
. WRITE (*, 150) RESULT o
‘ RESEY
z 150 EORMAT (2%, F7.2, ' of them were even.') N
) ULT = & e
- i (RESULT 206} (); NN
- 160 FORMA gs ' None were divisible by 3.') RO
ELSE IF (RE UL’.’I‘.‘ EQ.1) T oy
. WRITE (*, g
o .y
) 170 FORMAT (2X, 'One was divisible by 3.') ‘.f_:.'j
. ELSE t:--:iz
’ WRITE (*,180) RESULT N
' 180 FORMAT(2X, F7.2,' were divisible by 3.')
” END IF RS
b - STOP o
YAl -._:.{.\
2 END :;:;1}
.r":.q':‘
REAL FUNCTION SUM(A,N :
[+ o] . Scalar ArgumenS:) ::“,\:::4‘
.0 c INTEGER N NN
< RN
C Ar ents .. SN
2 . INTEGERYA(N? " RN
Cd .. LA
c Local Scalars .. Aty
c INTEGER I et
N StM_= 0 <
~ DO 100 1 = 1 Y
: 100 SUM = SUM + A(1) B
ks END i
X [A
. c INTES:GEllz FUXCTION NEVEN(A, N) -}_.:
g . Scalar Arguments .. _
N c IN'I’EG N !LT
N c ray Arguments .. o
o c INTEGER A(N) RN
.. C .. Local Scalars .. .
INTEGER 1 L
C ™ |
" e
g 93 i
o A
. N
- ASAS
1 NN
- -

i
« »
0
‘ S
s .

D
v
B

-~

) ..-.a. XN ir\.rv.) .-.. v, \-“ ,\..\..\........ N i oCere el el H’\f..(\.-..f... O g
R L”..s,.s................v REOSALA BROCCR AR RSEFLAAGIAOCLCIIN WOSVAISNIHY SRR
A\
—
+
P, A -
b, =]
p > +
! L}
» A 3¢}
n m
a [}
[
5 = -
2 < q 2
o] -~ ~ ” . [o] _
o} o ™ . [o] o
- o n . Eal o
L ot mt 0n . L (o
2 8] &3] o + [8) 1
2 o . =0 o} n ol .
§ 3 ~ (@) o 9 o} Z~
9] ZN —t « (1] ™
¥, 0 -~ (3] P | (] -~
s [¢]e) e~ O& « VO -~
“ = — < HZ O = -
. n il — L N)] N~
g0 O « “Z < = g0 <
L [o > —~ ot
: HD N Q MG O g N0 N
P P o0 o] O PZ 00
) o+ ZOo= YV HUO 00 gHINlO=
bs g e 551757 23 B of 5 S 15 s ARSI
. Zgond BE.E B E2..8
4 & g
N - AaTo] B R o R o N O T = -Aa T
- o 0 N
. o o
— —
X O U 0O DU VU o
W.h\r‘:. Dllg‘.,h.sun .:.'*‘l)!‘ -.-‘o.‘... ;hnﬂtf, .;.f-.-.an\f 4™ ‘-!l.l- nla Y 5y v w0y h TN Y

aa o0 Q

c

100

150

160

170

180

QO oo o0 Q

100

Q0 Q0 Q

PROGRAM TEST
.. Local Scalars ..
REAL RESULT

.. Local Arrays ..
INTEGER X(10)

. .External Functions ..

C*PL*ERROR* Unexpected statement type
C*PL*ERROR* Unexpected <TZEOS>

SUMINTEGER ND3, NEVE

N
C*PL*ERROR* Internal Error (GRIND1l) - T2Z2EOS confusion

EXTERNAL SUM,ND3,NEVEN

WRITE (*,.*) 'Please input ten integers :
READ (s)x P 9

RESULT = UMSX 10&
WRITE (*,100) RESULT
FORMAT ('The sum is :', F7.2)

2X
RESULT = NEVEN(X, 10
WRITE (*, 150) RESULT

FORMAT (2X, F7.2, ' of them were even.')
RESULT = ND3(X 16%
IF (RESULT.E .6& HEN

WRITE (*,160)

FORMAT g
ELSE IF (RE

WRITE (*,170
FORMAT (2X, 'One was divisible by 3.')

2X
?LT.EQ.I) THEN

LSE
WRITE (*,180) RESULT

FORMAT(2X, F7.2,' were divisible by 3.')
END IF

STOP
END

REAL FUNCTION SUM&A,N)
.. Scalar Arguments ..
INTEGER N

.. Array Arguments ..
INTEGERYA(N?u

.. Local Scalars ..
INTEGER 1

M = 0
DO 100 I
SUM = SUM +)
END

INTEGER FUNCTION NEVEN(A,N)
.. Scalar Arguments ..
INTEGER N

=1 N
A(I

.. Array Arquments ..
INTEGER™ A(
.. Local Scalars ..

Ihe Qutput of Polished Program(With Errors)

'None were divisible by 3.')

'l
A‘. a

e gl

A
e
i

P s
LRI N

¥
l"{. A.

a2 PN

oY
i

o
P

R
& 4 4
P

'
» &%y

ST RSN A S
I

'

SLTRR ‘,‘\','; .I..l.
"f.f(-'

.
%
. 'P:

'55}52
L

1.

&

LN

. ‘.:.*
el
S

.
."'; 3

[PO
P

(]
’

A

b

S
s
-r

.~
-
‘1..
oo
’.-.
S
W

el

-

22l et

-
.
s

#')f

(plp]

100

Q0 Qo Q0 Q

100

INTEGER I

ntrinsic Functions ..
INTRINSIC MOD

). EQ.0) NEVEN =

INTEGER FUNCTION NDS(A N)
. Scalar Arguments ..
INTEGER N
ray Arguments ..

IN’I‘EGERYA(N?u
.. Local Scalars ..
INTEGER I

.. Intrinsic Functions ..
INTRINSIC MOD
ND3 0

DO N
IF ,3). EQ.
END(MOD(A(I)). EQ.0) ND3

98

NEVEN + 1

= ND3 + 1

!i’fs
.
(3" o

TN N YR
P XAl
Y

.l’

oo

(P &

SRR

AR

NNy
A .

[3 -

S

LA SN

c

.

. 8
LI I Y
A ele
EAE
] Y
a

C e
I..(“I .. s
A AL

AN
. @

.'."'/"/.'.'.
'l ‘l 'n “a) by

W
o
A

\/"{" B
AN A
v

,\

R

|

‘ol

I“_
-\~
~

-..
L.
(SR

,
’l Jl

R I

....... oy
ity
- A ’- ‘
E_ .
bore
. ; s
S. ZIhe oQutput of Polished Program PR
N P
(With Selected Options) SN
I N A N
PROGRAM TEST TEST 0O e
C Local Scalars .. TEST 10 b
REAL RESULT TEST 20 LRy
c TEST 30 ENAOAY
c Local Arrays .. TEST 40 DA
INTEGER X(10) TEST 50 -::v:
c . TEST 60 PO
C .External Functions .. TEST 70 AT
REAL SUM TEST 80 A Y
INTEGER ND3, NEVEN TEST 90 !
EXTERNAL SUM,ND3, NEVEN TEST 100 P s
c _ , TEST 110 ARG
WRITE &* *) 'Please input ten integers :' TEST 120 e
READ TEST 130 el
SULT = UM& O% TEST 140 \iyﬁ,
WRITE (*,900 RESULT TEST 150 PR,
RESULT = NEVE 10& TEST 160 A
WRITE (*, 9010) RESULT TEST 170
RESULT = ND3(X 10%H TEST 180
IF (RESULT E 0) TEST 190
RITE (*, 9020) TEST 200
TEST 210
ELSE IF (RESULT Eg & THEN TEST 220
RITE (*,9030 TEST 230
TEST 240
ELSE TEST 250
WRITE (*,9040) RESULT TEST 260
END IF TEST 270 -
TEST 280 .
STOP TEST 290 s
. . TEST 300 Bt
9000 FORMAT (2X, 'The sym is : ', F7.2) TEST 310 et
9010 FORMAT (2X, F7.2, of them were even‘ 'y TEST 320 AN
9020 FORMAT (2X, ,None were divisible g 3.) TEST 330 i‘“'
9030 EFORMAT (2X, One'was divisible by % TEST 340 Rt
9040 EORMAT(2X, F7.2, were divisible by 'y TEST 350 POSAY
- END TEST 360 AR
SUM 0] e
SUM 10 BN
REAL FUNCTION SUM%A,N) SUM 20 AOSAY
o .. Scalar Arguments .. SUM 30 BASINX
INTEGER N SUM 40 l
o SUM 50 ke 5o
C ay Ar ents .. SUM 60 AT
INTEGER ACNS SUM 70 S
C .. SUM 80 Tl
Cc Local Scalars .. SUM 90 AR CR
SUM 100 e
INTEGER I SuM 110 AL
C SUM 120 O
SUM = 0 SUM 130 posy o
DO 100 I =1 SUM 140 tf..:
100 SUM = SUM + A(I) SUM 150 RN
END SUM 160 N
NEVE 0
INTEGER FUNCTION NEVEN(A N) NEVE 10
c Scalar Argument NEVE 20
INTEGER NEVE 30
C NEVE 40
C ray Argquments .. NEVE 50 T
INTEGER A(N) NEVE 60 e
C .. NEVE 70 e
C Local Scalars .. NEVE 80 e
INTEGER I NEVE 90 e
c .. _ NEVE 100 ARA0
Cc Intrinsic Functions .. NEVE 110 ot
99

--------------------------- R LR R S PRAN "e
iR S S T A S) R S R R R R N T ORI S A P PN NIRRT

2T TR AN

sevele

R 4

R Y R R

P IS

Qa QQ o Q

100

100

INTRINSIC MOD
NEVEN = O
DO 100 I

1,N
égD(MOD(A(I),Z).EQ.O) NEVEN = NEVEN + 1

INTEGER FUNCTION ND3(A,N)
.. _Scalar Arguments ..
INTEGER N

. Array Ar ents ..
INTEGER A(N

.. Local Scalars ..
INTEGER I

.. Intrinsic Functions ..

INTRINSIC MOD
ND3 = 0

DO 100 I =1, N.
éﬁD(MOD(A(I),3).EQ.O) ND3 = ND3 + 1

100

S
[e]elelelelolelelololplololololololololololoTe]

QUL LWNHOWOIOULBWNI- ~JOVULB W

I S

PR
LW
LN

. ﬂﬁwbkff

(AR

i

LN
Nt
sl
.l

%

|

' 1.

K

;

:

’

14

:

!

100
150
160
170
180

L@ YP3BT THER s s sy cERPYI T T VY VU ERYY Y Y,

La_

. .“ vALv

T L e e e AN

S

APPENDIX D
THE RESULTS OF RUNNING IN ISTPT

BV sutput £ P s . T E £
(Simple Method)

PROGRAM TEST
INTEGER xglo% NEVEN, ND3
DOUBLE PRECISION SUM, RESULT

WRITE (*,*) 'Please input ten integers :
READ (s)x P g

RESULT = UMSX 10&

WRITE (*,100) RESULT

FORMAT (2X, 'The sum is :', F7.2)
RESULT = NEVEN(X 10£

WRITE (*, 150) RESULT

FORMAT (2X, F7.2, ' of them were even.')
RESULT = Nb3§x 16%

.b& HEN
160)

IF (RESULT.E
WRITE (*,

FORMAT gzx
ELSE IF (RESULT.EQ.1) THEN
WRITE (*,170)

FORMAT (2X, 'One was divisible by 3.')

SE
WRITE (*,180) RESULT
FORMAT(2X, F7.2,' were divisible by 3.')
END IF

STOP
END

101

M A R s A AT, X A R LRSS L SR PR S NP S0 S PRl

(v 4T
PENSINAI 5 A A AR A

'None were divisible by 3.')

.................................

PO P S AU LT L R A

MRS
A

}:’r’u"\'l

5

e .

T

't
Va'vn }

.-(-/‘
¢

e
s »

g

AR

oy

Py
‘l 'I AL
NN NN

.

“

rtLe
- '.
nwes

.....

] S
PN
&
e
et
DOUBLE PRECISION FUNCTION S RN
INTEGER N,A(N), I N STMCAN) PO
SUM_= 0 : Dy
DO 100 I =1, N b
100 SUM = SUM + A(I) P E
ND 'ﬂ&i
o
INTEGER FUNCTION NEVEN(A,N vl
INTEGER N, A(N),I (A.N) RAY
o Uy
NEVEN = 0 £a?
DO 100 I = 1,N b
100 IE {MOD(A(1)Z2).EQ.0) NEVEN = NEVEN + 1 SR
. AL
INTEGER FUNCTION ND3(A, NG
INTEGER N,A(N), I (AN TN
ND3 = O e
100 ?8 %ggD{ATI%'3N EQ. O K
- /3).EQ.0) ND3 = + PR
’ I). EQ. 0) ND3 + 1 s
: RN
) D

b

s
S
B .

« v Cummw 7 v

'

P .
li "a . "
AT

585,

[N

’,?(fgf |
s

“
eI
Oy

P
II.‘. v.“\
. o«

TeTeTe AN ANTe
-‘,.':'}':1"
2a
s

P
l{,\-\‘ii
i .'v.‘-lq RN
(ACAKAS

I‘:‘r"'n"r
Sy o
NN

¢

LR TaTe e e r)P AW €T,
(X
>

, 1.‘;‘:"

X4
TANA N

102

f‘_.
VAN

N
)
e A

[4
v

'l N s
“
"
.
AR

\,){1{\{'
*«ha
A

.
»
-
»
-
'''''' BTN TN T ettt e Yt e

EIP AN R BRI T I
TR I A YA T T W L PR T T, . L Y

""""" B
- :’..‘f.'
X
2. The Output of Precision Transformation S
(Complex Method) PR
PROGRAM TEST ‘ o
o] Local Scala e
c DOUBLE PREGISION RESULT S
c Local Arrays .. :;\f
; c INTEGER X('10) o,
C . .External Functions .. 2 d
DOUBLE PREIESION SUM s
INTEGER ND3, NEVEN RS
c EXTERNAL SUM,ND3, NEVEN o
WRITE (*,*) 'Please input ten integers :' Ll
_ READ & 'y P g e
RESULT = S 10& A
' WRITE (*,100) RESULT
100 FORMAT (2X, 'The sum is :', F7.2) P
RESULT = NEVEN(X 10& L
RITE (*, 150) RESULT e
150 T (2X, F7. 2 ' of them were even.') T
- RESULT = Nb3& “
. IF (RESULT E 05 HEN b
4 '_‘-__-
’ 160 FO g 'None were divisible by 3.') ROROE
‘ ELSE IF (RE ULT EQ.1) THEN BN
; WRITE (*,170 i
) 170 FORMAT (2X, 'One was divisible by 3.') T
' ELSE - o
‘ WRITE (*,180) RESULT RN
y 180 FORMAT(2X, F7.2,' were divisible by 3."') K0y
v END IF -:_'.:‘\
i R
y STOP i
I P
' END > .
. s
DOUBLE PRECISION FUNCTION SUM(A,N) o
c Scalar Arguments .. NS4
: c INTEGER L
) C ments . ST
. c INTEGER A(N?u T
o] . _Local Scalars .. s
INTEGER I e
c i
: UM 0 .'.\.-_\.
DO 100 I RN
100 SUM = SUM + A(I) .
END TN
INTEGER FUNCTION NEVEN(A,N) RN
C Scalar Arguments .. ROADA
c INTEGER N S
LA
, C ay Argquments . N
) c INTEGERY A(N) At
' C .. Local Scalars . A
. NP
) 103 N
; o
'.. ':\.N
3 '*Tf-}
N N

T T T AT A AT T AT T A e AT AT AT T e T e T T e AT AT A A et P
) O S R G LI I I L PR VN S . ..
e e e e g e e e T =T N VT NG A T N L LT TN L A

v
r
r
v
a
¢,
v
r,
ot
r
r
r
1
]
»
P

o’y
a0 &t
7'’

F?

2

Y
"l&l
Lo

e

INTEGER I e
C Ty . ‘V.‘J::, c
c Intrinsic Functions .. NS

INTRINSIC MOD

NEVEN = O
DO 100 I = 1,N
100 égD(MOD(A(I),Z).EQ.O) NEVEN = NEVEN + 1

o,
~I
@t
<

INTEGER FUNCTION ND3(A,N)
.. Scalar Arguments ..
INTEGER N

.. Array Ar ents ..
INTEGER A(N

.. Local Scalars ..
INTEGER 1

.. Intrinsic Functions ..
INTRINSIC MOD
ND3 = 0O

Qa o o a

DO 100 I = 1, N
100 égD(MOD(A(I),3).EQ.O) ND3 = ND3 + 1

-

M

v .

.

-

o

-

.\'. »
‘.-. S
.t =" ."J
DO
PN &,
Lk

ey 4

v oww
P]
P
a
.

T ey
iR

-

104 Lo

- . ST
LV - . . PR S, « . SIS A PR I A UL PN NN Vet At e Tt e T RSN R TNt -
RSP L A S YA A A T S, Y - W s da =

LS

COSVVIERY PEAA AN PP L LY ISP TP I A

o
2",

PO .

o HESS S NIRES S S0

LALALILPS 2l SFLTREN

>

& 4

DR AR R NAAANAE S

~ - N

APPENDIX E
THE COMMANDS AND OUTPUTS (ISTAL)

1. ISTAL COMMAND

This appendix contains a quick reference guide to the
commands available in ISTAL.

The following commands control the general operation
of ISTAL:

s DEbug (=YES/NO)
¢ FOlding (=YES/NQ)
¢ Intrinsics (=YES/NO)
» Verbose (=YES/NO)

The following commands are based on the use of
information from ISTYP format symbol tables:

e CAllgraph (= #file name)
* COmmon (= #file name)
¢+ FUllxreference (= #file name)
* SYmbol (= expression)
¢ Table (= #file name)
¢+ Warning (= expression)
¢+ Xreference (= #file name)

The following commands are based on the use of
information derived either from the analyzer(ISTAN) or the

results of an instrumented run:

¢ ANnotated (= #file name)
¢ Run time (= #file name)
¢ SUmmary (= #file name)
¢ ASsertions ‘(= expression)
* Listing (=no<list>)
* SEgments (= expression)
¢ STatic (= expression)
¢ TOtals (= expression)
105

~
-~y
'~
{

s

N

4 N

55

hY

Aeva NS
‘-’

o o

)

4

"o e
¥

Y
P
)
A

Sy

NN
Sy 's 'a s

)

PRI
ate -

S %t
PR

P R T
PO)
[Y I -‘..1.1'

I
PR A
A

o ..,
.'V./,',.'.._v. '
R L
270 s .
Vo
e Y

e
X

AW
Sl
P

[3

SRR LR
AT AR A,
PR A

PR - CARARAL

- 8
LY
AR

vy

. 5 . " fa il 2l fatai du & e - e LY
A ath Paabid Sl 4t 2 Sl iaty Sk, 4 - ARt ate gl S Ay vl i A A A e SR P TR T sl

o

e - e
LS

. i

N 2. The output of CALLGRAPH N

f' SR
.::'f';'-

Y The following callgraph shows the routine dependencies N

W of those routines and entry points detailed within the Eif

; specified symbol table files. f%[?

$ Where an entry is followed by a number in brackets, the ;3{;

} number refers to the line on which that entry's o

-3 expansion has already been shown.

; Question mark, this indicates that the routines symbol

,f tables was 126 provided.

. 1 TEST g

‘D 2 MEAN -

. 3 S%UARE -

. 4

n" 5 MEAN . . A:«

. 6 SQRT (Std. Intrinsic) .

. 7 S LR

al: . o

AYaA

*)' _~_h'.)

& 3. TIhe output of COMMON command N

< RS

: S

" The following table details the usage of common blocks }ﬁi}

p - within the specified symbol table files. 4

s Each common block is given, followed by the name of the -

Xy block data program 3 it appears in (if relevant).

j $common is unnamed common,

SBLOCKDATA is unnamed block data.

k™

': There are no common blocks used.

- al :

-

. o

e \:-._.-“\-

R A W

& RN

' P

2 T

g o

'J .‘,:_.

ot T

N .

N

N 106

~

N

tel ot

............

....................
.......................

...............

........

4. The output of WARNING command

The following table shows warnings drived from the
symbol tables of the specified program units.

Warnings for program unit : STAND
Untyped Variable : I

5. 1IThe output of SYMBOL = TEST command

The following table shows the symbol usage for the
specified program units.

Symbol table information for program unit : TEST
Variables :
A - REAL (declared as an array)
Explicitly t¥ped
In READ input list
Used as an actual argument
In an expression
X = REAL
Assigned to on LHS of "=
In a expression
Procedures :
MEAN _- REAL
Explicitly typed.
Called as™ a function
In an_expression
SQUARE - Routine .
Called as a subroutine
STAND p1icitly typed
xplici e
Cagled asya ¥8nction
In an expression
Explicitly typed
xplici e
Cagled asya ¥gnction
In an expression

"

SUM

al

T

130
X

)
RO

o T e
.

l-l LY

N
v . N
WA

W W'
)

’
v

R ﬁ.ﬂ.i L
L) .

" I'rl.~l~f~.‘ . R
XA

oI5y

o0
LR

[y
,

Rl X
s

« N

.

L I IR
o

w-
LN
o
-
.‘..
o
OIS

LS

; ﬁ’ [EAESYY
fy 43 9 ‘s '

TINY
o' y
N DR AN

WA AT

Ve e v e
LR

)
.

»
»
-

4

L 4

v,

AN

4

The following table shows the symbol usage for the
specified program units.

Symbol table information for program unit :

Variables_:

A - REAL (declared as an array)
Forma arameter
Explicitly typed
Used as ah actual argument
In an expression

I - INTEGER .

In an expression

Used as a DO-loop index
M - Eeplicitly typed

xplici e

Asgigned ¥o gg LHS of "="

In an expression

N - INTEGER
Formal.garameter
Explicitly tyged
Used as ah actual argument
In an expression

Procedures :

MEAN - REAL
Ex€11c1tly t¥ped .
Called as”a function
In an expression

SQRT - Generic . .
Standard intrinsic function
Called as a function
In an expression

al :

STAND

TP AT I e R A N e ety AN el
¥ - » .

108

.
IO}

ad £ &7

“
YN ASA RN

-
»
i

3

'
LN

R
P

%

NN T
LV ‘l. K .
S
A%

.
r s
.

D

i) l‘,t.'
L ¢
A
fUUV?J

“v"s
Y

L]
AN
R

!
103G

£ &

L N R AN
N . ‘,'{::"‘O"l.'
NAAS At

'...,,4,,
% “y
<?Q

PN
V) XA

A
4 hn

v .
AR AN

b

-

.

!
"d.‘ ol

e

a.t

Vs

'11 'i_"‘. S L
ﬁh‘ 'fﬂfﬂﬂ}'.'-:_

N

h

[
A
?

'u"r,\

7. Ihe output of XREFERENCE command

CACA
sw@
IA. -

s
[/

The following sub-section show the routine dependencies
of those routines and entry points detailed within the
specified symbol table files.

RRTLIE
vl

oYY
atatats

(3

l'l
.
i

AP

TEST

|

NOT CALLED

o
o b
A

MEAN
CALLED BY:
TEST, STAND

e
Ny

&
oA

SQUARE

L T

G
LK

te

CALLED BY:
TEST

.I.C
LN

4l

STAND

'.l ’- .‘

CALLED BY:
TEST

(AR}
2,

]
P
"

',

» l" N l'l'l
eJ'_ N AR S

SUM

.
LR g

[
w' .

CALLED BY:
TEST

o
R4

SQRT

e
" .I

CALLED BY:
STAND

.‘\‘.\. ...

o
N Y

.
I |

3)
g
o
x

P o

al :

i

A
" l'
e

-
:
[)

e, A

-

AN
.. I.

AT

,
sf

’
RN

-~

o
‘ﬁ¢¢vbhﬁ
OO

.,
L
4
M)
l" g
’ L]
it

e
,"" ': % 'y
P A

!". »
1A

iy
o

,.j

....................
.....................

| -t >
s

NN
: 8. The output of FULLXREFERENCE command ol
. ..‘n_. -:
L . é".‘v
The following sub-section show the routine dependencies i
N of those routines and entry points detailed within the ::-_:
:. specified symbol table files. :_.E
2 Y
5 TEST O
: CALLS: . .
MEAN, SQUARE, STAND, SUM ‘N e
3 NOT CALLED e
X MEAN
(. CALLS NOTHING
N CALLED BY:
A TEST, STAND
SQUARE
x CALLS NOTHING
. CALLED BY:
i TEST
. STAND
« CALLS
" MEAN SQRT ;)
CALLED B ", s
A TEST L
8 R
& SUM o
- CALLS NOTHING NN
‘ CALLED BY: A
- TEST ‘ NN
.
- SQRT N
y éStandard Intrinsic} oAb
X ALLED BY N
. - R
X LGS
. al : lr_:‘:-"-;
- ’..'.‘-D
‘ Ay
- el
- i‘.;i"ﬁ
Lot

¥ DU A O

i
Py
PR

(]

’

+

.5,:'
p)
A

P
.r' [
‘.

)

-:c 2

110

L)
~
.

LT AP

APPENDIX E .n..:.]

THE OUTPUTS OF ISTAN VA

.

/20!

S, oy

1. Eortran-77 SOURCE PROGRAM NN
. A
PROGRAM TEST AL
REAL A&IQ % MEAN, SUM, STAND i
PRINT his is a sample test proqram e
ggigT *''Please input 10 real numbers: :jnx
X=MEAN(A, 10) i
PRINT The mean is :',X R
X=STAND(A, 10) , 4
PRINT 'The standard deviation is :',X e
CALL sngARE(0) , S
§ 85M(he square of the numbers are : ', A AR
= N
PRINT & The sum of the squares is :',X e
x=STAND(1,\ 10 : e
PRINT the 'standard deviation is :',X e
Sﬁg? hoo)
T

SUBROUTINE SQUARE(A,N W
REAL A Q () N
INTEGE N SN
DO 100 I% N ACL) N
100 CSN%EIlN NUE Qo
END 4
s

REAL FUNCTION SUM(A,N) AN
- REAL N ._'_-.'.—q
Suwzgo 1N N2
DO 100 _I=1,N RS
SUM = SUM + A(I) N
100 CONTINUE Y
RETURN R
END RN
REAL FUNCTION MEAN(A,N) N
REAL A(N) N
MEAN=0 R
DO 100 I=1 A
100 MEAN= MEAN/ﬁ)
REAL FUNCTION STAND(A, N) e
REAL 121
INTEGE BTN
REAL M,MEAN S
M=MEAN(A, N) Y
STAND= S
DO 100 I=1,N o |
100 STAND—STANf)+ A(T)=M)**2 S,
T (STAND. £0. 0) “KEFURN nH
N

A . . :, .J.‘
A PO

111

. ~..‘{“;.)'J|.,‘5'. .

........
. o

............

LI AL

(X]
2

an
»

- o
S AAREA

“ %% YW
g I\)‘.v‘ FAP AP

b A

N) A5

Rl LR =L i W

.l' “..~.-\ »

2. TIhe Instrumented program executjon result

Ox

Oox

Ox

Ox
1x

1x

14

This is a sample test program

Please input 10 numbers :

1234586782910

The mean is : 5.500000

The standard deviation is : 2.872281

The square of the numbers are :

1.00000 4.00000 9.00000 16.00000 25.00000
36. 00000 49.00000 64.00000 81.00000 100.00000
The sum of the squares is : 385. 0000

The standard deviation is : 32. 41990

SEGMENT EXECUTION FREQUENCIES - CURRENT

0 1 2 3 4 5 6 7 8

TEST
1
SQUARE
1 10 1
SUM
1 10 1
MEAN
3

3

STAND

2 20 2 0 2
SEGMENT NOT EXECUTED

FORTRAN STOP

30

112

oy
,
3&;-

“y

AT
s
.1'_1':"'. [

¥/
A
YIS

2
ot

AL
P, »
'l

'f'ff"

r"'

i
B

)
a e A

v ~
[:
LA A

~]r'v¢ ;

RN :
MANNANS "
‘51::/&??‘

4

Al IANAA NS

L A

3.

The following listing of the instrumented program has been

annotated with

the segment execution frequencies

assertion failure counts taken from the file :

#SAMPLE. DAT
SEGMENT 1:

SEGMENT

SEGMENT

SEGMENT

SEGMENT

SEGMENT

SEGMENT

SEGMENT
SEGMENT

1

PROGRAM TES
REAL A&lq% MEAN SUM, STAND

his is a sample test program
PRINT * 'Please input 10 real numbers:
READ *
X=MEAN(A, 10) ,

The mean is : ' ,X

PRINT * e"i’he standard deviation is :
CALL ngARE(10
PRIN The square of the numbers

A
k=sumM(A, 1)
PRINT * e sum of the squares is :

10
'The standard deviation is :

SUBROUTINE SQUARE(A,N)
REAL A(N

INTEGE N

DO 100 I = 1,N

= Y
CONT?&%& AT ACT)

RETURN
END
REAL FUNCTION SUM(A,N)
REAL A Ni
INTEGE N
SUM = O
DO 100 I = 1,N
SUM = SUM + A(I)
CONTINUE
RETURN
END

REAL FUNCTION MEAN(A,N)
REAL A(N)

MEAN = Q
DO 100 I = 1,N

CONTINUE
MEAN MEAN/N

113

and

L] .'.l I s l‘(‘l .
Bae's's'e'se
LN AN LR

-
o
"
2

v
LA

il) 4 i e
T .f.. . ek NN T

- .- . Ly ’ R --
~qf.¢4<f .~a.r.-f-...<.-.\- \ Ry
NISENEN PR A BT
.l_ll .‘..-V‘-I.'-....\.rh.

y oN
' x
. x
., Z m
\ B . m
2 €8
< (5]
~ ™~
S = —~
n A + H ~
. o H o~
Z < 2o
Yy o ~ Mm
4
[TMM:TQ.
O~Z6E o 1 W
AN S SIS
~A - I non
<HE WO o
. IE] m —~ -
g GGG
: WEZE RHO H O H Ml
-y EnQ N 0 = W
) o
N NON O ™
; WO
. .- S
— N M
) — ~ A A o
: 2 HOH
Z 8285
= gegs
O OO0 00
= [= R
0 nn v n wm

L

[T MR

A 4

NPV Y WAl LRRMAY) JS R T i e g P el S

YENEA et o e WS

4.

The following table shows

B A IR L R e A N)

?%

the execution frequencies for the

the invocation frequency for that 3.

various segments. The first count for each program 3 is also

NAME FIRST SEG

SEGMENT EXECUTION FREQUENCIES

EXECUTION FREQUENCIES

5.

SUMMARY TOTALS

TEST (1) 1

SQUARE (2) 1, 10, 1

SUM (5) 1, 10, 1

MEAN (8) 3, 30, 3

STAND (11) 2, 20, 2, 0, 2
= ?%

The Tfollowing table gives information derived from the
static and dynamic statistics specified.

~-PROGRAM UNIT~= =====-
INVOCATION TOTAL

---SEGMENTS---
EXEC- PERCENT TOTAL PERCENT
NAME FREQUENCY NUMBER UTABLE EXECUTED NUMBER EXECUTED

TEST 1 17 15 100 1 100

SQUARE 1 8 S 100 3 100

SUM 1 9 6 100 3 100

MEAN 3 7 5 100 3 100

STAND 2 11 7 100 5 80

-TOTAL 8 52 38 100 15 93
115

e
i
L]

TRYN S A
L

~ et el
PN e

i e S P
I"‘ff.:‘.'f‘:t;:

na
"

- ‘.l ‘..
N
l\ I‘.

Py

[}

h T]
?\ 0

v
a

Pt 4
LI 2 1
paEs
A

A

»
. .

19 WSS NN

8 A S r————

T.TaTaTEmEm R 8 #

) e T AT BT " a AR T, P
.\Li].ﬁll.".."..'hiu'u&A‘:*‘:.‘? Ca

6. TIhe output of STATIC = TEST

This table contains

specified program 3, split by statement type.

count of the statements in

STATIC SUMMARY FOR PROGRAM UNIT : TEST

the

ASSERTIONS : 0
COMMENTS : 1
ERRORS 0
TOKENS : 114
STATEMENTS : 17
ASSIGN 0 GO TO 0
BACKSPACE 0 -=-(ASSIGNED 0
BLOCK DATA 0 -=(COMPUTED 0
CALL 1 ==(UNCONDITIONAL) 0
CHARACTER 0 0]
CLOSE 9] ==(ARITHMETIC) 0
COMMON 0 ==(BLOCK) 0
COMPLEX 0 LOGICAL 0
CONTINUE 0 IMPLICIT 0
TA 0 INOUIRE 0
DIMENSION 0 INTEGER 0
DOUBLE PRECISION 0 INTRINSIC 0
DO 0 LOGICAL 0
ELSE IF 0 OPEN 0
ELSE 0 .PARAMETER 0
ENDFILE 0 PAUSE 0
END IF 0 PRINT 7
END 1 PROGRAM 1
ENTRY 0 EAD 1
EQUIVALENCE 0 REAL 1
EXTERNAL 0 RETU. Q
FORMAT 0 REWIND 0]
FUNCTION 0 SAVE 0
~=-CHARACTER 0 STOP 1
--COMPLEX 0 SUBROUTINE 0
~-=-DOUBLE PRECISION Q WRITE 0
~=INTEGER Q ASSIGNMENT STATEMENTS) 4
--LOGICAL 0 STATEMENT FUNCTIONS% 0
-=REAL Q UNRECOGNIZED STATEMENTS) 0
~=-UNTYPED 0 - 0

116

=7 AT AT NS AR G Y

O LG L A A

‘)’.“-"l.

SEEAY N

........

.......

"
............
.............

”

. The output of DYNAMIC = TEST o

7 A

. -~

This table contains a count of the statements actually A

executed in the specified program 3, split by statement v
type. o

DYNAMIC SUMMARY FOR PROGRAM UNIT : TEST

ASSIGN 0] IF 2

BACKSPACE 0 --(ARITHMETIC) 0

CALL 1 - BLOCK& 0

CLOSE 0] -=-{ LOGICAL) 2

CONTINUE 0 INQUIRE 0

DO 0 OPEN 0

ELSE IF 0 PAUSE 0

ELSE 0 PRINT 0

ENDFILE 0 READ 0 »

ND IF 0 RETURN 0

END 1 REWIND 0 e

GO TO 0 STOP 0 IR

-=(ASSIGNED 0 WRITE 0 AR

-=(COMPUTED 0 ASSIGNMENT STATEMENTS% 26 Sy

-=(UNCONDITIONAL) 0 UNRECOGNIZED STATEMENTS) 0 EN
v
s
o
‘».
ALY
NGO
D’.‘b-‘\.-
._'~i“.\'~
RO
'#‘—'_ii-.#
S
S GEY

117

N T T At Lt T e L, Y T LS e T e s R I N S O N U N - .
RCAC 26 A N SRS OV LR DR RN PN YO NN : . e " ae ORI AN

..................................

LIST OF REFERENCES RS

AR
XI',.{.‘
)
v a
[N

1. Cowell, Wayne R. and Miller Webb C. The TOOLPACK :
Prospectus, yArgonne National Laboratory, 1§§§_ -

000,

oo,
[
T -

2. Peterse?é Perry, Project Control System, Datamation 25

June 19

TN
. L N
.
X

3. Boehm Barr §g§§ugxg Engineering Economics,
Prentlce-Hally Inc.

4. Ford,B., Rault,J.C. and Thomasset,F., ols Metheds B
’ sevier Science Publishers B.V., . AR

5. Boyle, J.M. and_Dritz, K.W., tom P ammin
S > to fa i Xhe

e me ig
Information Processing 74, ol
and publis lnq Company, 1974. PR

6. Fosdlck L D. and Osterweil, L. J., Qg%g §§oy anal-~
8515 oftware iability, . - .
puting urveys 8, ééi }éVE. PP

,

7. Osterwell Leon J., Hague, Stephen, and Mlller, Webb. ,

II E . e, N :
irgonne Na%10na% Eagora%ory, gg AT
. 8. "Wenger ,Peter(editor) égﬁgg;gh Q;ﬁxg;iggs Software I;ﬁﬁ:
- Igsgngiggx, ﬁlT Press ridge, in S

| 9. Kernighan, Brian W. and Plauger, .
Addison-Wesley Publishing Company, 1976

10. Meyer, B. iciple C Design, Communication
ACM, {oL. 25?Iﬁ%%313§1$£1532$§g§
11. Vick, C.R. and Ramamoorthy S
! Engineering, Van Nostrand Relnhoid éompany,gigﬁi.

12. Senn, James alvsis and si of Information
Systems, McGrow ﬁll 00 ompany, 4.

‘ 13. R.M.J. 1Iles, 0 éng%%%%gxlg Guide, NAG Technical
! Memorandum : E%é;%G-ﬁl , .
‘¢

. 14. Cowell, W.R., Haque, $.J. and Iles, R.M.J., TOOLPACK/1
' Introductory . .

. —— - —

Software Tools,

! 118 ?f,

. 15. ﬁgILX—EHI;INR se NAG Technical
: emorandum: G;%Z lggggi_ Guide,
l 16. Moore, John B. and Makela, Leo J., Structured Fo§§:gg
with WATEFIV, Reston Publlsﬁlng Company, nc., 1 .
. 17. DeMarco, . Tom tructured Apalysis and System
X Speciflcation, fourdoh The.—To78"
Y
1
18. 55222 Fortra ﬁ Guide, NAG Technical
! emorandum: G;%38- 1985
19. Iles, R.M.J. and Hague S.J., iO%%EACK : e first
8ubl§c ggigggg, Numerical Algori s Group, xford,
. 85.
l 20. &ﬁIELZl%IEQ Users' Guide, NAG Technical
- emorandum: NAG,/T34-TPL, 198%.
N 21. S-De tio S;angérdéges sers' Guide, NAG
- echnica emorandum: -TDS, .
' 1 - o« . ']
. 22. ¥AX Eg;;;gn ggggg Guide, Digital Equipment
. orporatlion, 1984. g P
2 23. %glgz;zx%g&glgg Transforme rs' Guide, NAG
echnica emorandum:NK§7§Ig-TPT, .
i 24. ESI%L.-QQ%gﬁgntggi 89 gegggaiigg eig Users' Guide, NAG
- echnica emorandum: -TAL, 1985. !
25. QsIAN-Ege tio %ng%xsg: Users' Guide, NAG Technical
emoran um:NicsT - , 1985,
' 26. ESI%E-IQOLEAQK gommgﬁ% Exec Users' Guide, NAG
- echnica emorandum: G/TB-T%E, 1985,
!
J
X
.
J
'
\
.
.
9
.
:f 119
.
!
. e Al B N A N N R A S R R N I S U N

‘v 's
s
ENER)
0 .
P

.

)
/7
s,

" a
NP

+4 Ot ENe

L Yt

-

0y
0
-

.

............

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station

Alexandria, Virginia 22314

Librarg, Code 0142
Naval Postgraduate School
Montery, California 93943-5000

Computer Technology Programs,Code 37
Naval Postgraduate School
Monterey, California 93943-5000

Prof. Gordon H. Bradley, Code 52B2
Department of Computer Science
Naval Postgraduate School
Monterey, California 93943

LCDR. Paul Callahan, Code 52CS
Department of Comptuer Science
Naval Postgraduate School

Monterey, California 93943-5000

Naval Academy Library
J1nhae_C1t¥, Gyungnam 602-00
Republic of Korea

LT. Kim, Jung Sik

2574 300-51, "SADANG 4 DONG,
DONG-JAK KU, OUL,
Republic of Korea

LT. Hur
SMC 2246
Monterey

Seong Pil
GS
CA 93943-5016

i
g

120

No.

- L e T T e T e T T, .-.' .

N
i‘_
v
.‘:\'_C‘-'.
NG
1}

Copies

2

2

-

+

10

1

2

6 b
..\‘.."-
T
S
NG .‘n.

1 e
R
.\- &

4

o T e

.- y .) " ; " ARGRAAI e Y X o AL
Ll - - 0, \ by - > A Ay s J, } vl Ja R ',
g Y XL PSP X- - . , SO PPN, (AN SO a-...f..f DAL KRAL A ...\.r
& e S SR IIINNT LUL ML L 4 3§ PG
LY ! h
]
23
S .
-.. s
x h
™)
) P ‘s
X, .
o ’
4 'y
r ‘.v
¢ .
-t k d
" Z <
4
‘ -‘\
-‘ \-
o) y
by . L}
.. .\
A p
: i !
, ’
1
! »
.\- .
, *4
, 9
f, .
s ;
\
; ﬁ .
¥,
LY [Y
N“ L]
A .
;-. v
‘ "
g :
\ L}
a2 ‘ L
3 ;
. »
.
., »
,
y []
')
’
, _.
: — ’
w .
; g
¢ .
¢

§ i“!!(lkA.,l,!r.\.. ..lel‘l...ﬁnc-A J-..v.ro\l\.(,- LRA A A Wt et e e, \ AR AR AL IR 2" .« .o o ’ -

