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I. INTRODUCTION

The effect of noise on the spectrum of a signal is
obvious to the observer. It appears to include many random
components of various sizes. In other words, it 1looks
"noisy". Figure 1.1 shows the spectrum of a noise corrupted
binary sequence. The ordinates of this spectrum are the
squared magnitudes of the DFT components of the sequence.
Throughout this thesis, spectra will be presented in this
manner. They are commonly refered to as periddograms. wWhen
analyzing the spectrum of a signal, the guestion naturally
arises of the significance of spectral components. The
researcher must distinguish the spectral components which
represent the signal being studied £from those which are
merely random perturbations caused by noise. This research
is primarily concerned with finding a method to
quantitatively evaluate the statistical significance of the
components of a spectrum.

This fesearch will restrict attention to the analysis of
a small, but important class of periodic binary sequences,
namely, pseudo-random sequences and some close relatives.
These sequences, their properties and their applications
will be described briefly. Some methods used to generate
these sequences will also be explained.

The possible effects of noise on the spectral content of
such sequences will be briefly investigated. It is assumed
that the sequence is subjected to the types of noise which
might be expected to occur in a communications system making
use of such a sequence. No detailed knowledge of the system
is assumed. The only information available is a garbled
version of the original sequence. Note that this is a
highly simplified situation in that no provision is made for
data modulation. Future research will do well to consider
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Figure 1.1 Typical Noise Corrupted Spectrum.

various methods of data modulation as well as possible noise
sources. In order to facilitate proceeding with the
quantification of spectral component significance, the
further simplifying assumption is made that all noise
effects can be modeled as independent identically
distributed Normal random variables.

In conducting harmonic analysis to reveal the periodic
structure of a time series in the presence of noise, random
fluctuations alone can account for some harmonic components
being greater than others. The researcher must therefore
use some means to determine the plausibility that a
particular component represents a real periodicity. In
1929, R.A. Fisher developed a test for the significance of
harmonic components [Ref. 1]. Over the past 20 vyears
several researchers have applied Fisher's test in a variety
of different ways [Refs. 2,3]. Fisher's test will be
briefly presented along with some of these more recent

.. M AN ) 3 &l ) ) g j NXT, ! LN
DN O U O O O A UAN NN N K RN, O M C O M N, U O 0, Tl b, &




;3 applications. This thesis proposes the application of
e Fisher's test in a new way which is more flexible than the
= methods employed by previous researchers. This will provide

the researcher with more meaningful quantitative information
o upon which to base his conclusions. This proposed method is
s then applied to the problem of estimating the period of
i pseudo-random and related binary sequences in the presence >
of noise.
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" I1. DATA SEQUENCES
f" : This research 1is first concerned with the analysis of
§; periodic binary sequences which may be referred to in
who - general as pseudo-random sequences. These sequences are
, called pseudo-random because they exhibit certain properties
a? associated with randomness, namely, balance, run and
3? correlation properties. The property of balance means that
=$; each period of a sequence contains approximately as many
_ zeros as ones. Thé run property refers to the occurrence of
?{ strings of consecutive ones and zeros. One half of the runs
'ﬁ present are of length one, one forth are of length two, one
h& eight are of length three and so on. Correlation refers to
*, the property that if a sequence is compared with a cyclic
%5 shift of itself, there will be an approximately equal number
f:j of agreements and disagreements, except for the case when
f; the cyclic shift is a multiple of the sequence period. In
¢ that case all bits will agree. As such their spectra appear
TJ similar to that of noise or similar to a truly random
3§ ‘ sequence. These sequences and near relatives were chosen
fj’ for study because of their importance in a wide variety of
. applications. Examples of applications of these sequences
ﬁa include spread spectrum systems and secure communications
s; among many others. Specifically, the sequences considered
55 are (maximal) m-sequences, Gold codes and de Bruijn or full
. sequences. [Ref. 4: pp. 24-27]
o
t A. M-SEQUENCES
hz Any periodic sequence may be generated by a linear
A feedback shift register [Ref. 5: p. 411]. For a shift
o register of n stages, an m-sequence of length 2**n =1 may be
::Z generated. m-sequences are termed maximal because they are
‘ﬁ: the longest sequence which may be generated with a specified
N
o
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O number of feedback shift register stages using a linear
L feedback rule. To further describe the structure of
. m=-sequences, consider the following. If a window of width n
s 8% equal to the number of stages in the shift register is slid
along the m-sequence, in one period of the segquence all

:%g possible non-zero binary n-tuples would be observed. The .
o various n-tuples can be viewed as elements of a finite
:fo field. The successive n-tuples represent powers of a
ﬁﬁi primitive element in the multiplicative group of the field.
%&ﬁ Thus the m-sequences represent the structure necessary to
o determine - multiplication within the field. Addition is
i&ﬁ‘ accomplished by modulo-two component-wise addition of the
&?' binary n-tuples. m-sequences play an important part in
ﬁ%‘ spread spectrum systems as well as in other applications.
v The extensive mathematical underpinnings of the design
fﬂA process of an m-sequence will nét be discussed here.
,gf% Suffice it to say that a feedback shift register may be
Eg: designed to generate the m-sequence using a primitive
) polynomial described by Galois field theory. At each clock ’
?f{ signal the storage registers pass their bits along to their
%&: successor locations. The bit computed from the current
g;: contents of the registers using the polynomial feedback rule
is returned to the leftmost register. An example of a
&$} feedback shift register designed to generate the period 7
&ﬁ; m-sequence ...0010111001011100... using the polynomial
;ﬁ& f(x)=x3+x+1 is shown in Figure 2.1. In this figure, the
A boxes represent storage devices (flip-flops) and the circle
35- represents a modulo-two adder. Upon receipt of each clock
iﬁ% pulse, the storage devices simultaneously shift their
:ﬁp present contents to the right. The output of the adder is
I fed back to the left most storage device.
gﬁs The m-sequences used in this research are generated by
:$§, an interactive FORTRAN program. Appendix A contains a copy
ﬁ%& of this program. This program prompts the user to input the
it 12
9
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Figure 2.1 Feedback Shift Register.

coefficients of a primitive polynomial which defines the
feedback paths of the feedback shift register. The program
then generates as many bits of the m-sequence as the user
desires. Tables of polynomials can be used to input
polynomial coefficients for any desired seguence period
(less than 2**15 =-1) [Ref. 4: pp. 62-65]. Longer sequences
can be constructed, but are not germane to this study.
Figure 2.2 shows the spectrum of a period 15 m-sequence

derived wusing a 512 point DFT. Signal components are
smeared over several adjacent frequencies because the period
of the sequence does not evenly divide the number of points
in the DET. It should also be noted that the spectrum
appears quite well structured. This simple, orderly
spectrum can be anticipated because of the simplicity of the
theoretical power spectral density. The power spectral
density is easily obtained by taking the Fourier transform
of the periodic autocorrelation function (applying the
Wiener-Khinchin theorem). The periodic autocorrelation
function is composed of a constant value of =-1l/period with a
triangle function of height one occuring once each period.
' Transformed, the resulting power spectral density is
r composed of discrete elements occuring at intervals of
l/period within a sinc squared envelope. Although the
spectrum obtained by the DFT is not a good estimate of the

13




theoretical power spectral density, its simple structure is
a reflection ¢f the simplicity of the theoretical spectrum.
[Ref. 5: pp. 387-388]

o)
8_
Ln t
o)
(DO
C 8
o<
o
" 8
2]
)]
cE
S S
BER
Y
Co
28
>
© T 1 T InLI i*m"'l T - T ILI T lk
D 16 32 48 64 80 96 112128 144 160 176 192 208 224 240 256
Pertod Values are 512/k

Figure 2.2 Spectrum of an m-Sequence.

B. GOLD CODES

Gold codes are designed chiefly for application in
spread spectrum, multiple access systems. They are useful
in this application because of their well controlled cross
correlation properties, (i.e.they have a three valued
cross-correlation function). A Gold code is simply the
modulo two sum of an appropriately chosen pair of
m-sequences of the same period. These sequences are termed

“ a preferred pair. For a preferred pair of m-sequences an
ey entire family of Gold codes can be generated by shifting the
4 relative phases of the m-sequences. A complete Gold code

,',‘- v ’ 14
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family consists of 2*%*n +1 codes, where n is the number of
stages in the feedback shift registers. An example of a
Gold code generator is shown in Figure 2.3. Here the
preferred pair of sequences are generated by the polynomials
f(x)=x5+x2+1 and f(x)=x%+x*+x3+x2+1, both of which produce
m-sequences of period 31 and hence the resulting Gold code
is also of period 31. ([Ref. 5: pp. 404-407]

I 1 I I CLOCK

OUTPUT

N,
7

' 1 T

Figure 2.3 Gold Code Generator.

An interactive FORTRAN program was written to generate
Gold codes. A copy of this program may be found in Appendix
B. This proegram is composed of two m-sequence generators
and a modulo-two adder. Depending upon the initial lecad
specified for the feedback shift registers of these two
generators, m-sequences of different phases are produced.
When the m-sequences are added together, a Gold code is

produced. An example of a Gold code spectrum is shown in
2 Figure 2. 4. This spectrum was derived using a 512 point
Aot DET. This Gold code is a period 31 sequence generated by
4Q , the generator shown in Figure 2. 3. It is important to note

15
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that the spectrum of a Gold code is not nearly as well
structured as that of an m-sequence. This fact may again be

v . m s ww

anticipated by considering the more complex nature of the
theoretical periodic autocorrelation function of a Gold
. code. It 1is a many valued function which depends on the
\ particular Gold code for the determination of those values.
: Taking the Fourier transform results in a spectrum which is
1 difficult to describe mathematically. The spectrum also
depends on the particular Gold code being examined. It is
. therefore no surprise that the spectrum of a Gold code
t obtained by the DFT is not nearly as simple and well
structured as that found for an m-sequence. In the example
pictured, the Gold code has 12 ones and 19 zeros in each

- v

period instead of the 16 ones and 15 zeros present in each
period of the m-sequences used to generate it. It is poorly
balanced. Gold codes do not exhibit the properties of
pseudo-randomﬁess nearly as well as m-sequences, Even
! though Gold codes may be found which are well balanced, they
still do not exhibit the other pseudo-randomness properties
and their spectra are not well structured. )

i el

C. FULL SEQUENCES
Full sequences are a third example of shift register

™
-

sequences considered. These sequences are of the non-linear
. feedback type. Because these sequences are more complex to
’ analyze and in general more complex to generate, they find
application in secure communications. In structure, full
sequences are similar to m-sequences. They are sequences of
length 2**n with every binary n-tuple appearing in one
period of the sequence. A full sequence can be constructed
from any m-sequence by simply adding one additional zero to
the longest string of zeros present. This is by no means
the only method available to generate full sequences.
. Numerous algorithms for generating full sequences are
. available in the literature. [Ref. 4: pp. 128-141]
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Figure 2. 4 Spectrum of a Gold Code.

FORTRAN Programs were
by adding a zero to a
Appendix C contains an
example of the spectrum
Figure 2.5, derived using

written to generate full sequences
previously generated m-sequence.
example of such a program. An
of a full sequence is shown in
a 512 point DFT. 1In this case the

full sequence was found by modifying the m-sequence
generated using the polynomial f£(x)=x*+x+1. The resulting
full sequence is of period 16. Note that since the period
of the full sequence evenly divides the length of the DFT,
no spectral smearing is observed.

DR .
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IITI. NQISE EEFFECTS

L .
gﬁ y The sequences described in the previous chapter are
g% assumed to have been used in a communications system and
v garbled versions of them have been recovered. Once again,
- no specific knowledge of the communications system or
;%ﬁ channel is assumed or developed in this thesis.
%L Observations are made of the effects of noise on the
ek spectrum of the sequences discussed in Chapter II. Many
4 error scenarios by which the original sequence could be
,%ﬁ altered are investigated. Some of the more important
)ﬁ; situations are described in what follows.

Y

e A. ADDITIVE BIT ERRORS

vy One possible manner in which a sequence could be altered
‘h;' is that individual bits are subjected to noise and therefore
rq; are incorrectly recovered. Receiver thermal noise or
o channel noise could conceivably cause such individual bit
{5§ errors to occur in some random fashion.
~§: A FORTRAN program was written to simulate this error
é& pattern and to study its effect on the spectrum of a
Tk sequence. Appendix D contains a copy of this program. The
f“' rate at which errors are introduced is set interactively by
é?? the user. The IMSL subroutine GGUBES is used to generate a
%; random number for each bit of the input data sequence. Each
e random number is tested to see 1if it falls within a range
éi defined by the user specified error rate. 1If it does appear
a;; in that range, the corresponding bit is reversed. In this
a_: manner, each data bit is subjected to the same probability
0 of error. The original sequence is modified to reflect
o these random bit errors and its DFT is computed using the
;r_ IMSL subroutine FFT2C and is plotted.
b
g
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Thorough testing was carried out for the three classes
of sequences of chapter II at various error rates. Figures
3.1, 3.2 and 3.3 show examples of these tests for the éimple
case of a period 16 full sequence formed from the m-sequence
generated by f(x)=x*+x+1. The probability of error used was
16.6%, 25% and 33% respectively. The introduction of random
bit errors is reflected in the noise floor which may be
observed at all frequencies. As more errors are introduced,
the noise floor increases while the signal components
decrease until the signal is eventually lost in the noise.
As the error rate changes, the 1location of the signal
components remains constant while their magnitudes, rélative
to the noise components, change. Note that magnitudes on
the ordinate axis decrease as the error rate increases in
each successive example. Note the large component at k=148
in Figure 3. 3. This component is due to the noise alone.
In this way errors can be made in spectral analysis due to
the effects of additive bit errors.

B. BURST ERRORS -

Another means by which a sequence can be altered by
noise is that bursts of errors might occur. Channel noise
could account for such an event. This type of noise may
also more closely model the case of a structured noise
source such as an intelligent jammer.

A FORTRAN program was written to simulate the occurance
of bursts of errors. This program may be found in Appendix
E. To run this program the user must input the probability
of a burst occuring, the length of each burst and the
probability of bit errors occuring within a burst. As the
program moves sequentially through the data sequence, a
random number is generated for each data bit using the IMSL
subroutine GGUBFS. If that random number falls within a
range defined by the specified probability of a burst
occuring, the program jumps into a burst error loop. The
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’.333 Figure 3.1 Additive Bit Errors: 16.6% error rate.
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i Figure 3.2 Additive Bit Errors: 25% error rate.
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Figure 3.3 Additive Bit Errors: 33% error rate.

ﬁ first and last bits of the burst are changed to define the
_ bounds of the error burst. All data bits within the burst
n are subject to error with the probability specified. This
0 is accomplished using a random number generator in the same
-ﬁ fashion as described above for a burst occuring. The
program then jumps back into the data sequence immediately
following the burst. When the entire sequence has been
subjected to bursts of errors its DFT is computed using the
IMSL subroutine FFT2C and is plotted.
Numerous tests were also carried out for the burst error
R case. One such test is shown in Figure 3. 4. For this test
5} ' the same periqd 16 full sequence is used as was used in the
o additive bit error examples. The probability of a burst
occuring is 10%, the length of the burst is 17 bits and the
o probability of error within each burst is 33%. This results
¢ in 131 errors occuring, or an overall error rate of 25%.
o This is comparable to the situation in Figure 3.3 for the
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additive bit error case. As can be observed in this
example, the effect of bursts of errors on the spectrum is
quite similar to that of additive bit errors. A noise floor
is again observed at all frequencies, with the magnitude of
signal components diminished. Signal components still
appear in their proper locations. In all respects, the
effects of Dbursts of . errors on the spectrum is
indistinguishable from that of additive bit errors.

[en)
S _
o
N
o
=
O 3
30—'
2
W
S
GJ —y
5 2
>3
o
.2
c 3
owwn
0
- ﬂMJMLLJhLiLhL
© I 1 | { i ' ' i 1 i k
0 16 32 48 B4 80 96 112 128 144 180 176 192 208 224 240 256
Pertod Values are 512/k

Figure 3.4 Burst Errors.

C. TIMING ERRORS

Another class of error through which a sequence could be
garbled is that a bit of the sequence might occasionally be
lost or inserted. For example, poor synchronization in the
receiver could result in sampling outside the proper bit
interval and thereby result in the loss of a bit. Poor
timing could also lead to sampling twice during the same bit
interval and thereby result in the insertion of a bit.
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Timing errors resulting in the loss of bits in a random
fashion are modeled by a FORTRAN program. This program may

be found in Appendix F. To simulate this situation the
program assumes that sampling normally takes place at the

:' exact middle of a bit interval. At the prompting of the
7,
_&?s program the user sets a bound on how far the sampling

e instant could possibly slip forward in one bit interval.
The program then moves iteratively through the sequence and

ﬁ§ generates a random number during each bit interval. This
5&? random number is generated by the IMSL subroutine GGUBFS and
! is constrained to lie within a bound set by the user. This
o random number is tﬁen added to the sampling time, which
‘$E starts off at the middle of the bit interval. If the
iyh modified sampling time falls outside the bit interval, that

ok bit is considered lost and is therefore removed from the
sequence. In this manner the timing interval is continually

:,iz sliding forward a random amount during each bit interval and

(ﬁ: occasionally a bit is lost. The DFT of the resulting

gh sequence is then computed using the IMSL subroutine FFT2C

s and is plotted.

iﬁ, Tests carried out with this error model reveal some

Zﬁﬁ significant differences from the previous models considered.

S Random removal of bits from a periodic sequence causes the

me period of the sequence to fluctuate. Inspection of the

%$  signal spectrum reveals that the location of signal harmonic

%’ components is changed. For the removal of even a few bits,

kﬁ; the fundamental frequency can be shifted out of its proper

“w location. This shifting becomes progressively worse at
: higher harmonics of the fundamental.

f?% Spectral smearing is another effect observed. The
i signal components are spread out over several adjacent

v frequencies. This effect also becomes progressively worse

‘ga in higher harmonics.
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Figure 3.5 shows an example of these phenomena for the
same period 16 full sequence used in previous examples. The
bound on how far the sampling time can slip forward in one
sampling interval is set at 0.3. This results in the
deletion of 119 bits of the sequence. Note that the higher
harmorics of the fundamental frequency are lost in the
noise.

Magnitude Squared

Y P 1Y |le imi...,.il mlf il k

0 16 32 48 64 8C 96 112 128 144 160 176 182 208 24 247 256
Pertod Values cre 512/k

Figure 3.5 Random Bit Deletions.

In a similar fashion, a FORTRAN program was also written

to model the random insertion of bits into the sequence.

This program may be found in Appendix G. In this case, the
sampling instant is allowed to slip back a small random
amount during each bit interval. If the sampling time falls
within the previous bit interval, that bit is inserted into
the sequence again. The timing interval is therefore
continually sliding back in a random fashion and a bit is
occasionally repeated. A DFT is computed of the resulting
sequence and the spectrum is plotted.
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tl In the case of random bit insertions, tests produced

fﬁ; results analogous to those found in the case of random bit

deletions. The only difference is that the period of the

e sequence 1is tending to grow longer and therefore the
.ﬁ% spectral peaks shift in the opposite direction.

iﬁi As an example of the effect of random bit insertions,

* Figure 3.6 shows the spectrum of the same period 16 full

R sequence with 119 bits inserted at random. The bound on how
¥
i& far the sampling time can slip back in one sampling interval
gt .
el is set at 0.3.
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4 Figure 3.6 Random Bit Insertions.
&%ﬁ Another FORTRAN program was written to combine these two
%f timing error models. Appendix H contains this program.
(LMY
:ﬁf This program functions in exactly the same manner as the two
;f previous programs except that during each bit interval it is
ﬁi' equally likely that the sampling time slip forward as back.
:n:k Consequently, a bit is occasionally lost from the sequence
Eﬁ’ and a bit is occasionally inserted into the sequence. The
(s
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. net effect is that of an instability or "jitter" in the

‘% timing.

This case produced some interesting results. Since the
5 . net effect of deletions and insertions left the period
$ relatively unchanged, the harmonic signal components
2 remained in their proper locations. There 1is however
v considerable spectral smearing present and this effect is
o progressively worse in higher signal harmonics. The higher
ﬁf harmonics are also progressively attenuated. Compared to to
:3 effects of additive bit errors and bursts of errors on the

) spectrum, timing errors cause some very different and much
5 more severe alterations. .
W Figure 3.7 is the spectrum of the same period 16 full

R’
iQ sequence used in previous examples. In this example, it has
¢ been subjected to both random Adeletions and random
W insertions of bits. 52 bits have been deleted, while 45
s bits have been inserted.
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? Figure 3.7 Timing Errors.
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D. CONCLUSIONS ON NOISE EFFECTS

From the discussion above it is obvious that attempting
to gather information from the spectrum of a periodic
sequence subject to the effects of timing errors might prove
to be a frustrating endeavor. Future studies could be
conducted to examine sequences subjected to such effects.
It should be easy to tell the difference between
synchronization errors and additive errors for an analysis
of the respective spectra. A further limiting assumption
about noise effects must be made in order to proceed towards
the goal of being able to quantitativeiy evaluate the
significance of spectral components .of a periodic sequence.
All noise processes considered in this thesis will hereafter
be assumed to result in independent identical Normal
distributions for errors in the periodic sequences being
studied. That is, the only error effects allowed will be
random bit errors. Perfect bit synchronization will be
assumed, and hence, the possibility of timing errors is no
longer considered.
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IV. EISHER'S METHOD AND ITS APPLICATIONS

In harmonic analysis, conclusions concerning the
periodic nature of a time series are based on the magnitudes
of harmonic components of the spectrum of the time series.
It can be a difficult and often misleading task to look for
peaks in such a spectrum. Components at the Fourier
frequencies are bound to show many peaks and troughs due to
the fact that they are approximately independent [Ref. 6: p.
110]. The spectrum of a set of purely random numbers will
consist of some harmonic components which are larger than
others by chance alone. One approach to determining the
reliability of the harmonic components of a time series
might therefore be to compare them to the harmonic
components derived from a purely random time series. . This
is the approach of Fisher's test of significance in harmonic
analysis.

In general, a significance test 1is concerned with
deciding whether or not a hypothesis concerning statistical
parameters of a sampling distribution is true. The
following steps are typically taken:

1. A null hypothesis is decided upon.

2. An alternative hypothesis to the null hypothesis is
developed.

3. A statistic, (which is a function of observations
made), is decided upon to test the null hypothesis.

4. A critical region  of the sample space is chosen such
that the probability of a particular sample bein
observed within that region, conditioned _on the nul
hypothesis being true, is very small, This
probability is called the significance level. It is
sometimes expressed as a percentile, which is found by
taking 100%*( -probability?.

S. %Eplyin the test of significance involves rejecting
e null hypothesis when an_  observed sample’ falls

within the critical region. Since_the probability of
a sample appearing is quite small, when the hnull
hypothesis "is assumed "true that _appearance is

regarded as _evidence against the null hypothesis.
[Ref. 7: pp. 103-105]




A. FISHER'S METHOD

. In 1929 R.A. Fisher, [Ref. 1] developed a test for
' significance in-harmonic analysis. To provide the necessary
background, a brief outline of Fisher's test is presented. -

3¢ For a detailed derivation of the formulas used in Fisher's

:;ﬁ test see Grenander and Rosenblatt [Ref. 8: pp. 91-94].

'Lf Consider a series, x(t)=s(t)+n(t), t=1,2,...N, which has
been sampled at equal time intervals. The series s(t) is

,Sﬁ deterministic, while the series n(t) is composed of

L0 . . .

4 independent identically distributed Normal random variables.

v.”.

‘ﬁﬂ n(t) is N(O,var), where the variance is unknown. The

L objective of this test is to make some statistical inference

lmﬂ concerning the periodicity of s(t). The null hypothesis is

;ﬁ% that only n(t) is present, that is, the observed sample has

-Fi_ no periodic activity. The alternative hypothesis is that

- periodic activity is present in the observed sample.

S‘E The sequence x(t) may be decomposed into its harmonic

i': components using the Fourier series representation. This is

l&Qu accomplished in the following manner: )

Syt m

o x(t) = a,/2 + E [akcos( 2mkt/N) + b, sin( ant/N)]

e k=1

.;:.'.::

' where m is the total number of harmonic components

fﬂ% (m=(N=-2)/2). Also, the coefficients a, and b; and the

§§‘- constant a, are computed as follows:

)

>

. a, = 2/N x(t)

Qg'i, t=1

ad

l}il‘: N

» e Y

i a, = 2/N z x(t)cos(2mkt/N)

o t=1

s

:: o N .

R, b, = 2 t)sin( 2mkt

:,:,:,‘: k = 2/N x( t)sin(27kt/N)

o t=1

szi:i
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i The harmonic amplitude, ¢y, is defined as:
ck = (a2+b2)}

The test statistic used in Fisher's test is the normalized
. harmonic amplitude, gy, defined as:

m

Y

i k 1

A normalized quahtity is used to remove the effect of the

R unknown variance and to restrict the values of this test
ﬁﬁ- statistic to lie between zero and one. The values of gyiare
LI

o] re-ordered according to size with g]>g2>-...>qg,.

Fisher derived the following expression for the
probability that the largest normalized harmonic amplitude,
h} g1, is greater than a parameter x. This probability is
ﬁﬁ' conditioned on the null hypothesis being true, that is, only
A noise is assumed to be present.

% P(g;>x) = m(1l-x)ml~ m(m=1)(1-2x)m-1+...

‘e 2

S

veet (=1)"lpr(1-Lx)m-1 (4.1)
5& The variable L. in this equation represents the largest
o integer less than 1/x. This equation is solved for x in

terms of p and m. It is then used to generate tables of x

jﬁ for a few particular values of p and for various values of
bg m. Fisher recommends using p=0.05 and various values of m
q*v depending on the number of data points available.
w Since p represents the probability that noise alone
ﬁﬂ could account for g; being greater than x, 1l-p suggests how
ga much confidence could be placed in the assumption that a
we : periodicity of the signal caused this. Therefore, 100*(1l-p)
R
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S is called the significance level percentile. In

fﬁ recommending the use of p=0.05, Fisher suggests that
R harmonic components within the 95th percentile are of
) interest. .

&& A simple example can best illustrate how Fisher's test
g& is applied. Suppose that a data set is examined to
’gﬁ determine the presence of a periodic signal within the 95th
o, percentile. The value of ¢g; is computed from the data.
ﬁé, Entering the table for p=0.05, the value of x is extracted
ﬁk; which corresponds to the number of data points used. If it
t Y is observed that g1<x, no signal periodicity is present:
%% the null hypothesis is accepted. If g;>x, a signal
%gﬁ periodicity is assumed to be present in the 95th percentile:
3$ the null hypothesis is rejected and the alternate hypothesis

i is accepted.
Later, Fisher's test was extended to test for the

‘ %,

X

3?§ significance of the g values of lesser magnitude [Ref. 9].
’ 1}

;L For the rth largest normalized harmonic amplitude, g,, the
e probability that g, exceeds a parameter x is given by:

X L

‘;::s j-r ‘e ym-1

ey p(gr>x) = m! :E: (=1)77" (1-3x) (4.2)
R (r-1)! J(m-3)t(j-r)!

j=r

o

%éj Once again, this is conditioned on the presence of noise
M

ﬁ&, alone. This formula actually indicates the probability that
%)

!J& the r components g1, g2, '** gy, are greater than a parameter
e X. This extended version of Fisher's test is used in the
:b"l < [] . <

Y same manner as Fisher's original test.

0.3

&i If independent identical normal distributions for errors
¥

‘wé cannot be assumed, then Fisher's test still provides a
“% reasonable approximation to a measure of significance
D [Ref. 6: p. 111].
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:ﬁg B. APPLICATION BY NOWROOZI

fﬁﬁ In 1966, Fisher's test was applied by A.A. Nowroozi
(Ref. 2] to the problem of estimating the period of

o eigenvibrations of the earth. T6 facilitate his analysis,

%ﬁ. Nowroozi first developed tables of x values for the p and m

14 .

~ﬁ§ ' values of interest in his study. His tables were designed

’ to test for the presence of the largest harmonic amplitude
a5 only.

%lf Nowroozi proposed two practical applications of Fisher's
1%5 test.
"y . . .

' 1. First Application
.aé The first practical use of Fisher's test proposed
&ﬁ was almost identical to the method presented by Fisher. To
x‘
faz. briefly mention it's key points:
=" 1. A decision is made prior to application of the test
- about the significance level of interest.

{'* 2. Next 1 is coemputed and compared to the tabulated

il ggrame er X. I 1>x the associated period is within

QQ e percentile indicated and if gj<x it is not.

% 3. The same test is applied to.g,, g3, etc.

ey, This application of Fisher's test has a few-

3 ? weaknesses. The application of the test for g; is made to

%? succeedingly smaller values of g, instead of wusing the
(s ’

ﬁ{, extended version of Fisher's test. This has the effect of
oy possibly rejecting harmonic components which would have been

W

ﬁg accepted as significant by the extended version. Also,
M

m& selecting a confidence level prior to application of the
&h test is a somewhat arbitrary decision which c¢ould exclude

o some important data.

f'i 2. Second Application

;tﬁ As an alternative to the first method discussed
>,

q&f above, Nowroozi suggested the following:

, 1. Plot the squared harmonic amplitudes, (ci's sguared),
ﬁb: against e corresponding periods which they
k; represent.

“.. : 2. Decide upon a»significance level.
o0

-

X
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1)
D 3. Calculate a minimum significant sguared amplitude, C,
P from = the = appropriate tabula using the
\ relationship:

m

. = . 2
. o X }E: ci

¥ :'; k=1

" 4. Draw_a horizontal line across the plot of step (1) at
) the level of C.

5 S. Any sggggralaggakgl haglng tsquareghamplitudfs gbove
& e siousTs. gnifican e eve chosen
EE Nowroozi's second approach is simpler to implement
o than the first, however, it shares the same weaknesses. It
. is this application of Fisher's test which Nowroozi actually
g} used to estimate the periods of eigenvibrations of the
g% earth. Nowroozi himself labeled some peaks as plausible
33 which actually failed his test. ~ He was therefore not
- totally confident himself in the method for applying
v, Fisher's test which he developed, but felt that it was
2{ perhaps too severe.

v .

Q C. APPLICATION BY SHIMSHONI .
fg In an effort to improve the effectiveness of the
h‘ analysis carried out by Nowroozi, Shimshoni (in 1971)
k? suggested a more proper application of Fisher's test
ot [Ref. 3]. He pointed out that in Nowroozi's application of
e Fisher's test, every component below a certain level of
;@3 significance is rejected. In this he failed to take into
fﬁ account that the test actually refers only to the largest
E component. For this reason, some components which seemed
éﬂ quite plausible were rejected by the test which Nowroozi

performed.

Shimshoni suggested that Fisher's test should be applied
in its extended form. To facilitate this, he developed
tables of x values for several of the largest normalized

LA

..J
4'-“‘ o "'A

.
-

X harmonic amplitudes instead of only the first. Again these
%f tables allowed for various values of p and m. Using these
l‘..
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extended tables, he proposed the following practical
application of Fisher's test:
1. Decide upon a significance level of interest.
2. Compute and sort normalized harmonic amplitudes (g's%
in decreasing order (with gr =the rth larges
amplitude).

3. In the table for the significance level chosen, 1look
up x for r=l1l.

4. Accept all components greater than x as Dbeing
significant at the desired level.

5. For the first amplitude in the list which fails, look
up the _x which corresponds to it's position in the
sorted list.

6. Continue to_  accept amplitudes which are greater than
this new value of x.

7. Repeat this process until reaching an amplitude which
is smaller than the tabulate X Vvalue which

corresponds to it, This amplitude and all succeedin
amplitudes are thus failed at the chosen level o
significance.

This method proposed by Shimshoni is a more proper
application of Fisher's test in that it makes use of the
extended form of his test. As a result, Shimshoni's method
does accept some of the plausible periods which Nowroozi is
forced to reject. His method does however suffer from the
weakness of having to select a level of significance prior
to applying the test. This could possibly result in the
rejection of +valuable data. For example, a spectral
component within the 94.9th percentile will be rejected if
only the 95th percentile is considered. This algorithm is
also cumbersome to implement due to the necessity for
several table look-ups and the possible need for
interpolation.
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V. A PROPOSED METHOD FOR IHE APPLICATION OF EISHER'S IEST

$¢ A. DEVELOPMENT OF A PROPOSED METHOD

H)

;ﬁﬁ Having discussed Fisher's test and the various methods

e by which it has been applied, the question which naturally
. arises is one of optimization. How might Fisher's test

334 "best" be applied? First, the criterion by which "best" is

;ﬁt judged must be specified:

I . :

fbé * The most applicable; that is, the method best suited to
g the analysis of pseudo~random sequences.

ol ¢ The most straightforward; that is the simplest and

&ﬁé most direct method of performing calculations.

ﬁﬂﬁ * The most exhaustive; that is, using the test to its

ik fullest possible extent not disregarding any useful

Sy information which it mlgﬁt provide.

. In terms of applicability, Fisher's test should be used

s§§> in its extended form in the analysis of pseudo-random

;,g sequences. Fisher himself suggested conditions under which

et the extension of his test might prove especially useful;

¥

Bbn, "The second ma¥ be used in a test whether the second

i largest is signilicant, such as might be useful if, when

oty the largest is doubtfuily significant, it may still be

Ty susgected that the two argest are due to some

£ systematic causes. [Ref. 9: p. 16]

gi;!;g:

:3 It was shown earlier that in the case of the sequences of
)

ﬁﬁ? chapter II, their spectra consists of several harmonically
?,

;&g related components of comparable magnitude. For the
\ situation of interest, several of the larger components can

? y be expected to be due to the same systematic cause; the

%«' periodicity of the sequence. Applying Fisher's test in the
*‘.

?a; extended form appears to be best suited for the analysis of

5o the sequences considered in this thesis.

|}

b‘Q Fisher's test could be applied in a straightforward

;‘b manner, without the use of tables, by direct calculation of

L) ‘. »

‘h%' probabilities from Eq. 4.2. Since this is a calculation of

; !‘I >

R

;2;?& - 36

IADASSEGHAINOAD DOON0 JO TR U O L I . Lok} T u AR Y )
AL T L AN 4';,'-”#'; WA gy ,‘.p,‘ OO ,'o,s‘ it N ( ¥ X ) &.,; !l; 8 IR M d\'d, 5} SN ,‘



{ﬂ the probability that g, exceeds the value of X, a suitable
,Qf parameter x must be chosen. Selecting x equal to the value
of g, observed would result in calculating the probability
60f the r largest normalized harmonic components occuring at

=
té higher amplitudes than those observed. In this manner, the
gi ) calculation of the probability that g, exceeds the value of
; g, observed provides a measure of the significance of that
f} particular value of gr observed. Applying Fisher's test in
?; this way, the difficulties involved in developing extensive
:m tables to meet the needs of each particular situation and in
' using these tables in calculations are avoided. It is also
ot no longer necessary to decide upon a level of significance
3{ in advance, a practice which can result in the loss of
ﬁi valuable data.
! Finally, making use of the foregoing suggestions should
" result in the most exhaustive use of Fisher's test.
Em Applying the test in it's extended form to as many of the
5: larger components as possible would return the maximum
" " amount of useful informatign. Components slightly smaller
;¥§ in magnitude than the largest will not be routinely
m’ disregarded for failing to exceed a predetermined level of
ﬁ : significance. Applied in this manner, Fisher's test gives
ol the spectrum analyst a quantitative basis upon which to not
g& disregard any "good" information or accept any "poor"
A information.
;§3 The specific steps in this proposed method of applying
- Fisher's test can now be outlined:
g 1. Compute the FFT of the data se?ugnce to find the
" magnitudes of harmonic components (c s).
'§\ 2. Calculate the normalized harmonic components (g's).
b 3. Sort the normalized harmonic components in order of
: decreasing magnitude (g1>g2>-°‘*>gm).
m 4. Calculate the measure of significance of as many of
I the largest normalized harmonic components as™ 1is
i{ desired for analysis.
o 5. Sort the harmonic components according to their
¥ respective measures of significance, from the smallest
_ BPobaniliEy 15 Phe hishesl measure of significanes. o'
2$ proba Y g g
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6. Perform analysis of the signal spectrum on_  the basis
of the calculated measures of the significance of
harmonic components.

Most of the steps listed are straightforward and simple
to execute. The only step which presents a computational
challenge is the actual calculation of the measures of
significance. This step will therefore be discussed in more

detail.

B. CALCULATION OF THE MEASURE OF SIGNIFICANCE

The measure of significance of a particular normalized
harmonic component is calculated by direct application of
Fisher's test in its extended form. Since no level of
significance is set beforehand, what is actually calculated
is the probability that a particular normalized harmonic
component will exceed its measured level. Once again, this
is under the assumption that only noise is present. This
provides a measure of the significance of a spectral
component. A small probability corresponds to a high level
of significance.

The formula used to calculate harmonic significance is
restated as follows:

L
P(g,>X) = m! Z (-1)3T (1-3x%)™}
(z-1)! J(m=3)' (3-1)!

J=r

To facilitate programming, this equation is expressed

as:
in-1 j
L r[(1-J'x) ]— (m-k+1)
P(g,>x)= 1 Z (-1)3 k=1 k=1 (5.1)
r-1 3-r ]
[Tee1)  3=r TT (3-r-r+1)
=1 k=1 j
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o
GE‘ Expressed in this form, the factorials and powers within the
gg summation can be calculated simultaneously, by combining one
A term from each product at a time. In this way, the loss of
Wy accuracy associated with floating point arithmetic involving
i:L very large and very small numbers can be avoided.
gft ) A FORTRAN program was written to test the calculation of
o harmonic significance using Eq. 5. 1. Extended precision was
S used in calculations in an effort to preserve as much
{¥? accuracy as possible.
ﬁ:ﬁ Despite precautions taken in programming, making test
B computations often led to an underflow condition (magnitude
é,; less than 10**-87). In an effort to prevent this, the
§E4 product series was truncated when terms of magnitude less
§*§ than 10**-75 were encountered. Since the product series is
s strictly decreasing, this was not detrimental to the
:3? accuracy of computations. Although computations inveolving
1:i smaller arguments occasionally led to an underflow
??: condition, this did not adversely affect the accuracy of
" computations.
;L; To prove the accuracy of the computer algorithm
;%; developed, a comparison test was conducted. The data used
;{f for this comparison was obtained from Shimshoni [Ref. 3: pp.
A 374-375]. Shimshoni obtained his data by iteratively
#@ solving Eg. 5.1 for x. Although he does not specify the
3¢ degree of accuracy of his data, it is assumed that figures
! k‘ are accurate to five significant figures as 1listed. The
i results of these tests are summarized in Table 1. In this
K table, m represents the total number of harmonic components
N and r represents the order of a normalized harmonic
,&m component in the sorted list.
= As Table 1 indicates, a quite acceptable error rate of
0y less than 1.5 percent was achieved even for large values of
f:ﬁ m. The m values of interest in this thesis are 255 or less.
i
Y
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TABLE 1
PERCENT ERROR OF HARMONIC SIGNIFICANCE COMPUTATION

m r=1 r=2 r=5 r=10

20 0. 003 0.021 0.020 | c=w=-
50 0.011 0. 057 0. 046 0.022
100 0. 005 0.071 0.071 0.070
300 0.021 0.170 0.136 0. 860
500 0.093 0. 065 0. 867 0.230
1000 0. 400 0.195 1. 460 1.180

C. PROGRAM FOR THE APPLICATION OF FISHER'S TEST

A FORTRAN program was developed to apply Fisher's test
to the analysis of noise corrupted, pseudo-random sequences.
This program is contained in Appendix I. This program was
designed to work in conjunction with previously written data
generation and noise introduction programs. The program
accepts as input the magnitudes of harmonic components
computed by the DFT in the additive bit error program. This
program then performs the sequence of steps outlined in
section A of this chapter, the proposed method for the
application of Fisher's test. As output, the program plots
the spectrum and provides a table summarizing the results.
The most significant components are also labeled with their
respective measures of significance.

Fisher's test can calculate a measure of significance
for the largest normalized harmonic components for which Eq.
5.1 can calculate a probability. As smaller components are
used in Eq. 5.1, the probabilities computed approach unity.
This implies that the component is almost certainly due to
the noise alone. Attempting to calculate probabilities for
even smaller components results in values outside the
defined range for probabilities. For that reason, the
program was designed to ignore any such results.
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Experimentation suggests that Fisher's test could generally
find a measure of significance for harmonic components of

magnitude greater than 1;5 standard deviations from the

;gﬁ , mean.

;$V Another questi-- to be addressed is that of determining

fﬁb _ how large the D[ must be in comparison to the period of the
sequence being studied.. Experimentation shows that, in

general, the DFT should be applied to data at least four

;ég times as long as the period of the sequence being studied.

;ﬁ Otherwise Fisher's test as implemented will not produce any
useful information. If_ only four periods or less are

%ﬁ available, there will be so many multiples of the

B fundamental frequency present that th normalized harmonic

Eﬁ? components will be too small to allow for calculation of

B probabilities. On the other hand, the larger the DET is

?; with respect to the sequence period, the larger the amount

Egﬁ of information available will be.
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VI. ESTIMATING THE PERIOD QF A RSEUDO-RANDOM SEQUENCE

,v? Estimating the period of a noise garbled, pseudo-random
sequence is a critical factor in the analysis of such
RIS sequences. Once an accurate estimate of the period has been

ascertained, further analysis into the method by which the
W sequence was generated is possible.

ol A. ESTIMATION PROCEDURE
The spectrum of a noise garbled, pseudo-random sequence
is analyzed to produce an estimate of the sequence period.

:§$ The analytic method adopted is Fisher's test as proposed in
%$f the previous chapter. Pseudo-random and related sequences
%?: analyzed include those discussed in chapter 1II. Noise
o effects are limited to the random bit errors (IID, N(O,Var))
Iﬁ for which Fisher's test was designed.

§§3 As was observed in the discussion of pseudo-random
SO sequences, their spectra should, with adequate signal to
g noise ratio, consist of larger amplitude components at the .
3?* fundamental frequency and at several multiples of it. It is
’@‘ often the case, however, that the fundamental frequency
ol component is much smaller than some of its multiples. This
o situation was observed in the case of Gold codes. The
%&L fundamental frequency component may even be totally lost in
{ﬁ% the noise floor. It will therefore be necessary to
It determine the greatest common divisor (GCD) of the most
ﬁﬁ‘ significant components identified by Fisher's test. If
jﬁﬁ" these components are assumed to be at multiples of the
Séﬁv fundamental frequency, the GCD may then be used as an
B0, estimate of the fundamental frequency and from it an
vk estimate of the period will be computed.

ﬁﬁy Even so, it is possible to arrive at an incorrect
;s, estimate. Suppose, for example, that the second and forth
St
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multiples of the fundamental frequency are the only reliable
components found. Since the GCD is the frequency of the
second multiple, the estimate of the period will be one half
the actual value. For this reason, the greater the number
of reliable components available for analysis, the better
the resulting estimate of the period. If only a limited
number of highly significant (say, 99th percentile)
components are available, it would be beneficial to make use
of any components of slightly lower significance (say, 95th
percentile) in deriving an estimate of the period.

This analysis will make use of the interactive FORTRAN
programs which have been introduced at various points
throughout this paper. These programs are designed to work
in conjunction with one another in the following manner:

¢ Phase A: These programs generate the raw data
sequences ( see Appendices A,B and C).

* Phase B: This program introduces random bit errors
into the data seguence_and computes the signal spectrum
by the DFT (see Appendix D).

¢ Phase C: This program applies Fisher's test to the

signal spectrum using the method proposed in chapter S
( see Appendix I).

B. CASE ONE: FULL=-SEQUENCES
Full-sequences are analyzed first due to the simplicity

of their spectra. Because a full-sequence may be chosen
with a period which divides the length of the DFT evenly, no
smearing of spectral components occurs. This situation

results from the fact that the FFT algorithm used to compute
the DET is most easily implemented on power of two sized
data sets.

1. Example One

For example, choose the data sequence to be a period

" 16 full-sequence. Let the error rate be 25 % and compute a
s 512 point DET.

;ﬁ, Figure 6.1 shows the signal spectrum with the
%} ’ components of highest significance labeled with the
2 43
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*i probabilities that noise could account for a component of
N greater amplitude. Note that only the first half of the
spectrum is displayed, since the other half is a mirror
image. Only frequency components from k=1 to k=255 are

;‘ considered by Fisher's test, for in this case
h. m=(512-2)/2=255. Table 2 lists the components of highest
ER)

A significance with their magnitudes squared and their

4 respective percentiles.

X Two components, at k=192 and k=64 are observed
within the 99th percentile. Their greatest common divisor
is 64. Basing an estimate of the sequence period on this
. information would yield a period of 8. This is
' unfortunately incorrect. Observing Table 2, reveals a
component with significance within the respectable S5th
percentile at k=32. Including this component yields a GCD
of 32 and hence, a period of 16, which is correct.

' This example serves to illustrate the effectiveness:
of the proposed method. Had a method been employed which
pre-determined the use of a 99th percentile significance
level, an incorrect conclusion would have resulted. This is
despite the fact of having detected two components within
the 99th percentile.

An interesting situation can be observed in this
particular example. The component at k=32 is slightly
larger than the component at k=64, yet it is calculated to
be at a considerably lower significance level. This
situation occurs whenever two components are found to be

s

e a  ae e wo

PR Mgy
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nearly equal in magnitude. The significance calculation for
the larger component yields the probability that random

2 o o,
,
-

.

noise could account for the appearance of two components at

0 or above the measured value of that component. In the case
of the smaller component, the calculation yielded the
probability of three such components appearing at or above
its nearly equal measured value. The probability of three

44
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e TABLE 2
SIGNIFICANT COMPONENTS IN EXAMPLE ONE

gﬁj Comgonent Magnitude Sguared Percentile
ey 92 3461. 99. 98
= 64 1631.0 99. 47
vh 32 1653.7 95. 30
: 96 1210.3 85. 30
128 954.0 42. 39
160 959.5 25.51

such components appearing is obviously much less than the

i&: probability of only two appearing. For that reason, the

;kﬁ‘ smaller component is found to be at a higher level of

;&; | significance.

;%% For a second example, choose the data sequence again

g‘: to be a period 16 full-sequence. The error rate is F
595 increased to 33 % and a 512 point DFT is again used.

- In Figure 6.2 the spectrum is displayed, labeled

g&; again with the appropriate probabilities. Note the smaller

:Qﬁ magnitudes on the ordinate axes. Table 3 provides a summary

$$§ of the results of applying Fisher's test.

This example was included to illustrate the value of F
gg' this method of analysis in preventing erroneous conclusions.
iﬁ% The two components of highest significance present are at
N k=192 and k=64, which have a GCD of 64 and hence indicate a

' period of 8. Though these two components were actually
g@ caused by the periodicity of the sequence, they are shown to
g}; be of insufficient significance to realistically use them in
ﬁﬁ; arriving at any conclusion. Attempting to use the third
. largest component, at k=148, would result in a GCD of 4 and
:;? hence an incorrect estimate for the period of 128. This
?ﬁ component is actually caused by noise effects.
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TABLE 3
SIGNIFICANT COMPONENTS IN EXAMPLE TWO

)
kf Comgonent Magnitude Sguared Percentile
oy 92 1405. 33.68
@t 64 1072.1 7.03
# 148 915.5 0.00
4+
W18
Q:Z;!
Pk
i* If conclusions had been drawn from observations of

the spectrum alone, using the two or three most conspicuous
looking values, then the possibility of error would have

Vgl
)

éﬁ been great. Note that the ordinate axis is again scaled to

%% the largest component present and therefore the larger

: values appear conspicuous. In reality, as the test shows,

?; they are not of a very high significance level.

C. CASE TWO: M-SEQUENCES

iy In the case of m-sequences, the sequence period does not

5 divide the DET length evenly. Therefore spectral smearing

1§‘ occurs. Since the signal components are spread over several -
ﬁi adjacent frequencies, the normalized harmonic amplitudes

) will be smaller. Consequently, Fisher's test will be

o weaker. Another effect 1s that since only integer

ﬂk frequencies can be represented, only an approximate period
ﬁ' can be ascertained.

ﬁi Despite anticipated difficulties, the method still

" performs well. Tests involving a variety of m-sequencés and
gs' error rates confirmed that Fisher's test remains adequate in
%l computing measures of significance. Also, simply rounding
%f estimates of the period to the nearest whole number leads to

= satisfactory conclusions. An example is included to
gﬂ illustrate these results.
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1. Example Three

In this example the data sequence used is a period
15 m-sequence with an error rate of 25 ¥%. A 512 point DET
is used to generate the spectrum.

The spectrum is shown in Figure 6.3, with the
components of highest significance again labeled with their
probabilities. Table 4 summarizes the results of applying
Fisher's test.

In this example, only one component, at k=34, was
found in the 99th percentile and one more, at k=68, was
found in the 95th percentile. The GCD of these two
frequencies is 34, leading to a period of 15.06. Rounding

this to the nearest whole number yields an estimate for the
period of 15, which is the correct value. Attempting to
make use of the component of the next highest significance
(in the 88th percentile), at k=171, leads to complete
failure. The GCD of the three components is one, implying
that no periodicity is present in the data. Due to spectral
smearing components can bleed into adjacent frequencies,
especially at higher harmonics. For this reason, a little
dithering applied to the component at k=171 might be
helpful. If it is assumed to be located at k=170, then it
could represent the fifth harmonic and can be used to
further confirm the conclusion based on the two components
found at higher levels of significance.

This example serves to point out how this method of
analysis is weaker in the case of sequence periods which do
not evenly divide the DFT length. By comparison, Example
One was conducted under exactly the same conditions as
Example Three except that the period 16 full-sequence did
divide the DFT 1length evenly. Therefore, no spectral
smearing occurred. In that case, Fisher's test was more
effective because it identified components of higher
significance on which to base an estimate of the period. N

49

RO < e N ¥ - y LM N N T AN R \
RN e RS A KW MO s CACANT T ] 05 50 i) L ¢ T ST S I T TN O NN MR M o =on e St S KRN



l‘ -
Y :
i,
0
e ‘
T X !
o ) . © i
o~ Ive)
p— N
<
- ="
O\ <
N N
)
e,: <
o o ((%
N
A % . — CIJ
& e e
R &
= o
& N = o .
| : =
. — (D
N © _ =N x )
E‘. —] ~N
. —_— N (1)
K 1.9 — ~
N —= SN ,
i — E
T 3 I
¢ _— © K
== < L )
V¢ = — O
" = i
I 4 0 O
X 339 “
¢ = — D £
o B = - 3
¢ o — o O H
< —— +
. P 0
4 o — @
7:! p—— e, Q,
‘W 39 © ©n
KN —_ )
# . — C
Cat o = o)) "
g <« = O 0. .
S =° )
o R——
e = )
,.:-t =__$ ~
4 = B
:“‘ [ad} =-_' '::
."t [0S = [on)]
.t-: 8 == <
S _—=
A0S =
i — "
.’g =
’ =
= {s)
R} 4 —
"‘s e
re' .._E
o f T T T T | B
:. 000 00Se 000¢ 00sI 0001 00S 0
n padonbg spnyauboy
0:0
.'"Al
‘f':v 50
!"
Y
N.'
‘v‘ﬁ
j‘»!"'
B
Ki

BOHAOAD! WO XY X ‘. \ - (0 ; SOR] O
RO AR AU AN 3 Lot S BRI S RS U (0 L N S SR WA



TABLE 4
SIGNIFICANT COMPONENTS IN EXAMPLE THREE

Component Magnitude Sguared Percentile
34 2641. 99.27
68 1150.8 95. 77
171 1157.3 88. 27
205 1165.2 73.49
239 1328.5 58.27
102 1172.3 50. 37

Two components appeared in the 99th percentile and one in
the 95th percentile. Several components of lower
significance were multiples of the fundamental frequency and
some could be used if necessary to improve confidence in the
estimate, without the use of dithering. Even with these
inherent difficulties, the method of analysis yields
éatisfactory results in the case of non-evenly dividing
sequences. In this situation, conclusions should be based
only on highly significant components. Any components
appearing within the vicinity of the 95th percentile may be
considered highly significant. Dithering may also be

necessary in the case of components of slightly lower
significance, especially when they represent higher
harmonics of the fundamental frequency.

D. CASE THREE: GOLD CODES

Since Gold codes are formed by summing two m-sequences
of the same period, their common period also does not divide
the DET evenly. As a result, spectral smearing is present.

Besides sharing all the difficulties observed for
m-sequences, Gold codes introduce some further problems of
their own. Because Gold codes do not exhibit the properties
b associated with pseudo-randomness nearly as well as
ﬁ' m-sequences, (ie. balance, run and correlation), their
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spectra are not nearly as well structured. The spectrum of
5 a Gold code is much more "jumbled" in its appearance. This
has a detrimental effect on the analysis of such sequences
as demonstratéd in the next example.

i 1. Example Four
ﬂ' This example analyzes the period 31 Gold code formed
S: by summing the two m-sequences generated by the polynomials
iy f(x)=x%+x2+1 and f(x)=x5+x*+x3+x2+1. The initial load for
iﬂ the first shift register is 1,0,0,0,0 and for the second
|ﬁ‘ shift register is 0,0,0,0,1. This particular Gold code has
3{ a very low density of ones (12 ones and 19 zeros) and
therefore exhibits poor pseudo-randbmness properties. The
&; error rate used is 20 9%. A 512 point DFT is used to compute
5% the spectral components. The signal spectrum, labeled with
§$ the probabilities computed is shown in Figure 6. 4. Table 5
w summarizes the results of Fisher's test.
re. : In this example, the two components of highest
significance, at k=33 and k=165, have a GCD of 33. This
) leads to an estimated period of 15.5. This estimated period
is exactly one half of the correct wvalue. Observation of
ﬁ the spectrum reveals that the odd multiples of the
:E fundamental frequency, including the fundamental itself, are
R suppressed. It 1is therefore not possible to generate a

reliable estimate of the period by the proposed method.

W Example Four is typical of attempts to estimate the
vﬁ period of a Gold code by the method proposed in this thesis.
JJH Though the suppression of odd harmonics observed in this
) example is not typical of all Gold codes, their spectra are
¢f in general much less well structured than the spectra of the
:2 m-sequences from which they were derived. Due to the
AE difficulties discussed earlier and confirmed by numerous

experiments, this method of analysis was found to be less
o~ effective for the analysis of Gold codes.
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TABLE 5
SIGNIFICANT COMPONENTS IN EXAMPLE FOUR

Component Magnitude Sguared Percentile
33 2324. 99. 98
165 3015.0 99. 87
66 1257.3 77.18
116 930. 6 7.75
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VII. CONCLUSION

A. METHOD FOR DETERMINING SPECTRAL SIGNIFICANCE

The purpose of this research was to develop a method to
quantitatively evaluate the significance of the spectral
components of a signal. A method known as Fisher's Test of
Significance in Harmonic Analysis was found in the
literature, which promised to provide a means of
accomplishing this [Ref. 1l]. Fisher's test had been applied
by previous researchers in a variety of different ways, none
of which took full advantage of the power of this test
[Refs. 2,3]. A new method for applying Fisher's test is
proposed which uses the test more effectively and in a more
direct manner. In this way a simple, flexible and effective
method 1is found for determining the significance of the
spectral components of a signal.

Applying this method to the problem of estimating the
period of a noise garbled pseudo-random sequence met with
mixed results. In some situations a good estimate is
readily obtainable, while in others the method of analysis
is found to be less effective. The failure is not in the
methods ability to determine the significance of spectral
components, but rather in the manner in which the method is
applied to this particular problem. The lack of a well
ordered spectrum in the case of some sequences studied
proved detrimental to this method of analysis.

In conclusion , a method is developed for determining
the significance of spectral components and is shown to be
of value in harmonic analysis. As the scope of problems
dealt with by harmonic¢c analysis is quite broad, it 1is
conceivable that this method may find applications in areas
other than the analysis of pseudo-random and related
sequences.

55

[N}




- hadad dhask 4 a |

B. SUGGESTIONS FOR FURTHER RESEARCH
There are several promising avenues for further

research. To begin with, the method developed in this
e research could be applied to other problems in harmonic |

@5 analysis. Any situation involving the analysis of a simple
ﬁb periodic signal in the presence of noise could be approached
. using this method. One such example is the detection of the
;#ﬁ doppler shifted blade rate of a torpedo propeller in the
“ﬁ noisy environment of a sonar signal.

‘fﬂ Assuming different parameters, such as different noise
K generators, the problem of evaluating the significance of
e spectral components may be solved again. This may involve
ﬁ% rederiving the probability expression under a different
§§ assumption concerning noise statistics.

s A DEFT program might be developed to operate on sequences
o of zeros and ones more efficiently,- possibly allowing fast
}ﬁ computations to be performed on longer sequences. Other
i@' fast algorithms could also be considered.

i Dithering and other techniques might be developed in
E$ ‘ _ order to resolve the problems encountered when sequence
&& periods did not divide the transform length evenly.

§$ The challenging problem of analyzing periodic sequences
a when only a portion of the sequence is available might also
?ﬁ be attacked by these methods. Here less than one period
gﬁ will be available for analysis so other properties of the
E&; sequence will have to be considered.
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UENCE
(0]

?

UENCE IS FORMED BY ADDING A ZERO

NERATED USING F(X)=X**4+x+1.

APPENDIX C
PROGRAM TO GENERATE A FULL SEQUENCE
THE PURPOSE OF THIS PROGRAM IS TO GENERATE FULL SE
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