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Management target on the average expected total number
of backorders at the bases over the horizon,

Intensity of base; resupply requests placed on the depot.
Mean vsalue function for the number of base; resupply
requests placed on the depot.

Asset Vector Transformation Problem.
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Vector containing an asset 1level for every item at
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Probsbility that a unit that entered the depot pipeline
in (t;,ty] is still in the pipeline at time tj.
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Procurement/Holding cost for item;.
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1
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a;(t)/xp(e).

Number of units in the locationj diagnostic facility
at time t,.

Mumber of units due-in to base; from the depot at time t.
Probability that a serviceable unit arrived at base;
by time t to replace a condemnation at time y of a
unit that failed at base; at time s.

Number of units due-in to locationj from the external
supplier at time t,

Rumber of units en route fromthedepot tobase; at time t.
Fixed Asset Vector Problem.

Probability that a unit that entered the depot pipeline
at time s has left the pipeline by time t.

Probability that a base; diagnosis begun at time s has
ended by time t.
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Horizon Control Policy.

Number of items in the catalog.

1 if the n'P demand on the depot was from base; and
I,(n) = 0 othervise.

Largest integer less than or equal to x.

The number of units, out of the k units that entered
the depot pipeline in (t;,t,], that are still in the

depot pipeline at time tg.
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ﬁ(t) Intensity of demand at location;.
my(t) MVF of demand at the depot.
meb Management target on the maximum expected total number

of backorders at the bases over the horizon.

MVF Mean value function,
N Number of bases.
E Nj(t) Number of demands at locationj in (0,t].
' Ng(t) Number of base; resupply requests placed on the depot
in (O0,t].
NHPP Non-Homogeneous Poisson Process.
NHCPP Non-Homogeneous Compound Poisson Process.
Iy A vector of ones with dimension N+l.
OST: Fixed order and ship time between the depot and base;.
plx;ul Probability that & Poisson random variable with mean u
is equal to x.
Plx;ul Probability that a Poisson random variable with mean u
is less than or equal to x.
P;(s,t) Probability that a unit that fails at time s and completes
base; diagnosis at time t will be sent to the depot.
Pé(s,t) Probability that & unit that fails at time s and

completes base; diagnosis at time t will be sent to the

base; repair facility.

Qi(t) Number of depot backorders outstanding at time t that
R are due-out to basei.
ri(a,y,t) Probability that a unit that fails at base; at time s

and is sent to the base; repair facility at time y
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VAR
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time t.

Real-Time Control Policy.

Asset level at locationj at time t,.

Asset vector at time t,

Vector containing the asset level of item; at
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Horizon length.

Time of the n'P demand on the depot.
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at time t,

Variance.

Variance to mean ratio.
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CHAPTER 1

INTRODUCTION

Strictly speaking, real world inventory systems never reach
steady state. A common chargcteristic of most inventory systems is
that they are continually changing with time. The stochastic processes
generating demands, order and ship times, and repair times may change
with time as might the various costs that are of interest. In many
instances, however, the changes may occur slowly enough or be subtle enough
so that for considerably long periods of time the inventory system can
be treated as if it were in a steady state mode of operation. For this
reason, stationary steady state models have been developed and applied
to many practical problems of inventory management and control in multi-
echelon inventory systems. For example, the United States Army Materiel
Support Commands use a stationary multi-echelon model (U.S. Army [1983])
to provision billions of dollars of reparable spare parts. For many
inventory systems, including the Army system during peacetime, steady
state models and the assumptions of stationarity embodied in them have
been invaluable. These models have proven to be convenient in terms of
input data collection and computational burden, and to be adequate for
determining cost effective stock levels. However, there are many
situations where the short-term behavior of the inventory system is of

paramount importance and in these situations, stationary models may be
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inadequate both in describing the relevant transient behavior of the
system and in determining the least cost mix, quantity and distribution
of spares that meet specified performance objectives. For situations r

vhere steady state is not attained, for example, because of a short

time horizon and/or because the underlying stochastic processes governing

the behavior of the inventory system are not stationary, it may be
necessary to use a8 non-stationary multi-echelon model that explicitly
models the interactions among the echelons and properly describes the
transient behavior of the system.

At the onset of a war we have a vivid example of the dynamic
behavior that can be exhibited by the processes that generate demands,
shipping times, repair times, etc., in a military inventory system.
As hostilities begin, the demand for spare parts for weapon systems
may show a significant increase over peacetime values. The demand

for parts may then decrease as weapon systems are lost through attrition

and combat damsge and this reduction in demand may continue until
replacement weapon systems can reach the combat area, at which time
the demand for spare parts may again increase. Meanwvhile, ship times

between combat units, intermediate maintenance and supply echelomns,

P S -

and a centralized parts depot may fluctuate depending on enemy activity
and the availability of different modes of transportation. Furthermore,
the repair rate at a maintenance location may initially be small as
the location awaits the arrival of specialized technicians and test
equipment to be used in repairing damaged weapon systems. When the
technicians and test equipment arrive, the repair rate may increase
until, possibly, a maximum wartime repair rate is achieved. The repair

rate may vary over the duration of hostilities if the repair facilities
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are subjected to enemy attacks and are rebuilt and remanned after
these attacks. Therefore, even for wars of long duration, the dynamic
behavior of the inventory system may be such as to preclude use of
a stationmary steady state model to determine optimal stock levels
and resupply policy.

Furthermore, the initial state of the system (e.g., number
of units in repair, in transit, on-hand, backordered, etc.), may have
a pronounced effect on the achieved performance and thereby, the required
stock. If all of the inventory system”s spares are on-hand and available
for a short combat contingency, we would expect a non-stationary model
to yield different results than if all of the systems spares are in the
repair facilities. Stationary steady state models ignore the initial
state of the system and thereby may grossly misrepresent performance
during the contingency.

Another example of the dynamic behavior that can be exhibited
by inventory systems occurs when a new product is introduced into
the market. (For military systems, this corresponds to the development
and fielding of a new weapon system). As more and more units of the
product are introduced into the market, the demand for spare parts
increases. Repair times may be long until repairmen gain experience
with the new items. Design changes may affect the demand and repair
rates for the reparable parts of the product. Furthermore, as time
goes by and demand and repair time data are collected, new estimates
of reliability and maintainability factors such as mean time to failure
and mean time to repair may be made. The accurate modelling of this

type of dynamic behavior may be crucial to finding a cost effective

inventory policy.
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Multi-Echelon Inventory Systems

In a general N echelon inventory system, the highest echelon
X (echelon-N) consists of a lone installation referred to as the depot. :
Primary customer demands for reparable items usually occur only at the
lowest echelon (echelon-1) locations. Echelon-1 is often referred to as
the user echelon. Depending on the nature of the required repair,

the failed unit is either repaired at the installation to which it has

been brought, condemned as irreparable and removed from the system, or

iy sent to a higher echelon for repair. (Locations on the same echelon
Y.
: ﬁ generally have the same repair capability). At the higher echelon
X . . . . . .
k‘;, location a decision is again made whether to repair, condemn, or send
ol the unit to a higher echelon. All failed units received at the depot are
Lre
otk
";ﬁi either condemr.d or repaired there. Condemned units may be replaced by
¥ 3y
5y
it procurement from an external supplier.
RN At each location in the system, there are continuous time
e
ﬁ:? stochastic processes which govern the behavior of the parameters of
oo
e
’“Jg operation (PO) which are the probability distributions for the
%:} a. order and ship time to each location that this
o
35 . . .
%:3; particular location resupplies;
'. J
QQU b. times to fault diagnose and isolate and to repair
. failed units at that location;
g3 , . : :
gkgﬁ c. decision to condemn, repair, or send a failed unit to
S8
y a particular higher echelon;
Qas d. shipping time to each location from which this
)
! .
0 location seeks resupply;
l“'l [}
A e, costs to buy, hold, and scrap.
A%
oo
i
‘?‘;‘;“
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Furthermore, there are stochastic counting processes generating primary
customer demands on the system which, in combination with the processes
generating the PO, yield stochastic counting processes describing the
demands for serviceable units at each location. There are many inventory
systems for which the processes generating the PO are known and stationary
and for which the demand process is suitably well-behaved so that
passage to steady state is theoretically assured. Stationary models
describe the steady state behavior of these stationary systems. As we
have already seen there are also many important non-stationary inventory
systems for which one or more of the PO change with time and/or for which
the demand process, planning horizon and/or initial conditions are such
that the transient behavior of the system must be analyzed. Models

that describe these systems will be referred to as non-stationary models.

Inventory Control Policies

The status of an item at a location at time t contains the
following information:

a. the number of units on-hand;

b. the number of units backordered;

¢. the number of units in~repair;

d. a probability distribution for the remaining repair
time of each unit in-repair;

e. the number of units on-order from the depot and the
external supplier;

f. a probability distribution for the delivery time of

each unit on-order.




The system condition at time t is defined as the status of

every item at every location at t. Note that the initial system condition

at 0 is simply the initial status of every item at every locatiom.
ldeally, mansgement would at all times like to have complete
knowledge of the system condition. Inventory control decisions regarding
resupply, procuremeants, disposals, and redistributions of spares could
then be made in continuous time on an ss-needed basis. These decisions
would be based on the current system condition (or subset of the system
condition) and the stochastic description of the behavior of the PO and
the demand process over the rest of the horizon. This real time control
policy (RTCP) offers management great flexibility in positioning spares
in the system to improve inventory performance. Management can react
quickly to updated estimates of the PO gnd demand parameters and can
also quickly compensate for random phenomena such as unexpectedly small
or large demand at one or more locations. Under a RTCP, wmanagement
also has the ability to adapt future operating rules and policies based

on the current system condition and knowledge of the PO and the demand

process.

However, there are two major problems that make implementing
a RTCP for a multi-item multi-echelon inventory system difficult, if
not impossible. First, there is the need to continuously store and
monitor the information on the system condition, PO and demand process
upon which management decisions are based. For many systems this may
be impossible because of the number of items and locations in the
system and the cost of monitoring and storing this much data. Secondly,
even if the data are continuously monitored and stored, the effort and

cost involved in continuously determining and updating operating policies
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is prohibitive. In a very strict sense, there is an Uncertainty Principle
involved in the calculation of operating policies under a RTCP. Since
calculations are not instantaneous, by the time 8 new operating policy
is determined the data may have changed so that this new policy is mo
longer optimal or desirable.

As an alternative to a RTCP, management can, at time O,
decide at which times during the horizon the system will be reviewed
and data on the system condition, PO and demand process collected.
Between system review times, an operating doctrine is followed at each
location. The operating doctrine may be expressed in terms of any
subset of system condition and/or item status at a location that is
continuously available to the system and/or location. Only at system
review times can the parameters of the operating doctrine at each
location or the operating doctrine itself be changed. All of the
classical operating doctrines of inventory theory such as two bin
ordering policies are examples of this horizon control policy (HCP).

The U, S. Army has four maintenance and supply echelons.
There are too many items and locations for a centralized facility even
to monitor continuously just the number of units on-hand at every
location. Rather, the Army uses an HCP. Each location monitors only
its own inventory position and uses a (Q,r) policy between quarterly
management directed system reviews. The reorder point and reorder
quantity for each location are determined each quarter based on the
information on the PO, demand process and system condition collected at
the time of review, Redistributions of spares through the system may
also be ordered at these times. While the HCP does mnot give the Army

the full power of a RICP, it represents the best viable alternative,
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Literature Review

Stationary Multi-Echelon Models and Analysis

There has been extensive modelling and analysis of stationary
multi-echelon inventory systems. Examples of some of these efforts
can be found in Ignall and Veinott (1969), Silver (1972), Graves and
Schwarz (1977), and Kim (1978). 1In 1968, Sherbrooke formulated the
well known METRIC (Multi-Echelon Technique for Recoverable Item Control)
model for stationary multi-echelon inventory systems for reparable
items, METRIC s initial use was for military inventory systems but
it has now been applied in private industry as well. In METRIC, Sherbrooke
attempted to model explicitly the interactions among the various echelons
in the inventory system. He assumed that all locations followed a
continuous review (8-1,8) or one-for-one resupply (ordering) policy.
Each time a location sent a failed unit to a higher echelon location
for repair, the higher echelon location would resupply the lower echelen
location with 8 serviceable unit as soon as possible. Therefore, an
optimal policy required the determination of only the single critical
number S for each location which was the constant asset position (number
on-hand + on-order + in-repair - backorders) for that location. The (S~1,S)
resupply assumption, along with the assumption of a homogeneous Poisson
Process generating primary customer demands, greatly simplified the
mathematical analysis and considerably reduced the computationmal burden
involved in determining an optimal policy. Muckstadt (1973) extended
Sherbrooke”s work to include multi-indentured items. An (S-1,S) policy

was followed at every location for every level of indenture (modules,
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components, sub-assemblies, etc.). Both METRIC and Muckstadt “s MODMETRIC

J
¥

have been extensively analyzed in the literature (see, for example, Simon
[1971), Shanker [1977] and Kotkin [1978]) and there have been many
variants of these models (Mason [1975], Clark [1978) and Vincent [1980]).
Simon (1971) corrected METRIC’s misuse of Palm’s Theorem for M/G/=
queues (Ross [1970]) by developing exact expressions for the number of
units due-in to user locations in a two echelon system when the depot
repair time was fixed. Kruse (1979) simplified Simon’s expressions and
extended Simon”s work to more than two echelons. Approximations to
Simon“s computationally cumbersome model were developed by Slay (1980)
and Kaplan (1980). Graves (1983) rediscovered Slay”s negative binomial
approximation and again demonstrated its effectiveness. Excellent
reviews of stationary multi-echelon models may be found in Clarke

(1972) and Nahmias (1981),

Non-Stationary Multi-Echelon Models and Analysis

Clark (1960) reported on a simulation for a periodic review
non-stationary multi-echelon inventory system for reparable items.
Unit purchase and holding costs were allowed to change by period and
condemnations and transshipments between locations during a period were
allowed. Stock could be redistributed among the locations at the

beginning of each period. All customer backorders were passed up to

the highest echelon location. No description of the simulation or of
the heuristic used to determine stock levels for each period was given,
Bessler and Veinott (1966) studied a general arborescent multi-

echelon periodic review system for consumable items. They assumed
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no delivery lags at any location; no fixed ordering (or setup) cost;
and that any demands that could not be met at a location were passed on
to the location”s direct supplier at a higher echelon so that backorders
existed only at the highest echelon location. By establishing a corres-
pondence between the multi-product single facility problem studied by
Veinott (1965) and their multi-facility single product problem, they
determined conditions under which the optimal policy for an N-period problem
could be expressed as the order—up to level solution of N single period
problems.

Ignall and Veinott (1969) extended the work of Bessler‘;nd
Veinott to include delivery lags. They also allowed a more general
supply structure in which any facility could satisfy shortages at any
other facility providing that the transferred stock was replaced from
an exogenous source at the beginning of the next period. The authors
gave sufficient conditions under which myopic single period order-up
to policies were optimal for the N-period problem.

Burns and Sivazlian (1978) used control theory to investigate
the dynamic response of a non-stationary multi~echelon inventory system
to demands placed upon it, They studied a cost free multi-echelon
periodic review inventory system for consumable items. Locations on a
particular echelon were resupplied only by a location on the next
higher echelon with the highest echelon location receiving resupply
from an exogenous source. The amount ordered at each location at the
beginning of each period consisted of a replacement quantity for actual
demands in the previous period and an inventory "ad justment" or hedging
quantity which allowed a location to adjust its on-~hand stock at the

end of a period to a desired level of inventory ownership (safety
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level). This level of ownership was expressed as a certain number of
periods worth of expected demand at that location: the expectation
being 8 first order exponentially smoothed average of past demand.
(This is similar to the ordering policy considered by Bessler and Zehna
(1968) for single echelon systems and by Burns (1970) for multi-echelon
systems). Burns and Sivazlian noted that under this ordering policy
higher echelons would over react to lower echelon inventory adjustments.
This was called a "false-order" effect. Minor variations in demsnd at
the user echelon were amplified by the inventory system into major
disturbances at the higher echelons. Using simulation they demonstrated
the superiority of an ordering rule they developed which tried to
eliminate these false-order effects.

Kotkin and Rhoads (1977) used a simulation to test a heuristic
for using a stationary model to determine stock levels in a non-stationary
three echelon multi-indentured inventory system for low demand items,
All PO wvere assumed deterministic, known and constant over the horizon
and demands were assumed to form a non-homogeneous Poisson Process whose
intensity factor was monotone increasing over the horizon. The horizon
was divided into convenient periods and in each period a statiomary
model (MODMETRIC, Muckstadt [1973]) was used to recalculate the asset
position for the modules and components at each location. Redistributions
and exogenous additions of module stock, when necessary, were instan-
taneously made at the beginning of each period. Over the horizom,
module stock levels were monotone increasing but components levels
fluctuated. Since no disposal of stock was allowed, component stock
levels were fixed at their steady state levels based on the values

of the PO and the demand rate at the end of the horizon. The authors
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found that judicious use of the stationary model yielded close to the
optimal module stock levels. The success of the heuristic was credited
to the fact that the product had very low demand so that redistributions
and additions of module stock were not frequent over the horizon.
Muckstadt (1980), in studying a two-echelon inventory system
for reparable items, assumed that all PO were deterministic, known
and constant and that demands at the user level formed a non-homogeneous
Poisson Process with known intensity. In order to calculate the non-
stationary distribution of the number of units in resupply to a user
location, he used an argument similar to Sherbrooke’s (1968) argument
for stationary two echelon systems. Given the depot stock level at
time t, the time dependent version of Palm”s Theorem for M(t)/G(t)/ = queues
(Ross [1972], Hillestad and Carillo [1980]) was used to calculate the
number of depot backorders outstanding at t. The delay at the depot before
a serviceable unit could be shipped to a user location that requested
resupply at t was calculated as the expected number of depot backorders
outstanding at t divided by the average depot demand rate in (t-R,t].

R was the deterministic depot repair cycle time. Here, Muckstadt

used the steady state queueing law L = AW as an approximation to the
transient behavior of the system, Furthermore, no account was taken of
the fact that depot stock might change after time t thereby atfecting
the delays experienced by user locations. (In Chapter III we derive
the exact expressions for the depot delay). As in Sherbrooke’s METRIC,
the delay term was used to find the expected number of depot backorders -
belonging to a particular user location and this was added to the mean
number of units in repair at and en route to the user location. Muckstadt

then posited a Poisson distribution for the toial number of units
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due-in to the user location. Muckstadt did not formulate an optimization
problem for determining the optimal stock levels over time for the
locations in the inventory system.

Muckstadt, possibly without realizing it, used a heuristic
that apportioned the depot backorders outstanding at t to the various
user locations according to the proportion of the depot demand in
(t-R,t] that came from each user location. This was essentially what
Simon (1971) did for stationary two echelon systems. As we shall see
in Chapter IV, in non-stationary systems this is correct in only one
very special case. Hillestad (1982) used a similar heuristic in his
two-echelon Dyna-METRIC model by apportioning the depot backorders at t
to the user locations by the proportion of the total depot demand from
each location over some "empirically" determined though unspecified
time interval.

Dyna-METRIC made provisions for indenture levels and various
degrees of controlled substitution. (The Department of Defense differ-
entiates between cannibalization and controlled substitution according
to whether the weapon system/end item on which the unit is located
will eventually be repaired). Hillestad proposed an optimization
problem that considered the inventory system performance at times of
interest specified by management. At each of these times, the cost of
procuring additiomal stock beyond current system assets was minimized

subject to a constraint on performance at this particular time only.

Performance between the times specified was not considered.
W Gross and Miller (1982) studied the transient behavior of a
two-echelon Markovian system using the uniformization technique (Grassman

[1977]) to obtain numerical solutions to the Chapman-Kolmogorov equations.
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They allowed for finite repair capacity and state dependent failure
rates. No disposals or external procurements were allowed. They used
a one-for-one resupply rule and FCFS queue disciplines except when the
depot and some user locations were backordered. In that case, when a
unit completed depot repair it was sent to the user location with the
highest number of outstanding backorders rather than the location at
the head of the depot resupply queue.

Their state space grows as the square of the product of the
number of locations in the system, the number of items in the system,
and the stock of each item at each location. This quickly becomes
unmanageable even after some state reduction techniques and therefore

makes it prohibitive for inclusion in an optimization scheme,

Real-Time Multi-Echelon Models and Methods

In this section we review two approaches toward real-time
control and management of inventory systems of the METRIC type. The
problem considered was how best to utilize a given number of reparable
spares in a two echelon system that consisted of a depot and user locations
called bases. Instead of rigidly following an (S-1,S) resupply policy,
these real time models made decisions about resupply on an as-needed
basis. Therefore, even though a base sent a failed unit to the depot
for repair, the depot was not obligated to ship a serviceable unit to
the base to replace the failed unit. This allowed greater flexibility
than the static resupply policy of stationary models like METRIC in
redistributing stock to the various locations. The rationale for this

was to provide the supply system the capability to respond to poor




estimates of the PO and/or to transient effects such as, for example,
an unexpectedly large number of demands at a particular base.

Miller (1968) developed a heuristic for real-time management
called Real~Time METRIC (RTM). The initial stock level at each location
wvas determined using METRIC, Stock was redistributed through the system
via the depot. The decision of whether to ship a unit from the depot
to a base depended on the depot "reluctance" to send available spares
and the bases” "need" for serviceable stock. The depot’s reluctance at
time t was expressed as a heuristic function of on~-hand stock at the
depot at t. A base’s need was defined as the number of backorders
expected to be outstanding at the base a deterministic depot to base
ship time into the future. A comparison of depot reluctance and base
need was made whenever an event (demand at & base or a failed unit

completing repair at the depot) occurred that caused either base need to

increase or depot reluctance to decrease. A unit was shipped from the
depot to the base with the largest need that exceeded depot reluctance.
Miller reported a significant reduction in expected backorder days
accumulated over a year for high demand items by using RTM instead of
METRIC., PFor low demand items no sigpificant difference was observed.

Each time that a comparison of depot reluctance and base
need was made, RTM looked a transportation time ghead. Miller (1974)
later showed that this "Tramsportation Time Look Ahead Policy" would
be optimal if the depot repair cycle time were zero. While RIM could,
in principle, handle additions to or depletions from system stock, no
method was given for determining when to add or delete stock from the
system., Clearly, in 8 non-stationary environment we would not only

want to know when and how to redistribute stock but also when to change
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.\:;'1 the overall system stock level.
80 Galliher and Wilsor (1975) improved upon RTM by eliminating

the need to use the RTM depot reluctance function and by use of different

’3, redistribution rules. As in RTM, stock was redistributed only through
,::. the depot, and redistribution decisions were made when a base requested
K ;‘ resupply or when a unit finished depot repair. Instead of looking a
e

:&‘.;‘2 deterministic transportation time ahead, Galliher and Wilson defined
i’izg"g the length of the decision horizon at time t to be R(t), equal to a

transportation time plus the expected time between demands at the

"-j depot. On~-hand units were shipped from the depot spares pool until
?\" either no base was expected to have any backorders outstanding at
e t + R(t) or the depot ran out of stock. Remaining depot stock was shipped
',;:j to the bases that were below their target levels (set by a statiomary
*24 model) 8o that the probability of incurring a backorder in the system
during (t,t+R(t)] was minimized.

‘-:_.: Both of the above approaches heuristically determined decision
i:::. horizons. The behavior of demand and the PO after these lengths of
' ) time was not considered. For example, if the demand rate at a base
' decreased considerably after the decision horizon, it may not have been
‘:k. best to ship a unit from the depot even though the base expected to be

backordered at the end of the decision horizon. Similarly, no inventories
vere built up in anticipation of an increase in demand after the decision
horizon. More forward looking rules might not have made the same

redistribution decisions and might have improved performance.
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Ega s Dissertation
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N The objective of this dissertation is to develop a model for
.
';% determining "cost" effective stock policies for non-stationary two
:gq i echelon inventory systems. The model consists of two basic components.,
va The first component is the analytical description of the important
g;: stochastic processes, such as on-hand inventory, that determine inventory
;gz effectiveness. The second component is an optimization scheme that
’ selects a least "cost" stock policy subject to constraints on inventory
"

%? performance. We shall also examine approximations, where necessary,
Egﬁ that reduce the computational burden and thereby aid in real world
:‘“ implementation,

‘Ej Throughout this dissertation we deal with the time dependent
;E: stochastic nature of the PO and the demand process. However, we do not

concern ourselves with uncertainty in the basic parameters of the

S

underlying stochastic processes that govern the behavior of the PO and

- e e e e e

e the demand process. This problem has not been addressed explicitly
(N
even in stationary multi-echelon models because it severely complicates

N

; the analysis. A non-stationary model and heuristics dealing with
L

% ) uncertainty in the basic parameters would be a logical and worthwhile
.:iO

: extension of the work presented here.
0y
)

e
p : Data Availability

L

2
Hi" The increased data burden in using a non-stationary instead
.

‘;: of a stationary model can range from the effort involved in determining
o the length of the scenario to 8 mammoth data collection effort if all
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parameters are continuously changing with time. In this section we

cite two situations where data were obtained from U. S. Army sources

for use in the non-stationary model developed in this dissertation.

These examples do not estsblish the wvalidity of the work herein.

Rather, they demonstrate that data for effective use of non-stationary -
models in the Army are available.

Example 1,1: Contingency Fly-Away Kits

In a Grenada type contingency, U. S. combat forces are deployed
outside the continental U. S. for a short period of time. No external
resupply to these forces is possible. The problem is to determine fly-away
kits of spares that combat units should carry in order to achieve some
specified weapon system performance targets.

The U. S. Army Aviation Systems Command wanted a method for
determining the fly-away kits for a division (2 echelons) of Blackhawk
helicopters. Contingencies were expected to arise with little or no
warning. Therefore, there would not be enough time to run a detailed
combat simulation to obtain daily part demand rates or daily information
on the PO. The non-stationary data that are available are the length

of the scenario and the initial system condition which usually will

reflect that all spares will be on-hand at time 0. These data, along
with the stationary part data obtained from the standard Army data base
(U. S. Army [1983]), form the input to the non-stationary model.
Example 1.2: Wartime Requirements Determination

The U. S. Army Training and Doctrine Command (TRADOC) and
the U, S. Army Materiel Systems Analysis Activity have developed detailed
combat simulations. From these simulations we obtained, for a specific

scenario, daily demand rates and changes in the repair time distributions

NI R R Wy ;.-'. Cagt T ",
_.\l":.'r':'s‘:){ﬁ*_h:m\_x



PR X K Yy
A i 3o LI

S

7R

R,

19

based on the attack-defense posture of each location in & two echelon
system. These data, along with scenario length and initial conditions,
were input to the non-stationary model to obtain recommended stock
quantities and the expected delays in satisfying resupply requests.
These delays were input to another TRADOC simulation of the wartime
logistics support structure to evaluate, from a logistics point of

view, various combat and budgetary strategies.

Organization of Dissertation

Chapter II catalogs snd discusses the basic assumptions made
in this dissertation. The chapter also contains background material on
non-homogeneous Poisson Processes and one-for-ome inventory systems, as
well as new results on the recursive calculation of the moments of the
distributions of backorders and on-hand inventory. Chapters III and IV
derive the time dependent probability distributions of the pipeline and
other important stochastic processes at the depot and bases, respectively.
Chapter V discusses evaluation of inventory performance in non-stationary
systems and also proposes two performance measures to be considered in
an optimization problem. The optimization problem, the Fixed Asset Vector
Problem (FAVP), assumes that the asset position at each location is
fixed at the beginning of the horizon and that a one-for-one resupply
policy is followed thereafter. In Chapter VI we examine approximations
to the bases” computationslly cumbersome pipeline distributions and
propose approximating the actual base pipeline distribution with a

negative binomial distribution. In Chapter VII we discuss computational

experience with the FAVP on weapon systems managed by the U. S. Army
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}@; Materiel Command. We also compare the stock lists and costs obtained
RS

‘fé from the FAVP with those obtained from a stationary steady-state model.
N

Chapter VIII introduces the Asset Vector Transformation Probism which,

fﬂ& together with the FAVP, can be used in a heuristic to try to determinme
)
7‘ "' [3 . 3 k3 .
%gé the optimal asset levels over time in a non-stationary inventory system. .
]
o
Chapter IX contains a8 summary of the major results of this dissertation
[P
.'1!

and brief discussions on various extensions to the work presented herein.
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B PRELIMINARIES

R

b

)

;&*3 This chapter presents some basic definitions and assumptions
_ used throughout this study as well as background material on non-homo-
i~

;: geneous Poisson Processes and one-for-one [(S-1,S)] inventory systems.
(Il

"1: The final section contains new results on the recursive calculation of
v moments of the distributions of backorders and on-hand inventory in
O

hY one-for-one inventory systems.

W

?':0

Y

, Non-Homogeneous Poisson Process
X
8

\

B The stochastic counting process {N(t), t > 0} is said to
A"‘

. be a non-homogeneous Poisson Process (NHPP) with intensity function
Ny

o A(t) if

L

“§ (i) N(0) = 0;

(ii) {N(t), t > 0} has independent increments;

3 (iii) Pr(2 or more events in [t,t+h]) = 0(h);

J (iv) Pr(exactly one event in [t,t+h]) = A(t)h + O(h).

::: . These four conditions are often referred to as the axioms
:\:E: defining a NHPP, Parzen (1962), among others, shows that these conditions
‘;:E ) ensure that for any half-open interval (s,t], 0 < s <t for which A(*)
,.-' is not identically zero, and n = 0, 1, 2,...,

§$ 21
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Pr(N(t) - N(s) = n) = e 1B(E) =& rh 0y pigym
]

n:

vhere m(t) = [ A(x)dx is the mean value function (MVF) so referred
to since B[N(tg - N(s)] = m(t) - m(s) and in particular, E[N(t)] =
m(t). If A(x) = O for all x in (s,t] then N(s) = N(t). Throughout
this study we assume that m(t) is differentiable and the derivative of
m(t) is thus simply the intensity of the NHPP at t. We also assume
that A(t) is finite for all t. Note that m(t) is non-decreasing and always
right continuous because of the definition of a NHPP but in this study
because of the assumption of the differentiability of m(t), m(t)”ia
necessarily continuous. (See Cinlar [1975] for a brief discussion
of non-continuous MVF and reference to the more complete work of Khinchine
[1960] on non-continuous MVF),

Appendix A catalogs some useful properties of NHPP., Most
notable are Pl, ensuring that the superposition of independent NHPP
is itself a NHPP, and P10, the Splitting Property, concerning the
decomposition of a NHPP into independent constituent NHPP by means of
an independent, though possibly time varying, splitting mechanism.
These, and many of the other properties listed in Appendix A are analogs
of results for homogeneous Poisson Processes. These results might
suggest a relationship between non-homogeneous and homogeneous Poisson
Processes. In fact, such a relationship does exist.

For a NHPP {N(t), t > 0} with MVF m(t) let m l(u) = inf
{s: m(8) > u} be the inverse of the MVF., If i(t) > 0 for all t so
that the MVF is strictly increasing, then o l(u) is the classical

inverse. Otherwise, w 1(u) is the inverse of the function m(*) restricted

to a domain consisting of points where the MVF strictly increases. 1In
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either case, o u) is strictly increasing and it is continuous because
of the continuity of the MVF (Kitchen [1968]). If N*(u) = Nlm~1(u))
then it is easy to see that ®*W), u > 0} is a homogeneous Poisson
Process with MVF E[N*(uv)] = E[N(n"1(u))) = mla~1(u)] = u and intensity
1. The counting process {N"(u), u > O} records the number of events
occurring on a transformed time scale that measures u when the real
time, in the semse of the NHPP {NK(t), t > 0}, is m '(u). Cinlar (1975)
gives the following theorem restating the above result in terms of the
times of arrivals,
Theorem 2,1: t;,t,;,... are the arrival times in a NHPP with MVF m(t)
if and only if m(t;), m(t,),... are the arrival times in
a homogeneous Poisson Process with intensity 1. /1
Therefore, every NHPP with continuous MVF can be converted to a homogeneous
Poisson Process. Theorem 2.1 can be used to prove many of the properties
listed in Appendix A by appealing to the corresponding result for
homogeneous Poisson Processes. Theorem 2,1 is extremely useful in
Monte Carlo simulations involving NHPP (Cinlar [1975]).

In a NHPP, the magnitude of an event is always one. Consider
the case where the event magnitude at time t is independent of the
magnitude of other events and has distribution function F(x,t) x > 0,
t > 0, with Laplace-Stieltjes transform F*(v,t). If we replace axioms
(iii) and (iv) with

(iiic) Pr(N(t+h) - N(t) = x) = A\(t)d F(x,t)h + O(h)
then we have a set of axioms defining a non-homogeneous compound Poisson
Process (NHCPP), By writing the forward or backward Kolmogorov equations

it is straightforward to show that

E[e-wN(t)] - e-m(t)[l-C(w,t)] (2.1)
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where

t
m(t) = [ A(s)ds
0

1 b o
C(w,t) = ‘T(T)—g F (w,s) (s)ds. .

Note that C(w,t) is the "intensity-weighted" average of the Laplace-Stielt-
jes transforms over (0,t] (Galliher [1975]). 1If d F(1,t) = 1 for all
t, then setting e”¥ = z reduces (2.1) to the generating function of a NHPP.

Analogously to homogeneous compound Poisson Processes, a
NHCPP can be viewed as the stochastic process that records the sum
of the independent jump magnitudes of 8 process whose jump times occur
in accordance with a NHPP. Thus, if 0 < 8] < 8g... S BR(p) St are
the epochs of the N(t) events that have occurred by time t in a NHPP
{N(s), 8 > 0} and y(sj) is the magnitude of the event at time 85 with
distribution F(x,sj), j =1, 2,..., N(t), then as long as the jump
magnitudes are mutually statistically independent random variables,
{N.(t) = th;(sj), t > 0} is a NHCPP and the transform (2.1) is readily

j=1
obtained by direct arguments.

Ma jor Assumptions

For expository purposes, throughout most of this study we
focus attention on a two echelon inventory system consisting of N
user echelon locations called bases and a central second echelon resupply
and maintenance depot. The flow of units of an item through a two base .
system is depicted in Figure 1. In this section we list and discuss

the major assumptions made regarding the operation of the system.

Assumption 1: Primary customer demands at basei, i=1,2,...N, form
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a NHPP with known intensity 0 < A;(t) < = and differentiable MVF m;(t)
= ét li(x) dx. The demand processes at the bases are mutually statis-
tically independent.

To the author”s knowledge, no studies of the demand processes
of any real vorld non-stationary inventory systems have been performed.
The Armed Forces often conduct training exercises and war games but
as of yet no reports on any data collected have appeared. In combat
situations, however, item failures not due to combat damage are often
assumed to follow a homogeneous or non-homogeneous Poisson Process
(Coggins [1983]). Studies of stationary systems by Galliher and Wilson
(1975) [aircraft engines] and Mitchell et al (1980) [10,000 aircraft
parts] accepted the hypothesis that failures of an item at the user
level followed a homogeneous Poisson Process. Other studies by Johnson
and McCoy (1978), Metzner (1981), and Proschan (1983) on aircraft
parts rejected the same hypothesis although in each study an explana-
tion is given as to why the hypothesis was rejected assuming it was
likely to be true.

A priori, there are three possible objections to Assumption
1. The first is that while customers might arrive according to a
NHPP, order sizes might be larger than one. If this were true, a
NHCPP model of demand is more appropriate. Most of the results of
this study can be extended to systems in which primary customer demand
follows a NHCPP., However, customers usually demand only single units
of an expensive item and it is the expensive items that usually account
for the largest inventory investment (Orr [1977], Peterson and Silver
(1979], p73-80). The second objection is that the variance to mean

ratio (VMR) of the demand in any interval might be greater than one.
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If this were due only to non-unit order sizes, & NHCPP model of demand
would be appropriate. If the increased varisbility is due to other
factors, such as uncertainty of the intensity function or a truly
more variable underlying demand process, using a NECPP to model demand
is only an approximation whose effectiveness would need to be investi-
cated. (This issue will be discussed in more detail in Chapter IX).
The third objection arises from the fact that if there were a finite
calling population of customers at the bases, the arrival rate of
failed units at time t may depend upon the number of operating units at
time t. The U. S. Army assumes for most weapon systems that a certain
operating tempo (hours flown, miles driven, etc.) is maintained each
month regardless of the number of operational wespon systems (Kaplan
[1980]). Each operational weapon system may be used more than originally
planned to compensate for the downed systems and therefore, the number
of failures of an item will tend to be consistent with original projec-
tions. For systems with large cslling populations and/or high performance
targets in which the percentage of total customers that are down is
expected to be small, the infinite population assumption should cause
no harm. For very small customer populations, the assumptions of a
state independent NHPP generating demand may be inappropriate. However,
Zmurkewycz (1984) observed that even for small populations (in one case
10 customers with & medium performance target and in another case 2
customers with a high performance target) the expected number of customer
backorders obtained from an infinite population two-echelon stationary
model was within 1X of the backorders from a finite population Monte
Carlo simulation.

Assumption 2., When a failed unit is brought to base; the decision,
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made by the base; diagnostic facility, either to repair the failed
unit at the base; repair facility, to send it to the depot for repair,
or to condemn it as irreparable is made independently of the decisions
made on other units at other times and depends only upon the complexity
of the required repair.

The base; diagnostic facility examines a failed unit and
determines the repair action required to restore the unit to a service-
able condition. When the required repair can be accomplished at the
base; repair facility, the failed unit is sent there. If the failed
unit requires depot action, either because the repair is beyond b#sei
capabilities or because the diagnostic facility cannot determine the
extent of the required repair, the diagnostic facility sends the unit
to the depot. Otherwise, the diagnostic facility condemns the unit
as irreparable and removes it from the system. Condemnations result
in the loss of a system asset that can be replaced by a procurement
from the external supplier. The decision of the diagnostic facility
depends only upon the estimated ability of the base; and depot repair
facilities to effect the necessary repairs and is independent of all
else including the decisions made on other units at other times, the
number of serviceable spares on~hand at base; and the depot, and the number
of units already in the base; and depot repair facilities.

Assumption 3: When a failed unit is sent from a base to the depot
the decision, made by the depot diagnostic facility, either to repair
the unit or to condemn it and remove it from the system, depends only
upon the complexity of the required repair. This decision is made inde-

pendently of the decisions made on other units and without regard to

the number of units on-hand or in repair at the depot.
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Assumption 3 imposes an independence condition on failed
units sent to the depot similar to the one imposed by Assumption 2
on failed units brought to the bases. Both Assumption 2 and Assumption
3 allow the probabilities of a particular diagnosis to vary with time
as long as each diagnosis is independent of other diagnoses and the
number of units on-hand and in repair. This is particularly useful
in wartime scenarios where the various combat situations and missions
may, over different time intervals, result in different types of damage
to the item and/or affect the ability of the various repair facilities
to perform the necessary repairs.

Assumption 4: The times spent in the diagnostic facilities are mutually
statistically independent. Repair times are mutually statistically
independent.

There is no restriction on the distribution of repair times
at a repair facility as long as the independence of individual repair
times is maintained. In fact, both the diagnostic time and repair
time distributions are allowed to change with the time of failure,
and the repair time distribution may also depend upon the time at
which repair was initiated after fault diagnosis and isolation. For
example, & wartime scenario that calls for base; to be in an intense
combat zone in (s,t] may alter the repair time distribution according
to whether the unit failed before or after s and according to the
time at which repair was initiated after fault isolation was completed
by the appropriate diagnostic facility. In summary, the diagnostic
and repair times of a particular failed unit need not be independent
but the times of different units are mutually independent.

Assumption 5: There is no batching of units before fault diagunosis
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begins. There is no batching of units before repair begins.

It is usually uneconomical to adopt a batch diagnostic and/or
repair policy for expensive reparable items (Peterson et al [1959]) so
for most items of interest this assumption is not restrictive.
Assumption 6: There are an infinite number of servers at the diagnos-
tic and repair facilities.

Assumptions 5 and 6 ensure that diagnosis begins immediately
upon receipt of a failed unit at a diagnostic facility and that likewise,
repair begins immediately upon receipt of & failed unit at a repair
facility. Together with Assumption &4 they preserve the statistical
independence of the times differemt units spend in the diagnostic and
repair facilities. If units were allowed to queue and wait for diagnosis
and/or repair there would be a correlation between the times successive
units spend in the diagnostic and repair facilities.

The effect of an ample service assumption on finite server
systems has been studied directly by Gross (1982), who compared the
steady state behavior of an M/M/« queue and an M/M/c queue with the
same mean time in the repair facility (waiting time plus repair time),
and indirectly by Slay (1980) and Kaplan (1980), both of whom compared
the M/G/ = queue arising from Sherbrooke’s (1968) METRIC model and
the infinite server queue with Poisson arrivals and correlated service
times arising from Simon’s (1971) two-echelon model. They all found that
for low utilization factors (Kleimrock [1975], pl8) the ample service
assumption induced little error in determining the equilibrium number
of customers waiting. As expected, as the utilization factor increas-
ed, the error increased., Gross (1982) reports significant errors omly

as the utilization factor approached 1. We conclude from these studies
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that the ample service assumption should not be made lightly but that
there are many situations for which this assumption is adequate.

In particular, based on intuition and the stationary studies
above, we expect the ample service assumption to be satisfactory for
items for which the number of units in the repair (diagnostic) facility
at any time during the horizon is not large compared to the maximum
number of available servers. Such items might have low failure rates,
small repair (diagnostic) times and/or be part of multi-item systems
wvhere the servers and test equipment are not dedicated to any particu-
lar item. In the latter case, since servers can work on any of a number
of different items, the chances of a backlog in repairing (diagnosing)
a particular item are considerably reduced. For these reasons, the
ample service assumption is routinely used in the stationary multi-echelon
models employed by the Armed Forces (Sherbrooke [1968], Clark [1978],
U. S. Army [1983]). We will discuss this issue again in Chapter IX,
Assumption 7: There is no lateral resupply among the bases.

By Assumption 2, the base; diagnostic facility never sends
8 failed unit to another base repair facility., Complementing this,
Assumption 7 prohibits base; from ever seeking resupply from another

1

base for serviceable units basei has issued to customers. Basei will

seek resupply only from its own repair facility, the depot or, in

the case of condemnations, the external supplier. Sherbrooke (1968)
reports very little lateral transfer for Air Force Systems and the
Army (1983) and Navy (Clark [1978]) do not consider it a major factor
in determining stock levels. In "optimally” controlling s non-station-
ary multi-echelon inventory system, it might of course be desirable to

transfer assets from a base with a lot of on-hand stock to another
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fs. base that has little or no on-hand stock, The data required for making
B\
fﬂ this decision "optimally” are similar to the data required for optimal
\“;‘
" real time control, which, as was pointed out in Chapter I, presents
kl':. v
::: an almost insurmountable data management problem. In fact, Miller’s
B
:;:' Real Time METRIC (1968) does not allow for lateral resupply. Optimal
EXY »
vig policies or heuristics for handling lateral resupply are beyond the
3
::' scope of this study.
:3 Assumption 8: All locations follow a one-for-one ([S(t)-1,S(t)]) resupply
el

policy at all times.
'."‘
)
39 Every location seeks resupply by exchanging a failed unit
1% y
K
)

for a serviceable unit from a resupplier on a one-for-one basis.

If the base; diagnostic facility sends the unit for base; repair, resupply

Ei comes from the base; repair facility in the form of repairing the
.I_é failed unit and returning it to the base; serviceable spare stock
) pool. If the unit is condemned, resupply comes from the external
?-E’ supplier. Otherwise, resupply is from the depot. In a sense we are
E assuming that at all times the econmomic order quantity for base; from
- each of its resuppliers is 1. Similarly, the depot seeks resupply
‘:" on a one-for-one basis from its repair facility or the external supplier
:o' according to whether the unit is repaired at the depot or condemned. For
‘.;.: most expensive or low demand items, a one-for-ome resupply policy is
‘ usually optimal for stationary continuous review inventory systems
§E§ (Hadley and Whitin [1963], p204) and during many dynamic scenarios of
"‘ interest it is reasonable to assume that an [S(t)-1,S(t)] policy is ,
...: still the best ordering policy for these types of items. Furthermore,
;::" the various models used by the Armed Forces for peacetime spares deter-
| mination assume a one-for-one ordering policy and there is no reason to
%
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believe this policy would change during a surge or wartime situation
(Rruse and Cohen [1983], Hillestad [1982]).

Ultimately, we would like to make real-time resupply decisions
rather than always following a one-for-one resupply policy. Even under
an HCP, we might want to change the resupply policy at management
intervention times to reflect what we predict will happen during the
remainder of the borizon. For example, if we expect base; to be destroyed
at time t, there seems to be very little reason for the depot to honor
a resupply request from base; at t~, thereby giving the depot another
asset to use in resupplying the surviving bases. As we shall see, a
change in the resupply policy corresponds to a change in the asset
levels (Definition 2.2 in the next section) st ome or more locationms.
Hence, we can view the system as continually using a one-for-one resupply
policy except for management directed changes in S(t). This will be
discussed in detail in Chapter VIII where we develop a model for determining
the management intervention times and the decisions to be made at these
times.

Assumption 9: Unfilled demand at a location is backordered and eventually
satisfied on a first come-first served (FCFS) basis.

If there is no on-hand stock at the base at the time of a
customer “s demand, the demand is backordered and eventually satisfied
on a FCFS basis. At the depot, resupply requests from the bases are handled
similarly.

Assumption 10: The external supplier has an infinite supply of serviceable
spares.

In summary then, the two echelon inventory system depicted

in Figure 1 behaves as follows: primary customer demands occur at
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the bases. When a failed unit is brought to a base, the base issues

the customer a serviceable spare if one is available or else backorders

the demand (FCFS). The base diagnostic facility either condemns the
o failed unit or sends it to either the base repair facility or the
depot. If the unit is condemned, an order is placed with the external
supplier for a new unit to be added, upon arrival, to the base service-
able spare stock pool. If the unit is sent to the depot, the depot is
obliged to send a serviceable spare to the base as soon as one is
available with all the unfilled base resupply requests being backordg;ed
and satisfied on a FCFS basis. The decision by the base diagnostic

facility depends only upon the complexity of the repair required and

is independent of the decisions on other units at other times. Likewise,

2
. '-‘"v !

.
PR}

.

when the depot diagnostic facility receives a failed unit, it decides,

2,

independently of the decisions on other units at other times and depending

Sy
",

only upon the complexity of the required repair, whether to condemn or
repair the unit. A condemnation results in an order being placed on
the external supplier while if the unit is repaired at the depot, upon
completion the serviceable unit is put into the depot spare stock pool

and is available to satisfy base resupply requests.

Pipelines and Asset Levels

Throughout this study, we number the bases from 1 through
N and 0 will refer to the depot. At locationi, i=20,1,2,...N, at
time t > 0 let

Bi(t) = pumber of units on-hand;

B;(t) = number of backorders outstanding;
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D;(t) = pumber of unserviceable units in the location; diagnostic
facility;

Ri(t) = number of unserviceable unite in the locationi repair

facility;

E;(t) = pumber of serviceable units still em route at t to
locationi from the external supplier to replace
condemnations at location; in (-w,t].

For base;, i = 1,.., N, also define DE;(t) as the pumber of
serviceable units en route from the depot to buei at time t plus the number
of resupply requests placed by basei in (-=,t] that are backordered
at the depot at t (because no serviceable units are available at the
depot spares pool for shipment), DE;(t) is the number of resupply requests
placed on the depot by basei in (-=,t] for which basei has not received
a serviceable spare by t: either because the depot has not yet shipped
one and has thus backordered the request or because the serviceable
unit the depot shipped is still in transit to base; st t.

For base;, let X.(t) = D,;(t) + R;(t) + E;(v) + DE;(t). Because
of the one-for-one resupply policy, X;(t), called the pipeline quantity
or pipeline for short, represents the number of customer demands at
basei in (-=,t] for which the buei spares pool has not received s
serviceable unit by t as resupply for the demanded serviceable unit
that it either has issued or will issue to satisfy the cus.tomer request.
Note that Xi( *) does not change when diagnosis on a unit is completed since
D;(*) decreases by one but because of the one-for-one resupply policy,
one and only one of E;(*), R;(*) or DE;(*) increases by 1. Im fact, X,(°)
incresses by 1 if and only if D,(*) increases by 1. X;(*) decreases

by 1 if and only if one and only ome of R, (°), E;(*) or DE;(*) decreases
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by 1 representing the receipt of a serviceable unit at the base; spares

pool from either the base; repair facility, the external supplier or

the depot, respectively. Xi(t) reflects the initia)l system condition
since it includes units that were in the pipeline at 0 and are still

in the pipeline at t.

At the depot, let Vo(t) be the number of unserviceable units
en route to the depot diagnostic facility from the bases. Similarly to
the bases, define the pipeline at the depot as Xj(t) = Do(t) + Ro(t) +
Eg(t) + Vo(t). The depot pipeline has a similar interpretation as the
number of serviceable units due-in to the depot frow the depot”s resupply
process. Note that Xy(*) changes only when Vy(*) increases or when
Ro(*) or Ey(") decreases.

When a location receives a demand, it immediately issues
a serviceable unit if there is one on~-hand or it backorders the request
to be filled on a FCFS basis. The failed unit immediately enters
the resupply process by being sent to the location”s diagnostic facility.
This implies that for sll t > 0, and all i = 0,1,...,N, H;(t)B;(t) = 0.
Since resupply is on a one-for-one basis it also implies that if Xi(t) =0
all serviceable units that location; is authorized to have would be
on-hand at t. This leads to Definition 2.2.

Definition 2,2: The asset level at locationi, i=20,1,...N, at time
t 20, s;(t) = B;(¢t) - B;(t) + X;(t), is the maximum
number of serviceable units that can be on-hand at
location. at time t.

1

After basei receives & demand at t, it either issues a service-

sble unit from its spares pool or backorders the demand, thereby decreasing

H,(t) - B;(t) by precisely 1. The failed unit immediately enters the

-------
-------
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§
o diagnostic facility, increasing X,;(t) by 1 and thereby resulting in no
2] change to 8;(t). Furthermore, if base; receives a serviceable unit
from the resupply process at t, xi(t) decreases by 1 but the unit just
received either satisfies an existing backorder or is put into the
base; spares pool resulting in an increase in H;(t) - B;(t) of 1 and
thereby again causing no change in si(t). Similarly, 8 resupply request
placed on the depot at t decreases Hy(t) - By(t) by 1. Since concurrent
with the request a failed unit is sent from a base, Vo(t) and therefore
Xg(t) increases by 1 resulting in no change to sg(t). Furthermore,
if Xo(t) decreases by 1, Hy(t) - By(t) increases by 1. Thus, at every
location the asset level varies with time only through management
directive and not because of demands at a location or the interactioms
of the resupply system. This is a direct consequence of the one-for-one
resupply policy and is characteristic of all (S-1,S) inventory systems.
Of course, management decisions to change the asset level
at a location could be based on an optimization model that reflects
the demand history, anticipated future demand and the current system
condition. (See Chapter VIII). If management does not interfere
with the normal workings of the inventory system, then s;(t) is constant
through time and in particular, s;(t) = s;(0) for all t and i =0,1,2,..N.
If management has sent additional spares to location;, either through
new external procurement or redistribution of system assets, si(t)
reflects only those units that have arrived at location; by t and were
therefore available to satisfy demands that occurred before t at location;.
Likewise, si(t) reflects only those management cutbacks that have been
implemented by t., Therefore, si(t) differs from s;(0) only through the

total of the assumed known management directives to either increase or
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decrease assets at location. that have been implemented by time t.

1

From Definition 2.2 we have that
B;(t) = [X;(t) - s;()]" (2.2)
B () = [s5(t) - X;()]%, (2.3)
Since si(t) is 8 known function of time, (2.2) and (2.3) show that
the pipeline quantity X,(t) provides all the necessary information
to determine the on-hand stock and backorder position at locatiom;
at any time t. Chapters III and IV are devoted to describing the

stochastic processes, {{X;(t), t 20} i = 0,1,...N}.

Backorder and On-hand Moments

In this section we present results on the calculation of
the moments of the distributions of on-hand inventory and outstanding
backorders for one-for-one inventory systems with integer pipelines.
The results are true for all locations and all times 8o we temporarily
suppress the notation indicating location and time and define

Bls] = backorders given an asset level of s;
H[s] = on-hand inventory given an asset level of s;
X = pipeline quantity.

From (2.2) we have that

E(B[s]) = ] (3-8)Pr(X=))

hES:]
= ) Pr(X>J) (2.4)
i>s -

and

E(B2[s]) = T (§-s)2Pr(x=1)

338
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9 ]
;I:' ) 3%pr(x=y) + szPr(x15+1) - 28[E(X) - ] $Pr(X=i)].
2 1>s §=1
i:

For all distributions on the non-negative integers,
o K K
B 1 Pr(x>3) =) 3§ Pr(X=j) + k Pr(X>k+l)
oy y=1 =1
;::E

so that using this and (2.4) yields

s 2 2 ¥ 2 2
B E(B[s]) = E(X") - ] 3°Pr(X=j) - s“Pr(X>s+l1) - 2sE(B[s]). (2.5)
O". j-l
e,
)
Note that E(B[0]) = E(X) and E(B2[0]) = E(X2) as we expected from (2.2)
b '
since for s = 0, B = X,
:‘:'o‘, Equations (2.4) and (2.5) allow the calculation of the mean
ol
_ and variance of the backorder distribution for a given asset level
199
:. based on knowledge of the pipeline distribution. As we have already
5
t. mentioned and shall see in Chapter V, the asset level is oftem the
-.
. decision variable in an optimization problem. Therefore, many trial
'x‘.l
::“ values may be examined in an algorithm (Kotkin [1978]) and a recursive
)".
!
‘::: calculation of the mean and variance of the backorder distribution
Al
is desirable.
‘o)
N Theorem 2.3: (a) E(Bls]) = E(B[s~1]) - Pr(xX>s-1)
\' (b) Var(Bls])=var(Bls-1})-Pr(X<s-1){E(B[s))+E(B[s-1]))}
__;. Proof: Let I(z) =1 if z > 0 and let I(z) = 0 otherwise. Then,
0y
W Bls] = Bl[s-1] - I(B[s-1]) (2.6)
I3
.’ since increasing the asset level from s-1 to s decreases the number
'y,
— . of outstanding backorders by precisely 1 whenever B[s-1] > 1. From
b
\.j (2.2) for n = 1,2..-.
%.
j E{1%(B[s-1])} = Pr(B[s-1] > 1) = Pr(X>s-1) (2.7)
L
- so that (a) follows immediately upon taking the expectation of both
N
:‘. .
L)
My
..,z‘
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gﬁ sides of (2.6) [as well as from (2.4)]. Furthermore, from (2.6)

o Var(Bls]) = Var(Bls-11) + Var{1(B[s-11)} - 2 Cov{B{s-11, TI(B[s~1])}
3 But Var{1(Bls-11)} = E{12(Bls-11)} - EX{I(Bls-1])}

Z = Pr(X>s-1) Pr(X<s-1)

;fﬁ and Cov{Bl[e-1], I(B[s-1])} = E{B[s~111(B[s-1])} - E(B[s-1])E{1(B[s-1])}

‘ = E(B[s-1]) Pr(X<s-1)

%E from (2.7) and the fact that B[s-1]1(B[s-1]) = B[s-1] > 0. Therefore,
\ var(Bls)) = Var(Ble-1]) + Pr(X<s-1){Pr(X>s-1) - 2E(B[s-1])}

. From (a) we have that Pr(X>s-1) = E(B[s-1]) - E(B[s]) and substituting
:§§ this above we immediately obtain (b). /1
'J Note that as expected both the mean and variance of the
:,.‘ backorder distribution are decreasing functions of the asset level
§ and both go to zero as s goes to infinity.

'

-

Using (2.6) we can obtain a recursive formula for any moment

-3

of the backorder distribution.

l 3
&

Theorem 2,4: For n =1,2,,..

E(B"[s]) = E(B"[s-1]) + (-1)"Pr(X>s-1)

- |
Vs,

n=1 n-4
o + 1 DI ®EE -1
: 3=1 !
T,
331 Proof: From (2.6) we have
\ E(8"[s]) = E{[B[s-1] - I(B[s-1])]"}
o3
A n
! = E{J(MB [s-111"7 (Bs-1]) (-1)"7F)
~' 0 j
A
= = E(B"[s-1]) + (-1)"E{1"(B[s-1])}
‘o
- nl o
g + 7 DI eI s-111" T Bs-11) )
L, j=1 J
'\-
%
o

he)
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N For n > j > 0, BJ[s-1] 1®"3(Bls-1]) = BJ[s-1] > 0. Using this and
‘9]
iﬁ (2.7) in the above expression establishes Theorem 2.4. /l
.r Realizing that
: Hls] = H[s-1] + I(s-X) (2.8)
i ana using arguments similar to the ones used to prove Theorems 2.3
f. and 2.4 we can prove Theorem 2.5 which gives results on the moments
J of the distribution of on-hand inventory.
5 Theorem 2,5: (a) E(H[s]) = E(H[s-1]) + Pr(X<s-1)
. (b) var(H[s]) = Var(H[s-1]) + Pr(X>s-1){E(B[s]) + E(H[s-1])}
5 (¢) for n = 1,2,...
.0. n-1 j
[ E(H"[s]) = E(H"[s-1]) + Pr(X<s-1) + ) (j)a(u [s-11). //
i=1
;g Note that the mean and variance of the distribution of
E on-hand inventory are increasing functions of s and they grow without
.. limit as s goes to infinity.
¥ The above results can be extended to arbitrary distributions
ké for X so that the results can be used in many of the classical inven-
. tory models where X will represent demand during a lead time and
ﬁ; analogs of (2.2) and (2.3) are valid (Kotkin [1983]).
i:: The results in this section are used extensively in Chapter V
v: where we formulate an optimization problem that requires the determina-
;g tion, for various depot and base asset levels, of the expected number
n of base backorders outstanding at each point in time during the |
i& - horizon., We present these results here as background material so that
!: the reader can keep them in mind as we derive the distributions of the
g ) depot and base pipelines in the next two chapters.

Next page is blank.
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CHAPTER III

DEPOT CHARACTERISTICS

In this chapter we derive the time dependent probability
distribution of the depot pipeline and we also study other important
stochastic processes that arise at the depot. The results of this
chapter are used extensively in Chapter IV to derive the distributions
of the bases” pipelines. However, the material in this chapter is
interesting and useful in its own right: it pertains to the amalysis

of non-stationary single echelon inventory systems.

Demand at the Depot

Recall that a demand at the depot for & serviceable unit
occurs when some base, upon completion of its diagnostic procedures,
seeks resupply for the unserviceable unit it has just sent to the
depot. Define Pi(s,t) as the probability that a unit that fails at
time 8 > 0 and completes base; diagnosis at t > s will be sent to the
depot for further diagnosis and/or repair. Furthermore, let G;(s,t) be
the probability that a unit that fails at s > 0 will complete base;
diagnosis by t > 8. For fixed t > 0, we classify a failure at time
0 <s <t as one of three mutually exclusive and exhaustive types:

Type I: Diagnosis on the unit was completed by t and a decision

43
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was made to send the unit to the depot. This occurred

with probability

t
Pi(s) = ;! P, (s,y) dG, (s,y).

Type II: Diagnosis on the unit was completed by t and a decision
was made either to condemn the unit or to repair the

unit at the base. This occurred with probability

t
P 1 (s) -£ (1-2, (s,y))dG, (s,y).

Type IIl: Diagnosis on the unit was not completed by t. This
occurred with probability PIII(s) =1 - Gi(s,t).

Note that for all 0 < s < t, Py(s) + Pyy(s) + Pyyg(s) = 1. For a
particular unit the decision made by the diagnostic facility may depend
upon the time of failure and upon the time spent in the diagnostic
facility. However, by assumption, the decisions made on different
units, as well as the diagnostic times of differeht units, are mutually
statistically independent. Therefore, the Splitting Property for NHPP,
P10, guarantees that the number of resupply requests placed on the

depot by base, forms a NHPP with MVF

t
A (t) -{) X;(8) Py(s) ds. (3.1)

Since demands at each base form independent NHPP and the
diagnostic times and decision making mechanisms at the bases are also
independent, we have, as a consequence of the Superposition Property

Pl, that the demands for serviceable units at the depot form a NHPP
N
with MVF m,(t) = A, (L),
0 -1 i
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Depot Asset Position

Because of the one-for-one resupply assumptions, the depot
asset position changes over time only through management directive. At
time t > O, management may change the asset position by directing a
change either in the depot’s net inventory, Hy(t) - By(t), or in the
depot pipeline quantity, Xy(t). (See Definition 2.2). Management may
change the net inventory by delivering or removing serviceable units
and "creating" or "camcelling" outstanding backorders. A chenge in
Xo(t) can be effected either by discarding a unit already in the pipeline
or by adding a unit to the depot pipeline without a corresponding
resupply request from a base.

Management may elect to increase the depot”s net inventory by
delivering serviceable units to the depot spares pool. These deliveries,
as well as =11 other management directives that change the depot asset
position, are assumed to be scheduled at the beginning of the horizonm
and are also assumed not to depend on the system condition at any time
in (0,t] or on the depot demand process in (0,t].

Egsentially, management decreases the depot”s mnet inventory
by "demanding" a serviceable unit from the depot spares pool. If there
is stock on~-hand, a serviceable unit is immediately issued to management.
Otherwise, we assume the creation of a backorder due-out to management
wvhich, along with the other demands on the depot, will be satisfied in

. accordance with the FCFS discipline. Since the times of the management

- directed changes are determined at the beginning of the horizon, these
"management demands" result in a non-continuous MVF for the NHPP describing

depot demand. For ease of exposition, the subsequent analyses in !

N Ry
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Chapter III assume a continuous MVF arising from base resupply requests.
The methods of Cinlar (1975) for non-continuous MVF can be applied to
easily extend the analyses.

Management may increase X,(t) by placing an unserviceable
unit in the depot pipeline without a corresponding resupply request
from a base. (Presumably, these unserviceable units are available as
the result of previous management decisions not to diagnose/repair
units that failed somewhere in the inventory system). This type of
management directive does not affect the depot demand process. Howeve.x.‘,
there is no longer a one-to-one correspondence between units in the
pipeline and base resupply requests. The NHPP describing the number of
units that enter the depot pipeline now has a non-continuous MVF to
represent both the base resupply requests and the entries scheduled by
management. Again, for ease of exposition, in the subsequent analyses
we deal only with a continuous MVF arising from base resupply requests.
The methods of Cinlar (1975) can again be applied to extend the analyses
to include this type of management directive.

The management directives to cancel an existing backorder or
to discard a unit already in the pipeline are more cumbersome to deal
with. First, there is no assurance that these directives can be implemented
at their scheduled times. Therefore, we would need rules to cover the

possibility that there may be s delay in implementing these changes.

Depending on the rules chosen, sy(t) may become a random variable.

Secondly, the very fact of whether these directives cam or cannot be -

“~
§" implemented at t provides information about the pipeline and the demand
P "

‘f:" process in (0,t]. For example, cancelling a backorder due-out to a
by LS

. particular base implies, among other things, that Xy(t) > sg(t) and
g
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also that there was at least one resupply request from that particular
base backordered at t. The subsequent analyses in this chapter do not
allow for these two types of asset position changes. The analyses can
be extended to deal with these types of management directives by carefully
and tediously conditioning on the relevant information obtained at
their originally scheduled times for implementation and the effects on
the asset position of a delay in their implementation. In a similar
manner, the analyses could be extended to include management directives
that depend on the system condition at times in (0,t] and/or on the

depot demand process in (0,t].

Depot Pipeline

The depot pipeline at time t > O, Xo(t), consists of: units
that were in the depot pipeline at time 0 and are still ir the pipeline
at t; units that were in some base diagnostic facility at time 0, were
sent to the depot in (0,t] and are still in the depot pipeline at t;
and units that failed at the bases in (0,t], were sent to the depot in
(0,t] and are still in the depot pipeline at t. Because of our assumptions,
these three components of Xy(t) are independent so that Xj(t) can be
obtained from the convolution of three random variables. The first two
random variables can be easily, albeit tediously, computed from knowledge
of: the initial system condition; the distributions of the diagnostic,
shipping and external procurement lead times; and the diagnostic decision
making mechanisms at the bases and the depot. Since the stochastic
description of the first two components is not a goal of this dissertation,

we will, for ease of exposition, assume that XO(O) = 0 and also that
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all base pipelines are empty at 0, Without loss of generality, we
concentrate here on the stochastic description of the component of
Xo(t) arising from failures at the bases in (o,t].

Fix some time t > 0 and consider a demand placed on the depot
at 0 <8 <t. The demand is classified as one of the following mutually
exclusive and exhaustive types:

Type 1: The failed unit sent to the depot at s is still

en route to the depot at t.

Type 2: The failed unit arrived at the depot by t but has
not completed diagnosis by t.

Type 3: The failed unit completed depot diagnosis by t.
A decision was made to repair the unit at the depot
but the repair was not completed by t.

Type 4: The failed unit completed depot diagnosis by t.
A decision was made to condemn the unit thereby
generating an order on the extermal supplier. A
serviceable replacement from the external supplier
has not arrived at the depot by t.

Type 5: The failed unit completed depot diagnosis by t.
If the decision made was to repair, theunit completed
depot repair by t, If the decision made was to
condemn, & serviceable replacement from the
external supplier arrived at the depot by t.

Since each demand is classified independently of other demands, -
P10 guarantees that the number of demands classified into each type form
mutually statistically independent NHPP. In particular, define:

v(s,t) = Pr(a shipping time begun at s has ended by t);

.« ~
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\ c(s,ty,t,) = Pr(a unit that was shipped to the depot at s

N and which started diagnosis at t; has left

N the disgnostic facility by t,);

)

\J

% r(s,t;,ty,t3) = Pr(a unit that was shipped to the depot at

¥

i i
B 8, started diagnosis at t) and entered the repair

. facility at to has left the repair facility
: by t3);
¢
¥

e(s,t;,ty,t3) = Pr(a serviceable unit arrived by ty in

A response to an order placed on the external
a supplier at ty to replace a unit that was
Q shipped to the depot at s and which started
8 diagnosis at t;);

Po(s,t;,ty) = Pr(a unit that was shipped to the depot at

B 8, arrived at t; and completed diagnosis at
4 t, was sent to the depot repair facility).
X) Vo(t) is the number of Type 1 demands in (0,t]. As a consequence of
; P10, Vo(t) has a Poisson distribution with mean
. t

(f) Ag(8) [1-v(s,t)] ds (3.2)

i A

where Xo(s) is the intensity of the NHPP describing demands at the

depot. Do(t) [Type 2 demands] has a Poisson distribution with mean

t t %

[ 20 [ dlvis,y)1[1-cls,y,0)] ds. (3.3) )
; 0 s ]
4 : Ro(t) [Type 3 demands) has s Poisson distribution with mean !
K !
& t t t )
q f Xo(s) f alv(s,y)] f d[C(s,y,z)]Po(s.y.z)[l-r(s,y,z,t)] ds. (3.4) L
Y 0 ] y !
|

I

-

Finally, Ey(t) [Type 4 demands] has a Poisson distribution with mean

.
o v -
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? [ 2(e) [ alv(e,y)] [ dlels,y,z)1[1-P (s,y,2))[1-e(s,y,2,t)] ds.(3.5)
' 0 8 y

" Since for all t > 0, Vo(t), Dy(t), Ry(t) and Ep(t) are mutually )
2 statistically independent, xo(:) has a Poisson distribution with a mean
y

9 . .

e obtained by summing (3.2) to (3.5).

\ Define F(s,t) as the probability that s failed unit that was
oy . .
\:::: shipped to the depot at time & > 0 (and thereby entered the depot pipeline
)
if::: at 8) is not in the depot pipeline at t > s. Then, for all t > O,
¢ Xo(t) has a Poisson distribution with mean
A
'» ) t
e g Ag(8) [1-F(s,t)] ds 3.6
\".

o

" where, using (3.2) to (3.5), we have that

"'g t t

o Fo(s,t) = [ [ dlv(s,y))1d[c(s,y,,,)]

s RS

Lo

w3 « {Py(s,y1,7,) 1(8,¥15¥,5t) (3.7
A5

‘r + [1-Py(s,y,,7,)] e(s,y,57,,t)}.

« For ease of exposition and notational convenience, we have
4‘ A

: assumed that the depot shipping, diagnostic, repair and external procurement
. ~. |
’,‘, 2 lead times, as well as the depot repair/condemn decision making mechanism,
¥

ey do not depend upon the original time of failure of the unit or upon the

4
'.‘

:E..‘ base at which it failed. As long as the independence among different failed

)

ol

::: units is maintained, it is a simple, straightforward matter to extend

i the above analysis to the case where the time and location of failure -
l'~

':,: sffect the relevant depot processes. We leave it to the reader to

y
of”,

o verify that (3.7) can be modified to handle these new dependencies so
J that X,(t) remains a Poisson random variable with mean given by (3.6).
k.2
"‘-x
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Delay st The Depot

Let Wo(t) be the delay before the depot sends a serviceable
unit to the base that requested resupply from the depot at t* > 0. To
calculate the distribution of Wo(t) ve extend the method used by Kruse
(1980) to determine the distribution of customer wait in a statiomary,
single location (S-1,S) inventory system with arbitrary, independent
resupply times and demands forming a homogeneous Poisson Process.

Clearly, Wo(t) = O if and only if Hy(t) > O since one of the
Hy(t) serviceable units on-hand at the depot spares pool will be immediately
sent to the base that requested resupply. If Xy(t) > sy(t) then, from
(2.3), By(t) = 0 and, from (2.2), there are By(t) = X4(t) - s4(t) 20
backorders outstanding at the depot at t. Because of the FCFS policy,
these By(t) backordered base resupply requests must be satisfied before
the resupply request at t¥ can be satisfied. Therefore, if Xo(t) > sp(t),
the base that requested resupply will receive the (Xy(t) - sgo(t) + 1)th
serviceable unit that becomes available for issue at the depot after t.

There are two ways that serviceable units become available
for issue by the depot spares pool, First, a serviceable unit will
enter the depot spares pool when it leaves the depot pipeline because
the unit either just arrived from the external supplier or just completed
repair at the depot. Secondly, management may send additional serviceable
units to the depot in order to increase the depot asset level. Therefore,
Wo(t) > w >0 if and only if

Xo(t) = sgt) 2 M'(t,t+w) + alt,tew) + £00,t) + £(t,t+w)  (3.8)
where

M+(t,t+w) = number of serviceable units sent by management
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that arrived at the depot in (t,t+w].
a(t,t+w) = 1 if the unit that entered the depot pipeline
because of the demand at t* has left the
pipeline by t + w., Otherwise, a(t,t+w) = 0,
£(t;,t,) - number of units that entered the depot pipeline
in (t;,t;] and left the pipeline in (t,t+w].
Since units that left the pipeline in (t,t+w] must have originally
entered the pipeline either in (0,t] or in (t,t+w], the right hand side
of (3.8) is precisely the non-negative number of serviceable units that
becomes available for issue at the depot spares pool in (t,t+w] when we
know a unit entered the pipeline at t*. Assuming Fo(t,t) = 0, (3.8)
assures us that W(t) > 0 if and only if Xy(t) > sp(t).
Rearranging (3.8) we have that Wo(t) > w > 0 if and only if
Xo(t) = £00,t) 2 8o(t) + M*(t,t+w) + alt,t+w) + £(t,t+w). (3.9)
Xo(t) - £(0,t) is the number of units that entered the depot pipeline
in (0,t] and are still in the depot pipeline at t+w. These units are
precisely the Type 1, 2, 3 and 4 demands at t+w that occurred in (0,t].
Using (3.6), we have that X,(t) - £(0,t) has a Poisson distribution

with mean

t
é Ao(8) [1-Fy(s,t+w)] ds.

Furthermore, since f(0,t) is the number of Type 5 demands at t+w that
occurred in (0,t], X5(t) - £(0,t) is independent of £(0,t). Using
Assumptions 2 through 6 and the fact that a NHPP has independent increments,
it is easy to show that Xo(t) - £(0,t) is independent of a(t,t+w) and

f(t,t+w).

a(t,t+w) is & Bernoulli random variable with mean Fo(t,t#w)
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o4 |
E,‘.: and by Assumptions 2 through 6 is independent of f(t,t+w). f£(t,t+w) is
:_§'r precisely the number of Type 5 demands at t+w that occurred in (t,t+w].
& Therefore, from (3.6), f(t,t+w) has a Poisson distribution with mean
:?i t
22, { Ap(8) Fo(s,t+w) ds
Y;
; and f(t,t+w) is independent of Xj(t) and Xy(t+w).
é Since s(;(t) and M*(t,t+w) are management parameters, all of the
k” random variables in (3.9) have been identified and stochastically
;:; described. It is now a straightforward but tedious task to use (3.9)
E‘§: to calculate the probability distribution and expected value of Wy(t).
%

Figure 2 illustrates the behavior of the distribution of Wgy(t) for

.
-
>

various values of so(t). In constructing Figure 2 we assumed that:

hon dean i,

M*(t,t+w) = 0 for all w > 0

P

5 t = 30

R

¢ ' Ao(s) = 4 sin? "s for s >0

'

o) Fo(s,y) = 1 if y > & + 25 and 0 othervise.

- m
L,
i
-~

Origination Time of Oldest Backorder

£ X

-

ot |

The origination time of a base’s resupply request on the

i: depot is defined as the time at which the base officially requested
depot resupply by sending a failed unit to the depot. Let Yo(t) be the
“. ) origination time of the first base resupply request that will be satisfied
’43 after time t > 0. Yy(t) > t if and only if By(t) = 0. If By(t) =n >0
'.._',: and 0 < ty, ty,..., t, <t are the origination times of the n resupply
:?: requests backordered at t, then Yo(t) = min {ty, t,, ..., t }. t-¥4(t)
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is the length of time during which the bases requested but were unable
to receive resupply from the depot by t. In this sense, t-Yo(t) is a
measure of the ability of the depot to perform its supply mission.
Intuitively, we expect that as s,(t) increases (decreases), t-Y,(t)
decreases (increases) and more (less) base resupply requests can be
satisfied by the depot by t. Therefore, t-Y,(t) is a measure of inventory
effectiveness at the depot that is of interest to managers and strategic
planners especially when t is set to the length of the scenario (HZ).
In fact, it is quite plausible for management to consider alternate
resupply sources for the bases whenever HZ-E[Yy(BZ)] (or possibly BZ -
some percentile of Yy(HZ)) is alarmingly high. 1In this section we
derive the distribution of Yy(t) for anmy t > 0.

For the remainder of this dissertation, we shall for convenience
use Pr(Y = y) to represent both the probability that a continuous
random variable Y is in the interval [y,y+dy] and the probability density
function of Y. It will be clear from the context which meaning to assign.

By the Law of Total Probability we have for y <t that

(- o

Pr(¥o(t)=y) = ] L Pr(Y (t)=y, By(t)=h, Ny(t)=k)
h=1 k-so(t)+h

where No(t) is the number of base resupply requests placed on the depot
in (0,t]. Let T(n) be the time of the nt! demand on the depot, n =
1,2,.... The event (Yo(t)-y,Bo(t)-h,No(t)-k) occurs if and only if the

event (T(k-h+l)=y, By(t)=h,Ng(t)=k) occurs (see Figure 3).

k-h demands h-1 demands
I L 4
0 Yo(t) =y t

Figure 3: The event (Yo(t)-y, Bo(t)=h, No(t)-k)
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Therefore,
Pr(Y.(t)=y) = ) ) Pr(T(k-h+l) =y, By(t)=h, Ny(t)=k)
0 hel kesy(t)+h
) 1 {Pr (B, (t)=h|T(k-h+1) =y, Ny(£)=k)

h=] k'so(t)+h
. Pr(T(k—h+1)-le0(t)-k) Pr (N (£)=k) }. (3.10)
From the analysis leading to (3.1) we know that Ny(t) has a

Poisson distribution with mean my(t). From P53 we have that

pr(T(k-h+1)-y|N0(t)-k) =

) _ m,(y) | _ An(y) . .
. k! _ (mo k-h a- _£L__0h 1 ¢ 0 ‘ ) (3.11)
(k-h) ! (h-1)! mo(t) mo(t) mo( )

The event (By(t)=h|T(k-h+1)=y,Ny(t)=k) occurs if and only
if there are so(t) + h units remaining in the depot pipeline at t when
h-1 units entered the pipeline in (y,t], one unit entered at y, and k-h
units entered in (0,y]. Let L(m,t;,t;,t3) < n be the number of umits,
out of the n units that entered the pipeline in (tl,tzl, that remain in
the pipeline at t3. The number of units that enter the pipeline forms
a NHPP and the times different units spend in the pipeline are mutually
statistically independent. Hence, it follows from P3 that L(n,tl,tz,t3)
is a Binomial random variable with parameters n and b(tl,tz,t3) =
probability that a unit that entered the pipeline in (t;,t,] is still

in the pipeline at t;. Using P2 and (A.2) we have that
t
2 Xo(s)

b(t,,t, ,t.) = [1-F.(s,t.,)] ds.
1723 £1 0 3 [mo(tz)-mo(tl)]

(3.12)

Recalling the definition of a(y,t) from the previous sectionm,

we then have that

h N
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> Pr(B.(t) = h|T(k-h+l) = y, N (t) = k)
. (¢] 0
el
’ = Pr[L(k-h,0,y,t) + [l-a(y,t)] + L(h-1,y,t,t) = so(t)+h]
® = Pr(H(k-h,y,h=1,t) = 5, (t) + h). (3.13)
By
"N In (3.13) we have defined H(k-h,y,h-1,t) as the number of units that
g:': are still in the depot pipeline at t given that k-h units entered in (0,y],
%‘ one unit entered at y and h-l units entered in (y,t]. Combining the
M above into (3.10) we have that
N o o -m. (t) k- _ h-1
Pr(¥y(t)=y) = ] ) fe 0 BW) [mg(®) N1 5 )
3 h=l k=s,(t)+h (k-h) ! h-1)!
;‘.
+ Pr[H(k-h,y,h-1,t) = so(t)+h]}. (3.14)
o
:j In order to show that (3.14) defines a true probability
‘Y
e distribution we need to use Theorem 3.1 below. Let plx;ul = e™¥ u*/x! be
K the probability a Poisson random variable with mean u is equal to x.
i
29 Theorem 3.1: For h 21, k > 85(t) + h and - (h-1) <n <k - b,
5
Lo t
[ {plk=h-njmy(y)] plh-24n;my(t)-my(y) 11, (y)
. 0
I.
e Pr{H(k-h-n,y,h-14n,t) = s (t) + h]} dy
.
Jﬂ
- = Pr(By(t)~h,Nj(t)=k).
Proof: For convenience, let Q(so(t)+h) be the integral on the left
.
'::j side of the equation in Theorem 3.1. Since H(k-h-n,y,h-14n,t) < k we
¥ have that the gemerating function of Q(j) is
Ay . k j t *
b ; 0 Q(i)z =£ plk-h-njm,(t)] plh-1+n;im,(t)-m,(y) Ja,(¥)H (2) dy
.:,
’
f::l where H"(z) is the generating function of H(k-h-n,y,h-14n,t) which is the
¢ sum of three independent random variables: a Binomial with parameters
e
(>
“
) ,":
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k-h-n and b(0,y,t); a Bernoulli with mean 1-Fo(y,t); and a Binomial
with parameters h-l+n and b(y,t,t). After some rearrangement, we get

that

-m,(t)

k j t o
I oz’ = [ fe [1-(1-2) (A-F(y,£))] X, (y)dy
=0 0

b

[mg () (1- 1=2)5.0,7,£) 1™ [(m (£)-m) () (- (1-2)b (3, £,£)) 1P 7277
’ (k-h-n)! (h=1+n)!

Let I(k-h-n, h-1+n) be the integral on the right side of the equation

above. Since

1 (M I[1-b(0,y,t)(1-2)] = Ao (9) {l-(l-z)[l-FO(y.t)]}
4 {[m (£)-m; (¥)][1-b(y,t,t) (1-2)]} = - 'g—y {mg (y) [1-b(0,y, t) (1-2) ]}

we can integrate I(k-h-n,h-l+4n) by parts to get

I(k-h-n,h~-14n) = I(k=-n+l,h-24n)

04 (ny (1) [1-b (0, , ) (1-2) HF ™

(k~h+1-n)!

+{e

. Umg (©)-my (N1 [1-b(y,t,0) Q-2) NV,

(h=-1+n)!

Evaluating at y = 0 and y = t yields that
I(k~h-n,h-14n) = I(k-h-n+l,h~2+n).

Continuing, we find that I(k-h-n,h-1+n) = I(k-1,0) which is equal to

t -m (t) [my (&) (1-b(0,y, £) (1-2)) 1* 7
= p[k;mo(t)][l-b(O.t.t)(l-z)]k- (3.15)

..........................................

~
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g:

Iy Thus, the generating function of Q(j) is equal to a constant times the
"

3

generating function of a Binomial random variable with parameters k and

b(0,t,t). Equating coefficients of zJ we have that

s k so(t)+h k-so(t)-h
b Q(s,(t)+h) = p[k;m (t)] ( ) b(0,t,t) [1-b(0,t,t)]
0 0

{ . 8, (t)+h

R 0

2 = Pr(N,(t)=k) Pr(L(k,0,t,t) = s,(t)+h). (3.16)

U

.

}. But L(k,0,t,t) = so(t) + h if and only if (Xo(t)-so(t)+h|No(t)-k)
" which occurs if and only if (By(t)=h|{Ny(t)=k) [See (2.2)]. Using this

"

,; in (3.16) establishes Theorem 3.1. /l

) _

% Theorem 3.1 effectively conditions the event (Bo(t)-h,No(t)-k)

e on T(k-h+1-n). When n = k - h we are conditioning on T(1) so there must

o

fE have been k-1 demands in (T(1),t] and B(0,T(1),k-1,t) = sp(t) + h. When
\

e n = -(h-1) we are conditioning on T(k) so that H(k-1,T(k),0,t) = so(t) + h.

Therefore, Theorem 3.1 verifies that Pt(Bo(t)=h, No(t)-k) can be calculated

EL

:; by conditioning on the time of any of the k demands that occurred in (0,t].

1%

K. From (3.14), Theorem 3.1 (setting n = 0) and Fubini’s Theorem
: (since the summand in (3.14) is the product of probability terms, all
4 required interchanges are justified) we have that
2 t o ®

P reuwm = T 1 ReGy® = b 800 = 0

0 h=1 k-so(t)+h

3

d

‘.‘ = 1 - Pr(B,(t) = 0). (3.17)

SNSRIl

By definition, Pr(¥,(t) > t) = Pr(By(t) = 0) and therefore the density

PY, of Yo(t) integrates to 1.

o

2, . . . .

‘j. Example 3.2: Consider the case of a fixed known depot pipeline residence
time Ry, so that for all s > 0, Fo(s,t) =1 if s + Rg 2 t and Fy(s,t) = 0

A otherwise.

7

o
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For y <t - Ry and all n > O we have that L(n,0,y,t) = 0 and
that 1-a(y,t) = 0. Therefore, for all sp(t), h 21 and k 2 so(t) + h
we have that
Pr(H(k-h,y,h-1,t) = so(t)+h) = Pr{(L(h-1,y,t,t) = sp(t)+h) = 0
and from (3.14) we then have that Pr(Yy(t) <t - Ry) = 0.
For t - Ry <y <t ve have that 1 - a(y,t) =1 and L(h-1,y,t,t)
= h -1, Therefore, for k = h > 0

Pr(H(k-h,y,h-1,t) = so(t)+h) = Pr(L(k-h,0,y,t) = so(t))

= Pr(N,(y)-Ny(t=Ry)=8,(t) [N,y (y)=k-h)

K mpm) - mycer) 20 mery)

(s (t)) o, ) mo(y)

k—h-so(t)

from P4 or (3.12). Imnserting this in (3.14) yields, after some re-

arrangement and cancellation,

So(t)
Pr(Yo(t)-y) ={e Ao(y) “o(t)!
, - k-h-s.(t)
) [mg(e) -~ m0(y)]h 1 mg (t~Ry) 0 :
h=1 (h-1)! kes, ()+h LTS (D!
= p[so(t); my(y) - mo(t-Ro)]lo(y)- (3.18)

(3.18) is precisely the probability demsity that T(Ny(t-Rgp)+sg(t)+l)

occurred at y. (See Pl4). A 1little thought should reveal that if

By(t) > O then the origination time of the first demand satisfied after
t is precisely the time of the sy(t) + lst demand after t - Ry.

For t > 0, let Zy(t) = T(NylYy(t))-1) be the origination time
of the last base resupply request that the depot satisfies by t.

\ (z2y(t) = 0 implies that the depot has not satisfied any base resupply
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requests in (0,t]). ¢t - Zo(t) is an alternate measure of performance
“ [related to t-Y5(t)] that management can use to gsuge the ability of

the depot to perform its supply mission. Using arguments similar to

S . . .

} those used to obtain (3.14), we can obtain the density of Zo(t). t >0,

¢

i

1

¥

: Summary

i

‘,

4

3_ In this chapter we obtained the time dependent distributiomns

4 of Xg(t), Wo(t) and Yp(t). All of these distributions are useful tools

¢

:: for evaluating inventory performance at the depot when viewing the

N . o

K depot as a single location inventory system. However, for the purposes

74 of this dissertation, our interest in the depot as an inventory system
unto itself is limited. Rather, we are primarily concerned with the

3 impact of inventory decisions at the depot on inventory performance

. and customer satisfaction at the bases. In Chapter IV we shall use the

} arguments and results developed in this chapter to explicitly examine

Q]

s

5 and define the supply interactions between the depot and bases.

T oF.
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CHAPTER IV

BASE CHARACTERISTICS

From (2.2) we see that increasing sy(t) reduces the number of
base resupply requests backordered at the depot at t. As By(t) decreases,
we intuitively expect that inventory performance and customer satisfaction
at the bases increase. Therefore, stock at the depot has a definite
impact on inventory performance at the bases. In this chapter we precisely
define this impact by deriving the time dependent probability distributions

of the bases” pipelines as functions of the depot”s asset level. We

shall also study other important stochastic processes arising at the bases.

Demand at the Bases

Upon completion of the diagnostic procedures at base;, a
failed unit is either condemned as irreparable, sent to the basei
repair facility, or sent to the depot for further diagnosis and action.
The decision on each unit is made independently of the decisions on
other units.

In the first section of Chapter III we used these facts,

along with the Splitting Property, Pl0, to show that the number of

resupply requests placed on the depot by base; forms a NHPP with MVF

1l

A;(t) [given by (3.1)] and intensity a;(t), i = 1,...,N. Similarly, it

is straightforward to show that the number of units that enter the

63
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base; repair facility forms a NHPP with MVF
t t "
é Ay (8) £ dG, (s,y) Py (s,y)ds

where Pé(s,y) is the probability that a unit that failed at time s > 0
and completed diagnosis at y > s was be sent to the base; repair facility.
Furthermore, the number of base; condemnations forms a NHPP with MVF

1

t t
[y ] 4G, (5,3) [1-P, (s,7)~Pq (8,y) 1ds.
8

As a further consequence of P10, these three NHPP are mutually statistically

independent.

Base Asset Position

Because of the one-for-ome resupply policy, the basei asset
position, analogously to the depot asset position, changes over time
only through management directive. Many of the comments in Chapter III
regarding the depot asset position apply to the base; asset position as
well, In particular, for ease of exposition, we assume that management
decisions to change s;(t), the base; asset position at t > 0, are made
at the beginning of the horizon. We also assume these decisions do not
depend upon the system condition at any times in (0,t] or upon the
basei demand process in (0,t]. Therefore, the delivery of serviceable
units to the basei spares pool in order to increase basei’s net inventory
yields no information on the system condition at any time in (0,t] or
on the base; demand process. Without this assumption, our analyses would

have to contain tedious arguments conditioning on any relevant information

obtained at scheduled management intervention times.

LA
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Decisions to increase X;(t) by placing an unserviceable asset

in the base; pipeline without & corresponding customer demand for a
serviceable unit result in a non-continuous MVF for the NHPP describing
the number of units that enter the components of the base; pipeline.
. Decisions to decrease X;(t) by a "management demand" result in a non-
continuous MVF for the NHPP describing the demand at base;. For ease of
exposition, the subsequent analyses assume continuous MVF. The methods
of Cinlar (1975) for non-continuous MVF can be applied to extend the
analyses. Furthermore, for reasons similar to those given in ;he
second section of Chapter III, the analyses in this chapter do not
consider management directives to discard units already in the base;
pipeline or to cancel a depot backorder due-out ("belonging") to base;.

Base Pipeline

Xi(t) consists of units that are still in the base; pipeline
at t and either were in the base; pipeline at O or entered the base;
pipeline in (0,t]. Because of our assumptions these two components of
X;(t) are statistically independent so X;(t) can be found by the convolution
of two random variables. The first random variable can be calculated
directly from knowledge of the initial system condition and of the
behavior of the PO. For ease of exposition we shall, as in Chapter III,
assume that xj(O) =0, j = 0,1,...,N. We concentrate here on the

v stochastic description of the component of Xi(t), i=1l,...,N, arising

from failures at base; in (o,t].

Recall from Chapter II that

X;(t) = D,;(¢) + Ri(t) + E;(t) + DE;(t). (4.1)
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From the arguments in the first section of Chapter III, we know that

Di(t) has a Poisson distribution with mean
t

;:;Eg' (f,xi(a) [1-G, (s,t) 1ds.
(ril
‘;;‘Ez We also know from Chapter III that Di(t) is statistically independent
o
St of the number of units that completed diagnosis in (0,t]. Hence, D;(t)
\"3:‘3 is independent of R;(t), E;(t) and DE;(t). In the first section of this
fi‘-%: chapter we showed that the output of the diagnostic facility in (0,t]
o is split into three independent NHPP. Ri(t) is a function of the
:s:‘:, number of units entering the repair facility. Bi(t) is a function of
E the number of condemnations while DE;(t) is a function of the number of
. | units sent to the depot. Therefore, R;(t), E;(t) and DE;(t) are mutually
E. independent and hence, all the random variables on the right in (4.1)
J':;'J are mutually statistically independent.
“"" Let r;(s,t;,t;) be the probability that a unit which failed
SE" 3 at 8 > 0 and was sent to the base; repair facility at t; > s has left
E:I:: the base; repair facility by t, 2 t;. By Assumptions 2 through 6 the
';,."'! base; repair facility acts as an M(t)/G(t)/ > queue with service time
::"' distribution ri(s,tl ,tz). Therefore, Ri(t), the number of busy "servers”,
l:?.;i' has a Poisson distribution with mean
25 ftki(s) fthi(s.y) P;(s,y)[l-ri(s,y,t)]ds.

8

<' 0

Let e;(s,t),t;) be the probability that a serviceable umit

o ;A. has arrived from the external supplier by t, in response to a condemnation .
':Ego at t; <t, of a unit that failed at 0 <s <t;. Since the external supplier

: has infinite stock and order and ship times are independent, the external

',—. supplier functions as an M(t)/G(t)/ ~queue with service time distribution

o

"
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s

'

:‘..:: ei(s,tl,tz). Therefore, E;(t) has a Poisson distribution with mesn

3%

e t t

*:i:: ,r )‘i(s)f dGi(s.y)[l-Pi(s,y)-P;(s,y)][l-ei(s.y,t)]dso

. 0 s

:9.' .

t' Until now, the analysis of the components of Xi(t) has been
)

:|::' ; similar to the analysis for the corresponding components of Xo(t). DE;(t)
e

is the unique component of the base; pipeline through which the supply

% interactions of the depot and base; manifest themselves.
' Unless either the depot asset level is infinite or Fo(t,t) =]

for all t > 0, ve see from (3.8) that there is a positive probability that
‘_ there will be a delay before the depot sends a serviceable unit in
:;E response to a basei resupply request. Since the depot satisfies base
‘..' resupply requests in a FCFS manner, Wo(t) and Wo(t+y), y 2 0, are
:i, generally not statistically independent. In fact, Wo(t+y) 2 Wo(t) -y
3‘_"‘: so that for smaller y there will tend to be more correlation between
‘_ Wo(t) and Wy(t+y) than for larger values of y. Therefore, if base;
.S-g submits two resupply requests to the depot, there may be some correlation
: in the times spent in the base; pipeline by the failed units that
accompanied these resupply requests. An analysis based upon P10 or,
::;j equivalently, upon treating the depot resupply process as an M(t)/G(t)/=
i"-: queue is therefore not appropriate.

DE;(t) has two components: ER;(t), the number of serviceable

‘\‘ units en route at t from the depot to base;; and Q;(t), the number of |
E depot backorders outstanding at t that belong to base;. Define :
= T(n) = origination time of the ot demand on the |
:E depot, n = 1,2,,...;
.:g I,(n) = 1 if the nt? demand on the depot was from
; basei and 0 otherwise, n = 1,2,...;
>
<

r2d

......
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1s;(n,t) = 1 if T(n) < t, I;(n) = 1 and the depot has
sent a serviceable unit by t which is still
en route to base; at t. Isi(n,t) = 0

othervise.

Then,
No(t)'Bo(t)

ER,(t) = ] IS, (n,t) (4.2)
n=1

No(t)

Q(e) = ] I, (4.3)
n-No(t)-Bo(t)+l

and from P7,

E[Ii(n) |T(n)] = ai[T(n)]/ko[T(n)] = e (Tm]. (4.4)
From (4.3) we see that Q;(t) is a function of By(t) which,
from (2.2), is a function of so(t). Theorem 4.2 guarantees that increasing

8g(t) will stochastically reduce Q;(t).
Definition 4.1: (Lehmann [1959]). A randomvariable Q (or, equivalently,
the distribution of Q) is stochastically decreasing
(increasing) with respect to a parameter p if for

P; <py and all q > O,

Pr(Qlp;] 2 q) 2 (9 pr(Qlp,] 2 q).
Theorem 4.2: For all t > O, Qi(t) is stochastically decreasing with
respect to sy(t).

Proof: 0 < Q;[t;sy(t)] < Q;[t;8p(t)-1] since the extra depot asset may
reduce the number of depot backorders belonging to base;. The theorem
now follows straightforwardly. /1]
From (4.2) ve see that ER;(t) is also a function of sy(t).

However, ERi(t) also depends upon the (time-dependent) distribution of
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the depot to base;

i order and ship times. One can conmstruct cases where

at t;, ER;(t)) is stochastically increasing with respect to sg(t;); at
ty # t;, ER;(t,) is stochastically decreasing with respect to 8o(ty);
and at ty, t; ¥ t3 # ty, ER;(t3) is neither stochastically increasing or
decreasing with respect to so(t3). Corollary 4.3 is the only general
statement we can make.
Corollery 4.3: Let (Ng(t),tzp} be the NHPP describing base; resupply
requests placed on the depot. Then, for all t > O,
[Ng(t) - Q;(t)], the number of base; resupply requests
the depot has satisfied by time t, is stochastically
increasing with respect to sp(t).
Proof: Since Ng(t) does not depend on so(t). the corollary follows
directly from Theorem 4.2. /1
In geperal, I,;(n) may provide information onm T(n) and since
the T(n), n=1,2,..., are not independent, we see from (4.4) that the
I;(n), n =1,2,..., are usually not independent. Similarly, for t > 0,
the ISi(n.t), n=1,2,..., are generally not independent., Furthermore,
Bo(t) is generally not independent of the I;(n) or 1s;(n,t). As we
shall see, the above facts lead to complex expressions for the distributions
of Qi(t) and ERi(t). Before examining the general case we shall therefore
study two special cases which arise frequently in practice and for

which tractable expressions can be obtained.

Proportion Bases” Owmershi Depot Backorders

Base; is said to be a proportionate base with parameter c; if

there exists a comstant 0 < c; <1 such that for all t 20, ¢; = ci(t).
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The "proportionate base case” arises frequently when scenarios call for
the deployment of "identical" bases or for the demand intensity at each
base to vary over time by the same multiplicative factor (U.S. Army
[1983])). From (4.4), for n = 1,2,... we now have that

Pr(I;(n) = 1) = ¢; (4.5)
regardless of T(n). Since in the proportionate case base I;(n) does mot
provide information on T(n), By(t) is independent of the I,(n), n=1,2,....
Furthermore,theIi(n),n-l,Z,..., are themselves independent, identically
distributed Bernmoulli random variables with mean c;. From (4.3) we

have that Q;(t) is the sum of By(t) of these i.i.d. random variables.

Using (2.2), (3.6) and (4.5) we therefore have that

Pr(qQ, (t)=q) = nZqPr(Qi(t)-qlBo(t)-n)Pr(Bo(t)-n)

= Pr(Xo(t) < so(t))éo(q) (4.6)

T Mce )9 (1-c 1270 :
+ nzq () (e) (A=e )™ Pplsy()4ns E[Xy(0)]]

where éo(q) is 1 or 0 according to whether q = 0 or q > 0. Clearly,

qZOPr(Qi(t)-q) = Pr(X,(t)<sy(t)) + nZop[so(t)m E[Xy(©)]] = 1;

E[Qi(t)] - ciE[Bo(t)];

VAR[Q, (t)] = (1-c)E[Q (t)] + c VAR[B ()];
(4.7)
VMRQ, (t)] = (1-c,) + c ,VMR[B,(t)] -

Let B(n,c;,q) be the probability that a Binomial (n,c;)

random variable is greater than or equal to q. For q > O,
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Pr(Q (t) > alsy(t)=s +1) - Pr(Q,(t)>q|s,(t)=sy)

- nZqB(n.ci.q){p[soﬂm; E[XO(t)]] - p[so+n; E[Xo(t)]]}

a
0
- E-qB(n.ci,q) {p[so+1+n; E[XO(t)]] - p[so*n; E[Xo(t)]]}

+ ] Bl,c,,){pls +l4n; E[X ()] - plsytn; E[X ()11}
i 0 0 0 0
n=a_+1
0
where aj = maxlq, INT(E[Xy(t)]) - sg - 1] and INT(X) = largest integer
less than or equal to X. Since B(m,c;,q) is increasing in n and the
probability mass function of a Poisson random variable with mean u is
unimodal with a peak at INT(u) (and at u~l if u is an integer), the
above is
< Blag,c;,q) {Pr(Xp(t) 2 sp+leq) - Pr(Xy(t) 2 sg+q)} < 0.

Hence, in the proportionate base case, the distribution of Q;(t) given

by (4.6) satisfies Theorem 4.2,

Ownership of Depot Backorders for Fixed Depot Pipelime Times

We now replace the sssumption that base; is a proportionate
base with the assumption of a fixed, known depot pipeline residence
time, Ry. Therefore, for all s > 0, Fo(s,t) = 1 if s + Ry > t and
Fo(s,t) = 0 otherwise. This is a common assumption found in many of
the inventory models used by the Army (U.S. Army [1983]).

Consider first the case where sg(t) = 0. An unserviceable

unit that enters the depot pipeline at y > 0 will leave the pipeline at

precisely y + Ry. Since there is no depot stock and units leave the

.....
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pipeline in the same order that they entered, the nt? demand on the
depot will be satisfied at precisely T(n) + Ry, n=1,2,.... Furthermore,

the nt! demand will be backordered at the depot for the entire interval

[ |} SRR

x

1 »
PRSI NS

[T(n),T(n)+Ro), n=1,2,.... Therefore, a base; resupply request will be

1

backordered at the depot at t if and only if the failed unit was sent

14

Ny

to the depot in (t-Ry,t]. Hence,
Pr(Q;(t) = q) = plq; A;(t) - Ai(t-Ro)] (4.8)
that is, Q;(t) has a Poisson distribution with mean Ai(t) - Ai(t-Ro).

In this case, VMR(Q;(t)) = 1.

A | RS AANEW R

Now assume sy(t) > 0. Xqy(t) consists of precisely the units

Tala

sent to the depot in (t-Rg,t]. Hence, T*(so(t)) = T(Ng(t-Rg) + so(t)) > ¢t

o NG,

if and omly if Xo(t) < so(t) which, from (2.2), implies that Bo(t) =0
and hence that Q;(t) = 0 . All By(t) > 0 backorders outstarding at the
depot at t must have resulted from resupply requests in (T*(so(t)),t].

Therefore, for q > 0,

Pr(Q, (£)=q) = Pr(T (s, (t))>t) §,(q)

t

] preq, (t)=q|T (s, (t))=y) Pr(T (s, (t))=y)d (4.9)
t-R, © gl T 8RR ot/ )EyIey: ’

Clearly, Pr[T*(so(t)) > t] = PriXxp(t) < sp(t)]) and from P14 we have for

S RARRFOL | ROt

Yy Zt 'RO that

o
3

1

Pr(T"(so(t)) = y) = plag(t) - 1; myly) - mplt-Rgd)1Ap(y). (4.10)
Since T*(so(t)) is a Markov time with respect to the depot demand

process we have, for t - Ry <y < t,

Pr(Q;(t) = q 2 0[T"(so(t))=y)

Pr(q base; resupply requests in (y,t])

plq; A (t) - A;(y)]. (4.11)

|
™
-
0
2
Ny
3
-]
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o Using (4.10) and (4.11) in (4.9) we obtain Pr(Q;(t) = q > 0).

Y Note that

Lrr @ - Pr(T” (8, (t))>t)
;

t
+ [  1plsy(t)-1; my(y)-my(t=Rp) 1Ay (y)
t-Ro

i - I pla; A(r) - A (9]}dy
:G:; q-O

where the interchange of integral and sum is justified since the integrand

334
1; in (4.9) is positive. Using (4.10) the above becomes

t
= Pr('r*(so(t))>t) + f Pr(T*(so(t)) = y)dy
t-R
y 0

: = Pr(T" (s, (1)) > t-R)) = 1.

) From (4.9), (4.10) and (4,11)

. t

;{ E[Q (t)) = {_R {p[sg(t)-1; my(y) - my(t=Rg) IAq(y)
3, » 0

; h @

. qzl qrlq; A (t) - Ay (y) 1}y (4.12)
5" t
i = [ [A(e) = A )] Plsg(t)-1; my(y)-my(£-Rp) 1o () dy
) t—RO
L)
t
! EIQA(6)] = [ (CIA,(©)-A, (1% + (A (£)-A, (DDA,
t—

)

L plsg(e)-1; my(y)-my(t=Ry)J}dy. (4.13)

" By the Cauchy-Schwarz inmequality, VAR[Q;(t)] > E[Q;(t)] and hence,
WMR[Q;(t)] > 1.

e Let

80(80) = min[t, inf (y >t - RO; mo(y) - mo(t"Ro) 180)].
‘::, For q > 0,

ke
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{
g Pr(Q, (£)2q s, (t)ms +1) - Pr(Q, (t)>q]s,(t)=sp)
- 89 (8p)
3:;5; - {"Ro {(p8;mg () my (t=R)] = pls =15 my(y)-my(t-Ry)1) :
1 w |
) |
i) © 1 Bl ALE) = A DIA () Yey , 2
) j-q :
. t
o + ] {plsgimy (y)-my (e=R)] = plsy=15 my(y)-my(t-R)1)
-'i:.g ao(eo)
,.:"“ ©
e y jf PlI; A ()=, (7) 1A (y) My,
=q
‘1;9; p[SO; mo(Y) - mo(t-ko)] - p[Bo"l; mo(y) - mo(t’Ro)] is < 0 or > 0
%‘:;g: according to whether y £ ag(sp) or y > ag(sy). Since a Poisson random
T
::::: variable is stochastically increasing with respect to its mean, the
> above is
L'}“
L .
2 < L Pl3s A(0)-a (ag(s))]
R J=q
) . jt . .
Rl Plsy; my(y)-my(t-Ry)] - plsy-1; oy (¥)-mg (£=Ry) 12 (y) dy
o t-R,

Lo

o i
el

= T PlIs AL(0)-A,(ag(s)) HPr(T" (sg+1)st) = Pr(T (s )<t) < 0

Mg 3=

My

:'::' where the last inequality follows from the definition of T*(so). In a
E::o: similar manner it is straightforward to use (4.8) and (4.9) to show
by that Pr(Q;(t) 2 q > 0) decreases when sy(t) increases from 0 to 1.
:. Therefore, the given distribution of Qi(t) satisfies Theorem 4.2.

E’.:: Example 4.4: Let ai(t) = a; for all t 2 0 so that the number of base;
i resupply requests placed on the depot forms a homogeneous Poisson Process. -
,’E Furthermore, let )(t) = Xy for all t > 0. Then, c;(t) = c; for all
:a:f t > 0 and X3(t) has a Poisson distribution with mean AoRg+ For sg(t) 21,
i) ve have from (4.9) that

)
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o
& - Pr(Q,(t)=0) = Pr(X,(t)<sy(t))
R .
f‘ : + [ plos(e-yda, ] play(t)-1; (y-(e-Rp))Ao1A dy
. t-R
L 0 (4.14)
:::: .
vy -
i = PriXy(0)<sy(e)) + I plighRy1(1-e ) %0
Wity k=g (t)
:,:i after some rearrangement and after using Property 16 (for the integral
)
s‘: of Poisson probabilities) in Appendix 3 of Hadley and Whitin (1963).
W
4 Note the correspondence to (4.6) since the stationary case is a special
::‘e case of the proportionate base case. From (4.9),
‘Bt
1
3 Pr(Q, (t)=q 0)
e
g .
. - {_R pla; (t-y)a,] plsy(t)-1; (y-(t-Ry)IA 1A dy. (4.15)
; . 0
o Letting 2 = t - y, rearranging and using the power series expansion for
A
is? the exponential terms, (4.15) becomes
. t R g + -1
o (1) %0 )(c1 ey O [(gma)2)5"9 (R-2)5%0 ()
& = 1 T — dz.
:::: q! 1 ¢y 0 k=0 k! (so(t) 1)!
a':'
o For 0 < z < Ry the summand above is non-negative and by Fubini“s Theorem
Wy we can interchange the order of integration and summation. After
0
::t integrating by parts we have . hat
0:.' ©
s k q k-q
Pr(Q(t)=q) = ] plsy(t)+k;AgR01() (e ) (e ) 0 (4.16)
k=q s
i
"
ss Again, note the correspondence with (4.6) for the proportionate base case.
)
:’:‘?: (4.14) and (4.16) agree with the results of Simon (1971) for
*:ig ) the stationary case. These formulae involve infinite sums so in actual
L)
N computations there must be some truncation. Using (4.15) we can,
)
:::" however, develop an equivalent of (4.16) that contains onmly finite
e:,; sums., Note that after some rearrangement, (4.14) can be expressed
L0
i3
”
=

DA

o "
NS
R

I

1Y f b : ' BTN
A (A 4, N ..9' . AL L O



R 73

-
-

76
as 8 finite sum as
“33R0 1 %p(®)
Pr(xo(t)<so(t)) + e (I:E;) [1-P[so(t)-l;(ko-ai)R0]] (4.17)

where Plx;u] is the cumulative distribution function of a Poisson
random variable with mean u. Letting z = y - (t-R;) in (4.15) and
rearranging yields

Pr(Qu(t)=q) = e 7 —2% ¢

- q -
a,R (ai) 1 )so(t) l(A
l-c1 0)

%

. é (Ro'z)q P[So(t)-l; (Ao-ai)z]dz.

Using Property 20 (expressing the integral above as a finite sum) in

Appendix 3 of Hadley and Whitin (1963) the above becomes
- q
Cfo 1 8p(t) (ap)

- (l-ci q!
-k
ROV (s, (t)-1+k) !
. § -D* (@ =2 0 = [1-Pkts, ()-1; (A2, )Ry 11,
k=0 (5o(0)-1)! (Ag-a,)

(4.18)
(4.18) looks more formidable than (4.16) yet (4.18) can be

computed more quickly than (4.16) [Rotkin (1982)]. However, onme must
exercise caution in using (4.18) because of problems involving numerical
stability and accuracy that arise from operating on numbers that differ
considerably in magnitude. Kotkin (1982) examined the computational
issues involved in using either (4.17) and (4.18) or (4.14) and (4.16)
to determine the limiting probability distribution of Qi(t) for stationary
systems. He also used the Vandermonde Convolution (Riordam [1971]) to
directly show the equivalence of the two sets of formulae.

Example 4.5: Let base; be a proportionate base with parameter €

Then, for all z 2 0, A,(z) = c;my(z). After some resrrangement in
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"
;s (4.9) we have that
Z“l
h:; Pr(Qi(t)-Q) - Pt(xO(t)<80(t)) 6o(q) + Kl(so(t).q)l{z(so(t)-l,q) (4.20)
" where for j=0,1,2,... and ¢q=0,1,2...,
4
N
)
B K, (1,) = expl-c, (m (t)-my(t-R))] eI/ (1-¢,) 3™
u
K,(1,9) 1 plas (e, ) (my (1) -my (=R T (e DA ()
’: e-x, 1) (B ()= (t=Ry 1%
b . - - q
B [Q-cy) (my(e)-my(y))17/q! dy.
A
- Note from Pl4 that for all j, Kz(j,O) is simply the probability that in
"
k a NHPP with MVF (l-ci)mo(z), z 2 0, the (j+1)st event after t-R; occurred
Yy
% no later than t. Therefore, for j = 0,1,2,..
'E
g Kp(j,0) = 1 - PL3;(1-c;)(mp(t)-my(t-Ry))]. (4.21)
: It is now straightforward to show that for q = 0, (4.20) reduces to (4.6).
" By induction on q we will show that for all j and q
5 -1,
3 K, = L plni(l-c)) (my(e) - my(e-R)I (7D (4.22)
b n=j+1+q
0
Z? We have already seen that (4.22) holds for all j when q = 0. Assume
& (4.22) is true for all j when q = m - 1, From Pl4 we note that
!.q
e P33 (1-c)(my(y)-my(t-Ry))] (1-c;) x(y) (4.23)
[}
s is the probability density that in a NHPP with MVF (l-c;)mg(z), z 20,
= the (j+1)st event after t-R; occurred at y. The antiderivative of
R (4.23) is thus simply the probability that the (j+l)st event after t-Ry
\
U
:i occurred no later than y. Therefore, integrating Kz(j.m) by parts yields
o R,(J,m) = Z K, (w,m-1)
s w-j+1
>
S since the interchange of integral and sum is clearly justified. Using
o the induction hypothesis and (4.22) yields
)
3
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iS* Ky Gom) = ] I pla;(-c,) (g (t)-m (=R NI

:::: 2 wei+l newn 1’0 0 m-1

a;.‘, and the result now follows by interchanging the order of summation and

;.: : using a basic combinatorial identity.

%t’ Using (4.22) in (4.20) establishes that for q > 0, (4.20)

A'::: reduces to (4.6) in the proportionate base case.

b

::'&: Ownership of Depot Backorders in the General Case

i ?
oy In this section we remove the assumptions of the previous two

‘::?:: sections and calculate the distribution of Qi(t), t > 0, for the general

, case. The analysis herein is complex and tedious so to help understand j
:3 what we must do, it may be beneficial to first understand what we
>: cannot do in order to find the distribution of Qi(t). t > 0. |
;: One approach we might try would be, as in the proportionmate

zss base case, to apportion to the bases the Bo(t) backorders outstanding

EE:;! at the depot at t based on the ratios A;(t)/my(t), i=1,2,...,N. However,

o consider the two base case at t = 2 where:

% mg(1) = 1; my(2) = 2; Fols,2) = 0, s > 0;

i:.‘ Aj(1) = 15 Ax(1) = 0; A1(2) = 15 A,(2) =1,

é;ﬁl If 83(2) = 10 and By(2) = 1, there is a better than even chance that

?&% the backorder belongs to base, even though A;(2)/my(2) = .5, i = 1,2.

%:;;s A second approach might be to claim, a8 we did in the previous

section, that Q;(t) = ’(e) - ¥(zg()) where Zy(t) = T(N(Yo(t)) - 1)

", is the origination time of the last base resupply request satisfied at

:?:, the depot by t. In the case of a fixed depot pipeline residence time,

w5 Ry, Zo(t) = min[T(No(t)),T*(so(t))] is a Markov time with respect to

"

"
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the depot demand process. In general, however, this is not true as
Zo(t) depends upon demands at the depot in (2p(t),t] (See Chapter III.
The distribution of Zo(t) can be obtained by arguments similar to those
used to obtain the distribution of Yo(t). Using those argumentes one
clearly sees that Yo(t) and Zo(t) are not, in general, Markov times).
Specifically, Zy(t) generally provides information on whether the units
sent to the depot im (Zy(t),t] are still in the pipeline at t and
thereby also provides information on the time and the number of demands
in (z4(t),t].

Certainly, the Bo(t) depot backorders outstanding at t were
from demands in (Zy(t),t]. If we knew Zo(t) and if for each of the
By(t) demands in (Zy(t),t] we knew whether the failed unit that accompanied
the demand was or was not in the depot pipeline at t, we could use P8
to find the probability that the demand was from base;. This is the
approach we will take in this section. Before proceeding with the
details we need some additional definitions and results.

Fix some time t > 0 and let NPi(yl,yz) be the number of units
sent to the depot by base; in (y;,y,] that are still in the depot
pipeline at t. From arguments gimilar to the ones used in Chapter III

we can show that {NP.(0,y), y > 0} is a NHPP with MVF

y
wp, (0,y) = é a () [1-F (s,t) ]ds

and that {NPy(0,y) = ] NP.(0,y), y 2 0} is a NHPP with MVF

y
mp, (0,y) = é Ag(8) [1-Fy(s,t) 1ds.

1

19

o . 0

30 Note that X,(t) = NP,(0,t). Similarly, (NEi(O,y)-Ni(y)-NPi(O,y). y 2 0},

N

- the stochastic process counting the number of units sent to the depot

y

oy

;z
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by base; that have left the depot pipeline by t, is a NHPP with MVF

y
mei(O,y) = é ai(s)Fo(s,t)ds.

Finally, {NE;(0,y) = [ NE;(0,y), y 2 0} is a NHPP with MVF

y
meo(O,y) = é Ao(s)Fo(s,t)ds.

By the Law of Total Probability, when sgy(t) > 0,
Pr(Q;(t)=q20) = PriXy(t)<sy(t)] 84(q)
h t
+ ] ) ) [
h=max(1,q) k=so(t)+h hp-max[O,h-(k—[so(t)+h])] 0
* Pr(Q;(t)=q,T(k~h)=y,By(t)=h,Ng(t)=k,NP(y,t)=h ) }dy.  (4.24)

When sg(t) = 0 we must also account for the atom arising from the fact
that all demands at the depot in (0,t] may be backordered at t. Therefore,

when sy(t) = 0,

Pt(Qi(t)'qu) = Pr[Xo(t)=0] 50(q)

© h
+ Pr(Q (t)=q,T(0)=O,B (t)=h,N (t)=h,NP (0,t)=h
h-mag(l,q) hE-O 1 0 0 0 »
L -] - - t
+ 1 ) ) [

h=nax(1,q) keh+l b =max{0,h-(k-h)] O
" Pr(Q;(t)=q,T(k-h)=y,By(t)=h,Ng(t)=k,NP4(y,t)=h ) }dy. (4.25)
The event (EV;)
{T(k-b) =y, Bo(t) = h, No(t) = k, NPo(y,t) = )
occurs if and only if the event (EV,)
{T(k=h) = y, NPo(0,3) = s(t) + b = hy, NRy(y,t) =,
NEG(0,3) = k = (sg(t)+h) - (h-h), NEq(y,t) = b - h.}

occurs. Given EV,, the demands backordered at t are precisely the h

demands that were placed on the depot in (y,t]. Therefore, Q;(t) = q
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.

{; if and only if q of these h demands were from base;. Hence,

hf Pr(Q;(t)=q EV,) = Pr(NP;(y,t) + NE;(y,t)=qlEV))

o = Pr(NP;(y,t) + NE;(y,t)=q|NPy(y,t) = by NEo(y,t)-h-hp) (4.26)
% wvhere the last equality follows from the fact that NHPP have independent
7 increments,

For any y > 0, P10 guarantees that NPi(y,t) is independent of
3

:Eﬁ NE;(y,t) and NEy(y,t). Furthermore, from P8, [NPi(y,t)|NPo(y,t)] has a
g*‘ Binomial distribution with parameters NPy(y,t) and

o ep;i(t) = mp;(y,t)/mpy(y,t).

::3 NE;(y,t) is independent of NPy(y,t) and, from P8, [NEi(y,t)lNEo(y,t)]
‘::.“ has a Binomial distribution with parameters NEy(y,t) and

- cei(t) = mei(y,t)/meo(y.t).

::\: (4.26) can now be obtained from the convolution of two independent
%-‘ Binomial random variables.

A All that remains to be done in order to evaluate (4.24) and
E (4.25) ie to find Pr[EV;](=Pr[EV,]). Recalling the notation introduced

ol
A
"" -

3

in the last two sections of Chapter III we have that:
(1) For k > h (i.e. sy(t)>0):

Pr(By(t) = hIT(k-h)-y,No(t)‘k,NPo(y,t)=hp)

G = Pr{out of the k-h-l demands in (0,y) and the

‘ demand at vy, so(t:)'O-h--hp are still in the depot 1
:'_\: pipeline at t}

= Pr(l-a(y,t)+L(k-h-1,0,y,t)-so(t)+h-hp). (4.27a)

E . Note that for 0 <_hp <h- [k-(so(t)+h)], (4.27a) is zero.

o

For k = h (i.e, 8p(t)=0): T(0) = O by definition. Also,
Pr(By(t)=h [T€0)=0,Ny(t)=h,No(0,t)=h )

equals 1 if h = hp and 0 otherwise. (4.27b)
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W (2) For y >0, Pr(NPy(y,t)=h) | T(k-h)=y,Nq(t)=k)

R

B = Pr(NPo(y,t)=h, [Ng(t)-Ng(y)=h)

- Pr(L(h,y,t,t)-hp) (4.28)
X

f:: mp,(y,t) h  me,(y,t) h-h

" ( )G—Jl—-—-——-o P (———————-——0 P

} b)) m O m B  my (6w ()

i)

, (3) Por k > h, using P8,

LY

& Pr(T(k-h)=y,Ng(t)=k)

B

R = 2g(9)plk-b-1;mg(y)] plhsmg(t)mg(y)].  (4.298)
) For k = h, Pr(T(0)=0,Ny(t)=h) = plh;my(t)]. (4.29b)
O‘. .

3 For k > b, Pr(EV)) is given by the product of (4.27a), (4.28) and
’{ (4.29a). For k = h, Pr(EV]) is given by the product of (4.27b), (4.28)
‘ and (4.29). -

("

|‘l

Ay Therefore, when so(t) >0,

k)

o Pr(Q;(t)=q) = PriXy(t)<sy(t)] 84(q)

‘ o o h t

; + ] ] ) [
I h=max(1,q) k=s,(t)+h hp-max[O,h-(k-[so(t)+h])]

K]

: * PrlNP;(y,t)+NE;(y,t) = q|NPo(y,t)=hy,,NEq(y,t)=h-h ]

::: . Pr[l-a(y.t)+L(k-h-l,O,y,t)-so(t)+h—hpl

N . Pr[L(h,y,t,t)-bp]

2 * 2p(y) plk-b-1;my(y)] plh;mg(t)-my(y)) }dy. (4.30)
" When so(t) = 0, we note that

§ ) {Pr[NP, (0,t)=q| NP, (0,t)=h]

) h=max(1,q)

—"_- * Pr[L(h,0,t,t)=h] P[h;mo(t)]}

o

W

;:, « T (t) [mp, (0,1)]9 [eMPo(0,t)-mp, (0,t) _ 8,()]

R/ al

' = plO;me,(0,t)] plasmp, (0,t)] - 60(q)e'm0(t). (4.31)
l\

N

)

3,;:
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since my(t) = mey(0,t) + mpy(0,t). Therefore, when sop(t) = 0,

Pr(Q;(t)=q) = Pr(Xy(t)=0] &,(q)

+ pl0; mey(0,t)] plq; mp; (0,t)] - 50(q)e-m°(t)
[ © h t
+ 1 ) ) [ a

hemax(l,q) k=h+l hp-max[O,h-(k-h)] 0

. Pr[NPi(y,t)+NEi(y,t) - qINPo(y,t)-hp,NEo(y,t)-h-hpl

. Pr[l-a(y,t)+L(k-h-l,O,y,t)-h-hp]

. Pr[L(h,y,t,t)-hp]

* Ap(y) plk=h-1;mg(y)] plhimg(t)my(y) ) }dy. (4.32)

First we verify that (4.30) defines a proper probability mass

function. Since the integrand in (4.30) is the product of probabilities,
all required interchanges are justified by Fubini”s Theorem, When summing
(4.30) from q = 0 to q = *we note that after interchanging the order of

some summations and integration we have inside the integral

z Pr[NP (Y't)+NE (y,t)‘Q|“P (y,t) h 9NE (Y’t)'h'h 1=1,
q=0

h
{Pr[L(hnYatst)'h ]
hp-max[O,h-(k-[so(t)+h])] P

. Pr[l-a(y,t)+L(k-h-1,0,y.t)-so(t)+h-hp]}
- Pr[H(k-h—l,y,h,t)-so(t)+h].
Therefore, when s,(t) > 0,

qu Pr(Q, (t)=q) = PrX,(t)<s,(t)]

|

L A8

t
+ ] ) / {lo(y) P[k-h-l;mo(Y)]
h=1 k-so(t)+h 0

Plhimg(t)-my(y)] PrlH(k-h-1,y,h,t)=s,(t)+h]}dy

' (-]

= PriX,(t)<sy(t)] + Z ) Pr (B, (t)=h,N,(t)=k)=1
h=l ke=s)(t)+h

»
-
-
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wvhere the next to the last equality follows from Theorem 3.1. Since

(NPi(O,t)!NPO(O,t)-h) is a Binomial [h,cpi(O,t)] random variable and
Pr[L(h,0,t,t)=h] plh;my(t)] = Pr(By(t)=h,Ny(t)=h]

‘we can, in a manner similar to the above, show that (4.32) also defines

a proper probability mass function.

Let

o © h t

SM[z;4] = ] ¥ Y [ zPr(EV))dy
hel ke=j+h h =max[0,h-(k-[s,(t)+h])] O

my(h,b;,) = E[NP;(y,t) + NE;(y,t)|NPy(y,t) = b, NEG(y,t) = h - h]
- hp[cpi(y,t)] + (h-hp) ce;(y,t)
my(h,by) = E[{NP;(y,t) + NE;(y,t)}?|NPq(y,t) = b, NEG(y,t) = h - by]
= by lcpi(y, )] [1-cp;(y,t)] + [my(h,h)]?
+ (b-hy)ce;(y,t)[1-ce;(y,t)]
=y (h,b,) + [my (b, b)) - b [ep; (y,0)12 = (b-h ) [ce; (y, 0)1 2.
Then from (4.30) and (4.32) we have
E[Q;(t);8p(t)>0] = SMlm;(h,h);e0(t)];
E[Q3(t);85(t)>0] = SMlmy(h,b);sq(t)];
E[Q;(t);s4(t)=0] = p[O;mey(0,t)] mp;(0,t) + SM[ml(h,hp);ll;
E[Q3(t);80(t)=0] = p[O;mey(0,¢)) {lmp;(0,t)12 + mp,(0,t))
+ SMlmy(h,hy);1]. (4.33)
WMR(Q;(t);8p(t)>0) > 1 if and only if

sMl {my (b, b)) 580(e)) > {sMlm (b by );8p(e)])2

+ Ml [cp; (35,6017 + (bob))lce;(y,0)1%580(2)] (4.34)
Wik and VMR(Q;(t);84(t)=0) > 1 if and only if
Y,
’::é; SM[(ml(h.hp)}z;ll + p[O;meo(O,t:)]‘([mpi(o,l:)l2 + mp;(0,t)}
’
2 {sMlmy(b,n);10}% + sMln lep;(y,t)]% + (h-b)lce;(y,0)1%51) (4.35)
W + (p[O;me(,(o,t)]mpi(o.t)}2 + SH[2p[0;me0(O,t)]mpi(o,t)ml(h,hp);ll.
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We have found (4,30) and (4.32) to be analytically intractable.

In fact, we have been unable to analytically verify either that (4.30)

N is stochastically decreasing with respect to sgp(t) or that (4.34)
ﬁ&: and (4.35) hold. However, empirical evidence from calculations on the i
Q& weapon systems described in Appendix B indicates not only that (4.30)
ﬁ?' and (4.32) are stochastically decreasing with respect to so(t) but also
4 !

?Hﬁ, that VMR[Qi(t)] > 1. We shall return to this point in Chapter VI where
i

@t ve investigate approximations that reduce the computational burden involved
" in calculating Q;(t) and X;(t).

354
u§?~ Example 4.6: Let base; be a proportionate base with parameter c;. Then,
__“,;
{i* [NPi(y,t)|NP0(y,t)] has a Binomial [NPo(y,t),ci] distribution and is
S independent of [NEi(y,t)lNEo(y,t)] which has a Binomial [NEy(y,t),c;]

ot
‘jt: distribution. Therefore,

Ca%t]
b

22 [NP;(y,t) + NE;(y,t)|NPo(y,t) = hy, NEg(y,t) = h - ]

- has & Binomial [h,ci] distribution regardless of y. Let bi(q,h,ci) be
o the probability that a Binomial lh,ci] random variable equals q.
3?; Removing this probability from inside the integral in (4.30) and recalling
! the definition of H(k-h-1,y,h,t) we have that

:,:_ Pr(Q(t)=q) = PrlXy(t) < sg(t)) &(q)

+ ¥ ) bi(q,h,c,)

- h=max(1,q) k=so(t)+h

o t

" S

s [ () plk-h-13my(y) 1 plhsmy(e)-my(y)]

el 0

L.

DA * Pr[H(k-h-1,y,h,t) = s (t)+h]}dy
l.;-;' ’ <
KV = Pr(X,(t) < s,(t)] §,(q) + ) bi(q,h,c,) Pr(B,(t)=h)
N) 0 -0 0 h i 0
M) =max(1l,q)
&2:4
el from Theorem 3.1, The above is easily seen to be equivalent to (4.6).
iﬁ? Similarly, (4.32) reduces to (4.6) when base; is a proportionate base.
'y
s
N
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=
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Example 4.7: Let Fp(s,t) =1 if t - s >Ry 20 and Fp(s,t) = 0 otherwise.
For all y £t - Ry and k > h, 1 ~ a(y,t) + L(k-h~1,0,y,t) = 0 so there
is no contribution to Pr(Q;(t)=q) in (4.30). For all t >y >t - Rg,
L(h,y,t,t) = h so there is no contribution to Pr(Q;(t)=q) in (4.30)
except when hp = h, Furthermore,
Pr(NP;(y,t)+NE;(y,t)=q|NPy(y,t)=h,NEy(y,t)=0)

= Pr(NP;(y,t)=q|NPy(y,t)=h)

= bi(q,h,[a;(t)~a;(y)}/(my(t)-my(y)]).
Since a(y,t) = 0 for t >y >t - Ry we have

Pr[l-a(y,t)+L(k-h—1,0,y,t)-so(t)]=Pr[L(k-h-1,0,y,t)-so(t)-ll
= bi[so(t)-l,k-h-l,[mo(y)-mo(t-Ro)]/mo(y)]. (4.36)

Multiplying (4.36) by plk-h~1;my(y)] and summing this product over the
range of k yields plsp(t)-1;my(y)-my(t-Ry)). Combining all of the
above in (4.30) we have for so(t) >0,

Pr(Q, (t)=q) = Pr{X,(t) < §o(t), 6o (a)

t
+ ) [ {3, pls,(t)-1sm, (y)-m_ (t-R_ )]
h=max(1,q) t-R, 0 0 0 0 0

* bllg,h, [a, (t)-a, (1) ]/ [my(t)-my () ]) plhsmy(e)-m (y)]}dy.
Summing over the range of h yields (4.9). |
Note that
me(0,t) = mg(t-Rp)
mp;(0,t) = a;(t) - a;(t-Ry) = mp;(t-Rp,t)
so that (4.31) becomes
plasay(t)-a;(t-Rp)] pl0;mple-Ry)) = 8o(q)e ™0,
For t 2y >t - Rg, L(h,y,t,t) = h so we need only consider the case where
h = h,. Since aly,t) = 0, 1 - a(y,t) + L(k-h-1,0,y,t) >0 = h - h, 80

there is no contribution to Pr(Qi(t)-q) in (4.32) when t 2y >t - Ry, For

My IR RN ST MRS T
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y <t -Ry, 1-aly,t) + L(k-h-1,0,y,t) = 0 s0 we again need only consider
the case wvhere h = h,. Noting that
Pr(NP;(y,t)=q [RPy(y,t)=h)
= bi(q,b,[a;(t)-a;(t-Ry)1/[my(t)-my(t-Ry)])
Pr(L(h,0,y,t)=h) = {[my(t)-my(t-Ry)1/[mg(t)-my(y)]}P

the last term in (4.32) becomes, after summing over the range of h,
t
- q_~{m, (t)-m (y)]
g () [mp, (£-Ry,e)]%e 0" 0

m,(t)-m (t-R,)-mp, (t-R,,t)
(e 0" OO R ) 8,(2)1}dy

= pla;a (t)-a, (t-Ry)] {1-p[0;my(t-Ry) ]}

-mo (t)
+ 84(a) {e -p[0;mo(t)-m0(t-R0)]}-

Since plO;my(t)-my(t-Ry)] = Pr(Xg(t)=0], (4.32) reduces, as expected,

to plq;a;(t)-a;(t-Rp)].

Number of Units Due-In From the Depot

Let OSTi(y) be the order and ship time for a unit sent from

the depot to base;

; &t y 20. For t 20 and n=1,2,..., Isi(n,t) =] if

and only if:
a. I;(n) =1
y b. T(n) + WylT(n)] < ¢t (4.37)

c. T(n) + WylT(n)] + OST,{T(n) + Wo[T(n)]} > ¢.

E[IS, (n,t) |T(n) =y < t] =

t-y
/ ey (NPr[W (y)=z] Pr[OST, (y+z) > t-(y+2)] dz
0
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N

i we have that

t t-y

* E[1S,(n,0)) = [ [ {pln-1imy(t) I (¥)e, (y)

00

Ty
)
‘ft,‘ * Pr[W,(y) = 2] Pr[OST, (y+z) > t-(y+z)]}dzdy.
R
Rt Of course, Var[IS;(n,t)] = E[1S,(n,t)]{1-E[1S;(n,t)]}.
X Using (4.2) we have that
Wl
;v;:; t t-y

(A = =
A E[ER, (t)] (f) (f) {a, (y) PrlWy(y) = z]
o

. . Pr[OSTi(y+z) > t-(y+z)]}dzdy. (4.38)
IS
s'\.

ﬁi Consider a stationary system where, for all y > 0, ai(y) = a;, i=1,2,...N,
S
-}::g Fo(s,t) depends only on t-s and 0ST;(y) = OST; does not depend on y.
o Using (3.8) we can show that as t goes to infinity, Wo(t) has a limiting
iﬁg distribution. Then we can use (4.38) to show E[ER;(t)] = a;E[0ST,]
25
W which can also be obtained, in a stationary system, from Little s Formula.
ey Unfortunately, other than (4.38) it is cumbersome to obtain
W
V Y any general results for ERi(t). To verify the conditions in (4.37) we
ot
Cg!. must determine T(n), WylT(n)] and 0ST; {T(n)+Wy(T(n)]} for n=1,2,....
sﬂ Even if the order and ship times are independent, the T(n), n=l,2,...,
9
Ea are not independent and there may also be some correlation in the times
30
W
":' different resupply requests wait for satisfaction at the depot. Therefore,

the Isi(n,t), n=1,2,..., are usually not mutually independent. In

$s
&,’ order to determine the joint distribution of the Isi(n.t) [and thereby
vl

'

%5 the distribution of ER;(t)] we need to determine the joint distribution
of the origination and waiting times of the No(t) demands on the depot.
s

3 To find even the variance of ERi(t) requires determining the joint
5{ waiting time distribution of any two of the No(t) resupply requests.
ﬁ, This is extremely cumbersome and impractical for any realistic
.
Wy
i:E:'
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implementation.
Since
DE;(t) = Q;(t) + ER;(t) (4.39)
the inability to obtain general results for Eki(t) prohibits finding
general results for DE;(t) (other than using (4.33) and (4.38) to find
E[DE;(t)]). Furthermore, because of the correlation in the T(n),
n=1,2,... and the correlation in the waiting times at the depot, ERi(t)
and Q;(t) are not independent. This fact further complicates the task
of obtaining general results for DE;(t) from (4.39).

There is, however, a useful and important special case,embodied
in Assumption 11 below, for which we can get tractable expressions for
the distribution of DE;(t).

Assumption 11: OSTi(y) does not depend on y and is & fixed known
value, OST;, i=1,2,...,N.

The assumption of a constant, deterministic order and ship
time between the depot and base; does not in itself provide a convenient
aid in obtaining the distribution of ERi(t). However, Theorem 4.8
shows how Assumption 1l allows us to calculate directly the distribution
and other properties of DE;(t), t > 0.

Theorem 4.8: For constant, deterministic order and ship times and t > O,
DE,(t) = [N0(t) - NO(e-0ST])] + Q;(-0sT})
where, by assumption, Ng(y) = Q;(y) = 0 for y < 0.
Proof: {Ng(t) - Q;(t), t > 0} is the counting process describing the
number of base; resupply requests satisfied by the depot. Since order
and ship times are constant and deterministic, only basei resupply requests
sstisfied in (t-OSTI,t] will be en route to base; at t > 0. Hence

0 * *
ER;(¢) = [8J(e) - q;(t)] - [Kd(e-0sT}) - Q;(t-08T]].
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Substituting for ER;(t) in (4.39) establishes the theorem. !/
While Assumption 11 is somewhat restrictive, it seems that it

is necessary to make this assumption in order to obtain any tractable
analytic results. However, there is another reason why one might wish
to adopt Assumption 1ll. In practice, it is almost always true that a
base will receive units from the depot in the same order that the units
vere shipped. Hence, deliveries to a particular base do not cross. This
makes it unlikely that order and ship times are independent random
variables. Without developing a detailed model of the depot shipping
process, it is difficult to describe the dependence among shipping
times to a particular base. By Assumption 11, we prevent deliveries
from crossing by removing any variation in the shipping times. Accounting
for shipping time variation is a difficult and unsolved problem even
for a single location (Q,r) inventory system (Hadley and Whitin [1963]).
For the remainder of this dissertation we shall use Assumption

11, Using Theorem 4.8 we can then write the base; pipeline for t > 0 as
X;(t) = Dy(e)+R; (£)+E; (e)+[Nd(£)-N)(e-0ST]) 1 +Q (e-08T]).  (4.40)
All the random variables on the right in (4.40) are independent. Therefore,
X;(t), t 20, can be obtained from the convolution of the distributions

that we have derived in the previous sections of this chapter.

Delay at a Base

An interesting and oft times useful measure of inventory
performance at a base is the expected delay until a customer who has
brought in a failed unit is resupplied from the base”s spares pool. In

a stationary system, the expected wait may be obtained by using Little’s

TS S I 2 e MR I AT Sradad




ot

| 91

X
'i:' Formula. In a non-stationary system, however, we need to determine the
::f" distribution of the base; waiting time, Hi(t), in order to calculate
o the mean vaiting time at t 2 0. The limiting distribution of W;(t) has
Eﬂ' not previously been derived for stationary multi-echelon systems but
:§ can be obtained as a special case of the results of this section.
0":' When a customer arrives at base; at t > 0, he will not wait
‘2:3; if X;(t) < s;(t). However, if X;(t) > s;(t), the customer will receive
't:': the (X;(t) - s;(t) +1)th serviceable unit that becomes available for
o issue at base; after t. For w 2 0, let AV,(t,t+w) be the total number
:&,‘ of units that becomes available for issue at the base; spares pool in
.:::EE (t,t+w]. Then W;(t) > w > 0 if and only if

v X;(t) > 8;(t) + AV (t,t+w).
‘: Using (4.40) to substitute for X;(t) we have W;(t) > w > 0 if and only if
Y Di(t) + E;(e) + Ry(£) + [N(t) - N}(e-0sT])] + Q;(t-08T})
3 > 8;(t) + AV (b)), (4.41)
3*;-_;’ D;(t) consists of: wunits that will still be in the diagnostic
:‘ ‘ facility at t+w [-DIi’(t,t+w)]; units that will leave the diagnostic facility
o in (t,t+w] after being condemned [-Df(t,tw)]; units that will leave the
,
;'EE‘ diagnostic facility in (t,t+w] and enter the base; repair facility
;E:: [-D%(t,tw)]; and units that will leave the diagnostic facility in
= (t,t+w] and enter the depot pipeline [-Dg(t,tw)]. Therefore, the
zf inequality (4.41) can be written as
}-é D?_(t,tﬂi) + DE‘(t,tﬂv) + Dli‘(t,uw) + Dg(t,tw) + E;(t) + R;(¢)
ol + [N(0) - NQCe-0sT])] + Q;(£-0ST]) > s,(t) + AV,(£). (4.42)
. Define:
?ft. IE(t,uw) = 1 if the unit that failed at t* was
. condemned in (t,t+w) and a replacement
b
R
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I}(t,t+w) -

#E (t),ty,t,t+w) =

#ED(t, t+w) -

#Ri(tl.tz,t,t‘.'w) =

#R?(t,t+w) =

#DEi(t,t+v) =

from the external supplier arrived
in (t,t+w]. IE(t,t+w) = 0 otherwise.
1 if the unit that failed at t* was
sent to the base; repair facility in
(t,t+w]) and completed repair in
(t,t+w]. Ig(t,t+w) = 0 othervise.
number of units that arrive from the
external supplier in (t,t+w] to
replace failures at base; in (t,t,]
that were condemned in (t,,t,].
number of units that arrive from the
external supplier in (t,t+w] to
replace failures at basc; in (0,t)
that were condemned in (t,t+w]. Note
that #E?(t,t+w) §_Df(t,t+w).

number of failures in (ty,t,] that
were sent to the base; repair facility
in (t;,t;] and completed repair in
(t,t+w].

number of failures in (0,t] that
vere sent to the base; repair facility
in (t,t+w] and completed repair in
(t,t+w]. [#Rg(t,t+v) 5_D§(t,t+w)].
number of units that arrive at base;
as resupply from the depot in (t,t+w].
(Possibly including resupply for the

demand at t¥).
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;; M;(t,t+w) = pumber of units management has sent
o to base; that arrived in (t,t+w].
Then,
::': ’
) AV (t,tew) = MiCt,tew) + T5Ce,tew) + 13Ce,t0w) + #DE (t,tew)
0
"3: . + #E,(0,t,t,t+w) + #Eli)(t.tw) + #E.(t,t+w,t,t+v)
o + #R;(0,t,t,t+w) + #R?(t.tw) + R, (t,t+w,t,tev).
1*!
(§§ After some rearrangement the inequality (4.42) can now be rewritten as
45*;
¥
et [D2(t,t+w)] + [DE(t,t4w) - #ED(e,tew))
x + [Ej(t) - #E;(0,¢t,t,t+w)] - [#E,(t,t+w,t,tew)]
iQ .
fgr + [D2(e,tew) - #R2(e,tew)] + [Ry(e) - #R.(0,t,t,t+v)]
3,

2 - R (e, tev e, t0w0)) = [15Ce,ee0) + 1B(e,00w))

o + [N(i’(t) - Ng(t-osrz) + Qi(t-osr'i') + Dg(t,tﬂv) - #DE;(t,t+w)]

g

i > 8;(8) + Mi(e,tew). (4.43)

LY,

kg A term by term analysis of the left side of (4.43) yields:

s (1 Dg(t,t+w) has a Poisson distribution with mean

e

"“:!; t

a5 [ 3y (8)11-6, (s, t+) 1ds.

b:(' 0

i

"l Applying the Splitting Property P10, it is straightforward to show

t

5%' (see Chapter III) that Dg(t,t+w) is independent of the number of units

u‘ﬂ

¥ .

%ﬁ that left the base; disgnostic facility in (0,t+w]. Hence, D?(t,t+v) is

- independent of every other term in (4.43).

Sy

'

%j (2) DE(t,t+w) - #Eg(t,t+v) is the number of units that

g{ failed in (0,t), were condemned in (t,t+w) and for which replacements
|

;} * from the external supplier have not arrived at base; by t+w. This

¥ !

"8 !

3} quantity has a Poisson distribution with mean

t“ t t+w n

W (])Ai(S) [ 46, (s,y)[1-P, (8,7)-Pp(8,y) J{1-e, (s,y,t+w) ]ds.

t
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it‘
td

"" P10 assures us that this term is independent of the other terms in (4.43).
a3
’::et (3) E;(t) - #E;(0,t,t,t+w) is the number of units that
- failed in (0,t], were condemned in (0,t] and for which replacements
f L]
W from the external supplier have not arrived at base; by t+w. This
‘f’.

( quantity has a Poisson distribution with mean

: t t 1

A [ 3 (8) [ d6,(s,9)[1-P, (s,)-Pp(s,y))[1-e, (5,7, t+w) 1ds.

4

:‘ o 8

5

B Applying P10 we can establish the independence of this term and the
. other t<rms in (4.43).

o,

.’,;‘ (4) #E,(t,t+v,t,t+w) has a Poisson distribution with mean
. t+w t+w .

A { A (8) ! dG, (s,¥) [1-P, (s,y)-Py (s,y)]e (s,y,t+w)ds

‘}'-

:_' and by P10 can be shown to be independent of the other terms in (4.43).
‘J:

*?.{ (s) Dri"(t,tﬂr) - #Rli)(t,tﬂv) is the number of units that
- failed in (0,t], entered the base; repair facility in (t,t+w] and sre
1
X still in the repair facility at t+w. This quantity has a Poisson distri-
‘:f bution with mean

t t+w 1

" [ A(8) [ 46, (s,7)PC(s,¥) [1-1, (s,y,t+w) ]ds.

N 0 i ¢ i R i

N . . .

:.:. and (by P10) is also independent of every other term in (4,43),
B |

- (6) R;(t) - #R;(0,t,t,t+w) is the number of units that
WY
-2; failed in (0,t], entered the base; repair facility in (0,t] and are
)
still in the repair facility at t+w., This quantity has a Poisson distri-
¥
bution with mean ’

-
> t t "
b [ 2(8)] dG,(s,9)Pp(s,y) [1-r, (s,y,t+w) ]ds.
’. 0 s

Ny

' and is independent of the other terms in (4.43).
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(7) #Ri(t,t+w,t,t+w) has 8 Poisson distribution with mean
t+w t+w
[ e ] 4G, (8,)PL (8,70, (5,5, t+w)ds
and is independent of the other terms in (4.43).

(8) Since If(t,t+w) + I%(t,t+v) < 1 these two random
variables are not independent. However, the distribution of their sum
is easily obtained after noting that

Pr[I (t,t+w) + I (tyt4w) = 1) =
ttw { 1
{ {pg (t,y)r, (t,y,t+0) + [1-Pp(t,y)-P, (t,y)Je, (t,y,t+w)} 4G, (t,y).
[IE(t,t+w)+I§(t,t+w)]and#DEi(t,t+w)maybecorrelatedbecause#DEi(t,t+v)
may provide information on whether the failure at t* was or was not
sent to the depot in (t,t+w]. We will return to this point mnmentarily.

(9) Since OST; is deterministic, units that arrive from
the depot in (t,t+w] must have been shipped in (t-OST:,t+w-OST:]. First,
consider the case where w S_OST;. If the arrival at t* is sent to

the depot in (t,t+w], a serviceable replacement for this unit could not

have arrived at base; by t+w even if Ho(t+) > 0. Therefore,

#0E; (t,t+w) = [NO(t+w-08T}) - Q;(t+w-0sT))] - [Nd(t-08T) - Q (t-0sT)]

and
N(e) - NO(e-0sT]) + Q(t-0ST]) + DY(t,t+w) - #DE;(c,t+w)

= [N9(t) - NQ(erw-0STD)) + DY(t,t4w) + Q(t+w-0ST}). (4.44)

Qi(t+v-OST:) is not affected by demands on the depot after

t+v-0ST;. Hence, for w < OST}, Q;(t+w-0ST}) is independent of [N)(t) -

Ng(t+w-OST:)] and Dg(t,t+w). Furthermore, using P10 it is easy to show

that Dg(t,t+v) is independent of the number of units that left the base;

b 8

diagnostic facility in (0,t] and therefore Dg(t,t+w) is independent of
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[Ng(t) - Ng(t+v-OST:)]. Therefore, the sum on the right of (4.44) is
the sum of independent random variables. The distribution of this sum
is readily obtained using (3.1), (4.30), (4.32) and the fact that from
P10, Dg(t,t+v) has a Poisson distribution with mean pd(0,t,t,t+w) where
t2 4
Pd(t;,ty,ta,t,) = { A (8) { dG, (s,y)P, (s,y)ds.

1 3

For w S_OST;, #DE;(t,t+w) provides no information about the
failure at t* and is independent of [IE(t,t+w) + Ig(t,t+v)]. Hence, all
nine terms on the left in (4.43) are mutually statistically independent.
Pr[OST: <w < W;(t)] can now be obtained in a straightforward manner.

Now consider the case where w > OST;. The known failure at
base; at t* results in a non-continuous MVF for the NHPP describing the
number of basei resupply requests placed on the depot. Therefore,

#0E; (¢, t+w) = [10(t,t4w-08T]) + NO(t+w-08T]) - Qf(t+w-0sT})]

- [80(t-0sT) - Q(t-0sT})]

where
Ig(t,t+w-OST;) = 1 if the failure at t* was sent to the depot
no later than t+w-0ST;. IJ(t,t+w-0ST}) = 0
otherwise,
QE(V—OST:) = pumber of depot backorders at t+w-OST: that
belong to base; given that there was a failure
at base; at t*.
Hence,

0 0 * _nar® 0 _
Ni(t) - Ni(t-OSTi) + Qi(t OSTi) + Di(t,t-w) #DEl(t ,C*V)
-[Ng(t) -Ng(:w-osr’;)h Dg(t,tﬂi) + QE(tw-—OST;)- I?(t,tw—OS'r:)

a ot —oer¥y - 10 * 0 _n0 _aer¥
Q;(t+w-0ST;) - I (t,t+w-0ST;) + [D/(t,t+w) - D;(t,t+w-0ST;)]

- [80Ceew-0sT]) - 80(t) - DY(¢,t4w-0sT])]. (4.45)
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Dg(t,tﬂv) - Dg(t,tﬂr-OST:) is the number of failures at base;
in (0,t] that were sent to the depot in (tﬂv-OST;,tﬂv]. This quantity
has a Poisson distribution withmean pd(0,t ,t+w—08'1‘:,t+v) and is independent
of Ig(t,tﬂ-w-OS‘I;) [Assumptions 2 through 6] and QE(H\'-OST;) [since these
demands were placed on the depot after t+w—OS'l';].

[Ng( t+v-OSTI) - Ng(t) - Dg(t,t'&w—OSTz)] is the number of failures
at base; in (t,t+w-OST:] that were sent to the depot in (t,t+w-OST;].
This quantity has aPoisson distribution withmeanpd(t ,t+v~0$‘1‘;,t ,t+w-OST:)
and is independent of Ig(t,t-fw-OSTI) {Assumptions 2 through 6] and
[Dg(t,tﬂl) - Dg(t,tﬂr-OST:)] [Assumptions 2 through 6 and the fact that
NHPP have independent increments].

QE(tﬂv-OST;) is not independent of Ig(t,td-v-OST;) and
[Ng(tﬂr—OSTz) - N(i)(t) - Dg(t,tﬁ-w-OST;)]. The known failure at base; at

t+

and the number of failures at base; in (t,t+w-OSTI] that are sent to
the depot in (t,t+w—OST;] certainly affect QE(tﬂv-—OST;). However, the
distribution of
[Q; (t+w-0sT}) [19(¢e, tew-0sT]), NO(t+w-0sT]) - N(£) - D(t,t+w-05T])]

¢an be obtained straightforwardly, albeit tediously, by extending the
arguments that led to (4.30) and (4.32), Details can be found in
Kotkin (1985). Using the fact that Ig(t,tﬂv-OST:) and [N?(t+w—08TZ) -
N(i)(t) - Dg(t,tﬂv-OST:)] are independent, the joint distribution of
Q;(t+w-08T}), 19(t,t+w-0ST}) and [N(tew-0sT}) - NO(t) - DI(¢,t4w08T])]
can be obtained straightforwardly. The distribution of the sum in
(4.45) can then be obtained directly (Kotkin [1985]),

For w > OST:, Ig(t,t'rw-OST;), I%(t,tﬂv) and I?(t,tﬂv) are not
independent since at most one of these random variables can be positive.

Assumptions 2 through 6 guarantee, however, that I}i:(t,u»w) and Iliz(t,u-v)
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.
i
-
:: are independent of the other random variables in (4.45). Since the

]
§
- first seven terms on the left in (4.43) are independent of the latter
s two terms, all that remains to be done in order to find Pr[wi(t) >w > OST;]
_?'_: is to find the distribution of [Ilia(t,t*-w) + I%(t,tfw)ll?_(t,tw-OST;] . This
o is easily done. Clearly,
[ Pritlie,eew) + IR(e,e+w) = 1]190(t, tetsw-0sT) = 11 = 0
W i i i i
\( so that
R\
e Prizi(esw) + 13(e,eew) = 1119(¢e, t4w-08T]) = 0]

- E R 0 _aart

o PriIi(e+w) + I7(t,t+w) = 11/Pr[13(t,t+w-0ST;) = 0]
e
't . . .

‘w where the numerator on the right is given in paragraph (8) above and
o *
B 0 . t+w-0ST,

d Pr[I, (t,t+-0ST ) = 0] = / [1-P, (t,y)1dG, (t,y).

t : i i

1 .
>
::::Z Similarly,
4N Pr[IE(t,t'bw) + I?(t,t'l-w) = Ollg(t,tw—OST:) =1] =1,
pAx Pr[I?(t,tw) + I?(t,tﬂv) = 0|I$(t,t+w—08'r:) = 0]
f"o
'2::: Pr[Ig(t,uw-OST;) = 0] - Pr[IE(t,t-rw) + I§(t,t+w) = 1]

t =
0 0 * '
e Prl1;(t,t+w-0ST;) = 0]

¥

Y

"':; Summar

I
e The supply interactions between the depot and bases manifest

L}

}f_: themselves through the impact of stock policies at the depot on the
{"_- bases” pipelines. In Chapter IV we explicitly examined this impact by
‘-;- deriving the distribution of a bases’s pipeline as a function of the
::3‘: depot asset level. Therefore, inventory performance at the bases can
“»
.
-7 be improved either by increasing stock at the bases or by increasing
’ stock at the depot, thereby reducing the bases” pipelines. This tradeoff
o
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between depot and base stock forms the basis of the optimization problem

that we formulate in the next chapter.
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CHAPTER V

THE FIXED ASSET VECTOR PROBLEM

The emphasis of the previous two chapters has been on describing
important stochastic processes that arise at the depot and thé bases.
In particular, in Chapters III and IV we derived the time-dependent
probability distributions of the number of units in the pipeline at the
depot and bases, respectively. Using these results, (2.2) and (2.3),
we can obtain the probability distributions of the number of units
on-hand and the number of backorders outstanding at any time during the
horizon at every location in the inventory system. We can then develop
measures of inventory performance which aid in evaluating different
stock policies and asset levels during the horizon. It then becomes
natural to formulate an optimization problem that allocates a valuable
resource (money, weight, volume, etc.) over 8 catalog of items (for
example, the items that comprise a weapon system) in order to maximize
the inventory performance of the catalog over the horizon. The Fixed

Asset Vector Problem (FAVP), introduced in this chapter, represents the

first step towards formulating such an optimization problem. The FAVP
W formulation assumes that all asset levels remain unchanged during
o the horizon: there are no management directives to change the asset
y levels at any location during the horizon. In Chapter VIII we examine

the optimization problem that arises when this assumption is removed.

" 101
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However, the FAVP is extremely interesting in its own right. It can be
used for scenarios during which management directed changes can not be
implemented for any reason including, of course, lack of time and/or

lack of asset visibility and control.
Inven Performance Measures

There are several useful measures of inventory performance
including criteria based on an item“s fill rate, ready rate, and expected
number of outstanding backorders. At t > 0, we define the fill rate at
location; for a particular item, FRj(t). as the probability that there

J

is at least one unit on-hand at locationj at time t. Therefore,
FRj(t) = Pr [Xj(t) < sj(t)]. Note that if sj(t) = 0 then FRj(t) = 0.
The ready rate at locationj at time t for a particular item, RRj(t), is
defined as the probability there are no backorders outstanding at
locationj at time t. Therefore, RRj(t) = Pr [Xj(t) S_sj(t)]. Finally,
from (2.2), the expected number of backorders of a particular item

outstanding at locationj at time t is given by

EBO(s, (t),s,(t),t) = [  Pr(X (t)>k). (5.1)
J k>e, (t) 3

J
All of these performance measures depend upon sj(t) and also upon sy(t)
since Xj(t) depends upon sg(t).
Brooks, Gillen, and Lu (1969) discussed the relative merits
of using the different performance measures in steady state models.
They also presented some computational experience comparing the asset

allocations from single echelon steady state optimization problems

using the different performance measures. Since a backorder outstanding
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at a base implies a customer is waiting, the measure most directly
related to customer satisfaction is the expected number of backorders
outstanding at the bases. Fill rate and ready rate are measures more
of immediate supply accommodation than of customer satisfaction. For
this reason, the expected number of backorders outstanding at the bases
is the performance measure used in most steady state multi-echelon
models. (See, for example, Sherbrooke [1968), Clark [1978], Kaplan
[1980], Vincent [1980], and 0°Malley [1983]). For the remainder of this
study we assume that the performance criteria are based on the expected
number of backorders outstanding at the bases. However, any of the
other measures could be used in developing optimization problems. The

results presented here have analogs for each of the different measures.

Performance Criteria in Non-Stationary Systems

Definition 5.1: An asset vector is a vector containing an asset level
for every item at every location. As asset policy
specifies an asset vector at every point in time
during the horizon.

Given an asset policy, inventory performance can be measured
at any point in time during the horizon. While time plots of inventory
performance may be useful management aids, they usually do not, in
themselves, provide an objective way to evaluate alternative asset
policies. The major exception is when one policy provides better
performance at every point in time. Two important objective performance
criteria that can be obtained from the time plots are the average

performance over the horizon and the worst performance during the
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B

ggﬁ horizon. Usually, management has an interest in both these criteria.

KD,

3%? For obvious reasons, management is concerned with the worst performance

? < predicted during the horizon. Regardless of the average performance .
%,% over the horizon, management may not want to tolerate extended periods

13; of severely poor performance or even poor performance during ihort )
fgt; critical periods.

§\‘ However, the intervals of poor performance may be during

&gf non~-critical time periods and may be mild enough and/or short emough so

?}. that the average performance over the horizon is at a satisfactory

%}: level. In this case, management may not want to perturb the inventory

?ﬁg system and incur the extra expense of added assets because of small,

] non-severe, non-critical periods of poor inventory performance.

20y

;sf By controlling the average performance over the horizon,

aab management assures that the inventory system provides satisfactory

ﬁa; service during the horizon. The average performance also provides a

E% E way of distinguishing between two equal cost asset policies that have

ab; the same worst performance over the horizon.

f:ﬁ Therefore, inventory managers are faced with a multi-criteria

ggi optimization problem. They wish to choose an asset policy that makes

58

i$§ the wost economical use of available resources while controlling the

ffﬁ average and worst inventory performance over the horizonm.

%LE The major advantage of ergodic theory is that in steady state

263 all points in time are stochastically identical. With one constraint

‘;C' on inventory performance it is possible to control both the average and ’
‘iz? vorst behavior for some time interval in steady-state. In non-stationary

systems, where there is no passage to steady state and each point in

;uu time may be stochastically different, one constraint may be insufficient
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tosatisfactorily control both the average and worst performance. Different
asset policies may have the same average expected number of backorders
outstanding but vastly different values for the maximum expected number
of backorders outstanding over the horizon. Similarly, different asset
policies with the same maximum expected number of backorders outstanding
over the horizon may have a significantly different average expected
number of outstanding backorders. For these reasons, the FAVP formulation
includes constraints on both the average and maximum expected number of

outstanding backorders over the horizon.

Formulation of the FAVP

The ma jor assumption of the FAVP is that the asset levels for
every item at every location are fixed at time 0., There are no management
directives to change the asset position of any item at any location
during the horizon. This restricts the set of feasible asset policies
to policies for which the asset vector does not change over the horizom.
In Chapter VIII we discuss the optimization problem that results from
dropping this restriction. For notational convenience, while discussing
the FAVP, we shall drop the notation indicating the dependence of the
asset level on time.

The other assumptions of the FAVP are:

a. Inventory performance is measured at the bases., Depot
performance is included only insofar as it affects performance at the bases.
. This is reasonable since primary customer demands occur only at the

bases (Assumption 1). However, the formulation could easily be modified

to include depot performance explicitly.
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b. Performance constraints are expressed in terms of the
expected total number of backorders for all items at all the bases.
The FAVP formulation can easily be modified to include constraints on
the performance at each base and/or on the performance of each item.

¢. The objective is to minimize, over a catalog of
items, the total cost of procuring or holding the required assets. The
FAVP could easily be modified to minimize the weight or volume of the
optimal asset vector instead of the cost. Adding constraints om the
weight and/or volume will increase the computational burden of obtaining

optimal solutions.

Define
1° = pnumber of items in the catalog;
T = horizon length;
Xij(t) = pipeline for item; at locationj at t, i=1,2,...,1;
j=0,1,...,N; 0 <t <T;
8i3 = asset level of item; at locationj, i=1,2,,,I;

j =0,1,..N;

84 = (550, ’il"""iN)' i=1,2,...1;
843 = (slj, szj,...,slj), j=0,1,...,N;
8,4 = (814 Bpreces B14)5
Ci = procurement or holding cost of itemi} i=1,2,..1;
Iy = a vector of ones with dimension N+l;
1 T
AEBO(s,,.8,0) = T é EBO(s,,8,0,t)dt

= the average expected number of backorders of

outstanding at basej over the horizonm,

i = 1.2,.001; j = 1,2.00-.N;

1temi
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] I N
MEBO(s_ ) = EBO(8,, 48,05t
' Tocter () 4y P00 t0®)

= the maximum expected total number of backorders

for all items outstanding at the bases.

The FAVP can now be written as

N
Min ] C,( Zo 84

I ]
)
AEBO(s,,,8,.) < aedb 5.2
151 44 13°%10’ £ (5.2)
MEBO(s_,) < meb
Bij = 0,1,2,... i=1,2,..1; § = 0,1,..,N.
If AEBO(s.

1j’°i.0) has a limit a8 T goes to infinity for each
item in the catalog and the constraint on MEBO (s,,) is removed, the

FAVP reduces to the steady state two-echelon model first introduced by

Sherbrooke (1968).

Solution of the FAVP

For aeb, meb > 0 (5.2) slvays has a feasible solution since as
all 8j; 80 to infinity, MEBO(s, ) and all the AEBO(sij,sio) go to zero.

If ve introduce a Generalized Lagrange Multiplier (GLM), u, > O (Everett

[1963]), we can rewrite (5.2) as

I N
Min {C,8,n+ ) K(s,,38,)}
121 %10 7,2, 719500

(5.3)
MEBO(s_,) < meb

where K(sij;sio) - ci‘ij + u.AEBO(sij,sio). Here, and in the sequel, it
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is understood that all decision variables are non-negative integers., We

can use a result of Everett (1963) to relate optimal solutions of (5.3)

to solutions of (5.2).

Theogem 5.2: Let s,,(u,) be an optimal solution to (5.3) for a particular
GIM u, > 0. Then s,,(u,) is optimal in (5.2) with the

right hand sides of the constraints replaced, respectively,

with
I N
aeble, (u )] = 121 321 AEBO[sij (u,),8,0(u)]

meb[a++(ua)] - MEBO[8++(ua)] < meb.
Proof: Consider (5.2) with aeb and meb replaced with aeb[s+*(ua)] and

mebls,,(u,)] respectively. Clearly, s,,(u,) is feasible. For all asset

vectors y,, such that MEBO(y,,) < meb we have that

1 I N
1.2.101[51*(“3)-}’“].lNiu%L jzl 1‘-‘5130[)'“.yio]-t‘.EBO[sij (ua),sio(ua)] .

since s,,(u,) is optimal in (5.3). If y,, is feasible in the augmented

(5.2) we have that

I XN 1 N
1§1 jzl AEBOLy, 1,740 :izl 3-2-1 AEBO[8,, (u,),80(u,)]

vhich implies that y,, has an objective function value in (5.2) which
is no smaller than the value of s,,(u,). /1

By varying u, one can use (5.3) to obtain solutions to (5.2)
with different values for the right hand sides of the constraints.
Solutions to (5.3) are undominated (efficient) solutions of (5.2) in
the sense that any asset vector that has lower procurement/holding

costs than s++(ua) must have either higher average expected total

backorders, higher maximum expected total backorders, or both. Usually,
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one can obtain an undominated solution to (5.2) with aebls,, (u,)] and
mebls,, (u,)] sufficiently close to the desired levels aeb and meb. For
two reasons, however, this can not be guaranteed. First, since all
asset levels are non-negative integers, there are infinite values of
aeb and meb for which the constraints in (5.3) will never hold at
equality. Secondly, when using a GLM, a "duality gap" often arises
(see Everett [1963]). A duality gap occurs when there is a solution to
(5.2) for particular aeb and meb but there is no value of u, that can
obtain this solution. Everett showed that a gap arises when the objective
function in (5.2) is not a strictly convex function of the right hand
sides of the constraints in (5.2) (which, as we shall see later, is
the case here). Everett’s GLM procedure can only generate points of
strict convexity in the three dimensional space representing the optimal
objective function value in (5.2) as a function of aeb and meb.

In practice aeb and meb are usually soft management parameters
and acceptably close values of the constraints are sufficient. Therefore,
we will obtain undominated solutions of (5.2) by using Everett’s (1963)
GILM technique. For the moment, we shall concentrate on solving the
relaxation of (5.3) obtained by removing the conmstraint on the maximum
expected total number of backorders outstanding at the bases. Without
this constraint, (5.3) is separable by item. Unfortunately, one can
construct examples that show that K(‘ij;sio) is not a convex function
either of the 2-tuple (sij"iO) or of the quantity s;q + 8i; = 0,1,2....
Since K(sij;sio) is not convex, the objective function of the subproblem
for item; and the objective function in (5.3) are not convex.

However, using Theorem 5.3, it is straightforward to show that

vhen 8;, is held fixed at some non-megative integer value, K(sij;sio)
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g: is 8 convex function of 8ij» j=1,2,..,N.
(!
;ﬁ' Theorem 5.3: For fixed s;g, AEBO(sij,sio) is a discretely convex
e decreasing function of 85 i=1,2,,..,I; j=1,2,...,N,
>
%- Proof: From Theorem 2.2 we have that for 853 =0,1,2,,, and t 2 0,
[}
R EBO(s; 5+1,850,t) = EBO(s;,050,t) = = Pr(X;;(t) 2 s;441)
ﬁ' and therefore, for fixed s;g, EBO(sij,lio,t) is a discretely convex
)
:F decreasing function of 'ij' The theorem now follows by applying two
)
"
o elementary properties of convex functions. //
. We will exploit the comvexity of K(sij;sio) for fixed 8;q in
3= an implicit enumeration scheme to solve the subproblem for itemi. The
R
f& item; subproblem, i = l1,...,1, can be written as
. *
. Min TC;(8;0) = Cis50 *+ TCB;(8;q)
o s;0 = 0,1,2,...
= vhere
i‘, . N
! TCB,(s,.) = min z K(s,,:5,.)
1'%10 o1 3700
!
y is the total optimal contribution by the bases to the objective function
)
KN
{g of the item; subproblem when the depot asset level is s;g. For fixed
" 8,0, the item; subproblem is separable by base since we need only find
)
f5 TCB:(sio). Therefore, for fixed 8;0» we can solve the itemi subproblem
N
32 by minimizing K(tij;sio) for each base.
~ Since K('ij;'iO) is convex for fixed s;g, Eij(‘io)' the base;
:Q asset level that minimizes K(°ij3'i0)’ is the smallest non-negative
5 integer for which K(sij+1;si0) > K('ij;'iO)' Therefore, Eaj(ﬂio) is
o zero if and only if ‘
3:: T C,T
Pr(X > < . .

oy (f) r( 13 (t)>1)dt s, (5.4)
N Otherwise, !ij(’io) is the unique positive integer satisfying
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T CyT T
({ Pr(xij(t)>—sij(810)+l)dt<ua ié Pr(X;,(£)28,,(s,0))dt.  (5.5)

Say T is measured in days. Then u, is a backorder cost in
the sense that for every T backorder-days accumulated over the horizonm,
there is a "charge" to the inventory system of u, dollars in K(sij;sio).

Intuitively, (5.4) and (5.5) state that j(’iO) is such that the

8;
marginal reduction in backorder costs over the horizon from adding the
gij(sio)th asset at basej must be greater than the marginal increase in
procurement/holding costs from adding that asset. Furthermore, the
reduction in backorder costs from adding the (§ij(810) + 1)th agget (or
any assets after that) must be less than the corresponding increase im
procurement/holding costs.

The optimality conditioms (5.4) and (5.5) allow for straight-
forwvard determination of gij(sio)’ and thereby TC,;(s;o), for any value
of 8;9. However, empirical evidence from tests on the items in our data
base (see Appendix B) has shown that not onmly is TC;(s;q) not comvex,
it is not unimodal. Therefore, in order to solve the item; subproblem,
it is necessary to determine TCi(sio) for all 850 = 0,1,2,.... The optimal
depot asset level for itemi, 80 is the non-negative integer that
yields TC;(gio), the minimum value of TC;(s;q). Fortunately, it is
possible to a priori determine an upper bound on 8,0+ Before establishing
this upper bound we need to obtain some intermediate results.

Lemma 5.4: If the random variable G is stochastically larger than the
random variable Z, then E[G] > Elz].

Proof: See Lehmann (1959). //

Lempa 5.5: For fixed 8;:

j and all t > 0, EBO(sij,sio,t) is a decreasing

function of 8

0 = 0,1,2,0000
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<zoof: Xij(t), t 20, is given by (4.40). The only component of Xij(t)
that depends on 80 is Qij(t—OSsz). By Theorem 4.2, Qij(t-OST:j) is
stochastically decreasing with respect to 8;0° Therefore, Xij(t) and
[Xij(t)-sij]* are stochastically decreasing with respect to s;q. It
novw follows directly from (2.2) and Lemma 5.4 that for all 8;0=0,1,2,...
and t > 0, EBO('ij,lio*l,t) iEBO(Sij,Bio,t).

Theorem 5.6: TCB:(sio) is a decreasing function of 8;0 = 0,1,2,....

Proof: Let k > h be non-negative integers. Then
* N
TCB,(h) = §] K(s,,(h);h)
i 3=1 o & | i

N
) - jzl [Cigij(h) + uaAEBO(gi
N

> 2 [C
3=1

j(h);h)

(h) + uaAEBO( (h);k)

1243 243

*
> TCB (k)

where the next to the last in:quality is a direct consequence of Lemma 5.5
and the last inequality follows from the optimality of gij(k)'
Theorem 5.7: For all 80 " 0,1,2,...
850 <850 + INT {[TCBI(s;o) - TCBI(=)1/c;}.  (5.6)
Proof: Since 8;; is optimal in the item; subproblem we have for all
8;0 = 0,1,2,... that TCi(gio) S_TCi(sio) and therefore,
850 <8;0 + [TCB(s;q) - TCB}(s;q))/C;
<850 + [TCB{(s;q) - TCB}(=)1/C;
by Theorem 5.6. Since 8;; must be an integer, the theorem follows. //
In particular, applying Theorem 5.7 with 80 ™ 0 we have that

850 < INT {(TCB}(0) - TCBI(=)]/C,}. (5.7)

TCBI(”) is easily calculated since for s;q ==, Qij(t) =0, t >0, and
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;53 therefore, Xij(t), t > 0, has a Poisson distribution with mean obtained
’:: from (4.40).

‘:‘ We can use Theorem 5.6 to develop an iterative procedure to
_EE try to improve the upper bound on s;q obtained from (5.7). Let ub; be
';: the upper bound obtained from (5.7). For all 850 2_§i0, we know that
- TCB:(sio) S.TCB;(Eio)' Therefore, given ub > 8,5, m 2 1 we can obtain
E ubp,; = INT{[TCB}(0) - TCB}(ub )1/C,} > 8.

}:} We continue until ubm+1 = ubm. Using Theorem 5.6, it is easy to show
:;: that this procedure does indeed terminate. Unfortunately, it does not
'éa necessarily terminate at s;5. Call the final upper bound obtained ubg.
iﬁi Initially, in order to obtain an optimal solution to the
;}j item; subproblem, we expect to have to calculate TCi(sio) for all
5 values of 8;9 from 0 to ubg. The first incumbent solution to the item;
gté subproblem is 8,45 = 0 and §ij(0)’ j=1,...,N, with objective function
L value TCB;(O). Corollary 5.8 shows how the upper bound om ;4 can be
:;;: updated every time a new incumbent solution is obtained.

§{: Corollary 5.8: Let ubc be the upper bound on 850 based on the current
";~ incumbent solution with depot asset level sio > 0. Let
v 2 1 2 2 1

:i: 80 > 8jp be such that ub, > s{( and TCi(sio) < TCi(sio).

\25 Then,

e 850 < 8%y + INT{ITCB](s3() - TCB](ub)1/C;} < ub.
:gu Proof: The first inequality follows, as in the proof of Theorem 5.7,
iig from the optimality of s, and from Theorem 5.6 (since ub_ > 8;0). The
'f{ ’ second inequality is obtained in a similar manner after using the fact
J that TC;(s?y) < TC;(sly) and the fact that from Theorem 5.6, TCB}(ub)
éﬁ provides the best available lower bound on TCB;(gio). /1l
y Originally, ub, is obtained either from (5.7) or from applying
v

A0
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|
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the iterative procedure to improve (5.7). Since s;9 = 0 is the first
incumbent solution, ub, = ubc. When the next incumbent solution is
obtained for some 8;0 > 0, ub, is updated using Corollary 5.8. 1In
principle, an iterative procedure similar to the one described above
can be employed every time ub, is updated. Computational experience
indicates, however, that very little improvement in the upper bound omn
8,0 is obtained by applying the iterative procedure every time a new
incumbent solution is obtained. The computational burden of applying
the iterative procedure appears to outweigh the benefits obtained. Most
of the improvement in the upper bound on 8;0 comes about from using
Corollary 5.8 without an iterative procedure. In fact, Corollary 5.8
(without the iterative procedure) is so effective in improving ub, that
we have found that it is not worthwhile even to apply the iterative
procedure to improve the initial upper bound obtained from (5.7).

It is also possible to establish a "static" upper bound on 850°

Theorem 5.9: Let uby be the optimal solution to

N
Min C,8,n+ ) K, (0:s, ). (5.8)
8,00, 1,... 130 45 3O

Then, 8,0 < ubg.
Proof: Since uby is optimal in (5.8) we have for w = 1,2,...

N

Cv > jZI[KJ(O;ubO) - Kj (O;ubow)]
N
> 7 [R(gyy (uby#w); uby) = Kgyy (ubps) s ubpiw) ] .
i=1

from Theorem 2.2 and the fact that Xij(t), t >0, is stochastically
decreasing with respect to ;4. Since K(s_ij(uboﬂl) jubg) _>_K(s_ij(ubo) subg),

ve have that TC;(ubg+w) > TC.(uby) and the theorem follows. /1
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‘b"ﬁ
s: We can further reduce the computational burden of obtaining
()
e 4 .
":g;r. the optimal solution to the item; subproblem. Theorem 5.10 gshows that
W no base asset level will increase when the depot asset level increases.
AR
::3:: Theorem 5.10: 1ij(°i0) is a non-increasing function of s;5 = 0,1,2,....
B W%
O Proof: For each base; and t 2 0, xij(:) is stochastically decreasing
15,‘.: vith respect to 8, (see the proof of Lemma 5.5). Along with the optimality
th’ri
E‘:i:': conditions (5.4) and (5.5), this implies that !-i.j('io) ?-'—ij('iO*l)' /1
e
:93‘?:' Summarizing the above, we present Algorithm Al, an implicit
O, enumeration scheme for finding optimal solutions to the item; subproblem.
s
\
.
a3 . . . . .
N Algorithm Al: To find an optimal solution to the item; subproblem:
s Step 1: Use (5.4) and (5.5) to obtain TCBI(@).
1229
'): Step 2: Use (5.4) and (5.5) to obtain TCB;(O).
L
"'. Set TCB;(O) as the value of the incumbent solution and
S store the depot and base asset levels. 3
Yo |
‘{“{ Step 3: Use (5.7) and Theorem (5.9) to find UB, an upper bound on
o ‘
Q‘ _s_io- set j = 1. ‘
,-.,. Step 4: If j > UB, stop. The incumbent solution is optimal. |
v
A Y
N Otherwise, use (5.4) and (5.5) to obtain TCB:(j).
a2
N
b Step 5: If jC; + TCBI(j) < the value of the incumbent solution then:
Ko, (a) set jC; + TCBI(j) as the value of the incumbent solution.
o
XY (b) Store the depot and base asset levels.
o
N )
P (c¢) Update UB using Corollary 5.8.
E.,-!;, ) Step 6: Set j = j + 1 and go to Step 4.
-.::-.::
3
.r.\"'
> After using Algorithm Al to solve every item subproblem, we
2 obtain s,,, the asset vector that is the optimal solution to the relaxation
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,§;“‘

2': of (5.3). If MEBOlg,,] < meb, s, is optimal in (5.3) and is also an
i
ig:g,, undominated solution of (5.2). 1In order to complete our discussion of
. the solution of the FAVP, let us assume that MEBO[s, . ] > meb.
; »
‘ ‘: We can introduce another GLM, u, 2 0, in order to bring the
B

\‘& constraint in (5.3) into the objective function. By a theorem of
¢ Everett (1963), the solution to
L 1 N

W Min ] {Ciayq+ 1 K(s,;850) W u MEBO(s, ) (5.9)
\‘}‘.“! i=]1 j-l

t

wh

o is an undominated solution of (5.3). Empirical evidence from tests on
4

i

‘A:j?: the weapon systems in Appendix B indicate that MEBO[s ] is not a
i“'(

:::e convex function either of s,, or of total system assets. We can show ‘
ZLCA ;
o« (see Theorem 5.11 below) that for fixed s,;, MEBO[s, ] is a convex |
[+
_*:'_: decreasing function of (s,j,...,8,y). The fact that (5.9) is not
.J.'ﬁ-: . )
:g‘ separable by item, though, makes it extremely difficult and impractical
Fr )
" to obtain solutions to (5.9). Therefore, we approximate MEBO[s, ] by
‘€
1
& -~
*i MEBO(s,,) = ] MEBO(s, )
s:\ < i=]1
Kb N
MEBO, (s,,) = max { ) EBO(s,, ,8,,,t).} (5.10)

o 175047 " Crer 351 13°%10°
)
28N Let 0 < T™;(s;,) < T be the time at which the expected total
i\
::' .,* number of base backorders for item; reaches its maximum value, MEBO; (s ].
%_ 1f ™;(s;,) vere the same for all items, (5.10) would be an exact equality.
\ -: (5.10) is conservative in the semse that it may result in overstocking,
LA M

L)

::::l but will ensure that the performance constraints are satisfied.
Using the approximation (5,10), (5.9) is separable by item and v
o

.r,“;:_‘ the item; subproblem is
),

- N
S - .
Min TCM, (s,4) = Cy8,4 + ¥ K(sij’sio) + u_MEBO, (s, )

.t 810-0,1,2,... i=1
o
oo
%
WY
Kr.
)
b
\,':A"’ , _(Av., . ‘ .;_.4,\:\.;.)_‘:; o, ’..’ ? ,'_'f.' ..'...'\-‘\- . .'l\':n":‘n;':-‘, RV T R __-._.‘- ::. -.:“\}-.;’*ﬁ ¢' ‘s‘l‘:." ‘\‘.,\ = \(\‘"" ‘
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Before solving the itemi subproblem, we need some intermediate results.
Theorem 5.11 establishes the convexity of HEBO[si+] for fixed 8;0 vwhile
Theorems 5.12 and 5.13 establish, for fixed 8;0» upper and lower bounds
on the optimal base asset levels.
Theorem 5,11: For fixed s g, MEBO;(s;,) is a discretely convex decreasing
function of ('il' 8250005 B5y)e

Proof: 1In the proof of Theorem 5.3 we saw that for all t > 0 and fixed
8,0 EBO(aij,sio,t) is a discretely convex decreasing function of lij,
j=1l,...,N. Therefore, for all t > 0, the sum over all bases of
EBO(aij,so,t) is a discretely convex decreasing function of the total
base asset vector (311’312""’31N)‘ Since the maximum of convex
functions is itself a convex function, the theorem follows. /1

Let s;j(sio) be the optimal basej asset level for item; when
the depot asset level for itemi is 850°

. *
Theorem 5.12: For j =1,...,N, sij(sio) Z_Qij(sio).
Proof: Assume there is at least one base, such that s:k(sio) < !ik(sio)‘
Let y;, be an asset vector such that y;q = 8;9 and for j $0,
* . %

vij = §ij(si0) otherwise.
Clearly, HEBO[yi+] 5_HEBols;+(sio)]. From the definition of !ij('iO)'
we have that K(yij;sio) f_K(s:j(sio);sio) for all j with strict inequality
holding for at least base,. Hence, y,, is a better solution to the
item; subproblem for fixed s;; than the asset vector (’iO’s;+(‘i0))‘
This contradicts the optimality of °:+('i0)‘ /1l

Theorem 5.12 assures us that we can use Algorithm Al not only

to solve the relaxation of (5.3) but also to provide starting values in

the search for s:j(sio), j=1,...,N,

S e T W
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':: Theorem 5.13: Let “bij('io) >-!-ij('i0) be the smallest non-negative

integer such that for all 0 <t < T,

‘é:o ug[EBO(ub; ;(s;0),8;0,t) - EBO(ub;:(s;0)+1,5;0,t)]

‘ < [R(ub;;(s;0)4158;0) - Klub;:(s;0);850)).

& Then, 8};(s;0) Cub;i(s;), j = 1,....N.

1;: Proof: The theorem follows directly from (5.10), Theorem 5.11 (and its

proof) and the convexity of K(sij;aio) for fixed s;g.

For any asset vector s;, we define the marginal benefit of

, putting an extra asset at basej as

r 1]

‘t_ ; MBij(si'f) = um[MEBOi(li,‘_) - MEBOi(si,pej)] - [K(Gij+1;8io) - K(slj;.i.o)]
P

h

vhere e. is the jt unit vector in RN. It is interesting to note that

J
.- for basej, HBij(‘h) is not monotonically decreasing with respect to
:f 8;4+ The benefit of an extra asset at basej may actusally increase as
o
N
* more stock is placed at the other bases. In fact, it is quite conceivable

that for a particular asset vector, basej could be "blocked" in the

< “bij(sio)' Precisely, basej

WFeFu 2N

: sense that MBij(si,,,) < 0 even though 853

: is blocked if there is some t*, 0 <t* < T, such that

\:-:E um[EBQ(sij(gio)’sio,t*) - EBO(Sij(Bio)'l'l.Sio:t*)]
}\: > [K(slj(31°)+1;slo) - K(BIJ(Slo);Slo)]

but HBij"i«f(“iO)) <0, Basej can be blocked in many ways. For example,

say there is another base with no assets but with an extremely high

. pipeline at & time at which basej has a very small pipeline. Giving
N assets to buej without giving assets to the other base would be pointless
:g' since the maximum could not be reduced. However,after allocating some
)

E:: assets to this other base, basej may be "unblocked”. If not for blocking,
g we know that l;j(lio) - ubij(sio), j = 1,...,N. Blocking can not
::' occur when, for all possible asset vectors, all bases attain their maximum
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expected number of item; backorders at the same time.

Using Theorem 5.11 and the bounds in Thebreml 5.12 and 5.13,
we could construct a branch and bound algorithm for finding ‘;j('io)’
j=1,...,N. However, since we may have to find l:j(lio), J = 1,00.,N
for many values of 8;0 Ve attempt to reduce the computational burden by

using a greedy heuristic.

Algorithm A2: A greedy heuristic for finding ';j('io)' j=1,...,N:

Step 1: Set the current asset vector to §i+(‘i0)'

Step 2: For the current asset vector s§+, the set of eligible
bases consists of each basej for which agj < “bij('io)'

If the set of eligible bases is empty, stop. wub;, (s ()
is the optimal solution.

Step 3: Find HBij(s§+) for each eligible base;. If Hnij('g*) <0

for each eligible base, stop. Set s;+ = s§+. Otherwise,
increase by 1 the asset level of the base with the largest

value of Hnij(°§+)' j=1,...,N.

Step 4: Update the current asset vector and go to step 2.

We note that if there is no blocking, the greedy heuristic
will not stop until ';j('io) - “bij('io) for each base. The greedy
bheuristic may not find the true optimal solution if the greedy allocation
induces blocking that might not otherwise have occurred.

We can now use an implicit enumeration scheme to find the

optimal solution of the itemi

subproblem. Let
. N
TCMB, (s,,) = min { Z

y §=1

K(sij;sio) + umMEBO[si+]}

o

.
4
o Y
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b
5;? be the optimal contribution by the bases to TCMi(sio). Similar to the
§§¥ proof of Theorem 5.6, we can prove that TCMB;(sio) is & decreasing
:r; function of 80 Therefore, we can establish analogs of Theorem 5.7,
ké;} the bound (5.7), Corollary 5.8 and Theorem 5.9. No analog of Theorem 5.10
;::: is possible since adding an asset to the depot may unblock a basej. If
. that happens, s:j(sio) will increase.
5;*: An implicit enumeration scheme very similar to Algorithm Al can
é‘?: now be used for each item in order to find s:+, an undominated solution
'.‘; of (5.3). We leave the details to the reader. s:+ is also an undominated
%\3 solution of (5.2). Using standard techniques, we can now search for
%i:: the Generalized Lagrange Multipliers that produce an asset vector(s)
l whose inventory performance is acceptably close to the targets aeb and meb.
;';? Summar

}-

The FAVP assumes that management will not and/or cannot

I, N X
v

change the asset vector over the horizon. The problem then is to find

the least cost asset vector at time 0 that achieves management specified

Iy

(
J$h X targets on the average and maximum expected total number of base backorders
o
u%" over the horizon. The FAVP (5.2) is a non-linear non-convex integer

G

; programming problem. By using Generalized Lagrange Multipliers we were
i
~:§t able to show that the FAVP is separable by item. We developed an
S
;‘ %‘ P . ¢ s . . .
.: N efficient implicit enumeration scheme to find the optimal levels for
— each item and thereby find an undominated solution of the FAVP. 1In the -
Vs
Ao
}iﬁ next two chapters we discuss some of the computational issues involved
U
A . . . . . .
Nots in using the FAVP to obtain cost effective asset vectors in non-stationary
.. il '
o twvo echelon systems,
o
& "
e y




CHAPTER VI
zf APPROXIMATIONS TO THE BASE PIPELINE DISTRIBUTION

In using Algorithms Al and A2 to solve the FAVP we must find

the average and maximum expected total number of backorders at the bases

" for many different candidate asset policies. Therefore, for each item
3 we must find the time dependent distributions of the base pipelines for
various depot asset levels. We see from (4.40) that for a particular
item the distribution of Xj(t) s t >0, can be obtained from the convolution
of a Poisson distribution and the distribution of Qj(t) obtained from
(4.30) and (4.32). Most of the effort and cost incurred in obtaining
L the distribution of Xj(t) lies in obtaining the distribution of Qj(t).
3 To evaluate (4.30) and (4.32) we must perform many numerical integrations
of a function that is the product of probability terms that contain
> MVF. Depending on the behavior of this function in (0,t] it may be ‘
wy necessary to make many function evaluations in order to obtain accurate }
% results from a numerical integration routine (Conte and de Boor [1980]).
.,._ Furthermore, the MVF themselves may have to be numerically integrated.
: Therefore, the evaluation of (4.30) and (4.32) at many times during the
:: ) horizon can be extremely time consuming and costly. Furthermore, it
iz can also be time consuming to perform the actual convolution of the
;'- components of Xj(t) for many different times during the horizon and
EE':E': many different depot asset levels. For these reasons, in this chapter
:E:; 121
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we study approximations to the distribution of Xj(t). t > 0, that

reduce the burden and cost of solving the FAVP.

;',‘:-' We obtained data on three current Army weapon systems in
:EE::; order to form a realistic dsta base for the tests we report upon in
:":g. this chapter and in Chapter VII. A summary of the data for each weapon
;c;. system can be found in Appendix B. Rather than test an approximation
_‘ on an item by item basis, we felt it was more useful to test the approxima-
::E. tion over representative catalogs of items. As long as an approximation
';-;':‘: consistently performs well over representative catalogs, the approximation
;:E:.:' provides a valuable tool even when onme can find particular items and/or
E::'EE points in time during the horizon at which it fails.

8¢ All run times are for the CDC CYBER 700 with a cost of $800
":i per CPU hour. The weapon system used in a particular run will be
'J:;( identified by the abbreviations used in Appendix B. All numerical
o integrations were done using the International Mathematical and Statistical
k : Libraries subroutine DCADRE (IMSL [1979]) which uses adaptive Romberg
i integration (Conte and de Boor [1980]). The upper bound on relative
W error was 1078, (Run times and costs did not significantly change when
. this bound was lowered to 10_6). Finally, for consistency among the

different weapon systems, the targets aeb and meb in (5.2) were expressed

e:‘:: as a percentage of the number of each type of weapon system deployed.
:éi Therefore, a 10% aeb target actually implied a target of 32.7 backorders
_\ for the average expected total backorders om the AAH, 10 on the BHAWK,
£, : and 25 on the M60A3.

-E'E' We studied two approximations to the distributionm of Xj(t),
' j=1,2,...,§ for any t > 0. The first ome, which we call NEGBI,
:& approximates the distribution of Xj(t) with anegativebinomialdistribution
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with mean E[xj(t)] and variance VAR[Xj(t)] obtained from (4.40). A priori,
there are two reasons to believe that NEGBI may be a satisfactory
approximation. First, as we mentioned in Chapter IV, empirical evidence
from runs on the data base indicated that the probability mass function
(pmf) of xj(t) was unimodal and that VHR[xj(t)] > 1. The pmf of a
negative binomial distribution is unimodal. The negative binomial is
also a two parameter distribution with VMR > 1 8o we can ensure that
NEGBI uses the correct mean and variance and, hence, VMR. Secondly,
NEGBI has been shown to be an excellent approximation in stationary
systems (Slay [1980], Graves [1983]). The limiting distribution of
Qj(t) in the stationary case resembles (4.6). Therefore, there is
strong evidence to believe that at least for the proportionate base
case, NEGBI will be an excellent approximation.

The second approximation, called POISSON, approximates the

distribution of Xj(t) with a Poisson distribution with mean E[Xj(t)].
Based on our empirical evidence, this underestimates the variance of
Xj(t). The advantage that POISSON has over NEGBI is that we do not
have to calculate VAR[Xj(t)]. Therefore, we would normally expect that
POISSON would run in less than one-half the time of NEGBI. However,
from (4.35) we see that the integrands for E[Qj(t)] and E[Q%(t)] are very
similar. We used DCADRE (when necessary) to compute E[Qj(t)] and
stored the points at which the integrand was evaluated, along with the
terms that were common to the integrand of E[Q%(t)]. We then used the
trapezoid rule (Kitchen [1968]) with the points and values saved from
the computation of E[Qj(t)]. This significantly reduced the time needed
to compute E[Q%(t)]. As we shall see, POISSON was, on average, spprox-

imately 15% faster than NEGBI. Although this approach does not guarantee

'v-—w * e T - - '.'-‘.'.'.'..’.-'.-'. - “a - - - '
- ,r e I_-J' .r\. _.._\ Teteles Cerete T I R S .\' RN ':.' ‘J-\.-"‘ - .(\.
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f ,
':' that the accuracy achieved in calculating E[Qj(t)] will be matched in
,;'-'f" the calculation of E[Q%(t)], our tests indicated very little loss in
accuracy. In fact the same approach was used to reduce the run time
::§ for obtaining the entire exact distribution of Xj(t).
:‘? Table 1 is a8 comparison of the exact average expected total
\'j number of backorders at the bases with the projections made by NEGBI
: and POISSON, The FAVP was run using each approximation to determine
K asset policies for three target aeb percentages (meb was set to infinity).
;o‘ The final asset vector for each approximation supposedly achieved the
_j target aeb percentage. These final asset vectors were then correctly
: : evaluated using the exact distributions of the base pipelines. This
;'"' yielded the true.backorder ratio for those asset vectors where the backorder
{‘. ratio is defined as the average expected total number of backorders at
"t‘l' the bases divided by the total number of weapon systems deployed.
.;::: From Table 1 we see that NEGBI does significantly better than
:_ POISSON in projecting the true backorder ratio. In fact, using NEGBI
.' instead of the exact distributions resulted in very little loss of
' accuracy. Notice that in all cases NEGBI and POISSON underestimated
SE the backorder ratio. This is consistent with observations made by
Slay (1980) and Graves (1983) for stationary systems. Graves (1983)
}: reports on rare instances where NEGBI overstated the backorder ratio in
;{: a stationary system. We did not observe such aberrant behavior on any
'\P- of the items in our data base. We also note NEGBI performed best on
:::: the M60A3 which has a support structure consisting of proportionate bases.
EE Ultimately, we are concerned not with the error in projecting
- backorder ratios but with the cost of the assets required to achieve a
{\ target backorder ratio. Table 2 is a comparison of the inventory
<
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t‘.:A
1)
0y
'i‘:! Table 1: Exact Bsckorder Ratios For
: A ximate FAVP tions
?3 : AAR
:;\
fo'!
R
TARGET NEGBI PO1SSON
..\
0N 152 15.238% 16.64%
p 3
%§‘ 102 10.209% 11.31%
* 5% 5.146% 6.98%
£
K 12 1.040% 1.422
g
ﬁ
¢
System: BHAWK
o
s
o TARGET NEGBI POISSON
.‘
15% 15.573% 20.53%
o 102 10.612% 13.51%
o 5% 5.406% 8.64%
' 12 1.094% 2.60%
"
gy
8
:;:
‘\-.'{ System: M60A)
?‘.'
a{ TARGET NEGBI POISSON
o TARGET POISSON
'
5 152 15.1381%2 15.94%
1 .'
102 10.0834% 11.12%
e
3 5% 5.0442% 6.58%
=
:5 1% 1.0097% 1.392
e
Ko
150
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investment needed to achieve various target backorder ratios when
assets are determined using the FAVP with either the exact, NEGBI or POISSON
evaluation methods. In constructing Table 2 we proceeded as follows.

First, for each target backorder ratio we ran the FAVP with the exact

wran AN NSy W s F.E. KO SEERE SRy !
[
L
-

base pipeline calculations in order to obtain the true optimal asset vector

and true optimal inventory investment. Then, we ran the FAVP with each

F ot

of the approximations over a range of values for the Generalized Lagrange

Multiplier. We evaluated the asset vectors 8o obtained using the exact
base pipeline distributions. We then searched among these final aseet
vectors (using the exact evaluations) for the asset vector that achieved
the target backorder ratio. For example, using POISSON it cost $11.52
million to achieve a target backorder ratio of 5% for the AAH. POISSON
actually projected a lower backorder ratio for that money. However,
when the asset vector was evaluated using the exact base pipeline
distributions, a 5% backorder ratio was achieved.

In summary, we note that NEGBI performed very well with
little loss in accuracy or increase in inventory investment when compared
with the exact solution. NEGBI always performed considerably better
than POISSON with only a small increase in run times.

As expected, these results were duplicated when we sactivated
the constraint in (5.2) on the maximum expected total number of backorders
at the bases by setting meb to a finite value. NEGBI provides such a
good approximation to the base pipeline distributions that there was
little loss in accuracy in using NEGBI to project both the average
and maximum expected total number of backorders at the bases.

Once we accept the fact that the negative binomial is a

satisfactory approximation to a base”s pipeline distribution, it seems

Ul o o a a g o aad Sos il aam el e aan ai sl o aidh 0t A ALl soa R R LA DM ALA atd adi i aii A AL A

iy
Ny
N
J
N
|



" T P P T P P O P T O e P T O T P T Y o o G WP P T g 70 = T T T e T e e e g, -"'—*—-1
E.l
>
127
Table 2: Ipventory Cost Comparisons (Millions $)
o Systew: AAH
o+
TARGET NEGBI POISSON Exact
102 10.17 10.43 10.17
5% 11.12 11.52 11.08
, 12 12.62 13.34 12.51
RS
N (RUN TIME (sec): 274 240 2327 )
vt System: BHAWK
<%
TARGET NEGBI POISSON Exact
10% 18.43 18.53 18.43 |
o 5% 21.37 21.41 21,35
Y
n 1% 27 .66 27.71 27.56
- (RUN TIME (sec): 118 89 1123 )
)
»
System: M60A3
LN
§-. TARGET NEGBI POISSON Exact
. 10% 25.89 26.57 25.84
v 5% 33.62 34.30 33.41
o
Yo 12 40,91 43,05 40.74

(RUN TIME (sec): 337 301 1612 )
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| :$ that further effort toward reducing run times should be directed toward

e approximating E[Xj(t)] and VAR[Xj(t)] and avoiding the cumbersome

-

expressions in (4.33) for E[Qj(t)] and E[Qg(t)]. Approximations that
significantly reduce the number of numerical integrations that need to
by be performed will significantly reduce the run times of the FAVP. This,
Kt in our opinion, is the next logical extemsion to the research and

3 results presented in this chapter.
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CHAPTER VII
COMPUTATIONAL EXPERIENCE

In this chapter we briefly discuss the sensitivity of the
FAVP sgolutions to changes in the input data. In doing so, we shall
briefly discuss the efficacy of using the more convenient statiomary
models to approximate the FAVP results.

Most of the parameters of operation (PO) that are input to
the FAVP are used to determine the time-dependent distributions of the
pipelines at the depot and bases. The demand intensities at the bases
stand out as the most important input elements since they drive the
distributions of the bases” pipelines. Changes in the order and ship
times, base repair times and the inventory system”s maintenance concept
also impact upon the base pipelines. Changes in the depot input parameters
impact directly on the depot pipeline and indirectly on the base pipelines
through the distribution of Qj(t), t >0,

Table 3 illustrates the effect on total inventory investment
for the AAE helicopter when the demand intensity at each base for each
item was multiplied by a common scaling factor but the weapon system’s
performance target was not changed. As we see, the change in inventory
investment was far less than proportional to the change in scaling
factor. Furthermore, for bigger changes in scaling factor, the change

in inventory investment seemed less sensitive to the change in the bases”
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pipelines. This implies that if a 1002 increase in the bases” pipelines
Dt causes a 502 increase in inventory investment, an additional 1002 increase ‘
> 3 in the bases” pipelines will result in less than an additional 50% increase . ‘
§ in inventory investment.
Rt |
|
0 Table 2 ‘
E’;‘ of C ing I ities In Investment for AAR
Ef:';:. Scaling Factor Inventory investment (Millions $
g 8] 2.37
3 1 3.89
‘& 2 5.20
’_ G 4 7.33
;-_} 8 8.87
AN
ot In Table 4, we again changed the intensities of the demand
:SE for items on the AAH by a scaling factor, but this time we held all
:3;: asset levels fixed at the values obtained when the scaling factor was 1.

Note that the decrement in backorder ratio (Chapter VI) appears to

ig be more than proportional to the change in scaling factor but seems to
K0y be less sensitive to larger changes in the scaling factor.

' The FAVP selects the least cost asset vector that achieves
1HRE

3: the performance targets. Unit prices have absolutely no impact upon the
A

'v pipeline calculations for a particular asset vector. By examining
;‘ Algorithms Al and A2, we can see that if every unit price changed by
*g the same percentage, the FAVP would produce exactly the same stock list
:‘s to meet the performance targets. This is encouraging as economic
:R:, tradeoffs should be based on relative and not absolute costs.
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Iable &
I £ ¢l ing I iti Backorder Rati ¢ he AAR
Scaling Factor Backorder Ratjo
.5 2,382
1 5.012
2 10.45%
4 21,322
8 43,022

If only some unit prices change, the FAVP will try to substitute cheaper
items for the more expensive ones.

There are economies of scale to be had by consolidating
bases. Two bases each with a deployment of 50 AAH helicopters will
generally require a higher total inventory investment to achieve the
same performance as one base with 100 helicopters. This is a special
case of the results in Table 3,

Finally, the FAVP results can be extremely sensitive to the
initial system condition and the length of the scenario. Table 5 shows
the budget requirements in order to achieve approximately a 5% backorder
ratio for the AAH for various scenario lengths. For this run the AAH
usage modifiers (Appendix B) were set to 1 so that the system would
eventually reach steady state. All assets were assumed on-hand and
ready for issue at time 0.

Ve note from Table 5 that the steady state budget was considerably
more than the $2.42 million required for the original 30 day scenario.
This was simply due to the fact that stationary models ignore the

initial conditions and horizon length. We could have changed the
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‘E,i;l i
byt
Leg b
W
s Tsble 5
.:;l.:
) AAH Budgets for Variows Scemario lemgths
e Scenario L h (D Bud Millions
s:?li j
A 5 1.04 |
oL }
ity |
L 10 1.77
f;j; 30 2.42
il
:'!:i. 60 4,61
¥
oM Steady State 6.97 %
A 3
?? (Run time: 382 sec) |
b 1 |
."3‘.4‘? |
B ’
sl initial system condition so that the stationary model would understate
{
-y |
o the budget requirements. It is clear from Table 5 that one must proceed !
32 |
‘{.: cautiously when using stationary models to epproximate solutions of
e
whe non-stationary models.
i There are, of course, many heuristics one could try to improve
%
;;:,( upon the results of the stationary models. Table 6 shows the results
50
W of one such heuristic. We used SESAME (U.S. Army [1983]) to optimize
)
B
-':‘:'
!"':: Table 6
KM
e 8 . Stock
» Ak
‘: Scepario Length (Dgys Budget (Millions)
“l
Y
?‘g 5 1.39
Wy 10 2.08 ‘
- ‘
B 30 2.96 |
o,:'
KV 60 .34 |
:::‘::, 5.3 |
X ;
o Steady State 6.97 ‘
o (Run time: 23 sec) j
9 ‘
u:,b ‘
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but evaluated the final solutions using the FAVP methodology. The
SESAME search routine with the FAVP evaluator found the budget required
to achieve approximately a 5% backorder rate for various horizom lengths.
Note that run times were reduced by a factor of 18,

Once the usage modifier was set to 1, the AAH had no non-
stationary PO, It is certainly worthwhile to investigate further the
efficacy of using a stationary model to approximate the FAVP results
when all the PO are non-stationary. (We made no attempt to do so).
This would require adjustment of the data (possibly averaging) to meet
the input capabilities of the stationary models. Besides run time
savings, stationary models are also convenient in that they require
less data on the behavior of the PO than the FAVP does. Being able to
approximate FAVP results without the associated data collection and
input effort is a major reason for using stationary models to approximate
the results of non-stationary models. This is one area we feel deserves
a considerable amount of further research and study. As multi-echelon
systems grow both in the number of locations and the number of items,
judicious use of stationary models (including, possibly, coordinated
single echelon policies) may be the omly practical way to obtain cost

effective operating policies.

Next page is blank.
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! CHAPTER VIII

«;!:

o THE ASSET VECTOR TRANSFORMATION PROBLEM

W

,ﬂ:t:

x:‘:'

if_.uf The two fundamental questions that arise in controlling
bt inventories are when and how much to order. The FAVP answered these
o

:::. questions by determining the initial asset vector at time 0 and by following
¥

N

,*';'cf., a strict one-for-ome resupply policy thereafter. This resulted in a
5' constant asset vector and, consequently, constant total system stock
K 3 over the horizon. For many non-stationary systems it is inleasible to
DO,

:,‘ change the asset vector during the horizon. This could be due to any
;;;, and all of the following:

I

\" a. A short time horizon which prevents external procurement
;' )

" and expeditious redistribution of assets.

o b. Lack of asset visibility and control (e.g., a combat unit).
&

)

" c¢. High cost of effecting desired changes in the asset
i.l’

K vector during the horizonm.

:; For these systems, the FAVP is a satisfactory method for determining an
)

l"

_‘:0 optimal asset policy. However, in many non-stationary systems we
3

"y might reasonably expect that not only may the optimal asset vector
) change over time but also that the total system stock may change during
i

:;. the horizon. In order to accomplish these changes, management will
\‘l. .

1,

o intervene in the normal one-for-one resupply operations of the system
,?,. by directing procurements, disposals and/or redistributions of assets.
x

;::;
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These management interventions alomg with the initial asset vector and
the one-for-onme resupply policy, completely answer the when and how
much to order questions for non-stationary inventory systems. The
methods and costs involved in effecting these management decisions play
an important part in determining an optimal operating policy for the system.

In this chapter we explore some of the issues involved in
characterizing and specifying an optimal inventory control policy for
non-stationary systems. We introduce the Asset Vector Transformation
Problem (AVTP), a stochastic transshipment problem which begins to
tackle the question of if, when, and how management should intervemne to
effect asset vector changes during the horizon. The AVIP and the FAVP
together form a tool for analysis and determination of operating policies

for non-stationary multi-echelon inventory systems.

Characterization of Optimal Operating Policies

An operating policy must specify: an asset policy; an ordered
set of management intervention times, MT, at which procurement, disposal
and/or redistribution decisions are to be made; and the method for
accomplishing any planned procurements, disposals, and redistributions,
Between times in MT, the system follows normal one-for-one resupply rules.

At times in MT, disposals and new procurements always result in changes

in the asset vector and the system "condition" (see Chapter I). Redis-
tributions may change the asset vector but they always change the
'ij system condition. The choice of an asset vector for intervals between
management intervention times should therefore reflect the changes in

- system condition brought about by management decisions., However, the
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choice of an asset vector for each interval should also reflect the cost
involved in transforming one asset vector to another. These costs
can be significant when scenarios dictate extensive management directed
procurements, disposals, and redistributions.

We wish to choose an operating policy from among all feasible
operating policies 8o that operating costs (costs to review, procure,
dispose, hold, and redistribute) are minimized subject to constraints
on the average and worst performance over the horizon.

Define

hi(tl,tz) = holding cost for a unit of item; between
times t; and t,;

R(t) = cost of a management review at time t;

M = cardinality of MT;

Mc(s, (t7),s, (t),t) =expectedcost of effecting amanagement
decision at t which will result in a change in the
asset vector from s, (t7) to s+*(t+) and/or in a change
in the system condition;

8,,(*) = an asset policy;

AEBO[s, , ()] = the average expected total number of
backorders at the bases over the horizon given the
asset policy 8, (*);

MEBO[s,,(*)] = maximum value over the horizon of the
expected total number of backorders at the bases given
the asset policy 8,,(°);

tg = 0.

Then, the problem of determining an optimal operating policy can be

formulated as finding MT and s, (') that solve:

D I R TR I L L
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Min mzl{ 121 h (tm 1'tm)[si+(tm-l)'1N]

+ R(tm) + MC(s_H_(tm_l). s_H_(tm),tm)}
1
+ 121 b (6, T [s,, (£,) 1)

AEBO[s _, (*)] < aeb (8.1)

MEBO[s_, (*)] < meb

< <...
t St, < <

++(t) 2 0 and integer for all t.

The FAVP (5.2) is a special case of (8.1) obtained by assuming
either R(t) or MC(s, (t7),s,,(t),t) is infinite for all t > 0. This implies
that it is infeasible for management to intervene during the horizon.

Therefore, M is zero, hi(O,T) is simply C; and there is no need to

worry about finding the most cost effective ways to implement management
decisions. It is important to note that the solution to the FAVP
(5.2), along with setting MT equal to the null set, is a feasible
solution to (8.1).

(8.1) is solved at time 0 to determine the optimal operating
policy for a system using an HCP. MT is therefore fixed et time 0 and
operating policies may be expressed as functions of the system condition
at the times in MT. The system condition at any future time can only

be described stochastically. The cost of effecting any management

decisions at times in MT clearly depends upon the system condition at
these times. Therefore, this cost is a random variable and is included
in the objective function via its expected value.

Under a RTCP we have complete knowledge of the system condition
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at the current decision time. However, (8.1) must still be solved at each
decision time since our current decision may depend upon what we expect
to do in the future. Thus, under a RTCP, MT and operating policies may
be changed each time (8.1) is solved. The cost of effecting any management
decision at the current decision time is deterministic but the cost of
any future decisions is again a random variable.

The optimization problem (8.1) is verydifficult tosolve. Later,
we shall briefly discuss a heuristic for solving (8.1) when MT is fixed
at time 0., Before doing so, however, we need to introduce the AVIP, a
stochastic transshipment model that determines MC(s,, (t7),s  (t),t) for

any candidate time t and any candidate asset policy.

Formulation of the AVTP

Let t , 1 <m <M, be a management intervention time in MT and
consider the problem of transforming the system asset vector from
8,4(tg 1) to s, (¢t ). Let AS;(t) = s,,(t) * 1; and define for each
item i = 1,2,..,I,

DCi(ty-1sty) = (ks 0 Lk SN, a5 (ep ) > 85, ()

INi(tm_l,tm) = {k; 0 <k <N, 85 (e ) <8y (e )}

EQ;(ty1sty) = {k; 0 <k <N, 85, (e ) =8, (¢t )}
as the set of locations for which the item i asset level decreases,
increases or remains the same, respectively. For each item we can
identify the following cases:

Case la: Asi(tm-l) - ASi(tm); EQi(tm_l.tm) = {0,1,...,N}.

No procurements, disposals or redistributions are

necessary unless management wishes to change the

......
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system condition by forcing locations either to
exchange on-~hand assets for on-order assets or to
exchange one type of on-order asset for another type
of on-order asset.

Case 1b: AS.(t _;) = As;(t ); EQ;(t _;,t ) # {0,1,...,N},

m-1°
Procurements and disposals of item i are necessary
only if the system condition at t  prevents a re-
distribution of assets to attain s, (t ).

Case 2a: AS;(t ;) <As;(t ); DC.(t _y,t ) empty.

m-1°

Procurements are necessary to raise the asset positions

of the locations in INi( to-1 ,tm) to their target values.
Case 2b: AS;(t _;) < As;(t ); DC,(t _;,t ) not empty.

Along with external procurements there must be a

redistribution of current assets between locations in

pc, (e _1,t,) and IN (e _,,t ).

Case 3a: AS;(t__1) > As,(t ); IN.(¢t

i (tp- t,) empty.

m-1°
Disposals must be made to lower the asset positions

of the locations inDC;(t__;,t ) to their target values.

1 Case 3b: ASi(tm_l) > Asi(tm); INi(t tm) not empty.

m-1°
Along with disposals, there must be a redistribution

of assets between locations in DCi(t tm) and

m-1°

IN (e gatp).

The depot and basej may exchange an asset either by direct

shipment or by the creation/cancellation of a backorder at the depot
belonging to baaej. Baaej and basek may exchange an asset either by
direct shipment or by the reassignment to one base of a depot backorder

belonging to the other base. (By assumption, all backorders outstanding
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at a base belong to primary customers and not to other bases). Any redis-
' tribution of assets consists of a composition of these basic exchange
methods. We see that the ability to change from one asset vector to
another depends upon the system condition at the time the change is
. planned. For example, if base.

J

INi(tm_l,tm) there can be no direct exchange of an asset unless at th

is in DCi(tm_l,tm) and the depot is in

either basej has a unit on-hand or there is a depot backorder belonging

to basej. If this is not the case, the only way to attain the new

asset vector is by a simultaneous procurement at depot and disposal at

basej. It is highly unlikely this will ever be desirable. Rather, it

would probably be better to seek an ad justment to a different asset vector.
. Define, for i = 1,2,,.,I and j = 0,1,...,N:
Oﬂij(t) = number of units of item; on-hand at locationj

at time t;

; Zij(t) = number of depot backorders of item; at
‘j time t belonging to locationj;
L]
: X; 5k = number of on-hand units of item; directly
shipped from locationj to locationk;
L)
dsij = number of disposals of itemi at locationj;
y
X prij = number of new procurements of itemi at
location;; 3
J X
r Cbij = number of item; depot backorders belonging 4
» ‘-:!
v to location; that are cancelled; R
a
T nbij = number of item; depot backorders created that i
belong to locationj; %
Cxijk(xijk) = cost of directly shipping X ik units; i
p CCBij(Cbij) = cost of cancelling cbij depot backorders; 3
a A
2
!
g N
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CNBij(nbij) = cost of creating “bij depot backorders;
CPRij(prij) = cost of procuring prij units;
CDsij(dsij) = cost of disposing dsij units.

The AVTP at time t, can now be formulated as a stochastic

transshipment problem:

I N
Min )} ) E{CCB,, (cb,,) + CNB_ (nb )
151 §e0 13 %°13 13 "P13

(8.2)
+ CPRij(prij) + CDS(dsij) + kaj cxijk(xijk)}
subject to:
(la) For i=1,...,1 and J = 1,...,N:

+ cbi + ds - 2

L *qqn 3 ij k#jxikj - mbyy T Pryy

k#3
= sy5(tpy) = syy(tp)s
(ib) For i = 1,...,I:

[x +nb,,] +ds,, - z [x + c¢cb,, ] - pr
kéO i0k ik 10 k#0 ik0 ik i0

Si0(tp-1) = S10(ty)s

(2) ds

(tm) i 1,...,I; j =0,1,...,N;

13 < 813 CFn) ~ 24y

(3) ] %, < OH  (t) i=1,..0,I;5 3 = 0,1,...,K;
k# iik ij*m

4) cbij :_Zij(tm) i=1,...,1; 3 = 0,1,...,N;

(5) ] x,,, > a 1= 1,...,I; § = 0,1,...,N;
PR RS

(6) ] X, 2u 1=1,...,I; § = 0,1,...,N;
PR 13

where all variables are non-negative integers.
Constraint (1) is a balance constraint ensuring that the new

asset vector is attained. Constraint (2) restricts the disposals at
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locationj to the number of units on-hand, in diagnosis, in repair and

en route from the depot at to. Constraint (3) ensures that no location
ships more units than are on-hand while constraint (4) requires that
the number of depot backorders belonging to locationj that are cancelled
at t be less than the number outstanding. Constraints (5) and (6) are
additional supply and demand constraints by which management can alter
the system condition at t by requiring some locations to exchange
on-hand assets for on-order assets. These constraints may be employed
to change the system condition at t  even though there may be no desire
to change the asset vector. For example, (5) and (6) can be used to

require a base in EQi(t ,tm) to send an on-hand unit to another base

m-1
that is expected to have many customer demands backordered at to.
Since the sending base is in EQi(tm_l,tm), this base must receive a
replacement asset that will, perforce, be on~order. In fact, if management

sets aij = OHij(tm), 1ocationj will be required to ship all its on-hand

units. Some or all of these units may be replaced by on-order assets
in the form of external procurements and/or the creation of new depot

backorders belonging to locationj.
It is reasonable to assume that for all D 20,

CNBlj(nlj) >_CX10j(nlj) i-l,...I; j-l..'-N’

since creating a depot backorder belonging to basej will eventually

require shipping a serviceable unit from the depot to basej that otherwise
would not have been shipped. Under this assumption the depot will prefer
to ship units that are on-hand rather than to create new backorders. This

ensures that

{ n, J[OH, . (t ) - = 0
kgo ik 10'*m kao X4 0k)
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;

h) and thereby prevents the depot from having any backorders outstanding
3 while it also has on-hand stock.

o The AVTP (8.2) can be augmented with additional constraints .
é} that affect the system condition by forcing a location to exchange ome
% type of on-order asset for another type of on-order asset. These
3‘ constraints can also be used to change the system condition without
J changing the asset vector. For example, at time t, a base in INi(tm_l.tm)
Q [pc;(t _;,t )] can pass a procurement (disposal) action to a base
,% in EQ;(t _),t;) in exchange for the reassignment of an outstanding
E; depot backorder belonging to the latter (former) base. In this case,
? the latter (former) base loses (gains) ownership of an outstanding
\ depot backorder in exchange for a procurement (disposal) at that location.
x} Constraints of this type are similar to (5) and (6) in that they are
%; bounds on the number of procurements and disposals at a location,

e 1f aj; = uj; = 0, (8.2) always has a feasible solution as
.; 8,,(t;) can be achieved via procurements, disposals and the creation
5 and or cancellation of outstanding depot backorders. The AVIP is

then a stochastic transshipment problem with full recourse. If either

-
-,

‘-
24,

aj; or uj; is positive, (8.2) may not have a feasible solution indicating

that the new asset vector cannot be achieved. In this case management

S

must decide on an alternate asset vector until the next management

‘LI

ﬁ intervention time.

o

> For a discussion of solution techniques for stochastic trans-

'ﬁ shipment problems, the reader is referred to Madansky (1960), Walkup T
(]

I

,' and Wets (1966), Ziemba (1970a, 1970b), Huang et. al. (1977), Wets (1979) E

J .

B and Dempster (1980).
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Kot
,;.){ A Beuristic For D ining Optimal rating Policies
2
',:':: In principle, specifying an optimal operating policy requires
&5 decision rules for the selection of an asset vector for every possible
,:': - realization of the system condition at times in MT, However, these
5 rules are computationally cumbersome to obtain and probably impractical
ﬁ to implement in systems with many items and bases. In this section we
R propose to restrict the form of the decision rules and to use the FAVP
;“ and AVTP to restrict the set of candidate asset policies. The FAVP and
. AVIP thereby form a basis for a heuristic for determining an effective
R operating policy.
1 u For ;xpository purposes we assume that MT is fixed at time O
S and consists of a lone element, t*. The generalization to fixed MT
e with cardinality larger than one is straightforward. Say we have a set
; of candidate asset vectors, V;, with the property that each asset
;(_}i vector in V, satisfies the performance constraints in (8.1) during
Ls [0,t*). For each vy in Vy let V;(vg) be the set of companion asset
r vectors for use in [t*,T]. For each v;(vg) in V;(vg), the asset policy
% [vg,vi(vg)], along with the AVIP solution for transforming vg to vy(vg),
od satisfies the performance constraints in (8.1) during [0,T]. We restrict
_-..;’\ ourselves to operating policies of the following form:
4.-:2 a. At time 0 an asset policy ["3’ vI(va)] is chosen
" that minimizes holding and expected asset vector
f.j ) transformation costes over the horizom;
; b. At t* the system always switches from "; to v:(v:;)
(< regardless of the system condition at t".
::‘_': If aij = “ij = 0 for all i and j, the change at t* can always
i

e
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be accomplished (with a cost that depends on the actual system condition

-

* - . .
at t ). Management can elect to have system condition constraints in

4
-
»
-

the AVTP and still ensure that property b holds by replacing each a; with

Min [a;

3‘ 1j’°aij] and each u;; with

L Min [ug,, ] OB ).

o k#3

oo

A consequence of property b is that at t* the system asset vector always

'::'} changes to v?(vz) even though for a particular realization of the

o - system condition at t*, VI(VS) may no longer satisfy the performance

*:2 constraints during [t*,'.l']. For a system under an HCP this is reasonable

i

;:5. as vf(vs) was chosen with cognizance of this possibility. In fact, it

‘ is quite likely that under an HCP management would not have enough

;{ information on the system condition at t* to realize that v;(va) is no
: longer feasible.

n Restricting operating policies to the form above reduces the

; > problem to choosing "3 in V4 and v:(va) in Vl(v;) that minimizes

i3 BCo(vg) + HC,(v;(vg)) + MClyg,vy(vg),t™) (8.3)

;.::: vhere HCy(v) is the holding cost of asset vector v during [0,t¥) and

;E:' HC;(v) is the holding cost of asset vector v during [¢*, 7). (8.3) is

f;? formidable and cumbersome to solve unless the sets of candidate asset
. vectors are small. The second part of the heuristic uses the FAVP and

'; AVIP to construct small sets of candidate asset vectors.

.{_ Say vy is fixed in (8.3). Let f;(vjy) be the solution to the

] FAVP for [t*,T] vith initial system condition determined by v, and
; 4 the methods for transforming from vy to fl(vo) (obtained from the
AVIP). Ve note that the asset policy [vy,f;(vy)]) is feasible and has cost

o, BCo(v) + BC;(£,(vg)) + MC(vg,f;(vy),t*). (8.4)
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Since fy(vy) is the FAVP solution, any other vector in Vi(vg) must

necessarily have higher holding costs in [t*,T]. Therefore, if [vo,vl(vo)]

jg has lower total cost than (8.4) it must be true that

‘%?': MC(vg,£;(vg) ,t") - MC(vg,vy(vg),t™) 2 HC; (v (vp)) - HCy(£,(vg)) (8.5)
+ There are, of course, many asset vectors in V,(vjy) for which
: (8.5) may hold. However, we restrict attention to vectors vi(vg) > £,(vq)
'2* so that holding costs increase since no asset position for any item
9

decreases at any location. This ensures that the asset level for each
S0 item at each location is at least as large as the level that would have
O been obtained from solving the FAVP for [t*,T] with the proper initial
system condition. (The Army (U.S. Army [1983]) uses a similar policy when

changing peacetime asset levels at a management review time). If

o |
:3 f1(vg) 2 vy there can be no larger companion vector for which (8.5)
W holds since the larger vector must necessarily incur more transformation
& costs. In this case, vI(vo) = £,(vp).

ia; Now assume fy(vg) is not > vy. We restrict Vy(vy) to vectors
E vy(vg) such that for every item;, i =1,...,T and locationj, j=0,1,...N,
k viijivo) = £1550vp)  if £1;5(vg) 2 gy

o flij(vo) S-VIij(VO) £ v0ij othervise. (8.6)
W (Note that we have extended the notation in the obvious manner). All such
i;f asset vectors are feasible since fl(vo) satisfies the performance
;z constraints in (t*.T]. From (8.2) and (8.6) we see that the cost of
) transforming vy to any vi(vg) in Vj(vy) is no larger then the cost of
;; transforming vy to fy(vy). The cost of transforming vo to any v;(vq)
.f . in Vj(vg) can be obtained precisely by a parametric solution of the

? AVIP for vy and fl(vo). The parameters are the right hand sides of the

balance constraints for the items and locations for which VOij > flij'
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In this manner, the transformation costs for all vectors in Vl(vo) can
be obtained by solving onlyone, albeit parametric, stochastic transshipment
problem,

It is now a straightforward matter to select VI("O) as the

- o -

asset vector in Vl(vo) that minimizes the sum of transformation and
holding costs in [t*,'l‘]. Depending on the cost structure it may be

possible to further reduce the computational burden. For example, say

that it is possible to order V;(v,;) so that the holding cost is an
. increasing convex function on Vl(vo) and the transformation cost is a
decreasing concave function on Vi(vy). We can then select v;(vo) as
the first asset vector for which the increase in holding cost exceeds

the decrease in transformation cost.

.

All that remains is the selection of Vo. Let fo be the

XA X A

solution of the FAVP over [O,t*). The best asset policy using f has cost

TC(fy) = HCy(£y) + HCy[v](£0)] + MCl£q,v (£q),t¥].

. Vo should therefore contain all vectors vo that are feasible in [0,t*)

9

) and satisfy HCy(fy) < HCy(vg) < TC(fy). However, we shall assume that

for all vy in Vg, Hcllv;(vo)] = HCllv;(fo)]. Vo can then be restricted

-
-’

to the vo such that

ol St 3

,, HCy(vg) < HCo(£y) + MCl£q,v](£y),t¥]. (8.7)

There may be many asset vectors that satisfy (8.7). Some of these
A vectors are obtained during the implicit enumeration scheme (see Chapter V)

used to determine fo. The heuristic restricts Vo to precisely these
i asset vectors. Hopefully, this will reduce V; to a manageable size.
Otherwise, it may be mecessary to further reduce the size of Vo using
heuristics based on the special cost structure of a particular problem.

In summary, the steps of the heuristic we propose are:

.-
L4
2’
of
3
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e

;é‘g (1) Determine f, and f;(fy). Set vy = f5. Set the
“-:: cost of the incumbent solution to infinity.

::it{ \ (2) 1f £)(vy) 2 vq set vI(vo) = £,(vg) and go to step 5.
:‘\ Otherwise, comstruct Vl(vo) using (8.6).

) (3) Parametrically solve the AVIP for v, and fl(vo)
}:;" thereby determining the tramsformation costs for
'E:EE all vy(vq) in Vy(vp).

‘:'J‘ (4) Find vf(vo) that minimizes

$§1‘. HC;(vy(vg)) + MC(vo.vl(vo),t*).

2? (5) If the cost of [vo.vf(vo)l in (8.3) is less than
::3: the cost of the incumbent, set ["O'VI(VO)] as the
incumbent asset policy.

»f; (6) If vy = £, construct Vg using (8.7). Ochervise, go
!’a':S to step 7.

:e' (7) 1f all elements of Vo have been exsmined, stop.
z Otherwise, choose & new vy and return to step 2.

:, h This heuristic can be considered to be myopic in the sense
‘c‘:\'. that if transformation costs are assumed to be irrelevant and arbitrarily
? \ set to 0, the heuristic sets "3 to the FAVP solution over [0,t*). Im
;.9:':.. fact the ultimate myopic heuristic would set vs = f; and never bother
' vith the construction of Vy. This would greatly reduce the computational
#‘j burden as only one parametric AVIP would need to be solved to determine
:‘ an asset policy.

E> - Assume that conditions are such that we are certain that at
:,?:.). . t* the asset position of every item at every location should incresse.
:'::.': Furthermore, say for all vy in Vg, f;(vg) > vy. The heuristic then
8 chooses among asset policies of the form ["O’fl("o)]' It is interesting
b

K\
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to note that the heuristic may not select and the optimal solution may
not be [£y,f,(f5)). This is because transformations are not instantaneous
so that some vector other than f; may leave the system better positioned
at t*. This can result in a significant reduction in holding costs
over [t*,t) than would result if [fy,f,(f))] were selected as the asset

policy.
Summar

In this chapter we generalized the FAVP by allowing management
to change the asset vector at any time during the horizon. We gave a
brief overview of the issues and difficulties involved in obtaining
solutions (operating policies) to this more general problem. We showed
that an operating policy must consider the costs and methods of transforming

one asset vector to another. For this reason we introduced the AVTP

and showed that the FAVP solution was an integral part of the solution
of the general inventory control problem. This general inventory control
problem appears to be very difficult and cumbersome to solve. However,
we outlined a heuristic using the FAVP and AVIP to obtain approximately
optimal operating policies for non-gtationary multi-echelon imventory

systems.
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NN
e
) : The main goal of this dissertation was to develop a model and

)

i methodology for determining "cost effective" asset policies for a two
e echelon non-stationary one-for-one inventory system in which primary
A
xé customer demands at the bases form mutually independent NHPP. 1In order
2R to accomplish this, it was necessary to do three things. First, we had
%@ to obtain the time dependent distributions of the pipelines at the depot
3
é%, and bases. In Chapter III we derived the depot pipeline distribution
KT
(A
! by considering the depot as a single echelon inventory system unto
3" itself. In Chapter IV we studied the supply interactions between the
e
P
5# depot and bases and thereby derived the time dependent distributions of
P
K
Wt the bases” pipelines as functions of the depot”s asset policy. We also
fg studied and obtained results on other important stochastic processes

;f; that arise at the depot and bases. These results were used to derive
l.

%

K the time dependent distributions of customer wait at the bases and the
o time dependent distribution of the delay at the depot before satisfying
e

W a base resupply request.

"6
P . .

5, S8econdly, we had to precisely define what we meant by a cost
ﬂ? effective (efficient) asset policy. In Chapter V we discussed the

()
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problem of choosing meaningful inventory performasnce measures that
adequately distinguished and ranked different asset policies for a
non-stationary system. We decided that two performance measures were .
necessary: one to monitor average performance over the horizon and ome
to monitor the worst performance over the horizon. Specifically, we
chose to measure the average and maximum expected total number of customer
backorders outstanding at the bases over the horizon since at any point
in time a customer backorder directly corresponded to an inoperable
veapon system/end item. An efficient asset policy was then defined as
an asset policy that achieved, at the least cost, management specified
targets on the average and maximum expected total number of customer
backorders over the horizom,

The FAVP introduced in Chapter V assumed that during the
horizon management could not change the asset level of any item at any
location., Therefore, the cost of an asset policy was simply the cost
of procuring (holding) the assets that were placed at the locations in
the system at the beginning of the horizon. Hence, an efficient asset
policy could be obtained by solving (5.2).

In Chapter VIII we extended the FAVP by allowing management
to change the asset levels of one or more items at one or more locations
at one or more times during the horizon. In that chapter we considered

the cost of an asset policy as: the costs to procure, hold and dispose

assets during the horizon; the cost to review/observe the system condition
at management review times; and the cost of redistributing assets among
the locations in the system. Consideration of this latter cost led to
the formulation of the AVTP, a stochastic transshipment problem for

determining the least cost method of transforming one system asset

47
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policy could be obtained as a by-product of the optimal operating
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B3
v
:“' vector to another. Under the above cost structure, an efficient asset
)

-
-

policy obtained by solving (8.1).

-
- -

3

Lastly, we had to actually obtain efficient asset policies by

R

'
g&: solving the mathematical pr-gramming problems (5.2) and (8.1). In
N Chapter V we developed an implicit enumeration scheme to solve the
\ ¥ non-linear integer program (5.2). We established in Chapter VI the
) »

efficacy of approximating the computationally cumbersome base pipelime

-
‘-
br,

distribution with a negative binomial distribution. Use of this approx-

oy "c-"ﬁ' S ‘:‘
. Fw &

-

imation significantly reduced the effort and cost involved in solving

1%
1.8
'
iy_ (5.2). 1In Chapter VII we reported on some computational experience
% with the FAVP, 1In that chapter we also briefly addressed the issue of
'.'c
;gﬁ- using the more facile steady state models such as SESAME (U.S. Army [1983])
:j3 to obtain approximate solutions to the FAVP. This is certainly an
BN interesting area for further research.
»
\
0“ »
» It is verydifficult, costly and burdensome to obtain the optimal
n
) . . .
) solutions to (8.1). The reader can appreciate the enormity of the task
V4 by poting the effort involved in solving the FAVP which is itself a
o
;? special case of (8.1). However, in Chapter VIII we briefly outlined a
)
fJT heuristic using the FAVP and AVIP to obtain close to optimal solutioms
R to (8.1). Developing algorithms for obtaining exact and/or approximate
™
7
‘5j solutions to (8.1) is a natural and fruitful continuation of the research
2
] presented in this dissertation.
e
i .
R Extensions
‘>
J ,'u
Ly
R We mentioned above two areas of research that we felt were
%,
%W
8
) \:

s

-
4

L Y ot .-_- L I L A R

" Lo pt
,

o
L ¥ il




154

natural continuations of the research presented in this dissertationmn.
In this section we will briefly present some of our (untested) thoughts
on other extensions to some of the results we have presented.

The optimization scheme in Chapter V for solving the FAVP
requires that for any specific asset policy we be able to calculate the
sverage and maximum expected total number of backorders at the bases
over the horizon. However, the optimization scheme itself and the
other results in Chapter V are essentially independent of the actual
distributions of the pipelines and the backorders at the locations.
Therefore, the implicit enumeration scheme used to solve the FAVP is
robust in the sense that it does not depend on the most of the major
assumptions made in Chapter II. Therefore, the extensions we discuss
below will generally only impact upon how we calculate the distributions
of the pipelines and backorders at the locations in the inventory system.

(1) N_> 2 Echelons: Because of our assumptions, the depot
(echelon-N) pipeline will always have a Poisson distribution with mean
given by (3.6). The time dependent distributions of the pipelines at the
echelon-(N-1) locations are precisely the distributions that we have
given for the base pipelines. In fact, all of the results obtained for
the bases in this dissertation hold for the echelon~(N-1) locations.
As long as the order and ship times between locations are constant, we
can establish an analog to Theorem 4.8 for locations below echelon-(N-1).

This allows us to write the pipeline at any time at location: on echelon-K,

J
] <K <N -1, as the sum of: a Poisson component representing the
number of units in-repair at locationj and the number of units due-in

from the external supplier; a Poisson compoment representing the number

of failed units sent to higher echelon resuppliers for which serviceable
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e

N

replacements could not yet have arrived at locationj (even if the

F:

higher echelon resuppliers had infinite stock) because of the constant
order and ship times; and a component representing the number of higher

echelon backorders belonging to locationj. (4.30) and (4.32) can be

used to find the distribution of the number of depot backorders belonging

to locationj. The difficulty in extending our results to N > 2 echelons

lies in finding the distribution of the number of backorders at echelons

(R+1) through (N-1) that belong to locationj.

1f locationj is a "proportionate location" (see Chapter IV)

then we can use (4.6) to find the distribution of the number of higher

echelon backorders that belong to locationj. Otherwise, since our

research has shown that locations Lelow the depot will usually not have
Poisson pipelines, we must modify the arguments we used to find the
distribution of Qj(t), t > 0. However, the same underlying approach is
still valid. Namely, for each higher echelon resupplier of locationj
we need to find the time interval over which backorders accumulated and
the number of resupply requests made by locationj

The fact that higher echelon locations usually do not have Poisson

during that interval.

pipelines will probably lead to even more complex and cumbersome expressions
than (4.30) and (4.32). However, it is ressonable to expect that the
negative binomial will still be an effective approximating distribution.

\ In fact, since we have shown the negative binomial distribution with

proper mean and variance can be used to approximate (4.6), we know

o that the negative binomial approximation is adequate for N-echelon
g J':'
- systems consisting of proportionate locatiouns.
i f."
~ . - . . . .
l’ y The implicit enumeration scheme given in Chapter V for solving
54 the FAVP is easily extended to problems with N > 2 echelons. We can
~
N,
N
[
B
*
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n
o
52 generalize Theorems 5.6 and 5.7 so that bounds can be established on the
':: optimal asset levels at all the locations on echelons 2 through N. By
i_ fixing the asset levels at all the locations on echelons 2 through N we
-
;;; can calculate the distributions of the pipelines at the echelon-l
;f locations. We can then find the optimal asset levels at the echelon-1
v locations in precisely the same msnner that we found the optimal base
E asset levels in Chapter V. Now, however, to find the optimal asset
.S; vecior we must not only search over all possible depot asset levels but
. also over all possible asset levels at the locations on echelong 2
95 through N - 1.
;;f (2) Finite Repair Capacity/Batch Repair Policy: Assumptions
y‘ 4, 5, and 6, by maintaining the statistical independence of the times
: E different units spend in the repair facility, allowed us to use the
i; Splitting Property of NHPP to establish that the number of units in the
repair facility at a location had a Poisson distribution. This proved
;Et extremely convenient when we determined the distributions of the pipelines
EE& at the depot and bases. In principle, we could have removed Assumptions
‘“. 5 and 6 at the bases. We would then have had to obtain the tramsient
;ig distribution of a finite server queue (possibly with a batch service
j& policy). Such distributions are notoriously complex, difficult to
= obtain, and cumbersome to use. Removing Assumptions 5 and 6 at the
;S depot would result in a non-Poisson depot pipeline. Computing the
b
;{ distribution of Qj(t), j=1,2,...N, would then require modification of
g the arguments used in Chapter IV (see paragraph (1) above). .
.i; The analysis becomes even more difficult when Assumptions 5
i; and 6 are removed at the diagnostic facilities. Our arguments relied
N heavily upon the fact that the output of a location’s diagnostic facility
N
ﬁi
o
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o
%a\ was a NHPP. To establish independence among the components of a location’s
?}! pipeline we also relied on the fact that the oumber of departures from
%ﬁg : a diagnostic facility during (tl,tzl was independent of the number of
;é; units remaining in the same diagnostic facility at ty. As far as we know,
e these results are valid only when the diagnostic facility acts as an
§" M(t)/G(t)/ ® queue. (In stationary systems we could deal with M/M/s
*' queues at the diagnostic and repair facilities ([Kleinrock (1975)]).
b
K We believe that losing the independence of the different components of ?
;ﬁﬁ the pipeline at a location would lead to intractable expressions that 3
i gﬁ would, in practice, be impossible to implement.
i‘l (3) oOther Demand Processes: Most of the results in this
;;% dissertation c;; be extended to the case where customer demands at the
:S% bases form independent NHCPP, The problems involved in using other
i types of demand processes seem insurmountable. In fact, to the author’s
vg@: knowledge, there is no adequate model for stationary continuous review
Ea%; multi-echelon one-for-one inventory systems in which customer demands
- do not form a homogeneous (compound) Poisson Process.
'::: (4) Uncertainty in the Intemsity Function: The correct way
:é*s to deal with a prior distribution on the demand intensity at a base is
h“ to calculate the performance of an asset policy for each possible value
i;; of the demand intenmsity and then to weight these performances by the
g-s prior. Attempting to account for uncertainty in the intensity function
5&; by developing a NHCPP model of demand ignores the correlation of demand
.{’ at the depot and bases when there is uncertainty in the base demand
K-
séﬁ intensity. At best this approach would be an approximation whose
v effectiveness would have to be investigated.
éqs (5) Indentured Items: An indentured item is a module that
i
¥
N
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consists of several components that can be rewoved from the module.

The basic idea behind this type of design is that when a module fails

:§ (thereby causing a weapon system/end item to fail), a failed compoment
‘.ﬂ can be quickly removed and replaced. The module is then serviceable
:& vhile repair proceeds on the failed component. Therefore, the actual
_.' downtime of the module will be less than if the repair had to be done
:'-4’., on the whole module. Since serviceable components are not always
3

’:o.. available, a location”s pipeline must include the number of modules
:;.:.: ) avaiting serviceable components. (4.30), (4.32) and (2.2) can be used
:’ to find the number of backorders for each component at each location,
" This quantity is then added to the rest of the quantities in each

location”s pipeline. The FAVP can be straightforwardly extended to

>N
—“r
X

LT

consider the tradeoffs between investments in modules and components.

",'\:‘ The other assumptions in Chapter II (including the assumption
X . of a one-for-one resupply policy) are identical to the assumptions in
,(}:?: METRIC (Sherbrooke [1968]). Most of the stationary continuous review
b W multi-echelon models in the literature are basically variants of METRIC
.f and they have adopted the same set of assumptions. The difficulties
gi and issues involved in relaxing these assumptions (along with some
' suggested research directions) have been discussed in the literature
:: (see, for example, Kaplan [1980]) and will not be repeated here.
'\.E Further research into developing tractable models and methodologies
'f ¢ vhen some or all of these assumptions are removed would be useful in
:; the analysis of both stationary and non-stationary multi-echelon inventory
‘ :'J; systems,

V.
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APPENDIX A
PROPERTIES OF NON-HOMOGENEOUS POISSON PROCESSES

This appendix catalogs some useful and important properties

of non-homogeneous Poisson Processes (NHPP). Many of these correspond
to results for homogeneous Poisson Processes and many can easily be
generalized to non-homogeneous compound Poisson Processes. We assume,
for ease of exposition, that all mean value functions (MVF) are differ-
entiable.
Pl: Let {{N,(t), t > 0} i = 1,2,...} be s countable set of mutually
statistically independent NHPP with the ith process having intensity
A;(t) and MVF m;(t) with [ m;(t) <= for all t > 0. Define for t 20,
N(t) = ZNi(t) as the superposition of the NHPP. Then {(N(t), t > 0} is
a NHPP with intensity A(t) = in(t) and MVF m(t) = Zmi(t) for all t > 0,
Proof: Define for t > 0 and |z]| <1

g(z,t) = E[2N(t))

()] . =3 (€)(1-2)

g;(z,t) = E[z i i=1,2,....

By independence

- m;(t)(1-2) t 20, |z <1

glz,t) = e
so that N(t) has a Poisson distribution with mean ) m;(t). Clearly,
N(0) = 0, and the fact that N(t) has independent increments follows

from the fact that each N;(t) has independent increments. /

For the remainder of this appendix let {N(t), t > 0} be a NHPP
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with intensity Mt) and differentiable MVF m(t), t > 0. Property 2 is
given as a problem in Ross (1970) and Property 3 is given as a problem
in both Parzen (1962) and Ross (1970).

P2: For all 0 <s <t, Pr(N(s) = 1|N(t) = 1) = u(s)/m(t).

P : - _ .
Proof Pr(N(s) = 1|N(t) = 1) = Pr(N(s) Pr%q(r:)(tz 1)N(s) 0)

e_m(s)m(s) e-[m(t) = m(s)] . m(S) . (A 1)
e-m(t)m(t) m(t) //

Given an event occurred in (0,t], P2 shows that the time that
the event occurred has the same distribution as a random variable with
distribution function m(s)/m(t), 0 <s <t and that the probability density

function of the time of occurrence of that event is

£s) = & Prewee) = 15(e) = 1) = ﬁi(% . *.2)

P3: Given N(t) = n, the joint distribution of the n epochs at which
events occurred, t; <ty ... St <t is the same as if they were
order statistics corresponding to n i.i.d. random variables Y;, Y,,...Y,

vith common distribution

0

0 <s < t,

F(s) =

N

m(t

Proof: Let Y <Y eee <Y be the order statistics corresponding
(1] (2] [n]

to Y;, Yp,...,Y The joint density function of these order statistics

n'

is given by

n
8(81-52,---,sn) = nl ¥ f(si) 0 <8 <8y <8
vhere f(s) is given by (A.2). Thus,
n! n
3(81’ i=1,2,...,0) = o HA(si). (A.3)
m(t) 1
:3\ Let hi be small enough so that s; + h; < s;.;. Then
X U
RS
Q*
W |
|
|
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Thus,
n m(s,+h,) - m(s,)
f(sl,sz,...,sulN(t) =) = n! = T 1im i 1h 4
n(t) 1 hi*O i
n
n i
m(t)" 1
which is precisely (A.3) /1
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Pr(s iti <8y + hi' i=1,..,n)

Pr(N(t)=n)

i

Pr(s, <t, <8 +hy i=1,..,n|N(t)=n) =

i i

= Pr(N(si+hi) - N(si) =] i=1,..,n;
N(si) - N(si_1 + hi—l) =0 1i=2,...,n;
N(sl) - N(0) = 0;

N(t) - N(sn+hn) = 0)/Pr(N(t) = n).

Since the intervals ['i’ s; +bh;], i=1,...,n do not overlap,

i
and the number of events in each interval has a Poisson distribution
with mean equal to the MVF over the interval, the above becomes after

some reduction and rearrangement,

n

o, m(t) ¢ [m(s +h,) - m(s,)] ! .
1 a _
o m(t) n(t)?/n! 2(e)" g [m(81+hi) w(s,)].
Therefore,
Pr(si Sty <8 +hy, 1 =1,...n|0(t) = n) ol ; m(si+h1) _ m(si)
;Il h n(t)" 1 hy
1 i

Taking the limit of both sides as the h; + 0 uniformly we find that the
left side is just an ordinary probability density function and that
this exists since the right hand side limit exists by the assumption

that the MVF is differentiable.
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As a consequence of P3, if an event of the NHPP occurred
in (0,t] the time that this event occurred has distribution function
m(s)/m(t) and density A(s)/m(t), 0 < s < t, independently of any other
events that have occurred. The next two properties are simple corollaries
of this powerful fact.

P4: For 0 <s <t and 0 <k <n,

k n-k
- - ) = (M) &) - n(s)
Pr(N(s) = k|N(t) = n) (k)(m(t)) @} m(t)) (A-?i
P5: Let W, be the time of the kth event of the NHPP, k = 1,2,...
For 1 <k <n, the density of W, given N(t) = n is
k-1 n-k
n! m(s) _ m(s) A(s
DTe! @) ¢ ae) E%?% (A.5)
Proof:
n
Pr(W < s[N(t) =n) = ] Ppr(N(s) = J|N(t) = n)
=k
Use (A.4) and differentiate to get (A.5). 1/

Alternatively, and as a direct consequence of P3, (A.5) is
obtained by noting that given N(t) = n, W, e [s, s+ds] iff k-1 of the
n events occurred before s, n-k occurred after s+ds and one occurred
in [s, s+ds]. Since the event times behave as independent random
variables with distribution function F(s), (A.5) follows. ll
P6: Let {{N;(t), t > O} i = 1,2,...} be a countable collection of
independent NHPP with m(t) = ] m;(t) < = for all t > 0. Let N(t)
= ZNi(t) be their superposition. Then,

Pr(Ni(t) = 1|N(t) = 1) = mi(t)/m(t).

Proof: Clearly, we have that

B i

-------
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-mi(t) -m
Pr(¥,(6) = 1, N(t) = 1) = e m () T e ]
1

-m(t).

(t)

= mi(t) e

Dividing by Pr(N(t) = 1) (see P1) yields the desired result. /1
P7: Let {{N;(t), t > 0} i = 1,2...} and {N(t), t 2 O} be as in ES.

Then for t 2 0,

an event of the superposition A ()
Pr { process that occurs at t is } = Y)\L—) (A.6)
from the ith NHPP j 3t

independently of the other events in (0,t].

Proof: By P6, for h > 0,

Pr(N, (t+h) - N (t) = 1|N(t+h) - N(t) = 1)
mi(t+h) - mi(t) [mi(t+h) - mi(t)]/h
" m(t+h) - o(t)  [m(t+h) - m(t)]/h  °

Taking the limit as h » 0 yields (A.6). Independence follows from
the independent increment property of the superposition process (P1).//
P8: Let {{N,(t), t 20} i =1,2,...} and {N(t), t > 0} be as in P6,
and let yi(t) be the probability that an event of the superposition

process that occurred in (0,t] was from the ith NHPP. Then, for t 2 0,
v (£) = m (t)/m(t) (A.7)

independently of the other events in (0,t].

Proof: By P3 and Pl,

t )
v =) M® e e O
0 inj (x) m(t) m(t)
Independence follows trivially as in P7. /1l

Therefore, if an event of the superposition process is known

to have occurred in (0,t}, the probability it was an event of the
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ith NHPP is given by (A.7) and the fact that this event was from the
ith NHPP has no effect on the probabilities that other events of the
superposition process that occurred in (0,t] were or were not from
the ith NHPP, This immediately leads to

P9: Let {{N;(t), t >0} i =1,2,...} and (N(t), t 2 O} be as in P6.

For m < n,

n mi(t) m mi(t) o
Pr(N, () = n|N(t) = n) = ) (_m(t)) @ -3® ) /"

Property 1 ensures that the superposition of independent
NHPP is itself a NHPP. Property 10, as a sort of dual to Property
1, ensures that a NHPP can be "split" into independent constituent
NHPP,
P10 (Splitting Property): Suppose an event of the NHPP {N(t),t > 0}
that occurs at time t > 0 is classified as a type i event with probability
p;(t), i = 1,2... (ZPi(t) = 1 for all t) and that classification of
each event is independent of the classification of other events. Let
Ni(t) be the number of type i events that have occurred by time t.
Then the counting process {N;(t), t > 0} is a NHPP with intensity A ()
= A(t)p;(t) and MVF m;(t) = étl(s)pi(s)ds. Furthermore, {{N;(t), t > 0}
i=1,2,...} are mutually statistically independent.

Proof: Given an event occurred in (tl,tzl, the probability it was

classified ae type i is

t
2
_ XN )
ci(tl,tz) f pi(x) e = mit) dx 1=1,2,...
t 2 1
1
independently of the other events that occurred in (tl.tzl. Therefore, )
4 '
'é (N;(ty) - Ni(t1)|N(t2) - N(t;)] is & Binomial random variable with
0
W parameters N(t,) - N(t;) and c;(t;,ty) so that for lz|< 1
E:
oot
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N, (t)) - N (t ) N(t,) - N(tl)

Elz IN(t ) = N(EDT = [1 - ¢, (ty,t,) (1-2)] .

Since N(t,) - N(t;) is Poisson with mean n(ty) - w(t;) and
1 - ci(tl,tz)(l-z)l <1,

N, (£,)-N, (t))
8;(z,t,,t,) = E[2 J = exp[-c, (t;,t,) (1-2) (m(ty)-m(t,))].

Therefore, N;(t,) - Ni(tl) has a Poisson distribution with mean
c;(ty,ty) [m(ty)-m(t;)]. 1In particular, N;(t) has a Poisson distribution
with mean ci(O,t)m(t), i=1,2,....

That each process has independent increments follows straight-
forwardly since {N(t), t > 0} has independent increments and each
event is classified independently of other events,

Since for all i, Ni(O) =0, {Ni(t), t > 0} has independent
increments and the number of type i events in any interval has a Poisson
distribution, (Ni(t), t > 0) is 8 NHPP, i = 1,2,,.. Al)l that remains
is to show that the processes are mutually independent.

Let Z = (Z), Z,...) be a vector such that |Z;|< 1 for all

Nl(t)] .

i and define the joint generating function g(Z,t) = Ef Z; By

the Law of Total Probability,

N, (®)
8(Z,t) = Epcpy [E(f zy RIGE

In light of the earlier discussion we know the joint distribution
of (Nl(t), Nz(t),...l N(t)) is multinomial with parameters N(t) and

ci(O,t), i=1,2,... Therefore,
8(z,t) = EN(:)“ZH“’-”ZRM)]

Since N(t) has a Poi.son distribution and |} ¢ ((0,t)Z;] < 1 we have that
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P
o 8(Z,t) = exp (-m(t) A-)c,(0,t)Z,))
Yy i
A1)
- - exp(-§ n(t)e, (0,t) (1-2,))
\;::')
1
f.i“' = 2 gi(zioolt)
et
o where in the next to the last equality we used the fact tbat§ c;(0,t)=1,
or
)
:\s Independence is thus established for (0,t] and can be similarly established
K
N for any non-overlapping time intervals. /1l
" The next properties are simple properties of NHPP given
i‘.'l
:::" as problems in Parzen (1962) and included here for completeness.
:*‘%‘
5::3 Proofs are straightforward and therefore omitted.
vl Let Tg = 0;
o8 T; = time between the (i-1)st and ith event of a NHPP;
o
A5 n
R Wo=) T n=0,1,2,...;
i=0
_'{ B(t) = Pr(T, <t) n=0,1,2,...;
N
-‘% b (t) = & B (t) =0,1,2,...;
:' n dt n n i It A |
JSF
e Gn(t) = Pt(Wu <t) n=0,1,2,...;
4
oy galt) = $= G,(1) o =0,1,2,....
s )
.:l.'
S -m(t)

t>0

Pll: b, (t) = A(t)e

-m(t+t1) - ot L

. ) )
P12: b, (t[t)) = e 17 A(t4ey) 0<t, <t.

(@A) - i)
b (€]t atyyeenst J) = A(EH 1) e n-1 n

o]
[
W

= bn(t|wn_l) t>0
By P.3, the nth inter-arrival time depends on the first

n-1 inter-arrivel times only through their sum, Wo-1+ While they

------------
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are not independent, the inter-arrival times have conditionally exponential
B distributions. Of course, if A(t) = A for all t, the nth inter-arrival
;:; time has an exponential distribution and does not depend on the waiting

time, Wn_l.

Pi4: g (t) = e m(t) mgq“ 1 A(t) t > 0.
. (n-1)!

v _ -(m(etW 1) - oW _,))
’ P15: B _(c[W ) =1-B (t|¥ ;) =e " t > 0.

e .
R Pl6: b (t) = J A(s) e (¥ ®y(e)n2 ) (ets) ds > 2
; :"3 - " 0 (n-2)1 t>0

n: P17: B () =1-B (t) = f e™(t+8)n(6)02 A(g) ds  n
{ (n-2)! t
b

-.::' Next page is blank.
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APPENDIX B

DESCRIPTION OF THE DATA BASE

We obtained data on three U. S. Army weapon systems in order
to establish a realistic data base for the testing and validation
reported upon in this dissertation. In this appendix, we give a brief
description of this data. All data are unclassified and some scenario
data were fictionalized but are typical of actual scenario data.

Each of the weapon systems described below actually consists
of over 1000 items. However, we restricted our data collection efforts
to the high cost items on each system since it is precisely these items
that tend to drive inventory budgets and policies.

The Army believes (U. S. Army [1983]) that item failures are
proportional to usage. Each weapon system (e.g. a tank) has a projected
yearly usage during peacetime. This forms the basis for determining
the maintenance factor for each item which is the expected number of
failures of the item per application of the weapon system per year.
Non-peacetime scenmarios account for different failure rates by using a
usage modifier (applied to all items on the weapon system) for each day
in the scenario. The usage modifier on a particular day of the scenario
is the ratio of scenario usage to daily peacetime usage. For example,
an item on & tank may have a maintenance factor of .l based on a usage

profile for the tank of 2 miles driven per day during peacetime. If
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the scenario calls for the tank to drive 6 miles on 8 particular day,

the usage modifier would be 3 and the failure rate for that day would

2o be [(.1)(3)/365). For each weapon system we give a typical scenario .
W
: for the weapon system in terms of its daily usage modifiers.
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Weapon System Name: Blackhawk Helicopter (BHAWK)

Number of Items in Data Base: 75

Distribution of Unit Prices and Maintenance Factors:

Dnit Price (Thousands)

Maintenance < 1 1-5 5-10 10-25 25-50 50-100 100-250 > 250

Factors

< .01 0 0 1 4 0 0 ] 0
.01-.05 0 2 5 4 0 0 1 0
.05-.1 0 1 4 6 1 0 1 1
1-.25 0 3 2 8 0 1 1 1
«25-.5 0 0 1 2 2 0 0 1
.5-1 0 0 3 4 1 1 1 0
1-2.5 0 0 2 2 3 1 0 0
> 2.5 0 0 1 1 1 0 1 0

Support Structure: 3 bases: A Company: 30 helicopters;
B Company: 50 helicopters; C Company: 20 helicopters.
Order and Ship Time: 7 days between bases and Depot.
Repair Policy: No base repair. Repair time at depot is log - normally
distributed with a mean of 10 days and varisnce of 18 days.
On average, 5% of all failures are condemned.
Scenario: 30 day horizon.
Usage modifier of 1.5 on each day at A Company;
Usage Modifier of 2 on each day at B Company;

At C Company, Usage Modifier of 2 on days 1-5; 5 on days 6-15; |

2 on days 16-18; 4 on days 19-25; 3 on days 26-28;

2 on days 29-30.
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Weapon System Name: Army Attack Helicopter (AAH)
Number of Items in Data Base: 155

Distribution of Unit Prices and Maintenance Factors: ‘

Unit Price (Thousands)
Maintenance < 1 1-5 5-10 10-25 25-50 50-100 100-250 > 250

Factors

< .01 1 8 0 0 0 0 0 0
.01-.05 8 13 1 4 0 0 ] 0
.05-.1 3 24 4 1 1 1 0 0
1-.25 3 18 8 4 1 0 0 0
.25-.5 2 9 4 5 0 0 0 0
.5-1 0 3 2 4 5 1 1 |
1-2.5 0 1 1 3 5 0 1 0
> 2.5 0 2 1 0 0 1 0 0

Support Structure: 16 bases with a distribution of 24, 19, 11, 16, 58,

15, 16, 23, 13, 16, 24, 20, 16, 16, 16, and 24 helicopters.

Order and Ship Times: 2 days between bases and Depot.

Repair Policy: No base repair. Depot repair time 15 days. We assumed
no condemnations although on average, 5% of all failures
are condemned.

Scenario: 30 day horizonm.

Usage modifier of 1.5 on each day at bases with < 20 helicopters. <
b7
\
? For bases with > 20 helicopters:
Usage modifier of 3 on days 1-5; 2 on days 6-15;

3 on days 15-25; 1 on days 26-30.

- . .. LIPS P

o d“,.i;‘vh‘a")ﬁ AN

5 R K s e e R e e e s € e S T
SIU NSNS ¢ Gl Lot gttt §  anse Sy NHRAINM

«
UG e AL,



- L 2 2 L o 2 o & Ao 8 o 8 ook 2 d aad i bl calk calk _akorado-di Sle ke She e ke dba ke SR A ML AN A e o e i e
l;g' il -1
o
,f”t
‘ 173
.-‘”l
e
'-‘5;' Weapon System Name: M60A3 Tank (M60A3)
.}'!"

e Number of Items in Data Base: 250
. Distribution of Unit Prices and Maintenance Factors: l
: w
o Unit Price (Thousands) |
{:’ Maintenance < 1 1-5 5-10 10-25 25-50 50-100 100-250 > 250 ‘
fuydl Factors |
3
B < .01 3 6 1 1 0 0 0 0
ol

.01-.05 16 12 5 3 0 0 0 0

‘\v
'7{ .05-,1 9 4 5 4 0 0 0 0
V
W «1-.25 14 9 2 2 0 0 0 0
‘n':'

. .25-.5 36 8 1 1 0 0 0 0
v."
!

D
5- .5-1 22 4 5 1 0 0 0 0
el
N 1-2.5 43 8 3 1 0 0 0 0
o,

> 2.5 16 3 1 1 0 0 0 0

*E:: J
:::: Support Structure: 10 identical bases each with 25 tanks.
L)

. Order and Ship Time: 2 days between bases and Depot.

Wy
i Repair Policy: Very little base Repair. Depot repair time: 30 days. On

-\. average about 7% of the units that reach the depot are
B

condemned.

‘; Scenario: 180 day horizon.
) Usage modifier on day t is 1 + 1,5 sin? T t/2,
.\ ¢
T

»
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