
AD-A173 943 EVALUATION OF THE TOOLPACK FORTRRN PROURNAMING 1/2
ENVIRONENT(U) NAVAL POSTGRADUATE SCHOOL MONTEREY CR
J S KIN JUN986

UL ASSIFEDF / 9/2 NL

- . .4. . -

'4

a.

'.1
a 4

"4-

.4-

4.

.4,.

*2'

I';'
~*4*~

* .4
4.

14S "''28 2.511111 *. Oijgi-
______ "3 2
_______ *~" 1= I1111'11111 IIIlI~

L l.i ~

0 IIfI~~
1.1 __

- IJ1JJ~.8
.4-111111.25 11111 1.4 111111.6

-C.
'.4%.

C-
4. 444

4 ~ ~44

MICROCOPY RESOLUTION TEST CHART
44%NAIPONAL AUREAIj Of ',IANDAPD'. "~-, A

d,

*44 ~

44%

* ,*4

4 .q~** 4,%

4*%

.4'

*~.44

4 -~

49 -'. 9*~ 44 '~**'.~"'** ffi,..

-- r -a a .r i -ar

_NAVAL POSTGRADUATE SCHOOL
Monterey, California

DI
IIELECTE .--,

~~~~NOV 17 058 '., -

THESIS
EVALUATION OF THE TOOLPACK

FORTRAN PROGRAMMING ENVIRONMENT

by

0). Kim, Jung Sik

June 1986

Thesis Advisor: Gordon H. Bradley

Approved for public release; distribution is unlimited.

86 11 17 041 h:.

i~ . w . 4" a %. # - .' '.'. .. ".-- ... .'- ". "-:--X .-. .~-\~-' . -.."". '""""'. """ "~ ".* :.''.' ' . " ; - '..



SECURITY CLASSIFICATION 09 THI9 PAGE- - * '

REPORT DOCUMENTATION PAGE

ta REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGS

UNCLASSIFIED
2a SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/ AVAILABILITY OF REPORT

2b DECLASSIFICATION IDOWNGRADING SCHEDULE Approved for public release;
distribution is unlimited

4PERFORMING ORGANIZATION REPORT NUMBER(S) S MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION r6b OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATIONLO-A

Naval Postgraduate School (if applikable) Naval Postgraduate School
____ ___ ____ ___ ___ ____ ___ _ j 52__ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, GA 93943-5000

8a NAME OF FUNDING /SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c ADDRESS (City, State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT ITASK WORK JNIT
ELEMENT NO NO NO ACCESSION NO

'ITITLE (include Security classfication) UNC LASSI F IED

Evaluation of the TOOLPACK Fortran Programming Environment

* - PERSONAL AUTHOR(S)
Kim, Jung Sik

' a TYPE OF R ~RT 1i3b TIME COVERED 114 DATE OF REPORT (Year, Month, Day) 1is PAGE COuNT4
Iasters Wie SiS FO TO I1986 June 20

6 SuPPLEMENTARY NOTATION

%-

COSATI CODES 18 SUBJECT TERMS (Continue on reverse if necessary and identify by block number) P

;,ELD GROUP SUB-GRO-UP , TOOLPACK, Programming Environment, Software
Library

'9 ABSTRACT (Continue on reverse if necessary and identify by block number)

TOOLPACK is a programming environment for the development of medium-
size Fortran programs by scientists, engineers and-mathematicians.

* TOOLPACK was developed by a confederation of computer scientists at
several government labs and universities in the United States and

* Great Britain; it was first released in 1985. This thesis is an
* evaluation of TOOLPACK. It includes a discussion of the installation

on the VAX/VMS, benchmarks of tool performance, and a comparison of
the users' needs, TOOLPACK goals and TOOLPACK capabilities.

D Sfl'3UT!ON AVAILAILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
% CLASSIFIED/UNLIMITED 0 SAME AS RPT 0 DTIC USERS UNCLASSl1F IED

' .AME OF RESPONSIBLE INIIUL2bTELEPHONE (icueArea Code) 221: OFFiCE SYMBOL
Prof. Gordon H. Brdlev 408-6b ?,, ( 2Bz
DFORM 1473,84 MAR 83 APR edition may be used untiexhausted SECURITY CLASSIFICATION OP -- S PACE

All other editions are obsolete



Approved for public release; distribution is unlimited.

Evaluation of the TOOLPACK Fortran Programming Environment N

by

Kim, Jung Sik
Lieutenant, Republic of Korea Navy

B.S., Korea Naval Academy, Jin Hae Korea 1979
B. S., Inha University, Inchon, korea, 1983

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE .-

from the ,

d NAVAL POSTGRADUATE SCHOOL
June 1986

Author:

Kim, J.n, Si

Approved by:-

Gr -on .r Brad j;; esis Avisor

Paul Cl ahan Sec Reader

Vincent Lum, Chairman,
Departmen of Computer Science

Dean of Information and olic ences .

2



Mv 77 7W I M... ...

J . P

ABSTRACT 
. J .

TOOtJPACK is a programming environment for the develop-

ment of medium-size Fortran programs by scientists, engi-

neers and mathematicians. TOOtJPACK was developed by a

confederation of computer scientists at several government

labs and universities in the United States and Great

Britain; it was first released in 1985. This thesis is an

evaluation of TOOLPACK. It includes a discussion of the

installation on the VAX/VMS, benchmarks of tool performance,

and a comparison of the users' needs, TOOLPACK goals and
TOOLPACK capabilities.

W-' .

I 11C

BY..

UP

QAL0jbiTY

3SET

\ I



TABLE OF CONTENTS

I. INTRODUCTION ........ ................... 11

A. THE IMPORTANCE OF FORTRAN IN SCIENCE,
ENGINEERING AND MATHEMATICAL FIELDS ..... -11

B. PROGRAMMING ENVIRONMENTS .......... . 12

1. Some Programming Activities ......... 14.....

2. Some Functional Aspects of Programming
Support Environments .... ........... .. 20

I I. OVERVIEW OF TOOLPACK ...... ............... .. 23

III. METHOD OF EVALUATION ...... ............... .25

A. INSTALLING TOOLPACK ..... ............. .. 25

B. RUN-TIME COMPARISON ..... ............. 26

C. COMPARISON OF THREE ASPECTS ............ . 26

IV. GOALS FOR TOOLPACK ...... ................ .28 *.-,*.

V. MATHEMATICAL SOFTWARE : CHARACTERISTICS
PROGRAMMERS, AND PROGRAMMING ENVIRONMENTS . . . . 30

A. DEFINITIONS ................. 30
B. PROGRAMMERS ....... ................. 31

C. LANGUAGE ....... ................... .. 33 r'-

D. APPLICATION DOMAIN AND NEED FOR EFFICIENCY 34:

E. PROGRAMS ....... ................... .. 35

1. Size ....... ................... .. 35

2. Contents ....... ................. 36

3. Use of Extensions..............37

4. Programming Style . . . ."........37

F. DEVELOPMENT ENVIRONMENT .... ........... 37

1. The Program Library Concept .. ....... .. 37

2. Tools ....... .................. 39

G. PORTABILITY ....... ................. 40

t. 4

z-'-".



H. HUMAN ASPECTS AND PROGRAM TECHNOLOGY. ..... 41

VI. CONFIGURATION OF TOOLPACK...................43

A. THE TOOLPACK TOOL INTEGRATION CONCEPT .. .... 43

B. THE FILE SYSTEM.....................43

C. THE VIRTUAL MACHINE (TVM) OF TOOLPACK . . .. 45

VII. INSTALLATION ON VAX/VMS....................49

IVIII. CAPABILITIES OF SYSTEM AND TOOLS ............ 51

A. GENERAL...........................51

B. EVALUATION AND OPERATIONS PROCEDURE UNDER
VAX/VMS............................53 .

1. ISTLX (Fortran-77 scanner). ............ 54
2. ISTYP (TOOLPACK Parser)..............56..

3. ISTPL (Polishing tool) /ISTPO (Option ..

File Editor)....................59 . .

4. ISTPT (Precision Transformer).........63

5. ISTAL (Documentation Generation Aid) . . . 68

6. ISTAN (Execution Analyzer) ......... 69

IX. EVALUATION...........................75 .
A. COMPARE USER NEEDS TO TOOLPACK GOALS. ..... 75

B. COMPARE TOOLPACK GOALS TO ITS .
CA A I I I S. . . . . . . . . 7

C. COMPARE USER NEEDS TO TOOLPACK
CAPABILITIES..........................79ID. COSTS VERSUS BENEFITS.................81

X. CONCLUSIONS..............................83

APPEND IX A: VAX/VMS COMMAND FILE (EXAMPLE FOR
BENCHMARK TEST).....................85

APPENDIX B: USEFUL COMMAND FILES.................86

1. ISTDC.............................86

2. ISTFD...........................86 V

3. ISTFP...........................87

4. ISTLX...........................87

5. ISTPL (Simple Method)...............88

5



6. ISTPL (Complex Method) ... .......... .. 88

7. ISTPT (Simple Method) .... .......... 89

8. ISTPT (Complex Method) ... .......... .90

9. ISTTD .................. 91

10. ISTVS .................. 91

11. ISTYF ....... .................. 92
12. ISTYP . . . . . . . . . . . . . . . . . . 92 " "12 SY..............................92 <.

APPENDIX C: THE RESULTS OF RUNNING IN ISTPL . ...... .. 93

1. The Source Program for Testing ....... . 93.

2. The Output of Polished Program( Simple
Method) ....... ................. 94

3. The Output of Polished Program(Complex
Method) ................. 95

4. The Output of Polished Program(With
Errors) ....... ................. 97

5. The Output of Polished Program ........ .99 1

APPENDIX D: THE RESULTS OF RUNNING IN ISTPT...... ..101

1. The Output of Precision Transformation . 101

2. The Output of Precision Transformation .103

APPENDIX E- THE COMMANDS AND OUTPUTS (ISTAL) ..... 105 '

1. ISTAL COMMAND ............. 105

2. The output of CALLGRAPH ........ 106

3. The output of COMMON command ........ .. 106

4. The output of WARNING command ..... . 107

5. The output of SYMBOL = TEST command 107 .,.*.

6. The output of SYMBOL = STAND command • 108

7. The output of XREFERENCE command . . . . 109

8. The output of FULLXREFERENCE command .I110

APPENDIX F: THE OUTPUTS OF ISTAN .. ........... ....-1

1. Fortran-77 SOURCE PROGRAM ......... 111

2. The Instrumented program execution
result ...... ................. . 112 -

3. The output of LISTING command ..... . 113

4. The output of SEGMENT =.* ....... 115

6
. . . .. . • • . .,.



M~~~~7 W. P. r. -. -

5. The output of TOTALS =.............115

6. The output of STATIC = TEST.........16

7. The output of DYNAMIC =TEST.........17

LIST OF REFERENCES......................118

INITIAL DISTRIBUTION LIST...................120

7.



LIST OF FIGURES

3. 1 The Comparison Aspects ..... .............. 27

6. 1 Sections of the TIE Library .... ............ .. 47

8. 1 WATFIV control structure . ............. 55

8.2 The Flows of ISTLX ................ 56

8.3 The Flow of ISTYP ...... ................. .. 58

8.4 The Flow of the ISTPL (Simple Method) ....... 60

8.5 The Flow of the ISTPL (Complex Method) . ...... .61

8.6 The Flows of ISTPT (Simple Method) .. ........ .. 66

8.7 The Flows of ISTPT (Complex Method) . ."......67

8.8 VAX/VMS commands (to obtain the outputs of
ISTAL) ......... ...................... 69

8.9 ISTAL Operation Procedures .... ............ 70

8.10 The Flows of ISTAN ................ 72

8.11 Operation Procedures of ISTAN (first step) . ". . 73

8.12 Operation Procedures of ISTAN (second step) . ... 74

9.1 Memory spaces of each tool .... ............ 82

8,

8 °" .'.

5q.-55
.°.~ J.



LIST OF TABLES

I CPU TIME COMPARISON OF ISTLX............56

Ii CPU TIME COMPARISON (USING SIMPLE METHOD) OF
I ISTPL........................64

III CPU TIME COMPARISON (USING COMPLEX METHOD) OF
ISTPL........................64

IV CPU TIME COMPARISON (USING SIMPLE METHOD) OF
ISTPT........................67

V CPU TIME COMPARISON (USING COMPLEX METHOD) OF
ISTPT........................68

-I. * 9



- - -. _-.~..r.

b . .

ACKNOWLEDGEMENTS " --

The author would like to express my thanks for the

support and guidance given by my thesis advisor, Professor

Gordon H. Bradley, and my second reader LCDR Paul Callahan,

in completing this thesis.

The author would also like to thank the Chairman of

Computer Science Department, Professor Vincent Lum, for the

use of a lot of memory space in the VAX/VMS system; and to
thank Andrea Mc Donald, systems programmer of the VAX/VMS, .-

for her expertise and helpful suggestions in the use of the

VAX/VMS system.

Additionally, the author would like to thank Dr. Wayne

R. Cowell, Argonne National Laboratory, for his assistance

and provision of personal research papers.

Also, the author would like to acknowledge the assis-

tance of Mr. Larry Reed, of the National Energy Software

Center, for his support during the installation of TOOLPACK.

A very special thanks to my wife, Mee Jeong Kim, and my

son, Hak Min Kim, for their patience during these two years.

~1~'-- ?..'

.- '.--.*

o7-

% 10

U2',, :" ., *, ,-.. - -" . ' ..- .. " -. . ' ' -, - . ", -; ' ":



77-71-7-7 ." o."

.1N*

I. INTRODUCTION

Computer programs have become an indispensable part of

research, development, and practice in virtually every area

of science, mathematics, and engineering. The development

of software in these areas has all the problems with the

economic production of correct and reliable software systems

that other areas of computer applications have and some

special problems such as numerical precision, and the need

for significant computation, as well as some unique assets,

such as programmers and users with a solid understanding of

mathematics. Below we will argue that the scope of computa-

tions in this area together with a shared set of problems

makes the production of software for science, mathematics,

and engineering a prime candidate for the development of

software tools to lessen the problems and increase the

productivity of programmers working this area.

A. THE IMPORTANCE OF FORTRAN IN SCIENCE, ENGINEERING AND

MATHEMATICAL FIELDS

Wayne R.Cowell and Webb C. Miller emphasized the impor-

tance of Fortran in the science ,engineering and mathemat-

ical fields as follows [Ref. 1: p. 3]:

Numerical computation is a larger proportion of the V
total computing activity than is commonly believed. To
illustrate, the Department of Defense, for which much
computation is of a numerical nature, operates more than
twenty five times as many computers as the Internal
Revenue Service and the Social Security Administration
combined. A study of the matter led John Rice to
conclude that numerical computation accounts for about
50 % of the computing expenditures in the United States.

Fortran has been the language of choice for scientists,

mathematicians, and engineers for many years. Even through

the development of other languages (for example : Prolog,

Pascal, and C-language), its position seems solid. For

.9-

11:: Z



-.-.-

example, a survey (Ref. 2: pp. 147-162 of commercially-

available project control systems which are widely used in

the construction industry, gave the following data:

* Fortran 21 (41.1 %)
* Cobol 12 (23.5 %)
* Assembler 9 (17.6 %)
* others 9 (17.6 %) ; several software systems were

composed of more than one language.

Finally, Fortran is viewed by many as an excellent

language for science, mathematics, and engineering computa-

tion. The primary reasons for this view are: the wide

availability of language processors accepting programs

written to the current standard (particularly for advanced
scientific machines); the stability of the Fortran implemen-

tations; the general purpose nature of many of the facili-

ties offered by the language; the highly efficient object

code, particularly for scientific computation; the wide

availability of high quality programs and subroutine

libraries written in Fortran; and finally, the prevalence of

Fortran in scientific computing environments.

B. PROGRAMMING ENVIRONMENTS

It has been estimated that the cost of producing soft- N< %

ware in the United States in 1980 was between $30 billion

and $40 billion [Ref. 3: p. 17]. Other estimates place the

cost of producing software at between $40 and $200 per line,
depending upon the size and nature of the problem and the

software development team. It seems clear that a major

reason for this high cost is that nearly all of the activi-

ties associated with software production are manual. It has

also been clear for well over a decade that many of the

manual processes could and should be assisted or replaced by

computer supported capabilities. Such computer assistance

invariably has taken the form of software designed to help

humans perform the activities which are necessary in order -.

12

-- Cad



--'S"

for them to accomplish their software related jobs: coding,
testing, documention, transporting, designing and

maintenance.

The software programs created to assist in software

activities have come to be called software tools. There has

been a great surge of interest in creating software tools in

the past ten to fifteen years. Unfortunately there has not

been the expected decrease in the cost of producing software

nor the expected increase in the quality of software

products.

In fact, it appears that, despite the apparent appropri-

ateness of using software to help software people, few soft-

ware tools have been adopted enthusiastically or widely.

The term "programming environment" or "computing envi-

ronment" is often used denote the set of computer-based file

structure, system services (including languages), and system

access methods available to assist the programmer [Ref. 4:

.p. 39].

Recently there has been a rapidly growing interest in

Programming Support Environments (PSEs). While relatively
few such environments actually exist at the present time, it

would appear that over the next few years a number of such

systems will evolve. Although the development of PSEs is in

its infancy it is already the case that it is often very
difficult to compare two proposed or extant systems. One

problem which contributes to this difficulty is the lack of

agreed upon terminology. Another problem is the extreme
diversity of functionality which might be desired of or

provided by some PSE.

In the following section, there is a discussion of the

various kinds of programming activities which a programming p,__

support environment might support.

.-..5..;
13 . "



1. Some Proammn Activities

* As a preliminary to proposing some terminology and

some comparative axes we will present some paradigms of the

kind of activities which might be carried out during the

life cycle of some engineering projects. We will rely

* heavily on pictorial representation of the activities in

this section.

1) Revisio n

Editor

Here the left and right boxes represent text which
is modified by using some editor to, for example, make it

more complete or to correct certain errors which have been

discovered.

2) Compilation

Compiler

a. 14

-4



Here the box represents source text for some collec-

tion P of program entities and the bottom represents object

code.

Another picture of compilation is

W.N

Compiler
Ak

-C.m

a. .:::

-. .J, 
.

Here the box labelled A represents the results

derived by analysis of the program entities (for example, to

determine types, identify common subexpressions, assess

relative frequency of paths, or what have you).

Yet another picture might be

Ta = Target="Vax

, . - .-. °

PTarget=Vax '

15

,.4

-J.



-7 N

[ ,-,

Where the box labelled G represents inputs to the

compiler that directs it to produce code for the VAX.

3) Print

* .- ', .

MI

print

zL

Here the box labelled L represents a (virtual)

listing appropriate for the combination of the boxes

labelled P, . . Q.

4) Transform

p T

Trans'former

U...%

NP

16

.:-.-

- ','-".., " '-. .".","- ".'-.'-." -.- " ".:, 4"; :-'. , -.- ' ". ' "-" v v " ." ." : -,'..'. ... -.' :,. : '-,. -. ': '.'.'4

m/qn . . ,,o ., . • , , , ", , - ,'. • " -.. _ '_ _ .r .r _._ '_ _ _ - . U- -.-.-



'...

Here we depict the refinement of some collection of

program entities (the upper box labelled P) by some trans-

formation (T). Examples include using preprocessors to

translate from a problem specific language into some stan-

dard high level language, derivation of a procedural speci-

fication from a non-procedural specification, using program

transformation to refine abstract constructs in a wide spec-

-. trum language, and so on.

S', 5) Aggregate

Aggregate

Here we might be putting together some "system" (S)

composed of components P, Q, and R.

At some later time, after revision of R, we might have:

[:I.

S.t

-p - - - -

17



6) Analyze

Analyzer

---

A

Here the upper box represents some collection of

program entities and the lower represents the result of

analysis of these entities.

7) Piube

Probe

.'-p

P

Here the upper box represents some collection of

program entities and the lower represents the results of

probing these entities during program execution to gather

various run-time statistics.

18

U-%-

U.,=

. i .T:T '7



8) Package

®r or_

Y 

Package

> Here we depict the "packaging"' of several components

(P,. .. Q)into some derived result (R). Examples include64

linking object code preparatory to loading, preparing a

compiling context, and so on.

9) Families

L_________________________________________.

JI

TTarget
JB1B44.31

paricla cmples Thret loeTbxs)fr ayent43

and a DEC VAX. %

w~

19



i+_ ..

Another example is provided by the following:

T type=COMPLEX

precision=1

type.'REAL

precisioni=2

Transformer - ITransformer t p = E L"' +
type=REAL
risi n=2

type=COMPLEX

precision=1 p.-
-

Here we depict specialization of some general mathe-

matical software package (the upper box labelled M) to two p
particular packages for specific number types and preci-

sions. We shall speak of the two lower (C) boxes in the

preceding and two lower (M) boxes -in the above as two

members of a family. .
2. Some Functional Aspects of Programming Support

Environments

Having armed ourselves with a collection of terms to

describe various aspects of programming support environments

and the activities supported by a PSE we now want to iden-

tify a number of axes along which we might measure and

compare environments.

1) Language Support

A first question we might ask about a programming

support environment is how many programming languages are

supported and how well integrated is the support if there is

more than one language available.

20

I,. 1

'%'t~- m'1t' m' " ' . +J' -"+P" " ................................... * .".2 -" " + .-. P- .'--, .J.'--,J... . . . . . . .-..-.. . . ----



-~~~~~~~~~° - - -77-77

d.

2) Target Configuration Support N
It is becoming widely recognized that the computing

complex appropriate for supporting the activities of program

development and maintenance must be reasonably large-quite

often larger than that appropriate for the operational

system being developed. Thus a PSE may support more than one ".

target configuration and, for example, use cross compilers

to support target configurations quite different from the

host.

3) User Interface

Having a user interface which makes a PSE easy and

natural to use is very important.

4) Command Language

By the command language for a programming support

environment we mean the set of expressions which the user

employs to direct the activities of the PSE. This may be a

special language similar to a job control language or may be

an extension of a programming language available in the PSE.

In general, it is important that the command language be

easy to learn and use and that its interpreter be robust. -.-

5) Integration of the Tools

The tools of a PSE are always "integrated" in the
sense that they are part of the PSE and they take their
inputs from and deliver their results to the software tools. "•"*

Indeed, the set of programs which can be executed on any

operating system are integrated in this very loose sense.

Given that a PSE is more structured, it is possible that the

tools within a programming environment can be quite highly

integrated, resulting in a number of advantages. ".

J • %° .

.. .J.,,

21

.1 °

i " " " " " " '" ""-"' -' "' " • . " ' ..i" 2' --" " -" " -" ' .'" -.."" "" % " " "" ' '""""' -" ' --" ' --"" ' "' '



6) Granularity of Tools

Typically the tools for program development provided

within the context of most operating systems are few in

number and large grained. For example, a "compiler" is typi-

cally a single tool which operates in several phases: s'.

parsing, analysis, optimization, code generation, assembly,

and so on. Similarly, an editor typically operates on a

complete "file" and leaves no explicit record of what was

changed and what remained invariant.

7) Relationships Supported

Conventional programming languages and program

development tools provide few facilities for explicitly

describing the relationships among the various program enti-

ties comprising some software system. Rather, such relation-

ships are usually represented only implicitly.

8) Protection

There are a number of levels at which PSEs may

offer facilities which enable modules or parts thereof to be

protected from alteration or use by unauthorized parties.

9) Documentation Support

There is a great variety of documentation which is

associated with a program system during its lifecycle.

Included are items as diverse as requirements documentation,

software trouble reports, user manuals, progress reports,

time and cost estimates, queries about status, and new

release updates. There are, in turn, diverse ways in which a

programming environment can support the preparation of and *p 5.. .I

dissemination of documentation.

..
22'

P .P 2 --' '



II. OVERVIEW OF TOOLPACK

Since about 1970 a number of individuals and groups

developing mathematical software have begun developing at

least moderately elaborate software tools to assist in

making their software available on a variety of computers.

As mentioned in the previous chapter, Fortran has been

the language of choice for numerical computation, its posi-

tion seems more solid now than it was ten years ago.

The TOOLPACK project was initiated few years ago with

the goal of addressing the problem of inadequate and inef-

fective use of software tools to develop scientific, engi-

neering, and mathematical software.

The project currently is managed by a confederation of

researchers from seven different institutions (Argonne

National Laboratory, Bell Telephone Laboratory, Jet

Propulsion Laboratory, Numerical Algorithms Group,LTD.,

Purdue University, University of Arizona, and University of

Colorado at Boulder) [Ref. 4: p. 151.

This confederation has concluded that the problems of
ineffective and inadequate utilization of software tools
is attributable to the generally poor quality of such
tools as well as to the absence of a unifying framework
within which they can be evaluated,coordinated compared,
and upgraded. Thus the TOOLPACK project has, essentially
since its inception, been directed towards the goal of
producing high quality tools, and imbedding them in an
effective integration framework. Further, the avowed
aim of the project has been to make this set of tools
and integration framework generally available to the
mathematical and scientific software community.

TOOLPACK/1 is the first release of the TOOLPACK Fortran

software tools suite. It is the result of an international

collaborative project started in 1979. The project was

supported by the Department of Energy and the National

Science Foundation in the USA and by the Science and

23

.* .. .. . . . . . .. . . . . . . . .

. . . -. .--.*.....--.....*. ..... •.. ., -. ........ . . . .° .. ...- •,.. .........



Engineering Research Council in the United Kingdom. In

making TOOLPACK/1 available, NAG (Numerical Algorithms

Group) is acting as a distribution agent on behalf of the

TOOLPACK council.

24 r



III. METHOD OF EVALUATION

A. INSTALLING TOOLPACK
An important issue in the use of programs, tools, and

environments is how easy it is to install and use them.

Installing a system, whether a new one or an existing one

that has been modified, consists of the three primary activ-

ities of training, conversion, and post-installation review. ro %-.<
Training involves both system operators and users who

will use the new system either by providing data, receiving .

information or actually operating the system. Training the

system operators includes not only how to use the system,
but also how to diagnose malfunctions and what steps to take

when they occur. The users need to be trained to operate I

the system.

The conversion plan describes all the activities that

must occur to install the new system and put it into opera-

tion. It identifies the tasks and assigns the responsibili- I

ties for carrying them out. The conversion plan should also ,.-'-.

anticipate the most common problems, such as missing docu-

ments, incorrect data formats, lost data, and unanticipated '

system requirements, and provide ways for dealing with them

when they occur.

The post-installation review not only assesses how well

the current system is designed and implemented, but also is

a valuable source of information that can be applied to the_-

next system project.

We will evaluate the difficulty of installing and main-

taining the TOOLPACK environment in chapter 7 (Installation

on VAX/VMS).

25- -

. . . . . . . . . . . . . . . . . . .. . . . . . . . . . . .



B. RUN-TIME COMPARISON

This thesis uses the benchmark technique to compare the

elapsed CPU times of executing several of the TOOLPACK

tools. The selected program sizes are classified into 85

lines of code (LOC), 700 LOC, and 1500 LOC. The overview of

the benchmark tests and actual data analysis are described

in chapter 8 (Capabilities of System and Tools).

Most operating systems and some special program tools

are implemented in their own system level languages or in

lower level languages (e.g., Assembler language) to increase

the performance. But in order to be portable over several

different machines, the "OOLPACK project uses high level

languages (Fortran-77 and some Pascal); the use of high

level languages causes lower performance.

C. COMPARISON OF THREE ASPECTS

The TOOLPACK project was originally designed for scien-

tists, mathematicians,and engineers not in the computer

science field. This thesis will compare the goals of

TOOLPACK with the needs of programmers of mathematical soft-

ware and compare the goals of the TOOLPACK project with the

actual capabilities of the TOOLPACK project (See Figure

3.1). To compare the three aspects, some knowledge of them

is required. Therefore, the author will introduce each

concept in the following chapters.

Chapter 4 will describe user's view (views of scien-

tists, mathematicians and engineers). Chapter 5 will

describe the initial goals of the TOOLPACK project. Chapter

6 will describe the configuration of TOOLPACK project,

chapter 7 will discuss the problems of installation on

VAX/VMS. Chapter 8 will describe the actual capabilities of

TOOLPACK project. Chapter 9 will compare the needs, goals,

and capabilities described in the preceding chapters.
26-.

-_-

.-

_ % % *N." % .% ".' ." -" -. " ." . .% - - • % % % .% % " .% % %_%._% -".A ' '



4

.1.

S% %"

USER'S

VIEW

-6

,--. -..:'.

".. ~-.,. .

-. '.. C ABIL.,I-TY
'GOAL

, ..

Figure 3. 1 The Comparison Aspects.

27

V, ,".-'-

,'- • -4



-

IV. GOALS FOR TOOLPACK

From the workshop of the TOOLPACK project team came the

following outline of the capabilities that TOOLPACK could

provide to Fortran programmers [Ref. 1: pp. 5-6]: P I

1) A structured Fortran language which enhances stan-
dard Fortran with modern control and data struc-
tures. Such a language can contribute sjbstantially
to portability by permittinq the use of "environment .-
parameters (Such as the host machine's precision
and overflow limit) and by permitting the generation
of both single-precision and double-precision
Fortran from the same version of the program.

2) Fortran program template processors which facilitate
the production of Fortran preprocessors for problem
statement languages.

3) Static data-flow analysis. A tool based on DAVE
[Ref. 61 can detect such data-flow anomalies as
variables that are assigned values but never refer-
enced, variables that are referenced before being
defined, and variables whose values may depend on
whether the values of local variables are retained
between subroutine calls. The static analysis capa-
bility could include a way of testing executability
of paths in numerical programs.

4) Instrumention of Fortran programs with code to
monitor execution characteristics.

5) Formatting of Fortran text. ,c...,

6) Precision type conversion (double to single and
single to double), for application to existing
programs.

7) Conversion of standard Fortran to structured Fortran
with automatic selection of appropriate control
structures.

8) A general-purpose source to source transformation
system in the spirit of TAMPR [Ref. 5: pp. 542-546].

9) A text editor with built-in knowledge of Fortran
syntax.

Besides recuiring integration of the above capabilities,
the pack tradition demands integration of the software
that supplies the capabilities. For that reason, the
highest-level tools should rest on :

10) A common base of flexible components, including
lexical analyzers,parsers,table managers,and report
generators.

28

• ". "- "'''. ". '. " " " %' ."° "."'. '" ' "'.'" 2"*" .' ." " ° . . ' ' % '-'" "' ." -'"J" " -' '.•"Z ,' .'-,-' ".-' " ." % ',' " ° -a



7. 7. 7.

A summary statement of the goals is continued in
[Ref. 19: p. 85]:

0 The first is to provide a suite of tools to aid the
Fortran proqrammer in the production and maintenance of
medium-sized mathematical software projects.

* The second is to investigate the development of exten-
sible programming support environments built around
integra ed tool suites.

The TOOLPACK architectural design document of 1982

[Ref. 7: p. 31 contains a list of objectives for the

project. Ordinarily one would not expect any additional

goals to be included in such a document. Portability (see

5, below) was elevated from a factor in the original project

to a full status as a goal. As we shall see in the discus-
sion, this decision to make portability an explicit goal has

had a major impact on the design of TOOLPACK and on the

utility of TOOLPACK:

1) The mathematical software whose production, testing,
transportation and analysis will be supported b
TOOLPACK is to be written in a dialect oy
Fortran-77. This dialect is to be carefully chosen
to span the needs of as broad and numerous a user
community as is practical.

2) TOOLPAC is to provide cost effective support for
the production by up to 3 programmers of programs

9. whose length is u to 5000 lines of source text. It
may be less effecive in supporting larger projects.

3) TOOLPACK is to provide cost effective support for
the analysis and transporting of programs whose
length is up to 10,000 lines o source text. It may
be less effective in supporting larger projects.

4) TOOLPACK is to support users working in either batch
or interactive mode, but may better support interac-
tive use.

5) TOOLPACK is to be highly portable, making onl weak
assumptions about its operating environment. It will
be designed, however, to make effective use of large
amounts of primary and secondary memory, whenever
these resources can be made available.

,-.'

29

2z
.i ' ' '£'.'.g . . b . # ., . .,. '..' -€ € -- '. . - 'k'- - .

' . . . . - -
. - . - ' '. .



%"%

*..\ %"

V. MATHEMATICAL SOFTWARE CARA PROGRAMMERS.
AND PROGRAMMING EVIRNS,

This chapter discusses the current state and foreseeable

evolutions in software development for scientific, mathemat-

ical, and engineering applications. In evaluating software

support it is critical to identify the target user group and
to characterize their background, jobs, work conditions and

attitudes. Consideration of the factors that are likely and

unlikely to change in the foreseeable future will make it

possible to identify the feasible opportunities to improve

software development for mathematical software.

It is widely thought that there will be a steady growth

in the size and complexity of mathematical software. This

growth will present new problems and with them new opportu-

nities to improve programmer productivity.

A. DEFINITIONS

The central focus of software for scientific, mathemat-

ical, and engineering applications is numerical computation.

We want to define numerical computation rather precisely so

as to distinguish it from business data processing, symbolic
processing (such as compilers), and general utilities (such

as file manipulation systems or job schedulers) (Ref. 8: p.

6871:

Numerical computation involves real numbers with proce-
dures at a mathematical level of trigonometry, college
algebra, linear algebra or higher.

Some people use a somewhat narrower definition which

restricts the term to computation in the physical sciences

and a few people even think of numerical computation as

research and development computation (as opposed to produc-

tion) in science.

30

-. -.



% -L' 31 j.J '., -'JS' -)VF I .L.' J Y". ''P'uF. T~ ; r P'J Y _
,- '. .,,- - '. . ,,- ) .-, .-- *- - , . . *.,

p.' -j

-7 ,7 : .

Another definition has been suggested by Wayne R. Cowell

[Ref. 4: p. 371:

Since about 1970, the term 'mathematical software' has
been understood to mean computer programs that perform
the basic mathematical computations of science and engi-
neering. Someone characterizes the effort to roduce
mathematical software as the building of bridges between
the numerical analysts who devise algorithms and the
computer users who need efficient, reliable implementa-
tions of those algorithms.

In what follows we use the term "mathematical software"

to refer to software for scientific, mathematical, and engi-

neering applications and "programmer" for those people that

write this type of software.

B. PROGRAMERS

Mathematical software is primarily written by people

with little or no formal training in computer science or

computer architecture. These people have training in

science, engineering or mathematics and call themselves

physicists, engineers, etc, rather than the less prestigious

"programmer". Although many of them spend the majority of

their time doing programming, they regard the computer and

programming to be a tool that they use in the work in their

basic field. Throughout their careers these people will

retain their primary allegiance to the basic field of

science, mathematics, engineering that they were trained in.

There are relatively few computer scientists doing this

kind of work because extensive training and experience in

the area of application is required. In general, it is

easier to teach scientists, engineers and mathematicians

programming than to teach computer scientists the basics of

an area of application. There is a group of numerical

analysts and computer scientists whose major interest is in

mathematical software. Their contribution has been signifi-

cant and influential but they are and will remain a tiny

minority of the people developing mathematical software.

34



Our characterization of the majority of programmers who

work on mathematical software is that they have a mastery of

the basic aspects of Fortran, a sophisticated view of algo-

rithms and performance analysis for programs in their domain

of interest, and a knowledge of structured programming. But

they are not aware of basic concepts in algorithms to do

symbol manipulation, language translation, and compiler Y.

theory nor are they aware of contemporary software develop-

ment methodologies. For example, the concept, design, and

coding of a program that has a computer program as it input

data is beyond scope of their knowledge.

Since these programmers view computers and programming

as a tool to do their work, they are very reluctant to learn

new computer science ideas, concepts, algorithms, and tech-

niques unless they are absolutely convinced that immediate

and significant benefits will follow. Although they are

very interested in innovative topics in their basic field,

they are very conservative in their approach to new program-

ming topics. Also their lack of basic training in contempo-

rary computer science makes it difficult for them to learn

new topics by reading the computer science literature.

The ignorance of computer science of most people that -S.-

write mathematical software is equaled by the ignorance of

most computer scientists about numerical computation. Many

sophisticated scientists produce naive software just as many

sophisticated computer scientists produce naive science.

Another important fact is that most mathematical soft-

ware is written by a single programmer (or a small team).

Thus there has been little pressure for program standardiza-

tion. Also most mathematical software is maintained by the

person who wrote it, so there is no compelling reason to

develop documentation standards.

Most programmers in this area spend their entire profes-

sional career working in a single area of application. They

32

,,-.-

". .' .-"-"-"'' .,""".. ,S" -: ' ., -1, .% ,,,.% -,.', , {.,: ..,- -. ' • -.-.. -.. .,-.-...-...• - ',-.- .,,.-.-.--- . . ..,' -



therefore have little opportunity to see software developed

in other areas. This limited view of software together with

an absence of a literature to present mathematical software

has lead to their limited view of software development.

C. LANGUAGE

The most obvious feature of scientific programs is the

language in which they are written an overwhelming

majority are written in Fortran. Some competition has come

from PL/I and Pascal, the latter being popular in some

circles especially for the implementation of prototypes,
"iquick and dirty" versions, etc. ; both, however, remain

marginal.

Many sites have done some experiments with Pascal in
order to assess the fashionable language, but few have used

it on actual projects, since most scientific programmers who

have tried it deeply resent the lack of features they

consider essential. Minor criticisms are of the absence of

exponentiation, separate compilation and the inefficiency of

run time checking. A major impediment has been the strong

typing of arrays that includes their dimension this has

made it impossible to construct general purpose procedures

to do array manipulations. Although the ISO standard now

allows a remedy, it is still not widely available in Pascal

compilers.

So Fortran is still king. It should be noted, however,
1P

that the world is not so simple as it used to be Fortran

means different things to different people. The Fortran 77

standard has not completely taken over; it many cases, what

is available is still either a compiler based on the 66

standard, usually complemented by machine-dependent exten-

sions, or some hybrid between the 66 and 77 versions. At

the same time, some manufacturers are taking (high-risk)
"9 bets on the next standard being concocted by ANSI, referred

to as Fortran 8X.

33

9.. 3 .'"[

-.. f:........ . .,..,



When talking about Fortran with respect to mathematical

software, it is impossible not to mention an apparent

paradox: in spite of its almost undisputed position as a

vehicle for writing numerical software and its pretentions

to portability, Fortran does not as yet offer any tool for

controlling the numerical accuracy of programs in a portable

fashion.

D. APPLICATION DOMAIN AND NEED FOR EFFICIENCY

The application domains of mathematical software are

matrix calculations, linear systems analysis, and simulation

of given engineering conditions in narrow applications. The

most complicated application domains are control systems of

nuclear power plants. These kind of applications need high

reliability. They also need high quality (i.e., optimiza-

tion) compilers.

There are two principle sources of the problems in the .-

application of mathematical software: mathematical models of

the physical world and the optimization of models of the

organization world. The scope and range of the sources and -

the associated software is illustrated by the following list

[Ref. 8: pp. 688-689]:

1) Simulation of the effects of multiple explosions.
The software is a very complex program o perhaps
20,000 Fortran statements. t is specially tailored
to this problem and may have taken several years to
implement. The program reguires all the memory and
many hours of time on the largest and fastest
computers.

2) 0ptimization of feed mixtures for a chicken farmer.
This is standard software of modest length (500-2000
statements) even with an interface for a naive user.
It might take substantial time to execute on a small
computer (for example, mini-computer and personal *.'-"

computer).

3) Analysis of the structural vibration of vehicle.
The software is similar to that of example 1. More
computer time and memory would be used by this
approach.

4) Simple linear regression on demographic data. This ..- "
is standard software, but classical algorithms are
neither reliable nor robust. Modern algorithms are
short C200-400 statements) and execute quickly
except for exceptionally large data sets.

34

- -



5) Optimization of design parameters of a gyrosco e. A
mathematical model of a complex physical system is
required and then optimization algorithms are
applied. Determination of the gyroscope performance
for a single set of parameters might involve the
solution of a system of partial differential equa-
tions. Considerable human interaction is probably
used to avoid astronomical computer costs and yet
achieve some reasonable progress toward the optimum.

6) Calculation of the capacity of the wing tank of a
jet liner. This is a simple problem except for the
complex geometry of the wing tank. Once the wing
tank is broken into simple pieces (probably by a
person) then standard algorithins are reliable, short
and efficient. The automatic processing of the
complex shape requires much more sophisticated soft-
ware of moderate size (perhaps 2000 statements), but
still gives a short calculation.

The demand for efficient compiled code has lead manufac-

turers to produce sophisticated optimized compilers. These

compilers are expensive to build and maintain and have

achieved some of their efficiency by developing manufacturer

unique extensions to Fortran that exploit unique character-

istics of the hardware.

The demand for efficiency has lead to a reliance on high

quality compilers for Fortran with extensions. This has in

turn lead to major portability problems with Fortran.

E. PROGRAMS
1. Size

Scientific programs vary considerably in size. A

typical range is between 2,000 and 50,000 source lines

(whether or not one counts comments usually has a marginal

influence on the evaluation). There are bigger programs, but

they are not so common; some packages reach 300,000 lines or

more, but one seldom hears about sizes comparable to what is

often quoted about e. g., telephone exchange software

(500,000 to million or more). Thus much mathematical soft-

ware can be characterized as "medium-size".

There are many signs, however, that these figures

may growing steady. The pressures toward larger programs

35

V

po%

.....................................................................................



include more extensive computations, more "user friendly

interfaces", more error checking of input data and results,

and more extensive reports and high quality display of

results. This tendency is likely to bring about much

concern regarding the scaling up of the methods used for

program writing and project management.

In other areas of computer science the growth in thei•
size of programs has lead to new problems; among these are

the problems associated with having more people involved in

the development and maintenance of the programs. Also the

development of programs for use by many people at many

different locations presents new difficulties with training,

documentation and maintenance.

2. Contents

We outline below some of the characteristics of

mathematical and engineering software as we perceive them

and as they distinguish this type of software from others

such as business software (accounting, transaction

processing and the like), real-time software (command/

control etc. ), systems software (compilers, operating

systems, teleprocessing etc. ), or office information

systems. These characteristics relate to the form and

contents of the programs and to the way they are produced

and used.

There is still a widely held view that mathematical

programs are essentially computation-oriented. In our

experience, this is inaccurate. Of course, most mathemat-

ical programs include some non-trivial arithmetic computa-

tion. If, however, one looks at the actual code, one

frequently finds out that the part which actually performs

numerical computation is relatively small in size (if not in

execution time), the bulk of the program text being

concerned with manipulation of data structures, storage

management, input and output, pre- and post-processing,

36

.%.



error identification and exception handling, etc. In a

large part, mathematical programs are data manipulation

programs. In most cases, this part is growing much faster

than the purely numerical one, which is often relatively

stabilized; many developments have to do with improvements

in the user interfaces, inclusion of interactive facilities,

graphical input and output, uses of data base managements

system, etc.

This aspect of mathematical programs should be

understood by those who design new machine architectures,

programming languages, software tools or methods aimed at

this area.

3. Use of Extensions

Most programmers are aware of the non-standard

Fortran extensions on their computers and recognize that

their use restricts portability of programs. Despite this,

most programmers feel that the use of non-standard features

is necessary to achieve the maximum run time efficiency.

4. Proaramming Style

Mathematical software does not in general have a

consistent program style. There is not any standard or

commonly used programming style in mathematical software,

most programmers have developed a unique approach that is

not consistent with any contemporary approaches to software

development (for example, top down design, information

hiding, stepwise refinement). In addition, most programs do

not display any consistent approach to program organization.

F. DEVELOPMENT ENVIRONMENT

I. The Proaram Library Concept

The idea of building a library of modules that could

be reused in other programs was an early concept in Fortran

software development. It is still very important. This

concept has been surprisingly difficu.t to bring to fruition

in the same sense as a library of books. That is to say,

37

.- -,%*.°,"



widely available and good quality libraries for basic mathe-

matical procedures did not become available until the 1970's ./.

and even now most computer- users lack access to a good

library of programs for mathematical software. This is in

spite of expensive efforts by IBM and other computer

manufacturers.

The author would like to classify mathematical soft-

ware libraries into three types

.1) Lpw level (utli jj f inctio library
The libraries of this type are basic mathematics, trigome-

trical functions and are widely used in mathematical

programming. The illustrations of this type library are SQRT

(square root), SIN, COS, and EXP, etc.

2) Middle level library,
The libraries of this type do zimple mathematical, statis-

tical, and graphical functions. The algorithms of

programs are simple and easy to understand. Most libraries

are used independently by a single user and do not support

an integrated scheme. Most users could write and modify

these programs. The illustrations of this type are IMSL

(International Mathematical and Statical Libraries, Houston,

Texas) and NAG (Numerical Algorithms Group, Oxford,

England), etc.

3) High level library.

The libraries of this type are large specialized application

packages which provide integrated algorithm schemes. The

vast majority of the users of these packages understand the

action of the algorithms but do not know the coding details.

The examples of this type are LINPACK, EISPACK (a systema-

tized collection of programs for eigenvalue problems), and

NASTRAN (a structural engineering package>, etc.

The library concept is based on the fact that many

problems are of a somewhat standard nature and occur in many

different contexts. This is especially true of numerical

38

- -. *p - .~ j. ~~j. ~ ~~ ~ - 2.§,'.o..,°- -'



widely available and good quality libraries for basic mathe-

matical procedures did not become available until the 1970's

and even now most computer users lack access to a good

library of programs for mathematical software. This is in

spite of expensive efforts by IBM and other computer

manufacturers.

The author would like to classify mathematical soft-

ware libraries into three types

iLow level (d f) librar

The libraries of this type are basic mathematics, trigome-

trical functions and are widely used in mathematical

programming. The illustrations of this type library are SQRT

(square root), SIN, COS, and EXP, etc.
2Middle level library.",.'

The libraries of this type do simple mathematical, statis-

tical, and graphical functions. The algorithms of the

programs are simple and easy to understand. Most libraries

are used independently by a single user and do not support

an integrated scheme. Most users could write and modify

these programs. The illustrations of this type are IMSL .

(International Mathematical and Statical Libraries, Houston,

Texas) and NAG (Numerical Algorithms Group, Oxford,

England), etc.
3-) High level l . 'r"-

The libraries of this type are large specialized application

packages which provide integrated algorithm schemes. The

vast majority of the users of these packages understand the

action of the algorithms but do not know the coding deta ils.

The examples of this type are LINPACK, EISPACK (a systema-

tized collection of programs for eigenvalue problems), and '

NASTRAN (a structural engineering package), etc.

The library concept is based on the fact that many

problems are of a somewhat standard nature and occur in many

different contexts. This is especially true of numerical

38



computation because scientists and engineers use the

language of mathematics in their analysis.

The methods one uses seem to be independent of the

particular computer and thus expressible in some machine-

independent Fortran subset. Fortran, Algol and their

S.% descendents have made it possible to attempt to develop the

science, art and body of numerical computation software.

Even with these advances, the significant differences among

compilers has hindered progress.

2. Tools

The use of programming tools, beyond such standard

ones as editors and compilers, is fairly limited in many

installations. It is remarkable to see, for example, how

often the machine-format dump still plays the role of the

basic debugging aid. Here again, the discrepancy in levels
of abstraction between the sophistication of the applica-

tions and the people who conceive them on the one hand,

and the characteristics of the underlying software, on the

other hand, are striking. Also, one can again notice the

negative effect of the language although Fortran is much

more primitive by its concepts than, say, Pascal or Lisp, -..-

it is often less amenable to language dependent tools such %

as syntax-directed editors, symbolic debuggers etc. because

of its baroque features, strange format and irregular

structure.

Mathematical software has also been the prime target

for other successful tools: Fortran static (and, to a lesser

extent, dynamic) analyzers. Again, these tools are unde- -'

rused; it is clear, however, that they can provide a host of

services which, although conceptually limited, are extremely

useful in connection with the development, acquisition,

debugging and documentation of mathematical software.

Although it is true that some of the checks

performed by Fortran static analyzers (for example, type

39
0'- -



checking) are only needed because of the language's defi-

ciencies, this is only part of the picture; some of the

ideas could be profitably adapted to more elaborate

languages, which are still lagging behind Fortran with

respect to availability of such tools.

G. PORTABILITY

While everyone recognizes the potential savings from

distributing good software, it has been hard to achieve even

when good, usable software is written. The dependency of

mathematical software on machine word length as well as the

eccentricity of compilers and operating systems pose formi-

dable barriers to the dissemination of quality software.

It has been shown that portability and top efficiency

cannot be achieved simultaneously in a high level language

like Fortran because of compiler variations. A 100 % loss in
. efficiency may be an acceptable price to pay for portability

in some instances, but there are even more severe problems

with error handling, precision changes (double precision to

single precision or vice versa), and arithmetic unit

behavior. These difficulties should be isolated and methods

found to overcome them in an automated system.

One method to obtain program portability is to define a

standard widely accepted language and then write preproces-

sors that translate programs written in it to a language for
which a good compiler exists. The most notable such effort -'--
in mathematical software is the RATFOR (Rational Fortran)

language [Ref. 9: pp. 285-3181 that extends Fortran and is

transformed into Fortran. There have been several problems

with this approach

1) The preprocessors are somewhat difficult to write and
they also must be modified to keep current with the
Fortran on the target machine.

" 2) The resulting Fortran is very hard to read and thus it
is difficult for the programmer to modify or optimize .
the Fortran directly.

3) Any error messages are reported in terms of the
Fortran program rather than the RATFOR program.

40

d''%1



Another problem for portability is the spread of small

machines such as micro-computers (personal computers) and

mini-computers. These machines are so numerous that it is

not possible nor economical to do a careful job on the math-

ematical software (which may be permanently implemented as

micro-code).

The manufactures of such machines are frequently unaware

of quality software principles and portability software for

mathematical software. The result has been numerous

instances of inadequate algorithms-both in the hardware and

in manufacturer supplied libraries and systems (for example,

the Fortran built-in functions).

H. HUMAN ASPECTS AND PROGRAM TECHNOLOGY
Everyone agrees that human engineering of software is

important, but so few people do anything about it. There

have been instances of mathematical software that was widely

used because they had good human engineering even though the

results computed were unreliable. •These and other experi-

ences have convinced many (but far from most) developers of

numerical software that the human engineering (user conven-

ience) aspects are critical. This is, in itself is a mile-

stone; unfortunately there have been few advances in how to

do human engineering. It still seems to take a lot of hard,

patient work.

Professionals in mathematical software have always had

their favorite methods for various kinds of problems (there

is not a general methodology for mathematical programming).

Occasional surveys show that there is no consensus among the

experts as to which methods are best. Even worse, for many

years, most people did not distinguish between a somewhat

vague method and a computer program implementation of the . s

method. Now people realize that the implementation (soft-

ware) is as critical as the method, as there can be (and

have been) terribly poor implementations of good methods.

41

io. .



There are two main variables here [Ref. 8: p. 6881:

different implementations of the same method and different

methods for the same problem. It is not at all easy to

design frameworks in which meaningful comparisons can be

made. However, in the late 1960's such comparisons were V..
started for ordinary differential equation software and now

the framework for this particular area is well defined.

Since then there have been significant accomplishments in

evaluating software for numerical integration, special func-

tions, linear algebra and polynomial root finding.

Finally, there is a notable lack in the use of "program

proof methods" for software for mathematical software. Some

reasons for this are:

" it is difficult to incorporate the uncertainties of
round-off into proofs.

" the software tends to be too long for current proof
methods

* most numerical computation software has parts whose -
performance cannot be specified in terms of input- ".-
output relationships

.9%

.4...

,.'-.'.

-MN

,42

• '.'

S4

o.. .. .. .. 4



VI. CONFIGURATION OF TOOLPACK

A. THE TOOLPACK TOOL INTEGRATION CONCEPT.

The TOOLPACK tool integration concept is centered around

the notion that software tools must be focussed on

supporting the creation and deep understanding of a large

and complex mass of information-namely the software under

development. It seems that software workers often attempt to

view their jobs in this way, but that they are most often -- -

thwarted in their attempts to exploit this view by system

software.

Thus the TOOLPACK project is attempting to create a

Portable Software System (PSS) which can be profitably and

effectively viewed and operated as a system for the manipu-

lation and management of the large, complex and multifaceted

object which is the software program under development.

This section will present a necessarily brief overview of

the integration software which was developed for the

TOOLPACK project. The entire system of tools and the encom-

passing integration software has been named the Integrated

System of Tools (IST).

B. THE FILE SYSTEM.

As above indicated, the central focus of the TOOLPACK

command language is the creation, accessing and maintenance

of the data repository whose aim is the faithful and suppor-

tive represention of all the data which the user needs in

order to perform needed software work. This represention

seems to be effectively achievable by portraying the soft-

ware are a structured, coordinated set of views and '

versions.

In TOOLPACK these various views and versions are all

stored as files. Thus the heart of TOOLPACK is a file -

434

434

.1 .°

J ° °

.......................................................... -.



o.

system. This file system actually consists of two parts

the host filestore (HFS) and the portable filestore (PFS)

[Ref. 14: p. 5].

HFS files are simply formatted files in the host system .. ',

filestore. They are always accessible to host system utili-

ties. The virtual machine makes no assumptions about an HFS

directory structure and the only assumption about the names

of HFS files is that they may not exceed maxpath-1 charac-

ters, which maxpath is a virtual machine constant set by the

installer. To identify an HFS file, the user adds a one-

character prefix (usually '#' but installation-dependent) to

its name. This "host file-id" character is stripped off the

name before it is used.

PFS files reside in a tree structured directory system

similar to that provided by VMS system. A directory in the

tree structure may contain files or other directories.

Conceptually, the directories may be nested to any path, but

there are practical limitations, such as the maximum length

of name. PFS files may not be directly accessible to stan-

dard host system utilities.

In addition to these disk files there are four precon-

nected files available to tools. These files are available

in all operating regimes. These files and their symbolic

names are as follows [Ref. 14: p. 6]:

1) The standard input file ('stdin'), normally associated
with the user s keyboard.

2) The standard outpu file ('stdout'), normally associ-
ated with the user s terminal.

3) The standard error reporting channel ('stderr'). The
associated of this channel is host dependent but is
often the user's terminal.

4) The standard list channel ('stdlst'). The association
of this channel is host dependent for connection to a
spooled system printer though it may be connected to
a fixed file that can be printed by t e user.

Almost all files within the HFS and PFS are formatted

sequentiai., but formatted direct access file capability is

provided.

4.. 44

4..4

- --4
,' ...,... -. ...-•. . --. .... .. ..: . ... ...-.. . . . . •. . . .. .-.... . .. . ...... ......



7...--.

C. THE VIRTUAL MACHINE (TVM) OF TOOLPACK

To provide the capabilities of the TOOLPACK tools and

command interpreters on as wide a range of machines as

possible, a definition of the TVM was produced to which all

* TOOLPACK programs comply. The TVM includes definitions of
the character set, directly structured and minimum machine

capabilities that must be provided on the host computer L.

before TOOLPACK programs can be used.

The TVM capabilities are actually accessed by the tools

via the Tool Interface to the Environment (TIE) library. In

order to make the capabilities of the TVM available, it is

necessary to have an implementation of the TIE library on

the host machine. A portable version of the TIE library,

written in Fortran-77, is provided in the TOOLPACK software

suite to allow as many users as possible to at least try out

TOOLPACK capabilities.

It is probable that a single redesign of the portability
.base will be undertaken in the light of experiences
gained as a result of the production, distribution and
use of the first release. -If this does happen, great
care will be taken to provide a support mechanism for
all existing tools, with a compatible upgrade path. Any
new-design would be aimed at producing a smaller more
appropriate and more easily implementable core iibrary
of routines for the TIE [Rey. 19: p. 911.

The main features of the TVM are as follows

1) A stream-based input/output system for files and
preconnected units.

2) A fixed internal character set and variable-length
string handling.

3) A tree based directory structure and defined file
naming convention in a Portable Filestore (PFS), --
normally separate from the Host Filestore (HFS).

4) A defined process-scheduling and argument-passing
capability.

5) Extensible capabilities by the use of supplementary
libraries.

By splitting the TIE library into several sections it

has been possible to allow greater environmental flexibility

45
.o- ..-



... .. ,,,
for the use of tools. The split is shown in Figure 6. 1, . -.
which shows that there are three sublibraries to the TIE;

common, input/output, and flow-of-control. -

The common sublibrary contains general-purpose routines

to convert character types, manipulate strings and recover ..

the date and time. There is only ever one version of this

library in a TIE implementation.

The input/output sublibrary is concerned with the provi-

sion of the stream based input/output routines and the
directory handling capabilities of the PFS. There may be two

separate implementations of this sublibrary, one of which

provides the full capabilities of the HFS and PFS, as

defined for the TVM, and the other which maps all input/

output and file access to host files and ignores directory

handling routines. The two versions of the sublibrary

contain the same routines with the same apparent (to the

tool) functionality so no code changes are required to use
either version.

The flow-of-control sublibrary is concerned with the

initialization and termination of TOOLPACK tools, process

scheduling and argument passage. There may also be two

versions of this sublibrary, one which allows process sched-

uling and the other which does not.

The provision of multiple versions for some of the

sublibraries allows for a variety of levels of implementa-
tion of the TIE and lets the tools be used in a variety of

environments without modifications to the source code. This
flexibility can be useful during the TIE implementation ,.

phase, during tool development and for those users who,

while wanting access to the capabilities of TOOLPACK tools,

are not interested in the provided command interpreters and

PFS. The possible environments available are as follows

[Ref. 13: pp. 3-4].

1) Embedded This is the full environment defined for *

the TVM. Both the PFS and HFS are available and tools
may be scheduled from TOOLPACK command interpreters.

46 .



'j~~~~~~0 17~ WJ -). 7' 47. 17 7 *WV*W'F~, 7.

... % •

TIE Routine

Definitions TOOLPACK Virtual

Flo'w off 3u plimemnt 7 2-"

5,...'

Libray Lirar b r&-r optiontl)

Bmboddi d

d."

Portable"

Host Machine and Operating System

Figure 6. 1 Sections of the TIE Library.

2) Stand-ato This environment still allows tools to
access bo~h .the PFS and the HFS but assumes that toolschedulingl s performed direct from the host operating
system. TOLPACK command interpreters will not be able
to schedule tools in this mode.

3) Stand-astride This environment provides the same
flow-of-control capabilities as the embedded mode but

47 t. .. :

%.

S• -..



access to the PFS is not possible; all I/0 operations
are mapped automatically to the HFS and directory...
management is not possibl1e.

4) Stand-alone In this mode, tool scheduling is
performed direct from the host operating system as in
stand-atop and the same file access restrict ions apply
as for stand-astride. (The installation of this thesisis stand-alone mode.),

The TVM definition can be extended in any area by the ,ie

*use of TIE Supplementary libraries. The current

Supplementary library includes access functions for token

streams and parse trees, extended string handling, pattern

matching and data structure handling. The access functions

provided allow easy access to, and manipulation of the lower

level representations of program units. These lower level
facilities greatly ease the production of custom Fortran

manipulation tools by users; a tool writer may freely manip-

* ulate a token stream knowing that it can be generated for

him and that the modified form can be easily returned to the

source text.

Before TOOLPACK tools or command interpreters can be

used it is necessary to have an implementation of the TIE

library available. The TIE implementation may be available

in the following ways:

1) The ortable TIE implementation may be installed on
the host.

2) A customized TIE implementation mriay be produced,
either completely new or a modification of the
portable version.

3) An available customized implementation may be used.

While it may seem that providing an implementation of

the TIE is a lot of work, it is likely to take less effort
than mounting a comparable suite of monolithic tools that do

not conform to a portability base.

%~

I..

48

1.I



- -~ -. 7. -771- 77 - -77-77- 77--71.

VII. INSTALLATION ON VAX/VMS

The installation of TOOLPACK is a very difficult task.

On the VAX/VMS 11/780 VMS system it took several months to

get the most basic "STAND-ALONE" mode up and running. The

documentation is voluminous, difficult to read and the

material is not presented in the same order as the steps

that are necessary for installation. Without additional help

that was found only after numerous phone calls around the

country, it is not possible.to successfully install the VAX
version. As noted in the documentation, the NAG office can

not (and other than providing user telephone numbers did

not) provide help with the installation. The help of Larry

Reed of the National Energy Software Center was pivotal in

getting the installation completed. The author is indebted

to him for the successful installation.

The expenditure of resources was quite large. The author

worked for several weeks reading the documents. It was then

determined that the task was beyond the capabilities of

-. someone who was not an experienced VAX systems programmer.

Andrea McDonald, a systems programmer on the staff of the

Computer Science Development, then worked on the installa-

tion on and off for 2 months. During this period all the

files were established, corrections posted, programs

compiled and libraries established. It later was found that

much of this work was unnecessary to set up the VAX/VMS

STAND-ALONE mode. Finally with several calls to Larry Reed

and the simultaneous help of Andrea McDonald and my thesis

advisor both working full time for two and one half weeks we

were able to get several of the basic tools working.

By the time the system was finally installed, a new

version of TOOLPACK had been released. It was decided to

start the installation completely from the beginning and

49

N .. N *. *. . *. . *.* N. -



install version 1.4. The VMS/TIE installation took e week

(60 hours plus) of full time work to establish the file

system, read in the files, post and document in the code all

the corrections for 1.2, 1.3 and 1.4, and establish the

libraries. An additional week was needed to post the correc-

tions in the individual tools, compile the tools, test the

tools and build VMS EXECS to execute the tools. This two

weeks of work was begun immediately after the first instal-

lation, so the full knowledges of that installation allowed

the second installation to be done in the minimum possible

time.

The author's advisor documented the second installation

so there would be a permanent record of the steps necessary

to install the VAX/VMS STAND-ALONE version of TOOLPACK. That

description is now in draft form; a decision on publishing

it as a technical report is awaiting TOOLPACK version 2. It

is likely that after modifications to accommbdate version 2

it will be published as a technical report. The present

draft is over 30 pages.

5,'

I-. "

50-,



V' 7.

VIII. CAPABILITIES OF SYSTEM AND TOOLS

A. GENERAL.

There are basically two major classes of methodologies:

Singlemodule testing, and multiple-module testing (or .

system testing). The goal of this section is to explain a

base line of understanding about the processes that apply in

typical quality assurance circumstances.

A way of determining how to work a testing methodology

is to examine the characteristics of various methods against

a backdrop of some typical situations. The four cases we can

employ for this purpose are:

1. Case a : A high-criticality single module.

2. Case b : A medium-sized, medium-criticality system.

3. Case c : A large, medium-criticality system.

4. Case d : A large, high-criticality system.

Case a is in a high-level language, it is may be 250 to

500 statements long, and it has a very complicated control

structure. It has many different things to do, and it must

be error free.

Case b is a set of about 25 modules that support an

on-line facility of some kind. If the software system fails,

there is no serious loss because there is an automated back
up system; however, it is expensive in terms of lost produc-

tion and associated waste. The system is written in a struc-

tured extension of Fortran and containes about 6,500

statements overall. The calling depth in the structure of
the system is between 4 and 7 - not complex and not flat.

Case c is a comprehensive system for control of a

facility, and it is 80 % in a high-level language like

Pascal, Fortran, or Ada and 20 % in an assembly language.
The total volume of code is in the range of 175,000 lines of

code. If this system fails, there is a substantial loss of

51

-... - .



value, but no lives would be lost, and the damage would not

normally be extensive and/or expensive to repair.

Case d is a geographically dispersed interactive control

system where human life is at stake-like an advanced air

traffic control system. The system approaches the limits of

current complexity in the sense that the latest methods are

employed in its design and implementation, perhaps 1,000,000

lines of code overall [Ref. 11: p. 376].

We would classify the TOOLPACK into multiple-module and

Case c (A large, medium-criticality system).

Another software system evaluation methodology is bench-

mark testing. Benchmark testing is the application of

synthetic programs to emulate the actual processing work

handled by a computer system. Benchmark programs permit the

submission of a mix of jobs that are representative of the

users' projected work load. They also demonstrate data

storage amounts and provide the opportunity to test specific

functions performed by the software system. Through this

technique, the limitations of the system become apparent wj

early in the acquisition process. Sometimes user organiza-
tions will insist that the results are attached to software

system specifications, formally stating that a specific

number of transactions can be processed in a given period of

time, the response to an inquiry will be within a stated

amount of time, and so forth.

Benchmarks can be run in virtually any type of system

environment, including batch and on-line job streams, and

with the users linked to the system directly or through

telecommunication methods. Common benchmarks are the speed

of the central processor, with typical programs executed in

a set of subprograms, as well as multiple streams of jobs in

a multiprogramming environment. The same benchmark run on

several different computers will make speed and performance

differences attributable to the central processor apparent.

52

S. .. ..... . . .



Benchmarks also may be centered around an expected

language mix for the programs that will be run, a mix of

different types of programs, and applications having widely

varying input and output volumes and requirements. The

response time for sending and receiving data from terminals

is an additional benchmark for the comparison of systems.

Sometimes, rather than running actual benchmark jobs on 4'

computer system, system simulators are used to determine

performance differences. In commercial systems simulators,

the workload of a system is defined in such terms as : how

many input and output operations there are, how many

instructions are utilized in a computation, and the order in

* which work is processed. The specifications are fed into a

- simulator that stores data about the characteristics of

particular equipment (such as instruction speed, channel

capacity, and read-write times). The simulator in turn

processes the data against the operating characteristics and

prepares a report of the expected results as if the actual

computer were used. Then the systems characteristics can be

changed to mimic another model of computer and a new set of

performance data produced for comparison. The time and

expense of running actual benchmark programs on a computer

is of concern to analysts and specification alike. Thus, the

use of commercial simulators is an attractive alternative

[Ref. 12: pp. 586-588].

B. EVALUATION AND OPERATIONS PROCEDURE UNDER VAX/VMS

Up to present, we have discussed the general principles

of evaluation techniques. I selected the evaluation method

benchmark testing for this thesis. As mentioned above, the

installation of TIECODE is not a Embedded regime, but it is

a STAND-ALONE environment.

Therefore, the STAND-ALONE regimes allows the tool

writer to make use of the TIE library without the need for

either the IST (Integrated System of Tools) command

53

,% .", .4 ]



* -.. . . . . . . . . ° ... . . . . .

* .-. ...I

interpreter (ISTCE) or the portable file system(PFS). In

this regime, all file I/O is directed to host files

regardless of the manner of the file access requested. Tools

operating in this regime are executed directly from the host

operating system, to which control is returned on completion ..

. [Ref. 13: pp. 3-5]. The appendix A of

TOOLPACK/1-Introductory Guide [Re'.. 14: pp. 1-10] has

examples for the Embedded regime, is not for the STAND-ALONE

regime. Therefore, the author followed the procedures of

Tutorial Examples of the TOOLPACK/l-Introductory Guide, but

some procedures do not work in the STAND-ALONE regime, as

will be pointed out in following sections. Some selected

TOOLS, for example ISTPL and ISTPT used the benchmark

testing technique (time comparison with different size

programs).

For the benchmark testing, the author produced the

programs which are a modifications of a Command program

under the VAX/VMS System (Version 4.2). This program is

attached in Appendix A. -4

The TOOLPACK Manual has the descriptions of the input

parameters and the output parameters which are the parame-
ters in each tool. But this kind of expression is not very

helpful to the users. Therefore, this thesis uses the D.F.D.

(Data Flow Diagrams) conventions which are more understand-

able, readable, and extensible than TOOLPACK's [Ref. 17: pp.

47-124]. .. ,-

Especially, the D.F.D. conventions are very useful to
Y.9

represent a lot of parameters which are combined for more
than two tools.

1 . ISTLX (Fortran-77 scanner).

a. Description P

ISTLX is a Fortran-77 scanner that converts

Fortran-77 source text to a token stream and detects and

reports lexical errors. The scanner has been mechanically

.4

...........................?-. .2.~- ........



generated from a specification of the Fortran-77 language

[Ref. 15: p. 1].

ISTLX reads Fortran-77 source text from the

source file. The resulting token stream is placed in the

token file and the comments are placed in the comments file.

Any errors discovered are reported to the error file and an
attempt is made to continue scanning by deleting or adding

tokens. During operation the scanner produces a list file

, which contains the input source text preceded by the token

number of the first token for each statement.

ISTLX is the first step in using each tool.

Therefore, if ISTLX produces an error file, then the user

should correct the source text programs which are

Fortran-77 source text.

There are a lot of users who are using the

WATFIV source program [Ref. 16: pp. 65-101] at Naval

Postgraduate School. The user must be careful with the

control structures of WATFIV programs which are not admitted

by TOOLPACK. Figure 8. 1 shows an example.

IF THEN DO IF THEN

r ELSE DO ELSE

END IF END IF

( WATFIV ) ( STANDARD

Figure 8.1 WATFIV control structure.

b. The Flow of ISTLX

Figure 8.2 shows the parameters using the D.F.D.

55

.._%4



List.fiLe
#SAMPLE LIS

S~#SAMPLE.ERR

#SAMPLE. TKN -..

comment. fiLe

#SAMPLE. CMT

Figure 8. 2 The Flows of ISTLX.
.-.-.

,., ~C. CPU Time Comparison -" .

The CPU Time comparison of different size

programs is shown in TABLE I.

TABLE I

CPU TIME COMPARISON OF ISTLX

(unit secs)
program size I 85 LOC 700 LOC I 1500 LOC

1 6.91 59.70 98.06
2 7.01 59.18 97.05
3 7.00 59.55 97.66

2. ISTYP (TOOLPACK Parsr) P

*a. Description

ISTYP parses a Fortran-77 program. It takes as

its input a token stream produced by ISTEJX (Fortran-77

56

u,.

a. Des rip io



Scanner) and produces a parse tree, symbol table and comment

index [Ref. 18: p. 3].

All error and warning messages produced by ISTYP

are written both to the standard error channel and the ,',%

symbol table file. When a tool which uses the symbol table

is executed, these warning and error messages are displayed ,' .

again. As many error conditions render at least part of the

symbol table or parse tree information invalid, it is impor-

tant that the user is aware of the possiblity that further

processing may be completly useless.

b. The Flows of ISTYP

To execute the ISTYP, the previous step which is

the running the ISTLX is required. Therefore, the users

would follow the Figure 8.3 (The Flows of ISTYP). The

command file which is to execute the ISTYP is Appendix B. I
c. The Problems Using The ISTYP in the VAX/VMS

System

In chapter 7, the author already mentioned the

problems associated with the installation of the TOOLPACK.

The version of the distributed TOOLPACK is TOOLPACK/2,

Version 1.4. But, this version stills need a lot of

corrections.

The TOOLPACK programs are composed of many

modules. Therefore, if we correct some modules then we have

tu correct the related modules. These kind of jobs are not

easy. If the installer is not careful in identifying and

applying all the relevant corrections, then errors arise t.

that are very difficult to trace. The difficulties in

installing and maintaining the programs seem all the more

ironic since the aims of the TOOLPACK project were to

provide a suite of tools to aid the Fortran-77 programmer in

the production and maintenance of medium sized mathematical elX

software projects [Ref. 19: p. 85].

One example of the problems encountered was the

attempt by the author to apply TOOLPACK to a 1500 line

57

,--'-...* --.. *.-.-"*-'*.,.

4**~* ***** .. . . . . . . . .



L- A
1% A

#SAMPLE.LIS pasteefe

#SAMPLE.TRE

*SAMPLZ.CMT

e 7or *comment i.dex filIe

ASA

-4
Figure 8. 3 The Flow of ISTYP.

*Fortran 77 program. The program was executed by ISTLX

correctly, but it failed in ISTYP. The reason was that
"string..size" is defined to 7500 in the YPDEFS of ACCESS
FILES Directory (for example :define (string..size,7500)).

After the problem was found, the author changed

the definition statement from "define (string~size,7500)" to .%
"define (string..size,15000)". Then, the execution times of

the ISTYP jumped to over 1.5 hours, eventually this program

was terminated. Until the problem is corrected, the users

of the Naval Postgraduate School version must limit its use

to less than 1,000 lines of code.

58

7- . . * . - *



3. ISTPL (Polishina Tool) /ISTPO (Option File Editor)

a. Description .. '

ISTPL is a formater for programs written in

Fortran-77. It takes a token stream produced by ISTLX, and

produces a text file containing the formatted program. It is

controlled by an option string from an option file (if the ",- .

option file is not supplied then the program uses the

default settings), together with any command-line options.

The source program of Fortran-77 must be "lexically correct"

in the sense that it may be analyzed by ISTLX without

producing errors [Ref. 20: p. 3].

As ISTPL makes no use of the original source

file, it may be used as an "unscan" program which turns the

token stream into text. When ISTPL detects an error, it may

sometime be able to recover from it and continue processing

the user's program. In this case the error message will be
inserted into the output file as a comment beginning with

"C*PL*ERROR*" (see Appendix C).

There are two kind of flows to execute the

ISTPL. One is the simple execution with the default
settings. The time of the execution is faster than the
others.

The complex flow shows the more sophisticated

output possible with use of the option file. But the time

of execution is longer. The usage of the methods is depen-

dent on the users. The simple flow is shown by Figure 8.4

and the complex one is shown by Figure 8.5. The command
I-

files that are to execute the ISTPL are Appendix B.

b. Option File Specification

An option specification has the format

"Parameter = Value". The actual options available are

described in a later section. Options specified as ISTPL ' -f

parameters 5+ (command-line options) will override option

specifications from the option file. Because of the large

59
,".% J.



List fite

\~ ~~~o n. 't ,il- '

e ,-ror f i' L , iont f i Le " "'
#SAMPL. "OPT

#SAMPLB. . EX

Figure 8.4 The Flow of the ISTPL (Simple Method).

number of possible options for ISTPL, an option file editor

ISTPO is provided and is recommended for option file

creation and maintenance.

c. Caution of Usage of ISTPL (with complex method)

As mentioned above, the complex method of

running the ISTPL uses the ISTDS (a declaration standardizer

that rebuilds the declarative parts of Fortran-77 program

units according to a programmable template [Ref. 21: pp. :. *:,:

3-41. . ' .'

Therefore, some errors do not occur in the

Simple Method but in Complex Method. Sometimes, the authors "

of Fortran-77 programs do not define the names which are

External Subroutine Names (An example is shown by Appendix .-..

C). Nevertheless, these programs work correctly under the
given Fortran-77 Compiler [Ref. 22: pp. 1-41.

60

........................



- -

-.. %

Ila* file .4n ndex

taAWLBLu OSTLS. Co
4. *SA~#S5Ma 7h@1 C

54'3. 0 ~.eP?

.4 %

Figure 8.5 The Flow of the ISTPL (Complex Method).

But if the user wants to run these programs - -.
using ISTPL then the following errors are reported:

•C*PL*ERROR Unexpected statement type
SC*PL*ER2ROR Unexpected <TZEOS>--

• C*PL*ERROR Internal Error (GRIND1)-TZEOS confusion ,. "-
The reason was that ISTDS was confused whether ...

the name of the subprogram was defined or not in the main

program declaration part. When the user writes the function. .i
*subprograms, tool ISTPL doesn't report this kind of error '""

Mmessage. .
Fu .Therefore, if the users of ISTPL have this kind

of error, then they should correct the source program which
is the Fortran-77 program. .a d

4. 61

° . .

r t 
.t 

W t u w

; -,'-u p r g r m s "-o-'- - -.-.- "'% 2 -. )' " '--- "- 'd o"e-s-n ' : -"" ' t r ep o r th i "-i-d o f, ,-e r-r.- .o-r.. .- . ,-.- . .- . -- - . . .



.t .

d. ISTPO (Option File Editor)

The following are a summarization of the useful

contents for the users from ISTPO users' guide [Ref. 20: p.

12]:

1) Description : ISTPO is an editor for ISTPL option
files. It is menu-driven and has an inbuilt help
facility [Ref. 20: p. 121: The only parameter of the
ISTPO is the Name of the option file (e.g.,
SAMPLE. OPT).

2) The operation of ISTPO : When ISTPO is started it
will attempt to read the option file specified. if it "''.
can not do this (e. g because the file does not
exist) ISTPO assumes tiat a new file is being created
and all options are internally set to the ISTPL
defaults. Options are changed by giving the ISTPL
option specification as a command. Option names and
values may be abbreviated so long as they remain
unic ie, apart from token names which must be given in
fu 1.

3) Command Format : The ISTPO commands are : Exit, Help,
Menu, Next, Query, Quit, Read and Write. Commands ma,
be abbreviated so long as the abbreviation is not
ambiguous. Arguments to these commands should be on
the same line as the command itself, separated by a
space or spaces from the command name. Commands which
require arguments (rather than having optional ones)
will prompt for any missing arguments.

4) Command Descriptions.

The EXIT command writes out the option file as modified
and terminates ;STPO There are three forms of the HELP
command: HELP , cHELPnt and "HELP topic'. The first
form displays the current ISTPO menu. The second form
lists the topics on which help is available. The third
form displays information about the requested topic.

0 The MENU command moves to the specified ISTPO menu. If
no menu name is specified following this command, then
the current menu is redisplayed.

0The NEXT command advances to the ISTPO menu which-..
follows the current one.
The QUERY command toggles query mode, which is
initially off. In query mode, all parameter changes are
confirmed before being done.
The QUIT command terminates ISTPO without writing the
option file. This command is same VAX/VMS QUIT command
in the EDITOR mode.

* The READ command reads an option file. This will
completely replace the current state of the option
memory.

The WRITE command writes the option file but doesn't
terminate ISTPO. If a file name is specified after the
command, then that file becomes the option file being-"~ edi ted.

62

% N



- 5) Menus : There are 8 menues in ISTPO. These are DIR, ,,- ..
BASIC, COMMON UNCOMMONBLANK LINES, LINE BREAK,
SPACINGI and SPACING2. InitiallV the user is at menu
DIR, which consists of a list oy the other menus and
simple operating information. There are many options
for the ISTPO BASIC menu [Ref. 20: pp. 12-131.

The author selected some of them to demonstrate the results

which are shown in Appendix C. The followings are the

selected BASIC options

0 INDIF = 10 ; (Indentation within a block_IF)

• IOTHCO = .TRUE. ; (Insert CONTINUE statement before
previously labelled executable statement)

0 LMARGS = 7 ; (Left margin for statements)

0 MOVEF =.TRUE. ; (Move Format statement)

* RLBFMT =.TRUE. ; (Relabel Format statement)

9 SEQRQD = .TRUE. ; (Add sequence numbers) "..:v
- SEQINI = 0 ; (Initial sequence number)

0 SEQINC = 10 ; (Sequence number increment)

NOTES : If the user wants to execute the output

of ISTPL immediatly, then it is recommended that the user

does not use the option SEQEQD. The output using the SEQRQD

isn't accepted by the VAX/VMS Fortran-77 compiler.

e. Elapsed CPU Time Comparison

The execution times of the different size

programs are shown in TABLE II and TABLE III. To get the

results, the author used almost same procedures which are

listed in Appendix A.

4. ISTPT (Precision Transformer)

a. Description

ISTPT (Ref. 23: p. 31 will transform a
Fortran-77 program from REAL to DOUBLE PRECISION or vice

versa. The input program must have all names explicitly

typed for ISTPT to work correctly. The tool ISTDS [Ref. 21: ..

pp. 3-41 can perform this function.

6.163 .



TABLE II ."

CPU TIME COMPARISON (USING SIMPLE METHOD) OF ISTPL

(unit : secs)

program size 185 LOCI 700 LOC I 725 LOC

1 10.03 75.73 80.89
2 10.09 76.10 82.15
3 10.11 76.29 80.91

TABLE III

CPU TIME COMPARISON (USING COMPLEX METHOD) OF ISTPL

(unit : secs)

program size I 85 LOC I 700 LOC 725 LOC ..-

1 21.03 165.87 193.28
2 20.75 167.58 198.85
3 20.90 168.43 192.85

ISTPT takes as its input the parse tree, symbol

table and comment index produced by ISTYP [Ref. 18: pp.

3-141 and the comment file produced by ISTLX [Ref. 15: pp.

1-51 and produces a new token stream file. The new token

and comment stream produced by ISTPT can be converted to

Fortran source code using ISTPL [Ref. 20: pp. 3-181.

All warning and error message produced by ISTPT
while converting the user's program are also inserted into

the output token stream as comments. These begin with

"C*PT*WARNING*" and *C*PT*ERROR*" respectively.

64

J., J.



lip'

Any warning and error message produced by ISTYP

while parsing the program will be displayed on the standard

error channel (In the VAX/VMS system they could be displayed

on the screen of the terminals. Therefore, if the user

wants to keep the errors and warning messages, then use the

VAX/VMS special commands. This technique will be discussed

in a later section. ). They will not, however ,be inserted

into the output token stream as comments.

b. The Flows of The ISTPT

There are two kinds of flows to execute the

ISTPT. They were named the simple method .. i the complex ..

method. As mentioned above, the simple method doesn't use

the ISTDS (a declaration standardizer), hence the output of

using the simple method doesn't include action on the decla-

ration parts of the given source program.

But the complex method uses the ISTDS, the

output of using the complex method is more readable and more
understandable than the output which result from using the

simple method. The complex method takes more time than the

simple method (The time comparison charts are shown by TABLE

IV and TABLE V. ). The user must decide on the trade offs

between the quality of the solution and the execution time.

The outputs of using both methods are shown by Appendix D.

The flows of the ISTPT are shown by Figure 8.6 and Figure

8.7.

c. Transformation Details

This section lists the major details of the

transformation performed by ISTPT. ISTPT should always

produce correct output except when it detects an error, or

with complex arithmetic. Although ISTPT does not attempt to -.. ',

ensure that the transformation will be reversible, the only

difference will be where the code was originally of mixed

precision, or an unusal intrinsic function (such as MAX1)

was used.

65

'4% .



. .. -. NY

77 9"7, "'77-

List file prse tree

2.- T".LB °

Srefique8. e a Flow ofITT(ipeMtod)
1)ST IThe keyF wordL REA is chne tofo.OBLRCSO

OFsiFon an fif appropaJt D"wl e de oo

dee~.ed oP'fm th on wwstant . e
#SA~PLS oC X,

foroth E-frma descriptor, aston theisn

m)-Tesaey when conveihnge to/f DOUBLE PRECISIONITT
d esl ntatep toe transformi coomp expressions).

3) TeUVAENCEtatemenitoare checkedstoerme that thimeaning descitrTswl not change drn the trnsoraton i .

itr dos the anErora mesageisptroduced. in
4) r Comp The exeulo tes of tie different sarnize

p eroa es whown byAL TL V Panged TABISENV

doesea noto attent t to transforme coplex expressi rens -.

e T he e ndt oo thes cof th d s WA.

prgrm re E-fowna by cipo TABL trnsore andro TABL V....

D-oratdscipor hi wllnt hagete Ew6de

LLrm ofJe Efomt dsri*r;sthr s n



Lza~- #am 
..

low.u maa

#stuz.mTm W. TUN #am. cu

f". CUT #§X cenaw vm
#94. an #44 a"M f~

Figure 8.7 The Flows of ISTPT (Complex Method).

TABLE IV

CPU TIME COMPARISON (USING SIMPLE METHOD) OF ISTPT

(unit secs)

program size I85 LO0C I700 LOC 7 725 L=C

1.198 157.94 178.05
2 19.95 15.4178.02

3 19.78 159.36 I178.04

I6



TABLE V

CPU TIME COMPARISON (USING COMPLEX METHOD) OF ISTPT

(unit : secs)

program size 1 85 LOC I 700 LOC I 725 LOC

1 30. 77 252.36 305.30
2 31.14 252.59 305.28
3 31.06 254.01 305.23 '.,.a

5. ISTAL (Documentation Generation Aid)

a. Description

ISTAL may be used to create a number of reports

on the static and dynamic analysis of a program unit o-: set

of program units [Ref. 24: p. 31. The reports may be auto-

matically inserted, as requested, into a specified user

document. ISTAL uses information created by other tools,

notably ISTYP and ISTAN [Ref. 25: pp. 3-161.

The tool ISTAN creates static analysis informa-

tion and also instruments Fortran-77 to produce dynamic

information on program usage. Both the static and dynamic

information created can be processed by ISTAL.

b. The Useful Commands to Operate the ISTAL

There are 20 commands which are used to get the

results from ISTAL [Ref. 24: p. 9]. The commands are listed

in Appendix E. The author selected some of them to demon-

strate how to work the commands.

c. The Operation of ISTAL

Below these are several examples which are to

demonstrate the operation of the ISTAL [Ref. 24: pp. 10-211.

But the examples of the reference is the result of the

EMBEDDED regime [Ref. 13: pp. 3-41. As mentioned above, the

installation of the VAX/VMS system is the STAND-ALONE

'a- 68

'_ . .,

-a,. t



- -• ,*~ ~~~ ~ ~ , ' ~ .-. b 7,R~.p pJ j ~~~ - . ,mp .

regime. Therefore the operation procedures are a little

different. Especially, the file name convention is different

(see chapter 6).

The outputs of the ISTAL are displayed on the

terminals. To keep the outputs of the operation,VAX/VMS

commands are required. Figure 8.8 represents the commands.

SET HOST/LOG = RESULT. LIS CSVMS1 I
(If you issue the command, then the system will be

logged out. The user must log in again. After log

in, if you work anything, then all commands and

all outputs which are displayed on the screen

will be recorded at the list file RESULT. LIS.)

After finishing your jobs, type the following

commands.

$ LOGOUT
(This command returns control to the CSVMS1. )

$ PRINT RESULT. LIS

(This command prints your jobs.)

Figure 8.8 VAX/VMS commands

(to obtain the outputs of ISTAL).

The ISTAL requires the symbol table; to get the

symbol table, the tools ISTLX and ISTYP should be executed

first. The important thing is that the ISTAL operates under

the TOOLPACK command executor (ISTCE [Ref. 26: pp. 2-13] ).

Before invoking ISTAL, therefore, the user must invoke the

ISTCE. The summarized procedures are shown by Figure 8.9.

6. ISTAN (Execution Analyzer)

69

-A -.W

['"'".-""/ ."-"-"-"-",". -< <","[" " '" " "- "' -.- -h "-'--',".".."- "-"."-"-'-"< -.-. , --.. - -- < -" ' - -"<'._--



"'.'% .'

$ISTCE to invoke the command executor)
ce ISTCE prompt)
al 0,1 the inputs and outputs are standard

= YES i/o channel(terminal i/o))
al : (ISTAL prompt)
FOLDING = YES

al:VERBOSE = YES .<

CALLGRAPH = #SAMPLE. SYM (symbol table name)
(The output of CALLGRPH is Appendix E)

al : -
COMMON = #SAMPLE. SYM

(The output of COMMON is Appendix E)

al
TABLE = #SAMPLE. SYM
al :
SYMBOL = TEST (TEST is the name of Main program)

(The output of SYMBOL = TEST is Appendix E)

al
SYMBOL = STAND (STAND is the name of the subprogram)

(The output of SYMBOL = STAND is Appendix E)
al : PAWARNING = STAND

(The output of WARNING = STAND is Appendix E)

al
XREFERNCE

(The output of XREFERENCE is Appendix E)

al .
FULLXREFERENCE

(The output of FULLXREFERECE is Appendix E)

al
control Z (return to command executor)
< ISTAL Normal Termination >

ce

QT (return to VAX/VMS system)

< TIE Terminated >

Figure 8.9 ISTAL Operation Procedures.

a. Description

ISTAN [Ref. 25: p. 4] takes as its input a

Fortran-77 program in token stream from (as produced by --

ISTLX) and produces an instrumented Fortran source, a state-

ment summary file for input to ISTAL, an annotated token

stream and a summary report.

70

--4o



The annotated token stream lists the segment

numbers (a segment is a section of straight line code) used

in later reports. .\..

It is not necessary for the input to contain a

complete Fortran program. If only a few routines are to be

analyzed, they may be input to ISTAN and the instrumented

output combined with the rest of the program.

b. The Flows of ISTAN

The running of the ISTAN is quite complex. The

user must pay attention to the sequence of the execution

procedures. . , -

First of all, ISTAN requires the comment stream

and the token stream. Therefore, the running of the ISTLX is

required by ISTAN. After getting the token stream and the

comment stream, execute the ISTAN, then you will get the

instrumented source codes which is a Fortran-77 program and

many additional lines are added to get the user's output and

some additional information named SEGMENT EXECUTION ,>

FREQUENCIES (see Appendix F).

A third step is required to execute the ISTPL.

The results of this step is the polished output file which

is an Instrumented Fortran-77 program. Figure 8. 10 shows the

Data Flow Diagram of ISTAN.

c. The Useful Information of ISTAN

* The Instrumented Program : The instrumented program
produces as output a listing file and an optional
single-run data file. These are in addition to any
output normally produced by the non-instrumented
program.

" The Listing File : The file contains a formatted report
of the execution frequencies of each segment in the .

instrumented program and a list of all segments which
were not executed.

* Single-Run Data The single-run data file is written
by the instrumented program upon termination and
contains the segment execute frequencies for that run
in a form suitable for input to ISTAL (The single-run
data file is only produced if the option is specified
to ISTAN. ).

71

- .4°



21. fil -q -- - -"I.

4 - 'PLS 'S

A 

'C'.toe -. tkofl

aoCo'l.1APLTM'AM.=

ISTLX~4 PollJ* P

MA ITF
fieG - Sfl

C' ine~asSCAW proCUT

er o i e@ e M P l .f l

fo IA avre littl differen wih3h1gvn3pciiato

[Rf.14 p.3 a-161. Th athrelcdheoinsad

thereult ae llutrte byApeuix Fu. The3 sumarze

oprtinl rceuesae ite nFigure 8.10 The FlosgfurTA

* [Ref. 14:e pp. e8-161. The aurto selrecte, otons andr

* must compile and link the instrumented source program. The

following are needed

$ fortran SAMPLE. FTN

*$link SAMPLE.OBJ (or SAMPLE)

*$run SAI4PLE.EXE (or SAMPLE)

72



The output of the above execution is shown by Appendix F. I

recommend to use the ISTCE (Command Executor) for running

the ISTAN.

$ ISTCE to invoke the command executor)
ce ISTCE prompt)
AN to invoke the ISTAN)

Input token stream : #SAMPLE.TKN

Input comment stream : #SAMPLE.CMT

Output instrumented source code : #SAMPLE. FTN

Output statement summary : #SAMPLE. SUM

Output annotated token stream : #SAMPLE.ATKN

Output annotated comment stream : #SAMPLE.ACMT

Output summary file : #SAMPLE.SUMFL

Options : RUNDATA='SAMPLE'

<ISTAN Normal Termination>

ce
QT (return to VAX/VMS system)

<TIE :Terminated>

Figure 8.11 Operation Procedures of ISTAN (first step).

-.-

A.---

o- .5

73

% .



$ISTCE to invoke the command executor)
ce ISTCE promt)
PL to invoke he ISTPL (polish tool))
Input token stream : #SAMPLE. ATKN

(The token stream produced by ISTAN. ) ..

Input comment stream : #SAMPLE.ACMT
(The comment stream produced by ISTAN. )

Polish output : #SAMPLE.APOL
Option file : (none)

<ISTPL Normal Termination>
ce (return to the command executor)
AL 0,1 to invoke the ISTAL, terminal i/o)
al (ISTAL prompt)
VERBOSE = YES 'f,
al :
FOLDING = YES
al
ANNOTATED = #SAMPLE.APOL
al :
RUN = #SAMPLE. DAT

(This file produced by the ISTAN option.)

al-
SUMMARY = #SAMPLE. SUM
al
LISTING

(The output of the LISTING command is Appendix F)

al
SEGMENT =*

(The output of SEGMENT = ?* is Appendix F)

al
TOTALS = ?*

. (The output of TOTALS = ?* is Appendix F)

STATIC = TEST
(The output of STATIC = TEST is Appendix F)

al :
DYNAMIC = TEST

(The output of DYNAMIC = TEST is Appendix F)
al
control Z (return to the ISTCE)

<ISTAL Normal Termination>
ce
QT (return to the VAX/VMS system)

< TIE Terminated >

Figure 8.12 Operation Procedures of ISTAN (second step).

. . '. ,," .7

;" ~~~74"" 
- -'



IX. EVALUATIONU

A. COMPARE USER NEEDS TO TOOLPACK GOALS

The characteristics of mathematical software (defini-

tions, application domains, need for efficiency, development

environment, portability) and a description of programmers

of mathematical software were presented in chapter 5. One

way to compare the user needs with TOOLPACK goals is to

identify any discrepancies between the characteristics of

typical users of TOOLPACK and the assumptions that the

designers of TOOLPACK made about them.

The TOOLPACK system assumes that users have a working

knowledge of terms like "lexical analyzers" ,"parsers" ,

"table managers" and "report generators". As discussed in

chapter 5 the typical programmer (of mathematical software)

is not acquainted with these terms. The TOOLPACK documenta-

tion does not include definitions for these terms, tutorials

on them or even references into the computer science litera-

ture to learn about them. The typical programmer does not

have the background to easily access the literature on these

topics. It will be necessary for the TOOLPACK documentation

to close the gap between user needs and TOOLPACK goals by

providing expository materials on all the pertinent

contents.

In addition to specific concepts that are unknown to the

typical user, the documentation contains phases and jargon

from computer science that will be difficult for scientific

programmers. It is probably not possible to remove all the

technical terms from all the documentation, but the documen-

tation could be improved greatly by identifying two distinct 'q

readers:

1. typical users

2. software experts

75

j " ' .



Each separate document could be designated for the typical

user or for the expert (or perhaps installer). It would then

be necessary for the user documents to systematically either
remove or explain each technical term.

One specified TOOLPACK goal was to provide "a structured

Fortran language which enhances standard Fortran with modern

control and data structures". The need for these capabili-

ties is overshadowed by the need for code that can be easily

debugged, tested and maintained. Since the inclusion of a

production quality compiler is not a realistic goal, the

TOOLPACK goal could be accomplished only with a preprocessor

(like for example RATFOR). As discussed above, preprocessors

have serious drawbacks including the inability to relate

error messages to the source code. So although users do not

need a preprocessor, the goal of providing better control

and data structures than available in standard Fortran is

important. Some capability for an improved language areprovided by the non-standard extensions to Fortran that are

unique for each computer manufacturer. TOOLPACK does not

have a goal to support these computer unique Fortran exten-

sions- that help provide the modern features needed by

programmers.

The most serious gap between user needs and TOOLPACK

goals is in portability. Although portability was only a

very minor part of the original TOOLPACK goals [Ref. 1: p.

5-6] it achieved major status in the architectural design

document [Ref. 7: p. 31. Portability is only a secondary

goal of the vast majority of scientific programmers; more

important goals are runtime efficiency (including use of

computer unique Fortran extensions) and high programmer

productivity (use of simple, effective tools with low run

time expense). Programmers would like to be able to move

their code easily to other machines and to easily use

programs produced on other computer systems but they

76

.. ~ .. .....

.'° ° ,1

**1 °.-



W,~~~~%' V x1 * --7w .

recognize that the main obstacle to portability is numeric

precision. No goals of TOOLPACK (or any theory the author

knows about) is going to solve the problem of moving high

performance numerical algorithms from one computer to

another computer that has a different model of real

computation. It is possible to have portability for

non-numeric algorithms (like TOOLPACK itself) but is a A

serious mistake to confuse the needs of NAG and the TOOLPACK

developers for portability with the needs of TOOLPACK users.

As discussed in chapter 5, most programmers of mathemat-

ical software have a very limited domain of interest. They

are interested in a limited set of software for a limited

set of science, mathematics or engineering problems. They

therefore need to be able to pick and choose the subset of

TOOLPACK that best suits their needs. Also the suite of

software tools that is provided by the computer manufacturer

differs widely from machine to machine. Given a choice

between a manufacturer provided tool (optimized to the

machine, integrated with the compiler) and an equivalent ,

TOOLPACK tool, most users will use the manufacturer supplied - -

tool.- Thus the TOOLPACK goals need to be subdivicX, 4nto

subgoals that will allow the user to pick, install and learn

subsets of the total capabilities without commiting to a
p

comprehensive environment.

B. COMPARE TOOLPACK GOALS TO ITS CAPABILITIES.

It is difficult to compare the TOOLPACK goals to its
capabilities because there seems to be two very different

set of goals. The original goals of TOOLPACK (Ref. 1: p.

5-6] seem to be focused on providing tools for the vast

majority of mathematical software programmers that are

architectural design document [Ref. 7: p. 31 presents a

different set of goals; if the phase "mathematical software".

in goal 1 were changed to non-numeric mathematical

77
.--....

. . .. ...... . . . .

,',,r. '..,.',.,/ ..,_. . ,. , ,, .. . ,..-. .
.
,..-.,.,,,,,% .7 ,.-, . .. , -. . - -. . . -.,.-. .._-. .. ,- ,, . .. . . .,,. ,,,



. .J

software", the architectural design goals would be seen to

be focused on an entirely different set of users namely

those producing software like TOOLPACK.
If we accept the goals of the architectural design, the ' .'

capabilities of TOOLPACK version 1 fulfills most of the

goals. For a user population with a strong computer science

background in language translation the system capabilities

are well understood, the terms in the documents are

familiar, the heavy use of technical jargon makes the docu-
ments appropriately terse, and the installation while need-

lessly complex and ambiguous is within the skills of a good

systems programmer who has two weeks to spend on what should

be a one day job. The lexical analyzer, parsers, table

-" manager, pretty printer all work well and the "tool frag-

ment" design is well suited for those users who want to

build their own non-numeric mathematical software.

If we accept the original TOOLPACK goals the evaluation

is very different. For the vast majority of programmers of

mathematical software the capabilities of version 1 fall far

short of the goals. Aside from enforcing the use of standard

Fortran (the tools reject computer unique extensions and/or
m'.% 4[

produce code that is incorrect), there is nothing that . 4.4

supports the portability of numeric software. As mentioned

above, easy portability of numeric software is an unreal- "'-

istic goal, however, it is striking that there is no

discussion and no system capability directed toward this

important problem.

The goal of a structured Fortran extension of standard

Fortran was also abandoned. This was most likely a good

decision; in the last several years there has been an

increasing lack of enthusiasm for preprocessors. Likewise

the automatic conversion of standard Fortran to structured.4"444.

Fortran is not a serious loss.

78

4~4.4~44 4 ~ -'-"'" '-44



-* ... ~ " e

The capabilities for precision transformation, static

and dynamic analysis tools, Fortran syntax editor, pretty

printer and the language translation tools (lexical

analyzers, parsers, etc) were achieved in version 1. These

tools represent a real contribution to the programmer that

knows how to use them.

An important and dominant capability that is not explic-

itly mentioned in the goals is the file handling and control

environment that comes with TOOLPACK. The author used only

the STAND-ALONE mode of operation for several reasons:

1. The VAX/VMS system already has a good modern file
system.

2. The focus of the evaluation was on tools rather than
environment.

3. The installation of even the STAND-ALONE took so much
longer than planned (months instead of days) that
there was not time to evaluate other modes.

Despite the lack of direct evaluation, the author feels that

there is little in the other modes of operation that justify
the cost and effort of learning and installing them. Given

that the typical programmer wants to maximize his use of the

manufacturer supplied tools and given these are good (like

on the VAX/VMS), there is little incentive to use the -

TOOLPACK file structure or command features.

C. COMPARE USER NEEDS TO TOOLPACK CAPABILITIES.

As discussed above, the human factors associated with

software products are important. Mathematical software

programmers are also not eager to learn new systems with new

messages and error reports. The author feels that the

TOOLPACK error messages are unsatisfactory. The following is

an example of TOOLPACK error messages:

C*PL*ERROR Unexpected Statement type

C*PL*ERROR Unexpected <TZOES>

C*PL*ERROR Internal Error (GRINDI) - TZEOS confusion

79.

" %. K. __'



..-. .--. .

These messages, produced by ISTPL (the polish tool),

resulted from not defining a subprogram name in the declara-

tion part of a program. These messages don't help the user %,

identify the error. TOOLPACK needs to develop and use a more

clear error reporting system.

The TOOLPACK project consists of 33 tools. The author

thinks that most mathematical programmers won't use all

these tools. They will select the tools which are most

convenient and helpful to them. Some tools will never be

used by mathematical programmers. For example, various

computer systems have their own editor system (i.e.,

IBM:XEDIT, VAX/VMS:EDIT, and UNIX system :VI editor). These

editors are already familiar to its users and the users are

skilled in their editor systems. The author, therefore,

thinks that mathematical programmers will use their own

editor system rather than ISTED (editing tool) which is

provided by the TOOLPACK project.

The author suggests that the TOOLPACK project should

concentrate on suitable tools rather than unused tools, so

that the quality of tools will be more powerful than previ-

ously-distributed tools. The author recommends that ISTPL,

ISTPT, ISTAN, and ISTAL are very useful tools.

It is very hard to install TOOLPACK. Today most software

packages are not very hard to install in their own computer

systems. Generally speaking, even though the users are not

specialists in the software packages, if they follow the

given manual then they can easily install the package.

Sometimes, if the software packages are difficult to

install then the company of the distributed program makes
available installation services and/or good manuals. The

author understands that the TOOLPACK project is not a

commercial operation, but the installation guides (for

example: TIE code installer's guide and Tool installer's
guide) are not very easy to read and understand. Another

80

** .<o .-

* - . . * . . . . . . . . . . . . . . .. . . . . . .



thing is that to understand the TOOLPACK installer's guide

the reader needs a background of computer architecture and

operating systems. The author spent 4 months to install the

TOOLPACK with help from cur computer center staff. There is

an immediate need for a tool to help TOOLPACK users install

and test the system.

D. COSTS VERSUS BENEFITS

The system resources needed by TOOLPACK version 1 are

considerable. The memory requirements are significant, this

would have major impact for small computer systems. The

details of memory requirements are shown in Figure 9. 1.

The cost and effort involved in initially constructing

the tools are significant. Any modification of the programs

involves significant effort and modifications in the library

routines involves significant work. These jobs are all

tedious and time corsuming and are well beyond the patience

of a single mathematical software programmer. They can only

be justified if many people are using the system. The poten-

tial user population is reduced significantly if use is

restricted to installations with a systems programmer who is

responsible for installation and maintenance.

The benchmarks in chapter 8 show that CPU times are very

large for even medium size programs. This will surely drive

users to using software provided by the computer manufac-

'urer whenever possible. In particular, the users are likely

to use file handling and control features that are provided

more cheaply on their computer.

*%

• .. %

*" .**'%



"% ".%°

TOOLPACK TOOLS
ISTAL 189 blocks * 512 bytes = 96768

ISTAN 248 126976 . ...
* ISTCE 135 69120

ISTDC 97 49664
ISTDS 188 96256
ISTDX 56 28672
ISTED 334 171008
ISTFD il 56832
ISTFI 57 29184
ISTFL 52 26624
ISTFP 75 38400
ISTGI 86 44032
ISTGP 70 35840
ISTHP 71 36352
ISTLX 123 62976
ISTMP 144 73728
ISTNA 476 243712
ISTNI 474 242688
ISTNL 179 91648
ISTPL 174 89088 -
ISTPO 150 76800
ISTPR 217 111104
ISTPT 195 99840 ..
ISTRF 104 53248
ISTSP 51 26112
ISTSV 92 47104
ISTTD 73 37376
ISTVC 84 43008 -
ISTVS 91 46592
ISTYF 129 66048
ISTYP 198 101376

SUBTOTAL 4723 2418176 bytes (2418.2 K)

TOOLPACK TIE LIBRARIES

ACCESS LIB 218 blocks 1116].6 bytes
COMMON LIB 93 47616
STRING LIB 98 50176
TABLES LIB 83 42496
TIE LIB 141 72192

SUBTOTAL 633 324096 bytes (324 k)

TOTAL 5356 2742.2 Kbytes

Figure 9. 1 Memory spaces of each tool.

" ~~82 ""%""

a. .-

a,- . .

I: :.-.
I i * ' -i I I  . I . . .. . - II -I I " "1 *1 I I  . I 11 . I % I II I i  I I * II I I " % % " - I 

I  
i l i " "I* I I I l *I *" * **j*

-" - " " - -" " " , -" " " " -"" " " " " " " " " " " -" ",,.",.- ,".,,. .. ' '',,." ,._,',,-'a_' ,i



S. 
.

X. CONCLUSIONS

One notable lack in the TOOLPACK project is a comprehen-

sion user profile that would describe the user's needs,

capabilities and potential for learning new ideas. A well

known tenet in software engineering is that in the absence

of good user requirements, designers and implementers use

themselves as a model of the user. On several issues, most

notably portability, the TOOLPACK goals and capabilities are

heavily skewed towards users who are producing non-numeric

software to be distributed (NAG and the "PACK" developers)

and away from users who are writing numeric software for

their own use.

The vast majority of mathematical software programmers

are producing software for their personal use. They have a

strong preference for using software tools that are provided

by the manufacturer of their computer because these tools

are very efficient and are (and will continue to be) inte-

grated with the Fortran compiler and its computer unique %

extensions.

For these users, TOOLPACK provides capabilities that are

not currently available on their computer; they are more

interested in picking and choosing specific tools than in

learning (another) total environment. Another (but

different) set of users is interested in producing portable

numeric software for general use, in the author's opinion

they are better served by having tools that help them

customize software to different environments (i. e. ,.-.

machines, compilers) rather than build software for a stan-

dard environment that is not likely to be widely accepted by

the vast majority of mathematical software programmers.

A third (and very small) set of users is interested in

producing non-numeric software (e. g., TOOLPACK) for general

use.

83 -..

isi

.. .* .~ .- .



-A %-70-. - -. - F .- - - -. .. M-9 3J. N - J p

For these users (unlike the others) portability is both

technically possible and economically desirable. While

waiting for their computer manufacturer to produce new tool

X, these users are quite willing to pay the run time cost of

using portable tools if they are not forced to pay a heavy

cost to install and are not forced to use a new comprehen-

sive environment.

In conclusion, the capabilities of TOOLPACK release 1 do

not fulfill the original goals of supporting scientific

r. programmers in the construction of numerical software. The

system is much too hard to install, demands the user accept

a new environment and does not make effective use of

computer resources. The fundamental problem with the system

is that it has been driven entirely by the goal of producing

a portable environment- this is not a major need of scien-

tific programmers. It is difficult to see how modifications

of the present system can lead to a system that will meet

user needs, it appears that a major rethinking of goals is

required.

zN

C;'~.1A

-

.5.

.-5$

SC?-!



VAX/VMS COMMAND FILE (EXAMPLE FOR BENCHMARK TEST)- .,..s

ISTLX.COM commnand file to execute ISTLX

TIE$ERROR

IF P1. EQS." THEN INQUIRE P1 "NAME OF THE FORTRAN FILE"

* SHOW SYSTEM

ISTLX #'P1'.FOR #'P1'.LIS #'P1'.ERR #'P1'.TKN
#' P1'.CMT

IF TIE$ERROR .EQS. "ERROR" THEN EXIT
SHOW SYSTEM

85I

7.



W% VvL

USEFUL COMMAND FILES

1. ISTDC

DC. COM : Command file to execute the ISTDC

expects one parameter, the file name of the Fortran
fiye with no extension

PREREQUISITES : NONE
NOTE : The name of the output file is DIFF.LIS

TIE$ERROR="" 7

IF P1 .ES. "" THEN INQUIRE P1 "Name of Standard File"
IF P2 .EQS "" THEN INQUIRE P2 "Name of Comparison FIle"

ISTDC #'P1'.FOR #'2'.FO #DIFF.LIS
IF TIESERROR .EQS. ERROR" THEN EXIT *

2. ISTFD

FD. COM : Command file to execute the ISTED

expects one parameter, the file name of the Fortran
file with no extension

! PREREQUISITES : NONE

TIE$ERROR=""

IF P1 .EQS. "" THEN INQUIRE P1 "Name qf First Token,File"
IF P2 .EQS. "" THEN INQUIRE P2 "Name f Second TokenFile" Second Toe

ISTFD #'Pl'.TKN #'Pl'.CMT #'P2'.TKN #'P2'.CMT
#' PI' LIS

IF TIE$ERROR EQS. "ERROR" THEN EXIT

A . -

86

- -* I- me_ •L J-



3. .1 TEP

FP. COM :Command file to execute the ISTEP

This tool is the fast polish program (Within the
GENERAL tools).

PREREQUISITES :ISTLX

TIE$ERROR=""

IF P1 .EQS. "" THEN INQUIRE P1 "Name of Fortran File"

ISTLX #'P1'.FOR #'Pl'.LIS #'Pl'.ERR #'P1'.TKN
#P.CMT

IF TIE$ERROR .EQS. "ERflOR" THEN EXIT

ISTFP #'P1'.TKN #' 'CMT #'Pl1OUT *..*.

IF TIE$ERROR .EQS. ERRORW THEN EXIT

4. ISLT

LX. COM :Command file to execute the ISTLX

Expect one parameter, the file name of the Fortran file
with no extension

PREREQUISITES NONE

TIE$ERROR=""

IF P1 .EQS. ""THEN INQUIRE PI "Name of Fortran File"

ISTLX #'P1'.FOR #'P1'.LIS #'Pl'.ERR #'P1'.TKN
#'p1'. CMT

IF'TIE$ERROR .EQS. "ERROR" THEN EXIT

87



r ~.% .-.

5. ISTPL (Simple Method)

PLI.COM : Command file to polish a single file of
Fortran-77 code

PREREQUISITES : ISTLX

NOTE This command file doesn't use the tools which -

' are ISTYP and ISTDS. Therefore, the output is
less readable than the other output which uses
the ISTYP and ISTDS. If the user wants to use the
option file then this command file needs .
minor correction which is to append the option
file, that is get from the tool ISTPO.

TIE$ERROR=""

IF P1 .EQS. "" THEN INQUIRE P1 "Name of Fortran File"

ISTLX #'PI'.FOR #'Pl'.LIS #'Pl'.ERR #'Pl'.TKN
#' P1' CMT

IF TIE$ERROR EQS. "ERROR" THEN EXIT

ISTPL #'Pl'.TKN #'PI'.CMT #'Pl'.POL
IF TIE$ERROR .EQS. "ERROR" THEN EXIT -.-.

6. ISTPL (Complex Method) .

PL2.COM Command file to polish a single file of
Fortran-77 code

PREREQUISITES : ISTLX,ISTYP, and ISTDS

NOTE: This command file uses the tools which are
ISTYP and ISTDS. Therefore the output is miore
readable than the other output which doesn t use
the ISTYP and ISTDS. If the user wants to use the
option file then this command file needs a
minor correction which is to append the option
file, that is get from the tool ISTPO.

TIE$ERROR=""

IF P1 .EQS. "" THEN INQUIRE P1 "Name of Fortran File"

ISTLX #:Pl'.FOR #'Pl'.LIS #'Pl'.ERR #'Pl'.TKN
# '.CMT

IF TIE$ERROR .EQS. "ERROR" THEN EXIT

ISTYP #'PI'.TKN #'Pl'.CMT #'Pl'.TRE #'PI'.SYM
#'Pl'. CMI

IF TIE$ERROR EQS. "ERROR" THEN EXIT

ISTDS #'P1'.TRE #'PI'.SYM #'P1'.TKN #'PI'.CMT
# PI'.TK2 #'PI'. CM2

IF TIE$ERROR .EQS. "ERROR" THEN EXIT

ISTPL #'Pl'.TKN #',P1'. CT #'PI'.POL
IF TIE$ERROR .EQS. ERROR THEN EXIT

88 ,' *,

I-;

.. . . . . . . . . . .- ' % .. ° -



7. ISTPT (Sim~le Method)

PT1.COM Command file to Precision-transform from a
single precision file of Fortran-77 source
to double precision file of Fortran-77
source code.

PREREQUISITES : ISTLX lexical analyzer)
ISTYP parser)
ISTPT precision transformer)

polish)
STPL (( default options are none))

NOTE This command file doesn't use the tool which
is the ISTDS. Therefore, the output is less
readable than the other output which uses the
ISTDS.

TIE$ERROR=""

IF P1 EQS. "" THEN INQUIRE P1 "Name of Fortran File"

ISTLX #'P1'.FOR #'P1'.LIS #'Pl'.ERR #'PI'.TKN
#'P1' .CMT

IF TIE$ERROR .EQS. "ERROR" THEN EXIT

4 ISTYP #'PI'.TKN #'PI'.CMT #'P1'.TRE #'PI'.SYM

IF TIE$ERROR EQS. "ERROR" THEN EXIT

ISTPT # PI'.TRE #'Pl:.SYM #'P1'.CMI #'P1'.CMT
#'P1'.TK2 #'PI .CW2

IF TIE$ERROR .EQS. "ERROR THEN EXIT

ISTPL #'PI'.TKN #'Pl'.CWT #'PI'.POL
IF TIE$ERROR .EQS. "ERROR THEN EXIT

"5F

89

.2.

., ... •

4. J* ~*.*\*~* ~~ ~ . ~..A'.~& *... --. 4*



8. 1ISTPT (Com~iex Method)

PT2.COM Command file to Precision-transform from a
sinle recision file of Fortran-77 source

sooue precision file of Fortran-77 K.
PREREQUISITES ISTLX (lexical anayzer)

ISTYP (parser)
-. ISTDS (declaration standardizer)
-, ISTPT precision transformer)

ISTPL polish)
Fdefault options are none))

NOTE This commnand file uses the tool which is the
ISTDS. Therefore, the output is m~re readable
than the other output which doesn t use the ISTDS

TIE$ERROR=""

IF P1 .EQS. ""THEN INQUIRE P1 "Name of Fortran File"

ISTLX #'Pl'.FOR #'Pl'.LIS #'Pl'.ERR #'P1'.TKN
#P'CMT

IF TIE$ERROR .EQS. "ERROR" THEN EXIT

ISTYP #:P1'.TKN #'P1'.CMT #'P1'.TRE #'Pl'.SYM
#P.CMI

IF TIE$ERROR .EQS . "ERROR" THEN EXIT

ISTDS #'Pl'.TRE #'Pl'.SYM #'Pl'.TKN #'Pl'.CMT
#'Pl'.TK2 #,'Pl'.CW2

IF TIE$ERROR .EQS. "ERROR THEN EXIT

ISTYP #:P1'.TK2 #'Pl'.CM2 #'P1'.TR2 #'Pl'.SM2
#P.CM12

IF TIE$ERROR .EQS. "ERROR" THEN EXIT
I'IS-TPT #'P1'.TR2 #'Pl:.SM2 #'Pl'.CM12 #'Pl'.CM2

IF #'Pl'.TK3 #' ,,P 3
ITIE$ERROR .EQS. "ERR6R THEN EXIT

C' STPL #'P1'.TK3 #,Pl'.CW3 #'Pl'.POL
I F TIE$ERROR .EQS. ERROR THEN EXIT .

15..



9. 1 STTD ...-.

TD.COM : Text Differencer
(This is the standard text differencing tool)

expects one parameter, the file name of the Fortran

file with no extension V-

PREREQUISITES : NONE

TIE$ERROR=""

IF P1 .EQS "" THEN INQUIRE P1 "First Input File"
IF P2 :EQS "" THEN INQUIRE P2 "Second Input File"

ISTTD #'Pl'.FOR #'P2' FOR
IF TIE$ERROR .EQS. ERROR' THEN EXIT

10. ISTVS

VS.COM : Command file to execute the ISTVS "v

;! ects one parameter, the file name of the Fortran
file with no extension

PREREQUISITES ISTLX, ISTYP

TIE$ERROR=""

IF P1 .EQS. "" THEN INQUIRE P1 "Name of Fortran File"

ISTLX #'P1'.FOR #'P1'.LIS #'P1'.ERR #'P1'.TKN -.
'P1'. CMT "\

IF TIESERROR EQS. "ERROR" THEN EXIT .4.

ISTYP #,P1'.TKN #wP1I.CMT #'Pl'.TRE #'P1'.SYM
#'P1'. CMI

IF- TIESERROR EQS. "ERROR" THEN EXIT

ISTVS #'P1'.SYM #',P1'.L;S HEAD
IF TIE$ERROR EQS. ERROR THEN EXIT

9.. .

'.. ,, " 4'



- - - - -- --.. -S.-,

,, *~mir.,* -.'

II. ISTY.

YF.COM : Command file to execute the ISTYF

expects one parameter, the file name of the Fortran
! file with no extension

! PREREQUISITES : ISTLX, ISTYP

TIE$ERROR=""

IF P1 .EQS. "" THEN INQUIRE P1 "Name of Fortran File"

ISTLX #'PI'.FOR #'PI'.LIS #'Pl'.ERR #'PI'.TKN
'P1 'CMT

IF TIESERROR .EQS. "ERROR" THEN EXIT

ISTYP #.P1'.TKN #'P1'.CMT #'Pl'.TRE #'PI'.SYM
#'Pl' .CMI

IF TIE$ERROR .EQS. "ERROR" THEN EXIT

ISTYF #'Pl'.TRE #'P1'.SYM #'PI'.CMI #'Pl'.CMT #YF.TKN
#YF.CMT

IF TIE$ERROR EQS. "ERROR" THEN EXIT

12. ISTY,

! YP.COM : Command file to execute the ISTYP (Parser)

expects one parameter, the file name of the Fortran
! file with no extension

PREREQUISITES ISTLX

TIE$ ERROR=""

IF P1 EQS. "" THEN INQUIRE P1 "Name of Fortran File"

ISTLX #'PI'.FOR #'PI'.LIS #'PI'.ERR #'PI'.TKN
# 'P1'. CMT

IF TIE$ERROR .EQS. "ERROR" THEN EXIT

ISTYP #'PI'.TKN #'PI'.CMT #'Pl'.TRE #'P1'.SYM
# iCMI

IF TIE$ERROR .EQS. "ERROR" THEN EXIT

92S. *"1
J92 ""



. . . . . . . . . . . . . . . . . .. . ... ' . '. .

," .. .,.,

THE RESULTS OF RUNNING IN ISTPL

1. The Source Proaram for Testin

PROGRAM TEST
INTEGER X(10), NEVEN, ND3
REAL SUM, R SULT
WRITE( *.) Please input ten integers:
READ*, X"
RESULT = SUM(X 10)WRITE(*, 100) R .SUT, '''-'

100 FORMAT(2X, The sum is :, F7.2)RESULT NEVEN(X 01
WRITE(* 1504 RESULT

150 FORMAT( 2X, F7.2 of them were even.')
RESULT ND3(X io
IF (RESULT. EQ.6) THEN
WRITE(* 160)

160 FORMAT ( X None were divisible by 3. ')
ELSE IF (RESULT.EQ.1) THEN
WRITE * 170 )

170 FORMA (2X, One was divisible by 3. ')
ELSE

WRITE(*,180) ESULT
180 FORMAT(2X, F7. were divisible by 3.')

END IF
STOP
END .

REAL FUNCTION.SUM(A,N)- INTEGER N,A(N), I
SUM = 0
DO 100 =1 N

100 SUM = SU + A(I)
END

INTEGER FUNCTION NEVEN(A,N)
INTEGER N, A(N),I
NEVEN = 0
DO 100 I = 1 N

100 IF (MOD(A(I),2).EQ.0) NEVEN = NEVEN + 1
END

INTEGER FUNCTION ND3(A,N)
INTEGER N,A(N),I
ND3 = 0
DO 100 I = 1 N

100 IF (MOD(A(I),3).EQ.O) ND3 = ND3 + 1
END ." -

93 - . -4 " -. -

-. - . -. *~*.~*,~d**. . .. ' -...-.

'.-'..'I~.J ~ i~j.d ...-.:.



2. The Outout of Polished Proaram(Simple Method)

PROGRAM TEST
INTEGER X( 10) NEVEN, ND3
REAL SUM, RESULT

WRITE 'Please input ten integers~~~READ (* )X '
RESULT = SUMX IESLT
WRITE (*,100) ES

100 FORMAT (2X 'The sum is ', F7.2)
RESULT = NEVEN(X 10
WRITE (*, 150) RSULT

150 FORMAT (2X F7.2 of them were even.')["" RESULT = ND3(X,10) "[
,. - ~IF ( RESULT EQ O ) THEN...

WRITE (*,160) ....

160 FORMAT (2X, 'None were divisible by 3.')
ELSE IF (RESULT.EQ.1) THEN
WRITE (*,170)

170 FORMAT (2X, 'One was divisible by 3.')

ELSE
WRITE (*,180) RESULT

5 180 FORMAT(2X, F7.2,' were divisible by 3.')
END IF

STOP

END

REAL FUNCTION SUM(A,N)
INTEGER N,A(N),I

SUM = 0
DO 100 I = 1 N

100 SUM = SUM + A(I)
END

INTEGER FUNCTION NEVEN(A,N)
INTEGER N, A(N),I

NEVEN = 0
DO 100 I = 1,N ..

100 IF (MOD(A(I),2).EQ.0) NEVEN = NEVEN + 1
END

INTEGER FUNCTION ND3(A,N)
INTEGER N,A(N),I

ND3 = 0
DO 100 I = 1, N

100 IF (MOD(A(I),3).EQ.0) ND3 = ND3 + 1
END

94
--. • 7 .N



RD-R1?3 943 EYALURTION OF TIME TOOLPACK FORTRAN PROGRRNNING2/
ENVIRONMENT(U) NAYRL POSTGRADUATE SCHOOL MONTEREY CA

JSKIM JUN 86
NJIIEDF E D / 9/ N

mhmhhR57hmmh9/2mu



p.,

MICROCOPY RESOLUTION TEST CHART .
NATIONAl RkJR[AtJ OF STANDARDI, Iq63 A L'

%-" ,,2.

_ _-L L*P_,I
. . . .. . . . . . . in . . 1 i l l II . . . . ,



3. The Output of Polished Proaram(Comnlex Method)

PROGRAM TEST
C .. Local Scalars

~REAL RESULT'

C :: Local Arrays.. -j7q

INTEGER X(10)C••

C ::External Functions
REAL SUM
INTEGER ND3 NEVEN
EXTERNAL SU,ND3, NEVEN

C .

WRITE (**) 'Please input ten integers
READ (*,XRESULT = SUMX,0

WRITE (*, 10 ) RS U -

100 FORMAT (2A 'The sum is :', F7.2)
RESULT *NVEN(X 10
WRITE ( 150)RENX I

150 FORMAT (2X F7.2 of them were even.
RESULT = N13(X, 10) .tmeev.
IF (RESULT. EQK.) HEN.

WRITE (*,160)

160 FORMAT (2X, 'None were divisible by 3. ')
ELSE IF (RESULT.EQ.) THEN
WRITE (*,170)

170 FORMAT (2X, 'One was divisible by 3.')

ELSE
WRITE (*,180) RESULT

180 FORMAT(2X, F7.2,' were divisible by 3.')
END IF

. STOP": ~END 
:.-

REAL FUNCTION SUM(A,N)
C .. Scalar Arguments .. ,4-

INTEGER N
C
C Array Argents .. .

INTEGER A(N)
C
C .. Local Scalars

INTEGER I,.. c (.n ij = 0"-.I 
-

.4 DO 100 1 = 1 N
100 SUm = SUM + A(I)

END

INTEGER FUNCTION NEVEN(A,N)
C .. Scalar Arguments

INTEGER NC 
.'C

C l[ Array Arguments
INTEGER A(N)

C
C .. Local Scalars

INTEGER I
C

95
,.'d

%.%"

• ."%

..- ,



C Intrinsic Functions
INTRINSIC MOD

DO 100 I = 1,N
100 IF (MOD(A(I),2).EQ.o) NEVEN NEVEN +1-

END ~J
INTEGER FUNCTION ND3(A,N)

C .. Scalar Arguments
INTEGER N

c .

C Array Arguents
I NTEGER A(N)

C .

C .. Local Scalars
INTEGER I

C
C .. Intrinsic Functions

INTRINSIC MOD
ND3 = 0
DO 100 I = 1, N

100 IF (MOD(A(I),3).EQ.o) ND3 =ND3 l

END

PA1
49

A~* r.



4. The OutPut of Polished Proaram(With Errors)
PROGRAM TEST
.. Local Scalars
REAL RESULT

C :Local Arrays

INTEGER X(10)
C
C ::External Functions
C*PL*ERROR* Unexpected statement type
C*PL*ERROR* Unexpected <TZEOS>

SUMINTEGER ND3, NEVEN
C*PL*ERROR* Internal Error (GRIND1) - TZEOS confusion

EXTERNAL SUM, ND3, NEVEN
C

WRITE 'Please input ten integers:'READ (,)X "'
RESULT =UM(XIO"
WRITE (*00 ES

100 FORMAT (2X 'The sum is :', F7.2) ,-..--

RESULT = NtVEN(X ..

WRITE 150) R.SU T

150 FORMAT (2X F7 2' of them were even.')
RESULT = NL3( xi6j
IF (RESULT.EQ.O) THEN

WRITE (*,160)

160 FORMAT (2X, 'None were divisible by 3.')
ELSE IF (RESUL. EQ. 1) THEN
WRITE (*,170)

170 FORMAT (2X, 'One was divisible by 3.')

ELSE
WRITE (*,180) RESULT

180 FORMAT(2X, F7.2,' were divisible by 3.')
END IF

STOP

END

REAL FUNCTION SUM(AN)
C .. Scalar Arguments

INTEGER N
C
C .. Array Arguments

INTEGER A(N)

C .. Local Scalars
INTEGER I
SUm= 0

DO 100 1 = I N
100 SUM = SUM + A(I"

END VAM

INTEGER FUNCTION NEVEN(A,N)
C .. Scalar Arguments

INTEGER N
C
C .. Array Arguments .

INTEGER A( N)
C
C .. Local Scalars

97

- :.4

-', - - . . . ° . . .. . . °



INTEGER I ,..

C 'C.

C .. Intrinsic Functions
INTRINSIC MOD "

C NVEN = 0

DO 100 I = 1,N
100 IF (MOD(A(I),2).EQ.0) NEVEN = NEVEN +1END

INTEGER FUNCTION ND3(A,N)

C .. Scalar Arguments
INTEGER N

C
C Array Arguments

INTEGER A(N)
C
C Local Scalars

INTEGER I

C Intrinsic Functions
INTRINSIC MOD
.ND3 = 0
DO 100 I = 1, N

100 IF (MOD(A(I),3).EQ.0) ND3 = ND3 1
END

C98

',

Id.-°'%

C.?°*.

98 L~...[

.-.-

C.....°

-C".%.',-'.-. .' '" .. .."%.._ .. .. . . . . .. . . . . .', .'..'.T# , €,{." ,. m'....-m ~ .



5. The Output of Polished Progarm g.

(With Selected Options)

PROGRAM TEST TEST 0
C .. Local Scalars .. TEST 10

REAL RESULT TEST 20
C TEST 30
C Local Arrays TEST 40

INTEGER X(10) TEST 50
C TEST 60
C External Functions TEST 70

REAL SUM TEST 80
INTEGER ND3 NEVEN TEST 90
EXTERNAL SUM,ND3, NEVEN TEST 100

C TEST 110
WRITE (*,*)'Please input ten integers ' TEST 120
READL 10 TEST 130
RESUL =UM(X, 0) TEST 140
WRITE (*,900 ) RESULT TEST 150
RESULT = NEVEN(X,1O) TEST 160
WRITE (*, 9010) RESULT TEST 170
RESULT = ND3(X, 10) TEST 180
IF (RESULT. EQ. 0) THEN TEST 190

WRITE (*,9020) TEST 200
TEST 210

ELSE IF (RESULT. EQ.1) THEN TEST 220
WRITE (*,9030) TEST 230

TEST 240
ELSE TEST 250

WRITE (*,9040) RESULT TEST 260
END IF TEST 270

TEST 280
STOP TEST 290

TEST 300
9000 FORMAT (2X, 'The sym is :', F7.2) TEST 310
9010 FORMAT (2X, T7.2, of them were even,') TEST 320
9020 FORMAT (2X, None were divisible by N.') TEST 330
9030 FORMAT (2X, One was divisible by 3.') TEST 340
9040 FORMAT( 2X, F e.2, were divisible by TEST 350

END TEST 360
SUM 0
SUM 10

REAL FUNCTION SUM(A,N) SUM 20
C .. Scalar Arguments .. SUM 30

INTEGER N SUM 40
C SUM 50
C Array Arguments SUM 60

INTEGER A(N) SUM 70
C • SUM 80
C .. Local Scalars .. SUM 90

SUM 100
INTEGER I SUM 110

C =0 SUM 120
SU SUM 130

DO 100 1 = N SUM 140
100 SUM = SUM + A(I) SUM 150

END SUM 160
NEVE 0

INTEGER FUNCTION NEVEN(A,N) NEVE 10
C .. Scalar Arguments .. NEVE 20

INTEGER N NEVE 30
C NEVE 40
C .. Array Argments .. NEVE 50

INTEGER A(§() NEVE 60
C • NEVE 70
C .. Local Scalars .. NEVE 80

INTEGER I NEVE 90C .. NEVE 100-'-.C Intrinsic Functions NEVE 110

99.....

-a ~ --. .-+



* - rrr- -.-

INTRINSIC MOD NEVE 120 -
C NEVE 130 .' "

NE.VEN = 0 NEVE 140
DO 100 1 = 1,N NEVE 150

100 IF (MOD(A(I),2).EQ.0) NEVEN = NEVEN + 1 NEVE 160
END NEVE 170

ND3 0
INTEGER FUNCTION ND3(A,N) ND3 10

C Scalar Arguments ND3 20
INTEGER N ND3 30

C ND3 40
C Array Arguments .. ND3 50

INTEGER (N ND3 60
C ND3 70
C Local Scalars .. ND3 80

INTEGER I ND3 90
C ND3 100
C Intrinsic Functions .. ND3 110

INTRINSIC MOD ND3 120
ND3 = 0 ND3 130
DO 100 I = 1, N ND3 140

100 IF (MOD(A(I),3).EQ. 0) ND3 = ND3 + 1 ND3 150
END ND3 160

100

*.%- ~if%~& ~ ~ .- ----.. % "*- '



-"p

THE RESULTS OF RUNNING IN ISTPT

1. The Output of Precision Transformation

(Simple Method) 0

PROGRAM TEST
INTEGER X(01) NEVEN, ND3
DOUBLE PRECI SION SUM, RESULT

WRITE (**) 'Please input ten integers
READ (*,) X
RESULT = SUM(X, 0)
WRITE (*, 100) RESULT

100 FORMAT (2X 'The sum is :', F7.2)
RESULT = NtVEN(X 10)
WRITE (*, 150) R.SU T

150 FORMAT (2X F7 2 of them were even.') ,
RESULT = N63(X, 16
IF (RESULT.EQ.0) THEN

WRITE (*,160)

160 FORMAT (2X, 'None were divisible by 3.')
ELSE IF (RESUL. EQ.1) THEN .
WRITE (*,170)

170 FORMAT (2X, 'One was divisible by 3.') -

ELSE
WRITE (*,180) RESULT

180 FORMAT(2X, F7.2,' were divisible by 3.')
END IF

STOP

END

LQ

101.% .'
.-.. . ,

101 -..

L- -. ..., b,. ' r - % ' .' .- ,.-,_".' % ._' ' +_- ..v .. ' ..- € . - ., < -. .","- . - -,-. . -. • . . . . . . 2 .- 'I, - - , P + t.2 , w- l. ,'-:.'+.. "+%,-'+ . +.:J -:.,",+ -u %,,,T '--i .U'n"". .L, ".+~', '"i_+. .,..}' "" . + : .aL i %L



DOUBLE PRECISION FUNCTION SUM(A,N)
INTEGER N,A(N),I

SUM 0
DO 100 I 1 N 

l 1100 SUM =SUM + A(I)

INTEGER FUtNCTION NEVEN(A,N)
INTEGER N, A(N),I%

NEVEN = 0
DO 100 I 1,N

100 IF (MOD(A(I),2).EQ.0) NEVEN =NEVEN +1
END

INTEGER FUNCTION ND3(A,N)
INTEGER N, A(N), I

ND3 =0
DO 100 I 1, N

100 IF (MOD(A(I),3).EQ.0) ND3 =ND3 +1 .END 
"f

102..-



. . . . .• . . . . . . . . . . . . . , _ , . . ~ . . .

2. The Output of Precision Transformation

(Complex Method)

PROGRAM TEST
C .. Local Scalars

DOUBLE PRECISION RESULT

C Local Arrays
INTEGER X(10)

C ..
C ::External Functions

DOUBLE PREIESION SUM
INTEGER ND3 NEVEN
EXTERNAL SUM,ND3, NEVEN

C
WRITE (* *)'Please input ten integers
READ (*, X
RESULT = SUM(X 10)
WRITE (*,i00) RESULT

100 FORMAT (2X 'The sum is :' F7.2)
RESULT = NEVEN(X 10)
WRITE (*, 150) RESULT

150 FORMAT (2X F7.2 ' of them were even.')
RESULT = ND3(X 16)
IF (RESULT.EQ.6) THEN

WRITE (*,160)

160 FORMAT (2X, 'None were divisible by 3.')
ELSE IF (RESULT EQ. 1) THEN
WRITE (*,170)

170 FORMAT (2X, 'One was divisible by 3.')
ELSE ..

WRITE (*,180) RESULT

180 FORMAT(2X, F7.2,' were divisible by 3.')
END IF

STOP

END

DOUBLE PRECISION FUNCTION SUM(A,N)
C .. Scalar Arguments

INTEGER N
C
C . Array Arguments

INTEGER A(N)
C
C .. Local Scalars

INTEGER I
C = 0

DO 100 1 = 1 N
100 SUM = SUM + A(I)

END

INTEGER FUNCTION NEVEN(A,N)
C .. Scalar Arguments ..

INTEGER NC Arra" g"
C Array Arguments

INTEGER A(N)

C .. Local Scalars ..

103

.- -' I



INTEGER I ~.
C J 1
C .. Intrinsic Functions

INTRINSIC MOD .

C NEiVEN=O 0
DO 100 1I 1,N

100 IF (MOD(A(I),2).EQ.O) NEVEN =NEVEN +1
END

INTEGER FUNCTION ND3(AN)
C .. Scalar Arguments

c INTEGER N --

C Local Salarens .
INqTEGER I(

C

C .Intrinsic Functions.
INTRINSIC MOD
ND3 = 0 -
DO 100 I 1, N

100 IF (MOD(A(I1), 3). EQ.O0) ND3 ND3 I %

END

104.



,I°°Ito. 7-....N7%

AP°"oo°

THE COMMANDS AND OUTPUTS (ISTAL)

1. ISTAL COMMAND

This appendix contains a quick reference guide to the

commands available in ISTAL.

The following commands control the general operation

. of ISTAL:

• DEbug ('=YES/NO)

• FOlding (=YES/NO)

* Intrinsics (=YES/NO)

• Verbose (=YES/NO)

The following commands are based on the use of

information from ISTYP format symbol tables:

* CAllgraph ( #file name)

* COmmon ( #file name)

* FUllxreference ( #file name)

* SYmbol ( expression)

0 TAble (# file name)

* Warning ( expression)

* Xreference ( #file name)

The following commands are based on the use of

information derived either from the analyzer(ISTAN) or the

results of an instrumented run:

* ANnotated ( #file name)

• Run time ( #file name)

SUmmary ( #file name)

• ASsertions ( expression)

• Listing (=no<list>)

* SEgments ( expression)

STatic ( expression)

• TOtals (= expression)

105

s



2. The output of CALLGRAPH

The following callgraph shows the routine dependencies

of those routines and entry points detailed within the

specified symbol table files.

Where an entry is followed by a number in brackets, the

number refers to the line on which that entry's

expansion has already been shown.

Question mark, this indicates that the routines symbol

tables was 126 provided.

1 TEST
2 MEAN
3 SQUARE
4 S AND
5 MEAN
6 SQRT (Std. Intrinsic)
7 SUm

al:

3. The output of COMMON command

The following table details the usage of common blocks

within the specified symbol table files.

Each common block is given, followed by the name of the

block data program 3 it appears in (if relevant).

$common is unnamed common,

$BLOCKDATA is unnamed block data.

There are no common blocks used.

al :

106

%%

a.,

-a . . .. ..-.-. .. -.' ." . ... ....' . . ." .. . ... , . " . : ." .-. . . . . ... : . '. . .



-[ . "=."=,- "

4. The output of WARNING command

The following table shows warnings drived from the

symbol tables of the specified program units.

Warnings for program unit STAND

Untyped Variable I

5. The output of SYMBOL = TEST command

The following table shows the symbol usage for the

specified program units.

Symbol table information for program unit TEST
Variables

A - REAL (declared as an array)
Explicitly typed
In READ input list
Used as an actual argument
In an expression

X - REAL
Assigned to on LHS of ""
In a expression

Procedures
MEAN - REAL

Explicitly typed
Called as a function
In an expression

SQUARE - Routine
Called as a subroutine

STAND - REAL
Explicitly typed
Called as a unction
In an expressionSUM REAL

- ~Exlity typed.
Called iasya unction

~~In an expression.-.

N. al:

,,"~ %'"

107

m. -4'



6. The outDut of SYMBOL = STAND command

The following table shows the symbol usage for the

specified program units.

Symbol table information for program unit STAND
Variables

A - REAL (declared as an array)
Formalp arameter
Explicitly typed
Used as an actual argument .
In an expressionI - INTEGER

In an expression
Used as a DO-loop index

M -REAL
Explicitl vtyped
Assigned o on LHS of "=" -
In an expression

-N INTEGER
Formal parameter
Explicitly typed
Used as an actual argument
In an expression argmen

Procedures :
MEAN - REAL

Explicitly typed
Called as a function

-. In an expression
SQRT - Generic

Standard intrinsic function
Called as a function
In an expression ..

al :

. '."

-. *. -q
_

", 108
.

. °.

.'4



7 r3 q7; IrF71 [. -v - r -F

%%

7. The output of XREFERENCE command

The following sub-section show the routine dependencies

of those routines and entry points detailed within the

specified symbol table files.

'- TEST"-"
NOT CALLED

CALLED BY: r%"

TEST, STAND
SQUARE <'

CALLED BY:

TEST

STAND
CALLED BY:

TEST

SUM
CALLED BY:

TEST

SQRT CALLED BY:

STAND
al : .-,-

aa

109

-JI x,.. , -'



77T.

8. The output of FULLXREFERENCE command

The following sub-section show the routine dependencies

of those routines and entry points detailed within the

9 specified symbol table files. %*%

* TEST
CALLS:

MEAN SQUARESTAND, SUM
NOT CALLED

MEAN
CALLS NOTHING
CALLED BY:

TEST, STAND
SQUARE .-SQUARE CALLS NOTHING

CALLED BY:
TEST

4 STAND
CALLS:

MEAN, SQRT
CALLED BY:

TEST

SUM
CALLS NOTHING
CALLED BY:

TEST

SQRT Standard Intrinsic)
,. C~ALLED BY:"-"-

STAND

al

110, ,

.. ,,. .

-. ::.-.4

*1 * % ** *



. .. -- - .L - , , - - . * ,- 4 - 6.. . . .... . . ,

-%

,&PENDIX

THE OUTPUTS OF ISTAN

1. Fortran-77 SOURCE PROGRAM L

PROGRAM TEST
REAL A(1 ME SUM, STAND
PRINT 'Ples is a sample test program'
PRINT 'Please input 10 real numbers:-
READ *
X=MEAN(A10) ,
PRINT * The mean is : ,XX=STAND Ai)
PRINT * the standard deviation is :',X
CALL SQ(JARE( A, 10)
PRINT ,' The square of the numbers are : , A
X=SUM(A ,10
PRINT* Te sum of the squares is : ',X .'-X=STAND( , .')
PRINT *, he standard deviation is :'X
STOP
END

SUBROUTINE SQUARE( A,N)
REAL A(N)
INTEGER I N
DO 100 I=iN
A(1. =AI) * A( I)100 CONTINUE :
RETURN
END _.

REAL FUNCTION SUM(A,N)
-REAL A(N)
INTEGER I,N
SUM=O
DO 100 I=1,N .- ,
SUM = SUM + A(I)

100 CONTINUE
RETURN
END .$-N
REAL FUNCTION MEAN(A,N)
REAL A(N)
MEAN=0
DO 100 I=1,N

100 MEAN=MEAN/N
END

REAL FUNCTION STAND(A,N)
REAL AN)
INTEGE
REAL M MEAN
M=MEAN(A,N)STAND=O
DO 100 I=I N

100 STAND=STAND+(A( I )-M)**2
STAND=SQRT(STANDZN .4 .
IF (STAND. EQ.0) RETURN
END

%J . 4.

.4

.4.1



J P . n A .*-

2. The Instrumented program execution result

This is a sample test program

Please input 10 numbers

1 23 45 67 8 910

The mean is :5.500000

The standard deviation is 2.872281

The square of the numbers are :

1.00000 4.00000 9.00000 16.00000 25.00000

36.00000 49. 00000 64. 00000 81.00000 100.00000

The standard deviation is 32. 41990

-~ SEGMENT EXECUTION FREQUENCIES -CURRENT

0 1 2 3 4 5 6 7 8 9

TEST

-~~ Ox1
SQUARE

Ox 1 10 1

Ox 1 1

MEAN

Ox 3 30

lx 3

STAND

lx 2 20 2 0 2

SEGMENT NOT EXECUTED

14
FRRNSTOP -

112

S.4



3. The output of LISTING command

The following listing of the instrumented program has been

annotated with the segment execution frequencies and

assertion failure counts taken from the file

#SAMPLE. DAT
SEGMENT 1: 1- '

PROGRAM TEST
REAL A(.1) MEAN, SUM, STAND
PRINT * ,Tis is a sample test program'
PRINT * 'Please input 10 real numbers:'
READ * "
X=MEAN(cA10) ,.-.
PRINT The mean is :1,X
X=STAND( 10)
PRINT * 'the standard deviation is :',X
CALL SQ(JARE(A, 10)
PRINT *,'The square of the numbers are

A
k=SMA,0
PRINT *, Te sum of the squares is :',X
X=STAND(A 10)
PRINT *,'the standard deviation is :,X
STOP

END

SEGMENT 2: 1
SUBROUTINE SQUARE(A,N)
REAL A(N)
INTEGER IN

DO 100 I = 1,N
SEGMENT 3: 10= A(I) * A(I)

100 CONTINUE
SEGMENT 4: 1 RETURN -

END
SEGMENT 5: 1

REAL FUNCTION SUM(A,N)
REAL A(N)
INTEGER I,N
SUM = 0 "'

DO 100 I = 1,N
SEGMENT 6: 10

SUM = SUM + A(I)
100 CONTINUE

SEGMENT 7: 1
RETURN
END

SEGMENT 8: 3
REAL FUNCTION MEAN(A,N)
REAL A(N)

MEAN = 0
DO 100 I 1 1,N

SEGMENT 9: 30
100 CONTINUE

SEGMENT 10: 3
MEAN = MEAN/N
END

113
,..P,.

p. "

-p W " - - - """ - " -- . " " " . ' . - . m . -. ". . - . . . . . . .•. ... . "



11

SEGMENT 11: 2
REAL FUNCTION STAND(A,N) '

REAL AMN
INTEGER N 5
REAL M,MEAN

MEAN =MEAN(A,N)
STAND =0
DO 100 I 1,N

SEGMENT 12 :20
100 STAND = STAND + (A(I)-M)**2

SEGMENT 13 :2
STAND = SQRT( STAND/N)

SEGMENT 14 :0
IF (STAND. EQ. 0) RETURN

SEGMENT 15 :2
END

114

.ft OF



S7,e
- .- . -.

4. The output of SEGMENT =

The following table shows the execution frequencies for the

various segments. The first count for each program 3 is also

the invocation frequency for that 3.

SEGMENT EXECUTION FREQUENCIES

NAME FIRST SEG EXECUTION FREQUENCIES

TEST ( 1) : 1

SQUARE ( 2): 1, 10, 1

SUM ( 5) : 1, 10, 1

MEAN ( 8) : 3, 30, 3

STAND ( 11) 2, 20, 2, 0, 2

5. The output of TOTALS =,

The following table gives information derived from the

static and dynamic statistics specified. .-

SUMARY TOTALS

--PROGRAM UNIT--------- STATEMENTS ----- -- -- SEGMENTS- - - .5 .'

INVOCATION TOTAL EXEC- PERCENT TOTAL PERCENT

NAME FREQUENCY NUMBER UTABLE EXECUTED NUMBER EXECUTED

TEST 1 17 15 100 1 100

SQUARE 1 8 5 100 3 100

SUM 1 9 6 100 3 100

MEAN 3 7 5 100 3 100 ".-'

STAND 2 11 7 100 5 80

-TOTAL 8 52 38 100 15 93

115 ..'

I' "

. . .,.9% . . .. , . - ... -.- -. . .. . .. .. . . .. - . . ' . , . . , . . . . . - .



.7~~*. 77 . ...

'% ..

6. The output of STATIC = TEST

This table contains a count of the statements in the

specified program 3, split by statement type. |

STATIC SUMMARY FOR PROGRAM UNIT TEST

ASSERTIONS 0
COMMENTS 1
ERRORS 0
TOKENS 114
STATEMENTS 17

ASSIGN 0 GO TO 0
BACKSPACE 0 --(ASSIGNED) 0
BLOCK DATA 0 --(COMPUTED) 0
CALL 1 -( UNCONDITIONAL) 0
CHARACTER 0 IF 0
CLOSE 0 --(ARITHMETIC) 0
COMMON 0 -- BLOCK) 0
COMPLEX 0 LO ICAL 0
CONTINUE 0 IMPLICIT 0
DATA 0 INQUIRE 0
DIMENSION 0 INTEGER 0
DOUBLE PRECISION 0 INTRINSIC 0
DO 0 LOGICAL 0
ELSE IF 0 OPEN 0
ELSE 0 .PARAMETER 0
ENDFILE 0 PAUSE 0
END IF 0 PRINT 7 -.
END 1 PROGRAM 1
ENTRY 0 READ 1
EQUIVALENCE 0 REAL 1
EXTERNAL 0 RETURN 0
FORMAT 0 REWIND 0
FUNCTION 0 SAVE 0
--CHARACTER 0 STOP 1
--COMPLEX 0 SUBROUTINE 0
--DOUBLE PRECISION 0 WRITE 0
-- INTEGER 0 ASSIGNMENT STATEMENTS) 4
--LOGICAL 0 STATEMENT FUNCTIONS) 0
--REAL 0 URECOGNIZED STATEMENTS) 0
--UNTYPED 0 -0

• 1 v %,

116

~ .... ~ . j.. ~~ S~.' l ~ : -0o - - :o-



... . -.. .. .. .. " -"- - . .- - . ' -. -.

7. The output of DYNAMIC = TEST

This table contains a count of the statements actually

executed in the specified program 3, split by statement

type.

DYNAMIC SUMMARY FOR PROGRAM UNIT TEST

ASSIGN 0 IF 2
BACKSPACE 0 --(ARITHMETIC) 0
CALL 1 -- BLOCK) 0
CLOSE 0 -- LOGICAL) 2
CONTINUE 0 INQUIRE 0
DO 0 OPEN 0
ELSE IF 0 PAUSE 0
ELSE 0 PRINT 0
ENDFILE 0 READ 0
END IF 0 RETURN 0
END 1 REWIND 0
GO TO 0 STOP 0

o-ASSIGNED) 0 WRITE 0
COMPUTED) 0 ASSIGNMENT STATEMENTS) 26
UNCONDITIONAL) 0 UNRECOGNIZED STATEMENTS) 0

-p

WWI

117

'I-"



r' ~r r .-- - - - - - r 'r C r r r r- -

LIST OF REFERENCES

1. Cowell, Wayne R. and Miller Webb C., T TOOLPACK.
Prospectus, Argonne National Laboratory, 1S79.

2. Petersen Perry, roject Control System Datamation 25
June 1974.

3. Boehm, Barry W.,_ oftware Engineering n ,
Prentice-Hall, Inc. 1981.

4. Ford,B. , Rault,J.C. and Thomasset,F. , ToolsMethods
F -d Laa acre s Scientifi and Encrineerina
• pu o, Elsevier Science Pubishers B.V. 1984.

5. Boyle, J.M. and Dritz, K.W., An Automated Progammig
SystM t2 f 1 the Developmen of Qua n..
M ethemat a o t are, Information Processing 74,
North-Holand publishing Company, 1974.

6. Fosdick, L. D. and Osterweil, L. J. -Dt .a,ysi :_n software re ailt, T0-330, __-CI
Comutngsurveys 8, (3) 976.

7. Osterweil Leon J., Hague, Stephen, and Miller, Webb.,
TOOLPACK Architetu9ral Design: The Users' geective,Argonne National Laborato3ry, 1982. •.-.-

8. ~ a ri-. Sn8. Wenger,Peter(editor), Research Dietln in Software ""'''
Teholg, MIT Press, Cambridge, MA, 197/9.-""-'

9. Kernighan, Brian W. and Plauger, P.J. Software Tools,

Addison-Wesley Publishing Company, 1906.-

10. Meyer B i of Package Design, Communication "-'-$
ACM, 7OL. 25, no, uly 1982. Couc n

11. Vick, C.R. and Ramamoorthy C.V., Handbook 2 S areEniern, Van Nostrand Reinhold Company ,98 9T.

12. Senn, James A., Analysis and Desian I Informati.n
Systems, McGrowHill Book Company, 1984.

13. R.M.J. Iles, TIEECODE Installer's Guide, NAG Technical --Memorandum :NNAG/TT-TIG, 1eh.n

14. Cowell, W.R. Haque, S.J. and Iles, R.M.J., TOOLPACK1
Introductory Quid, 1985. "'""

1', 8
118 ,

2"



15. 4STLX-Fortran 77 Scanner Us Guide, NAG Technicalmemo randium:. NAGT24TL I 19v --. --.- .

16. Moore, John B. and Makela Leo J., Structured Fortran

with WATFI, Reston PublisAing Company, Inc., 1981. -

17. DeMarco, Tom Structured A.yis and System
Soecification, Yourdon Inc, 1978. - .

- . .

18. ;STYP-Fortran 17 Parser Users' Guide, NAG TechnicalMemorandum: NAGiT38-TY19I85.

19. Iles( R.M. J. and Hague, S.J. TOOLPACK :hs -
public release, Numerical Algorithms 0For,

20. STPL!IGSTPO Users' Gui"e, NAG Technical
em: NAG/T L 19

21. I STDS-Dec lAration Stanardiser Users' Guide, NAG
Technical Memorandtum: NAG/T36-TDS, 1985.

22. VA Fortran Users' Guide, Digital EquipmentCorporation, 198. . -

23. ISTT-Precision Transfo e sers' Guide, NAG
Technical Memorandum:NAGU/TlF-TPT-g1=5.

24. ISTAL-Documentation e Aid Users' Guide, NAG
Technical Memorandum: NAG/T41-

25. ;STAN-Eectjon 6nalvser Ues Guide, NAG Technicalmemorandum: NAG/T4;2-TAN, 19 !.85 -.. , "

26. ISTCE-TOOLPACK Command c Users.' Guide, NAG

Technical Memorandum:NAG/TE , 1

119

I - .



- *' . . r "  r. '-< . r. . . .. .- "? - " " " ""- -'.'

, .. ,.-.-- *-*.-*-...*...

'" I'

p .'.-

INITIAL DISTRIBUTION LIST

No. Copies .

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22314

2. Library, Code 0142 2
Naval Postgraduate School
Montery, California 93943-5000

3. Computer Technology Programs,Code 37 -
Naval Postgraduate School
Monterey, California 93943-5000

4. Prof. Gordon H. Bradley Code 52BZ 10
Department of Computer Science
Naval Post raduate School -
Monterey, alifornia 93943 --

5. LCDR. Paul Callahan, Code 52CS 1
Department of Comptuer Science '.
Naval Postgraduate School
Monterey, California 93943-5000

6. Naval Academy Library 2 -

Jinhae City, Gyungnam 602-00
Republic oy Korea

7. LT. Kim Jung Sik 6
25/4 306-51, SADANG 4 DONG,
DONG-JAK KU, SEOUL,
Republic of Korea

8. LT. Hur Seong PilSMC 2246 NPGS -.Monterey CA 93943-5016

120

e-. e- -" P

.- '

|7



-~ J.. ~ -~ ., -. - -. -

1'
*b.

~9.

I'

-I

I'.
-I

-w

9

F
'C

'C

9.

V
?* .\
~jC

-C-,

e -.

.d Y'Ai', : ~. C~J ~:d:~:~:~ ~ ~ -' -, - ~"'-~-~--- -'~" ~ " '


