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INTRODUCTION TO FINITE ELEMENT BASICS

A.J. MORRIS

Professor of Computational Structural Analysis

College of Aeronau@ics,
Cranfield Institute of Technology,
Cranfield,

Bedford.

MK43  OAL
U.K.

1. PHILOSOPHY

The task we are setting ourselves is that of solving a complex structural design
problem which lies beyond the scope of classical closed form mathematical solution. If we
have a digital computer at our disposal we would be well advised to employ it and, because
of the nature of the digital process, we will require an approximate sglution technique.
In addition, we would want to choose our new technique to suit the special properties of
the computer. We require, in fact, a solution technique which is numerically stable,
easily programmed and can be adapted to a wide range of problem types without excessive
interference by the user. From a structural viewpoint the finite element method provides
the most satisfactory solution technique in this category.

The essence of the finite element method involves dividing the structure into a
suitable number of small pieces called finite elements. The intersections of the sides of
the elements occur at nodal points or nodes and the interfaces between elements are called
nodal lines and nodal planes. Often we may need to introduce additional node points along
the nodal lines or planes. For structural problems involving static or dynamic applied
loads we will be defining the behaviour of the structure in terms of displacements and/or
stresses. Within each of our elements we need to select a pattern or shape for the unknown
displacement or stress. 1In the case of a displacement field the shape function defines the
behaviour of displacements within an element in terms ofunknown quantities specified at the
element nodes. These nodal values are known as nodal connection quantities and allow the
deformation behaviour in one element to be communicated to adjacent elements. In the case
of an assumed stress field in the element the connection quantities are different but the
underlying principle is the same.

At once we see some of the power of the finite element method because, for a
specific element type (beam, plate, shell, etc.), the shape functions are identical for
each element. Thus, a given element need only be programmed once and the computer can
repeat the operations specified for one, general, element as often as required.

The structure is clearly going to be modelled by an assemblage of finite elements
but this introduces a number of problems which need resolving. How does one actually
numerically define a finite element in terms suitable for the computer? How do we select
elements which will be accurate enough to adequately represent the structural behaviour?
How does one apply the design loads in a finite element analysis? How do we select the
correct connection quantities? How do we tell the computer to assemble a collection of
individual elements so that the actual structural behaviour represented is modelled? The
answer to these and other problems represent the 'Rules of the Game' for the finite element
method. The engineer conversant with these 'Rules' is equipped to use the finite element
method for the solution of real industrial based design problems. Furthermore, he is able
to use effectively the major structural analysis finite element programs such ds NASTRAN,
PAFEC , FINEL ASAS, which have become a routine part of structural analysis in all major

industries. These 'Rules' and their explanation form the basis of the current course.
1.1 Element types

Thus we have seen that the essence of the finite element method is to use a
piecewise continuous approximating function. As already indicated the selection of the
terms to be approximated dictates the connection quantities:

(i) Displacement Elements - these are usual elements found in the major system
commonly employed to perform structural analyses. In this case the displacement
field at all points on the interior and the boundary of the element is approximated
in terms of a low order polynomial. As we shall see this gives rise to connection
quantities in terms of displacements and their derivatives defined at nodes on the
element boundary.
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(ii) Equilibrium Elements - for this element the stresses, usually defined in terms of
stress functions,are approximated by low order polynomials. The result of this
operation is to give rise to side connection quantities. These can be awkward to
handle and it is sometimes possible to produce displacement type connection
quantities. Providing the procedure for creating such connections is properly
followed the resulting elements are still pure equilibrium elements.

(iii) Hybrid Elements - these elements use two separate approximating fields to
describe the elements behaviour usually employing one approximating scheme for the
interior of the elementwith a second being employed on the boundary. For example,
the stresses on the interior might be approximated by one set of polynomials with
a line approximation being made to displacements along the element boundary. This
second displacement field is, in fact, playing the role of a Lagrange multiplier
which is attempting to preserve continuity of stress across the element boundaries.
In this case the connectors are displacements and/or their derivatives at specific
nodes on the element boundary.

1.2 The Direct Approach

The earliest development of the finite element method involved the use of matrix
methods on, essentially, simple structural forms. This process required that the main
matrices and vectors were built-up stage by stage using elasticity theory as the basic
template. The method does not require variational and other principles which latter

became a feature of the finite element method and, thus, it became known as the Direct
Approach.

We shall use the Direct Approach to give an overview of the main features of the
finite element method in an illustrative rather than rigorous manner.

2. THE ELEMENT STIFFNESS MATRIX

To begin, take a simple spring, as shown in Fig.2.1, where the displacements at the
two end nodes are given by A A, and the corresponding forces by P4 and Pj.

10 P2
nodel rocle 2
WAVAVV VIV VAV &
B R
A, A,

Figure 2.1

Hookes law for this structure gives

P1 = k(A1—A2)

P2 = k(AZ-A1)
where k is the stiffness of the spring.
Using matrix notation

P = K.1X&

The stiffness matrix k has two important properties which are clearly demonstrated, that
is, it is both Symmetric and Singular.

In order to start the process of generalisation we write k in the form

ki Kiz
K =
kiz kg2
Thus k represents a stiffness coefficient equal to the force required at node 1 to

producg1a unit deflection at node 1. Similarly,
to produce a unit deflection at node 2 (or 1).

k12 is the force required at node 1 (or 2)

Qur next example involves the linear axial shown at Fig.2.2. The principle for

developing the stiffness matrix is identical to that of the above linear spring where

AE
s ae

P (1 -11 By

Hence %E (2.1)
P -1 1J b,



2.1 Co-ordinate Transformation

So far we have tacidly assumed that the co-ordinates of the bar and the co-ordinate
system in which the bar is embedded are the same. This situation will not normally
prevail and we must consider the bar situated in a non-coincidental co-ordinate system.
For convenience we shall take a two-dimensional Cartesian co-ordinate system and consider

the bar situated as shown in Fig.3. The bar now has two forces and displacements associated
with each of the two end nodes. The associated stiffness matrix must be a &4x4 matrix as
opposed to the 2x2 matrix. Thus the relationship between the forces 5_ and the

displacements §; are given via the 4x4 stiffness thus

ki1 kg2 kg3

F kag) S
Fal ko ka3 kau(J3;
2 k33 ksu[)83
Fu Kyg) \8y

In order to evaluate the terms k;; we recall that these represent the forces associated
with unit nodal displacements. Thius to find k4 we set 8§4=1 and 62=63=8,=0, as shown in

Fig.2.4. Then the strain in the bar is given By &84cos®/L which for 61=% becomes cos@/L.
Hookes law now gives the force in the bar

EAcos®
L

4y * A Y

F;!83
h '
E.S
)
F"Sl Sl‘.l
Aty —p~
Figure 2.3 Figure 2.4 =

We can now resolve P into components Fi sic:

2
EAcos™©
F1 = Pcos® = —F
B . _  EAcos@sin
F2 = Psin® = e
etc.
Therefore,
K _ EAcosZQ
11~ L
_ EAcosOsin®
k12 = kgq = T
etc.
Hence cosZO cos@sin® - cosze - cosOsin@
T %? sin2 - cosOsin® - sinZO
cos2 cosBsind
SYM s1nZ0

which is simply the earlier 2x2 transformed into the x-y co-ordinate system. In fact a
transformation of this type may be achieved by pre and post multiplying the 2x2 matrix by
a transformation matrix. 1In order to demonstrate this, consider two systems shown in
Fig.2.5 where Pj, A;j, i=1,2 represent the FE nodal forces and displacements in the local
bar system whilst Fj, §j, i=1,2,3,4 represent the same terms in the global (x,y) system.
Thus we have §q = Aqcos®, 87 = Aqsin®, 83 = Agcos®, 84 = Apsin®.



F.S o
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83

»

—l
Fﬁtsﬂ
Hence § ces® O ]
1 >
8 sin® 0 |(A . x
2 1 Figure 2.5
63 1] cos® A2
64 0 sin®
and
F1 cos® 0]
F2 ) sinB 0 P1
F3 0 cos® P2
F4 0 sin®
Now going back to the original element formulation
Pl e SN S5
P2 L -1 1 Az
and pre-multiplying by the transformation matrix
cos® 0 F1 cos® 0
sin® 0 P1 ) F2 _AE sin® 0 1 -1 A1
0 cos® P2 F3 L 0 cos® -1 1 A2
L 0 sin® F4 0 sin®
if we substitute for A1A2 using the transformation given above:-
F, fcos@ D 8,
. _ . &
F2 ) ﬂ£.<51n$ 0 1 1i{|cos® sin® 0 0 3
F3 R 0 cosd -1 1 0 0 cos® 5in® G]
F4 | 1] 5in9, ﬁﬂj
2 . 2 .
cos“0 cos® sin® - cos - cos® sin® 61
AE sinze' - cos®sin® - sinze 62
=T ﬁ cos?0 cos®  sind 85
sinze 8
4
2.2 Generalised Co-Ordinate Transformation

The previous section illustrated that co-orinate transformation can be achieved in a
relatively simple manner. However we would like to reformulate this process in a manner

more suitable for computer implementation. For convenience we shall employ the notation
shown in Fig.2.6.
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Thus taking x,y,v,u as the global system and x1,y1,v1,u1 as the local system the

transformation between the two is given by the equations
u = ucosa + vsina

vsinoa + vcosa

. Thus 1
u _ cosa sina u
v1 ~-sina cosa v
~1 o~

d = Td

<
it

where T is the transformation matrix

cosa sina

-sina cosa

TIf we now consider a bar element with nodes (1) and (2) as shown in Fig.2.6 then

u L u
1 1
v i v
d's (T bana 3=t
u, u,
v i v
t 2 2
~’| ~
and d = Td
A 0
where T =< o
0 A

. cos sina
with A =
-sin cosq

For three dimensions the matrix A becomes a 3x3 matrix and other terms will appear if we
have bending as opposed to tension elements.

The matrix T is orthogonal and thus

e i

therefore

i - T
Thus the stiffness matrix can be transformed from local to global co-ordinates, to perform
this transofrmation we start with (2.1) written in global co-ordinates and in the notation

of this section:-
kd = p

In order to convert the load and nodal variables we use the above transformation matrix
thus

d = ?t31 and 51 = 75
thus Tkd = TS = 31
and then
TRTts? -
thus TRT' = ®
or o= 7Raht - Y

and transformation for the element stiffness matrix from local to global co-ordinates is
given by

T

kK =z Kk
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2.3 Assembling Elements

Now that we can transform an element from a local to a global co-ordinate system we
can think in terms of assembling a group of elements to represent the behaviour of a
structure. Consider the spring assemblage shown in fig.2.7 consisting of 6 springs and

6 nodes with 12 degrees of freedom. In order to see how the 6 individual elements are
assembled into a global representation we need only consider what happends when we take 2
elements with a common mode. To this purpose we take elements (1) and (2) which share a
common node at 4.
u,,P, Uy, P >
e e 3 % _'us' s Figure 2.7
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w \‘q )Ei IIIlfl"}l Pz+
125442
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S IR R B | | b 3
( | | | r h » \
olgol || @ ool 11 [ )
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® h <«
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| :’%‘ﬁf?' b @ l‘hh}.{: | : Uz i #
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b %) (.l @ C @
g)lﬁggﬁgw - U;,x}h%k B Uy eore?| | R
b u R
e | I | 2
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In Fig.2.7 we have shown the two elements separated oyt from the Eo%al asgﬁmblage
with their own independent load and displacement system P1(1 , P (1), P3 . q Pa(1 etc.
with iz1'or 2 dependent upon the element.

In assembling the global stiffness matrix we must add into the 12x12 matrix, which
relates the load Pq...Pq, to the displacements uj...u,,, the individual 4x4 stiffness

matrices for each of the elements such as (1) and (2).” Thus we look at node 4 _nd observe
that
_ (1) (2)
P7 = P3 + P3
_ (1 (2)
PB. = Pa + PQ

which requires that the appropriate contributions from the individual element stiffness
matrices are added

P e iy Dy (D L Dy (D (D () (1 ()
by D, (D) L @y () )y @) () ()
or in global terms, since v1(2) = U, vz(” = Uy, v3(1) - v3(2) = U vb(” - v4(2) = Uy
e s kg i, e ey k@ s g, kg, )
. k31(2) Uy + k32(2) u,

and similarly for P,. When these are transcribed into the global stiffness matrix we
obtain the form shown in Fig.2.8. By proceeding in an identical manner for each of the
nodes, the full global stiffness matrix and load vector are assembled. In reality the
load vector contains the actual loads on the structure and is not assembled in the manner
shown.

2.4 Incorporation of Boundary Conditions

‘Having assembled the global stiffness matrix and load vector we are still not in a
position to solve for the unknown global displacements. We must now apply the boundary
conditions which form part of the problem definition and which also fix the structure in
space and prevent rigid body rotation. It is worth noting that if all the rigid body
modes are not fixed then the element and global stiffness matrices are singqular. Once the
boundary conditions are prescribed the structural analysis problem can be solved by
inversion of the global stiffness matrix or by employing some other equation sclving
procedure.

As we have seen throughout our developments of the F-E method because we are dealing
with a displacement formulation, we can only specify boundary conditions on the boundary
Sy.- In the F-E method these conditions are defined in terms of specified nodal displacements
which may be zero if the structure is attached to a rigid support or may be non-zero if
some movememnt of the supports or attachment points is specified.

In order to demonstrate the procedure for specifying boundary displacements and the
subsequent procedures for solving we divide the global displacement vector by partitioning
into free nodal displacements U and specified displacements U*. The global stiffness
matrix and load vector must -also be similarly partitioned thus

where the vector P* represent the reactions at the nodes where the displacements U* are
specified.

Expanding
~ ~ ~ ~% ~
K11U + K12U = P
K21U + KZZU* 2 [PS
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Since the displacements U are the only unknowns then we can solve for these to give:

~ _ ~ _'I ~ ~ ~%
i o= R, {P-Knu} (2.2)

and the reactions are given by:

~¥ ~ ~ _‘IN ~ ~ ~ ~ ~F
P = K21K11 P + {KZZ - K21K12K12}U (2.3)
*
If U = 0 then we have

~ ]~
U = K11 P
B* - R,K,,VF

21711

Although for convenience we have assumed that the specified terms in the displacement
vector are situated at the bottom of the vector column. 1In reality, this situation will
never arise,and could only be achieved by re-numbering the structure. However, for the
case when U = 0 the scatering of the components of U" within the displacement vector,
causes no computational problem,, All we do is simply remove each row and column
associated with each component U;j = 0. Thus for each i we delete the ith row and column
from the global stiffness matrix K but preserve in store the terms for the matrix K to
allow for subsequent recovery of the reactions. The way in which this is handled fof our
spring problem is shown in Fig.2.9.

~%
An equivalent technique is available for the case when U #0 in this case zero's

are placed in the appropriate rows and columns of K and a 1 placed on the diagonal. Thus:-
*
if U,. is prescribed as V ..
Ji Jji
then Kji = Kij =0 for i # jand i = 1,2,...n
and J.. = 1
1]

This is balanced by replacing P; in the load vector by P; - KijU*i for i = 1,...n.
This operation is equivalent to a partitioned matrix .

~ -~ ~ ~ ~ Elo*
K11 0 U P - K12

i T ik

| J

In order to remove the singularity property for the simple problem, we must
prescribe some of the displacements Uq...Uq2 and for the present example the displacements
U1 through Ug are zero because the structure is rigidly held at these points as shown in
Fig.2.9. Because these are zero conditions we can employ 2.3 and delete the row and
column associated with each prescribed displacement. This deflated matrix is no longer
singular and the problem can now be solved to yield values for the unknown displacements
U7 to U12 and values for the unknown reactions Pq1 to Pg.
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Boundary Conditions
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3. THE DISPLACEMENT FINITE ELEMENT FORMULATION

Although the direct method shows all the main steps which a finite element system
passes through in achieving a solution to a structural analysis problem certain very
important aspects of element development cannot be covered by this appreoach. For example,
we have no way of deciding what connection quantities are appropriate to a specific
element. Nor can we compute the load vectors for the element when subjected to external
forces. The direct approach does not provide any information concerning the generation of
more general element stiffness matrices.

The way around these difficulties is to employ one of the oldest techniques
available to the applied mechanics specialist - the variational method. Unfortunately,
time does not allow us to explore this interesting method and show its full power. This
may be fortunate since the full intricaces of the method do require careful study and can
be difficult to understand. However, if we concentrate on developing and applying
displacement elements only we can exploit this method to achieve the above stated
requirements without too much strain.

For displacement elements the variational formulation devolves down to requiring
the potential energy functional which can then be differentiated to yield the solution
state. Because we know that the solution state for an elastic body is terms of the
displacement field is that which minimises the potential energy term.

The potential energy m, is defined as the sum of the internal strain energy U and the
potential of the external loads. However this latter term is more conveniently considered
as the opposite of the work done by the loads W thus,



In the case of the simple1bar shown in Fig.3.1 the external work is given by Pu and
the strain energy, as usual, by 5 Ee?al with E Youngs Modulus and € the strain = %.

!
4
ki

Figure 3.1
Hence 1
m = U- W = 5 Ee?al - Pu.

p 2

If we now minimise this term for the only free variable which we have, namely the
tip displacement u, then:

am

P _ de _
o ° Ecal a0 P
now € =] E .d_e.:.-l
N 2 du 7 %
thus P = Eea the simple equilibrium solution.
3.1 Shape Functions

In constructing an element we don't wish to be concerned with functions along
element boundaries and even less do we want to be concerned with what goes on in the
interior of an element. What we want is to be able to describe the displacement field in
terms of discrete quantities at specific points in the element called nodes. These nodes
are normally located un the element boundaries and connect one element to another.

If we wish to use only nodal values for displacements then we need functions which
describe the displacements at all points within the element and on its boundary in terms
of these nodal values. The resulting functions are called shape functions. As an example
of a shape function we consider the beam element where the connections are .aken to be the
normal displacements and the rotations as shown in Fig.3.2. Taking a cubic interpolation
function then

W= a1+azx+33x2+aax
setting

w = w1 at x = 0

0 = 61

W= W, at x = L

e = 62

We can solve for the a;

i = 1,2,3,4, in terms of w1,w2,91,02:

~ -~ ~T T

d = Aa where d = {w1,61,w2,92}
~T T
a = {a1,az,a3,a4}

and thus the displacement w can be defined at all points on the beam through the
expression

w = Nd
where N is given by {N1N2N3Na} where
- 3x? 2x° 3x2 2%
N1 -1——2— +—3-, N}:—Z--T,
L L L L
Ny = ox - 2x2/, + x>/, 2 N S
2 L AT 4 T : * :?



Thus,
2 3 3
w = [1 - Z%— + 2% ]w1 + (x - 2 + EEJ 1
L L L L
(= 5
+ - — =| ©
L L2 2

The elements of the vector N, i.e. N, i=1,2,3,4 are

[z_ﬁ : zx’]
T £

shape functions relating the

displacement w at all points within the element in terms of the nodal connection qualities

w1,91,6202.

The functions N,, N
and are, in fact,
through the derivation process we could have simply
unit value at a specified point reducing to zero at
turned immediately to Hermitian functions.
interpolation.

take unit values at one

3.2 Finite Element Formulation

In describing the concept of shape functions

Hermitian interpolation functions.

end of the beam .nd zero at the other

Thus if we had not wished to go
noted that we require functions taking
the other end of the interval and

For co-continuity one can use Lagrangian

we have employed displacement functions

only and this is maintained in the current section where element stiffness matrices are

derived.
such as equilibrium and hybrid formulation to other
is made for two reasons.

Thus we only look at the displacement element formulation and leave element types

texts. This simplifying assumption

First, the displacement element formulation is by far the most
popular approach and is employed by all the major finite element analysis system.

Second,

the principles which underlie the development of displacement finite element stiffness

matrices apply to these other types even though the
different.

In order to develop the stiffness matrix for

basic functional employed may be

a given displacement finite element we

assume that we have an approximate form for the displacement field within the element given

by wu.
surface tractions T may be applied over a region of

We also assume that we may have body forces F acting within the element and that

the element surface defined by Sg.

Under all these assumptions the potential energy term for an isolated element is obtained
by generalising the potential energy term Tp introduced in the first section to yield:

"o Hj%z‘azdv U 2 i H Glren

where D is the strain-strain matrix standing in place of E and the strain energy density term

for the element is given by

1 ~Teorw
7 € De

we may define the strain-displacement relationships

€ = Bu
then using the shape function € =

the strain energy becomes

e -

N =

and we define If (BN)TB(EN)EV

by the matrix expression

as the element stiffness matrix

InTam 1 Ten
fjjfﬁ Dedv = 7 d kd

(3.1)

Turning next to the forces on the element which represents a generalisation of the work

term in Pu for the bar and using the shape function

Hj’ffadv + H 7l
sg
HjaTandv .

= d's

jj HTNT?ds
SO

matrix we have



(3.2)

where E = J]f NTde + [I NT?ds
l¢;

Thus the potential energy for an isolated element is given by the expression

U S
ﬂp = 3 d kd - dp

In order to evaluate the unkown nodal displacements d we apply the variation
anz 0 which, in this case, requires that we differentiate "p in terms of the displacements
Hence

or kd =

ol

Having developed the basis of our_theory for creating the finite element stiffness
matrix k and the consistent load vector p 1ts appropriate to look at some simple examples.

3.2.17 Examples

1. Bar Element (axial)

g L

—> WU,

————9 %

Figure 3.2

Consider the first two nodal axial or bar element of length L and cross sectional area A,
which we used in earlier sections. At node (1) we have a nodal displacement uy and u, is
at node (2).

We want a shape function which allows the displacement to take a value of unity at
node (1) reducing to zero at node (2) and a second function which takes a value of unity
at (2) reducing to zero at (1). These functions are shown in Fig.3.2 but could have been
found by demanding a linear variation in u along the bar, i.e.

T
Thus 7l o L-x x
- L L
du [
For a bar € = /ax B = a/ax
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Figure 3.3
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As we had before!

In order to demonstrate how to calculate S let us assume that a concentrated force
(¢) of 1 units is applied at x = 2L/3 in axial directions, a friction force caused by air
flowing along the bar produces a unit force/unit length (q).

We have no body farces F anly traction forces T applied over the surface as in the
case of the traction forces and at a point as in the case of ‘the concentrated load thus,

L
PLENZ J Nqux + NTc
o

as both ¢ and q take uhit values;

L-x 1
P1 L L /3
= J dx +
P o X 2
2 T /3
L 1/
_ '11], ] ::‘l Pl
i
sz Z of.3
Thus the load applied at node (1) is P, = 1/3 and at node (2) P, = Low 2/3. This
technique for generating nodal forces gives rise to a consistent seg and for the bar these

F-E consistent loads are compared with the actual loads in Fig.3.4. Note that the only
loads on the element are P1 and P, representing forces at the nodes in the direction of
the displacement uq and us.

2. Beam Element (Bending)
Now we turn to the beam bending problem in which we have nodes with two connection

quantities, the nodal displacement w and the rotation Y. From the section 3.1 the shape
function matrix is given by

w A

1L *

Figure 3.5
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For a beam the strain is given by the curvature change

k = 32w/8x2 i.e. B = Bz/ax2
-6 12x 4 6x% 6 12x 2 6x
BN = 232 -3t
L L L L L L L L

For a beam D = EI



Thus the strain energy term for the beam is given by

L 2

j 1 ED {95 g

) 3 12 6L —1 6L
_ T S TR T TR T
k = (BN) EI(BN)dx = =

o L -12 -6L 12 -6L

6L 2% st aLZJ

As before we now wish to calculated the nodal forces on the element appropriate to the

nodal connection quantities, i.e. we wish to compute

- m NTFdv + H VT¥ds.
sO

Assuming a self weight force q/unit _volume, a point P load applied at the mid-point of the
beam and a moment M applied at x = 2L/3 then we have (see Fig.3.6).

ol

x=2L/3

we have dNT/dx because the work term for the moment = MO = Mdw/dx

F P F
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Figure 3.6

If the beam is of rectangular section of width 'A' and depth 'B' then
~ ~T o1l anT
P = -N " gABdx + N P+ T M
o X
) x:L/2 x:ZL/3
\ \ ANt
Fl L/, ) (17, 3T
2
L /12 L/B —’I/3
P = < = -qgAB + P < + M ﬁ
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2 2 3L
L2/ 1/ o |
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3.3

Stress Computation

The underlying concept of stress evaluation relies on combining the stress-strain

expression

Qal
"

™1
1




Of course, this is all done at the element level so that we compute the stresses in
each element individually. Using the displacements obtained from the solution process of
earlier section, i.e. from,

_1-'3'

Vv = K

For the simple bar or constant strain triangular elements the strain field, and therefore,
the stress field is constant throughout the element. In the case of more complex elements
the stress will vary within the element as is the case with the beam element, some decision
is required with respect to where we compute the stress. At the element level one may
select nodal values for the co-ordinates and obtain nodal stresses. 0Or one may select an
interior point and, thereby, compute element stresses away from the nodes.

There is alsc the question of how one treats the variations in stress as one moves
from element to element.

In practice a variety of procedures are followed to 'make sense' of the stress output,
but there is no substitute for common sense and the application of structural knowledge.
The 'rules of thumb' are then:-

1) For Nodal Stresses
i) If the strain is constant within element - unique values

ii) If the strain varies with co-ordinates, evaluate at interior p01nt (or points)
and interpolate.

2) Stress Averaging

i) Stresses at given nodes will be different for different elements .°. average
(unless 'stress Jump').

ii) Alternative is to average stresses over a collection.
iii) Various 'improvement' schemes using iterative methods are avaiable.

A moderate F-E system would offer these, and other options through a post-processor
system.

4. ISOPARAMETRIC ELEMENTS

Having looked at the procedure for generating element stiffness matrices and
consistent load vectors we still lack a range of effective elements. In order to expand
this limited range we shall now examine the widely used isoparametric element which allows
us to generate curved elementseffectivefor membranes, plates, shells and solid structures.

The essence of the element formulation is to use a shape function to define the
approximate displacement field and to define the elemeént shape. Thus both the displacement
field and the element shape are defined in terms of nodal values. Taking the shape function
as N then the approximate_displacefment field u given by u = Nd. Consequently the position
vector p is given by p = Nc where c defines the nodal position co-ordinates. An example of
an isoparametric is shown in Fig.4.1 where the position p is defined in terms of the
position vectors of the nodes 1, 2, 3, 4.

EJ Figure 4.1



4.1 Axial (one-dimensional) Co Bar Elements

It is customery to use natural or intrinsic co-ordinates in developing isoparametric
formulations; such co-ordinates range over values *1. For our one-dimensional problem,
illustrated in Fig.4.2, we use £x1, regardless of the length of the bar. Using the usual
linear displacement field for the component u we have

ST -, ~ L J1-E 1%E
u = Nd with N = {}7— -7_}

§=-1 70 sri

«— =/

-t——-l'/é — e LV&L —

— x;u
u
u. 2., 2

X,

Figure 4.2

Although the co-ordinate £ ranges of *1 the element is actually defined in the
x-co-ordinate starting at x, and continuing to X, with a total length of L. Thus a point
within the element is given-by

x = N¢ again N = {;:é l%E}

2
X
and cC = 1
X2
_ 2 du _ 2 oo~
Thus € S t EE =T BNd

The potential energy term for the bar is

L
o= [ LRk - [ FTanex - [ Tidex
p o} o} Q

where A is the bar cross-section area. Substituting for € and U gives

L ‘ L
o = J 1 3T @V "5 (BN dAdx - j FTRNTAdx
p 2
o] o]
L
- j TN dx
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P .12 -1
Vot
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-1
with, in this case,
_ dx
J—FE
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Hence
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with ?ET transformed to the £ co-ordinate

This.two-noded formulation can be generalised to include quadratic (3-noded), cubic
(4-noded) as shown in Fig.4.3 or any other higher order element.

= A S < — — 1 =%

quadratic cubic
Figure 4.3

The only differences are that the order of the stiffness matrix generated from the
potential energy functional 4.1 increases and the form J also changes if the nodes are not

equidistant about £ = 0. These higher order shape functions are generated from the
Lagrangian interpolation functions given by the formula
n £ -§.
Ni(X) = I E—_EJ-
J=1(j#1) 7177
4.2 Isoparametric Flements in Two and Three-Dimensions with Co-Continuity

The same principles employed above to generate axial elements can be extended to two
dimensions without difficulty. 1In this case we use two natural or intrinsic co-ordinate
E£,n which are used to map the element ontao one with unit-length sides. 1If we consider
elements mapped onto the unit square we see the same faily of elements emerge as those for
the axial element as shown in Fig.4.4. 7

7 11

'I'j-l

Linear Quadratic

Figure 4.4

As we see the quadratic or higher order elements allow us to model curved boundaries
but do generate internal nodes which must be condensed out. These elements use the
Lagrangian interpolation function, but multiply together the contributions from each
coordinate. For example the shape functions for the linear element case given by

1
Ni(C,n) B Z(1+€Ei)(1+n i)
thus N, = 2(1-8)(1-n) N, = 2(1+E)(1-n)
Ny = 201+8)C+n) N, = 2(1-8) (1em)

Although Lagrangian functions are a useful way to generate this class of element it
is possible to create, directly, elements which do not have interior nodes and these are
termed 'serendipity' elements.

In the one dimensional case which we examined above the principle of transforming
from one coordinate system to another presented little difficulty. Consider a specifiec
term u which is a function of x and y then the derivatives of this function can be written
as
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and it is common to combine these last two terms to give a symmetric term

- 1

kyz = 7 lkgg * kyy)
with a 0. the coefficients of the first fundamental form of the surface. The quantities
u,, u are compaonents of displacement along the co-ordinate directions & 52 and w is the
displicement along the outwards normal to the shell surface, the terms d ) are the
respective rotations as shown in Fig.5.5 R are the radii of curvature o? the median
surface with R the radius of torsion. The s%ralns and curvatures defined above are

decoupled but, If the Kirchoff hypothesis is involved a coupling appears because the
rotations are then defined in terms of the displacements by
k"‘s

g, = RL (“1 - %%”é—]
1 1 %51
rrYe— e [ __LQL) gl '
2 - R2 2 o, 852
T2y Us
gy = 7&'%[“2'2&2*'”2%'“12%'%;; }jgureﬁﬁm¢
172 1 1 2 2 ’ ES

The membrane and bending resultants for isotropic materials, associated with this
displacement formulation are defined by

-
N
=

N11 = ::r (611 + V€22) M11 8 D(k11 + szz)
22D

NZZ = :Fr (822 + v€11) M22 S D(k22 + vk11)
_ 12D -

N,y = 7:7- (1 - v) €12 My, = D(1 - v) Kyp

where h is the shell thickness, D the flexural rigidity
D = ER’/12(1-v2),

E Young's Modulus and v Poisson's ratio. The boundary conditions from which the consistent
load vector may be constructed are, for an arbitrary edge,

N == o M NAsgioral) g SR
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Where n, v are co-ordinates on the median surface which are respectively normal to and along
the boundary curve as shown in Fig.5.6; R,, Ry, Rpy are the corresponding radii of
curvature.

The central problem of modelling a thin shell element is now exponsed. Unlike the
linear theory of flat paltes the equations defining the strain measures, taken in conjunction
with the equations specifying the rotations. d;, i=1,2,3 after the imposition of the
Kirchoff, and the form of the boundary equation show that a decoupled bending and stretching
stiffness matric is not possible. The problem would be overcome if we could define the
couples d; and the displacements uq, up and w separately. However, this is not possible
if a pure displacement approach is followed and alteratives have been sought. The most
popular is that due to the late Brue Irons and known as the semi-loof element. This
requires that the corner and mid-side nodes require connection quantitites up, uy,, w and
at the loof nodes continuity of dn is required; as shown in Fig.5.7. Thus we have
achieved the desired disconnection between displacements and rotations. Originally this
2lement was derived on heuristic principles from a set of stacked serendipity membrane
2lements but more recent work has shown that it is a hybrid.

Figure 5.7

An alternative approach similar to that employed with flat plates where a
3-dimensional brick element is reduced down to two dimensional is also used with thin
shells. By using reduced integration and other devices an attempt is made to re-create a
Kirchoff like shell formulation through heuristic numerical means. This ‘hackers'
approach to shell elements can sometimes work extremely well but it is fraught with many
pit-falls. Once again thHe importance of validation checks is seen as a central pillar in
creating some form of confidence in elements where the internal theory, on which their
derivation is based is completely masked by numerical manipulation.

6. CONVERGENCE AND ACCURACY OF RESULTS

We want to be as sure as possible that the procedure we have followed in deriving
element and solution methods lead to the correct solution and to this end we want to have
some rules to guide us. But, first, we need to assess the kind of solution we are likely
to get.

6.1 Equilibrium and Compatibility

For a displacement element we can expect the following:

1) Equilibrium is not usually satisfied inside an element
- unless we have low grade -elements such as constant strain triangles

2) Equilibrium is not satisfied across element boundaries
- often a good guide to accuracy

3) Equilibrium of nodal forces/moments is satisfied
- this is an imposed condition

4) Equilibrium is satisfied between applied loads and reactions
- a useful check as we shall see later

5) Compatibility is satisfied within elements
6) Compatibility between elements across element boundaries should be satisfied

- although displacement elements have been divided in such a way that inter-element
compatibility is violated, this should be avoided if possible,
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7) Nodal compatibility is satisfied

6.2

- this is an imposed condition

Convergence

Now that we know what kind of finite element solution we can now expect we can now

attempt to list the properties which will ensure that our solution does indeed, converge

to the correct answer. That is we wish to be assured that the formulation is such that as we
refine the F-E mesh we will monotonically converge to the correct answer at least from an
energy view point. In order to achieve this requirement we should satisfy the following
conditions:

1)

2)

3)
4)

5)

6)

Admissible Shape Functions:

The shape functions which we use on the interior of the finite element must be
admissible in the sense defined earlier. Thus they must satisfy the natural

boundary conditions of the problem both at structural boundaries and across element
boundaries. If the underlying differential equations are of order 2 m in their
derivatives the corresponding variation functional (in our case the potential energy)
will have derivatives of order m and boundary conditions of order m-1 (i.e. beam
EId%w/dx% = P, P.E. 3 EId2w/dx2 boundary conditions = ¢ (dw/dx) and w).

Thus for an element to handle a structural formulation with derivatives in the
differential equation of order 2 m it must have an assumed displacement field with
Cm continuous on the interior and be Cn_q continuous across element boundaries.

Exact Recovery Solutions:

In essence this is a constant strain condition and the element should be able to

recover it exactly. For the case of simple elements with simple polynaomial
displacement fields, such as the constant strain triangle, this fact can be
established directly. In the case of more complex elements such as direct evaluation

it is not available and we must turn to the 'patch test!'.
Satisfaction of Rigid Body Modes

Conforming elements - non conforming elements are now being used put they create
doubts (possibly conforming in the limit).

Geometrically invariant, i.e. has no preferred direction.
Polynomials must be complete:

Completeness means that the polynomial contains all the terms up to the specified
order.

e.g. a complete linear poly Ta, 4+ ayx + agy

a complete quadratic poly=a, + a,x + a + a,Xy + a x2 + a8 y2
=8 2 3Y 4 5 6

Failure to use complete polynomials often leads to elements which violate conditions
(5), i.e. they are biased.

Accuracy

There are a variety of ways in which a finite element analysis can be persuaded to

give inaccurate results, we shall look at two particular aspects.

1)

2)

Idealization Error:

In modelling a structure we need to model a real structure which will have joints,
bolts, fasteners, local reinforcement etc. When these are modelled the engineer

has to make assumptions about the structural behaviour and structural properties.

Then he selects the element type, elastic properties, node numbers etc. The
resulting F-E analysis will give rise to stresses, displacements etc. which are different
from those which would actually occur in the real structure. This sort of general
error is known as discretisation error. In certain circumstances we can reduce one
of these errors for example in regions of high stress gradients we might want to put
in more elements. Curved boundaries are likely to give trouble and require special
attention. .

Thus certain of these discretisation errors can be removed by careful use of the F-E
method and paying attention to detail, but others require testing and correlating
with test results.

I11-Conditioning

Ill-conditioning of the stiffness matrix means that changes in the coefficients
of the matrix or small changes in the applied loads can cause large changes in the
coefficients of the nodal displacement vector obtained from the solution process.

This type of ill-conditioning occurs when the terms in the stiffness matrix have
large differences in their numerical values - large enough to be influenced by the
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truncation error inherent in digital computers. The phenomena can also be produced
when a region of high stiffness is surrounded by a region of low stiffness. It also
occurs in thin shell problems where there is a major numerical difference between
bending and membrane strain energies.

In theory, and in practice when serious ill-conditioning problems are anticipated,
the condition number of the stiffness matrix can be checked. This is first done
by scaling the stiffness matrix with respect to the maximum diagonal coefficient
thus
K
s

KS with 5., = 1/1/Kii
where S is a diagonal matrix. The maximum and minimum eigenvalues of KS are then
found (Amax, Amin) and the spectral condition number C(K) is then defined as
C(K) = Amax/Amin

If the computer represents a number with d digits then the results computed are
accurate to S digits where,

S

d-log10C(K)
Thus, for thin shells C(K) may equal 1012 then
S = d-12

and if the word length gives d = 13 then the results are only accurate to one
significant figure.

7. NONLINEAR BEHAVIOUR
7.1 Introduction

Our philosophy throughout the course has been to outline the main features of finite
elements without giving the details of the theory or methods employed. This is particularly
the case with the non-linear analyses of structures which is complex and by no means
completely understood. Nevertheless it is an important aspect of the design of structures
and emphasis on efficient structures is pushing many engineering disciplines, which have
traditionally relies on linear analysis, to consider non-linear behaviour. Non-linearity
can occur because the material itself exhibites a non-linear behaviour or because the
geometric movement of the structure is large enough to cause cross-coupling between strain
fields. Naturally the first of these is termed 'material' non-linearity and the second
'geometric' non-linearity. In the sequal we touch on both aspects.

7.2 Geometric Non-Linearity

In order to keep life simple we illustrate the main theme of geometric non-linearity
using the bar element illustrated in Fig.7.1. Here we see a bar originally of length %
and resting along the x-axis which is both rotated and distorted to a new length 2+d%.
The strain in the deformed bar is clearly, € = d&/%&, the component €, is u,/% but

Uy = u + §. ’}\?‘i

a4t

Figure 7.1

1 —Hui"

If the rotation is not very large then we can compute the value of 8§ in terms of
the displacement V:

2-§ = /QZ—VZ
2
w1 -5
2
2
1V
—yl—'f—i' +I...I
2

1V
hence On = VI
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Thus €
X

and in the limit

e . du 1 (an)?
Xx ~  dn 2 \dx

If we now regard this as one step in an incremental deformation process then the
bar will have already been strained (unless this is the first increment). In the general
case the strain will, therefore, consist of two parts, the strain accumulated from previous
load increments €%, and the new strain increment €, thus

total

€ = €° + e .
X X X

If we want to move on to computing the stiffness matrix we recall that the material is
linear so that we can apply Hookes law and the potential energy term becomes, for a bar
element of total length L

final
L F L
m S f Eede dx - [Pu]
p o] e© ) o
where eflnal is the original and incremental strain
L+

P are the loads

u are the incremental displacements

Taking the strain energy term first we have

L €Flnal L L
[ { I Eede } dx = Ee 2dx + J Ee de + J Ee® e _dx
o X X X X
e] € o o]

and, if we neglect small order terms, this term becomes:

where A is the bar cross-sectional area.

Taking the nodal displacements as indicated in Fig.7.1, then our strain energy term

becomes:
o a
E{u ! } 1 -1 u1 . AEe . {V v } 1 1 V,I
2L 1 72 -1 1 u, 2L 1 2 -1 1 VZ

AEe?
X
L

(u1 = uz)

o
If we observe that AEe“n/L = P, the load being applied at the beginning of the increment
we note that the last term in the above energy expression is the work done by the initial
load moving through the increment of displacement uq1 - uz2. We are, therefore, assuming
that we start with an applied load P° with an intial strain €°x, finish with an applied
load PFinal yith a final strain eflnalx and uq, up, V4, V, are the increments of
displacement.

We now substitute these into the form for mp and the proceed to differentiate this
in terms of Ugy Uy, V1, V2 we have

Bo= (K+K))uy
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where K = %;
=il 0 1 0
0 0 0 0
0 0 0 0
po 0 1 0 -1
ko= T
0 0 0 0
0 -1 0 1
da is the vector of incremental displacements
Ups uge Vqe Yy

final

and P the vector of incremental loads (P P°)

The term K is the normal linear stiffness matrix and K, a geometric stiffness matrix which
is considered not to vary throughout the load increment. It may be noted that a whole
variety of assumptions have been made in obtaining these equations and other interpretations
would give rise to alternative geometric stiffness matrices, though the overall principle
would remain the same.

The solution procedure requires that the form

u = (K+kDTTR

is solved repeatedly with K, reformulated at each step. Thus for a given increment 'i'y.
becomes u(i) the itM increment of the displacement vector P becomes ApP(i) = (g(l)-ETl‘1))
the ith Tncrement of the load vector. Hence the full solution to the problem then becomes

Htotal - z H(i)

i
and for the total load

Etotal Aﬂ(i)

This represents the basic approach to the solution of geometrically non-linear
structures though the assumptions made in this particular example may be too restrictive
for highly non-linear problems. A more general attack using the full Lagrangian strain
tensor loads to the form:

U(l) = (K‘ + K

4 21

(1), )y
~2 =

where the stiffness matrices K, and K, have first and second degree terms in the gradiemts

of the incremental displacement vectof. Despite this added complexity the philosophy
outlined above is clearly preserved. Whichever approach is adopted the numerical solution
process is the same and may involve the Newton-Raphson method or some acceptable alternative.

7.3 Material Non-Linearity

The underlying concept behind material non-linearity is that the relationship between
stress and strain is non-linear as shown in Fig.7.2. This may be non-linear elastic in
which case unloading follows the same curve as that plotted on the loading cycle, i.e.
curve A. Or if some 'plastic' deformation takes place then the unloading curve B is
different from the loading curve A.

In wishing to follow a curve like A we observe that the stiffness matrix is a
function of a parameter which we will take as some form of representative stress o; though
other parameters may be more appropriate to certain classes of problem. Thus we have that
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the nodal loads on a structure P are related to the nodal displacements u by:

P = K(oly
of

Fi 7.2
_h-x iqure

For a given final load vector gt we shall have need for some form of iterative
process to allow us to follow the non-linear behaviour depicted by curve A.

The most straight forward approach is simply to repeatedly solve the equation for
given values of stresses thus

O I PO DN P

~ ~

Thus we start with the normal linear form for k, solve for g using g = DBu then
compute (K(o) and re-employ this equation to create a new set of values for o and so forth.
The load applied P is the final load Et which the structure is assumed to carry.

Unfortunately, this simple procedure sometimes fails to converge and a more stable
approach is required. A variety of techniques are employed but all work on the basic
premise that the stresses used in computing the stiffness should be a more accurate
representation of the ?tgess field in the strugture for a given step in the iteration.
Thus we try t?_use k(o'1)) rather than k(o(1-1)) where the unknown o{i) is estimated from
the known oli-1). ror example, a first-order Taylor expansion could be used:

(i) _ (i-1) 30
g = g s 3P Ap
This requires that we only increment the load and thus proceed in a step-wise
fashion to the final load P*. 1In order to fill in the terms of this expression we note
that
g _ 39 au - -
aP = 3y P with g = DBu
3o _ Su -1
now 5§ = D.B and 3% - -k
so, for AP = E(i) - E(1—1), we have
g(l) : 2(1-1) _ 9(0(1_1)55-1(0(1—1))(3(1) _ 5(1_1))

and we may now incrementally update the displacements:-

Once again we may start from the linear solution and proceed by employing the above set of
equations repeatedly until the final load Rt is reached.

This broad approach can be used for a range of non-linear applications; plastically,
creep etc. In these cases special procedures can be used which take advantage of the
specific behaviour being modelled. For example in the case of the elastie-plastic
material model the elastic and plastic components can be divided out and treated
separately. In this case the computational efficiency and stability of the iterative
solution procedures may be improved. However, added complexities occur in realistic
cases because certain parts of the structure may be unloading during the incremental
loading process. In these situations great care is needed in tracking the loading history
if acceptable accuracy is to be achieved.



1-27

8. VIBRATION PROBLEMS AND F-E SOLUTIONS
8.1 Introduction

So far we have only considered the solution of statically loaded structures giving
rise to responses which do not vary with time. We now want to extend the finite element
so that we can be able to deal with structural problems subject to vibrating loads which
are very common in aircraft structural design, either as standard vibration problems or
as more complex aeroelastic responses.

8.2 Finite Element Formualtion

We begin by defining the Lagrange function L for a dynamical system as

L = T-7
p

where my is again the potential energy and T is the kinetic energy. Ffor the moment we
omit any dissipative forces. With this function we can now .proceed to obtain the
appropriate variational principle which allows us to apply the displacement finite
element method to dynamical systems. This is called Lagrange's principle and states: Of all
possible time histories of displacement states which satisfy the compatibility equations
and the constraints or the kinematic boundary conditions and which satisfy the conditions
at initial and final times (t4 and to), the history corresponding to the actual solution
makes the Lagrangian functional a minimum:

This implies,

now T = 71(q,4) and, thus, L = (q,q) where q is the displacement field associated
with the dynamic displacement field within the structure. Thus

t t
2 z PN
8 Ldt 6q F 8q =0

£ Y
thus
2 2 r
_ oL 5o, 4 [t M [aL
6 e = 0 i e s S5 oq) - Ry
& Y
[ st e
3q ~ dt 8
) q
t1 t1
= 0

aL
5 dg = 0 at t = t1 and when t = tz
i.e. either
aL  _ 9T _ . _ _
B - B mqg = 0 or g = g*¥ at t = t1 and t2

note that mg is the momentum.

Assumlng that thisboundary condition is met then the variational principle demands
that q and q satisfy the condition

dfaL) 3L _ g
dt (34 aq =
If we now introduce a dissipation function R then the principle requires

L(B_L J3L AR
dt laqg aq g
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Taking a specific finite element T and R are given by

o1 ST

T = 1 JIT pu adVv
o1 U

R = i Jf[ pu - adv

and np has already been discussed.

Following our usual prgcedure for a displacement finite elegment we take a vector .of
nodal displacement variables d and use the shape function matrix N to give

u = Nd

where N has no components which are functions of time (though 'time' elements are taken in
certain fluid formulations). Thus

s JHp<Na>T(Na)dv
. Jz-aTma
oo [ ===
R = %(JJ}J(N&) (N&)dv
)
- %GT.cd

and m and ¢ are called the consistent mass and dissipation matrices, where

UJQNTNdv and ¢ = JHUNTNdv

recalling that at the element level

31
n

i3 - "%

el
N| -

then the elemental Lagrangian function is given by

~r— ~ o~ ~_~

dde _ % T T

.
Ley = 3 d'kd - d'p

Rather than work at the element we assume that we have assembled up the global system so
that:

ER—— - = - P
L(g) > 0 MU 7 UKU 1]
R = 1 Eed
(g) 3

where U are the global nodal displacements, E,E,E, the global mass, stiffness and
dissipation matrices with P the global load vector.

Where, n n n A
Zmi, R = Z K, T = z S F o= z P,
i=1 i=1 = iz

=
1

for an F-E model having n elements and m nodes

Applying our variational principles at the global level requires

_d_(aL(g) ~ aL(g) . (BR(g) .
8 3% (%
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giving MU + KU + TG = F(t)
If there is no dissipation the matrix C is omitted.
8.3 Mass Matrices
The 'consistent' mass matrix is so called because it is consistent with the

stiffness matrix, employing the same shape function. As an example, consider the simpler
bar element demonstrated earlier, then the displacement for this element is

U = Nd
where XX
Vs {a - po}
u
i =<
Y2

The consistent mass matrix is then given by the expression

o

X
Lol (a0

pA {(1-X/L)(X/L)} d1
o] (X/L)

where A is the bar cross-sectional area. Thus

= pAL 2 L
Po= B
1 2

In the case of the cubic displacement field for the beam bending where

N (1_ﬁ+ﬁ)(x_ai+ﬁ)[3xz_z_xz](_f+£]
L2 L3 L 122 L2 L L2

156 221 sS4 -13L
2 2
_ aL ) 22 4L 130 -3L
™= %70
54 131 156  -22L
-13L 312 22t 4Ll

Although the 'consistent' formualtion represents a logical method for generating
mass matrices it is not the only approach. An alternative is the so-called lumped mass
matrix where a certain amount of structural mass that surrounds a given node is assumed
to be concentrated or lumped at that node. In the case where there are both rotational
and translational components to the displacement fields the rotational part is sometimes
neglected. Whilst the consistent matrix is usually fully populated the lumped matrix is
diagonal.

Thus, in the case of the axial bar the total mass is pAL and the lumped mass matrix
is then,

Y 1 0
Z o 1

for the beam the total mass is the same and the lumped matrix

1 0
L/92

1

0 L7142
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In this case the rotary inertia about each end of the beam is calculated on the
assumption that1/2 the beam mass is associated with each node. If we ignore rotational
terms the mass matrix reduces to

1 0
i~ pAL g
- 2 1
0 0
which is singular
8.4 Free Vibraitons Analysis

Disturbing an elastic body in the absence of damping and external forces leads to
harmonic osciallations. Thus removing these terms from the basic matrix equations give:

mu + ku = O
and taking the harmonic solution

= iwt
u = . €

1cl

leads to the free vibration equation

{E-wzﬁ}g I

where E is a vector of the amplitudes of the displacements U and are called the mode

shape or eigenvector. The term w represents the natural frequency of vibration and is an
eigenvalue for this linear algebraic eigenvalue problem. In this case we do not need to
remove the singularity of the stiffness matrix to obtain a solution. Indeed the zero

value natural frequencies correspond to rigid body degrees of freedom.

In solving this type of problem we need to set the determinant of the system equal
to zero.

|%-wlfi| = o

this then gives us the eigenvalues of the system and this is interpreted as the frequency
vector w

In order to obtain the mode shapes we observe that the system has n equations to
generate the n components of the modal shape vector (or eigenvectors). Thus we select the
first element (say) of the displacemént vector and set it to unity, thus

ru1(n)w (1 N

(n) (n)

U2 u

(n) (n)

UN WUN
Now putting
E = k-w" M

then E0{™ - o
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and partitioning

E,l1 E10 1 ’ 0
Eg €y U BT
: Egpef 0™ = 0
. ~(n) _E11—1E01
8.5 Eigenvalue Economisers (Guyan Reduction)

Because the problem of solving for a large scale structure is difficult, from a
computing viewpoint, it is often found convenient to reduce the size of the eigenvalue
problem. The process of reduction involves thinking in terms of ‘'master' and 'slave'
degrees of freedom where the masters are restrained and the slaves removed by
condensation.

Although this process does decrease the number of degrees of freedom, and thus, the
size of the matrices to be handled it also removes the sparsness of the mass and stiffness
matrices. By filling up the associated matrices the process removes the economics of
sparsness and this has to be balanced against the advantage of reduced matrix size.

Dividing into 'master' nodal freedoms Gm and 'slave' freedoms GS gives us a
partitioned problem;

1
=
]

]
£
1"
ol

We use the stiffness matrix to define the relationship between the 'master' and 'slave’
degrees of freedom which is equivalent to assuming that no loads are applied to 'slave' degrees
of freedom in the statics problem, thus,

=

K
m

3

ms m

x1
=1
[t
o

S

3

SS S

This gives the required relationship:

u = K % g
S 88 ms m

] T

m

thus = T0_ = U
m m

] rardl

s 8Ss ms

which gives the condensed system

FIR-wMTT = o
m
-~ 2~~
or (Kr—w M)um = 0
with K= T%%F; W = 7'WT

r T
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The transformed matrices K, and M, are much denser than original mass and stiffness
matrices. The transformed or reduced mass matrix is now a complex combination of stiffness
and mass matrices:- :

.

M = M__-M K - K
r ss ms ss sm sm sS sm

The solution to the condensed problem only provides values for U and to recover the full
vector u we could use the relationship between u_ and u_. However, there will be errors
introduced in this process because the slave deqrees of freedom u_ are associated with
nodes where it is tdcitly assumed that these_are no loads. Actuafly, inertia loads should
be applied to the Ug nodes while recovering u and to this end we return to the original
formulation:

( R R i W (s

mm ms mm ms m
= w2 = 0

K K M M u

sm 8SS sm sS S

thus

=2
n

) {? - Zﬁ}-1{zT w %" } 3
sn SSs n ms n ms mn

when the eigenvalues w2n and eigenvectors Ynn for the reduced system are known.

In the major F-E systems, the selectign of 'masters' and 'slaves' are automated by
scanning the diagonal coefficients of K and M and selecting the first slave for which
K../M.. is the largest. The matrices are then condensed and the process repeated with the
cbhdefised matrices.

8.6 Dynamic Response - Model Analysis (uncoupled equations)

We now turn to the solution of structural problems where the structure is subject to
a time dependent applied load. For convenience we shall only deal with undamped structure,
though the same arguements apply when certain damping factors are introduced, i.e. Rayleigh
damping.

First observe that a general displacement field for a structure can be constructed
using the mode shapes for the free-vibration problem. Clearly an approximate solution can

be constructed from any suitable function - and the mode shapes have_certain properties
which we can use with advantage. Thus a general displacement field u is given by

n
u = Z ?;z; = 9z
i=1

where @, are the n mode shapes and for a structure with n degrees of freedom and z; are the
modal amplitudes which act as weighting function and are unknown values.
The problem requiring solution is defined by the matrix equation

Mu+kKu = P(t) (with 0 = u(t))

substituting for U gives,

Mpz+koz = P(t)
where zZ = Z(t). Pre-multiplying by ET gives
7 Mgz+5 Koz = @'P(t)

recalling the orthogonality and normality properties of the system we have that
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9 ij = 0 izj
= 1 i=j
~ T -
G, kg, = o0 iz
w2 j=i
ids
thus ¢'Wg = T and 3Ky = [w?]
where [wz] is a diagonal matrix.
w12 0
" 2
2
0 wz2
Thus we now have
T2+0w?17 = TR (1)
which may be re-written as
2 -
zy4w "z, o= Pi(t)
where P.(t) = 5 TF(t)
i . i

The un-coupled equa
computer or solved in some

Because we are only
necessary to generate many

experimentally.
9. FIBRE COMPOSITES
9.1 Introduction

The elements of the
sections can be applied to
is no problem in modelling
properties, provided these
strain relations. However
structure being analysed i
applications it is possibl
hypothesis on the bending
section.

9.2 Plate Model

tions can then be integrated by one of the direct methods on the
other way.

using the modal shapes as approximating functions it may not be
of the actual shapes P; - these may also be generated

theory of finite elements which we have built up in the proceeding
the application of composite fibre structures. In essence there
this type of material since our theory will admit of anisotropic
are accounted for by putting the full anisotropic terms in stress-
, in aeronautical applicaitons, it is common to assume that the

s adequately represented by a plate modal. In addition, for many

e to further simplify the model by imposing the Kirchoff

terms. This is the procedure which is followed in this short

T%
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v
—
Myoe Ny
> 2 Mae. Ny
7

b A ;?A:—————-ﬁﬂr
M:.g Mtﬂ Figure 9.1
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The model is assumed to consist of a series of layers of material. Each layer is
constructed from a fibre lamina of given orientation (0° to the x-axis, say) held in a
matrix of resin. Each lamina is bonded to adjacent laminae by the same resin. This mode
of construction means that the whole material is constructed from layers with orthotropic
properties. The properties of the layers is computed once the fibre and resin properties
are known. The example illustrated in Fig.9.1 has four such orthotropic laminae.

Following our simple palte theory assumption the strain fields given in the
laminated structure are:

du 3w
e, =20 _ 8 _,_ 0
X ~ 3x ~ 9x 2
3x
2
"3y 6v0 3 v
Ey :W=W—Z 7
3y
2
90 Sd e el Mo Xy, 0
Xy = 3y Ix y ax Ixay
where u 0! w_, represent the two in-plane and the one out-of-plane displacements of the

plate mid- p?ane as illustrated in Fig.9.1. Dividing the strain field into in-plane strains
and curvature changes gives:

€ = €° + zK
X X X
€ = €° + zK
y b4 b
o
ny S Xy + Zny
. o _ 2 2
with €, = auo/ax 3 Kx = ] wo/ax
o . _ 2 2
€ o ° avo/ y : Ky = 3 wo/ay
c 2
Y Xy= Buo/ay + BVO/Bx g ny = =23 wo/axay

Recalling that the stress-strain relation is now a more complicated formulation we have

3 ’
i Q@ Gg3) (e, )
G o B ﬁ W O3 ﬁey g
Tny < QSB ny'
Thus:
o
9, ) PR PR PEA N G Qg O Q3 (K
- o
&y f = < Q,, Q,50 4¢ Yr + z Q,, Q,, Ky
]
S SYM Al 162, SYM 0550 (K,

The stress resultants and moments are defined in the usual way for a standard
classical plate theory, but the integration is taken across a series of laminae:-

P
x
"
N
Q
x
a
N
n
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M
[
Q
x
a.
N
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+t/2 n ti
No= oy Z o dz
y y
i=1
~t/, i
+t/2 n ti
N = T_dz = Z T dz
Xy Xy Xy
i=1
o) Eiog
+t/2 n ti
Mx El cxzdz = z J oxzdz
i=1
~t/y i
+t/2 n ti
M, o zdz = Z 0, 2dz
i=1
“t/y tig
+t/2 n ti
MXy = Txyzdz = Z Txyzdz.
i=1
-t/, i1

Substituting the definition for O Uy’ g in these expression and performing the

integrations gives:~ Xy

3 ( e
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Which gives a coupled set of equations relating the stress resultants and moments to the
strains and curvature changes.

These may now be used in the potential energy form for a plate containing bending
and membrane terms. The appropriate stiffness matrix is then obtained by differentiating
with respect to conneciton quantities which will normally ne u , v _, w_, 3w /8 , 8w /3y at
element nodes. Thus the same problems and potential solutions occur in thi$ type o
problem as with the transitional palte discussed earlier.

The added complexity ocver the earlier plate problem arises in constructing the
matrices A, B and D. Many small, micro-based, programs exists to create these terms which
may then be fed into the main F-E system. However, some of the main F-E analysis programs
do have this capability as part of their pre-processor range.
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STATING THE PROBLEM: THE STEP BEFORE F.E. MODELLING

by Ian C. Taig
Chief Engineer, Research
British Aerospace plc, Military Aircraft Division,
Warton, Preston. Lancs. PR4 1lAX
England

SUMMARY

Structural analysis is concerned with finding practical solutions of physical
problems in the real world; finite element analysis is one powerful tool used as part of
this process. Before starting to set up a finite element analysis the task should be
planned and the essential features of the real world problem should be identified. In
this paper we look at seven steps in this process:- planning the analysis in relation to
resources available, definition of the real structure, description of the structural
context, statement of the purpose and nature of the analysis, formulation in finite element
terms, definition of the facilities and resources available (the solution context) and,
finally, prescription of the solution requirements. In all cases, except formulaticn,
these topics are dealt with discursively, without recourse to mathematics. In discussing
formulation, a simple "Engineers' Theory" of matrix structural analysis is presented as _
an everyday medium for defining and understanding the F.E. solution process.

1. Introduction

Finite element analysis of a structure is not an end in itself - but a means to an
end. The real objective is always to learn something about the behaviour of a real
structure - an assembly, perhaps, of many physical parts made of real, imperfect materials
and subjected to real loading conditions which can rarely if ever be precisely known.
Boundary and support conditions are those which apply in the real world, whether we are
considering a free body in a perturbed airstream, as is typical of a flying vehicle, or
foundations in a heterogeneous ground medium for civil engineering structures.

Not only is the primary objective to learn about real structure behaviour, we must
also recognise that finite element analysis, whilst undoubtedly the most powerful and
universally applicable tool available today, is not the only such tool. It rarely, if
ever, addresses all aspects of the real world problem and it is often quite foolish to
try to make it do so. For example, it is pointless to use a very fine mesh F.E. analysis
to solve the problem of stress concentration around a circular hole in a region of uniform
thin plate material under nearly uniform stress - a sound analytical solution exists for
that problem which can only be numerically approximated, at considerable expense and
effort, by the F.E. method. In almost every such case the better course will be to use
F.E. methods to determine characteristic stress levels in the region of the hole and apply
analytical or empirical factors to obtain peak stresses.

Again it is pointless to embark on any large or complex analysis without a reasonable
appreciation of the size of the task, how long it will take and what it will cost in
people and money terms. We would not think of contracting out a job to a bureau without
asking for a time and cost estimate, setting deadlines and price limits. Yet how often
do we launch an analysis in house without even asking the questions? In my experience,
almost every time!

In this lecture, I address the first stages of the analysis process - what might be
termed the formal specification of the problem to be solved. This is not only to
establish a sound basis for the finite element modelling which is to follow, but also to
provide a record so that an independent investigator can follow what it was that the
analyst intended. I am talking in non-mathematical terms and addressing the analyst's
boss just as much as the analyst.

2. A Methodical Approach to Specification of the Task

The following steps should be followed, either formally or informally, by every
structural analyst, before beginning a finite element analysis job. In the U.K., in
recent years, the NAFEMS agency has strongly recommended(l) that this process should be
formalised and recorded using check lists or proformas. The ideal, in the author's view,
(3, 4) is to build in the process as a front end to an F.E. analysis Pre-processor,
producing a specification report as output. The suggested steps are:-—

- Analysis planning : assuring that right people, data and facilities will be in place
at the right time to do the job.

= Definition of the physical structure to be analysed and the sources of authoritative
data describing it -~ especially the physical features of the structure which are
considered relevant.

= Definition of the structural context of the analysis: i.e. what other structures or
boundary media attach to and interact with the structure, what external and internal
loading and temperature conditions apply etc.
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- Definition of purpose and nature of the analysis: what kind of results are being
sought and for what stage in the design, or approval process are they intended; what kind
of solution(s) are required and to what notional accuracy.

= Formulation of the problem in broad finite element terms: how available F.E. solution
procedures can be matched to the requirements; how structure loadings, boundary
conditions, inertias, constraints can best be represented in broad terms; any special
mathematical formulations required for adeguate problem representation. One important
aspect of problem formulation is treated in some detail later: this is an "Engineers'
Theory" of matrix structural analysis.

= Definition of the solution context: i.e. what people and facilities are available,
what computing time and/or cost is admissible, above all what is the deadline for delivery
of valid answers?

= Definition of solution requirements and presentation i.e. an explicit description of
what results should be presented and in what form; in particular, how results should be
processed, selected and presented so that users can understand and interpret them.

3. Analysis Planning

Someone, preferably an experienced supervisor, must first decide who is to carry out
the analysis and whether that person or team is adequately experienced or qualified to do
so. Again, in the U.K., NAFEMS has set out some guidelines(2) to help to establish
analyst competence and ways of building up such competence. The analysis team must
collectively have adequate understanding both of the structural design or validation
problem under study and of the use of finite element methods to solve it. If the avail-
able staff do not already meet the requirement, either training or external consultation
are necessary, and must be provided.

Incompetent analysis is worse than no analysis!

Data must be available from an authoritative source, at whatever level is appropriate
to the status of the project under study. In a large organisation this means having
adequate drawings or sketches, loading, temperature and inertia data to a common product
standard - all synchronised to fit into the analysis schedule. Other peoples' work must
be co-ordinated with that of the stress analyst.

Incompatible data invalidate an analysis before it has begun!

Computing resources must be available on an adequate scale at the time required.
This means making an early estimate of the size and scale of the job being undertaken and
ensuring that it can, if necessary, be broken down into manageable stages which will fit
into computing schedules.

Loss of data or delays from computer overruns are failures of the job planner, not of
the computing service.

Special attention may need to be given to the use of automated data preparation and
results interpretation facilities. Often there are limitations to their availability:
they may use particularly expensive and overloaded equipment or there may only be a few
people skilled in their use. Planning must take a realistic view of these issues.

4. Definition of the Structure

In aerospace, it is very unusual for an analysis of a complete vehicle to be
performed as one job. In those rare cases, the very complexity of the physical object
is such that it is usually necessary to make some restrictive assumptions about the
structure to be represented.

In almost all cases, therefore, the analyst must first decide on the physical bounds
of the structure to be solved. Usually we break airframes down into major components
such as wings, fuselages, empennage structures, etc. or further into structural boxes,
fuselage bays, bulkheads, floor structures or such substantial sub-components. Usually
these represent physically bounded structural regions - often actually manufactured as
individual, self-contained items.

In all but the most local analyses (such as stress distribution in a single detail
part or a local region of a component) the real structure will comprise many separate
parts, all with finite section dimensions, imperfect intersections, local offsets, gaps,
packings and tolerances and the myriad features which characterise real, as opposed to
idealised structure.

Drawings and/or computer-based geometry define all the surfaces, datums, detail
features and intersections; the real structure definition begins by referencing these
sources. Often the structure is being analysed whilst still in its formative stage -
the drawings or sketches are undergoing change: it is necessary to identify the standard
assumed at the time.

What detail features should be represented will depend primarily upon the analysis
purposes: here some judgment or experience may be necessary. Usually there are two
questions which may be asked:- .



(i) do the analysis purposes require detailed information about stresses or
distortions in the immediate vicinity of a physical feature (e.g. stress intensity in
the neighbourhood of a particular notch or groove)?

or (ii) is the feature likely to have any noticeable effect on global distribution of
stress (e.g. a large lightening hole in an important shear web)?

These questions require an understanding of structural behaviour based on physical
rather than on mathematical insight.

At a later stage, a further question may arise:~ can I handle all the features I
want to represent in a single analysis? This may lead on to a need for substructuring
or superelement analysis - a consideration in my next lecture, but it must always be the
purpose of the analysis rather than solution expediency which should guide the decision
"to represent or not to represent" in the first place. Yet, very often these questions
are never even asked - as though their answers were pre-ordained!

5. The Structural Context

Two simple examples will illustrate the importance of the context - i.e. the
structural environment in which the component actually performs its function.

5.1 Tension Cleat

One of the simplest, yet most puzzling structural components is the L-shaped cleat
or club-foot fitting as shown in fig. 1. Such fittings are widely used, for example, to
transmit tension/compression loads from stringers across a transvexrse diaphragm. To
isolate the cleat from its structure and treat it as an independent item under prescribed
loadings and boundary conditions as in fig. 1(a) is to ensure disaster. The correct
physical boundary conditions can only be determined: by taking into account the distortion
under load of the members which it connects - both the skin and/or stiffener on the one
hand and the bolt, washer and support assembly on the other, as in fig. 1(c). No amount
of analytical refinement of the fitting itself as in fig. 1(b), (whether by finite element
or any other means) can compensate for failure to place the component IN CONTEXT. Errors
of over 100% are commonplace in this type of problem, irrespective of the modelling of -the
fitting, unless the adjoining structure is adequately represented.

5.2 Multi-hinged Control Surface

A more obvious example of context concerns a multi-hinged structure such as the
aileron or flap shown in fig. 2. In its un-deflected position it can often be analysed
fairly satisfactorily as though attached to a rigid wing structure, but if the supports
are redundant it will always be necessary to take account of hinges and actuating
mechanisms, whose flexibilities are comparable with those of the component itself.

When the surface is deflected, as in fig. 2(b), we must either use design devices to
alleviate the effects of those components of hinge movement in the plane of the surface
(e.g. by use of swinging links) or we must consider the redundant interaction of the
deflected surface with the wing as the latter distorts; the aileron may be two orders of
magnitude stiffer, when flexing in its plane, as compared with out of plane. A very
obvious truth, yet one whichmost stressmen overlook once in their career!

This is an extreme case, but it typifies a situation which characterises most
aerospace structures. Whilst we normally analyse components in isolation, all interact
with each other at their intersection boundaries and the only correct solutions are those
which consider adjoining structures together, subject to loads and distortions which
originate on both sides of the boundary. Contact problems, where interaction occurs
only in compression, with separation in tension , are a special case requiring non-linear
treatment or inspired pre-judgment of the solution!

In all cases where components interact at a structurally redundant interface we must
perform some kind of substructure interaction, whether we formally set up a full super-
structure analysis or use iterative approximations.

6. Purpose and Nature of the Analysis

We have already seen the importance of defining the analysis objective as the essential
ingredient in deciding on the representation of structural features. Obviously, the
analysis purpose can be significant in many.other ways. The whole strategy of modelling
may be different if we are considering initial design, detail stress analysis up to
ultimate loading or dynamic aeroelastic response within the normal flight envelope.
Manageable dynamic or iterative redesign analyses will normally be treated more coarsely
than detailed stress analyses. Their loading and inertia representation may need to be
the more subtly defined because of this.

In any event a clear statement of purpose is an essential ingredient in a proper
definition of the problem, before modelling begins.

7l The Solution Context

Finite element analysis can today be carried out on anything from the humblest desk-
top micro-computer to a prodigiously powerful supercomputer. The capacity and speed of
the machine available and the facilities (such as interactive terminals with pre- and post-
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processor software) have an important bearing on how a structural problem should be
modelled. Very few problems are intrinsically so complex as to be totally insoluble by
even a modest computer - but the amount of ingenuity needed increases as the capacity
available decreases. So much so that, for practical purposes, the machine capacity often
sets limits on what is normally attempted. In our own case, non-linear analysis is
always limited to relatively small and local substructure regions and optimisation is
carried out on models with hundreds rather than many thousands of elements - limited by
our large mainframe. A supercomputer is needed to extend the practical size limits and
might then run into cost problems.

Dynamic analyses, buckling, aeroelastic divergence, flutter, contact problems - all
these are examples in which size will be limited to match the facilities available and the
time and cost limits.

Sometimes the facilities themselves give a false sense of what is practical. For
example, modern mesh-generating programs are so powerful that it is possible to create
meshes of vast size and considerable complexity with relatively little effort. Burying a
problem in vast numbers of nodes seems easier than thinking out clever modelling devices.
It is only when loads, inertias and sometimes even element details have to be defined
consistently with the structure that the enormity of the task becomes apparent. We may
easily overload any but the largest computing facility and extend the elapsed time for
producing evaluated solutions beyond acceptable limits by following the ever-finer-mesh
route.

Such judgments can only be made if we are clear from the outset what facilites are
available. For example, as already suggested above, loading data preparation is often
the biggest single task faced by today's stress analyst. So we need to know what data
preparation aids are available for all stages of the analysis and what time and cost
limits are acceptable.

In a large company environment, where the mainframe or number-crunching supercomputer
is simply there, available as a "free" resource to all who want it, it is easy to slip
into careless attitudes where jobs take as long as they take and cost what they cost - as
though these were unalterabale facts of life! By any standards this is gross mismanage-
ment both of resources and of timescale.

8. Solution Requirements

To conclude this catalogue of the banal and the obvious, we must get into the habit
of stating what we want. Walk around almost any office using number-crunching computing
and you see desk tops piled high, cupboards bursting, waste bins overflowing with un-read
computer paper. Either that, or rows of zombies in front of screens, searching for the
answers they now realise they want and finding they are not available in the form required.

Output requirements should be thought about, written down, and where necessary
negotiated, before the job begins, not when it is in its final stages. Selectivity,
automated or not, is essential to efficient use of results. The computer can search for
worst cases far more efficiently than the user - only when the unexpected happens does the
human being really need access to the mass of data.

So think what is needed, state what is needed and provide critera for selection before
the event.

9. Formulation of the Problem in Finite Element Terms

When finite element analysis becomes a routine task, formulation of the real problem
in F.E. terms often reduces to little more than the nomination of standard solution
procedures. If we adopt such an approach, we can set off on a wrong course before the
first modelling decision has been made. Very often it is possible to obtain numerical
solutions to a problem without ever writing down a single equation ~ in routine cases
this can become the norm. Indeed, the use of matrix algebra to describe the solution of
specific problems rarely seems to be taught. Mathematics are used to define the
behaviour of elements and to define problem formulation in general terms. But in-
sufficient emphasis is normally given to a number of very simple concepts which place F.E.
solution of problems on the same basis as, say, Engineers Bending Theory and the Bredt-
Batho thin-walled tube theories.

No conventional stressman would try to understand structural behaviour without
recourse to these elementary tools. The same stressman rarely uses the matrix equivalents
in thinking about F.E. Analysis and as a result often makes gross errors of judgment in
those very areas of structural understanding where his experience is strongest. So before
I start addressing any of the details of structural modelling, I would like to go back to
first principles and look at some basic structural concepts expressed in the natural
mathematics of finite elements, that is an Engineer's Theory of Matrix Analysis.

10. Basic Concepts and their Associated Matrix Relationships

There are several basic concepts which underpin the use of the finite element method
to solve real physical problems. They translate the classical principles of equilibrium,
compatibility, energy minimisation and so on into the language of matrix algebra. We
consider:-
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= Discrete variables, generalised forces and displacements and correspondence
= Transformation of forces and displacements

= Co-transference, stiffness transformation and kinematic equivalence

= Stiffness matrix reduction and condensation

and conclude with an example illustrating this "Engineers' Theory" in practice.

10.1 Discrete Variables,Generalised Forces and Displacements, Correspondence

The discrete force and displacement variables used in finite element analysis are
often regarded as point loads and displacements and in some cases have that significance.
More generally they are parameters, associated with physical points, which define force
and displacement functions over different parts of the structure. When stiffness
matrices are written in terms of these parameters, they are usually expressed in terms
of forces and displacements which correspond in the normal engineering sense, i.e. the
displacements corresponding with a force parameter are those components which do work in
association with the force components and vice versa. Some of the common associations
of corresponding forces and displacements are shown in fig. 3. In particular,
distribution of a force between points corresponds with a weighted average of point
displacements, a balancing set of forces corresponds with a relative displacement and
interpolated displacements correspond with weighted sums of forces. More subtly, as
shown later, the continuous interpolation of displacements corresponds with the
integration of weighted body, pressure or line loadings, where the weighting parameters
are the same as the interpolation functions. The same line of reasoning carries through
to a correspondence between strain - displacement and stress-force relationships.

10.2 Transformation of Forces and Displacements

For the average engineering user, the most important of all concepts to grasp is the
simplest - that of transformation.- In any problem expressed in terms of discrete
variables we may, for convenience, wish to change the variables themselves or their frame
of reference. We are all trained to deal with change of axes or change of co-ordinate
systems from Cartesian to polar or surface co-ordinates. These involve simple examples
of transformations: the relationships by which quantities expressed in terms of one set of
variables may be transformed to equivalent quantities expressed in terms of a second set.
In finite element analysis we are most commonly concerned with linear transformations,
i.e. those in which two sets of variables are linearly related to each other. Linear
transformations allow us to deal with change of axes, constrained degrees of freedom
(simple or complex), symmetry conditions, repeated boundary conditions, rigid body move-
ments, kinematics of mechanisms, reduced basis and modal analyses and many other common-
place analytical situations.

A linear transformation is written, of course, as a simple set of linear equations,
expressing the vector of quantities in one frame of reference as the product of a
transformation matrix times the vector in the other reference frame. Thus a set of
displacements U; may be related to an initial set U by the equation U; = T; U. Such
transformations obey the simple rules of association,
so that if U, = T, U; and U3 = T3 U,, then
Uz = (T3 Tp Ty)U = (T4 T, )Ty U = T3 (T, Ty)U. We cannot, of course, change the order of
transformation and only in special cases - square, non- singular or one-for-one transfor-
mations - can we invert them. Simple change of axes, using identical numbers of mutually
1ndependent variables, is the commonest example of a reversible transformation. If Ty
is such a transformation then U = T7! U;.

A rectangular transformation, i.e. one in which the number of variables changes, usually
has a great deal of physical significance. Thus if T, connects a larger number of
variables U; to a smaller number U; the equation U, = T, U; represents (multi-Point)
linear constraints because we are saying that all the variables U, can be expressed in

terms of a smaller number of degrees of freedom Uj. In many cases we can invert such a
transformation in terms of a reduced (independent) set of the variables Ujp.
Thus if [UZa N
i U; and T can be made square and non-singular
Usp T2 1 2a q g
-1
Then U = Tpy Uy and Uy = Ty TZa Uy 4

Whence |U;, I -1 Uza
= ) U or [I T = ] = Qoo
Uzp, T2p T2a 2a 2b "2 Uz,

which are constraint equations in standard forms.

e s om

I
®

On the other hand, if Tj; relates a smaller number of variables Uzto a larger number
U,, this represents an incomplete transformation. There are now an infinite number of
reverse transformations which satisfy the basic equation U3 = T3 U,. Particular
solutions can be obtained by adding rows to T and dummy variables to Uzuntil a square,
non-singular matrix T3 is obtained

G- Gilee we- (3] (] — .
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10.3 Co-Transference, Stiffness Transformation and Kinematic Equivalence

. In conservative systems, the concept of correspondence between forces and displace-~
ment can be extended to transformations in what Langefors called "the principle of co-
transference.™ If (r, u) and (R, U) are pairs of corresponding forces and displacements
and if u and U are linearly related by the transformation u = A U, then forces R and r
are linearly related by the transpose of the same linear matrix, applied in the reverse
direction: i.e. R = AT r, This is a simple consequence of conservation of energy and
is not dependent on linear elasticity.

If displacements u and forces r are related by a linear stiffness relation r = k_u
then the principle of co-transference enables us to create the transformed stiffness K
in terms of R and U.

Thus, R =AT r = AT KU =AaT k AU ---—- 0
This familiar result is normally derived directly by minimum strain energy or virtual
work arguments, without pausing to state the co-transference principle. In this

presentation we suggest that co-transference is the "engineer's equivalent" of a work
principle applied to linear algebraic transformations and is valuable for its physical
significance. Some simple examples illustrate the principle in action in some common
transformation situations.

The rigid link in fig. 4(a) couples points 1 and 2 in the u direction and for small
deformations leaves v freedoms uncoupled. We can express the constraint condition by
the equation Uj = U; and by so doing miss the equivalent force relationship. If we write

= U
U=z U;and U = [U;]’ the constraint equation can be written as

tul 1) — 5 o . 1
U = U =13 U or T U where T = 1

The principle of co-transference tells us that the force R corresponding with U is given
by _ xl
R = TT X where X =
X2

The same matrix equations apply if the link is inclined to the (u, v) axes but in
this case the vectors U, X, U, X and transformation T take on a modified form.

From fig. 4(b) U; cos a + V) sina = U, cos ¢ + V, sin a
This equation can be used to eliminate, say V, in which case
V, = (U} - Up) cot o +V; = [C1-C] [fU;] ---—- ®
Vi
U2
Uy 1 0 0
Vv 0 1 o U, . - ()
Whence Uz u, =10 o0 1 v, , where C= cota -----
vV, c 1-¢C U

This takes the previous form U = T U if we write

1 (l) U
T=|© ! ana @ g v,
0o 0o 1
Uz
c 1-c

The forces R corresponding with the constrained displacements U are given by

R = TT R where R = [X;] ----- ®
Y
X2
Y
A more graphic example, which also illustrates a second principle, is rotation of axes.
From Fig. 4(c) we see that

2 '
U = [ﬁ] = [c?sa . ﬂ [u'] which is in the same
v sina cosal |V

1] v
form U = T U if we write U = [u ] and T = [cos @ -51nc1

v' sin ¢ cos a
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The transformed forces R in inclined axes are given by

— ) . 1
R = X =7T R= cos.a sinolt x|  _____ @
v’ -sina cosally
which is obvious, in any case, by direct resolution. Rotation of axes is a special

form of transformation with another important property. In this case we note that, by
simple resolution, the reverse force transformation is given by

R =T R as for displacements

= -1 -1
Whence R = T R for any vector R and hence Tz 5

the characteristic property of an orthogonal matrix. Rotational transformations in
three dimensions have the same property.

It cannot be sufficiently emphasised that the identity of force and displacement
transformations, as seen above, is a property only of orthogonal transformations
(particularly axis rotations) whereas co-transference is a universal property of
corresponding force and displacement systems.

An important concept,which is easily understood and can be mathematically derived
via the principle of co-transference,is that of kinematically equivalent forces. Let
us suppose that the displacements v normal to a boundary AB as shown in fig. 5 are
defined in terms of a finite number of nodal parameters U. Then v = A(g) u where A(t)
is a vector of interpolation functions in terms of the non-dimensional distance ¢ along
AB. If we divide AB into n equal intervals, the displacements at the centre of each
segment are given by:-

V. = A, U, where A, is a matrix whose rows are obtained by substituting &, for each
segment into vector A(gf).

Co-transference tells us that the nodal forces R corresponding with U are given by:-
R = AT p,r where p, is the n-vector of forces on each segment.

If we write p; , the force on the ithsegment, as w; 16 £; where w; is the normal load
intensity along the edge

B
Then R = 1 (] A7J w;)§gy -----
Which in the limit as n-» o becomes
1
R=1["aT () w(g) dg -—~-- ®

'The fgrces R are described as kinematically eguivalent to the continuous line
loading, with respect to the displacement functions A (g).

For example, if v is a cubic displacement defined in terms of displacements and slopes at
A and B we have

ve12e®-3¢6% 1) 16 - 252+ £) (~28%+ 368 1 %- 9y [Va

The nodal- forces kinematically equivalent to a uniform line loading w, are then, by
integration:-

Y, 12
MA 1/12

R ye T | Wol ——-=- @
Mgl 12

and those equivalent to a sinusoidal loading wy, Sin 1l ¢ are

/1

21/1n 3
O,
Vi

-2yn 3

10.4 Stiffness Matrix Reduction and Condensation

In many cases, especially dynamic response analyses, we need to reduce the number
of degrees of freedom in a structure for certain purposes whilst retaining the detail for
others. We usually use the matrix equivalent of the Rayleigh-Ritz method and express
the full set of degrees of freedom as a linear transformation of a reduced set of
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displacement parameters and derive a reduced stiffness as before. There are many ways
of defining the interpolation matrix, relating the detailed degrees of freedom to a
coarser set and the selection of the best of these is too complex an issue to be covered
here in any detail.

A specialised procedure, often called static condensation, is used in substructure
analysis for isolating boundary stiffnesses from those of internal structure. For this
purpose we partition a stiffness matrix into regions a remote from and b at the boundary
points and write:-

K_aa K ab
K .

Kpa  Kpp
If a set of forces R, is applied at the non-boundary stations a we have
Kaa Ua * Kap Up = R,
Ua= Kaa_1 (Ra —Kap Ub)""@
Whence boundary forces R, = K

b b

3 |- X - P ] oo
I Gk Rb Kba Kaa i) i (Kbb Kba Kaa Keb ) Ub -

The condensed boundary stiffness matrix is given by:

U. + K

ba a bb U

Kpy = (Kpy - Kp; Kaa=' Kgp): a familiar formula
which is, in fact, expressible as a particular case of matrix reduction as described
above. However, this particularly simple reduction is usually quite unsuitable for

dynamic analyses because it physically represents the deformation of a structure loaded
only at the points in domain b (i.e. under concentrated localised forces) when in dynamic
or buckling analyses we need to represent deformations under distributed (e.g. inertia)
forces whose resultants are represented by a reduced set of force magnitudes.

Noting the equivalence, in mathematical terms, of corresponding force and displacement
transformations, we can choose to define such transformations either by displacement
interpolation (deflected shape functions) or by force combinations, whichever seems to be
the more appropriate, physically.

Another physically useful concept is to think of static condensation as the inverse
of flexibility submatrix extraction. For if the stiffness matrix K is non-singular,
its inverse F'can be similarly partitioned as

F F
F=| 2 ab in which case
Fia Fpp
= - -1 - == X - X = N R,
Fpp = (Kpp = Kpy Kyy =1 Ky )-1 Kpp =1 or Ky = Fpy @

We cannot over emphasise the total distinction between static condensation (or its
equivalent: flexibility extraction) in which stiffness is expressed in terms of a small
number of freedoms with all other freedoms unconstrained and stiffness extraction in
which all the unselected freedoms are fully constrained, usually to zero.

10.5 A Concluding Example of "Engineers Matrix Theory"

When structural assemblies are analysed as separate items, interacting at their
boundaries, the analysis is usually treated, in the literature, as a formal substructuring
calculation. This assumes that all the substructures are analysed together and
solved as one large super-structure problemn. More often than not, in practice, the
various components will be analysed separately, using preliminary values, sometimes no
more than guesses, for the interface loads. Conversion of approximate to accurate
solutions and allowance for varying interface geometry (e.g. flap deflection) are straight-
forwardly handled by our simple theory, whilst often avoided as too complex in standard
F.E. texts! Consider, as in fig. 6, a wing initially analysed with prescribed forces
R, at the attachment points (set a) of a flap.

The wing deformations at points a under these prescribed loads (and those over the
rest of the wing) are Ug,. Define Kaa as the condensed wing stiffnesses (all other
wing nodes unconstrained).

Now suppose we carry out a flap analysis to determine the true set of forces R, at
the boundary.

Additional deformations of the wing A U, are given by

AUz = Kaa ARy = Kag (Ry ~ Rga) = Uy = Uy

Or U, = Ugy + Kaa (Rg = Rgg ) ~=~—=-



Next look at the flap itself, for which we have a stiffness matrix

K'aa K'ab
K'ba K'pp

K' =

in local (flap) degrees of freedom - where partition a represents the attachment
freedoms to the wing. In any flap configuration the local deflections U,' are related
to U, by a transformation T which can be written down by inspection of the flap/wing
kinematics.

We write U =T U 'and correspondingly (R,'),/ = -TT R,, where the negative sign
recognises that the reactions of the wing on the flap (R/.a")w are opposite in sign to the
actions of the flap on the wing (R,). The transformation T is not necessarily orthogonal
or even square, non-singular since it may incorporate partial releases such as sliders or
swinging links to minimise unwanted interference loadings.

The wing contributes an additional stiffness K,,, = TT K;; T to the a - partition

If loads R' = {R,' R,'} are applied to the flap we have:-
: T
) T [] '
(Kwaa + K. ') K, U i R, T R, @

From which U,' may be determined in terms of the, as yet unknown, interaction forces R,.
Suppose we write the solution in the form U,' = Ug.' = B R,
where U, ' contains all the terms involving locally applied loads
Then U, = T U,' = T(Uy"' - B R, _
From the wing we have U, = Uy, + Kaa (Ra - Ry, )

So that (K, +TB) Ry = T Ugy"' -~ Ugy + Kaa Roa ————- Q
Whence R, is determined in terms of the known prior ¥%lutions and all the displacements
and stresses follow by substitution.

Examples such as this show that there is nothing difficult, either conceptually or
mathematically, in formally stating and symbolically solving problems of interacting
structures, complicated boundary conditions, internal or external constraints or any of
the other practical problems of real structures which often cause difficulties, even for
experienced finite element analysts.

We contend that every engineer who is to use finite element methods for problem
solving should acquire facility in the use of these simple concepts and techniques so
that matrix manipulation of structures should become as familiar as Engineers' Bending,
the triangle of forces, Buler buckling and the other standard concepts on which we base
our understanding of structural behaviour.
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MODELLING FOR THE FINITE ELEMENT METHOD

by Ian C. Taig
British Aerospace plc, Military Aircraft Division,
Warton, Preston. Lancs. PR4 1AX
England

SUMMARY

Finite element modelling is not synonymous with mesh generation. The complex
structures typical of aerospace, and many other industries, give limited choice for
clever mesh definition but contain a host of features which need to be represented,
either explicitly or implicitly within the finite element model. Topics covered in this
paper include general modelling strategy, definition of a basic mesh, local modelling of
structural features inclduing those which are below the basic mesh scale, element
selection, load and inertia representation, kinematic constraints and symmetry. All
topics are treated in a non-mathematical way, relating decisions which the analyst must
make to the known facts about the analysis in the way that experienced people make such
judgments. This naturally leads to references to expert systems which are seen as having
a major impact in this field.

1. Introduction

Modelling of structures for finite element analysis is the whole activity whereby a
real problem in structural analysis is formulated in terms suitable for solution using a
finite element computer program. In its Guidelines to Finite Element Practice(l), the
U.K. National Agency for Finite Element Methods and Standards makes it clear that
modelling is NOT synonymous with mesh generation, as much of the literature on the
subject would suggest. Determination of the appropriate mesh is but one aspect of the
problem: many others are equally important and often give the analyst more difficulty.
Likewise, accuracy of the finite element solution, per se, is only one of several criteria
which influence modelling decisions.

The growing body of literature on mesh generation, optimum gradation and adaptive
refinement addresses an important issue in relation to F.E. analysis of continuum
structure, in which the complex boundary and the (homogeneous) material properties

characterise the structure. In aerospace structures this is rarely more than a small
aspect of the problem facing the designer and stress Engineer(2, 3); sometimes it is
completely irrelevant. In addressing the aerospace engineer, we start from the

fundamental position that our structures are so complex that the lowest level of
significant structural detail (e.g. small holes, cracks, grooves, fillets etc.) is well
below the scale at which a single comprehensive finite element model can explicitly
represent it. We think from the outset in terms of multi-level analysis (ranging from
global to local) whether formally interrelated by sub-structuring or not. The pre-
dominant issue at the global representation level is the extent to which local features
should be represented explieitly at all - not how the mesh should be best refined to
provide accuracy in their vicinity. At the local level, mesh refinement is a major issue,
but so too is structural context (i.e. all aspects of the interfaces with adjoining
structure). Even at this scale, actual features such as discrete fasteners, composite
lamination boundaries, fillets and lands can dictate practical, as opposed to optimal,
mesh definiton.

At all levels we are concerned about boundary conditions, load and inertia
definition, realistic material behaviour etc., all to be represented at a cost and
within a timescale we can afford as well as to give the accuracy we desire. Many of the
decisions to be made are heuristic, i.e. based on judgment and experience, rather than
mathematical or algorithmic. This is why they have received such scant attention in
the scientific literature: a situation which is starting to change now that expert
systems are becoming practically feasible and scientifically respectable(5).

We attempt here to give a broad coverage of the subject by looking briefly at the
following stages in modelling:-

= High level structural representation (the generic types of elements to be used)
and modelling strategy

= Basic mesh definition to represent the primary characterisitcs of the structure
at an appropriate level of definition

= Local modelling of structural features, via explicit fine meshing, special
elements or implicit representation in modified element behaviour

- Specific element selection; shapes, formulations and material properties
= Representation of local and distributed loads and inertias

= Kinematic boundary conditions: symmetry and constraints.
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2. Structural Representation and Modelling Strategy

We begin by restricting our discussion to the structures commonly associated with
aerospace: reinforced shells of great complexity, beam and framed structures and solid
fittings of complex geometry. We assume that the "real world" problem is adequately
defined as recommended in the previous paper(4). The first question to be addressed is
what generic type of structural representation is appropriate: often the answers seem so
obvious that the question is not asked, but we should take the time, occasionally, to
to review our standard practices. Some high level issues which may arise are outlined
below.

2.1 Shells,Plates or Solids?

For an aircraft fuselage or an undercarriage mounting bracket the answer to this
question is -obvious. But what of the solid missile wing, the undercarriage oleo leg,
the thick skin at the root of a composite wing, the one-piece forged or machined airbrake?
For such structures a balanced judgment is needed, weighing the analysis purposes and
accuracy on the one hand against cost and complexity on the other. Some of the
considerations affecting the decision are set out in Table 1 below.

TABLE 1

Choice of Shell or Solid Representation

For Shell For Solid

Structure is of characteristic shell Structure is of general 3-dimensional
or plate form or built up from such form

members
Thicknesses are significant compared
Thicknesses small compared with other with other relevant dimensions
significant dimensions
° Stress distribution through the thick-
Mainly interested in stresses at ness is likely to be important,
extreme fibres or in displacements especially when there are stress
raisers in the depthwise direction
Homogeneous, isotropic material
Strength through the thickness or in

° Through-thickness or out-of plane out-of-plane shear is lower than in-
shear stresses unlikely to be plane
significant
® Progressive non-linearity may develop,
° Cost or job size are serious limiting moving in from the surface
factors
° Specialised solid elements (e.g. ortho-
° Adequately proven solid elements are tropic sandwich core) provide efficient
not available representation of densely - packed

structure or quasi-solid material
No efficient shell-solid transition
elements are available

Similar questions arise in frame and beam-type structures where we must decide on
line elements versus representatively modelled sections. In all cases, we recommend
that, other things being equal, the simplest representation is the best!

2.2 Membranes or Plate/Shells; Facets or Curvature

At first sight it may seem pointless to use facet membrane representation of any
curved shell when there appear to be plenty of shell elements available. But not only
are there order-of-magnitude size and cost differences, there is also no such thing as an
impeccable curved shell element, which can be reliably used (and interpreted by ordinary
mortals) without significant added complexity. One need only cite the old problem of
the rotation component normal to the shell surface (and the many dubious practices used
to suppress or circumvent it) to realise the practical difficulties.

In academic circles, the use of lower order elements (e.g. linear isoparametrics)
is almost unknown, yet in industry, where complex built-up structures are being analysed,
these are still the norm. There are good reasons for this, despite the readily
available evidence that "higher-order is better" from a cost: accuracy viewpoint. Linear
elements are both easy to use and understand and are reliable (if not precise) in perform-
ance. They can be safely used in conjunction with statically equivalent loads without
needing to bring in the added complexities of kinematic equivalence. Furthermore, if the
structure (at the scale of the F.E. analysis mesh) is not a continuum, but an assembly
(or intersecting network) of discrete members, then all theoretical advantages of higher
order elements can be lost.
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The issues which affect these high level representation arguments were explored in
some detail in a recent expert systems project(5). For example, Fig. 1 shows a so-called
called inference net, taken from ref. 5 which indicates how a recommendation to use
membrane (as opposed to flexural) representation was derived.

,
Mode
Q Q Q
IF Skin_ Thickness _ YLE! construction Fail IF NOT
Stiffening change type strain mode
type ELSE
@ FALSE Failing
strain
Q

Fuz] g
Skin_ I 7 HADE
ompressive_loading) Brittle material Nusber

stiff
Bayes' Rule

Q

q

MADE Condition Offsets_present

NaturaLﬁJ Q

IStandard+
mesh mesh Continuous_ L Construction-
support type

Mesh_ratio

Fine-category

Bayes' Rule
Construction_ [
type Unsupported nodes Offset_sensitive Membrane_loading

Membrane (Strength of recommendation)
Fig. 1 Derivation of the Membrane Recommendation

Without going into detail, the diagram shows that three factors influence the strength of
recommendation in favour of membrane representation:- (the predominance of) menbrane
loading supports the recommendation whilst (the presence of many) unsupported nodes and
(the probability that the skin is) offset sensitive oppose it. Bayes' rule provides a
means of combining and weighting these factors, to emulate balanced human judgment. The
three influencing factors are themselves derived from other considerations such as
analysis purposes or (the use of) brittle material, ultimately leading back to direct
questions to be asked of the analyst, such as (is there significant) normal pressure (not
reacted by circular curvature or closely spaced supports)? The judgments are seen to

be complex but they lead back to questions which are individually quite simple. The
expert systems methodology provides the first practical way of making such judgments,

and their associated questions, readily accessible to people without wading through
impossibly - complex manuals.

2.3 Symmetry orxr Repeated Structures

As a general rule,if symmetry is present in a structure, take advantage of it to
reduce the problem size; likewise if structural patterns (and their boundary interactions)
are repeated. In some analysis systems, this poses no practical problems but in others
it can give rise to a great deal of complexity. For example, a fuselage structure may
be structurally symmetric over part of its length and asymmetric over another part.
Whether or not we take advantage of symmetry, where it exists, depends upon how readily
we can combine symmetric halves (and their, usually, asymmetric loadings) with the
asymmetric portion of the shell to obtain the overall solution. Often the complexity
of this task, to say nothing of the false starts and re-runs, makes the alternative - a
doubled size for part of the analysis - look very appealing!

If fully automated and clearly explained facilities are not available in the finite
element system being used, it is foolish to enter this minefield without first acquiring
some manipulative skill in symbolic problem-solving using the "engineers' theory" of
matrix analysis of the previous paper(4) or its equivalent. It requires some skill
and experience just to get signs right and to avoid errors by factors of 2!

We always recommend that trial runs on small problems be carried out and validated
before attempting large analyses. Time must be allocated for building up this
confidence - it will usually be repaid in fewer abortive runs.

2.4 Modelling Strategy

We have already touched upon some of the stratigic issues which must be settled at
the very start of modelling. We now look at some of these more systematically.

° Mesh scale in relation to features

Many aerospace structures are designed and built as roughly rectangular assemblies
of skins, supporting members, stiffeners and so on. The pattern of actual members
dictates a (possibly more than one) natural mesh scale, simply by following structure
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intersections and improving proportions by regular sub division of slender panels.

Basic mesh dictated
by spar pitch

Local refinement
for major structural
features

Fig. 2 Wing Internal Structure and Design Analysis Mesh

The wing shown in fig. 2 is an example of a structure whose natural mesh is clearly
dictated by the closely spaced spars. Whether this natural mesh is not fine enough,
just right or too fine for general analysis is a question which must first be related to
the analysis purposes and perhaps modified by size and cost considerations. With today's
company computers it is rarely necessary to go coarser than the natural grid defined by
the major supporting members (spars, ribs, frames, bulkhead etc.) but equally rarely
feasible to get down to individual skin stiffeners for closely-pitched stiffened skins.
It is almost never feasible to represent skin stiffeners in full section detail in a
single pass analysis. We showed in a recent AGARD discussion paper that such an
analysis might require 10% nodes x 6 dof. per node for a wing, more for a fuselage - a
huge task for multi-case, multi-purpose analysis, for pre- and post-processing and for
information handling.

o

Super-modelling and Sub-modelling

A totally different approach to modelling is appropriate if we choose a basic mesh
scale much finer than the natural mesh as opposed to a similar or coarser scale. In the
former case, which I shall subsequently term super-modelling we can base decisions on the
continuum analysis reasoning favoured by the academic community. In the opposite case,
hereafter called sub-modelling, continuum strategies are largely irrelevant. As
suggested above, most major airframe components will fall into the sub-modelling category.
Super-modelling will be confined to local regions and isolated structural members. The
divergence in strategy is indicated in Table 2 below.

TABLE 2
Indications for modelling strateqy related to mesh scale

Super-modelling Sub-modelling
(more mesh than features) (more features than natural mesh)
Graded meshes refining in regions of ° Meshes in multiples or sub-multiples
geometric or load-induced stress of basic mesh, determined by structure
concentraion

o

° Simple, low order elements indicated

° High order elements indicated
° Minimal (single line or panel)

° Explicit representation of the representation of major skin-support
relatively few major structural members members

with mesh density appropriate to

significance ° Mesh refinement, in local sub-

multiples of basic mesh, only at most
Stress gradients, principal stress significant stress raisers
contours, energy densities guide mesh

definition (continued over page)

=)
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TABLE 2 (continued)

Super-modelling Sub-modelling
(more mesh than features) (more features than natural mesh)
Accuracy principal criterion ° Sub-scale features normally
implicit in standard mesh elements;

° Adaptive refinement and post- representation by subsidiary
analysis correction are appropriate analysis, special elements and sub-
structuring

° Convenience, size, cost the

principal criteria

Substructuring and Superelements

Substructuring is a device for breaking down an analysis into manageable parts. Only
if there are several identical and repeated substructures does it offer any savings in
either elapsed time or solution cost. Usually it adds a great deal of complexity to
the analysis specification and actually increases the overall job size. We must
distinguish between substructuring which is only recommended when there are sufficient
supporting reasons, from partitioned data preparation, which breaks down the modelling
process but not the solution into manageable and natural parts; this is recommended for
all large and fairly complex structures.

Reasons which support substructuring, in roughly descending order of importance are:-
° Relative geometry of adjoining structures changes (swing wings, deflecting control
surfaces, etc. etc.)

° Different analysis teams assigned to tasks.

° Single-pass analysis exceeds available computing time slot (may be better to try a
bigger computer!)

° Localised iterations required, e.g. non-linear analysis, contact problems etc.

° Several components very sparsely connected (higher priority if nearly statically
determinate)

° Multiple, repeating substructures (but probably better to use modified stiffness
matrix assembly)

Remember that substructuring, taken through to rigorous solutions, complicates
structure and load definition, solution (especially for dynamic and iterative solutions)
and verification. More errors are likely and there are no pre- and post-processing
advantages compared with simple data partitioning.

When substructuring is used it is often necessary to analyse substructures
independently with approximate (e.g. coarse mesh) interface conditions and only to carry
out full interaction if there is reason to suspect that the interface conditions are
causing local disturbances in stress patterns.

There is a special form of substructure analysis, involving generalised prior
solutions of standard components, considered later under the heading of implicit
modelling.

Another simplifying device is to analyse smaller structures whose boundaries overlap
so that St. Venant's principle can be allowed to do its work and we make two estimates
of behaviour in the overlap region.

3. Basic Mesh Definition

Having discussed some of the strategic issues which depend upon the mesh scale in
relation to real structure, let us now return to the mesh definition in a little more
detail.

It is implied in the nature of most geometric pre-processor systems that structures
to be analysed comprise. components bounded by a relatively small number of continuous
surfaces. It is predicated that the analyst's problem is to create a mesh by inter-
polation between the relatively coarse defining boundaries and that there is freedom to

select intermediate mesh lines for convenience and accuracy. As we have seen already,
this situation can apply when we are able to adopt super-modelling strategy, i.e. when
dealing with relatively, small, self contained components. For the large majority of

aerospace structures we are in a sub-modelling situation, where the defining boundaries

of the structure are already very complex and, whatever scale we choose for analysis,
there will usually be significant structure features at a smaller scale. Only in very
local regions, where significant features are sparse, do we have the luxury of free choice
of intermediate mesh lines. At the most we deal with standardised ways of blending a
local mesh (such as a ring of nodes around a large hole) into a more-or-less rectangular
pattern.
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To formalise the discussion, we consider mesh definition in two parts:- i) creation
of a basic mesh pattern which is directly related to the pattern of structural members
and where the principal considerations are scale of the mesh and proportions of the
elements

ii) modification of the basic mesh to account for special structural features — we term
this the local mesh and will consider it further in the next section.

3.1 How Fine is Fine?

We normally describe a mesh as coarse or fine and naturally associate these
qualitative descriptions with the purposes of the analysis. Whilst these terms are self
explanatory to the experlenced analyst, they need some numerical interpretation for
guidance of the relative novice; this depends on the size and complexity of the structure
being analysed. For structures like aircraft wings and fuselages, coarse usually means
representing all major intersecting members and doing no more than making a few 1ntegral
sub divisions of natural bays of high aspect ratio. The natural mesh thus defined in
fig. 2 would therefore be described as coarse. Where there are few intersecting
members, for example in a sandwich core-filled flap as shown in fig. 3, a coarse mesh is
defined by the minimum number of stations needed to give reasonable stress and displacement
patterns across the lesser plan form dimension. Five or six stations across the width,
corresponding pitch along the length and no additional stations through the thickness
will be most peoples' idea of a coarse mesh.

No significant structural detail except
hinges and edge members

Minimum mesh chosen to represent
continuous flexure and torsion

Fig. 3 Minimum Mesh for a Simple Flap

In the expert system described in, ref. 5, the following formula is used (in a
"fuzzy" sense), for topologically cylindrical shells, to define the coarsest or minimum
mesh size for a shell with few intersecting members.

Minimum mesh size 50 x(l + 0.6 x Depth-ratio) x Aspect-ratio
Symmetry-factor

where the symmetry factor is 1.8 for single symmetry, 3.5 for double symmetry and 1 for
no symmetry.

The flap of fig. 3 with no symmetry, aspect ratio 4 and depth ratio 0.1 evaluates to
212 nodes which compares with the 231 nodes shown for 6 chordwise stations. The formula
applies to within about 20% for a wide variety of shell cross sections, but needs
modification for multi-surface shells (e.g. fuselage with internal floors, walls or
engine tunnels and ducts).

Returning to the more complex structures such as fig. 2, the decision whether or not
we need a basic mesh finer than the natural one depends on our assessment of "how fine is
the natural mesh already?" A measure of this is the natural mesh ratio defined as
Natural mesh. To complete the formal description of the decision process we have
Minimum mesh

categorised analysis purposes into three broad groups:-
° Coarse purposes are those which create no special demands for refinement beyond
the natural mesh

° Fine purposes are those which may require refinement dependent upon the magnitude
of the natural mesh ratio



° Very fine purposes are those which certainly require a finer level of detail than

that provided by the natural mesh.

Refinement in this context means integral sub division of natural mesh pitches and
maintenance of element aspect ratios in an acceptable range (we normally use % to 2 for
skins, up to 5 for internal webs, with "near square" the preferred shape). Examples of
categorisations which we have adopted (as general guidelines subject to override by the
analyst) are tabulated below.

TABLE 3
Categorisation of Analysis Purposes

Coarse- Purposes Fine Purposes Very Fine Purposes
Initial sizing of structure | Design stress analysis Check stress analysis
Global optimisation Global static stability Fracture mechanics
Global flexibility Post-buckled, quasi-static Laminated structure

determination response analysis
Static aeroelastics Damage tolerance analysis Global + local stability
Global dynamic response Thermal response Acoustic response
Dynamic stability (flutter) | Global + local dynamic
response
Panel flutter

Combining all these factors with others pertinent to particular tasks makes the ultimate
decision complex and subjective. But in the end we came down to a relatively simple
choice: "one, two, three or more sub divisions of the natural mesh, or none at all?"
Numerical assessments are possible but they can only be approximate, within rather large
tolerances. One way of dealing with this, in expert systems design, is to give weighted
recommendations based on formulae and fuzzy set theory so that we might advise the
user (based on information on purposes and knowledge of the natural mesh proportions):-

No- sub-division :- 0.07
1 sub-division :- 0.56
2 sub-divisions - 0.32
3 sub-divisions :—= 0.05

Strengths of recommendation
in range 0-1

making it a matter of personal preference or convenience which option to adopt. We use
this approach frequently in our FEASA system(5).

3.2 Graded Meshes

The previous discussion relates to a "typical” mesh which is implied to apply fairly
uniformly over a structure. If we are in the sub- modelllng situation (with more
features than mesh p01nts) this fairly uniform coverage is usually appropriate. But in
situations like the flap in fig. 3 it is obvious that the major load concentrations and
localised deformations will occur in the immediate vicinity of the hinges. The uniform
mesh of fig. 3 is clearly not ideal and we are faced with two basic options:a) treat the
hinge zones as local features and use local sub division and blending techniques as
discussed later in section 4.

b) use a gradually graded mesh in which a smooth transition is made between the
uniform mesh remote from the hinges and the local mesh defined by the hinge geometry and
attachment features.

Mesh gradation is a topic in its own right with an extensive and often esoteric
literature. Basically there are two distinct approaches, namely a priori methods, in
which we base decisions on knowledge available before analysis, and a a posteriori
methods in which we use the results of one or more analyses to improve a trial nesh.

The latter topic leads on to self-adaptive mesh refinement, hierarchical elements .and
many other topics outside the scope of this lecture (see, for example, Babulka(6),
Zienkiewicz(7) and Brandt(8) ). A priorimethods rely heavily on experience to know how
fine to make the local node spacing and how to blend into the remote mesh. Often, if
automatic mesh generators are used, the options for blending are very limtied. Regions
of structure must be sub divided into combinations of topological rectangles and/or
triangles with a limited range of possibilities for specifying interpolation

parameters. In arriving at a judgment, the practical engineer will take into account
many factors in addition to accuracy, for example:-

= Profiles of thickness changes or laminations

= expected principal stress trajectories

= mesh continuity for ease of presentation and interpolation
= maintaining sound element proportions

= picking up sub-scale features such as bolt holes

My own preference is to keep to near-square quadrilaterals and if necessary to sub-divide
without blending, by using constraints on boundaries where nodes are incompatible. Standard
blending patterns, such as from squares to circles with approximately geometric

progression in mesh spacing, fit well with use of automation.
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4. Local Modelling of Structural Features

This is perhaps the most important aspect of the whole modelling topic for the aero-
space engineer. Knowing what to represent, how to represent it and in how much detail
is the art which separates the expert from the novice, the good analyst from the bad.

In the previous paper we emphasised that it is pointless to try to achieve more than
finite element analysis can deliver. Stress concentrations at t1ny holes, crack tips
and so on are best dealt with by appropriate local analysis, which is not to say that the
products of such analysis should not be incorporated implicitly in the F.E. model. What
we want to avoid is the pursuit of indefinitely fine meshing in regions of near
singularity.

In a recent paper(9) we introduced (or more accurately gave a respectable name to)
implicit modelling and implicit mesh refinement as the pragmatic alternatives to explicit
fine meshing and comprehensive substructure analysis. They are, in fact,concepts which
have been embodied from the very first day that finite element analysis was used in anger,
yet this may be the first attempt to give them systematic consideration. The first issue
in local modelling is thus to answer the following question.

4.1 Explicit or Implicit Modelling?

We are now looking at sub-scale features of the structure, i.e. structurally
significant features whose deflnlng geometry is at a smaller scale than the basic grid,
previously discussed, and at major features which perturb the basic grid, such as cut-outs
and doors in otherwise continuous skins. The alternative approaches are:-

° Explicit modelling in which we represent the important geometry of the features by
appropriate local mesh and element selection and blend in to the basic mesh

= Implicit modelling, in which we continue the basic mesh with no more than minor
changes (duplication of occasional nodes to allow flexible coupling is as far as we go)
but modify the section properties of elements and/or their materials so as to simulate

the effect of the features as seen by adjoining structure. When using implicit modelling
it is assumed that the analysis will yield good boundary conditions to enable a sub-
sequent local analysis of the features to be performed. Implicit modelling is thus a
hybrid form of substructure analysis which may or may not use F.E. methods at the detail
level. If F.E. methods are used we give the process the special name implicit mesh
refinement.

As far as the global analysis is concerned, these issues are transparent; there is
absolutely no complication of the analysis compared with a straightforward model with no
local features. Once more we are faced with a judgment which owes more to engineering
appreciation of behaviour and practicalities of analysis operation than to finite element
theory. In table 4 we list some of the influencing considerations.

TABLE 4
Factors Indicating Explicit or Implicit Modelling

For Explicit Modelling For Implicit Modelling

Large scale of features (comparable with |Small scale of individual features

or greater than basic mesh size)

Major fixtures such as mounting fittings
carrying significant loads

Critical importance of investigating the

(relative to basic mesh)
Large numbers of similar features

Adequate theoretical treatment, given
characteristic load levels (e.g. fracture

features, per se, particularly if..... mechanics, standard stress raisers, etc.)

No adequate local treatment available

4.2 Explicit Modelling ~ Nodes or Know-how?

When we decide to represent features explicitly we are still faced with an important
choice - whether to use a relatlvely coarse representation, relying on understandlng and
subsidiary analysis to fill in the detail or whether to "burythe problem in nodes" and
let the F.E. method sort out the details. In the extreme, the latter approach is cited
as a potential use of supercomputers - to solve complex structures without any need for
analytical skill. In most cases, reliance on nodes in lieu of physical understanding is
a dangerous practice. It is certainly expensive in solution time and possibly in data
manipulation time too. There are, of course, cases where it is wholly appropriate.

For example in a very complex stress and deformation situation, such as might arise at an
access panel in a laminated composite skin (with single sided reinforcement) as shown in
fig. 4, local fine meshing may be the only feasible solution. The combination of edge
effects, local fastener holes, asymmetric reinforcement and local non~linear behaviour
makes it advisable to isolate the region as a substructure which can be analysed to a
degree of refinement impractical over the structure as a whole.
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More generally, however, we would recommend relatively coarse meshing, to obtain the

stress or displacement trends in the region rather than directly estimating peaks. In
the common case of stress raisers at cut-outs or fillets it is well known that the F.E.
method usually displays the classic features of the law of dimimishing returns. In a
NAFEMS benchmark test, (10, 11) typical convergence to a correct peak stress is
illustrated in fig. S
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Fig. S5 A NAFPEMS Benchmark Test Showing Convergence Rate

The coarsest solution, using a ring of 2 x 4-noded straight-sided quadrilaterals around
periphery, returns 81% of the correct answer at the peak stress point. Using a faired
curve either along the centre line or around the hole periphery the same analysis can

yield 95% of the true solution, as good as we can obtain directly from three times as
many nodes.
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So we would suggest that, for modelling cut-outs and fillets, a normally fine mesh
may use 3 elements, 4 or 7 nodes per quadrant around a curved boundary, 2 elements, 3
or 5 nodes per half side at a rectangle. At most, 2 rings of such elements may be needed
before blending into the basic mesh. Very fine analysis may double the numbers of
elements and beyond this we are dealing with individual cases to be treated on their
merits.

Tk
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Representations

(a) Flexural plates
6 d.o.f.per node

(b) Membrane plates
3 d.o.f.per node

(c) Offset beam
No additional d.o.f.

rig. 6 Alternative Modelling of Skin Stiffener

Taking another quite different example, a stiffener supporting a skin, as shown in
fig. 6, is better represented by a "cubic" beam with offset attachment and shear
deformation (at 1 node x 4 d.o.f. per node, per longitudinal station) than by membrane
flats (at 3 or 4 nodes x 3 d.o.f.). If we are concerned with interaction between
stiffener and skin stability, we can either treat this by continuous stiffened skin
analysis using stress levels derived from the beam representation or adopt a full flexural
treatment of the stiffener allowing for attachment at the fastener line, needing 5 or 6
nodes x 6 d.o.f. per node. This complexity is very rarely justifiable as it is question-
able whether there is any improvement in accuracy.

4.3 Explicit Modelling - Joints and Attachment Fittings

In airframe structure analysis, a most important, yet often neglected modelling
consideration is the representation of joints and associated fittings. Bolted, riveted
and even bonded joints can contribute significantly to overall structural flexibility.
Attachment brackets, with their pins, bushes and fasteners, have a major influence on the
distribution of load in our structures. In assessing the flexibility of joints it is
always necessary to look at the details of load transfer because we often transmit sub-
stantial loads through thin material in flexure or via pins with significant offsets.
However it is rarely necessary to represent this detail explicitly in any other than the
most detailed local analyses.
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Bolt tension and flexure

In-plane flexibilities
imhear. tension and bending)
ara nagligible

Bracket flexure

Pin bearing
Pin flexure

Pig. 7 Major Flexibility Contributions in a Mounting Bracket

Usually, explcit modelling of a joint and its fixtures means representing all major
attachment points (e.g. lug centres) as structural nodes, either individually or at
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stations representing local node groups. It is always necessary to identify separate
nodes on two sides of a joint and represent flexible material between them. In represent-
ing attachment fittings we need to be careful to provide stiff load paths in the plane of
webs and flanges and flexible paths out of plane. Where significant loads are transmitted
in flexure, as in the base of the bracket in fig. 7 (or the cleat in fig. 1 of the
previous paper) it is important to remember that it is flexibility, not stiffness, which
matters. Thus if we are to ignore anything in these fittings it is the high-stiffness
in~plane-loaded parts, not the flexible, flexurally loaded parts of the load path. It

is always better to make a simple engineering estimate of bracket flexibility by assuming
load paths and summing strain energies in the varies members than to ignore the fittings
for lack of meaningful data. Better still, use the implicit modelling approach of ref. 9
and run some typical F.E. analyses on various brackets and derive flexibilities at their
attachment points therefrom. One or two analyses may be sufficient to define represent-
ative flexibilities for 10 or more flap/slat/aileron/airbrake mounting brackets or 100
cleats.

Simple lap, angle and buttstrap joints depend more on the flexibility of fasteners,
bending in sheets and plates with offset loadings, than on the flexibility of the fittings.
Until recently, data on joint flexibility have not been widely available, but this is
now being rectified to some extent by ESDU(12). Fig 8 shows a typical curve for stiff-
ness of titanium bolts in aluminium alloy skins.

k = Foundation stiffness per unit thickness = 0.18 x Eplate
S = Stiffness of single bolt joint

kit (33

1 B Steel bolts in 1 n Titanium bolts in
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08 08

Test data
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Fres head Free head
0 ; ' ' 1] -
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Fig. 8 Bolted Joint Stiffness Data (Bolts in Single Shear)

The commonest joints in sheet and plate structures are continuous line joints. In

these it is rarely necessary to model individual fasteners, so data as in fig. 8 are
normally used to estimate stiffnesses related to pairs of approximately coincident nodes
at basic grid spacing. Stiffness at these nodes represents the aggregate behaviour of a
group of fasteners and improved accuracy can be obtained by allowing, say, linear
displacement variations between adjoining elements at a joint.

Individual fastener modelling, or at least higher order relative displacement
functions, may be needed in load diffusion situations, such as the end of a stiffener or
reinforcement. Fastener load peaks rapidly towards the end of the member so that the
first two or three fasteners may carry the bulk of the load. Even in this case we can
get very good results from a coarse analysis if we use a little subtlety in deriving the
equivalent joint flexibilities. We can carry out a subsidiary calculation of load
distribution at a stiffener end and calculate equivalent 'lumped' fastener flexibilities
using, for example, a careful strain energy analysis. For complete load transfer at a
multi-fasterner overlap joint, ESDU(1ll) provides a simple computer program to determine
effective joint flexibility.

4.4 Implicit Modelling or Use of Equivalent Stiffnesses

As soon as we decide to perform an analysis at a scale larger than that of many
structural features we must decide what to do about those features. Our options are:-

(i) model them explicitly and in some detail, as above
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(ii) model them explicitly but at a coarse scale as suggested for continuous line
joints.

(iii) represent them implicitly by modifying basic element properties
(iv) ignore them altogether and correct the results by subsequent local analysis

Option (iv) is favoured by most stressmen for obvious reasons and in many cases it is
perfectly valid. The criterion to be used is whether or not the local features will
have any discernible effect beyond the boundaries of the element in which they occur.
Features which are continuous or frequently repeated, such as stiffeners on a skin or a
series of lightening holes in a web, cannot and would not be ignored in any circumstances.
Most sub-scale features can be classified as reinforcing (stiffeners, bosses, lands etc.)
or weakening (holes, grooves, notches etc.) or joints. As 'a rough guide, such features
can be ignored under the following circumstances.

Feature Type Can be ignored if:-

Reinforcing features Reinforcement is not continuous AND
Aggregate volume of reinforcements
<10% of basic element volume

Weakening features No more than 20% section lost in any
continuous loadpath across the element
AND

Aggregate volume of perforations
<5% of basic element volume

Joints Aggregate flexibility over periphery of
element <10% of element flexibility
under relevant uniform loading

These rough rules afe intended to ensure that the strain energy in the element with its
features is within T j03 of the basic element under any relevant loading.

Coarse-scale explicit representation

This will be the normal method used for continuous reinforcing members, in
rectangular or trapezoidal panels, as well as for many joints. The earliest way of
representing stiffeners was by lumping into equivalent edge members, which is the
crudest coarse-scale device. A better treatment in pure displacement or hybrid analysis
is to apply consistent deformations along element boundaries using the identical
interpolation forms used for sheet, plate or shell members and derive special stiffnesses
at nodes, as in ref. 9. If not available as standard within the F.E. system, it is
fairly simple to add one's own special elements on this basis. The alternative is a
true implicit modelling method using "smearing” of stiffeners into an equivalent
orthotropic sheet as discussed below.

Modification of basic element properties

This is usually the simplest method to introduce into a standard F.E. analysis as it
involves no special mesh, no special elements and no solution complications. On the
other hand it may require the most work by the analyst if it is to be used effectively.
It is the recommended practice for dealing with most weakening features, discontinuous
reinforcements and continuous reinforcements if special elements are too difficult to
implement.

Considering membrane loading of plates as an example, then, if we assume that
orthotropic material properties are available as a standard option, there are three
material constants and an orientation angle which can be adjusted to simulate the
behaviour of a modified basic element - four variables in all. In most cases it. is
sufficient to perform simple engineering analyses on single elements under constant
direct shear and in-plane bending loadings in order to derive equivalent material
properties. Many standard formulae(3, 11) are available to determine such stiffness
equivalents for commonly occurring features. For example table 5 below is derived from
ref. 3, in turn presented in ref. 1ll: it relates to the effective stiffness of shear webs
with standard weakening features.
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TABLE 5

Equivalent Stiffness of Weakened Shear Webs

Effective Shear Effective area A of web associated wih flange
Type of Web Stiffeners Panels with low
(equivalent Gt) Beams in flexure stress gradient
| Plain webs _________ e Gt .
Honey comb bt bt
sandwich webs X Gt for skins 6 2
Shcar=buciclgd 0.6 Gt Lesser of 15t% or bt/6 15¢2
plain web
Web with lightening bt (b-D)t
holes Gt (l'D/a) 6 2
Zero normal to Zero normal)¢q
Corrugated webs ¢t (a/a ) corrugations bt parallel) corruga-
2 Jtions
Web with shallow c 1 £ 1502 A 15t? normal)
t esser o t® or bt
Swages 6 %} parallelgswages
Gt Zero along line of ;:ro along; tg line
Castellated webs 3, 2| castellations ——-normal ©
1 + B+ 9_.4__8.31_ 3 ) castella-
(1-a) (1-a) -
tions
where:~ a, b,t = web dimensions a4 = developed length D hole diameter
_ notch width g= 2 x notch depth _ plate depth
o pitch plate depth Y" hotch pitch
Axes of
orthotropy
Plate reference
axes
Equivalent orthotropic plate
Stiffeners and basic mesh
FIG. 9 Modelling of Stiffeners Below Mesh Scale

In many cases, such as the "smearing" of stiffeners into equivalent orthotropic
sheet (fig. 9) the element modifications are self-evident; in this example, the effective
longitudinal modulus is given by

E, t= Et +Eg Ag or E = E + EgA
1-v? b 1-v? bt
Where E is the skin Young's modulus and y is Poisson's ratio

Es is the stiffener modulus and As its area.

in the stiffener direction

Another common application of element property modification arises when we wish to
correct section dimensions to allow for varying distance from a neutral axis of
bending(2). Typically we may use a (depth)? correction for bending effectiveness of
stiffeners which are idealised as though lying on a skin surface.

5. Specific Element Selection

Which elements we use to represent our structure depend, of course, on what we have
available, and on our basic modelling strategy. In the case of plate and shell
modelling there are usually most options available. We have already considered the
membrane versus flexure argument and the low versus high order choice, but'it is worth
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re~stating some of our preferences:-

°Generally, quadrilateral elements out-perform triangles of comparable node
density though triangles are often easier to fit into graded meshes; we always
recommend quadrilaterals wherever possible, triangles only for mesh blending in non-
critical areas.

°We prefer low order elements wherever we are sub-modelling (more features and
details than mesh points) as they are simpler, easier to use and more reliable for the
non-expert.

°We prefer higher order elements in continuum analysis and super modelling
situations, for their better accuracy and economy in regions of stress concentration.

°We normally use pure displacement elements recognising that this is no more than
historic attachment to familiar things.

We recognise the practical advantages of stress-based or hybrid elements in giving
boundary representations which are closer to the stressman's requirements than displace-
ment formulations but are wary of difficulties in recovering true displacements and of
unpredictable performance outside proven applications.

°My own preference is for an element which does not yet exist in a satisfactory
form, but which we hope to launch in the near future - a quadrilateral with in-plane
nodal rotation (drilling) and a satisfactory capability to represent in-plane flexure
without numerical integration fixes.

°In solid elements, the same basic rules apply: low order for sub-modelling, high
order for supermodelling. There are some very bad performers about and it is worth
while delving into element validation tests before making a final choice. Some useful
special elements are available such as orthotropic shear elements to represent honey-
comb core in sandwich structures.

6. Load and Inertia Modelling

In these days of automated aids to mesh generation (which is a purely geometric and
topological problem), the preparation of loading data, which depend on element formula-
tion as well as on factors wholly extraneous to the structural analysis, can become the
dominant task in analysis data preparation. Two main factors can contribute to this
probiem:-

°Aerodynamic data are usually derived as load parameters related to a different mesh
from the structure.

°Representation of continuous loading is only possible within the limited
capabilities of the chosen structural elements.

The grid-to-grid transformation problem can prove quite tricky, especially in
transonic and supersonic cases where abrupt loading changes are associated with shock
fronts. Where point load values are used in both aerodynamics and structural
representations, a direct, statically exact, transformation is desirable. Some general
methods are available but more often the analyst must provide his own.

If pressure values are used in the structural analysis, these will normally be
interpolated from the aerodynamic loads, leading to a possibility of small errors in
static load balance (which may show up as more significant errors at supports or
constraints). In any case a detailed load and moment balance check is an essential part
of any such transformation. The process is very tedious and time consuming unless it is
programmed in advance. We strongly recommend that all teams who regularly carry out
structural analysis of flying surfaces should equip themselves with automated routines
tailored to their requirements. This may appear to be a serious overhead cost, but the
alternative is a great deal of repetitive, error prone and costly work for every
analysis.

Whilst most structural analyses accept normal-to-surface loads either as pressure
values or as equivalent nodal loads, depending on the complexity of the elements adopted,
special attention is needed when distributed loads are applied in-plane at element
boundaries. Here we must be careful to introduce kinematically equivalent loads(4)
if we are to avoid serious distortion of stress patterns near to the boundaries. This
again can be tedious and time consuming unless the job is handled via gemeral purpose
computer routines - so the same advice applies as before - equip yourself with the
automation routine rather than repeatedly waste time and effort.

Inertia modelling is another difficult and time-consuming task if local accuracy is
needed. In fine mesh analysis it is often adequate to use simplified distributed mass
representations and many analysis systems provide a facility for specifying accelerations
from which quasi-static inertia forces may be calculated. In coarse mesh analysis and
most importantly in reduced fine mesh analysis (for dynamic response) it is rarely
satisfactory to use simple lumping of masses at the coarse mesh nodes. We need to use
kinematically equivalent inertia loads in direct coarse-mesh analysis and consistently
transformed inertia matrices (which will include cross-coupling terms) when using
reduced stiffnesses. Facilities provided in standard analysis packages are often
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inadequate to handle these jobs properly. In this paper we can do no more than
recommend the analyst to seek the advice of reputable experts, if the system is
inadequate.

7. Kinematic Boundary Conditions: Constraints and Symmetry

Many practical structural analysts, brought up on traditional, statics-based theory
find difficulty in understanding kinematic boundary conditions and constraints. This
difficulty is often compounded by the fact that the finite element systems handle
commonly arising cases automatically, requiring only formalised data inputs from the
user. Elegant treatments of symmetry as sub-cases of a universal concept, as in
MSC/NASTRAN(13),can further distance the average engineer from real understanding.
However, in the engineering theory of the previous lecture the concepts are simple, but
as so often happens, applications of those simple concepts can become complex.

7.1 Constraints
Single point constraints, in which we usually equate one or more displacement

components to zero to represent structural support, cause few problems. Multipoint
constraints, which couple degrees of freedom at neighbouring points cause more

difficulty. However, these are so commonly used that every analyst should make a
conscious effort to understand them and acquire facility in describing and manipulating
them. Some of the common applications are listed below:~-

= applying symmetry conditions

= interface with engineers' theory analysis, e.g. "plane sections remain plane and
undistorted"

= representing rigid members

= allowance for local offsets

- interpolation between otherwise incompatible meshes
= treatment of partial releases - hinges and slides

= introduction or elimination of special degrees of freedom (e.g. treatment of
"drilling" rotation in shells)

Engineers' Theory Interface

This is a good example of the use of constraints because of its familiarity to every
mechanical engineer. In fig. 10 we show an analysis mesh representing the end of a
cantilever beam whose outer parts are adequately described by simple beam theory. At
the interface we may either prescribe a set of forces as derived from standard beam
theory or we impose the fundamental kinematic assumption: plane sections remain plane and
undistorted, 2zero lengthwise displacement (pure flexure). In this simple two-
dimensional example, this means defining the u-displacements as linearly varying with
distance from the neutral axis and v- displacements as equal at all points.

There are always two way of writing down the constraint conditions:-

a) via a set of constraint equations expressing an imposed relationship between the
nodal displacements

b) as a transformation relating the complete set of nodal displacements to a smaller
number of displacement variables.

The second method is more general because the reduced variables need not be a subset of
the nodal variables. They can be physically appropriate to the job. In this case, we
would naturally choose vertical shear V and rotation 6 as our variables. Mathematically
the two formulations are equivalent and the constraint equations can always be derived
from the transformation. In this case the two forms are as follows:-

Constraint equations

L 1, 4] A
y, Y, u, L Vﬁ/. ~
T T I i i )
Y, Y3 =0 i_w
u, e
% 0 R o
11 Y4J L "f\» Rigid body L
- .,-F'"d- movement on Y
vy Ll#fff
=], 0 0 v, i
0 =i vy
0 0 1 V4 Fig. 10 Engineers' Bending Constraint
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Transformation
u, 0 14
u, 0 Y,
u, 0 A
u 0 \ —
4 = % [ ] or U = T U
vy 1 0 8
v, 1 0
V3 1 0 (8 displacements defined in terms of 2
LV4J 1 0 remaining degrees of freedom)

The transformation version is in this case simpler, more physically meaningful and
directly provides the means of representing the corresponding force relationship(4).

— F T
R = [M] =7 {Xl X2 X3 X4 Yl Y2 Yé YA}

This is a special case of a rigid member constraint coupling four nodes. It allows
total separation of the two parts of the beam with a consistent interface between them.
It will most probably produce a stress distribution on the finite element side of the
interface different from the EBT distribution on the other side, but static equivalence
in terms of shear force and bending moment is assured.

Other Direct Constraint Conditions

Rigid elements, local offsets, local mesh interpolations can all be treated as
above. In all cases the two ways of writing the constraints are available: in some
cases one is the more natural in some cases the other. In all cases, transformation
gives more generality and the added bonus of corresponding force definition. The
transformation or constraint equations can always be written down by inspection from the
geometry of the system. An important point to note is that all such geometric
relationships must be consistent with nodal geometry to an order of accuracy comparable
with that used in the finite element progam, otherwise significant errors in static
equilibrium may arise. It is therefore recommended that computer routines be written
(if not provided as standard) to derive all transformation coefficients directly from
nodal geometry.

Partial Releases - Hinges and Slides

One standard treatment is to use duplicate nodes referenced by appropriate elements
on either side of the release and to couple the constrained freedoms in just the same
way as described above. The transformation route allows us to use relative displace-
ment as one of the defining degrees of freedom rather than relate absolute displacements,

7.2 Symmetry and Repeated Boundary Conditions

It is common practice to analyse structures which have reflective or cyclic
symmetry as single segments subject to appropriate loadings and kinematic constraints.
In the extreme case, axial symmetry, we analyse a single cross section which is rotated
around the axis of symmetry. If there are N repetitions of the basic segment (or
fundamental region) then, in general, we can solve the structural problem completely by
performing N analyses of the fundamental region. This means N different sets of
boundary constraints and N corresponding sets of loading cases. For axisymmetric
structures N = « and we reduce the problem to a finite approximation by using Fourier
series.

There are, of course, many practical situations where the principal loading cases
of interest are themselves symmetric in some way: we may then reduce the number of
separate solutions to the number of symmetric loading conditions.

Returning to the general case, it is useful to clarify our ideas about the treatment
of symmetry by reference to a simple example - the singly-symmetric plate of fig. 11.
A most important point to establish at the outset is that the analysis in terms of a
repeated fundamental region is basically an application of super-position of loads and
displacements: the various symmetric components (in this case the symmetric and anti-
symmetric loads and constraints) apply to exactly the same structure. Provided that we
retain the full force and displacement set at the axis of symmetry (including those
freedoms set to zero in imposing the boundary conditions) the same stiffness matrix
applies both to symmetric and antisymmetric systems. However, to relate the stiffness
of a fundamental region to that of the structure as a whole clearly requires a trans-
formation of displacements and forces. This transformation is needed for two purposes:-

i) to relate the co-ordinate systems on each side of a symmetry axis to a single
global system

ii) to equate displacement at nodes on the symmetry axis for all repeated
elements.
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This transformation is distinct from and must not be confused with the displacement and
force summation and decomposition relationships which connect symmetric sub-analyses
with resultant solutions. :

In our example, we analyse the right hand half of the symmetric plate in terms of
symmetric displacements Ug and antisymmetric Up (which include the zeros which prescribe

the boundary conditions). The resultant displacements {U, : Uy} on right and left
halves are given by: PPN
]
Tad LTI A S v
on the assumption that U, is defined ‘“Hb_-}x. ,?2~ :}:~h L Global
in co-ordinates which are reflected R T R a wh ' JispLacemanty
about the axis, as shown in fig. 11. {~,‘_;’x |
The inverse relationship gives the I o ’
decomposition of resultant displace- fom M
ments into symmetric and anti- i ‘_ !
symmetric parts:- -L--:lﬁ:irl.
u 1 i U Symmstric U‘ = UF
[ s]=% [ ][ r]' and for forces:-
UA I -IjjU, !

R o

R I I][R —I=E
S =li r t
[ RA] [I _I][ RI] Antisymmetric Ul =—Ur

Pig. 11 Symmetric Plate

We re-—emphasise that these are decomposition and super-position relations, NOT
corresponding force and displacement transformations. [The symmetric and antisymmetric
force components are % x the forces corresponding with symmetric and antisymmetric
reflected pairs of displacements].

We associate the same stiffness K, for a half structure with both solutions, writing
the stiffness equations as

R, = K) US subject to u, =
RA = K) UA subject to v, =
where up and vy are u- and v- displacements at the axis of symmetry. Different

partitions of K, are, of course, used in the two solutions.

The quite distinct transformation which relates U, and U to the global displace-
ments U combines two functions as described above. !

i) change the sign of U- displacements to the left of the axis

ii) equate Uﬁb = U’

« , the boundary displacements in left and right halves.

If U’'represents the displacements in both separate structures referred to global axes
then

110!'0] [T,
o2 S oglo) T | 5
(ur )y forxlo A
th Suwe N = 1
01011
Whilst, with different partitioning of U’ we have
(w) [z ! v !
u v | TR
r| = LG PR U u’ = T, u’
(u,) =1
U 1 |__
1 - e
(vl) ¢

The resulting transformation T = T; T, can be used in the normal way for expressing
global stiffness in terms of the identical stiffnesses K of the half structures
°

K’ = TT Fo_'_o_ T
0 | K

The same principles, involving the distinction between solution superposition and
repeated sub-structure integration apply to all the more complex treatments of symmetry.

Conclusions

We have attempted, within the limited scope of a manageable lecture, to give a
broad appreciation of practical issues in FE modelling, as seen from the viewpoint of
an aerospace engineer concerned mostly with linear, quasi-static analysis. The
presentation has touched upon many issues outside the realm of mesh generation which is



3-18

the dominant subject in the extensive literature. None of these issues is treated here
in depth, but we have tried throughout to draw attention to those basic principles which
enable engineers to expand their understanding of a subject as they acquire experience
in detail applications.

Most of the underlying ideas in this paper go back to the earliest days of finite
element method development, when physical understanding was essential in order to use
the very spartan and specialised tools then available. We observe today that there are
many engineers who have slick facility in handling the "mechanics" of finite element
analysis but lack that basic understanding which they bring to bear in traditional
structural engineering. This is a gap which will not be closed by the current trend
of burying structures in nodes. We are building up a vast capability for generating
plausible nonsense faster and more convincingly than ever before.

We consider that particular attention needs to be given to recognising the
important and unimportant features of a structure, a number of alternative ways of
modelling those which are important and treatment of the tricky topics such as kine-

matic constraints. It is also considered important that we train engineers to use a
simple 'language' of matrix structural analysis to provide a means of articulating
basic concepts with precision but with minimum complexity. Finally, we see a growing

role for expert systems to supplement the excellent manipulative facilities of modern
computer analysis with simple, heuristic know-how. Combining the new ways with the

old is a safer way forward than blind progression towards even bigger, more powerful

black boxes.
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THE USE OF THE FINITE ELEMENT METHOD

V. B. Venkayya, Aerospace Engineer
Flight Dynamics Laboratory
Air Force Wright Aeronautical Laboratories
AFWAL/FIBRA, Wright-Patterson AFB OH 45433-6553

SUMMARY

These lecture notes are primarily intended to provide a quick overview of the s0lid mechanics problem
for engineers using a general purpose finite element system in the solution of aerospace structures
problems. It gives a brief outline of the solid mechanics problem and some of the available options for
its solution, The finite element method is explained in more detail with particular emphasis on the use
of membrane elements in aerospace structural analysis. The intention of these notes is to support a class
room lecture.

1. INTRODUCTION

In the last thirty years the Finite Element Method (FEM) has developed into a powerful tool for
solving a variety of engineering problems. These problems, at present, encompass a number of disciplines
including aerospace, civil and mechanical engineering., The genesis of the FEM can be traced to the 1920's
and 30's when civil engineers used it extensively for the static analysis of articulated frames in the
name of slope deflections and moment distribution methods. These methods were well developed for mechan-
ical calculators which were in vogue at the time. It the 1950's the emergence of the digital computer
opened new vistas for numerical analysis in general and the finite element method in particular., Since
then the FEM has grown rapidly from simple static strength analysis to extensive dynamic analysis of one,
two and three dimensional structures problems. At the same time the scope of the method was extended to
the solution of a variety of field problems including fluid mechanics, heat transfer, fluid-structure
interaction, acoustic cavity analysis and a number of interdisciplinary problems. Now the method is no
longer limited to linear analysis only. It has extensive applications in non-linear mechanics problems as
well,

The decades of the 50's and 60's have seen intense research in element development, improvements to
numerical solutions, and the associated sparse matrix manipulation schemes for the solution of large
finite element assemblies. This was followed by the development of large scale applications software and
innovative extensions in solid mechanics as well as other disciplines in the 1970's. In the 1980's there
are at least 15 to 20 general purpose finite element programs being marketed throughout the world. These
programs have extensive element libraries to meet the requirements of most complex engineering problems.
At present the use of the FEM in mechanical design has become as common as the availability of electronic
computers.

The extensive data preparation requirements of the FEM have spawned the development of user friendly
pre and post processors which significantly increase productivity in the design office. They facilitate
rapid error checking of the input data and interpretation of the output of large finite element models.
However, availabllity of good finite element programs is not synonymous with their correct application,
The pre and post processors do not necessarily assure a true correspondence of the mathematical model and
the physical system. Proper modeling requires a thorough understanding of the physics of the problem as
well as some understanding of the details of the theoretical basis of the program being used. Just a
superficial understanding of the input instructions of a finite element system is inadequate, because it
can lead to erroneous models which can give unconservative results and premature failures. It must be
clearly understood that finite element programs are only sophisticated mathematical tools, Their use or
abuse depends on the user's understanding of the problem and system limitations.

The finite element model of a physical system generally consists of a description of the geometry,
material properties, boundary conditions and applied forces. The geometry involves the selection of an
appropriate grid to represent the continuum, suitable elements to connect the grid, and the properties of
the elements. The important decision to be made in selecting a grid is the spatial distribution of the
mesh size, This distribution of the grid depends on the overall objectives of the analysis. If the
purpose of the analysis is to determine the overall load paths of a large built-up structure, then a
relatively coarse mesh is adequate and desirable from cost considerations. On the other hand, if the
objective is to capture details of the steep stress gradients and discontinuities such as cracks and
cutouts, then a finer mesh is required, at least around the stress raisers. It is advisable to handle
these two objectives in separate models rather than in one big model. For example, in dynamic analysis
where the interest is to determine the overall dynamic behavior as represented by the frequencies and mode
shapes, a coarse model of a built-up structure is cost effective, while a detailed stress model would
require a much finer grid. The basic tenet of discrete methods is that a finer mesh gives more accurate
results. However, a finer mesh requires not only more computational effort but also is difficult to check
for model errors., It is also worthwhile pointing out that accuracy improves with a finer mesh only when
the elements capture the behavior of the structure reasonably well. Another observation to be made is
that, in general, higher order elements require a coarser mesh and vice versa for the same accuracy.

In finite element modeling selection of appropriate elements is one of the most important decisions.
Both the accuracy of the analysis and the cost are dependent on the type of elements used in the model.
The behavior of the structural element can be described by one or more differential equations. These
differential equations are in turn approximated by the so-called shape functions which are derived from
basic polynomial functions. The more complex the behavior of the element, the higher is the order of the
shape functions necessary to represent its behavior. For example, a simple truss element (a rod) trans-
mits forces by uniform tension or compression. If the possibility of its buckling is excluded, its
behavior can be represented by a first order differential equation or a linear polynomial function. The
behavior of a three-dimensional beam, on the other hand, is more complex in the sense that the bending
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(about two axes), axial tension or compression, torsion and shear have to be represented by different
differential equations. For example, bending and torsion representations require fourth order differen-
tial equations. Under certain symmetry conditions they can be uncoupled, otherwise they are usually
coupled. To represent this behavior shape functions must be at least of the order of cubic polynomials.
Similarly the lowest order polynomial representation of membrane plate behavior is linear, while higher
order representations can only capture the stress gradients within the element itself. The bending
behavior of plates is governed by a fourth order partial differential equation, and the corresponding
polynomial approximations must be at least of the quintic order.

In making an analysis of large structural components such as a wing, fuselage etc., modeling with
simple (low order) elements is most desirable., These simple models can provide reasonably accurate
information about the overall load paths, and the simplicity of the elements allows easier interpretation
of the results. They are also ideal for parametric studies in preliminary design and optimization. The
use of higher order elements is appropriate while making a detailed analysis of local areas, such as a
plate with a cutout or a crack or local buckling of a panel ete. In general, the higher order elements
are less forgiving when there are violations of the basic assumptions from which they were derived. For
example, lumping of masses or forces at grid points based on inspection or intuition is not acceptable in
finite element models involving higher order elements. Consistent formulation is almost mandatory in such
cases. Because of these limitations dynamic analysis of large built-up structures with significant non-
structural mass attachments becomes quite cumbersome with higher order elements.

Modeling material properties of isotropic and/or anisotropic materials in the linear elastic range is
relatively simple and presents no difficulties. When the materials behave nonlinearly or beyond the
elastic range, modeling becomes more difficult because of the nonuniqueness of solutions associated with
the loading and unloading sequences. Modeling of the boundary conditions is another very important issue
in establishing the correspondence between the physical system and the mathematical model. The degree of
supports (partial or full fixity) and the internal and external dependence of the motions of various
degrees of freedom (single point or multipoint constraints) are some of the important considerations in
developing boundary conditions of a finite element model. Correct representation of the boundary
conditions is crucial for obtaining good results from an analysis.

The external or the internal environment of the system is described by the applied forces on the
finite element model., These forces can be due to aerodynamic, thermal, gravity (body forces), centrifugal
forces, etc., depending on the environment in which the system operates. Any errors in the force represen-
tation will be directly transmitted to the results of the analysis. Both lumped and consistent formula-
tions can be used with reasonable accuracy in the case of linear elements. For higher order elements only
consistent formulations are recommended. Similar rules apply for the mass representation in finite
element models.

As pointed out earlier, the effective use of a general purpose finite element system requires a rea-
sonable understanding of the formulation and the limitations of the system and an indepth understanding of
the physical system and its behavior under the action of external forces. The next few sections provide a
cursory background to solid mechanics problems in general and the finite element method in particular.
Hopefully this background provides some guidelines for accurate modeling of practical structures.

2. SOLID MECHANICS PROBLEM

An aircraft structure is a deformable body, and the understanding of its behavior under the action of
external and/or internal forces is essential for a successful design to meet the performance requirements.
A typical aircraft operates in a severe dynamic environment, This dynamic environment is generally
approximated by a set of equivalent static, dynamic, thermal and body forces for design purposes. These
forces are assumed to be deterministic or treated as truly random in nature, The essential point is that
we have the means to determine the loading conditions on a structure, so that its deformable behavior can
be predicted and an adequate structure can be designed. The finite element method is most often used for
predicting the behavior of structures subjected to loads. Even though the finite element method can be
applied to the solution of a variety of engineering problems, its original development was in response to
the solution of solid mechanies problems, A brief description of the extent and the scope of solid
mechanics problems is appropriate before presenting the finite element method.

The deformable body shown in Fig., 1a is subjected to a set of continuous or discrete forces and
boundary conditions. The body is assumed to be supported adequately to prevent any rigid body motion, so
that its deformable behavior can be studied independently. For linear problems the rigid and deformable
behavior can be determined independently, and the combined effect can be obtained by superposition.

CONTINUQUS DISCRETE
"

STATIC, DYNAMIC
THERMAL, BODY FORCES

FIG. la. Deformable Body FIG. 1b. A cut through the Deformable Body

The state of the body after deformation can be defined by the displacement vector W, which represents the
motion of a point from its initial position A to its new position A'. This displacement vector, W, can be



defined by the three unknown displacement components u, v, and w respectively in the direction of the
three orthogonal axes [1].
u(x’ Y, 2, t)

w = |vix, Y, z, t) (1)

w(x, Vs z, t)

The three displacement components are functions of the spatial coordinates (x, ¥, 2) of the point in the
body. For dynamic problems they are also dependent on time., Knowledge of the displacements alone is not
enough to determine whether the body can withstand the applied forces. For design we need to know the
state of strains and stresses in the body. Fig. 1b shows a cut through the body to examine the state of
the internal forces in the body. Fig. 1c shows the free-body diagram with internal stress resultants as
force and moment vectors., Fig. 1d shows the normal and shear stress components on an infinitesimal
element.

FORCE

COUPLE

FIG. lc. TFree Body Diagram z

FIG. 1d. Stress Components on an Infinitesimal Element

The corresponding normal and shear strain components are implied. The six components of strain and
the corresponding stresses are represented by

(e (2)
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The solution of the solid mechanics problem implies a knowledge of these 15 unknowns as continuous func-
tions of space and time. The list of 15 equations necessary to solve for the 15 unknowns is as follows:

Equilibrium equations (3)
Strain-displacement relations (6)
Stress-strain relations (6)
Number of equations (15)

The equilibrium equations derived from Newton's Laws can be written as follows:

R +40 + 882 4 Y =

A 2+ 324720
Zx -
e
X O
The equilibrium equations are written here in terms of the stress gradients and the body forces i, Y. Z on

an infinitesimal element. When they are written in terms of stress resultants on a body with finite
dimensions, the three equations translate into three force and three moment equations as follows:

(5)
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The above strain-displacement relations contain both linear and non-linear terms. The linear
strain-displacement relations can be written as

(6)

€ g& €= 24+ 3K
€= 3¢ =3+ 3¢ 4
622:%% ezx=m+au“

The same relations can be written symbolically in terms of a differential operator

e=DVW

where € and W are the strain and displacement vectors and D is the differential operator
37 © {2

g=tLe (9)

where g and £ are the stress and strain vectors and E is the elastic constants matrix which represents the
properties of the material, In an expanded form Eq. 9 can be written as
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The elastic constants matrix is symmetric about the diagonal. A general three-dimensional anisotropic
body can, theoretically, have 21 independent elastic constants, Additional symmetry uncoupling reduces
these to 9 elastic constants. An isotropic material has two elastic constants, the modulus of elasticity
and Poisson's ratio or the two Lame's constants. A typical plane stress orthotropic material is
characterized by four elastic constants. These are the moduli of elasticity in the longitudinal and
transverse direction, the shear modulus and Poisson's ratio. Most fiber-reinforced composites are
considered as plane-stress orthotropic materials.



The fifteen coupled differential equations presented in the foregoing discussion define the solid
mechanics problem., However, additional relations must be considered to satisfy special requirements. For
example, the six strain components are expressed as functions of only three independent displacements and
as such there exists a dependency between the strains. This dependency is represented by the following

compatibility conditions,
2 2 2
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Physically these compatibility conditions can be interpreted as assuring continuity in the deformation of
the body (without breaks).

The solid mechanics problem must also satisfy the boundary conditions as given by

O/K"/e+ xy MM+ dzzr(:z
dvxk"'dw M+ Gy =Y (12)
dzx/() i dZYm + dzzn :7

where X, ¥, Z are the body force components in the x, y and z directions respectively, and &, m, n are the
direction cosines of the surface normal at the boundary.

The strain, stress and material property (elastic constants) transformations between the desired
coordinate systems are the additional equations required in the solution of solid mechanics problems.

The strain transformation equation in three dimensions is given as
1

e =TI ¢ (13)

where € and €' are the strains defined with respect to the x,

¥, z and x', y', 2' axes respectively as
shown in Fig. 2.
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FIG. 2. Relatlonship Between the x, y, z Coordinate System and the x', y', z' Coordinate System

The strain transformation matrix is given by
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If the strain transformation matrix is partitioned into 3x3 matrices, it can be written as
I
I VAR (159
~ |
& |"pa,Tee
The submatrices TAA""'TBB can be identified from Eq. (14).
The stress transformation equations can be written as
0‘ =
¢ =I9 (16)

where the stress transformation matrix !c is given in partitioned form as

T,, lor

T = |-AA_L__AB “n
o lT IT
2°Bal BB

The elastic constants transformation matrix can be derived from the strain energy invariance condition as
follows:

ool B (18)

where the strain transformation matrix T, 1s given by
Tl TR s (19)

The strain and stress transformation matrices for plane stress problems are given by

cos;"e S\Nzae £SIN2B
=1 SINB C0%°6 -iaiNnes (20)
-SIN2B SIN2B C0ses

o1

~ cos:e SIN®g SIN26
3 SIN'®  c08*8  -gI1N28 (21
-ESIN2B 3SIN28 0526

The fifteen coupled partial differential equations in fifteen unknowns can theoretically provide a
means for the complete solution of three dimensional solid mechanics problems. The solutions must also
satisfy the compatibility and boundary conditions. Among the fifteen unknowns the three displacement
components are really the independent variables, and the remaining 12 unknowns can be expressed as func-
tions of these three independent variables, Then we need to solve the three coupled partial differential

equations which are given as _
2 \ |
Ve e 5=0
2 \ Y —
Vit ey 5%+ & =0 2
2 \ Sg 7 _

where V2 is the three dimensional Laplacian operator

.
1

2 2 2

\Y =a_+L+Q_ (23)
2 2 2

9x 3y 3z

and e is the volume dilatation given by

=l vy te,, (%)

The solution of a general three dimensional solid mechanics problem by way of solving coupled partial
differential equations, whether they are 15 or 3, is still an insurmountable task. We must find ways of
simplifying the problem, even if it means limiting the scope of the problem. In the next section an out-—
line is presented of some of the simplifications and methods available.

3. SOLUTION OF SOLID MECHANICS PROBLEM

As discussed in the previous section the general three dimensional solid mechanics problem consists
of 15 unknowns and coupled partial differential equations for their solution. These solutions must also
satisfy the strain compatibility and boundary conditions. 1In addition, the formulation and interpretation
of the problem involves strain, stress, material properties and other transformations. 1In view of this
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complexity it is not realistic or possible to obtain a closed form solution for a general three-
dimensional solid mechanics problem. A more realistic goal is to specialize these equations to specific
problems whose behavior we can intuitively predict. Such specialization results in

* One dimensional problems

#* Plane stress problems

# Plane strain problems

*# Axisymmetric problems

* Bending and shear problems

* Inplane, bending, and shear problems
*# Three-dimensional elasticity problems

An example of a one dimensional problem is a simple tension (compression) rod. Its behavior can be pre-
dicted by one first order differential equation. If this one dimensional element is subjected to bending
(in one plane) in addition to the axial force, then its behavior can be predicted by two uncoupled differ-
ential equations, assuming that the axial force is small enough to neglect the coupling effects., A first
order ordinary differential equation (ODE) predicts the axial deformation and a fourth order differential
equation predicts the bending behavior. Similarly, if this line element is subjected to bending in a
second plane and twisting about its own axis, then two more differential equations are necessary to
predict their behavior. These four differential equations are coupled or uncoupled depending on whether
the internal force coupling exists.

The plane stress and plane strain problems are two dimensional problems, Their behavior can be
predicted by two first order partial differential equations. Similarly, axisymmetric problems can be
described by a single ODE. The essential point of this discussion is that by limiting the scope of the
problem based on the projected behavior, we can significantly reduce the complexity. However, this
continuum approach based on the solution of differential equations imposes severe restrictions because of
the continuity requirements and the need for satisfaction of the compatibility and boundary conditions.
Because of these restrictions, the continuum (or the differential equations) approach is limited to simple
components and loading conditions as shown in Fig. 3.

FIG. 3. Simple Components with Loading Conditions

A typical aircraft structure is built out of many structural components., It is inherently discon-
tinuous and differential equation representation of the details is at best infeasible, For example, an
aircraft wing shown in Fig. 4 consists of spars, spar caps, ribs, rib caps, skins and stiffeners, Spars,
ribs and skins between the joints can be represented by plane stress or bending plate elements. Simi-
larly, spar caps, rib caps and stiffeners between the joints can be represented by rods or beams. The
behavior of each of these structural components is governed by different differential equations, and their

behavior at the joints and across the joints is uncertain and cannot be adequately described by differen-~
tial equations.

FIG. 4. Adrcraft Wing

For such structures discrete approaches are more appropriate. The purpose of the discrete approach is to
replace the governing differential equations by a set of algebraic equations whose solution can be adapted
to a digital computer much more naturally, The basic principle behind the discretization is to obtain the
solution of the problem at discrete points, instead of as continuous functions of the spatial coordinates.
Then the solution between the discrete points can be obtained by interpolation or extrapolation. The

first step in discretization is to transfer the effect of the continuum to preselected discrete points on
the structure by the use of interpolation functions. This procedure is akin to the popular notion of
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lumping (low-level interpolation). Now the unknowns are the behavioral quantities (displacements) at the
discrete points, and the relations are expressed in terms of algebraic equations. The second step is to
solve for these unknowns at the discrete points. The third step is to obtain the solution between the
points by the same interpolation as the first step.
Solid mechanics problems are generally classified into:

* Boundary value problems

* Initial value problems

* Mixed problems
A structure is a solid body of finite dimensions. The behavior of the body is prescribed at least par-
tially at the bvundary. The boundary conditions can be either kinematic (displacements, velocities, ete.)
or in terms of forces. The name boundary value problem derives from this finiteness in spatial coordi-
nates. Initial value problems refer, primarily, to the variable time. As in vibrations and heat conduc—
tion problems the initial state is prescribed but not necessarily at other times. For such problems if
the state is prescribed at two different times, they will be called two point boundary value problems as
distinet from the boundary value problems, A combination of initial and boundary value problems are
called mixed problems. The vibration of beams, plates, etc. are some examples of mixed problems. The
boundary refers to space, and initial refers to time in such problenms.

There are a number of discrete methods for the solution of boundary value problems., Some of the
prominent ones are:

* Finite differences
* Rayleigh-Ritz procedure
s Calerkin's Method
* Finite Element Methods
* Stiffness Method
*® Flexibility Method

We will briefly outline the first three methods. The finite element method will be discussed in much more
detail.

Initial value problems are generally solved by
* Collocation
* Subdivision
* Numerical integration
* Runge-Kutta Methods
Mixed problems are solved by
* Separation of the boundary and initial value problems.
* Combining both methods.
FINITE DIFFERENCE METHOD
The finite difference method can be summarized by the following six steps:
* Formulate the governing differential equations
* Approximate the structure by a discrete grid
¥ Apply the finite difference operator at each grid point
¥ Reduce the differential equation(s) to algebraic equations of the form
L e
¥ Solve the algebraic equations for the unknowns u
* Determine internal displacements, strains and stresses
Formulation of the governing differential equations in the first step can be accomplished either by equi-
librium considerations or by a variational approach. Approximation of the continuum by a discrete grid
involves selecting points in the structure where the behavioral variables like displacements, ete. can be
determined by interpolation. For a given degree of interpolation the coarseness or fineness of the grid
depends on the expected gradients of the behavior variables. High gradient regions need a finer grid and

vice versa. The function of the difference operator is to replace the differential quantities by the
unknown behavioral quantities at discrete points. An example of a central difference operator is given in
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Fig. 5. The resulting set of algebraic equations contain a known coefficient matrix K, the unknown
behavior variable (displacements) vector u and a known vector F (applied forces). The K matrix is a
function of the geometry, elements, and material properties of “the structure. If the vector u u represents
displacements, then the strains can be obtained by the strain-displacement relations which were given in
the previous section. From the strains we can obtain the stresses using the stress-strain relations.

W, W, W W, U,
2L @--—-@----@ ]
2=l O-@—-0® |1
2= g D~ Q@ @D ]
L[ @ O @D

FIG. 5. Central Difference Operator
RAYLEIGH-RITZ METHOD

As in the case of the finite difference method the Rayleigh-Ritz method can be summarized by the
following steps:

* Formulate the total potential (strain energy and external work)

* Approximate the unknowns by a series

n
u(x, y, z) = a,é,.(x, y, z)
L2t

¢i(x, ¥y, z)—p Coordinate functions - must satisfy the kinematic B.C.
a; —»P Unknown coefficients of the coordinate functions

*# Minimization of the total potential w.r.t. the a® gives a set of algebraic equations

Ka=

F
* Solve for the a° and obtain the displacements from the second step.

*® Determine the strains and stresses.

The Rayleigh-Ritz method gives a lower bound solution in the case of displacements and an upper bound
solution in the case of frequencies etc., 1In other words the Rayleigh-Ritz approximation normally
overestimates the stiffness of the structure.
GALERKIN'S METHOD
An outline of the Galerkin's method is as follows:
* Formulate the governing differential equations
* Approximate the solution either by a series or a polynomial
u(x,y,z) = Z ai¢i(x,y,z)
* Substitute the solution into the differential equations and obtain the error term e
* Make the weighted integral of the error over the region zero
/d’iedxdydz =0
* Solve the resulting set of algebraic equations

Ka = F

~~ -~

# Determine the strains and displacements
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