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a(yt) 1 if a unit that entered the depot pipeline at time y

has left the pipeline by time t. a(yt) - 0 othervise.

aeb Management target on the average expected total number

of backorders at the bases over the horizon.

ai(t) Intensity of base i resupply requests placed on the depot.

Ai(t) Mean value function for the number of base i resupply

requests placed on the depot.
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asset level Maximum number of serviceable units that can be on-hand.

asset policy Specification of an asset vector for every point in

time during the horizon.

asset position Asset level.

asset vector Vector containing an asset level for every item at

every location.

b(tlt 2 ,t3) Probability that a unit that entered the depot pipeline

in (tl,t 2] is still in the pipeline at time t 3 .

B(n,p,k) Probability that a Binomial [n,p] random variable is

greater than or equal to k.

B.(t) Number of backorders outstanding at locationj at time t.

bi(np,k) Probability that a Binomial In,p] random variable is

equal to k.

Ci  Procurement/Holding cost for item i .
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D.(t) Number of units in the locationj diagnostic facility

at time t.
DEi(t) Number of units due-in to base i from the depot at time t.

ei(s,y,t) Probability that a serviceable unit arrived at base i

by time t to replace a condemnation at time y of a

unit that failed at base i at time a.

E.(t) Number of units due-in to location, from the external

supplier at time t.

ERi(t) Numberof units en route from the depot to base i at time t.

FAVP Fixed Asset Vector Problem.

F0 (s,t) Probability that a unit that entered the depot pipeline

at time s has left the pipeline by time t.

Gi(s,t) Probability that a base i diagnosis begun at time s has

ended by time t.

H(k,y,h,t) Number of units in the depot pipeline at time t given

that k units entered in (O,y], one unit entered at

time y and h units entered in (y,t].

Hi(t) Number of units on-hand at location, at time t.

HCP Horizon Control Policy.

I Number of items in the catalog.

Ii(n) 1 if the nth demand on the depot was from base i and

Ii(n) - 0 otherwise.

INT(x) Largest integer less than or equal to x.

L(k,tlt 2 ,t3 ) The number of units, out of the k units that entered

the depot pipeline in (tl,t 2 ], that are still in the

depot pipeline at time t3.
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Intensity of demand at locationj.

m0(t) MVF of demand at the depot.

meb Management target on the maximum expected total number

of backorders at the bases over the horizon.

MW Mean value function.
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Nj(t) Number of demands at location. in (0,t].

N0(t) Number of base i resupply requests placed on the depot
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1N A vector of ones with dimension N+l.

OST Fixed order and ship time between the depot and base i .

p[x;u] Probability that a Poisson random variable with mean u

is equal to x.

P[x;u] Probability that a Poisson random variable with mean u

is less than or equal to x.

Pi(s,t) Probability that a unit that fails at time s and completes

base i diagnosis at time t will be sent to the depot.

Pi(st) Probability that a unit that fails at time s and
R

completes base i diagnosis at time t will be sent to the

base i repair facility.

Qi(t) Number of depot backorders outstanding at time t that

are due-out to basei.

ri(s,y,t) Probability that a unit that fails at base i at time a

and is sent to the base i repair facility at time y

will complete repair by time t.
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Rj(t) Number of units in the locationj earfaiiya

time t.

RTCP Real-Time Control Policy.

s.(t) Asset level at location, at time t.

8++(t) Asset vector at time t.

si+(t) Vector containing the asset level of itemi at every

location at time t.

T Horizon length.

T(n) Time of the nth demand on the depot.

VOWt Number of units en route to the depot from the bases

at time t.

*VAR Var iance .

VMR Variance to mean ratio.

W (t) Delay before satisfying a demand at location, at

t ime t .

X.(t) Pipeline quantity at location, at time t.

Y0(t Origination time of first base resupply request that
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CHAPTER I

INTRODUCTION

Strictly speaking, real world inventory systems never reach

steady state. A common characteristic of most inventory systems is

that they are continually changing with time. The stochastic processes

generating demands, order and ship times, and repair times may change

with time as might the various costs that are of interest. In many

instances, however, the changes may occur slowly enough or be subtle enough

so that for considerably long periods of time the inventory system can

be treated as if it were in a steady state mode of operation. For this

reason, stationary steady state models have been developed and applied

to many practical problems of inventory management and control in multi-

echelon inventory systems. For example, the United States Army Materiel

Support Commands use a stationary multi-echelon model (U.S. Army [19831)

to provision billions of dollars of reparable spare parts. For many

inventory systems, including the Army system during peacetime, steady

state models and the assumptions of stationarity embodied in them have

been invaluable. These models have proven to be convenient in terms of

input data collection and computational burden, and to be adequate for

determining cost effective stock levels. However, there are many

situations where the short-term behavior of the inventory system is of

paramount importance and in these situations, stationary models may be

!1
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inadequate both in describing the relevant transient behavior of the

system and in determining the least cost mix, quantity and distribution

of spares that meet specified performance objectives. For situations

where steady state is not attained, for example, because of a short

time horizon and/or because the underlying stochastic processes governing

the behavior of the inventory system are not stationary, it may be

necessary to use a non-stationary multi-echelon model that explicitly

models the interactions among the echelons and properly describes the

transient behavior of the system.

At the onset of a war we have a vivid example of the dynamic

behavior that can be exhibited by the processes that generate demands,

shipping times, repair times, etc., in a military inventory system.

As hostilities begin, the demand for spare parts for weapon systems

may show a significant increase over peacetime values. The demand

for parts may then decrease as weapon systems are lost through attrition

and combat damage and this reduction in demand may continue until

replacement weapon systems can reach the combat area, at which time

the demand for spare parts may again increase. Meanwhile, ship times

between combat units, intermediate maintenance and supply echelons,

and a centralized parts depot may fluctuate depending on enemy activity

and the availability of different modes of transportation. Furthermore,

the repair rate at a maintenance location may initially be small as

the location awaits the arrival of specialized technicians and test

equipment to be used in repairing damaged weapon systems. When the

technicians and test equipment arrive, the repair rate may increase

until, possibly, a maximum wartime repair rate is achieved. The repair

rate may vary over the duration of hostilities if the repair facilities
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are subjected to enemy attacks and are rebuilt and remanned after

these attacks. Therefore, even for wars of long duration, the dynamic

behavior of the inventory system may be such as to preclude use of

a stationary steady state model to determine optimal stock levels

and resupply policy.

Furthermore, the initial state of the system (e.g., number

of units in repair, in transit, on-hand, backordered, etc.), may have

a pronounced effect on the achieved performance and thereby, the required

stock. If all of the inventory system's spares are on-hand and available

for a short combat contingency, we would expect a non-stationary model

to yield different results than if all of the systems spares are in the

repair facilities. Stationary steady state models ignore the initial

state of the system and thereby may grossly misrepresent performance

during the contingency.

Another example of the dynamic behavior that can be exhibited

by inventory systems occurs when a new product is introduced into

the market. (For military systems, this corresponds to the development

and fielding of a new weapon system). As more and more units of the

product are introduced into the market, the demand for spare parts

increases. Repair times may be long until repairmen gain experience

with the new items. Design changes may affect the demand and repair

rates for the reparable parts of the product. Furthermore, as time

goes by and demand and repair time data are collected, new estimates

of reliability and maintainability factors such as mean time to failure

and mean time to repair may be made. The accurate modelling of this

type of dynamic behavior may be crucial to finding a cost effective

inventory policy.

I & ?
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Multi-Echelon Inventory Systems

In a general N echelon inventory system, the highest echelon

(echelon-N) consists of a lone installation referred to as the depot.

Primary customer demands for reparable items usually occur only at the

lowest echelon (echelon-i) locations. Echelon-i is often referred to as

the user echelon. Depending on the nature of the required repair,

the failed unit is either repaired at the installation to which it has

been brought, condemned as irreparable and removed from the system, or

sent to a higher echelon for repair. (Locations on the same echelon

generally have the same repair capability). At the higher echelon

location a decision is again made whether to repair, condemn, or send

the unit to a higher echelon. All failed units received at the depot are

either condemn.:d or repaired there. Condemned units may be replaced by

procurement from an external supplier.

At each location in the system, there are continuous time

stochastic processes which govern the behavior of the parameters of

operation (PO) which are the probability distributions for the

a. order and ship time to each location that this

particular location resupplies;

b. times to fault diagnose and isolate and to repair

failed units at that location;

c. decision to condemn, repair, or send a failed unit to

a particular higher echelon;

d. shipping time to each location from which this

location seeks resupply;

e. costs to buy, hold, and scrap.
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Furthermore, there are stochastic counting processes generating primary

customer demands on the system which, in combination with the processes

generating the PO, yield stochastic counting processes describing the

demands for serviceable units at each location. There are many inventory

systems for which the processes generating the PO are known and stationary

and for which the demand process is suitably well-behaved so that

passage to steady state is theoretically assured. Stationary models

describe the steady state behavior of these stationary systems. As we

have already seen there are also many important non-stationary inventory

systems for which one or more of the PO change with time and/or for which

the demand process, planning horizon and/or initial conditions are such

that the transient behavior of the system must be analyzed. Models

that describe these systems will be referred to as non-stationary models.

Inventory Control Policies

The status of an item at a location at time t contains the

following information:

a. the number of units on-hand;

b. the number of units backordered;

c. the number of units in-repair;

d. a probability distribution for the remaining repair

time of each unit in-repair;

e. the number of units on-order from the depot and the

external supplier;

f. a probability distribution for the delivery time of

each unit on-order.
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The system condition at time t is defined as the status of

every item at every location at t. Note that the initial system condition

at 0 is simply the initial status of every item at every location.

Ideally, management would at all times like to have complete

knowledge of the system condition. Inventory control decisions regarding

resupply, procurements, disposals, and redistributions of spares could

then be made in continuous time on an as-needed basis. These decisions

would be based on the current system condition (or subset of the system

condition) and the stochastic description of the behavior of the PO and

the demand process over the rest of the horizon. This real time control

policy (RTCP) offers management great flexibility in positioning spares

in the system to improve inventory performance. Management can react

quickly to updated estimates of the PO and demand parameters and can

also quickly compensate for random phenomena such as unexpectedly small

or large demand at one or more locations. Under a RTCP, management

also has the ability to adapt future operating rules and policies based

on the current system condition and knowledge of the PO and the demand

process.

However, there are two major problems that make implementing

a RTCP for a multi-item multi-echelon inventory system difficult, if

not impossible. First, there is the need to continuously store and

monitor the information on the system condition, PO and demand process

upon which management decisions are based. For many systems this may

be impossible because of the number of items and locations in the

system and the cost of monitoring and storing this much data. Secondly,

even if the data are continuously monitored and stored, the effort and

cost involved in continuously determining and updating operating policies
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is prohibitive. In a very strict sense, there is an Uncertainty Principle

involved in the calculation of operating policies under a RTCP. Since

calculations are not instantaneous, by the time a new operating policy

is determined the data may have changed so that this new policy is no

longer optimal or desirable.

As an alternative to a RTCP, management can, at time 0,

decide at which times during the horizon the system will be reviewed

and data on the system condition, PO and demand process collected.

Between system review times, an operating doctrine is followed at each

location. The operating doctrine may be expressed in terms of any

subset of system condition and/or item status at a location that is

continuously available to the system and/or location. Only at system

*: review times can the parameters of the operating doctrine at each

location or the operating doctrine itself be changed. All of the

classical operating doctrines of inventory theory such as two bin

ordering policies are examples of this horizon control policy (HCP).

The U. S. Army has four maintenance and supply echelons.

There are too many items and locations for a centralized facility even

to monitor continuously just the number of units on-hand at every

location. Rather, the Army uses an HCP. Each location monitors only

its own inventory position and uses a (Q,r) policy between quarterly

management directed system reviews. The reorder point and reorder

quantity for each location are determined each quarter based on the

information on the PO, demand process and system condition collected at

the time of review. Redistributions of spares through the system may

also be ordered at these times. While the HCP does not give the Army

the full power of a RTCP, it represents the best viable alternative.

Loa gkk&&
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Literature Review

Stationary Multi-Echelon Models and Analysis

There has been extensive modelling and analysis of stationary

multi-echelon inventory systems. Examples of some of these efforts

can be found in Ignall and Veinott (1969), Silver (1972), Graves and

Schvarz (1977), and Kim (1978). In 1968, Sherbrooke formulated the

well known METRIC (Multi-Echelon Technique for Recoverable Item Control)

model for stationary multi-echelon inventory systems for reparable

items. METRIC's initial use was for military inventory systems but

it has now been applied in private industry as well. In METRIC, Sherbrooke

attempted to model explicitly the interactions among the various echelons

in the inventory system. He assumed that all locations followed a

continuous review (S-1,S) or one-for-one resupply (ordering) policy.

Each time a location sent a failed unit to a higher echelon location

for repair, the higher echelon location would resupply the lower echelon

location with a serviceable unit as soon as possible. Therefore, an

optimal policy required the determination of only the single critical

number S for each location which was the constant asset position (number

on-hand + on-order + in-repair -backorders) for that location. The (S-l,S)

resupply assumption, along with the assumption of a homogeneous Poisson

Process generating primary customer demands, greatly simplified the

mathematical analysis and considerably reduced the computational burden

involved in determining an optimal policy. Muckstadt (1973) extended

Sherbrooke's work to include multi-indentured items. An (S-l,S) policy

was followed at every location for every level of indenture (modules,
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components, sub-assemblies, etc.). Both METRIC and Muckstadt's MODMETRIC

have been extensively analyzed in the literature (see, for example, Simon

[1971], Shanker [1977] and Kotkin [1978]) and there have been many

variants of these models (Mason [1975], Clark [1978] and Vincent [1980]).

Simon (1971) corrected METRIC's misuse of Palm's Theorem for M/G/-

queues (Ross [1970]) by developing exact expressions for the number of

units due-in to user locations in a two echelon system when the depot

repair time was fixed. Kruse (1979) simplified Simon's expressions and

extended Simon's work to more than two echelons. Approximations to

Simon's computationally cumbersome model were developed by Slay (1980)

and Kaplan (1980). Graves (1983) rediscovered Slay's negative binomial

approximation and again demonstrated its effectiveness. Excellent

reviews of stationary multi-echelon models may be found in Clarke

(1972) and Nahmias (1981).

Non-Stationary Multi-Echelon Models and Analysis

Clark (1960) reported on a simulation for a periodic review

non-stationary multi-echelon inventory system for reparable items.

Unit purchase and holding costs were allowed to change by period and

condemnations and transshipments between locations during a period were

allowed. Stock could be redistributed among the locations at the

beginning of each period. All customer backorders were passed up to

the highest echelon location. No description of the simulation or of

the heuristic used to determine stock levels for each period was given.

Bessler and Veinott (1966) studied a general arborescent multi-

echelon periodic review system for consumable items. They assumed

V
%2
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no delivery lags at any location; no fixed ordering (or setup) cost;

and that any demands that could not be met at a location were passed on

to the location's direct supplier at a higher echelon so that backorders

existed only at the highest echelon location. By establishing a corres-

pondence between the multi-product single facility problem studied by

Veinott (1965) and their multi-facility single product problem, they

determined conditions under which the optimal policy for an N-period problem

could be expressed as the order-up to level solution of N single period

problems.

Ignall and Veinott (1969) extended the work of Bessler and

Veinott to include delivery lags. They also allowed a more general

supply structure in which any facility could satisfy shortages at any

other facility providing that the transferred stock was replaced from

, an exogenous source at the beginning of the next period. The authors

gave sufficient conditions under which myopic single period order-up

to policies were optimal for the N-period problem.

Burns and Sivazlian (1978) used control theory to investigate

the dynamic response of a non-stationary multi-echelon inventory system

to demands placed upon it. They studied a cost free multi-echelon

periodic review inventory system for consumable items. Locations on a

particular echelon were resupplied only by a location on the next

higher echelon with the highest echelon location receiving resupply

from an exogenous source. The amount ordered at each location at the

4' beginning of each period consisted of a replacement quantity for actual

demands in the previous period and an inventory "adjustment" or hedging

.,, quantity which allowed a location to adjust its on-hand stock at the

end of a period to a desired level of inventory ownership (safety

:G'0.



level). This level of ownership was expressed as a certain number of

periods worth of expected demand at that location: the expectation

being a first order exponentially smoothed average of past demand.

(This is similar to the ordering policy considered by Bessler and Zehna

(1968) for single echelon systems and by Burns (1970) for multi-echelon

systems). Burns and Sivazlian noted that under this ordering policy

higher echelons would over react to lover echelon inventory adjustments.

This was called a "false-order" effect. Minor variations in demand at

the user echelon were amplified by the inventory system into major

disturbances at the higher echelons. Using simulation they demonstrated

the superiority of an ordering rule they developed which tried to

eliminate these false-order effects.

Kotkin and Rhoads (1977) used a simulation to test a heuristic

for using a stationary model to determine stock levels in a non-stationary

three echelon multi-indentured inventory system for low demand items.

All PO were assumed deterministic, known and constant over the horizon

and demands were assumed to form a non-homogeneous Poisson Process whose

intensity factor was monotone increasing over the horizon. The horizon

was divided into convenient periods and in each period a stationary

model (MODMETRIC, Muckstadt [1973]) was used to recalculate the asset

position for the modules and components at each location. Redistributions

and exogenous additions of module stock, when necessary, were instan-

taneously made at the beginning of each period. Over the horizon,

module stock levels were monotone increasing but components levels

fluctuated. Since no disposal of stock was allowed, component stock

levels were fixed at their steady state levels based on the values

of the PO and the demand rate at the end of the horizon. The authors

V%%
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found that judicious use of the stationary model yielded close to the

optimal module stock levels. The success of the heuristic was credited

to the fact that the product had very low demand so that redistributions

and additions of module stock were not frequent over the horizon.

Muckstadt (1980), in studying a two-echelon inventory system

for reparable items, assumed that all PO were deterministic, known

and constant and that demands at the user level formed a non-homogeneous

Poisson Process with known intensity. In order to calculate the non-

stationary distribution of the number of units in resupply to a user

location, he used an argument similar to Sherbrooke's (1968) argument

for stationary two echelon systems. Given the depot stock level at

time t, the time dependent version of Palm's Theorem for M(t)/G(t)/- queues

(Ross [1972], Hillestad and Carillo (1980]) was used to calculate the

number of depot backorders outstanding at t. The delay at the depot before

a serviceable unit could be shipped to a user location that requested

resupply at t was calculated as the expected number of depot backorders

outstanding at t divided by the average depot demand rate in (t-R,t].

R was the deterministic depot repair cycle time. Here, Muckstadt

used the steady state queueing law L - AW as an approximation to the

transient behavior of the system. Furthermore, no account was taken of

the fact that depot stock might change after time t thereby atecting

the delays experienced by user locations. (In Chapter III we derive

the exact expressions for the depot delay). As in Sherbrooke's METRIC,

the delay term was used to find the expected number of depot backorders

belonging to a particular user location and this was added to the mean

number of units in repair at and en route to the user location. Muckstadt

then posited a Poisson distribution for the toLal number of units
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due-in to the user location. Muckstadt did not formulate an optimization

problem for determining the optimal stock levels over time for the

locations in the inventory system.

Muckstadt, possibly without realizing it, used a heuristic

that apportioned the depot backorders outstanding at t to the various

user locations according to the proportion of the depot demand in

(t-R,t] that came from each user location. This was essentially what

Simon (1971) did for stationary two echelon systems. As we shall see

in Chapter IV, in non-stationary systems this is correct in only one

very special case. Hillestad (1982) used a similar heuristic in his

two-echelon Dyna-METRIC model by apportioning the depot backorders at t

to the user locations by the proportion of the total depot demand from

each location over some "empirically" determined though unspecified

time interval.

Dyna-METRIC made provisions for indenture levels and various

degrees of controlled substitution. (The Department of Defense differ-

entiates between cannibalization and controlled substitution according

to whether the weapon system/end item on which the unit is located

will eventually be repaired). Hillestad proposed an optimization

problem that considered the inventory system performance at times of

interest specified by management. At each of these times, the cost of

procuring additional stock beyond current system assets was minimized

subject to a constraint on performance at this particular time only.

Performance between the times specified was not considered.

Gross and Miller (1982) studied the transient behavior of a

two-echelon Markovian system using the uniformization technique (Grassman

11977]) to obtain numerical solutions to the Chapman-Kolmogorov equations.

--!
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They allowed for finite repair capacity and state dependent failure

rates. No disposals or external procurements were allowed. They used

a one-for-one resupply rule and FCFS queue disciplines except when the

depot and some user locations were backordered. In that case, when a

unit completed depot repair it was sent to the user location with the

highest number of outstanding backorders rather than the location at

the head of the depot resupply queue.

Their state space grows as the square of the product of the

number of locations in the system, the number of items in the system,

and the stock of each item at each location. This quickly becomes

unmanageable even after some state reduction techniques and therefore

makes it prohibitive for inclusion in an optimization scheme.

Real-Time Multi-Echelon Models and Methods

In this section we review two approaches toward real-time

control and management of inventory systems of the METRIC type. The

problem considered was how best to utilize a given number of reparable

spares in a two echelon system that consisted of a depot and user locations

called bases. Instead of rigidly following an (S-1,S) resupply policy,

these real time models made decisions about resupply on an as-needed

basis. Therefore, even though a base sent a failed unit to the depot

for repair, the depot was not obligated to ship a serviceable unit to

the base to replace the failed unit. This allowed greater flexibility

than the static resupply policy of stationary models like METRIC in

redistributing stock to the various locations. The rationale for this

was to provide the supply system the capability to respond to poor

%'-."-
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estimates of the PO and/or to transient effects such as, for example,

an unexpectedly large number of demands at a particular base.

Miller (1968) developed a heuristic for real-time management

called Real-Time METRIC (RTM). The initial stock level at each location

was determined using METRIC. Stock was redistributed through the system

via the depot. The decision of vhether to ship a unit from the depot

to a base depended on the depot "reluctance" to send available spares

and the bases' "need" for serviceable stock. The depot's reluctance at

time t was expressed as a heuristic function of on-hand stock at the

depot at t. A base's need was defined as the number of backorders

expected to be outstanding at the base a deterministic depot to base

ship time into the future. A comparison of depot reluctance and base

need was made whenever an event (demand at a base or a failed unit

completing repair at the depot) occurred that caused either base need to

increase or depot reluctance to decrease. A unit was shipped from the

depot to the base with the largest need that exceeded depot reluctance.

Miller reported a significant reduction in expected backorder days

accumulated over a year for high demand items by using RTh instead of

METRIC. For low demand items no significant difference was observed.

Each time that a comparison of depot reluctance and base

need was made, RTM looked a transportation time ahead. Miller (1974)

later showed that this "Transportation Time Look Ahead Policy" would

be optimal if the depot repair cycle time were zero. While RTM could,

in principle, handle additions to or depletions from system stock, no

method was given for determining when to add or delete stock from the

system. Clearly, in a non-stationary environment we would not only

want to know when and how to redistribute stock but also when to change
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the overall system stock level.

Galliher and Wilson (1975) improved upon RTM by eliminating

the need to use the RITh depot reluctance function and by use of different

redistribution rules. As in RTM, stock was redistributed only through

the depot, and redistribution decisions were made when a base requested

resupply or when a unit finished depot repair. Instead of looking a

deterministic transportation time ahead, Galliher and Wilson defined

the length of the decision horizon at time t to be R(t), equal to a

transportation time plus the expected time between demands at the

depot. On-hand units were shipped from the depot spares pool until

either no base was expected to have any backorders outstanding at

t + R(t) or the depot ran out of stock. Remaining depot stock was shipped

. to the bases that were below their target levels (set by a stationary

model) so that the probability of incurring a backorder in the system

during (t,t+R(t)] was minimized.

Both of the above approaches heuristically determined decision

horizons. The behavior of demand and the PO after these lengths of

time was not considered. For example, if the demand rate at a base

decreased considerably after the decision horizon, it may not have been

best to ship a unit from the depot even though the base expected to be

backordered at the end of the decision horizon. Similarly, no inventories

.were built up in anticipation of an increase in demand after the decision

horizon. More forward looking rules might not have made the same

redistribution decisions and might have improved performance.

p.• :-- .-- :-1.+ .'
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Scope of Dissertation

The objective of this dissertation is to develop a model for

determining "cost" effective stock policies for non-stationary two

echelon inventory systems. The model consists of two basic components.

The first component is the analytical description of the important

stochastic processes, such as on-hand inventory, that determine inventory

effectiveness. The second component is an optimization scheme that

selects a least "cost" stock policy subject to constraints on inventory

performance. We shall also examine approximations, where necessary,

that reduce the computational burden and thereby aid in real world

implementation.

Throughout this dissertation we deal with the time dependent

stochastic nature of the PO and the demand process. However, we do not

concern ourselves with uncertainty in the basic parameters of the

underlying stochastic processes that govern the behavior of the PO and

the demand process. This problem has not been addressed explicitly

even in stationary multi-echelon models because it severely complicates

the analysis. A non-stationary model and heuristics dealing with

uncertainty in the basic parameters would be a logical and worthwhile

extension of the work presented here.

Data Availability

The increased data burden in using a non-stationary instead

of a stationary model can range from the effort involved in determining

the length of the scenario to a mammoth data collection effort if all
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parameters are continuously changing with time. In this section we

cite two situations where data were obtained from U. S. Army sources

for use in the non-stationary model developed in this dissertation.

These examples do not establish the validity of the work herein.

Rather, they demonstrate that data for effective use of non-stationary

models in the Army are available.

Examnle 1.1: Continzency Fly-Away Kits

In a Grenada type contingency, U. S. combat forces are deployed

outside the continental U. S. for a short period of time. No external

resupply to these forces is possible. The problem is to determine fly-away

kits of spares that combat units should carry in order to achieve some

specified weapon system performance targets.

The U. S. Army Aviation Systems Command wanted a method for

determining the fly-away kits for a division (2 echelons) of Blackhawk

helicopters. Contingencies were expected to arise with little or no

warning. Therefore, there would not be enough time to run a detailed

combat simulation to obtain daily part demand rates or daily information

on the PO. The non-stationary data that are available are the length

of the scenario and the initial system condition which usually will

reflect that all spares will be on-hand at time 0. These data, along

with the stationary part data obtained from the standard Army data base

(U. S. Army [1983]), form the input to the non-stationary model.

Example 1.2: Wartime Requirements Determination

The U. S. Army Training and Doctrine Command (TRADOC) and

the U. S. Army Materiel Systems Analysis Activity have developed detailed

combat simulations. From these simulations we obtained, for a specific

scenario, daily demand rates and changes in the repair time distributions
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based on the attack-defense posture of each location in a two echelon

system. These data, along with scenario length and initial conditions,

were input to the non-stationary model to obtain recomended stock

quantities and the expected delays in satisfying resupply requests.

These delays were input to another TRADOC simulation of the wartime

logistics support structure to evaluate, from a logistics point of

view, various combat and budgetary strategies.

Orpanization of Dissertation

Chapter II catalogs and discusses the basic assumptions made

in this dissertation. The chapter also contains background material on

non-homogeneous Poisson Processes and one-for-one inventory systems, as

well as new results on the recursive calculation of the moments of the

distributions of backorders and on-hand inventory. Chapters III and IV

derive the time dependent probability distributions of the pipeline and

other important stochastic processes at the depot and bases, respectively.

Chapter V discusses evaluation of inventory performance in non-stationary

systems and also proposes two performance measures to be considered in

an optimization problem. The optimization problem, the Fixed Asset Vector

Problem (FAVP), assumes that the asset position at each location is

fixed at the beginning of the horizon and that a one-for-one resupply

policy is followed thereafter. In Chapter VI we examine approximations

to the bases' computationally cumbersome pipeline distributions and

propose approximating the actual base pipeline distribution with a

negative binomial distribution. In Chapter VII we discuss computational

experience with the FAVP on weapon systems managed by the U. S. Army

- .
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Materiel Comand. We also compare the stock lists and costs obtained

from the FAVP with those obtained from a stationary steady-state model.

Chapter VIII introduces the Asset Vector Transformation Problem which,

together with the FAVP, can be used in a heuristic to try to determine

the optimal asset levels over time in a non-stationary inventory system.

Chapter IX contains a summary of the major results of this dissertation

and brief discussions on various extensions to the work presented herein.

J.
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CHAPTER II

PRELIMINARIES

This chapter presents some basic definitions and assumptions

used throughout this study as well as background material on non-homo-

geneous Poisson Processes and one-for-one [(S-1,S)] inventory systems.

The final section contains new results on the recursive calculation of

moments of the distributions of backorders and on-hand inventory in

one-for-one inventory systems.

Non-Homogeneous Poisson Process

The stochastic counting process {N(t), t > 0} is said to

be a non-homogeneous Poisson Process (NHPP) with intensity function

X(t) if

(i) N(0) - 0;

(ii) {N(t), t > 0} has independent increments;

(iii) Pr(2 or more events in [t,t+hl) O 0(h);

(iv) Pr(exactly one event in [t,t+hl) = X(t)h + O(h).

These four conditions are often referred to as the axioms

defining a NHPP. Parzen (1962), among others, shows that these conditions

ensure that for any half-open interval (s,t], 0 < s < t for which )()

is not identically zero, and n 0 0, 1, 2,...,

21
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Pr(N(t) - N(s) - n) - e - 1m(t) - m(s)] Ir(t) _ m(s)] n

n )

t
where m(t) f f X(x)dx is the mean value function (MVF) so referred

0
to since E[N(t) - N(s)] - m(t) - r(s) and in particular, E[N(t)] -

m(t). If X(x) - 0 for all z in (s,t] then N(s) - N(t). Throughout

this study we assume that m(t) is differentiable and the derivative of

m(t) is thus simply the intensity of the NHPP at t. We also assume

that AVt) is finite for all t. Note that m(t) is non-decreasing and always

right continuous because of the definition of a NiRPP but in this study

because of the assumption of the differentiability of m(t), m(t) is

necessarily continuous. (See Cinlar [1975] for a brief discussion

of non-continuous MVF and reference to the more complete work of Khinchine

[1960] on non-continuous MVF).

Appendix A catalogs some useful properties of NHPP. Most

notable are P, ensuring that the superposition of independent NlPP

is itself a NHPP, and P10, the Splitting Property, concerning the

decomposition of a NHPP into independent constituent NHPP by means of

an independent, though possibly time varying, splitting mechanism.

These, and many of the other properties listed in Appendix A are analogs

of results for homogeneous Poisson Processes. These results might

suggest a relationship between non-homogeneous and homogeneous Poisson

Processes. In fact, such a relationship does exist.

For a NHPP {N(t), t > 0} with MVF m(t) let m-1 (u) - inf

{s: m(s) > u} be the inverse of the NVF. If X(t) > 0 for all t so

that the MVF is strictly increasing, then m-1 (u) is the classical

inverse. Otherwise, m-l(u) is the inverse of the function m(') restricted

to a domain consisting of points where the MVF strictly increases. In

_4.
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either case, m-l(u) is strictly increasing and it is continuous because

of the continuity of the MW (Kitchen [1968]). If N*(u) - N[m-l(u)]

then it is easy to see that {N*(u), u > 0} is a homogeneous Poisson

Process with MW E[N*(u)] - E[N(m-I(u))] a m[m 1'(u)] - u and intensity

1. The counting process {N (u), u > 0} records the number of events

occurring on a transformed time scale that measures u when the real

time, in the sense of the NRPP {W(t), t >O}, is m-l(u). Cinlar (1975)

gives the following theorem restating the above result in terms of the

times of arrivals.

Theorem 2.1: tl1 t2,... are the arrival times in a NHPP with MVF m(t)

if and only if m(t 1 ), m(t2 ),... are the arrival times in

a homogeneous Poisson Process with intensity 1. //

Therefore, every NHPP with continuous MVF can be converted to a homogeneous

Poisson Process. Theorem 2.1 can be used to prove many of the properties

listed in Appendix A by appealing to the corresponding result for

homogeneous Poisson Processes. Theorem 2.1 is extremely useful in

Monte Carlo simulations involving NHPP (Cinlar [19751).

In a NHPP, the magnitude of an event is always one. Consider

the case where the event magnitude at time t is independent of the

magnitude of other events and has distribution function F(xt) x > 0,

t > 0, with Laplace-Stieltjes transform F*(w,t). If we replace axioms

(iii) and (iv) with

(iiic) Pr(N(t+h) - N(t) - x) - X(t)dxF(x,t)h + O(h)

then we have a set of axioms defining a non-homogeneous compound Poisson

Process (NHCPP). By writing the forward or backward Kolmogorov equations

it is straightforward to show that

Ele-wN(t)] e-m (t)[ 1-C(w 't)' (2.1)

N-

N-V

4 ~ ~7
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where

t
m(t) - f X(s)ds

0

C(wt) 3 F (w,s) (s)ds.
M(t)0

Note that C(w,t) is the "intensity-weighted" average of the Laplace-Stielt-

jes transforms over (0,t] (Galliher [1975]). If dF(l,t) - 1 for all

t, then setting e-w = z reduces (2.1) to the generating function of a NRPP.

Analogously to homogeneous compound Poisson Processes, a

NHCPP can be viewed as the stochastic process that records the sum

of the independent jump magnitudes of a process whose jump times occur

in accordance with a NHPP. Thus, if 0 < sl < 62... <_ SN(t) _ t are

the epochs of the N(t) events that have occurred by time t in a N!PP

{N(s), s > 0) and y(sj) is the magnitude of the event at time sj with

distribution F(x,sj), j - 1, 2,..., N(t), then as long as the jump

magnitudes are mutually statistically independent random variables,
N(t)

(Nc(t) - I y(s.), t > 0) is a NHCPP and the transform (2.1) is readily

obtained by direct arguments.

Maior Assumot ions

For expository purposes, throughout most of this study we

focus attention on a two echelon inventory system consisting of N

user echelon locations called bases and a central second echelon resupply

and maintenance depot. The flow of units of an item through a two base

system is depicted in Figure 1. In this section we list and discuss

the major assumptions made regarding the operation of the system.

Assumption 1: Primary customer demands at basel, i = 1,2,...N, form

/W
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% a NHPP with known intensity 0 < Xi(t) < and differentiable MV mi(t)

= f Xi(x) dx. The demand processes at the bases are mutually statis-
0

tically independent.

To the author's knowledge, no studies of the demand processes

of any real world non-stationary inventory systems have been performed.

The Armed Forces often conduct training exercises and war games but

as of yet no reports on any data collected have appeared. In combat

situations, however, item failures not due to combat damage are often

assumed to follow a homogeneous or non-homogeneous Poisson Process

(Coggins [1983]). Studies of stationary systems by Galliher and Wilson

(1975) [aircraft engines] and Mitchell et al (1980) [10,000 aircraft

parts] accepted the hypothesis that failures of an item at the user

level followed a homogeneous Poisson Process. Other studies by Johnson

and McCoy (1978), Metzner (1981), and Proschan (1983) on aircraft

parts rejected the same hypothesis although in each study an explana-

tion is given as to why the hypothesis was rejected assuming it was

likely to be true.

A priori, there are three possible objections to Assumption

1. The first is that while customers might arrive according to a

NEPP, order sizes might be larger than one. If this were true, a

NHCPP model of demand is more appropriate. Most of the results of

this study can be extended to systems in which primary customer demand

A' follows a NECPP. However, customers usually demand only single units

of an expensive item and it is the expensive items that usually account

for the largest inventory investment (Orr [1977], Peterson and Silver

[1979], p73- 80 ). The second objection is that the variance to mean

ratio (VMR) of the demand in any interval might be greater than one.

A%
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If this were due only to non-unit order sizes, a NHCPP model of demand

would be appropriate. If the increased vari&bility is due to other

factors, such as uncertainty of the intensity function or a truly

more variable underlying demand process, using a NRCPP to model demand

is only an approximation whose effectiveness would need to be investi-

gated. (This issue will be discussed in more detail in Chapter IX).

The third objection arises from the fact that if there were a finite

calling population of customers at the bases, the arrival rate of

failed units at time t may depend upon the number of operating units at

time t. The U. S. Army assumes for most weapon systems that a certain

operating tempo (hours flown, miles driven, etc.) is maintained each

month regardless of the number of operational weapon systems (Kaplan

[1980]). Each operational weapon system may be used more than originally

planned to compensate for the downed systems and therefore, the number

of failures of an item will tend to be consistent with original projec-

tions. For systems with large calling populations and/or high performance

targets in which the percentage of total customers that are down is

expected to be small, the infinite population assumption should cause

no harm. For very small customer populations, the assumptions of a

state independent NHPP generating demand may be inappropriate. However,

Zmurkewycz (1984) observed that even for small populations (in one case

10 customers with a medium performance target and in another case 2

customers with a high performance target) the expected number of customer

backorders obtained from an infinite population two-echelon stationary

model was within 1% of the backorders from a finite population Monte

Carlo simulation.

Assumption 2. When a failed unit is brought to base i the decision,
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made by the base i diagnostic facility, either to repair the failed

unit at the base i repair facility, to send it to the depot for repair,

or to condemn it as irreparable is made independently of the decisions

made on other units at other times and depends only upon the complexity

of the required repair.

The base i diagnostic facility examines a failed unit and

determines the repair action required to restore the unit to a service-

able condition. When the required repair can be accomplished at the

base i repair facility, the failed unit is sent there. If the failed

unit requires depot action, either because the repair is beyond base i

capabilities or because the diagnostic facility cannot determine the

extent of the required repair, the diagnostic facility sends the unit

to the depot. Otherwise, the diagnostic facility condemns the unit

as irreparable and removes it from the system. Condemnations result

in the loss of a system asset that can be replaced by a procurement

from the external supplier. The decision of the diagnostic facility

depends only upon the estimated ability of the base i and depot repair

facilities to effect the necessary repairs and is independent of all

else including the decisions made on other units at other times, the

number of serviceable spares on-hand at base i and the depot, and the number

of units already in the base i and depot repair facilities.

Assumption 3: When a failed unit is sent from a base to the depot

the decision, made by the depot diagnostic facility, either to repair

the unit or to condemn it and remove it from the system, depends only

upon the complexity of the required repair. This decision is made inde-

pendently of the decisions made on other units and without regard to

the number of units on-hand or in repair at the depot.

..- 2
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Assumption 3 imposes an independence condition on failed

units sent to the depot similar to the one imposed by Assumption 2

on failed units brought to the bases. Both Assumption 2 and Assumption

3 allow the probabilities of a particular diagnosis to vary with time

as long as each diagnosis is independent of other diagnoses and the

number of units on-hand and in repair. This is particularly useful

in wartime scenarios where the various combat situations and missions

may, over different time intervals, result in different types of damage

to the item and/or affect the ability of the various repair facilities

to perform the necessary repairs.

Assumption 4: The times spent in the diagnostic facilities are mutually

statistically independent. Repair times are mutually statistically

independent.

There is no restriction on the distribution of repair times

at a repair facility as long as the independence of individual repair

times is maintained. In fact, both the diagnostic time and repair

time distributions are allowed to change with the time of failure,

and the repair time distribution may also depend upon the time at

which repair was initiated after fault diagnosis and isolation. For

example, a wartime scenario that calls for base i to be in an intense

combat zone in (s,t] may alter the repair time distribution according

to whether the unit failed before or after s and according to the

time at which repair was initiated after fault isolation was completed

by the appropriate diagnostic facility. In summary, the diagnostic

."and repair times of a particular failed unit need not be independent

5. but the times of different units are mutually independent.

Assumption 5: There is no batching of units before fault diagnosis

SP
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begins. There is no batching of units before repair begins.

It is usually uneconomical to adopt a batch diagnostic and/or

repair policy for expensive reparable items (Peterson et al [19591) so

for most items of interest this assumption is not restrictive.

Assumption 6: There are an infinite number of servers at the diagnos-

tic and repair facilities.

Assumptions 5 and 6 ensure that diagnosis begins immediately

upon receipt of a failed unit at a diagnostic facility and that likewise,

repair begins immediately upon receipt of a failed unit at a repair

facility. Together with Assumption 4 they preserve the statistical

independence of the times different units spend in the diagnostic and

repair facilities. If units were allowed to queue and wait for diagnosis

and/or repair there would be a correlation between the times successive

units spend in the diagnostic and repair facilities.

The effect of an ample service assumption on finite server

systems has been studied directly by Gross (1982), who compared the

steady state behavior of an MH/M/ queue and an M/M/c queue with the

same mean time in the repair facility (waiting time plus repair time),

and indirectly by Slay (1980) and Kaplan (1980), both of whom compared

the M/G/w queue arising from Sherbrooke's (1968) METRIC model and

the infinite server queue with Poisson arrivals and correlated service

times arising from Simon's (1971) two-echelon model. They all found that

for low utilization factors (Kleinrock [19751, pl8 ) the ample service

assumption induced little error in determining the equilibrium number

of customers waiting. As expected, as the utilization factor increas-

ed, the error increased. Gross (1982) reports significant errors only

as the utilization factor approached 1. We conclude from these studies

N, 
7
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that the ample service assumption should not be made lightly but that

there are many situations for which this assumption is adequate.

In particular, based on intuition and the stationary studies

above, we expect the ample service assumption to be satisfactory for

items for which the number of units in the repair (diagnostic) facility

at any time during the horizon is not large compared to the maximum

number of available servers. Such items might have low failure rates,

small repair (diagnostic) times and/or be part of multi-item systems

where the servers and test equipment are not dedicated to any particu-

lar item. In the latter case, since servers can work on any of a number

of different items, the chances of a backlog in repairing (diagnosing)

a particular item are considerably reduced. For these reasons, the

ample service assumption is routinely used in the stationary multi-echelon

models employed by the Armed Forces (Sherbrooke [1968], Clark [1978],

U. S. Army [19831). We will discuss this issue again in Chapter IX.

Assumption 7: There is no lateral resupply among the bases.

By Assumption 2, the base i diagnostic facility never sends

a failed unit to another base repair facility. Complementing this,

Assumption 7 prohibits base i from ever seeking resupply from another

base for serviceable units base i has issued to customers. Base i will

seek resupply only from its own repair facility, the depot or, in

the case of condemnations, the external supplier. Sherbrooke (1968)

reports very little lateral transfer for Air Force Systems and the

Army (1983) and Navy (Clark [1978]) do not consider it a major factor
4

in determining stock levels. In "optimally" controlling a non-station-

ary multi-echelon inventory system, it might of course be desirable to

transfer assets from a base with a lot of on-hand stock to another

4%.
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base that has little or no on-hand stock. The data required for making

this decision "optimally" are similar to the data required for optimal

real time control, vhicb, as vas pointed out in Chapter I, presents

an almost insurmountable data management problem. In fact, Miller's

Real Time METRIC (1968) does not allow for lateral resupply. Optimal

policies or heuristics for handling lateral resupply are beyond the

scope of this study.

Assumption 8: All locations follow a one-for-one ([s(t)-iS(t)]) resupply

policy at all times.

Every location seeks resupply by exchanging a failed unit

for a serviceable unit from a resupplier on a one-for-one basis.

If the base i diagnostic facility sends the unit for base i repair, resupply

comes from the base i repair facility in the form of repairing the

failed unit and returning it to the base i serviceable spare stock

pool. If the unit is condemned, resupply comes from the external

supplier. Otherwise, resupply is from the depot. In a sense we are

assuming that at all times the economic order quantity for base i from

each of its resuppliers is 1. Similarly, the depot seeks resupply

on a one-for-one basis from its repair facility or the external supplier

according to whether the unit is repaired at the depot or condemned. For

most expensive or low demand items, a one-for-one resupply policy is

usually optimal for stationary continuous review inventory systems

(Hadley and Whitin [1963], p204) and during many dynamic scenarios of

interest it is reasonable to assume that an [S(t)-l,S(t)] policy is

still the best ordering policy for these types of items. Furthermore,

the various models used by the Armed Forces for peacetime spares deter-

mination assume a one-for-one ordering policy and there is no reason to
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believe this policy would change during a surge or wartime situation

(Kruse and Cohen [1983], Hillestad [1982]).

Ultimately, we would like to make real-time resupply decisions

rather than always following a one-for-one resupply policy. Even under

an HCP, we might want to change the resupply policy at management

igtervention times to reflect what we predict will happen during the

remainder of the horizon. For example, if we expect base i to be destroyed

at time t, there seems to be very little reason for the depot to honor

a resupply request from basei at t-, thereby giving the depot another

asset to use in resupplying the surviving bases. As we shall see, a

change in the resupply policy corresponds to a change in the asset

levels (Definition 2.2 in the next section) at one or more locations.

Hence, we can view the system as continually using a one-for-one resupply

policy except for management directed changes in S(t). This will be

discussed in detail in Chapter VIII where we develop a model for determining

the management intervention times and the decisions to be made at these

times.

Assumption 9: Unfilled demand at a location is backordered and eventually

satisfied on a first come-first served (FCFS) basis.

If there is no on-hand stock at the base at the time of a

customer's demand, the demand is backordered and eventually satisfied

on a FCFS basis. At the depot, resupply requests from the bases are handled

similarly.

Assumption 10: The external supplier has an infinite supply of serviceable

spares.

In summary then, the two echelon inventory system depicted

in Figure 1 behaves as follows: primary customer demands occur at



34

the bases. When a failed unit is brought to a base, the base issues

the customer a serviceable spare if one is available or else backorders

the demand (FCFS). The base diagnostic facility either condemns the

failed unit or sends it to either the base repair facility or the

% depot. If the unit is condemned, an order is placed with the external

supplier for a new unit to be added, upon arrival, to the base service-

able spare stock pool. If the unit is sent to the depot, the depot is

obliged to send a serviceable spare to the base as soon as one is

available with all the unfilled base resupply requests being backordered

and satisfied on a FCFS basis. The decision by the base diagnostic

facility depends only upon the complexity of the repair required and

is independent of the decisions on other units at other times. Likewise,

when the depot diagnostic facility receives a failed unit, it decides,

independently of the decisions on other units at other times and depending

only upon the complexity of the required repair, whether to condemn or

repair the unit. A condemnation results in an order being placed on

the external supplier while if the unit is repaired at the depot, upon

completion the serviceable unit is put into the depot spare stock pool

and is available to satisfy base resupply requests.

Pipelines and Asset Levels

Throughout this study, we number the bases from 1 through

N and 0 will refer to the depot. At locationi, i - 0,1,2,...N, at

time t > 0 let

Hi(t) a number of units on-hand;

Bi(t) - number of backorders outstanding;

3-V
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Di(t) = number of unserviceable units in the location i diagnostic

facility;

Ri(t) number of unserviceable units in the location i repair

facility;

E.(t) = number of serviceable units still en route at t to

location i from the external supplier to replace

condemnations at location i in (-,tl.
For basei, i - 1,.., N, also define DEi(t) as the number of

serviceable units en route from the depot to base i at time t plus the number

of resupply requests placed by base i in (--,t] that are backordered

at the depot at t (because no serviceable units are available at the

depot spares pool for shipment). DEi(t) is the number of resupply requests

placed on the depot by base i in (--,t] for which base i has not received

a serviceable spare by t: either because the depot has not yet shipped

one and has thus backordered the request or because the serviceable

unit the depot shipped is still in transit to base i at t.

For basei, let Xi(t) - Di(t) + Ri(t) + Ei(t) + DEi(t). Because

of the one-for-one resupply policy, Xi(t), called the pipeline quantity

or pipeline for short, represents the number of customer demands at

base i in (-',t] for which the base i spares pool has not received a

serviceable unit by t as resupply for the demanded serviceable unit

that it either has issued or will issue to satisfy the customer request.

Note that Xi(') does not change when diagnosis on a unit is completed since

Di(*) decreases by one but because of the one-for-one resupply policy,

one and only one of El('), Ri() or DEi() increases by 1. In fact, Xi()

increases by 1 if and only if Di( ) increases by 1. Xi(') decreases

by 1 if and only if one and only one of Ri(), Ei() or DEi() decreases

.1 

1 
1
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by I representing the receipt of a serviceable unit at the base i spares

pool from either the base i repair facility, the external supplier or

the depot, respectively. Xi(t) reflects the initial system condition

since it includes units that were in the pipeline at 0 and are still

in the pipeline at t.

At the depot, let V0 (t) be the number of unserviceable units

en route to the depot diagnostic facility from the bases. Similarly to

the bases, define the pipeline at the depot as X0 (t) - D0 (t) + R0(t) +

E0 (t) + V0(t). The depot pipeline has a similar interpretation as the

number of serviceable units due-in to the depot from the depot's resupply

process. Note that X(') changes only when V0(-) increases or when

Ro(*) or E0(') decreases.

When a location receives a demand, it immediately issues

a serviceable unit if there is one on-hand or it backorders the request

to be filled on a FCFS basis. The failed unit imnediately enters

the resupply process by being sent to the location's diagnostic facility.

This implies that for all t >0, and all i - O,,...,N, Hi(t)Bi(t) 0.

Since resupply is on a one-for-one basis it also implies that if Xi(t) 0

all serviceable units that locationi is authorized to have would be

on-hand at t. This leads to Definition 2.2.

Definition 2.2: The asset level at locations, i - 0,1,...N, at time

t > 0, sl(t) -- Ri(t) - Bi(t) + Xi(t), is the maximum

number of serviceable units that can be on-hand at

location i at time t.

After base i receives a demand at t, it either issues a service-

able unit from its spares pool or backorders the demand, thereby decreasing

Hi(t) - Bi(t) by precisely 1. The failed unit immediately enters the
I 1

P .
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diagnostic facility, increasing Xi(t) by I and thereby resulting in no

change to si(t). Furthermore, if base i receives a serviceable unit

from the resupply process at t, Xi(t) decreases by 1 but the unit just

received either satisfies an existing backorder or is put into the
base i spares pool resulting in an increase in Hi(t) - Bi(t) of I and

thereby again causing no change in si(t). Similarly, a resupply request

placed on the depot at t decreases Ho(t) - B0(t) by 1. Since concurrent

with the request a failed unit is sent from a base, V0(t) and therefore

X0(t) increases by 1 resulting in no change to s0 (t). Furthermore,

if X0(t) decreases by 1, HO(t) - B0(t) increases by 1. Thus, at every

location the asset level varies with time only through management

directive and not because of demands at a location or the interactions

of the resupply system. This is a direct consequence of the one-for-one

resupply policy and is characteristic of all (S-1,S) inventory systems.

Of course, management decisions to change the asset level

at a location could be based on an optimization model that reflects

the demand history, anticipated future demand and the current system

condition. (See Chapter VIII). If management does not interfere

with the normal workings of the inventory system, then si(t) is constant

through time and in particular, si(t) - s.(O) for all t and i - 0,1,2,..N.

If management has sent additional spares to locationi, either through

new external procurement or redistribution of system assets, si(t)

reflects only those units that have arrived at locationi by t and were

therefore available to satisfy demands that occurred before t at locationi.

Likewise, si(t) reflects only those management cutbacks that have been

implemented by t. Therefore, si(t) differs from si(O) only through the

total of the assumed known management directives to either increase or

.o'.?V
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decrease assets at locationi that have been implemented by time t.

From Definition 2.2 we have that

Bi(t) - [Xi(t) - si(t)] +  (2.2)

Ri(t) - [si(t) - Xi(t)]+ .  (2.3)

Since si(t) is a known function of time, (2.2) and (2.3) show that

the pipeline quantity Xi(t) provides all the necessary information

to determine the on-hand stock and backorder position at location i

at any time t. Chapters III and IV are devoted to describing the

stochastic processes, {{Xi(t), t >0} i - 0,1,...N}.

Backorder and On-hand Moments

-In this section we present results on the calculation of

the moments of the distributions of on-band inventory and outstanding

backorders for one-for-one inventory systems with integer pipelines.

The results are true for all locations and all times so we temporarily

suppress the notation indicating location and time and define

B[s] - backorders given an asset level of s;

H[s] - on-hand inventory given an asset level of s;

X - pipeline quantity.

From (2.2) we have that

E(B[s])- I (J-s)Pr(X-J)
J >S

I Pr(X>J) (2.4)
J>s

and

E(B2[s]) = (j-s)2Pr(X=J)
j>s

-, . -' . " ""* : L,"J" . "
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2 2S
- j Pr(X-j) + a Pr(X>9+1) - 2sfE(X) - I jPr(X-J)].

J >s J-1

For all distributions on the non-negative integers,

k k
I Pr(Xj) - I j Pr(X-J) + k Pr(X>k+l)

so that using this and (2.4) yields

E(B 2[s]) - E(X 2 ) j2Pr(X-J) - s'Pr(X>s+l) - 2sE(B[s]). (2.5)
J.1

Note that E(B[O]) - E(X) and E(B2 [O]) - E(X2 ) as we expected from (2.2)

since for s - 0, B - X.

Equations (2.4) and (2.5) allow the calculation of the mean

and variance of the backorder distribution for a given asset level

based on knowledge of the pipeline distribution. As we have already

mentioned and shall see in Chapter V, the asset level is often the

decision variable in an optimization problem. Therefore, many trial

values may be examined in an algorithm (Kotkin [1978]) and a recursive

calculation of the mean and variance of the backorder distribution

is desirable.

Theorem 2.3: (a) E(B[s]) - E(B[s-l]) - Pr(X>s-1)

(b) Var(B[s))-Var(B[s-i])-Pr(X<s-l){E(B[s])+E(B[s-1])}

Proof: Let I(z) - 1 if z > 0 and let I(z) - 0 otherwise. Then,

B[s] - Bs-1 - I(B[s-1]) (2.6)

since increasing the asset level from s-1 to s decreases the number

of outstanding backorders by precisely 1 whenever B[s-lJ > 1. From

(2.2) for n = 1,2,...

E{In(B[s-l])) = Pr(B[s-1] > 1) Pr(X>s-l) (2.7)

so that (a) follows immediately upon taking the expectation of both
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sides of (2.6) [as well as from (2.4)]. Furthermore, from (2.6)

Var(B(sl) - Var(B[s-11) + varil(B~s-l])) - 2 Cov{B[9-1], I(B[s-lI)}

But Var{I(B~s-l])} - E(12(B19-1D) _ E2{I(B[s-l])}

-Pr(X>s-1) Pr(X<s-l)

and Cov{B[s-11, I(B[s-l])} - E{B[s-1]I(B[s-1])) - E(B[s-l])E{I(B[s-l])}

- E(B[s-lJ) Pr(X<s-l)

from (2.7) and the fact that B[s-1]I(B[s-11) - B[9-11 > 0. Therefore,

Var(B~s]) - Var(B~s-l1) + Pr(K~s-l){Pr(X>s-1) - 2E(B~s-llD}

From (a) we have that Pr(X>s-l) - E(B[s-l1) - E(B[s]) and substituting

this above we immediately obtain (b). I

Note that as expected both the mean and variance of the

backorder distribution are decreasing functions of the asset level

and both go to zero as s goes to infinity.

Using (2.6) we can obtain a recursive formula for any moment

of the backordeT distribution.

Theorem 2.4: For n - 192,...

E(B' [si) = E(B [s-l)) + (-1)n Pr(X>s-i)

n-i -
*+ I (-i) ~()E(B [s-iD).

Proof: From (2.6) we have

E(B [s]) - E{[B[s-1] - I(B[s-i)] n,

z - n

0 n

- E(B n[s-i]) + (-1)n E{ In(B[s-i])}

+ n n-i n EBslln (s-).
j0i :
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For n > j > 0, Bjsl-l] In-j(Bls-1]) - BJ[s-l] > 0. Using this and

(2.7) in the above expression establishes Theorem 2.4. //

Realizing that

H[s] - H[s-l] + I(S-X) (2.8)

ana using arguments similar to the ones used to prove Theorems 2.3

and 2.4 we can prove Theorem 2.5 which gives results on the moments

of the distribution of on-hand inventory.

Theorem 2.5: (a) E(H[s]) - E(His-l]) + Pr(X<s-l)

(b) Var(H[s]) - Var(H[s-l]) + Pr(X>s-l)(E(H[s]) + E(H[s-1I)}

(c) for n - 1,2,...n

n-1
E(Hn[s]) - E(Hn[s-i]) + Pr(X<s-1) + I (n)E(HiJ[s-]) //

J.1i
J

Note that the mean and variance of the distribution of

on-hand inventory are increasing functions of s and they grow without

limit as s goes to infinity.

The above results can be extended to arbitrary distributions

for X so that the results can be used in many of the classical inven-

tory models where X will represent demand during a lead time and

analogs of (2.2) and (2.3) are valid (Kotkin [19831).

The results in this section are used extensively in Chapter V

where we formulate an optimization problem that requires the determina-

* tion, for various depot and base asset levels, of the expected number

of base backorders outstanding at each point in time during the

horizon. We present these results here as background material so that

the reader can keep them in mind as we derive the distributions of the

depot and base pipelines in the next two chapters.

Next page is blank.



CHAPTER III

DEPOT CHARACTERISTICS

In this chapter we derive the time dependent probability

distribution of the depot pipeline and we also study other important

stochastic processes that arise at the depot. The results of this

chapter are used extensively in Chapter IV to derive the distributions

of the bases' pipelines. However, the material in this chapter is

interesting and useful in its own right: it pertains to the analysis

of non-stationary single echelon inventory systems.

Demand at the Depot

Recall that a demand at the depot for a serviceable unit

occurs when some base, upon completion of its diagnostic procedures,

seeks resupply for the unserviceable unit it has just sent to the

depot. Define Pi(s,t) as the probability that a unit that fails at

time s > 0 and completes base i diagnosis at t > s will be sent to the

depot for further diagnosis and/or repair. Furthermore, let Gi(st) be

the probability that a unit that fails at s > 0 will complete base i

diagnosis by t > 9. For fixed t > 0, we classify a failure at time

S< s < t as one of three mutually exclusive and exhaustive types:

Type I: Diagnosis on the unit was completed by t and a decision

43
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was made to send the unit to the depot. This occurred

with probability

t
PI(s) - f Pi(sy) dG (sy).

Type II: Diagnosis on the unit was completed by t and a decision

was made either to condemn the unit or to repair the

unit at the base. This occurred with probability

t
P11 (s) = f (1-Pi(sy))dGi(s,Y).

Type III: Diagnosis on the unit was not completed by t. This

occurred with probability PIli(s) - 1 - Gi(st).

Note that for all 0 < s < t, Pi(s) + PIi(s) + Piii(s) w 1. For a

particular unit the decision made by the diagnostic facility may depend

upon the time of failure and upon the time spent in the diagnostic

facility. However, by assumption, the decisions made on different

units, as well as the diagnostic times of different units, are mutually

statistically independent. Therefore, the Splitting Property for NHPP,

L.0, guarantees that the number of resupply requests placed on the

depot by basei forms a NIHPP with MW

t
Ai(t) f Xi(s) PI(s) ds. (3.1)

0

Since demands at each base form independent NHPP and the

diagnostic times and decision making mechanisms at the bases are also

independent, we have, as a consequence of the Superposition Property

Pj., that the demands for serviceable units at the depot form a NHPP
N

with MVF m0 (t) - (t).
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Depot Asset Position

Because of the one-for-one resupply assumptions, the depot

asset position changes over time only through management directive. At

time t > 0, management may change the asset position by directing a

change either in the depot's net inventory, R0(t) - B0(t), or in the

depot pipeline quantity, X0(t). (See Definition 2.2). Management may

change the net inventory by delivering or removing serviceable units

and "creating" or "cancelling" outstanding backorders. A change in

X0(t) can be effected either by discarding a unit already in the pipeline

or by adding a unit to the depot pipeline without a corresponding

resupply request from a base.

Management may elect to increase the depot's net inventory by

delivering serviceable units to the depot spares pool. These deliveries,

as well as all other management directives that change the depot asset

position, are assumed to be scheduled at the beginning of the horizon

and are also assumed not to depend on the system condition at any time

in (O,t] or on the depot demand process in (O,t].

Essentially, management decreases the depot's net inventory

by "demanding" a serviceable unit from the depot spares pool. If there

is stock on-hand, a serviceable unit is immediately issued to management.

Otherwise, we assume the creation of a backorder due-out to management

which, along with the other demands on the depot, will be satisfied in

accordance with the FCFS discipline. Since the times of the management

directed changes are determined at the beginning of the horizon, these

"management demands" result in a non-continuous MVF for the NHPP describing

depot demand. For ease of exposition, the subsequent analyses in

A.-
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Chapter III assume a continuous MVF arising from base resupply requests.

The methods of Cinlar (1975) for non-continuous MVF can be applied to

easily extend the analyses.

Management may increase X0 (t) by placing an unserviceable

unit in the depot pipeline without a corresponding resupply request

from a base. (Presumably, these unserviceable units are available as

the result of previous management decisions not to diagnose/repair

units that failed somewhere in the inventory system). This type of

management directive does not affect the depot demand process. However,

there is no longer a one-to-one correspondence between units in the

pipeline and base resupply requests. The NH1PP describing the number of

units that enter the depot pipeline now has a non-continuous MVF to

represent both the base resupply requests and the entries scheduled by

management. Again, for ease of exposition, in the subsequent analyses

we deal only with a continuous 1VF arising from base resupply requests.

The methods of Cinlar (1975) can again be applied to extend the analyses

to include this type of management directive.

The management directives to cancel an existing backorder or

to discard a unit already in the pipeline are more cumbersome to deal

with. First, there is no assurance that these directives can be implemented

at their scheduled times. Therefore, we would need rules to cover the

possibility that there may be a delay in implementing these changes.

Depending on the rules chosen, s 0 (t) may become a random variable.

Secondly, the very fact of whether these directives can or cannot be

implemented at t provides information about the pipeline and the demand

process in (O,t]. For example, cancelling a backorder due-out to a

particular base implies, among other things, that X0(t) > s0(t) and
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also that there was at least one resupply request from that particular

base backordered at t. The subsequent analyses in this chapter do not

allow for these two types of asset position changes. The analyses can

be extended to deal with these types of management directives by carefully

and tediously conditioning on the relevant information obtained at

their originally scheduled times for implementation and the effects on

the asset position of a delay in their implementation. In a similar

manner, the analyses could be extended to include management directives

that depend on the system condition at times in (O,t] and/or on the

depot demand process in (Ot].

Depot Pipeline

The depot pipeline at time t > O, Xo(t), consists of: units

that were in the depot pipeline at time 0 and are still in the pipeline

at t; units that were in some base diagnostic facility at time 0, were

sent to the depot in (0,t] and are still in the depot pipeline at t;

and units that failed at the bases in (0,t], were sent to the depot in

(Ot] and are still in the depot pipeline at t. Because of our assumptions,

these three components of Xo(t) are independent so that Xo(t) can be

obtained from the convolution of three random variables. The first two

random variables can be easily, albeit tediously, computed from knowledge

of: the initial system condition; the distributions of the diagnostic,

shipping and external procurement lead times; and the diagnostic decision

making mechanisms at the bases and the depot. Since the stochastic

description of the first two components is not a goal of this dissertation,

we will, for ease of exposition, assume that Xo(O) - 0 and also that

'e
9'. , . . . - •. . . , . . % • , :
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all base pipelines are empty at 0. Without loss of generality, ye

concentrate here on the stochastic description of the component of

Xo(t) arising from failures at the bases in (O,t].

Fix some time t > 0 and consider a demand placed on the depot

at 0 < s < t. The demand is classified as one of the following mutually

exclusive and exhaustive types:

Type 1: The failed unit sent to the depot at s is still

en route to the depot at t.

Type 2: The failed unit arrived at the depot by t but has

not completed diagnosis by t.

Type 3: The failed unit completed depot diagnosis by t.

A decision was made to repair the unit at the depot

but the repair was not completed by t.

Type 4: The failed unit completed depot diagnosis by t.

A decision was made to condemn the unit thereby

generating an order on the external supplier. A

serviceable replacement from the external supplier

has not arrived at the depot by t.

Type 5: The failed unit completed depot diagnosis by t.

If the decision made was to repair, the unit completed

depot repair by t. If the decision made was to

condemn, a serviceable replacement from the

external supplier arrived at the depot by t.

Since each demand is classified independently of other demands,

P10 guarantees that the number of demands classified into each type form

mutually statistically independent NHPP. In particular, define:

v(s,t) m Pr(a shipping time begun at s has ended by t);



49

c(s,tlt 2) m Pr(a unit that was shipped to the depot at s

and which started diagnosis at t1 has left

the diagnostic facility by t 2 );

r(s,tl,t 2,t3 ) = Pr(a unit that was shipped to the depot at

s, started diagnosis at t1 and entered the repair

facility at t2 has left the repair facility

by t3 );

e(s,tlt 2 ,t 3 ) w Pr(a serviceable unit arrived by t 3 in

response to an order placed on the external

supplier at t 2 to replace a unit that was

shipped to the depot at s and which started

diagnosis at tl);

P0 (s,tlt 2) = Pr(a unit that was shipped to the depot at

s, arrived at t 1 and completed diagnosis at

t2 was sent to the depot repair facility).

V0 (t) is the number of Type 1 demands in (0,t]. As a consequence of

PlO, V0 (t) has a Poisson distribution with mean

f Xo(s) [1-v(s,t)] ds (3.2)

0

where XO(s) is the intensity of the NHPP describing demands at the

depot. D0 (t) [Type 2 demands] has a Poisson distribution with mean

f X (s) f d[v(s,y)][1-c(s,y,t)] ds. (3.3)

0 s

R0 (t) [Type 3 demands] has a Poisson distribution with mean

t t ft
f X0O(s) f dlv(s,y)l d[c(s,y,z)]P 0(s,yz)[1-r(s,y,z,t)] ds. (3.4)

0 s y

Finally, Eo(t) [Type 4 demands] has a Poisson distribution with mean

...U.
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t t tf o0(s) f1 dlv(a,y)] ft dlc(o~y,z)][l-Po0(e,y,z)][l-e(s,y,z,t)j ds.(3.5)
0 a y

Since for all t > 0, VO(t), DO(t), RO(t) and Eo(t) are mutually

statistically independent, X0(t) has a Poisson distribution with a mean

obtained by summing (3.2) to (3.5).

Define F0(st) as the probability that a failed unit that was

shipped to the depot at time a > 0 (and thereby entered the depot pipeline

at a) is not in the depot pipeline at t > s. Then, for all t > 0,

X0 (t) has a Poisson distribution with mean

tif X 0(s) [1-Fo0(s't)] ds(36

where, using (3.2) to (3.5), we have that
4t t

F 0 (s,t) - f f d[v(s,y1)]d[c(s,yly 2)]
S 

1

{P0 (s,yly 2 ) r(s,yly 2 ,t) (3.7)

+ [1-P 0 (s,ylY 2 )] e(syly 2 ,t)}.

For ease of exposition and notational convenience, we have

assumed that the depot shipping, diagnostic, repair and external procurement

lead times, as well as the depot repair/condemn decision making mechanism,

do not depend upon the original time of failure of the unit or upon the

base at which it failed. As long as the independence among different failed

units is maintained, it is a simple, straightforward matter to extend

the above analysis to the case where the time and location of failure

affect the relevant depot processes. We leave it to the reader to

verify that (3.7) can be modified to handle these new dependencies so

that X0(t) remains a Poisson random variable with mean given by (3.6).

4,

.5 .*.. . . . . . .. . .,
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Delay at The Depot

Let WO(t) be the delay before the depot sends a serviceable

unit to the base that requested resupply from the depot at t+ > 0. To

calculate the distribution of W0(t) we extend the method used by Kruse

(1980) to determine the distribution of customer wait in a stationary,

single location (S-l,S) inventory system with arbitrary, independent

resupply times and demands forming a homogeneous Poisson Process.

Clearly, W0 (t) - 0 if and only if H0(t) > 0 since one of the

H0(t) serviceable units on-hand at the depot spares pool will be immediately

sent to the base that requested resupply. If X0(t) Ls0 (t) then, from

(2.3), HO(t) - 0 and, from (2.2), there are B0(t) - X0(t) - s0 (t) > 0

backorders outstanding at the depot at t. Because of the FCFS policy,

these B0(t) backordered base resupply requests must be satisfied before

the resupply request at t+ can be satisfied. Therefore, if Xo(t) >SO(t),

the base that requested resupply will receive the (X0 (t) - s0 (t) + 1 )th

serviceable unit that becomes available for issue at the depot after t.

There are two ways that serviceable units become available

for issue by the depot spares pool. First, a serviceable unit will

enter the depot spares pool when it leaves the depot pipeline because

the unit either just arrived from the external supplier or just completed

repair at the depot. Secondly, management may send additional serviceable

units to the depot in order to increase the depot asset level. Therefore,

WOW > w > 0 if and only if

Xo(t) - s0(t) L M+(t,t+w) + a(t,t+w) + f(O,t) + f(t,t+w) (3.8)

where

M (t,t+w) = number of serviceable units sent by management
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that arrived at the depot in (t,t+w].

a(t,t+w) 1 if the unit that entered the depot pipeline

because of the demand at t+ has left the

pipeline by t + w. Otherwise, a(t,t+w) - 0.

f(t I t2) number of units that entered the depot pipeline

in (tl,t 2 ] and left the pipeline in (t,t+w].

Since units that left the pipeline in (tt+w] must have originally

entered the pipeline either in (O,t] or in (t,t+w], the right hand side

of (3.8) is precisely the non-negative number of serviceable units that

becomes available for issue at the depot spares pool in (t,t+w] when we

know a unit entered the pipeline at t + . Assuming F0 (t,t) - 0, (3.8)

assures us that W(t) > 0 if and only if X0 (t) Ls 0(t).

Rearranging (3.8) we have that W0(t) > w > 0 if and only if

Xo(t) - f(Ot) >so(t) + M+(t,t+w) + a(t,t+w) + f(t,t+w). (3.9)

X0 (t) - f(O,t) is the number of units that entered the depot pipeline

in (O,t] and are still in the depot pipeline at t+w. These units are

precisely the Type 1, 2, 3 and 4 demands at t+w that occurred in (O,t].

Using (3.6), we have that Xo(t) - f(0,t) has a Poisson distribution

with mean

t
f xo0(s) [1-Fo0(S,t-w)] ds.

0

Furthermore, since f(O,t) is the number of Type 5 demands at t+w that

occurred in (0,t], x0(t) - f(0,t) is independent of f(0,t). Using

Assumptions 2 through 6 and the fact that a NHPP has independent increments,

it is easy to show that Xo(t) - f(0,t) is independent of a(t,t+w) and

f(t,t+w).

a(t,t+w) is a Bernoulli random variable with mean Fo(tt+w)

- %
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and by Assumptions 2 through 6 is independent of f(t,t+w). f(tt+w) is

precisely the number of Type 5 demands at t+w that occurred in (t,t+w].

Therefore, from (3.6), f(tt+w) has a Poisson distribution with mean
t4"W

f X(s) Fo(s,t+w) ds
t

and f(t,t+w) is independent of Xo(t) and X0(t+w).

Since s0 (t) and M+(tt+w) are management parameters, all of the

random variables in (3.9) have been identified and stochastically

described. It is now a straightforward but tedious task to use (3.9)

to calculate the probability distribution and expected value of W0(t).

Figure 2 illustrates the behavior of the distribution of WO(t) for

various values of s0(t). In constructing Figure 2 we assumed that:

X(O) - 0
M+(t,t+w) - 0 for all w > 0

t - 30

(s) - 4 sin 2 7s for s >0

F0 (s,y) - 1 if y >_s + 25 and 0 otherwise.

Origination Time of Oldest Backorder

The origination time of a base's resupply request on the

depot is defined as the time at which the base officially requested

depot resupply by sending a failed unit to the depot. Let Y0 (t) be the

origination time of the first base resupply request that will be satisfied

after time t > 0. Yo(t) > t if and only if BO(t) - 0. If BO(t) - n > 0

and 0 < ti, t 2 ,.-- , t n < t are the origination times of then resupply

requests backordered at t, then Yo(t) min {tl, t 2 , ... , tn. t-Yo(t)
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is the length of time during which the bases requested but were unable

to receive resupply from the depot by t. In this sense, t-Y0 (t) is a

measure of the ability of the depot to perform its supply mission.

Intuitively, we expect that as s0(t) increases (decreases), t-Y0(t)

decreases (increases) and more (less) base resupply requests can be

satisfied by the depot by t. Therefore, t-Y0(t) is a measure of inventory

effectiveness at the depot that is of interest to managers and strategic

planners especially when t is set to the length of the scenario (HZ).

In fact, it is quite plausible for management to consider alternate

resupply sources for the bases whenever HZ-E[Y 0 (HZ)] (or possibly HZ -

some percentile of Y0(HZ)) is alarmingly high. In this section we

derive the distribution of Y0 (t) for any t > 0.

For the remainder of this dissertation, we shall for convenience

use Pr(Y - y) to represent both the probability that a continuous

random variable Y is in the interval [y,y+dyl and the probability density

function of Y. It will be clear from the context which meaning to assign.

By the Law of Total Probability we have for y j t that

Pr(Y 0 (t)=Y) =I Pr(Y0 (t)Y, B0 (t)=h, N0 (t)=k),€h-1 k-s 0(t)+h

where N(t is the number of base resupply requests placed on the depot

in (O,t]. Let T(n) be the time of the nth demand on the depot, n -

*. -1,2,.... The event (Y0(t)=y,B0 (t)=h,N0 (t)-k) occurs if and only if the

event (T(k-h+l)=y,B0 (t)-h,N0 (t)-k) occurs (see Figure 3).

k-h demands h-1 demands

0 YoWt =y t

Figure 3: The event (Y0 (t)-y, B0 (t)-h, N0 (t)-k)

V~* * ** *.,
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Therefore,

Pr(Y (t)uy) - h11ksI() Pr(T(k-h+1) - y, B 0(t)mih, N 0(t)u'k)

M I {Pr(B 0 (t)inhlT(k-h+1) - y, N 0(t)u'k)
h-i ' 0 (t)+h

* Pr(T(k-h+)'yjN 0 (t)'k) Pr(N 0 (t)u-k)L.(3.10)

From the analysis leading to (3.1) we know that NOW(t has a

Poisson distribution with mean mo(t). From P5 we have that

Pr(T(k-h+1)u'yIN0 (t)-k) -

kI _____ k-h M0 (y) h-i O'(Y) (3.11)

(k h l h l l mo(t) m0(t) m0(

The event (Bo(t)-h IT(k-h+l)-yNO(t)-k) occurs if and only

if there are so(t) + h units remaining in the depot pipeline at t when

h-l units entered the pipeline in (yt], one unit entered at y, and k-h

units entered in (O,y]. Let L(n,tl,t2 ,t3) < n be the number of units,

out of the n units that entered the pipeline in (tlt 2], that remain in

the pipeline at t3 . The number of units that enter the pipeline forms

a NHPP and the times different units spend in the pipeline are mutually

statistically independent. Hence, it follows from P3 that L(t,tl,t 2,t3)

is a Binomial random variable with parameters n and b(tl,t 2 ,t 3 ) -

probability that a unit that entered the pipeline in (tlt 2 ] is still

A in the pipeline at t3. Using P2. and (A.2) we have that

t 2 x (s)
b(t1,t 2,t3) -f2 01F0(' - ds. (3.12)

[lF(st) [m0(t2)-m0 (tl))

Recalling the definition of a(y,t) from the previous section,

we then have that
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Pr(B0 (t) - hlT(k-h+l) - y, N0 (t) - k)

= Pr[L(k-hO,y,t) + 11-a(y,t)] + L(h-l,y,t,t) = s0 (t)+h ]

- Pr(H(k-h,y,h-l,t) - s0 (t) + h). (3.13)

In (3.13) we have defined H(k-h,y,h-l,t) as the number of units that

are still in the depot pipeline at t given that k-h units entered in (0,y],

one unit entered at y and h-i units entered in (y,t]. Combining the

above into (3.10) we have that

Pr(Y0(t)=y) = O CO {e -M0()m0 ( y ) k - h  [mo(t)-m0(y)]h-i XO ( Y )

0 h1 k-s 0 (t)+h (k-h)! (h-l)! 0

Pr[H(k-h,y,h-l,t) = s 0 (t)+h]}. (3.14)

In order to show that (3.14) defines a true probability

distribution we need to use Theorem 3.1 below. Let p[x;u] = eu uX/x! be

the probability a Poisson random variable with mean u is equal to x.

Theorem 3.1: For h > 1, k > s0 (t) + h and - (h-1) < n < k - h,

t

f {PLk-h-n;m0 (Y)) p[h-l+n;m0 (t)-m 0 (y)] 0 (y)
0

Pr[H(k-h-n,y,h-l+n,t) - s0 (t) + hi} dy

- Pr(B0 (t)-h,N0 (t)-k).

Proof: For convenience, let Q(s0 (t)+h) be the integral on the left

side of the equation in Theorem 3.1. Since H(k-h-n,y,h-l+n,t) < k we

have that the generating function of Q(j) is
"k t *()d

k 0 Q(j)zi = t p[k-h-n;m 0 (t)] p[h-l+n;m0 (t)-m0 (y)]X0 (y)H*(z) dy

where H *(z) is the generating function of H(k-h-n,y,h-l+nt) which is the

sum of three independent random variables: a Binomial with parameters

A%,%
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k-h-n and b(O,yt); a Bernoulli with mean l-F 0 (y,t); and a Binomial

with parameters h-l+n and b(y,t,t). After some rearrangement, ye get

that

k t -m0(t)
I Q(j)z1  f {e [1-(1-z)(1-F0 (y,t))] X0(y)dy

J.0 0

(k-h-n)! (h-1+n)!Y

Let I(k-h-n, h-l+n) be the integral on the right side of the equation

above. Since

d
dy {m0(y)[1-b(0,y,t)(1-z)] - X0(y) {1-(l-z)[1-F0 (y,t)])

*d {[mo(t)-m(y)(1..b(ytt)(1-z)]) . - - {m0(y)[1-b(O,y,t)(1-z)])

we can integrate I(k-h-n,h-l+n) by parts to get

I(k-h-n,h-1+n) -I(k-n+1,h-2+n)

{em0()M (y)[-b(Oyt)(-z)])) -~

(k-h+1-n)!

(h-l+n)!

Evaluating at y -0 and y -t yields that

I(k-h-n,h-l+n) - I(k-h-n+l,h-2.n).

Continuing, we find that I(k-h-n,h-1+n) - M-1,O) which is equal to

t m(t) [m (t) (l-b(O,y,t) (1-z)) ) k-i

*f eM X(y)f1-(1-z)C1-FO (y,t))] (k-i)! dy

-p[k;m 0 (t))[1-b(0,t,t)(1-z)] k (3.15)
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Thus, the generating function of Q(j) is equal to a constant times the

generating function of a Binomial random variable with parameters k and

b(Ostt). Equating coefficients of zj we have that

k So(t)+h k-So (t)-h

Q( 0 (t)+h) = p[k;mo(t)] ( ) b(O t t) ( 1-b(O t,t)]

8o (t)+h

- Pr(N0 (t)-k) Pr(L(k,O,tt) - s0 (t)+h). (3.16)

But L(kO,t,t) - s0(t) + h if and only if (X0(t)=s 0(t)+bINo(t)Wk)

which occurs if and only if (B0 (t)=hINo(t)=k) [See (2.2)]. Using this

in (3.16) establishes Theorem 3.1. //

Theorem 3.1 effectively conditions the event (B0(t)=h,N0(t)-k)

on T(k-h+l-n). When n - k - h we are conditioning on T(1) so there must

have been k-l demands in (T(1),t] and H(0,T(),k-l,t) M s0 (t) + h. When

n - -(h-l) we are conditioning on T(k) so that H(k-1,T(k),O,t) - s0 (t) + h.

Therefore, Theorem 3.1 verifies that Pr(B0 (t)-h, N0(t)-k) can be calculated

by conditioning on the time of any of the k demands that occurred in (O,t].

From (3.14), Theorem 3.1 (setting n - 0) and Fubini's Theorem

(since the summand in (3.14) is the product of probability terms, all

required interchanges are justified) we have that

t ccf Pr(Y0(t)=y) I Pr(B0 (t) = h, N0(t) = k)

0 h-l k'.s0 (t)+h

- I - Pr(B0 (t) = 0). (3.17)

By definition, Pr(Y0(t) > t) Pr(B0(t) 0) and therefore the density

of Y0 (t) integrates to 1.

Example 3.2: Consider the case of a fixed known depot pipeline residence

time R0 , so that for all s > 0, F0 (s,t) - 1 if s + R>t and F0 (s,t) = 0

otherwise.
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For y 5. t - R0 and all n > 0 we have that L(nOyt) - 0 and

that l-a(yt) - 0. Therefore, for all s 0 (t), h > I and k > s0 (t) + h

we have that

Pr(H(k-h,yh-l,t) - so(t)+h) inPr(L(b-l,y,t,t) - s0(t)+h) -0

and from (3.14) we then have that Pr(Y0(t < t - R0) - 0.

For t - R( y 5.t we have that 1 - a(yt) -1 and L(h-l,y,t,t)

h - 1. Therefore, for k - h > 0

Pr(H(k-h,y,h-1,t) - 0 (t)+h) - Pr(L(k-h,0,y,t) 8 50(t))

- Pr(N 0 (y)-N 0(t-R0 )-s0 (t) INO(y)-k-h)

W k-h ( M Y - m(t-R 0) s 0 (t) m 0(t-R)0 k-h-s 0 (t)

from P4 or (3.12). Inserting this in (3.14) yields, after some re-

arrangement and cancellation,

-1n0(t) [M O(Y) - m0 (t-R 0)]SO

Pr(Y 0 (t)iny) -{e X0 (Y) (

(MO(t) - m 0(y)] hl MO(tR10) k s0t

h 1 (h-i)! k-s I(t)+h [k-h-s0(t)]l

-pIs 0(t; MOWy - m0 (t-R 0)]X O(y). (3.18)

(3.18) is precisely the probability density that T(N0 (t-R 0 )+s 0 (t)+l)

occurred at y. (See P14). A little thought should reveal that if

B0(t) > 0 then the origination time of the first demand satisfied after

t is precisely the time of the 90(t) + 1st demand after t - R0.

For t > 0, let Z0(t- T(N01Y0 (t)1-l) be the origination time

of the last base resupply request that the depot satisfies by t.

(Z0(t) -0 implies that the depot has not satisfied any base resupply
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requests in (O,t]). t - Z0(t) is an alternate measure of performance

[related to t-Y0(t)] that management can use to gauge the ability of

the depot to perform its supply mission. Using arguments similar to

those used to obtain (3.14), we can obtain the density of Z0(t), t > 0.

In this chapter we obtained the time dependent distributions

of X0(t), W0(t) and Y0(t). All of these distributions are useful tools

for evaluating inventory performance at the depot when viewing the

depot as a single location inventory system. However, for the purposes

of this dissertation, our interest in the depot as an inventory system

unto itself is limited. Rather, we are primarily concerned with the

impact of inventory decisions at the depot on inventory performance

and customer satisfaction at the bases. In Chapter IV we shall use the

arguments and results developed in this chapter to explicitly examine

and define the supply interactions between the depot and bases.

Next page is blank.
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CHAPTER IV

BASE CHARACTERISTICS

From (2.2) we see that increasing s0(t) reduces the number of

base resupply requests backordered at the depot at t. As B0(t) decreases,

we intuitively expect that inventory performance and customer satisfaction

at the bases increase. Therefore, stock at the depot has a definite

impact on inventory performance at the bases. In this chapter we precisely

define this impact by deriving the time dependent probability distributions

of the bases' pipelines as functions of the depot's asset level. We

shall also study other important stochastic processes arising at the bases.

Demand at the Bases

Upon completion of the diagnostic procedures at basei, a

failed unit is either condemned as irreparable, sent to the base i

repair facility, or sent to the depot for further diagnosis and action.

The decision on each unit is made independently of the decisions on

other units. In the first section of Chapter III we used these facts,

along with the Splitting Property, P10, to show that the number of

resupply requests placed on the depot by base i forms a NRPP with MW

A i(t) [given by (3.1)] and intensity ai(t), i - 1,...,N. Similarly, it

is straightforward to show that the number of units that enter the

63
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base i repair facility forms a NEPP with MVF

t t

f X(s) f dG (sY)P (s~y)ds
0 a

where Pi(s,y) is the probability that a unit that failed at time a > 0R

and completed diagnosis at y >s was be sent to the base i repair facility.

Furthermore, the number of base i condemnations forms a NHPP with MVF
t t

f X(s) f dG(s,y)1-P (s y) - P (s,y)]ds.
0 a

As a further consequence of PO, these three NHPP are mutually statistically

independent.

Base Asset Position

Because of the one-for-one resupply policy, the base i asset

position, analogously to the depot asset position, changes over time

only through management directive. Many of the comments in Chapter III

regarding the depot asset position apply to the base i asset position as

well. In particular, for ease of exposition, we assume that management

decisions to change si(t) , the base i asset position at t > 0, are made

at the beginning of the horizon. We also assume these decisions do not

depend upon the system condition at any times in (O,t] or upon the
4. base i demand process in (O,t]. Therefore, the delivery of serviceable

units to the base i spares pool in order to increase basei's net inventory

yields no information on the system condition at any time in (O,t] or

on the base i demand process. Without this assumption, our analyses would

have to contain tedious arguments conditioning on any relevant information

obtained at scheduled management intervention times.

. .. ...
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Decisions to increase Xi(t) by placing an unserviceable asset

in the base i pipeline without a corresponding customer demand for a

serviceable unit result in a non-continuous MVF for the NHPP describing

the number of units that enter the components of the base i pipeline.

' .Decisions to decrease Xi(t) by a "management demand" result in a non-

continuous MIF for the IHPP describing the demand at base i. For ease of

exposition, the subsequent analyses assume continuous MVF. The methods

of Cinlar (1975) for non-continuous MW can be applied to extend the

analyses. Furthermore, for reasons similar to those given in the

second section of Chapter III, the analyses in this chapter do not

consider management directives to discard units already in the base i

pipeline or to cancel a depot backorder due-out ("belonging") to base i .

Base Pipeline

Xi(t) consists of units that are still in the base i pipeline

at t and either were in the base i pipeline at 0 or entered the base i

pipeline in (Ot]. Because of our assumptions these two components of

Xi(t) are statistically independent so Xi(t) can be found by the convolution

of two random variables. The first random variable can be calculated

directly from knowledge of the initial system condition and of the

behavior of the PO. For ease of exposition we shall, as in Chapter III,

assume that X.(0) - 0, j = O,i,...,N. We concentrate here on the

stochastic description of the component of Xi(t), i - 1,...,N, arising

from failures at base i in (0,t].

* Recall from Chapter II that

Xi(t) - Di(t) + Ri(t) + El(t) + DEi(t). (4.1)
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From the arguments in the first section of Chapter III, we know that

Di(t) has a Poisson distribution with mean

t
f[ i(a) [1-G i(s,t)]ds.

0

We also know from Chapter III that Di(t) is statistically independent

of the number of units that completed diagnosis in (Ot]. Hence, Di(t)

is independent of Ri(t), El(t) and DEi(t). In the first section of this

chapter we showed that the output of the diagnostic facility in (O,t]

is split into three independent NHPP. Ri(t) is a function of the

number of units entering the repair facility. Ei(t) is a function of

the number of condemnations while DEi(t) is a function of the number of

units sent to the depot. Therefore, Ri(t), Ei(t) and DEi(t) are mutually

independent and hence, all the random variables on the right in (4.1)
are mutually statistically independent.

Let ri(s,t 1 ,t 2 ) be the probability that a unit which failed

at s > 0 and was sent to the base i repair facility at t I L_ s has left

the base i repair facility by t2 1. tl. By Assumptions 2 through 6 the

basei repair facility acts as an M(t)/G(t)/- queue with service time

distribution ri(s,t l t 2 ). Therefore, Ri(t), the number of busy "servers",

has a Poisson distribution with mean

f (s) f dG (s,Y) P i(s,y)[l-r (s,y,t)]ds.t ti

0 s

Let ei(stlt 2 ) be the probability that a serviceable unit

has arrived from the external supplier by t 2 in response to a condemnation

at tj <t 2 of a unit that failed at 0 < s <tl . Since the external supplier

has infinite stock and order and ship times are independent, the external

supplier functions as an M(t)/G(t)/-queue with service time distribution

-a
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ei(s,tlt 2). Therefore, Ei(t) has a Poisson distribution with mean
t ti
f x s)f dG (s.y)[1-P (s,y)-P C s,y)][1-e (s,y,t)]ds.

0 

R

Until now, the analysis of the components of Xi(t) has been

similar to the analysis for the corresponding components of X0 (t). DEi(t)

is the unique component of the base i pipeline through which the supply

interactions of the depot and base i manifest themselves.

Unless either the depot asset level is infinite or F0 (tt) - I

for all t > 0, we see from (3.8) that there is a positive probability that

there will be a delay before the depot sends a serviceable unit in

response to a base i resupply request. Since the depot satisfies base

resupply requests in a FCFS manner, W0 (t) and W0 (t+y), y L 0, are

generally not statistically independent. In fact, W0(t+y) LW 0(t) - y

so that for smaller y there will tend to be more correlation between

WO(t) and W0(t+y) than for larger values of y. Therefore, if base i

submits two resupply requests to the depot, there may be some correlation

in the times spent in the base i pipeline by the failed units that

accompanied these resupply requests. An analysis based upon PIO or,

equivalently, upon treating the depot resupply process as an M(t)/G(t)/-

queue is therefore not appropriate.

DEi(t) has two components: ERi(t), the number of serviceable

units en route at t from the depot to basel; and Qi(t), the number of

depot backorders outstanding at t that belong to base i . Define

T(n) = origination time of the nth demand on the

". depot, n = 1,2,...;

'* Ii(n) 1 1 if the n demand on the depot was from

base i and 0 otberwise, n 1,2,...;

V"' """" ,- ""'' " ,'".F,
" '

, - " " """" '"
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ISi(n,t) -1 if T(n) j t, Ti(n) 1 and the depot has

sent a serviceable unit by t which is still

en route to base1 at t. Isi(n't) -0

otherwise.

Then,

No (t)-B0 tW

ER,(t) I is i(n~t) (4.2)
n-1

N 0(t)

Qi(t) I I (n) (4.3)

and from P7,

E[I i(n)IT(n)] a i[T(n)]I 0 [T(n)J c i[T(n)]. (4.4)

From (4.3) we see that Qj(t) is a function of BOWt which,

from (2.2), is a function of so(t). Theorem 4.2 guarantees that increasing

90(t) will stochastically reduce Qi(t).

V Definition 4.1: (Lehmann [1959]). A random variable Q (or, equivalently,

the distribution of Q) is stochastically decreasing

(increasing) with respect to a parameter p if for

P15.2 and all q > 0,

Theorem 4.2: For all t > 0, Qi(t) is stochastically decreasing with

respect to so(t).

Proof: 0 < Qit;s0 (t)] i Qi[t;s0 (t)-l] since the extra depot asset may

reduce the number of depot backorders belonging to base1 . The theorem

now follows straightforwardly. I

From (4.2) we see that ERi(t) is also a function of so(t).

However, ERi(t) also depends upon the (time-dependent) distribution of
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the depot to base i order and ship times. One can construct cases where

at tI , ERi(ti) is stochastically increasing with respect to s0 (tl); at

t2 0 t1, ERi(t 2) is stochastically decreasing with respect to 80(t2);

and at t3 , tl 0 t3 0 t2, ERi(t3 ) is neither stochastically increasing or

decreasing with respect to s0(t3). Corollary 4.3 is the only general

statement we can make.

Corollary 4.3: Let {N0(t)t>0} be the NIPP describing base i resupply

requests placed on the depot. Then, for all t > 0,

[NQ(t) - Qi(t)], the number of base i resupply requests

the depot has satisfied by time t, is stochastically

increasing with respect to s0(t).

Proof: Since N9(t) does not depend on s0(t), the corollary follows

directly from Theorem 4.2. //

In general, Ii(n) may provide information on T(n) and since

the T(n), n-l,2,..., are not independent, we see from (4.4) that the

Ii(n) , n M 1,2,..., are usually not independent. Similarly, for t > 0,

the ISi(n,t), n M 1,2,..., are generally not independent. Furthermore,

B0(t) is generally not independent of the Ii(n) or ISi(n,t). As we

shall see, the above facts lead to complex expressions for the distributions

of Qi(t) and ERi(t). Before examining the general case we shall therefore

study two special cases which arise frequently in practice and for

which tractable expressions can be obtained.

Proportionate Bases' Ownership of Depot Backorders

Base i is said to be a proportionate base with parameter ci if

there exists a constant 0 < ci < 1 such that for all t > 0, ci 
= ci(t).

,

'Pr r W. - -.
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The "proportionate base case" arises frequently when scenarios call for

the deployment of "identical" bases or for the demand intensity at each

base to vary over time by the same multiplicative factor (U.S. Army

[1983]). From (4.4), for n = 1,2,... we now have that

Pr(Ii(n) = 1) - ci  (4.5)

regardless of T(n). Since in the proportionate case base Ii(n) does not

provide information on T(n), B0 (t) is independent of the Ii(n), n-1,2,....

Furthermore, the Ii(n), n-1,2,..., are themselves independent, identically

distributed Bernoulli random variables with mean ci . From (4.3) we

have that Qi(t) is the sum of BO(t) of these i.i.d. random variables.

Using (2.2), (3.6) and (4.5) we therefore have that

Pr(Qi(t)-q) - P Pr(Qi(t)uqB 0 (t)-n)Pr(B0 (t)-n)
nq

- Pr(XO(t) < s0 (t))6 0 (q) (4.6)

+ (n)(ci)q(1-ci)n-P[s 0 (t)+n; E[Xo(t)]]

nq q

where 60(q) is 1 or 0 according to whether q - 0 or q > 0. Clearly,

[ Pr(Qi(t)-q) - Pr(X0 (t)<s0 (t)) + I P[s 0 (t)+n; E[Xo(t)]] = 1;
q=O n-O

E[Q (t)] - c E[Bo(t);

VAR[Qi(t)] - (1-c )E[Qi(t)] + c2 VAR[B0(W];

(4.7)

VMR[QI (t)] - (1-c ) + ci VMR[B 0(t)]

Let B(n,ci,q) be the probability that a Binomial (n,c i )

random variable is greater than or equal to q. For q > 0,

>.
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Pr(Q (t) > q19s0(t)'s 0 +1) - Pr(Q i(t)jqjs 0 (t)-s 0)

- B(n,ci,q){p[s0+1+n; E[X0(t)]] - p[s0+n; EIX0 (t)]]}
nuq

- B(nci,q) {p[s0+1+n; E[X0 (t)]J - p[s0+n; E[X0 (t)]])
n~q

+ I B(n,ci,q){p[s0 +1+n; E[X0 (t)]J - p~s0+n; E[X0(t)]]}
n-a 0+1

where ao - max[q, INT(E[X0 (t)]) - so - 1] and INT(X - largest integer

less than or equal to X. Since B(n,ci,q) is increasing in n and the

probability mass function of a Poisson random variable with mean u is

unimodal with a peak at INT(u) (and at u-i if u is an integer), the

above is

£B(a0 1 ci,q){Pr(X0 (t) I.s 0+l+q) - Pr(X0(t) L..s0+q)} < 0.

Hence, in the proportionate base case, the distribution of Qi(t) given

by (4.6) satisfies Theorem 4.2.

Ownership of Depot Backorders for Fixed Depot Pipeline Times

We now replace the ossumption that basei is a proportionate

base with the assumption of a fixed, known depot pipeline residence

time, R0 . Therefore, for all o > 0, F0 (s,t) - 1 if s + Ro> t and

F0 (s,t) - 0 otherwise. This is a common assumption found in many of

the inventory models used by the Army (U.S. Army [19831).

Consider first the case where so(t) - 0. An unserviceable

unit that enters the depot pipeline at y > 0 will leave the pipeline at

precisely y + Ro. Since there is no depot stock and units leave the
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pipeline in the same order that they entered, the nth demand on the

depot will be satisfied at precisely T(n) + R0 . n-l,2,.... Furthermore,

the nth demand will be backordered at the depot for the entire interval

[T(n),T(n)+R 0 ), n-1,2,.... Therefore, a base i resupply request will be

backordered at the depot at t if and only if the failed unit was sent

to the depot in (t-Ro,t]. Hence,

Pr(Qi(t) - q) - p[q; Ai(t) - Ai(t-Ro)] (4.8)

that is, Qi(t) has a Poisson distribution with mean Ai(t) - A (t-R0).

In this case, VMR(Qi(t)) - 1.

Now assume s0(t) > 0. X0 (t) consists of precisely the units

sent to the depot in (t-R0 ,t]. Hence, T *(s0(t)) - T(N0 (t-R0 ) + s0 (t)) > t

if and only if Xo(t) < s0(t) which, from (2.2), implies that B0(t) 0

and hence that Qi(t) = 0 . All B0(t) > 0 backorders outstanding at the

depot at t must have resulted from resupply requests in (T*(s0(t)),t].

Therefore, for q > 0,

Pr(Q (t)=q) - Pr(T*(s0(t))>t) 60(q)

_RoPr(Q (t)ql (s0(t))y) Pr(T*(s0 (t))=y)dy. (4.9)

Clearly, Pr[T*(s0 (t)) > ti = Pr[X 0 (t) < s0 (t)J and from P14 we have for

y . t - Ro that

Pr(T*(so(t)) - y) = p[s 0(t) - 1; m0 (y) - mo(t-R)] 0 (y). (4.10)

Since T*(s 0 (t)) is a Markov time with respect to the depot demand

process we have, for t - R0  y .t,

Pr(Qi(t) q I__0T*(s0(t))=y)

- Pr(q base i resupply requests in (y,t])

- p~q; Ai(t) - Ai(Y)]. (4.11)
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Using (4.10) and (4.11) in (4.9) we obtain Pr(Qi(t) - q L 0).

Note that

JO Pr(Q i(t)-q) - Pr(T(a 0 (t))>t)

t
+ L {pS 0 (t)-1; m 0 (y)-m 0 (t-R0)]X O(y)

00R

Sp~q; A Wt -A y]d
q0O

where the interchange of integral and sum is justified since the integrand

in (4.9) is positive. Using (4.10) the above becomes

Pr(T *(s 0(t))>t) + f =T*(s0() y)dy

Pr(T *(s 0 (t)) > t-R0 ) - 1

From (4.9), (4.10) and (4.11)

t
E[Qi(t)] f {pfs0 (t)-

1 ; mo(y) - mo(t-R0 )1X0 (y)
t-RO

. j qp~q; Ai(t) - Ai(y)JIdy (4.12)
q1l

t

f [A0 iA(t) - A1(y)) p~s0(t)-1; mO(y)-m 0(t-R0)]X0(y)dy

E[Q 2(t)) f {(At-R y]2+ A()A YD Y

P[s (t)-1; m,(y)-m,(t-R,)Jldy. (4.13)

By the Cauchy-Schwarz inequality, VAR[Qi(t)] > E[Qi(t)] and hence,

Let

80(30) - min[t, inf (y ~t - R0 ; mo(y) - mo(t-R0 ) 80)~].

For q > 0,
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Pr(Q (t)>qjs0 (0-8s+1) - Pr(Qj(t)jqjs0 (t)-s0 )

f {(p~s0;0o(y)-m0 (t-R0 )] - p[s0 -1; mo(y)-m0 (t-R0 )])t-Ro

Sphj; Ai(t) - A~~~~)d
J -q

+ f {Cp~s0;m0(y)-m 0(t-R%)j - p~s0-1; mo(y)-m0 (t-R0 )])

J -q
p~s0 ; mo(y) - mo(t-R0 )] - p~s0 -l; mo(y) - mo(t-R0 )] is < 0 or >. 0

according to whether y S.a0 (s0 ) or y > a0(60). since a Poisson random

variable is stochastically increasing with respect to its mean, the

above is

t
L f Pis0 ; m0(y)-mo(t-R0 )I - p~s0-1; mo(y)-m0 (t-R0 )1X0 (y) dy
t-R

I p1:1; Aj(t)-Aj(a0 (s0 ))J{Pr(T*(s 0+1)<t) - Pr(T*(s 0)<t) < 0
j =q

where the last inequality follows from the definition of T *(so). In a

similar manner it is straightforward to use (4.8) and (4.9) to show

that Pr(Qi(t) ? q > 0) decreases when so(t) increases from 0 to 1.

Therefore, the given distribution of Qi(t) satisfies Theorem 4.2.

Example 4.4: Let ai(t) - ai for all t > 0 so that the number of basei

resupply requests placed on the depot forms a homogeneous Poisson Process.

Furthermore, let AOWt - Xofor all t L 0. Then, c.(t) a ci for all

t > 0 and kXt) has a Poisson distribution with mean )X0R0. For s0 (t) ?1,

we have from (4.9) that

0, - - - ' 0
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Pr(Qi(t)-0) - Pr(X0 (t)<s0 (t))

t
+ f p[O;(t-y)ai] P[S0 (t)-l; (y-(t-Ro))XO]XOdy

t-R0  (4.14)

Pr(Xo(t)<s0 (t)) + I p[k;XoRO ] (lci)k-sO(t)
~k-s 0 (t)

after some rearrangement and after using Property 16 (for the integral

of Poisson probabilities) in Appendix 3 of Hadley and Whitin (1963).

Note the correspondence to (4.6) since the stationary case is a special

case of the proportionate base case. From (4.9),

Pr(Qi(t)-q 0)

t
- f plq;(t-y)ai] P[s 0 (t)-l;(y-(t-R0 ))X 1X0 dy. (4.15)
t-R0

Letting z - t - y, rearranging and using the power series expansion for

the exponential terms, (4.15) becomes

( 0)s0(t) ci  q(e-X0R0)fR 0  1 [(X0-ai)z]k+q (R-)ot-

T(-c i )  0 k-0  kI (s 0 (t)-1)! dz.

For 0 < z <_R0 the suummand above is non-negative and by Fubini's Theorem

we can interchange the order of integration and summation. After

integrating by parts we have .hat

Pr(Qi(t)-q) - j p[s 0 (t)+k;X0 R0] (k)(c ) q (l _ c )k- q . (4.16)
k~q

Again, note the correspondence with (4.6) for the proportionate base case.

(4.14) and (4.16) agree with the results of Simon (1971) for

the stationary case. These formulae involve infinite sums so in actual

computations there must be some truncation. Using (4.15) we can,

however, develop an equivalent of (4.16) that contains only finite

sums. Note that after some rearrangement, (4.14) can be expressed
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as a finite sum as
-a Ro otPr(X 0 (t)<s0(t)) + e (1- 1 8) [1-P[s 0 (t)-l;(X0-al)R0 ]] (4.17)

where P[x;u] is the cumulative distribution function of a Poisson

random variable with mean u. Letting z - y - (t-R0 ) in (4.15) and

rearranging yields
-a iR 0 (a i)q 1 s 0 (t)-

Pr(Qi(t)-q) - e - (- ) (X0)
q1 -c 1

•f RO(R0-z)q P[S 0(t)-l; (N 0-a i)zldz.

0

Using Property 20 (expressing the integral above as a finite sum) in

Appendix 3 of Hadley and Whitin (1963) the above becomes

-ea±O 1j 8 0(t) (a i)q

iq

exercis (catoiSo( ) [-P[k+s (t)-i;(o i nr
coni-ral (n m t )  (t-1) e(So (10al~k(4.18)

(4.18) looks more formidable than (4.16) yet (4.18) can be

i computed more quickly than (4.16) [Kotkin (1982)]. However, one must

exercise caution in using (4.18) because of problems involving numerical

stability and accuracy that arise from operating on numbers that differ

.' .considerably in magnitude. Kotkin (1982) examined the computational

issues involved in using either (4.17) and (4.18) or (4.14) and (4.16)

to determine the limiting probability distribution of Qi(t) for stationary

systems. He also used the Vandermonde Convolution (Riordan [1971]) to

directly show the equivalence of the two sets of formulae.

Examule 4.5: Let basei be a proportionate base with parameter ci.

Then, for all z > 0, Ai(z) = cim0(z). After some rearrangement in

U- . U U. - - ~ ~ *.*~.. r. V
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(4.9) we have that

Pr(Qi(t)-q) - Pr(x0(t)<S0(t)) 
8
0(q) + Kl(s0(t),q)K2(s0(t)-l,q) (4.20)

where for j-0,1,2 .... and q-0,1,2...,

K (J~q) - exp[-c (m0 (t)-m0 (t-R0 ))] cqf(1-ci)j~'

K(J~q) M f {p[j; (l-ci) (m0(y)-m0 (t-R0))] (1-c,)xO0(y)
t-RO

. I(-ci)(M~t)_o~y)]q/qldy.

Note from P14 that for all j, K2(j,0) is simply the probability that in

aNBPP with NVF (l-ci)m 0(z), z > 0, the (j+l)ot event after t-R 0 occurred

no later than t. Therefore, for j - 0,1,2,..

K2(j,0) -1 - P[j;(l-ci)(m0 (t)-m 0 (t-R0 ))1. (4.21)

It is now straightforward to show that for q - 0, (4.20) reduces to (4.6).

By induction on q we will show that for all j and q
CO

K (J,q) - I pln;(1-c )(m (t) - m (t-R0))](-J
1) (4.22)

2 ~ n-J+1+q 00q

We have already seen that (4.22) holds for all j when q -0. Assume

(4.22) is true for all j when q - m - 1. From P14 we note that

Pfj;(1-ci)(m0 (y)-m0(t-R0 ))] (l-ci) XO(y) (4.23)

is the probability density that in a NHPPF with MVF (l-ci)m 0(z), zLO

the (j+l)st event after t-R0 occurred at y. The antiderivative of

(4.23) is thus simply the probability that the (j+l)st event after t-R0

occurred no later than y. Therefore, integrating K2(j,m) by parts yields

K2 (J,m) - I K2 WMl
w-j+1

since the interchange of integral and sum is clearly justified. Using

the induction hypothesis and (4.22) yields
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K2 j ,m) I I pin;(1-c )(m 0 (t)-mo(t-Ro))](n-w-iv-j+1 nnwe+n

and the result now follows by interchanging the order of summation and

using a basic combinatorial identity.

Using (4.22) in (4.20) establishes that for q > 0, (4.20)

reduces to (4.6) in the proportionate base case.

Ownership of Depot Backorders in the General Case

In this section we remove the assumptions of the previous two

sections and calculate the distribution of Qi(t), t > 0, for the general

case. The analysis herein is complex and tedious so to help understand

what we must do, it may be beneficial to first understand what we

cannot do in order to find the distribution of Qi(t), t > 0.

One approach we might try would be, as in the proportionate

base case, to apportion to the bases the B0(t) backorders outstanding

at the depot at t based on the ratios Ai(t)/m 0(t), i=1,2,...,N. However,

consider the two base case at t - 2 where:

m0 (1) - 1; m0 (2) - 2; F0 (s,2) - 0, s > 0;

AI (l) - 1; A2(l) - 0; AI(2) - I; A2(2) -1.

If s0(2) - 10 and B0(2) - 1, there is a better than even chance that

the backorder belongs to base2 even though Ai(2)/=o(2) - .5, i - 1,2.

A second approach might be to claim, as we did in the previous

section, that Qi(t) - N0(t) - N0(Z0 (t)) where Z0(t) - T(N0(Y0(t)) - 1)

is the origination time of the last base resupply request satisfied at

the depot by t. In the case of a fixed depot pipeline residence time,

RO, Zo(t) - min[T(NO(t)),T*(so(t))] is a Narkov time with respect to

* - .m, -
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the depot demand process. In general, however, this is not true as

Z0(t) depends upon demands at the depot in (Z0(t),tl (See Chapter III.

The distribution of Z0(t) can be obtained by arguments similar to those

used to obtain the distribution of Y0(t). Using those arguments one

clearly sees that Yo(t) and Zo(t) are not, in general, Markov times).

Specifically, Zo(t) generally provides information on whether the units

sent to the depot in (Zo(t),t] are still in the pipeline at t and

thereby also provides information on the time and the number of demands

in (Zo(t),t].

Certainly, the BO(t) depot backorders outstanding at t were

from demands in (Zo(t),t]. If we knew Zo(t) and if for each of the

BO(t) demands in (Zo(t),t] we knew whether the failed unit that accompanied

the demand was or was not in the depot pipeline at t, we could use P8

to find the probability that the demand was from base i . This is the

approach we wil take in this section. Before proceeding with the

details we need some additional definitions and results.

Fix some time t > 0 and let NPi(yl1 y2) be the number of units

sent to the depot by base i in (ylY21 that are still in the depot

pipeline at t. From arguments similar to the ones used in Chapter III

we can show that {NPi(0,y), y > 0} is a NHPP with MVF

Y
mpi(O,y) - f ai(s)[1-F0 (s,t)]ds

0

and that {NP0 (0,y) = NPi(O,y), y L 0} is a NHPP with MVF

Smp0 0 ,Y) f fx 0 (s)[1-F0 (s,t)]ds.
0

Note that X0 (t) - NP0 (0,t). Similarly, {NE (0,y)=NQ(y)-NP.(0,y), y 0}

the stochastic process counting the number of units sent to the depot

-% %
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by basei that have left the depot pipeline by t, is a NRP? with MVF

me i(O'y) f fai (s)Fo(s,t)ds.
± 0

Finally, {NE0(0,y) N Ei(O,y), y L 0) is a NIP? with MW1

me O(O'y) f- ~ 0 (s)F 0(s,t)ds.
0 0

By the Law of Total Probability, when so(t) > 0,

Pr(Qi(t)mql.p) - Pr[x0(t) s0 t)] 60(q)

h t

h-max(1,q) k-s0 (t)+h 1. p ax[,h-(k-[s 0 (t)+h])] 0

0Pr(Qi(t)u'q,T(k-h)-y,B 0(t)-h,N0(t)-k,NP0(y,t)-hp)}dy. (4.24)

When so(t) - 0 we must also account for the atom arising from the fact

that all demands at the depot in (0,t] may be backordered at t. Therefore,

when s0(t) W0,

Pr(Qi(t)-qL0) - Pr[x0 (t)'0] 
6
0(q)

cc h
+ Pr(Q i(t)-q,T(0)=O,B 0 (t)=h,N 0 (t)=h,NP 0(o,t)-h )

hinmax(1,q) h -0

O+ 0 h t

hinmax(l.q) kinh+1 h -axlo,h-Ck-h)] 0

Pl-Qi~)-qT~kh)-,BOt)hN~t)kNO~yt)-p}dy. (4.25)

The eve t(k1 ) - y, BOWt - h, N0(t) -k, NP0 (y,t) Uhp)

occurs if and only if the event (Ey2

{T(k-h) - y, NPI('0y) - so(t) + h - hp NP0 (y,t) -hp,

NE0(0,y) - k - (s 0 (t).h) - (h-hp), NE0 (y,t) h -hP}

occurs. Given By2 , the demands backordered at t are precisely the h

demands that were placed on the depot in (y,t]. Therefore, Qi(t) -q

N
1

N



81

if and only if q of these h demands were from base i. Hence,

Pr(Qi(t)=q"EV2) - Pr(NPi(y,t) + NEi(yt)=qIEV2)

- Pr(NPi(y,t) + NEi(y~t)-qINP0(y,t) - hp. NE0(yt)-h-h) (4.26)

where the last equality follows from the fact that NHPP have independent

increments.

For any y L_0, P10 guarantees that NPi(yt) is independent of

NEi(y,t) and NEo(y,t). Furthermore, from 8, [NPi(y,t)INPo(yt)1 has a

Binomial distribution with parameters NPo(y,t) and

cpi(t) = mpi(y,t)/mP0(Y,t).

NEi(y,t) is independent of NP0 (y,t) and, from P8, [NEi(y,t) INE0(y,t)]

has a Binomial distribution with parameters NE0(y,t) and

cei(t) - mei(y,t)/me0 (y,t).

(4.26) can now be obtained from the convolution of two independent

Binomial random variables.

All that remains to be done in order to evaluate (4.24) and

(4.25) is to find Pr[EVI](-Pr[EV2]). Recalling the notation introduced

in the last two sections of Chapter III we have that:

(1) For k > h (i.e. s0 (t)>O):

Pr(B0 (t) - hIT(k-h)=y,N0(t)=k,NP0(y,t)=hp)

- Pr{out of the k-h-l demands in (O,y) and the

demand at y, so(t)+h-hp are still in the depot

pipeline at t}

- Pr(l-a(y,t)+L(k-h-l,0,y,t)=s0(t)+h-hp). (4.27a)

Note that for 0 <hp < h - [k-(s 0(t)+h)], (4.27a) is zero.

For k - h (i.e. s0(t)=O): T(0) - 0 by definition. Also,

Pr(B0(t)=h IT(0)=0,N0(t)-h,NP0(0,t)=h )

equals I if h - hp and 0 otherwise. (4.27b)
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(2) For y > 0, Pr(NPO(y~t)mhpIT(k-h)-yN0 (t)-k)

- Pr(NP0 (y,t)u'h~IN0(t)-N0 (y)-h)

- Pr(L(h,y,t,t)'hp) (4.28)

h mp O(y't e(,t) h-h
-h~m(t)-m O(Y) m 0(t)-m O(y)

(3) For k > h. using E8,

Pr(T(k-h)u'yN 0 (t)u'k)

- X0(y)p~k-h-l;u0 (y)] p~h;%(t)-mo3(y)]. (4.29a)

For k - h, Fr(T(0)0,N(t)nh) -f p[h;u0 (t)1. (4.29b)

For k > h, Pr(EVj) is given by the product of (4.27a), (4.28) and

(4.29&). For k b , Pr(EV1 ) is given by the product of (4.27b), (4.28)

and (4.29b). -

Therefore, when so(t) > 0,

* Pr(Qi(t)-q) - Pr[X0 (t)<s0 (t)] 60(q)

c00h t

p+ I I {1
hormax(1,q) k-s 0 (t)+h h pmax[O,h-(k-[s0 (t)+h)] I

" Pr[NPi(y,t)+NEi(y,t) - jP~')hNOyt--p

" Pr(1-a(y,t)+L(k-h-1,O,y,t)-s0 (t).h-hpI

" Pr[L(h,y,t,t)'h ]

" XOy p[k-h-l;m0 (y)3 p[h;%o(t)-ft(y)J)dy. (4.30)

When so(t) 0, we note that

{Pr[NP i(Ot)fqINP 0(Ot)fh]
h-max (1,q)

. Pr[L(h,O,t,t)-h] p[h;m O(t))

=e- m0 (t) [mPi (o~t)] q (emPO(O't)-MPi(O.t) - 6()

- p[O;me 0(O,t)] p~q;mp 1 (,01] - 6 0(q)e -M0(t). (4.31)

AL.?-d
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since mo(t) - me0(0t) + up(Ot). Therefore, when so(t) = a

Pr(Qi(t)-q) - Pr[X0(t)mO] 60(q)

+ p[O; meo(0,t)] p~q; mpi(O,t)] - 6(~- t

h t

huqax(q h+1 h p -max[Oh-(k-h)] 0

" Pr[NPi(Y,t)+NEi(y,t) -qINP(y.t)=hpNE 0 (y,t)nh-hp]

" Prll-a(y,t)+L(k-h-l,0,y,t)-h-hp]

" Pr! L(h,y,t't)nhP]

" XOy p[k-h-l;m0 (y)] p~h;m0 (t)-m0(y)]}dy. (4.32)

First we verify that (4.30) defines a proper probability mass

function. Since the integrand in (4.30) is the product of probabilities,

all required interchanges are justified by Fubini's Theorem. When summing

(4.30) from q - 0 to q - -we note that after interchanging the order of

some summations and integration we have inside the integral

h

q=O

p. h

I {Pr[L(h,y,t,t)-h p
h p max[O~h-(k-[s 0 (t)+h3)J

*Pr[l-a(y,t)+L(k-h-1,0,yt)ws 0 (t)+h-h p 1

-Pr[H(k-h-,y,h,t)-s 0 (t)+h].

Therefore, when so(t) > 0,

i Pr(Q i(t)-q) - Pr[X 0 (t),is 0 (t)]
q-0

t
+ I f {X0 (y) p~k-.h-l;m 0(y)]

h 1 k-s (t)+h 0

p[h;m 0(t)-m 0(y)] Pr[H(k-h-1,y,h,t)-s 0 (t)+h])dy

aPr[X 0 (t)<sO(t)] + I I Pr(B 0 (t)-h,N 0 (t)-k)-l
*h-l k-s 0 (t)+h
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where the next to the last equality follow from Theorem 3.1. Since

(NP.(O,t)INP(,t)-h) is a Binomial [h,cpi(Ot)] random variable and

Pr[L(h,01 t,t)uh] p~h;0o(t)] = Pr[B0 (t)-h,N(t)'h]

we can, in a manner similar to the above, show that (4.32) also defines

a proper probability mass function.

Let

00 COh t
SMEZ;j] - I IIf ZPr(EV )dy

h-1 k-j+h h -max[O,h(-s0t)]] 0

ml(h~h ) - E[NPi(y,t) + NEi(y,t)I NP(y,t) - lhp, NE0(y,t) h - hip]

- hp[cpi(y~t)J + (bhp) ce 1 (y,t)

m2Ch~hp) -EI{NPi(y,t) + NE(y,t)) 2 jNp(y't) - bip, NE0 (yt) -h - lPip

hp[cpi(y~t)][l-cpi(y,t)] + mbbp]

+ (bhlp)cei(yt)I11-cei(yt)]

Mm~hh * + [lhh)2bcpyt]_(h-h.p)cei(y,t)] 2 .

Then from (4.30) and (4.32) we have

E[Qi(t);so(t)>O] - SM.[m(h~h);s0(t)J;

E[Qi(t);so(t)-O] - p[O;me(,t)J xpi(O,t) + SM(m(,h);l1;

E[Q?(t);s0(t)-O] - p[O;me(,t)) {[mpi(O,t)] 2 + mpi(O,t)}

+ SMm 2 (,h.p);il. (4.33)

VMR(Qi(t);ao(t)>O) > 1 if and only if

SM(m(hlp) 2 ;8(t)] L {SM[m(h~lp);sO(t)]) 2

+ sH~h.fcpi(y~t)] 2 + (h-hP)[cei(y't)] 2;sO(t)1 (4.34)

and VMR(Q(t);so(t)nO) > 1 if and only if

SM! {m(b,hp)} 2 ;11 + p[0;me(,t)]{[mp,(0,t)] 2 + mpi(O,t)}

L {SM[m(hph);lJ) 2 _SM! lp[cpi(y~t)J2 + (h-hp)[cei(y~t)J 2 ;11 (4.35)

+ {p[0;ue 0(0,t)]mpi(0,t)} 2 + SM[2p[0;meo(0,t)]mpi(0,t)ml(h,ip);1].



85

We have found (4.30) and (4.32) to be analytically intractable.

In fact, we have been unable to analytically verify either that (4.30)

is stochastically decreasing with respect to s 0 (t) or that (4.34)

and (4.35) hold. However, empirical evidence from calculations on the

weapon systems described in Appendix B indicates not only that (4.30)

and (4.32) are stochastically decreasing with respect to s0(t) but also

that VMR[Qi(t)] > 1. We shall return to this point in Chapter VI where

we investigate approximations that reduce the computational burden involved

in calculating Qi(t) and Xi(t).

Example 4.6: Let base i be a proportionate base with parameter ci . Then,

[NPi(y,t) INP 0 (y,t)] has a Binomial [NP 0 (y,t),c i ] distribution and is

independent of [NEi(y,t) INEo(yt)] which has a Binomial [NE0 (y,t),c i]

distribution. Therefore,

[NPi(y,t) + NEi(y,t)INP0 (y,t) - hp, NEo(y,t) - h - hp]

has a Binomial [h,c i] distribution regardless of y. Let bi(q,h,c i) be

the probability that a Binomial [h,c i ] random variable equals q.

Removing this probability from inside the integral in (4.30) and recalling

the definition of H(k-h-l,y,h,t) we have that

Pr(Qi(t)-q) - Pr[Xo(t) < s 0 (t)] (q)

+ I bi(q,h,cI)

h-max(l,q) k-s0 (t)+h

t
.J {X0 (y) p[k-h-l;m0 (y)] pth;m 0 (t)-m 0 (y)1

0

Pr[H(k-h-l,y,h,t) - s0 (t)+h]}dy

= Pr[X 0 (t) < +(t)] a(q) + I bi(q,h,ci) Pr(B 0(t)=h)
h-max(l,q)

from Theorem 3.1. The above is easily seen to be equivalent to (4.6).

Similarly, (4.32) reduces to (4.6) when base i is a proportionate base.



86

Example 4.7: Let F0 (s,t) 1 if t -s > R0 ~0 and F0 (s,t) 0 otherwise.

For all y j t - R0 and k > h, 1 -a(y,t) + L(k-h-l,0,y,t) - 0 so there

is no contribution to Pr(Qi(t)inq) in (4.30). For all t > y > t -R,

L(h,y,t,t) -h so there is no contribution to Pr(Qi(t)inq) in (4.30)

except when hP - h. Furthermore,

Pr(NPi(y,t)+NEi(y,t)mqjNP0 (y,t)-h,NE0 (y,t)m0)

- PrCNPi(y,t)mqjNP(y,t)-h)

Since a(y,t) - 0 for t > y > t - Rowe have

Pr~l-a(y,t)+L(k-h-1,O,y,t)-s (t)]P[~--,,~)s~)i

-bi[s 0(t)-l,k-h-l,[m0 (y)-m0 (t-R0 )]/m0 (y)]. (4.36)

Multiplying (4.36) by ptk-h-l;m0 (y)] and summing this product over the

range of k yields p[s 0 (t)-l;m0(y)-m0 (t-R 0 )]. Combining all of the

above in (4.30) we have for SOWt > 0,

+ f- ({X0(y) PESO (t)-1;m 0 (y)-m 0 (t-R0 )]

hinmax(1,q) t-R0

Summing over the range of h yields (4.9).

Note that

me0(0,t) - mO(t-R0 )

mpi(O,t) - ai(t) - ai(t-R0 ) - mpi( t-R0 ,t)

so that (4.31) becomes

p[q;ai(t)-ai(t-R0)] p[o;m0(t-R0)] - 60q)e-ft(t).

For t > y > t - R0 , L(hy,t,t) -h so we need only consider the case where

h - hp. Since a(yt) - 0, 1 -a(y,t) + L(k-h-1,0,y,t) > 0 -h - h Pso

there is no contribution to Pr(Qi(t)-q) in (4.32) when t >..y > t - R0 . For
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y :it -ROO 1 -a(y,t) + L(k-h-1,O.t) - 0 so we again need only consider

the case where b - hp. Noting that

Pr(NPi(y,t)mq NPo(yt)mh)

= bi(q,b,[ai(t)-ai( t-R0)]I[%o(t)-u0 (t-R0 )J)

Pr(L(h,Oy,t)'h) - [ot-ttR)/mt-my]b

the last term in (4.32) becomes, after summing over the range of h,

0

- p[q;a 1 (t)-a 1 (t-R0 )] {1-p[O;m0(t-R0 )])

+ 6 0(q) {em 0 t-p(0;m0 (t)-mO(t-R0 )]1.

Since p[O;m0 (t)-m0 (t-R 0 )J - Pr[XO(t)0],' (4.32) reduces, as expected,

to p[q;ai(t)-a1 (t-R0 )].

Number of Units Due-In From the Depot

Let OSTi(y) be the order and ship time for s unit sent from

the depot to basei at y 0. For t > 0 and n-1.,2,.. ., IS.(n ,t) - 1 if

and only if:

a. Ii(n) 1

*b. T(n) + WOfT(n)J j t (4.37)

c. T(n) + W0[T(n)J + OSTi{T(n) + W0(Tn)] > t.

Since

E[IS i(n~t)IT(n) -y < t)

* .t-y

f ci(y)Pr[WO(y)-z] Pr[OST,(y+z) > t-(y+z)] dz

I.0
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we have that
t t-y

E[ISi(n,t)] - f f {p(n-l;m 0 (t)]Xo(y)ci(y)
0 0

Pr[WO(y) - z] Pr[OST1 (y+z) > t-(y+z)]}dzdy.

Of course, Var[ISi(n,t)] - E[ISi(n,t)]{1-E[ISi(nt)]}.

Using (4.2) we have that

t t-y

E[ERi(t)] - f f {ai(y) Pr[W 0 (y) - z]
00

0 Pr[OSTi(y+z) > t-(y+z)]}dzdy. (4.38)

Consider a stationary system where, for all y LO, ai(y) - ai, i-1,2,...N,

F0 (s,t) depends only on t-s and OSTi(y) - OSTi does not depend on y.

Using (3.8) we can show that as t goes to infinity, W0(t) has a limiting

distribution. Then we can use (4.38) to show E[ERi(t)] - aiE[OSTi]

which can also be obtained, in a stationary system, from Little's Formula.

Unfortunately, other than (4.38) it is cumbersome to obtain

any general results for ERi(t). To verify the conditions in (4.37) we

must determine T(n), W0 [T(n)] and OSTi{T(n)+W 0 [T(n)]} for n-l,2,....

Even if the order and ship times are independent, the T(n), n-l,2,...,

are not independent and there may also be some correlation in the times

different resupply requests wait for satisfaction at the depot. Therefore,

the ISi(n,t), n-1,2,..., are usually not mutually independent. In

order to determine the joint distribution of the ISi(n,t) [and thereby

the distribution of ERi(t)] we need to determine the joint distribution

of the origination and waiting times of the N0(t) demands on the depot.

To find even the variance of ERi(t) requires determining the joint

waiting time distribution of any two of the N0(t) resupply requests.

This is extremely cumbersome and impractical for any realistic
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implementation.

Since

DEi(t) - Qi(t) + ERi(t) (4.39)

the inability to obtain general results for ERi(t) prohibits finding

general results for DEi(t) (other than using (4.33) and (4.38) to find

E[DEi(t)]). Furthermore, because of the correlation in the T(n),

nl,2,... and the correlation in the waiting times at the depot, ERi(t)

and Qi(t) are not independent. This fact further complicates the task

of obtaining general results for DEi(t) from (4.39).

There is, however, a useful and important special caseembodied

in Assumption 11 below, for which we can get tractable expressions for

the distribution of DE1 (t).

Assumption 11: OSTi(y) does not depend on y and is a fixed known
~value, 0ST-!, i-l,2,...,N.

The assumption of a constant, deterministic order and ship

time between the depot and base i does not in itself provide a convenient

aid in obtaining the distribution of ERi(t). However, Theorem 4.8

shows how Assumption 11 allows us to calculate directly the distribution

and other properties of DEi(t), t >0.

Theorem 4.8: For constant, deterministic order and ship times and t > 0,

DEi(t) - [NQ(t) - Nd(t-OSTi)] + Qi(t-OST.)

where, by assumption, N0(y) - Qi(y) - 0 for y _.0.

Proof: {N0(t) - Qi(t), t > 0} is the counting process describing the

number of base i resupply requests satisfied by the depot. Since order

and ship times are constant and deterministic, only base i resupply requests

satisfied in (t-OST.,t] will be en route to base i at t > 0. Hence

1 -.i' - q(t)] INQ(tOST!) Qi,(t- ST)].

Vn .. %qCJCV ~
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Substituting for ERi(t) in (4.39) establishes the theorem. //

While Assumption 11 is somewhat restrictive, it seems that it

is necessary to make this assumption in order to obtain any tractable

analytic results. However, there is another reason why one might wish

to adopt Assumption 11. In practice, it is almost always true that a

base will receive units from the depot in the same order that the units

were shipped. Hence, deliveries to a particular base do not cross. This

makes it unlikely that order and ship times are independent random

variables. Without developing a detailed model of the depot shipping

process, it is difficult to describe the dependence among shipping

times to a particular base. By Assumption 11, we prevent deliveries

from crossing by removing any variation in the shipping times. Accounting

for shipping time variation is a difficult and unsolved problem even

for a single location (Q,r) inventory system (Hadley and Whitin [19631).

For the remainder of this dissertation we shall use Assumption

11. Using Theorem 4.8 we can then write the base i pipeline for t > 0 as

xi(t) - D)(t)+Ri(t)+Ei(t)+[N9Ct)-N9 (t-OSTi)]+Qi(t-OST*). (4.40)
1 1 12. 1

All the random variables on the right in (4.40) are independent. Therefore,

Xi(t), t >.0, can be obtained from the convolution of the distributions

that we have derived in the previous sections of this chapter.

Delay at a Base

An interesting and oft times useful measure of inventory

performance at a base is the expected delay until a customer who has

brought in a failed unit is resupplied from the base's spares pool. In

a stationary system, the expected wait may be obtained by using Little's



91

Formula. In a non-stationary system, however, we need to determine the

distribution of the base i waiting time, Wi(t), in order to calculate

the mean waiting time at t > 0. The limiting distribution of Wi(t) has

not previously been derived for stationary multi-echelon systems but

can be obtained as a special case of the results of this section.

When a customer arrives at base i at t > 0, he will not wait

if Xi(t) < si(t). However, if Xi(t) Lsi(t), the customer will receive

the (Xi(t) - si(t) +l)tb serviceable unit that becomes available for

issue at base i after t. For w L 0, let AVi(tt+w) be the total number

of units that becomes available for issue at the base i spares pool in

(t,t+w]. Then Wi(t) > w > 0 if and only if

xi(t) >si(t) + AVi(t,t+w).

Using (4.40) to substitute for Xi(t) we have Wi(t) > v > 0 if and only if

Di(t) + Ei(t) + Ri(t) + [N91(t) - N9(t-0ST!)1 + Qi(t-OST!)

> si(t) + AVi(t). (4.41)

Di(t) consists of: units that will still be in the diagnostic

facility at t+w [-D(t,t+w)]; units that will leave the diagnostic facility

in (t,t+w] after being condemned [=D (t,t+0)1; units that will leave the

diagnostic facility in (t,t+w] and enter the base i repair facility

[=D (t,t+w)]; and units that will leave the diagnostic facility in

(t,t+w] and enter the depot pipeline [=D0(t,t+w)]. Therefore, the

inequality (4.41) can be written as

DP(t ,t.w) + D~tt+w) + Dt ,t4w) + D9(tt4w) + E.(t) + Ri(t)

+ [NO(t) - NO(t-OST-)] + Qi(t-OST!) > si(t) + AVi(t). (4.42)
Define:

IE(t,t+w) = 1 if the unit that failed at t+ was

condemned in (t,t+w] and a replacement
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from the external supplier arrived

in (tt+w]. I.(t,t+w) - 0 otherwise.

1R(t,t+w) 1 1 if the unit that failed at t+ was

sent to the base i repair facility in

(t,t+wJ and completed repair in

(t,t+w]. IR(tt+w) - 0 otherwise.

#Ei(tl,t 2 ,t,t+w) number of units that arrive from the

external supplier in (t,t+wl to

replace failures at base i in (tl,t 2]

that were condemned in (tl,t 2 ].

#EI(t,t+w) = number of units that arrive from the

external supplier in (tt+w] to

replace failures at bast i in (O,t]

that were condemned in (tst+w]. Note

that #ED(tt+w) <DE(tt+w).

#Ri(tl,t 2 ,t,t+w) = number of failures in (tlt 21 that

were sent to the base i repair facility

in (tlt 2] and completed repair in

(tt+w].

#RD(tt+w) = number of failures in (0,t] that

were sent to the base i repair facility

in (t,t+w] and completed repair in

(t,t+w]. [#RD(t,t+w) <DR tat+w)].

#DEi(tt+w) number of units that arrive at base i

as resupply from the depot in (tst+w].

(Possibly including resupply for the

demand at t+).

I--: RIC(
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mt(tt+w) number of units management has sent

to basei that arrived in (tt+w].

Then,

AVi(t,t.w) - M:(t,t+v) + I;(t ,t+v) +I!(t,t4.v) + #hEi(t,t.w)

+ #E (O,t,t,t~w) + #EP(t to~v) + #E.(t,t+w,t,t+w)

+ #Ri(O,t~t~t~w) + #RP(t,t~w) + #Ri(t,t~w~t,t~v).

After some rearrangement the inequality (4.42) can now be rewritten as

[DDI(t,te~v)J + [D;(t ,tev) - #ED(t,tev)J

" (Ei(t) - #E.(O,t,t,t+w)] - [#Ei(t,t~wt,tov)]

" [D*(t,tew) - #RP(t,te~w)] + (Ri(t) - #Ri(O,t,t,t.w)]

- [#R1( t,tsw,t,t+w)] - [I~ft't4.v) + I (t'te~w)]

+ [NQ(t) - NQ(t-OST*) + Qi(t-O~ST!) + DQ(t,t.w) - #DEi(tt.w)J

>si(t) + mt(t,t~w). (4.43)

A term by term analysis of the left side of (4.43) yields:

(1) DP(t,t+w) has a Poisson distribution with mean

t

0

Applying the Splitting Property 110, it is straightforward to show

(see Chapter III) that DP(t,t+w) is independent of the number of units

that left the basei diagnostic facility in (Ot+w]. Hence, DP(tt~w) is

independent of every other term in (4.43).

(2) D;(t,t+w) - #EP(t,t~w) is the number of units that

failed in (O,t], were condemned in (t,t~w) and for which replacements

from the external supplier have not arrived at base 1 by t+w. This

quantity has a Poisson distribution with mean

0 1 tR
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PIO assures us that this term is independent of the other terms in (4.43).

(3) Ei(t) - #Ei(O,t,tt+w) is the number of units that

failed in (O,t], were condemned in (Ot] and for which replacements

from the external supplier have not arrived at base i by t+v. This

quantity has a Poisson distribution with mean
t t±

fXi(e) f dG (s,y) [1-P (s,y)-P i(s,y)] 1-ei (s,y,t+w) ]ds.

0 s

Applying Pl0 we can establish the independence of this term and the

other t'rms in (4.43).

(4) #Ei(tt+w,t,t+w) has a Poisson distribution with meanSt+w t~w

f tX(s) f dGi(sy)[l-P (s,y)-P R (s,y)le (s,y,t+v)ds
t - S

and by PI0 can be shown to be independent of the other terms in (4.43).

(5) DR(tt+w) - #RD(t,t+w) is the number of units that

failed in (O,t], entered the base i repair facility in (t,t+wJ and are

still in the repair facility at t+w. This quantity has a Poisson distri-

bution with mean

tAi(s) f tWdG (s,Y)PRi(S,y)[l-ri(s,y,t~v)]ds.

0 
t

and (by P10) is also independent of every other term in (4.43).

(6) Ri(t) - #Ri(Ot,t,t+w) is the number of units that

failed in (O,t], entered the base i repair facility in (0,t] and are

still in the repair facility at t+w. This quantity has a Poisson distri-

bution with mean
,'t t

f i(S) f dG (s,y)P i(s,y)[1-r (s,y,tdv)]ds.

0 d s n R i

and is independent of the other terms in (4.43).

V%
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(7) #Ri(t,t+w,tt+w) has a Poisson distribution with mean

tqw t v

f X(s) f dGi(sy) PR(sy)r (s,y,tw)ds
t s

and is independent of the other terms in (4.43).

(8) Since I (t,t+w) + IR(t,t+w) < 1 these two random

variables are not independent. However, the distribution of their sum

is easily obtained after noting that

E RPr[I (tt4v) + Ii (ttw)

f {P'R (t~y)r (t,y~t w) + [1-P i(t'y)-P (t,y)]ei(t,y,tqw)} dG (t,Y).i iR

* t

[I (t,t+w)+IR(t,t+w)] and #DEi(t,t+v) maybe correlated because #DEi(t,t+w)

may provide information on whether the failure at t+ was or was not

sent to the depot in (t,t+w]. We will return to this point mnmentarily.

(9) Since OST; is deterministic, units that arrive from

the depot in (t,t+wl must have been shipped in (t-OST*,t+w-OST.]. First,

consider the case where w < OSTI. If the arrival at t+ is sent to

the depot in (t,t+w], a serviceable replacement for this unit could not

have arrived at base i by t+w even if H0(t) > 0. Therefore,

#DEi(tt+w) - [Ni(t+w-OST i) Qi(  [Ni(t-OSTi) - Qi(

and

NO(t) - Ni(t-OSTi) + Qi(t-OSTi) DO(t,t+w) - #DEi(t,t+w)

[N()-N9(t+w-0ST!)] + DQ(t,t+w) + Qi(t+w'OST*). (4.44)

Qi(t+w-OST*) is not affected by demands on the depot after

t+w-OST1 . Hence, for w < OST*, Qi(t+w-OST!) is independent of [NO(t) -

NQ(t+w-OST!)] and DO(t,t+w). Furthermore, using P10 it is easy to show

Vthat D0(t,t+w) is independent of the number of units that left the base i

diagnostic facility in (0,t] and therefore D0(t,t+w) is independent of

IV
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[NQ(t) - IQ(t..v-ST!)]. Therefore, the sum on the right of (4.44) is

the sum of independent random variables. The distribution of this sum

is readily obtained using (3.1), (4.30), (4.32) and the fact that from

Pl0, DQ(t t+w) has a Poisson distribution with mean pd(0,t,t,t+v) where

t t

For w < 0ST, *#DE (t,t+w) provides no information about the

failure at t+ and is independent of [If(t ,t+w) + IN(,t4.w)J. Hence, all

nine terms on the left in (4.43) are mutually statistically independent.

Pr[OSTI < w < Wi(t)] can now be obtained in a straightforward manner.

Now consider the case where w > OSTI. The known failure at

basei at t+ results in a non-continuous MVF for the NRPP describing the

number of base. resupply requests placed on the depot. Therefore,

#DEi(t,t.w) - [I9(t,t+w-OST!) + N9(t+w-OST*) - Qt(t+w-OSTN)

[N9(t-OST!) - itOT]

where

I9(t,t+w-OST*) 1 if the failure at t+ was sent to the depot

no later than t+w-OST~ 0 tt~ S*) - 0

otherwise.

Qte,.-OST*) -number of depot backorders at t+w-0ST~ that

belong to basei given that there was a failure

at basei at t

Hence,

NN() N9(t-OST!) + Qi(t-OST*) + D9(t,t+w) - #DEi(t,t+v)

..IN?(t) -N9(t~v-OST!,j. D9(t,t~w) + Qt~t+w-OST*.J- I9(t,t+w-OST*)

-Qt(t+w-0ST!) - I9Ct,t+w-OST!) + D9(t,t+w) - D9(t,t+w-0ST*)]

-[N9(t+w-OST!) -N9(t) -D9(t,t+w-OST*)]. (4.45)
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1" (t,t+v) - DO(t,t+w-OST*) is the number of failures at base i

in (O,t] that were sent to the depot in (t+w-OST!,t+w]. This quantity

has a Poisson distribution withmean pd(0,t,t+w-OST.,t+w) and is independent

of I0(t,t+w-OSTi) [Assumptions 2 through 6] and Qt(t+w-OST) [since these

demands were placed on the depot after t+w-OST*].

[NQ(t+v-OST i) - NQ(t) - DO(t,t+v-OST!)] is the number of failures

at basei in (t,t+w-OST.] that were sent to the depot in (t,t+w-OST*l.

This quantity has a Poisson distribution withmean pd(t,t+w-OST, t,t+w-OST.)

and is independent of I0(t,t+v-OST*) [Assumptions 2 through 6] and

[D0(t,t+w) - D0(t,t+-OST*)] [Assumptions 2 through 6 and the fact that

NEPP have independent increments].

Qt(t+-0ST*) is not independent of I9(t,t+w-0ST*) and

[NQ(t+v-OST!) - N0(t)- DQ(t,t+w-OST*)]. The known failure at base i at

t+ and the number of failures at basei in (t,t+w-OST!] that are sent to

the depot in (t,t+w-OST.] certainly affect Qt(t+w-OST.). However, the

distribution of
[Qi(t+vOST!)1i0(t,t. OST*) ' N9(t+w-OST) - N(t) - D9(t,t+w-OST*)]

(.an be obtained straightforwardly, albeit tediously, by extending the

arguments that led to (4.30) and (4.32). Details can be found in

Kotkin (1985). Using the fact that I0(t,t+w-OST*) and [N9(t+w-OST*) -

N0(t) - D(tt+w-OST.)] are independent, the joint distribution of

Q-(t+v-OST*), I9(tt+w-0ST*) and [N0(t+w-OST) - N(t) - DO(t,t+v-OST*)]

can be obtained straightforwardly. The distribution of the sum in

(4.45) can then be obtained directly (Kotkin 11985)).

For w > OST, I9(t,t+w-OST.), IE(tt+w) and I (tt+w) are not

independent since at most one of these random variables can be positive.

Assumptions 2 through 6 guarantee, however, that IE(t,t+w) and I (t,t+v)
,%1
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are independent of the other random variables in (4.45). Since the

first seven terms on the left in (4.43) are independent of the latter

two terms, all that remains to be done in order to find Pr[Wi(t) > w > OST*]

is to find the distribution of It, t t + 1, t,t T!3. This
1. 1

is easily done. Clearly,

Pr[If(t t+v) + I-ttw 11I.~tt+t+w-OST!) -1] 0

so that

Pr[I (t+w) + I!(t,t+v) - II 9(t t+v-0ST*) -0]

Pr[I (t+w) + I (t,t+w) - lJ/Pr[I 9 (tt+w-OST .) 0]

where the numerator on the right is given in paragraph (8) above and

0 t+w-OST iPr[I (t,t+w-OSTt) = 0] = f [l-P (t,y)]dG (t,y).
t

Similarly,

Pr[ItE(.~.L + IR(...+w) - flIyO(t~t fq-S*!) 1] 1,

Prt Itt+) + IR +, ) - oII(t + -OST ,) - 0

Pr[IO(t,t+w-OST*) - 0] - Pr[IE(t,t+w) + I!(tt+w) -]
Pr[I9(t,t+w-OST* ) - 0]

Summary

The supply interactions between the &epot and bases manifest

themselves through the impact of stock policies at the depot on the

bases' pipelines. In Chapter IV we explicitly examined this impact by

deriving the distribution of a bases's pipeline as a function of the

depot asset level. Therefore, inventory performance at the bases can

be improved either by increasing stock at the bases or by increasing

stock at the depot, thereby reducing the bases' pipelines. This tradeoff

.Z
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between depot and base stock forms the basis of the optimization problem

that we formulate in the next chapter.

Next page is blank.



CHAPTER V

THE FIXED ASSET VECTOR PROBLEM

The emphasis of the previous two chapters has been on describing

important stochastic processes that arise at the depot and the bases.

In particular, in Chapters III and IV we derived the time-dependent

probability distributions of the number of units in the pipeline at the

depot and bases, respectively. Using these results, (2.2) and (2.3),

we can obtain the probability distributions of the number of units

on-hand and the number of backorders outstanding at any time during the

horizon at every location in the inventory system. We can then develop

measures of inventory performance which aid in evaluating different

stock policies and asset levels during the horizon. It then becomes

natural to formulate an optimization problem that allocates a valuable

resource (money, weight, volume, etc.) over a catalog of items (for

example, the items that comprise a weapon system) in order to maximize

the inventory performance of the catalog over the horizon. The Fixed

Asset Vector Problem (FAVP), introduced in this chapter, represents the

first step towards formulating such an optimization problem. The FAVP

formulation assumes that all asset levels remain unchanged during

the horizon: there are no management directives to change the asset

levels at any location during the horizon. In Chapter VIII we examine

the optimization problem that arises when this assumption is removed.

101
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However, the FAVP is extremely interesting in its own right. It can be

used for scenarios during which management directed changes can not be

implemented for any reason including, of course, lack of time and/or

lack of asset visibility and control.

Inventory Performance Measures

There are several useful measures of inventory performance

including criteria based on an item's fill rate, ready rate, and expected

number of outstanding backorders. At t > 0, we define the fill rate at

locationj for a particular item, FRj(t), as the probability that there

is at least one unit on-hand at locationj at time t. Therefore,

FR.(t) - Pr [X.(t) < sj(t)]. Note that if sj(t) - 0 then FRj(t) - 0.

The ready rate at locationj at time t for a particular item, RRj(t), is

defined as the probability there are no backorders outstanding at

location, at time t. Therefore, RRj(t) - Pr [X.(t) < sj(t)]. Finally,

from (2.2), the expected number of backorders of a particular item

outstanding at locationj at time t is given by

EBO(sj (t),So (t),t) - I Pr(Xj (t)>k). (5.1)
k>sj (t)

All of these performance measures depend upon sj(t) and also upon s0(t)

since X.(t) depends upon 90(t).

Brooks, Gillen, and Lu (1969) discussed the relative merits

of using the different performance measures in steady state models.

They also presented some computational experience comparing the asset

allocations from single echelon steady state optimization problems

using the different performance measures. Since a backorder outstanding
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* 'at a base implies a customer is waiting, the measure most directly

related to customer satisfaction is the expected number of backorders

outstanding at the bases. Fill rate and ready rate are measures more

of immediate supply accommodation than of customer satisfaction. For

this reason, the expected number of backorders outstanding at the bases

is the performance measure used in most steady state multi-echelon

models. (See, for example, Sherbrooke [1968], Clark [1978], Kaplan

[1980], Vincent [1980], and O'Malley [1983]). For the remainder of this

study we assume that the performance criteria are based on the expected

number of backorders outstanding at the bases. However, any of the

other measures could be used in developing optimization problems. The

results presented here have analogs for each of the different measures.

Performance Criteria in Non-Stationary Systems

Definition 5.1: An asset vector is a vector containing an asset level

for every item at every location. As asset policy

specifies an asset vector at every point in time

during the horizon.

Given an asset policy, inventory performance can be measured

at any point in time during the horizon. While time plots of inventory

performance may be useful management aids, they usually do not, in

themselves, provide an objective way to evaluate alternative asset

policies. The major exception is when one policy provides better

performance at every point in time. Two important objective performance

criteria that can be obtained from the time plots are the average

performance over the horizon and the worst performance during the

VON 1 P %'* le Y, . .9
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horizon. Usually, management has an interest in both these criteria.

For obvious reasons, management is concerned with the worst performance

predicted during the horizon. Regardless of the average performance

over the horizon, management may not want to tolerate extended periods

of severely poor performance or even poor performance during short

critical periods.

However, the intervals of poor performance may be during

non-critical time periods and may be mild enough and/or short enough so

that the average performance over the horizon is at a satisfactory

level. In this case, management may not want to perturb the inventory

system and incur the extra expense of added assets because of small,

non-severe, non-critical periods of poor inventory performance.

By controlling the average performance over the horizon,

management assures that the inventory system provides satisfactory

service during the horizon. The average performance also provides a

way of distinguishing between two equal cost asset policies that have

the same worst performance over the horizon.

Therefore, inventory managers are faced with a multi-criteria

optimization problem. They wish to choose an asset policy that makes

the most economical use of available resources while controlling the

average and worst inventory performance over the horizon.

The major advantage of ergodic theory is that in steady state

all points in time are stochastically identical. With one constraint

on inventory performance it is possible to control both the average and

worst behavior for some time interval in steady-state. In non-stationary

systems, where there is no passage to steady state and each point in

time may be stochastically different, one constraint may be insufficient
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to satisfactorily control both the average andworst performance. Different

asset policies may have the same average expected number of backorders

outstanding but vastly different values for the maximum expected number

of backorders outstanding over the horizon. Similarly, different asset

policies with the same maximum expected number of backorders outstanding

over the horizon may have a significantly different average expected

number of outstanding backorders. For these reasons, the FAVP formulation

includes constraints on both the average and maximum expected number of

outstanding backorders over the horizon.

Formulation of the FAVP

The major assumption of the FAVP is that the asset levels for

every item at every location are fixed at time 0. There are no management

directives to change the asset position of any item at any location

during the horizon. This restricts the set of feasible asset policies

to policies for which the asset vector does not change over the horizon.

In Chapter VIII we discuss the optimization problem that results from

dropping this restriction. For notational convenience, while discussing

the FAVP, we shall drop the notation indicating the dependence of the

asset level on time.

The other assumptions of the FAVP are:

a. Inventory performance is measured at the bases. Depot

performance is included only insofar as it affects performance at the bases.

This is reasonable since primary customer demands occur only at the

bases (Assumption 1). However, the formulation could easily be modified

to include depot performance explicitly.
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b. Performance constraints are expressed in terms of the

expected total number of backorders for all items at all the bases.

The FAVP formulation can easily be modified to include constraints on

the performance at each base and/or on the performance of each item.

c. The objective is to minimize, over a catalog of

items, the total cost of procuring or holding the required assets. The

FAVP could easily be modified to minimize the weight or volume of the

optimal asset vector instead of the cost. Adding constraints on the

weight and/or volume will increase the computational burden of obtaining

optimal solutions.

Define

I - number of items in the catalog;

T horizon length;

Xij(t) - pipeline for itemi at locations at t, i=1,2,...,I;

j - 0,1,...,N; 0 < t <T;

sij - asset level of item i at locationj, i - 1,2..,1;

j = 0,1,..N;

si+ =(si0, Bill,...,SiN), i =  , ,.I

s+j (8lj ,  82j,...,sij) ,  j - 0,1,...,N;

s++ = 1S+, 82+,..., Il+);

Ci  = procurement or holding cost of itemi , i = 1,2,..;

IN =a vector of ones with dimension N+I;

iT

AEBO(si slO) - If EBO(siJ9Sio't)dt

- the average expected number of backorders of

item i outstanding at basej over the horizon.

i = 1,2,....1; j = 1,2,...,N;
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I N
MEB0(s +) = max I EB~ ii'o t)

-the maximum expected total number of backorders

for all items outstanding at the bases.

The FAVP can now be written as

N
Mini C 1 ( j 0 j)

I N
I AEB0(aeiiss 0 ) <aeb (5.2)

i-l J-1

MEBO (s+) <~ meb

If AEB0(sijs5io) has a limit as T goes to infinity for each

item in the catalog and the constraint on MEBO (s++) is removed, the

FAVP reduces to the steady state two-echelon model first introduced by

Sherbrooke (1968).

Solution of the FAVP

For aeb, meb > 0 (5.2) always has a feasible solution since as

all sij go to infinity, MEB0(s+4 ) and all the AEBO(sipsio) go to zero.

If we introduce a Generalized Lagrange Multiplier (GUI), uas.> 0 (Everett

[19631), we can rewrite (5.2) as

I N
Mini I{C s o+IKsi O

MEBO(s +) me

where Vspso - Cisj + uaEOsi~i) Here, and in the sequel, it

-L *-' AJA r - L !'& IA&. WP N%'"
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is understood that all decision variables are non-negative integers. We

can use a result of Everett (1963) to relate optimal solutions of (5.3)

to solutions of (5.2).

Theorem 5.2: Let s++(ua) be an optimal solution to (5.3) for a particular

GLM us > 0. Then s++(ua) is optimal in (5.2) with the

right hand sides of the constraints replaced, respectively.

with

I N
aeb(s ++(u) I AEBO[sij(Ua).Si0(Ua)]

i-l J-1

meb [s++(u)] - MEBO[s(++(ua)] < meb.

Proof: Consider (5.2) with aeb and meb replaced with aeb[s++(ua)] and

mebts++(ua)] respectively. Clearly, s++(ua) is feasible. For all asset

vectors y++ such that MEBO(y++) <meb we have that

I I N
i~l <s+(,-y+ -- Ua.I[ I AEBOy Yij 'yio]I-AEBOs sij (us) 'Sio (u a) ]"

since s++(ua) is optimal in (5.3). If y++ is feasible in the augmented

(5.2) we have that

I N I NI I AEBO[YiJYi0 ] < I I AEBO[s ij Nua ) , s i 0 ( u a ) ]

i-i J-1 i-i J-1

which implies that y++ has an objective function value in (5.2) which

is no smaller than the value of s++(ua). II

By varying ua one can use (5.3) to obtain solutions to (5.2)

with different values for the right hand sides of the constraints.

Solutions to (5.3) are undominated (efficient) solutions of (5.2) in

the sense that any asset vector that has lower procurement/holding

costs than s++(u a ) must have either higher average expected total

backorders, higher maximum expected total backorders, or both. Usually,
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one can obtain an undominated solution to (5.2) with aebts ++(ua)M and

meb[s++(ua)] sufficiently close to the desired levels aeb and meb. For

two reasons, however, this can not be guaranteed. First, since all

asset levels are non-negative integers, there are infinite values of

aeb and meb for which the constraints in (5.3) will never hold at

equality. Secondly, when using a GLM, a "duality gap" often arises

(see Everett [19631). A duality gap occurs when there is a solution to

(5.2) for particular aeb and meb but there is no value of ua that can

obtain this solution. Everett showed that a gap arises when the objective

function in (5.2) is not a strictly convex function of the right hand

sides of the constraints in (5.2) (which, as we shall see later, is

the case here). Everett's GLM procedure can only generate points of

strict convexity in the three dimensional space representing the optimal

objective function value in (5.2) as a function of aeb and meb.

In practice aeb and meb are usually soft management parameters

and acceptably close values of the constraints are sufficient. Therefore,

we will obtain undominated solutions of (5.2) by using Everett's (1963)

GLM technique. For the moment, we shall concentrate on solving the

relaxation of (5.3) obtained by removing the constraint on the maximum

expected total number of backorders outstanding at the bases. Without

this constraint, (5.3) is separable by item. Unfortunately, one can

construct examples that show that K(sij;sio) is not a convex function

either of the 2-tuple (sisi0) or of the quantity si0 + sij M 0,1,2 ....

Since K(sij;siO) is not convex, the objective function of the subproblem

for item i and the objective function in (5.3) are not convex.

However, using Theorem 5.3, it is straightforward to show that

when si0 is held fixed at some non-negative integer value, K(sij;si0)
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is a convex function of sij, 1

Theorem 5.-3: For fixed sio , AEBO(sij,si 0 ) is a discretely convex

decreasing function of sij, i - 1,2,...,I; j - 1,2,...,N.

Proof: From Theorem 2.2 we have that for sij - 0,1,2... and t > 0,

EBO(sij+lsiot) - EBO(sij,sio,t) = - Pr(Xij(t) > sii+l)

and therefore, for fixed si0 , EBO(sij,si0 ,t) is a discretely convex

decreasing function of sij. The theorem now follows by applying two

elementary properties of convex functions. I/

We will exploit the convexity of K(sij;sio) for fixed sio in

an implicit enumeration scheme to solve the subproblem for item i. The

item i subproblem, i 1,...I, can be written as

Min TCi(siO) = Cisio + TCB*(sio)
si 0,,2,...

where

N

TCBi (So) = min N K(sij;Sio)

is the total optimal contribution by the bases to the objective function

of the itemi subproblem when the depot asset level is sio. For fixed

si0' the item i subproblem is separable by base since we need only find

TCB*(si0 ). Therefore, for fixed sio , we can solve the item i subproblem

by minimizing K(sij;sio) for each base.

Since K(sij;sio) is convex for fixed si0, sij(siO), the base i

asset level that minimizes K(sij;si0) , is the smallest non-negative

integer for which K(sij+l;sio) > K(sij;si0). Therefore, 4ij(si0) is

zero if and only if

T CiT
f Pr(Xij(t)l_)dt < . (5.4)
O0  a

Otherwise, tij(si0) is the unique positive integer satisfying
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T CiT fTPr(X 1 (t)>_ j(si0 )+l)dt < - < f Pr(Xj(t)Lj(s0))dt. (5.5)

0 Ua -0

Say T is measured in days. Then ua is a backorder cost in

the sense that for every T backorder-days accumulated over the horizon,

there is a "charge" to the inventory system of ua dollars in K(sij;sio).

Intuitively, (5.4) and (5.5) state that sj(siO) is such that the

marginal reduction in backorder costs over the horizon from adding the

ij (sio)th asset at basej must be greater than the marginal increase 
in

procurement/holding costs from adding that asset. Furthermore, the

reduction in backorder costs from adding the (s.j(sio) + 1 )th asset (or

any assets after that) must be less than the corresponding increase in

procurement/holding costs.

The optimality conditions (5.4) and (5.5) allow for straight-

forward determination of 9-ij(si), and thereby Ti(si0), for any value

of Sio. However, empirical evidence from tests on the items in our data

base (see Appendix B) has shown that not only is TCi(sio) not convex,

it is not unimodal. Therefore, in order to solve the item i subproblem,

it is necessary to determine TCi(si0 ) for all si0 - 0,1,2,. .... The optimal

depot asset level for itemi, s-0, is the non-negative integer that

yields TC!(sio), the minimum value of TCi(si). Fortunately, it is

possible to a priori determine an upper bound on io. Before establishing

-" this upper bound we need to obtain some intermediate results.

Lemma 5.4: If the random variable G is stochastically larger than the

.random variable Z, then E[G] > E[Z].

""" Proof: See Lehmann (1959). //

Lemma 5.5: For fixed sij and all t > 0, EBO(sipsi0,t) is a decreasing

function of si0 0,1,2 ....

%. ^A j-

4 ..4.::. -- ,- - . . . -- - .- - . - - - - - - • , - -- .-
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,roof: Xij(t), t >0, is given by (4.40). The only component of Xij(t)* .
that depends on sio is Qij(t-OSTij). By Theorem 4.2, Qij(t-OST.j) is

stochastically decreasing with respect to sio. Therefore, Xij(t) and

[X j(t)-sij]* are stochastically decreasing with respect to si0. Itii i

now follows directly from (2.2) and Lemma 5.4 that for all si0 = 0,1,2,...

and t > 0, EBO(aij,si0 +l,t) < EBO(sip~si0 ,t).

Theorem 5.6: TCB (sio) is a decreasing function of sio 0,1,2,....

Proof: Let k > h be non-negative integers. Then
N

TCB (h) - I KN s(h);h)
J-1

N
M 1 [Cjj j (h) + uaAEBO(.Ej (h) ;h)

_ i-i

N
> [Ci j (h) + uaAEBO(sJ (h);k)

j=i

> TCBi (k)

where the next to the last in'-quality is a direct consequence of Lemma 5.5

and the last inequality follows from the optimality of sj(k).

9 Theorem 5.7: For all si0 M 0,1,2,...

sjo -i 
+ INT f[TCB.(si0) - TCB1(1)]/Ci). (5.6)

Proof: Since si0 is optimal in the itemi subproblem we have for all

.io = 0,1,2,... that TC (s.io) <TCi(si0 ) and therefore,

L, o 5 i~io + ITCBi(sio) - TCBi(l4o)]/C i
S[TCB (si0) - TCB!(-)]/C i

by Theorem 5.6. Since Ei0 must be an integer, the theorem follows. //

In particular, applying Theorem 5.7 with si0 - 0 we have that

s.- < INT {(TCB!(0) - TCB.(c)]/Ci}. (5.7)

TCB*(*) is easily calculated since for Sio Qij(t) -0, t > 0, and

1%
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therefore, Xi (t), t > 0, has a Poisson distribution with mean obtainedii

from (4.40).

We can use Theorem 5.6 to develop an iterative procedure to

try to improve the upper bound on s0 obtained from (5.7). Let ubI be

the upper bound obtained from (5.7). For all Sio L ti0, we know that

TCB(sio) <TCB1 (iio). Therefore, given ubm >.sj0, m > 1 we can obtain

ubm+1 - INT{[TCB*(0) - TCB*(ub)]/C} > 0.
2. 1 m 2. > -i

We continue until ubm+i - ubm. Using Theorem 5.6, it is easy to show
that this procedure does indeed terminate. Unfortunately, it does not

necessarily terminate at 0i0 Call the final upper bound obtained ubf.

Initially, in order to obtain an optimal solution to the

itemi subproblem, we expect to have to calculate TCi(si 0 ) for all

values of si0 from 0 to ubf. The first incumbent solution to the item i

subproblem is si0 - 0 and s*ij(0), j - 1,...,N, with objective function

value TCB*(0). Corollary 5.8 shows how the upper bound on s_0 can be

updated every time a new incumbent solution is obtained.

Corollary 5.8: Let ubc be the upper bound on Li0 based on the current

incumbent solution with depot asset level s1 0. Let

s >st0 be such that ub c _st0 and TCi(s0) < Ti(sl0).
1i0 i0 1 1 0 C(L)(T

Then,

-0 si0 + INT([TCB (s?0) - TCBi(ubc)]/Ci} < ubc.

Proof: The first inequality follows, as in the proof of Theorem 5.7,

from the optimality of !40 and from Theorem 5.6 (since ubc >s.i0). The

second inequality is obtained in a similar manner after using the fact
that TC 0) < TCi(s!0) and the fact that from Theorem 5.6, TCBi(ubc)

provides the best available lower bound on TCB(s0). /

Originally, ubf is obtained either from (5.7) or from applying

4'. ..4'," 
J
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the iterative procedure to improve (5.7). Since sio - 0 is the first

incumbent solution, ub c = ubf. When the next incumbent solution is

obtained for some sio > 0, ubc is updated using Corollary 5.8. In

principle, an iterative procedure similar to the one described above

can be employed every time ubc is updated. Computational experience

indicates, however, that very little improvement in the upper bound on

40 is obtained by applying the iterative procedure every time a new

incumbent solution is obtained. The computational burden of applying

the iterative procedure appears to outweigh the benefits obtained. Most

of the improvement in the upper bound on L0 comes about from using

Corollary 5.8 without an iterative procedure. In fact, Corollary 5.8

(without the iterative procedure) is so effective in improving ub c that

we have found that it is not worthwhile even to apply the iterative

procedure to improve the initial upper bound obtained from (5.7).

It is also possible to establish a "static" upper bound on L0"

Theorem 5.9: Let ub 0 be the optimal solution to

N
Min Cis 0 + I K (O:si 0 ). (5.8)

a 0,1,... J-1

Then, Li0 -- ub 0 .

Proof: Since ub0 is optimal in (5.8) we have for w = 1,2,...

N
Ciw > I [K (O;ub) - K (0;ub0+w)]

N
I [K(j (ub0 +w); ub0 ) - K(iEj(ub0 +w); ub0 +w)]

from Theorem 2.2 and the fact that XiW(t) , t > 0, is stochastically

decreasing with respect to si0. Since K(sj(ubo+w) ;ub0 ) >(s ij(ub0) ;ub0)

we have that TCi(ub0 +w) >TCi(ub0 ) and the theorem follows. //

. . N" . '- ' " . '" " . " " -" . " " - - '" " . . " .""" ." . '''' - " .."
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We can further reduce the computational burden of obtaining

the optimal solution to the item i subproblem. Theorem 5.10 shows that

no base asset level will increase when the depot asset level increases.

Theorem 5,10: si(si0) is a non-increasing function of si0 - 0,1,2,....

Proof: For each base. and t > 0, Xij(t) is stochastically decreasing

vith respect to siD (see the proof of Lemma 5.5). Along with the optimality

conditions (5.4) and (5.5), this implies that !.ij(si0) > .ij(si0 +l). //

Summarizing the above, we present Algorithm Al, an implicit

enumeration scheme for finding optimal solutions to the item i subproblem.

Algorithm Al: To find an optimal solution to the item i subproblem:

Step 1: Use (5.4) and (5.5) to obtain TCB-*).

Step 2: Use (5.4) and (5.5) to obtain TCB!(0).

Set TCB (0) as the value of the incumbent solution and

store the depot and base asset levels.

. Step 3: Use (5.7) and Theorem (5.9) to find UB, an upper bound on

90. Set j1.

Step 4: If j > UB, stop. The incumbent solution is optimal.

Otherwise, use (5.4) and (5.5) to obtain TCB*(j).
*i

Step 5: If jCi + TCB!(j) < the value of the incumbent solution then:

(a) Set jCi + TCB!(j) as the value of the incumbent solution.

(b) Store the depot and base asset levels.

(c) Update UB using Corollary 5.8.

Step 6: Set j - j + 1 and go to Step 4.

After using Algorithm Al to solve every item subproblem, weIi obtain .,,+ the asset vector that is the optimal solution to the relaxation

I.p%



116

of (5.3). If MEBO[L++] _meb, j.++ is optimal in (5.3) and is also an

undominated solution of (5.2). In order to complete our discussion of

the solution of the FAVP, let us assume that MEBO[+ + ] > meb.

N We can introduce another GIM, um > 0, in order to bring the

constraint in (5.3) into the objective function. By a theorem of

Everett (1963), the solution to

I N
Min {C sio + I K(sa j;SiO)+ umMEBO(s,+) (5.9)

J=

is an undominated solution of (5.3). Empirical evidence from tests on

the weapon systems in Appendix B indicate that MEBO[s++] is not a

convex function either of a++ or of total system assets. We can show

(see Theorem 5.11 below) that for fixed s 09 HEBO[s++] is a convex

decreasing function of (sg., ... .g.N). The fact that (5.9) is not
."

separable by item, though, makes it extremely difficult and impractical

to obtain solutions to (5.9). Therefore, we approximate MEBO[s++] by

I
MEBO(s) -- MEBO(si+)

i-i
N

MEBOi(si+) = max { I EBO(si Ws 0,t).} (5.10)
O<t<T J-1

Let 0 < TMi(si+) < T be the time at which the expected total

number of base backorders for itemi reaches its maximum value, MEB0i s .

If TMi(si+) were the same for all items, (5.10) would be an exact equality.

(5.10) is conservative in the sense that it may result in overstocking,

but will ensure that the performance constraints are satisfied.

Using the approximation (5.10), (5.9) is separable by item and

the item i subproblem is
' .. N

5 Min TCMi(siO) = C1siO + I K(si;s io) + u MEBOi(si+)
. , Si00,1,2,... Jol m
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Before solving the item i subproblem, we need some intermediate results.

Theorem 5.11 establishes the convexity of MEBO[si+] for fixed sio while

Theorems 5.12 and 5.13 establish, for fixed si0 , upper and lower bounds

on the optimal base asset levels.

Theorem 5,11: For fixed sio, MEBOi(si+) is a discretely convex decreasing

function of (Oil , 82-6, iN).

Proof: In the proof of Theorem 5.3 we saw that for all t > 0 and fixed

si0, EBO(sipsi0,t) is a discretely convex decreasing function of sip

j - I,...N. Therefore, for all t > 0, the sum over all bases .of

EBO(aijps0,t) is a discretely convex decreasing function of the total

base asset vector (sil,si 2 ,...,siN). Since the maximum of convex

functions is itself a convex function, the theorem follows. //

Let s!j(si0) be the optimal basej asset level for item i when

the depot asset level for item i is si0.

Theorem 5.12: For j - 1,...,, s.j(SiO) > ij(SiO).
Proof: Assume there is at least one basek such that 4 k~iO ) <

Let yi+ be an asset vector such that yi0 - si0 and for j 0 0,

yij M sij(sio) if sij si0) I aii(si0)

Yij = tij(sio) otherwise.

Clearly, MEBO[Yi ] <_MEBO[si+(si 0 )]. From the definition of (si0),

we have that K(yij;sio) <K(sij(si0);si0) for all j with strict inequality

holding for at least basek. Hence, y++ is a better solution to the

item1 subproblem for fixed si0 than the asset vector (s ~s+ io)).

This contradicts the optimality of si*+(siO).

Theorem 5.12 assures us that we can use Algorithm Al not only

to solve the relaxation of (5.3) but also to provide starting values in

the search for sli(si0), j - 1,...,N.
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Th *,Ej. .3: Let ubij(siO) _. _ j(siO) be the smallest non-negative

integer such that for all 0 < t <T,
um[EBO(ubij(si0),si0,t) - EBO(ubij(si0)+l,si0,t)]

< [K(ubij(sio)+l;sio) - K(ubij(s£O);siO)].

Then, a! (si0) < ubij(si0), j = ,...,N.

Proof: The theorem follows directly from (5.10), Theorem 5.11 (and its

proof) and the convexity of K(sij;sio) for fixed si0.

For any asset vector si we define the marginal benefit of

putting an extra asset at basej as

MBij(si ) - um[MEBOi(si+) - MEBOi(si++ej)] - [K(si.+l;si0) - Voip;i0)]

where ej is the jth unit vector in RN. It is interesting to note that

for base., MBi (si ) is not monotonically decreasing with respect to

si+. The benefit of an extra asset at basej may actually increase as

more stock is placed at the other bases. In fact, it is quite conceivable

that for a particular asset vector, basej could be "blocked" in the

sense that MBij(si ) < 0 even though sij < ubij(siO). Precisely, basej

is blocked if there is some t*, 0 < t* < T, such that

um[EBO(sij (SiO),Sio,t*) - EBO(sij(sio)+l,sio,t*)A

L [K(sij(si0)+l;si0) - K(sij(si0);si0)]

but MBij+(i )) < 0. Basej can be blocked in many ways. For example,

say there is another base with no assets but with an extremely high

pipeline at a time at which basej has a very small pipeline. Giving

assets to basej without giving assets to the other base would be pointless

since the maximum could not be reduced. However,after allocating some

assets to this other base, basej may be "unblocked". If not for blocking,

we know that sa.*(sio) - ubi (si 0 ), j - 1,...,N. Blocking can not

occur when, for all possible asset vectors, all bases attain their maximum

-5.4, . • . .••• . . . . . . .
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expected number of item i backorders at the same time.

Using Theorem 5.11 and the bounds in Theorems 5.12 and 5.13,

we could construct a branch and bound algorithm for finding s* (ai0),ij j
j - l,...,N. However, since we may have to find si( j ,..

for many values of si0 we attempt to reduce the computational burden by

using a greedy heuristic.

Alzorithm A2: A greedy heuristic for finding aij(si0) , j - 1,...,N:

Step 1: Set the current asset vector to a+(si0).

Step 2: For the current asset vector si+, the set of eligible

bases consists of each base. for which sc. < ub (si0)•

If the set of eligible bases is empty, stop. ubi+(siO)

is the optimal solution.

Step 3: Find MB (sc+ ) for each eligible base. If MBij(sc +) < 0

for each eligible base, stop. Set s!+ + . Otherwise,

increase by I the asset level of the base with the largest

value of MB i(s+), j - 1,...,N.

Step 4: Update the current asset vector and go to step 2.

We note that if there is no blocking, the greedy heuristic

will not stop until * (si0) o ubij(si0) for each base. The greedy

heuristic may not find the true optimal solution if the greedy allocation

induces blocking that might not otherwise have occurred.

We can now use an implicit enumeration scheme to find the

optimal solution of the item i subproblem. Let

, N
TCMBi(siO) min N K(sij;Sio) + umMEBO[si+])

wv M_
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be the optimal contribution by the bases to TCMi(sio) . Similar to the

proof of Theorem 5.6, we can prove that TCMBi(si0) is a decreasing

function of Sio. Therefore, we can establish analogs of Theorem 5.7,

the bound (5.7), Corollary 5.8 and Theorem 5.9. No analog of Theorem 5.10

is possible since adding an asset to the depot may unblock a basej. If

that happens, s *(si0) will increase.

An implicit enumeration scheme very similar to Algorithm Al can

now be used for each item in order to find s , an undominated solution

of (5.3). We leave the details to the reader. a is also an undominated

solution of (5.2). Using standard techniques, we can now search for

the Generalized Lagrange Multipliers that produce an asset vector(s)

whose inventory performance is acceptably close to the targets aeb and meb.

Summarv

The FAVP assumes that management will not and/or cannot

change the asset vector over the horizon. The problem then is to find

the least cost asset vector at time 0 that achieves management specified

targets on the average and maximum expected total number of base backorders

over the horizon. The FAVP (5.2) is a non-linear non-convex integer

programming problem. By using Generalized Lagrange Multipliers we were

- able to show that the FAVP is separable by item. We developed an

.efficient implicit enumeration scheme to find the optimal levels for

each item and thereby find an undominated solution of the FAVP. In the

next two chapters we discuss some of the computational issues involved
%

in using the FAVP to obtain cost effective asset vectors in non-stationary

two echelon systems.



CHAPTER VI

APPROXIMATIONS TO TIE BASE PIPELINE DISTRIBUTION

In using Algorithms Al and A2 to solve the FAVP we must find

the average and maximum expected total number of backorders at the bases

for many different candidate asset policies. Therefore, for each item

we must find the time dependent distributions of the base pipelines for

various depot asset levels. We see from (4.40) that for a particular

item the distribution of X.(t), t > 0, can be obtained from the convolution

of a Poisson distribution and the distribution of Qj(t) obtained from

(4.30) and (4.32). Most of the effort and cost incurred in obtaining

the distribution of X.(t) lies in obtaining the distribution of Qj(t).

To evaluate (4.30) and (4.32) we must perform many numerical integrations

of a function that is the product of probability terms that contain

MVF. Depending on the behavior of this function in (O,t] it may be

necessary to make many function evaluations in order to obtain accurate

results from a numerical integration routine (Conte and de Boor [1980]).

Furthermore, the MVF themselves may have to be numerically integrated.

Therefore, the evaluation of (4.30) and (4.32) at many times during the

horizon can be extremely time consuming and costly. Furthermore, it

can also be time consuming to perform the actual convolution of the

components of X.(t) for many different times during the horizon and

many different depot asset levels. For these reasons, in this chapter

121
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we study approximations to the distribution of X.(t), t > 0, that

reduce the burden and cost of solving the FAVP.

We obtained data on three current Army weapon systems in

order to form a realistic data base for the tests we report upon in

this chapter and in Chapter VII. A summary of the data for each weapon

system can be found in Appendix B. Rather than test an approximation

on an item by item basis, we felt it was more useful to test the approxima-

tion over representative catalogs of items. As long as an approximation

consistently performs well over representative catalogs, the approximation

provides a valuable tool even when one can find particular items and/or

points in time during the horizon at which it fails.

All run times are for the CDC CYBER 700 with a cost of $800

per CPU hour. The weapon system used in a particular run will be

identified by the abbreviations used in Appendix B. All numerical

integrations were done using the International Mathematical and Statistical

Libraries subroutine DCADRE (IMSL [19791) which uses adaptive Romberg

integration (Conte and de Boor [1980]). The upper bound on relative

error was 10-8. (Run times and costs did not significantly change when

this bound was lowered to 10-6). Finally, for consistency among the

different weapon systems, the targets aeb and meb in (5.2) were expressed

as a percentage of the number of each type of weapon system deployed.

Therefore, a 10% aeb target actually implied a target of 32.7 backorders

for the average expected total backorders on the AAH, 10 on the BHAWK,

and 25 on the M60A3.

We studied two approximations to the distribution of X.(t),

j - 1,2,...,N for any t > 0. The first one, which we call NEGBI,

approximates the distribution of X.(t) with a negative binomial distribution
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with meanE[X(t)] and variance VAR[X.(t)] obtained from(4.40). A priori,

there are two reasons to believe that NEGBI may be a satisfactory

approximation. First, as we mentioned in Chapter IV, empirical evidence

from runs on the data base indicated that the probability mass function

(pmf) of Xi(t) was unimodal and that VMIR[X(t)] > 1. The pmf of a

negative binomial distribution is unimodal. The negative binomial is

also a two parameter distribution with VMR > 1 so we can ensure that

NEGBI uses the correct mean and variance and, hence, VMR. Secondly,

NEGBI has been shown to be an excellent approximation in stationary

systems (Slay [1980], Graves [19831). The limiting distribution of

Qj(t) in the stationary case resembles (4.6). Therefore, there is

strong evidence to believe that at least for the proportionate base

case, NEGBI will be an excellent approximation.

The second approximation, called POISSON, approximates the

distribution of X.(t) with a Poisson distribution with mean E[X.(t).

9,l Based on our empirical evidence, this underestimates the variance of

X.(t). The advantage that POISSON has over NEGBI is that we do not

have to calculate VAR[Xi(t)]. Therefore, we would normally expect thatm.3

POISSON would run in less than one-half the time of NEGBI. However,

from (4.35) we see that the integrands for E[Qj(t)] and E[Q?(t)] are very

similar. We used DCADRE (when necessary) to compute E[Qj(t)] and
=...

stored the points at which the integrand was evaluated, along with the

terms that were common to the integrand of E[Q?(t)]. We then used them.3

trapezoid rule (Kitchen [19681) with the points and values saved from

the computation of E[Q.(t)]. This significantly reduced the time needed

to compute E[Q?(t)]. As we shall see, POISSON was, on average, approx-

imately 15Z faster than NEGBI. Although this approach does not guarantee
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that the accuracy achieved in calculating E[Qj(t)] will be matched in

the calculation of E[Q?(t)], our tests indicated very little loss in
J

accuracy. In fact the same approach was used to reduce the run time

for obtaining the entire exact distribution of Xj(t).

Table 1 is a comparison of the exact average expected total

number of backorders at the bases with the projections made by NEGBI

and POISSON. The FAVP was run using each approximation to determine

asset policies for three target aeb percentages (meb was set to infinity).

The final asset vector for each approximation supposedly achieved the

target aeb percentage. These final asset vectors were then correctly

evaluated using the exact distributions of the base pipelines. This

yielded the true backorder ratio for those asset vectors where the backorder

ratio is defined as the average expected total number of backorders at

the bases divided by the total number of weapon systems deployed.

From Table I we see that NEGBI does significantly better than

POISSON in projecting the true backorder ratio. In fact, using NEGBI

instead of the exact distributions resulted in very little loss of

accuracy. Notice that in all cases NEGBI and POISSON underestimated

the backorder ratio. This is consistent with observations made by

Slay (1980) and Graves (1983) for stationary systems. Graves (1983)

reports on rare instances where NEGBI overstated the backorder ratio in

a stationary system. We did not observe such aberrant behavior on any

of the items in our data base. We also note NEGBI performed best on

the M60A3 which has a support structure consisting of proportionate bases.

Ultimately, we are concerned not with the error in projecting

backorder ratios but with the cost of the assets required to achieve a

target backorder ratio. Table 2 is a comparison of the inventory

.3
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Table 1: Exact Uckorder Ratio. For
Ainroximte FAVP Solutions,

System:

TARGET NEGBI POISSON

15% 15.238% 16.64%

10% 10.209% 11.31%

5% 5.146% 6.98%

1% 1.040% 1.42%

System: BUE&U

TARGET NEGBI POISSON

15% 15.573% 20.53%

10% 10.612% 13.51%

5% 5.406% 8.64%

1% 1.094% 2.60%

System: N60A3

TARGET NEGBI POISSON

15% 15.1381% 15.94%

10% 10.0834% 11.12%

5% 5.0442% 6.58%

5- 1% 1.0097% 1.39%

4'.

4

'o2
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investment needed to achieve various target backorder ratios when

assets are determined using the FAVP with either the exact, NEGBI or POISSON

evaluation methods. In constructing Table 2 we proceeded as follows.

First, for each target backorder ratio we ran the FAVP with the exact

base pipeline calculations in order to obtain the true optimal asset vector

and true optimal inventory investment. Then, we ran the FAVP with each

of the approximations over a range of values for the Generalized Lagrange

Multiplier. We evaluated the asset vectors so obtained using the exact

base pipeline distributions. We then searched among these final aseet

vectors (using the exact evaluations) for the asset vector that achieved

the target backorder ratio. For example, using POISSON it cost $11.52

million to achieve a target backorder ratio of 5% for the AAH. POISSON

actually projected a lower backorder ratio for that money. However,

when the asset vector was evaluated using the exact base pipeline

distributions, a 5% backorder ratio was achieved.

In summary, we note that NEGBI performed very well with

little loss in accuracy or increase in inventory investment when compared

with the exact solution. NEGBI always performed considerably better

than POISSON with only a small increase in run times.

As expected, these results were duplicated when we activated

the constraint in (5.2) on the maximum expected total number of backorders

at the bases by setting meb to a finite value. NEGBI provides such a

good approximation to the base pipeline distributions that there was

little loss in accuracy in using NEGBI to project both the average

and maximum expected total number of backorders at the bases.

Once we accept the fact that the negative binomial is a

satisfactory approximation to a base's pipeline distribution, it seems

N-
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Table 2: Inventory Cost Comarisons (Millions $)

Sste,: AR

TARGET NEGBI POISSON Exact

10% 10.17 10.43 10.17

5% 11.12 11.52 11.08

1% 12.62 13.34 12.51

(RUN TIME (sec): 274 240 2327

$ Ssten: ]IB&W:

TARGET NEGBI POISSON Exact

10% 18.43 18.53 18.43

5% 21.37 21.41 21.35

1% 27.66 27.71 27.56

(RUN TIME (sec): 118 89 1123

System: K60A3

TARGET NEGBI POISSON Exact

10% 25.89 26.57 25.84

5% 33.62 34.30 33.41

1% 40.91 43.05 40.74

(RUN TIME (sec): 337 301 1612

,, ,",",A.. -'
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that further effort toward reducing run times should be directed toward

approximating E[Xj(t)] and VAR[X.(t)] and avoiding the cumbersome

expressions in (4.33) for E[Qj(t)] and E[Q (t)]. Approximations that

significantly reduce the number of numerical integrations that need to

be performed will significantly reduce the run times of the FAVP. This,

in our opinion, is the next logical extension to the research and

results presented in this chapter.

Ii
..



CHAPTER VII

COMPUTATIONAL EXPERIENCE

In this chapter we briefly discuss the sensitivity of the

FAVP solutions to changes in the input data. In doing so, we shall

briefly discuss the efficacy of using the more convenient stationary

models to approximate the FAVP results.

Most of the parameters of operation (PO) that are input to

the FAVP are used to determine the time-dependent distributions of the

pipelines at the depot and bases. The demand intensities at the bases

stand out as the most important input elements since they drive the

distributions of the bases' pipelines. Changes in the order and ship

times, base repair times and the inventory system's maintenance concept

also impact upon the base pipelines. Changes in the depot input parameters

impact directly on the depot pipeline and indirectly on the base pipelines

through the distribution of Qj(t), t >0.

Table 3 illustrates the effect on total inventory investment

for the AAR helicopter when the demand intensity at each base for each

item was multiplied by a common scaling factor but the weapon system's

performance target was not changed. As we see, the change in inventory

investment was far less than proportional to the change in scaling

factor. Furthermore, for bigger changes in scaling factor, the change

in inventory investment seemed less sensitive to the change in the bases'

129

• " "[ "" " " ' ' L" """""%"" 
'

" "'"
" " °

" '-.P =""""''" " ",,'" 
"

',,' " "
"%'

" " 
"

-'• "" "
'

k," "'V " N



130

pipelines. This implies that if a 100% increase in the bases' pipelines

causes a 50% increase in inventory investment, an additional 100% increase

in the bases' pipelines will result in less than an additional 50% increase

in inventory investment.

~Table 3

Iumact of Chauzint Imtesities on lUvetory IUvestment for the AAR

Scalinz Factor Inventory investment (Millions $)

.5 2.37

1 3.89

2 5.20

4 7.33

8 8.87

In Table 4, we again changed the intensities of the demand

for items on the AAH by a scaling factor, but this time we held all

asset levels fixed at the values obtained when the scaling factor was 1.

Note that the decrement in backorder ratio (Chapter VI) appears to

be more than proportional to the change in scaling factor but seems to

be less sensitive to larger changes in the scaling factor.

The FAVP selects the least cost asset vector that achieves

the performance targets. Unit prices have absolutely no impact upon the
pipeline calculations for a particular asset vector. By examining

Algorithms Al and A2, we can see that if every unit price changed by

the same percentage, the FAVP would produce exactly the same stock list

to meet the performance targets. This is encouraging as economic

tradeoffs should be based on relative and not absolute costs.
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Imcat of Chumins Iut-ities an lackorder Ratios for the A

Scaling Factor Backorder Ratio

.5 2.38%

1 5.01%

2 10.45%

4 21.32%

8 43.02%

If only some unit prices change, the FAVP will try to substitute cheaper

items for the more expensive ones.

There are economies of scale to be had by consolidating

bases. Two bases each with a deployment of 50 AA helicopters will

generally require a higher total inventory investment to achieve the

same performance as one base with 100 helicopters. This is a special

case of the results in Table 3.

Finally, the FAVP results can be extremely sensitive to the

initial system condition and the length of the scenario. Table 5 shows

the budget requirements in order to achieve approximately a 5% backorder

ratio for the AAR for various scenario lengths. For this run the AAR

usage modifiers (Appendix B) were set to 1 so that the system would

eventually reach steady state. All assets were assumed on-hand and

ready for issue at time 0.

We note from Table 5 that the steady state budget was considerably

more than the $2.42 million required for the original 30 day scenario.

This was simply due to the fact that stationary models ignore the

initial conditions and horizon length. We could have changed the
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Table* 5

A ludaets for Variosu Sesari. L-mtb

Scenario Length (Days) Budget (Millions S

5 1.04

10 1.77

30 2.42

60 4.61

Steady State 6.97

(Run time: 382 sec)

initial system condition so that the stationary model would understate

the budget requirements. It is clear from Table 5 that one must proceed
cautiously when using stationary models to approximate solutions of

non-stationary models.

There are, of course, many heuristics one could try to improve

upon the results of the stationary models. Table 6 shows the results

of one such heuristic. We used SESAME (U.S. Army [19831) to optimize

Table 6

Rvaluation of Stationar, Model's Rtcomded Stock

Scenario Length (Days) Budiet (Millions)

5 1.39

10 2.08

30 2.96

60 5.34

Steady State 6.97

(Run time: 23 sec)
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but evaluated the final solutions using the FAVP methodology. The

SESAME search routine with the FAVP evaluator found the budget required

to achieve approximately a 52 backorder rate for various horizon lengths.

Note that run times were reduced by a factor of 18.

Once the usage modifier was set to 1, the AAR had no non-

stationary PO. It is certainly worthwhile to investigate further the

efficacy of using a stationary model to approximate the FAVP results

when all the PO are non-stationary. (We made no attempt to do so).

This would require adjustment of the data (possibly averaging) to meet

the input capabilities of the stationary models. Besides run time

savings, stationary models are also convenient in that they require

less data on tie behavior of the PO than the FAVP does. Being able to

approximate FAVP results without the associated data collection and

input effort is a major reason for using stationary models to approximate

the results of non-stationary models. This is one area we feel deserves

.): a considerable amount of further research and study. As multi-echelon

systems grow both in the number of locations and the number of items,

judicious use of stationary models (including, possibly, coordinated

single echelon policies) may be the only practical way to obtain cost

effective operating policies.

Next page is blank.
i a.4#



CHAPTER VIII

THE ASSET VECTOR TRANSFORMATION PROBLEM

The two fundamental questions that arise in controlling

inventories are when and how much to order. The FAVP answered these

questions by determining the initial asset vector at time 0 and by following

a strict one-for-one resupply policy thereafter. This resulted in a

constant asset vector and, consequently, constant total system stock

over the horizon. For many non-stationary systems it is infeasible to

change the asset vector during the horizon. This could be due to any

and all of the following:

a. A short time horizon which prevents external procurement

and expeditious redistribution of assets.

b. Lack of asset visibility and control (e.g., a combat unit).

c. High cost of effecting desired changes in the asset

vector during the horizon.

For these systems, the FAVP is a satisfactory method for determining an

optimal asset policy. However, in many non-stationary systems we

might reasonably expect that not only may the optimal asset vector

change over time but also that the total system stock may change during

the horizon. In order to accomplish these changes, management will

intervene in the normal one-for-one resupply operations of the system

by directing procurements, disposals and/or redistributions of assets.

135
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These management interventions along with the initial asset vector and

the one-for-one resupply policy, completely answer the when and how

much to order questions for non-stationary inventory systems. The

methods and costs involved in effecting these management decisions play

an important part in determining an optimal operating policy for the system.

In this chapter we explore some of the issues involved in

characterizing and specifying an optimal inventory control policy for

non-stationary systems. We introduce the Asset Vector Transformation

Problem (AVTP), a stochastic transshipment problem which begins to

tackle the question of if, when, and how management should intervene to

effect asset vector changes during the horizon. The AVTP and the FAVP

together form a tool for analysis and determination of operating policies

for non-stationary multi-echelon inventory systems.

Characterization of Optimal Operating Policies

An operating policy must specify: an asset policy; an ordered

set of management intervention times, MT, at which procurement, disposal

and/or redistribution decisions are to be made; and the method for

accomplishing any planned procurements, disposals, and redistributions.

Between times in MT, the system follows normal one-for-one resupply rules.

At times in MT, disposals and new procurements always result in changes

in the asset vector and the system "condition" (see Chapter I). Redis-

tributions may change the asset vector but they always change the

system condition. The choice of an asset vector for intervals between

management intervention times should therefore reflect the changes in

system condition brought about by management decisions. However, the

V '.
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choice of an asset vector for each interval should also reflect the cost

involved in transforming one asset vector to another. These costs

can be significant when scenarios dictate extensive management directed

procurements, disposals, and redistributions.

We wish to choose an operating policy from among all feasible

operating policies so that operating costs (costs to review, procure,

dispose, hold, and redistribute) are minimized subject to constraints

on the average and worst performance over the horizon.

Define

hi(tlt 2 ) - holding cost for a unit of itemi between

times t, and t2;

R(t) - cost of a management review at time t;

M - cardinality of MT;

MC(s++(t-),s++(t) ,t) expected cost of effecting a management

decision at t which will result in a change in the

asset vector from s++(t-) to s++(t + ) and/or in a change

in the system condition;

s++(') - an asset policy;

AEBO[s++(')] - the average expected total number of

backorders at the bases over the horizon given the

asset policy s++(');

MEBO[s++(')] - maximum value over the horizon of the

expected total number of backorders at the bases given

the asset policy s++(*);

to- 0.

Then, the problem of determining an optimal operating policy can be

formulated as finding MT and s++(') that solve:

AXZ A, .,
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M I
Min I ( I h I t MIt )(si (t M1.Nmn-i i n- i r-

+ R(t) + MC(s (t S (t )

I
+ h i(tT)s +(). N

AEBOfs.)J < aeb (8.1)

MEBO[s+(.)] < meb

t 1 --< t 2 -- . <t M

s.(t) > 0 and integer for all t.

The FAVP (5.2) is a special case of (8.1) obtained by assuming

either R(t) or MC(s++(t-),s++(t),t) is infinite for all t >0. This implies

that it is infeasible for management to intervene during the horizon.

Therefore, M is zero, hi(O,T) is simply Ci and there is no need to

worry about finding the most cost effective ways to implement management

decisions. It is important to note that the solution to the FAVP

(5.2), along with setting MT equal to the null set, is a feasible

solution to (8.1).

(8.1) is solved at time 0 to determine the optimal operating

policy for a system using an HCP. MT is therefore fixed Pt time 0 and

operating policies may be expressed as functions of the system condition

at the times in MT. The system condition at any future time can only

be described stochastically. The cost of effecting any management

decisions at times in MT clearly depends upon the system condition at

these times. Therefore, this cost is a random variable and is included

in the objective function via its expected value.

Under a RTCP we have complete knowledge of the system condition
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at the current decision time. However, (8.1) must still be solved at each

decision time since our current decision may depend upon what we expect

to do in the future. Thus, under a RTCP, MT and operating policies may

be changed each time (8.1) is solved. The cost of effecting any management

decision at the current decision time is deterministic but the cost of

any future decisions is again a random variable.

The optimization problem (8.1) is very difficult to solve. Later,

we shall briefly discuss a heuristic for solving (8.1) when MT is fixed

at time 0. Before doing so, however, we need to introduce the AVTP, a

stochastic transshipment model that determines MC(s++(t-),s++(t),t) for

any candidate time t and any candidate asset policy.

Formulation of the AVTP

Let tM, I < m < M, be a management intervention time in MT and

consider the problem of transforming the system asset vector from
8++(tmI) to s++(tm). Let ASi(t) - si+(t) ' IN and define for each

item i - 1,2 ,

DCi(tm-ltm) - {k; 0 < k < N, Sik(tm I ) > sik(tm)}

INi(tmltm) - {k; 0 < k < N, sik(tm_1) < sik(tm))

EQi(tmlltm) - {k; 0 < k < N, sik(tm_1) - Sik(tm)}

as the set of locations for which the item i asset level decreases,

increases or remains the same, respectively. For each item we can

identify the following cases:

Case la: ASi(tm_- ) - ASi(tm); EQi(tm_ltm) -{0,1,...,N}.

No procurements, disposals or redistributions are

necessary unless management wishes to change the

- 2 . - - 0 X..
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system condition by forcing locations either to

exchange on-hand assets for on-order assets or to

exchange one type of on-order asset for another type

of on-order asset.

Case lb: ASi(tm_1) - ASi(tM); EQi(tm-l,tm) 0 (0,1,...,N}.

Procurements and disposals of item i are necessary

only if the system condition at tm prevents a re-

distribution of assets to attain s++(tM)

Case 2 a: ASi(tm_1 ) < ASi(tm); DCi(tmltm) empty.

Procurements are necessary to raise the asset positions

of the locations in INi(tm_ltm) to their target values.

Case 2b: ASi(tmI) < ASi(tm); DCi(tm.lptm) not empty.

Along with external procurements there must be a

redistribution of current assets between locations in

DCi(tm-ll tm ) and INi(tm-l tm) .

Case 3 a: ASi(tm I ) > ASi(tm); INi(tm-lstm) empty.

Disposals must be made to lover the asset positions

of the locations in DCi(tm t ) to their target values.
rn-1' m

Case 3b: ASi(tm_) > Asi(tm); INi(tm I tm) not empty.

Along with disposals, there must be a redistribution

of assets between locations in DCi(tmltm) and

IN (tt)i in- 1 tm

The depot and base. may exchange an asset either by direct

shipment or by the creation/cancellation of a backorder at the depot

belonging to base. Basej and base k may exchange an asset either by

direct shipment or by the reassignment to one base of a depot backorder

belonging to the other base. (By assumption, all backorders outstanding

.F JP . . . .
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at a base belong to primary customers and not to other bases). Any redis-

tribution of assets consists of a composition of these basic exchange

methods. We see that the ability to change from one asset vector to

another depends upon the system condition at the time the change is

planned. For example, if base. is in DCi(tm-lltm ) and the depot is in

INi(tmlptm) there can be no direct exchange of an asset unless at tm

either base. has a unit on-hand or there is a depot backorder belonging

to base.. If this is not the case, the only way to attain the new

asset vector is by a simultaneous procurement at depot and disposal at

basej. It is highly unlikely this will ever be desirable. Rather, it

would probably be better to seek an adjustment to a different asset vector.

Define, for i 1,2,..,I and j - 0,1,...,N:

OHij(t) M number of units of itemi on-hand at locationj

at time t;

Zij(t) - number of depot backorders of itemi at

time t belonging to locationj;

xijk " number of on-hand units of itemi directly

shipped from locationj to locationk;

dsij - number of disposals of item i at locationj;

prij - number of new procurements of item i at

locationj;

cbi. - number of item i depot backorders belonging

to location, that are cancelled;

nb. = number of item i depot backorders created that13

belong to locationj;

CXijk(xijk ) - cost of directly shipping xijk units;

CCBij(cbij) - cost of cancelling cbij depot backorders;

13 13
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CNB j(nb..) - cost of creating nbij depot backorders;

CPRij(Pri) - cost of procuring prij units;

CDSi.(dsi.) = cost of disposing dsij units.

The AVTP at time tm can now be formulated as a stochastic

transshipment problem:

I N
Min E {CCB (cbi) + CNBj (nbij)

=1 J -0 (8 .2)

+ CPRIJ(prij) + CDS(ds)ij + klj CXijk(xijk)}

subject to:

(la) For i = i,...,I and J = 1,.,N:

I x jk +cbi + ds i-Ik~j -nb i ri
k#J kOJ

-si (ts) (t

(ib) For i i

[x, [XiOk + nbik] + dsi0 - k [XikO + cbik] - i0

- so(t-) - so(tm);

(2) dslj sjjt ) - Z tm) i = 1,... ,I; j = 0,1,...,N;

-. (3) k xijk < 0Hij(tm) i 1,...,I; j = 0,1,...,N;

(4) cb (i = i,...,I; j = 0,1,...,N;

(5) x x aj i = i,. I; j = 0" '-" k O J --k i j " " " ' '

(6) X _ ii i = i,...,I; J = 0,1,...,N;

where all variables are non-negative integers.

Constraint (1) is a balance constraint ensuring that the new

asset vector is attained. Constraint (2) restricts the disposals at

dipsasa
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locationj to the number of units on-hand, in diagnosis, in repair and

en route from the depot at tm. Constraint (3) ensures that no location

ships more units than are on-hand while constraint (4) requires that

the number of depot backorders belonging to locationj that are cancelled

at tm be less than the number outstanding. Constraints (5) and (6) are

additional supply and demand constraints by which management can alter

the system condition at tm by requiring some locations to exchange

on-hand assets for on-order assets. These constraints may be employed

to change the system condition at tm even though there may be no desire

to change the asset vector. For example, (5) and (6) can be used to

require a base in EQi(tmltm) to send an on-hand unit to another base

that is expected to have many customer demands backordered at tm

Since the sending base is in EQi(tm_,tm), this base must receive a

replacement asset that will, perforce, be on-order. In fact, if management

sets aij w ORij(tM) , locationj will be required to ship all its on-hand

units. Some or all of these units may be replaced by on-order assets

in the form of external procurements and/or the creation of new depot

backorders belonging to locationj.

It is reasonable to assume that for all L 0,

CNBij(nij) > CXij(n j) iil,...I; jml,...N,

since creating a depot backorder belonging to basej will eventually

require shipping a serviceable unit from the depot to basej that otherwise

would not have been shipped. Under this assumption the depot will prefer

to ship units that are on-hand rather than to create new backorders. This

ensures that

k O 0 ik'[OHIO(tm) -kO XiOk]
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and thereby prevents the depot from having any backorders outstanding

while it also has on-hand stock.

The AVTP (8.2) can be augmented with additional constraints

that affect the system condition by forcing a location to exchange one

type of on-order asset for another type of on-order asset. These

constraints can also be used to change the system condition without

changing the asset vector. For example, at time t. a base in INi(tml itm)

[DCi(tmltm) can pass a procurement (disposal) action to a base

in EQ4(tmlstm) in exchange for the reassignment of an outstanding

depot backorder belonging to the latter (former) base. In this case,

the latter (former) base loses (gains) ownership of an outstanding

depot backorder in exchange for a procurement (disposal) at that location.

Constraints of this type are similar to (5) and (6) in that they are

bounds on the number of procurements and disposals at a location.

If aij - uij - 0, (8.2) always has a feasible solution as

s+,(t M ) can be achieved via procurements, disposals and the creation

and or cancellation of outstanding depot backorders. The AVTP is

then a stochastic transshipment problem with full recourse. If either

aij or uij is positive, (8.2) may not have a feasible solution indicating

that the new asset vector cannot be achieved. In this case management

must decide on an alternate asset vector until the next management

intervention time.

For a discussion of solution techniques for stochastic trans-

shipment problems, the reader is referred to Madansky (1960), Walkup

and Wets (1966), Ziemba (1970a, 1970b), Huang et. al. (1977), Wets (1979)

and Dempster (1980).

4r
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A Heuristic For Determining Optimal Oerating Policies

In principle, specifying an optimal operating policy requires

decision rules for the selection of an asset vector for every possible

realization of the system condition at times in MT. However, these

rules are computationally cumbersome to obtain and probably impractical

to implement in systems with many items and bases. In this section we

propose to restrict the form of the decision rules and to use the FAVP

and AVTP to restrict the set of candidate asset policies. The FAVP and

AVTP thereby form a basis for a heuristic for determining an effective

operating policy.

For expository purposes we assume that MT is fixed at time 0

and consists of a lone element, t The generalization to fixed MT

with cardinality larger than one is straightforward. Say we have a set

of candidate asset vectors, V0 , with the property that each asset

vector in V0 satisfies the performance constraints in (8.1) during

[Ot*). For each v0 in V0 let Vl(v 0 ) be the set of companion asset

,. vectors for use in [t*,T]. For each vl(v 0 ) in Vl(v 0 ), the asset policy

. [v 0 ,vl(v 0 )], along with the AVTP solution for transforming v0 to Vl(V0),

satisfies the performance constraints in (8.1) during [0,T]. We restrict

ourselves to operating policies of the following form:

a. At time 0 an asset policy [v*, vl(v0)] is chosen

that minimizes holding and expected asset vector

transformation costs over the horizon;
D.'the switches (

b. At t the system always from v0 to v*()

regardless of the system condition at t

If ai = uij -0 for all i and j, the change at t can always
,'P
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be accomplished (with a cost that depends on the actual system condition

at t*). Management can elect to have system condition constraints in

the AVTP and still ensure that property b holds by replacing each aij with

Min [aij,Oij] and each uij with

Min [ujj OHik

kylj

A consequence of property b is that at t* the system asset vector always

changes to vl(v 0 ) even though for a particular realization of the

system condition at t*, vl(v*) may no longer satisfy the performance

constraints during [t*,T]. For a system under an HCP this is reasonable

as v1(vo) was chosen with cognizance of this possibility. In fact, it

is quite likely that under an HCP management would not have enough
information on the system condition at t * to realize that Vl(V 0) is no

longer feasible.

Restricting operating policies to the form above reduces the

problem to choosing v* in V0 and V*(v*) in Vi(v O) that minimizes

HCo(vO ) + HCI(V1 (vO)) + MC(vo,vl(vo),t*) (8.3)

where HC0(v) is the holding cost of asset vector v during [O,t*) and

HCl(v) is the holding cost of asset vector v during [t*,T]. (8.3) is

formidable and cumbersome to solve unless the sets of candidate asset

vectors are small. The second part of the heuristic uses the FAVP and

AVTP to construct small sets of candidate asset vectors.

Say v0 is fixed in (8.3). Let fl(vO) be the solution to the

FAVP for [t*,T] vith initial system condition determined by v0 and

the methods for transforming from v0 to fl(v 0 ) (obtained from the

AVTP). We note that the asset policy [v0 ,fl(v 0 )] is feasible and has cost
!*

EC0 (v) + HC1 (fl(v 0 )) + MC(v0 ,fl(v 0),t*). (8.4)

4
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Since fl(vO) is the FAVP solution, any other vector in V1 (VO) must

necessarily have higher holding costs in [t*,T]. Therefore, if [vo,vl(vO)]

has lower total cost than (8.4) it must be true that

MC(vo,fl(vo),t*) - MC(vO,v,(vO),t*) L>HCl(vl(vO)) - HCl(fl(vO)) (8.5)

There are, of course, many asset vectors in Vl(v0 ) for which

(8.5) may hold. However, we restrict attention to vectors vl(v 0 ) >. fl(v 0)

so that holding costs increase since no asset position for any item

decreases at any location. This ensures that the asset level for each

*" item at each location is at least as large as the level that would have

been obtained from solving the FAVP for [t*,T] with the proper initial

system condition. (The Army (U.S. Army [1983]) uses a similar policy when

changing peacetime asset levels at a management review time). If

fl(v 0 ) >v 0 there can be no larger companion vector for which (8.5)

holds since the larger vector must necessarily incur more transformation

costs. In this case, vl(V 0 ) - fl(v 0 ).

Now assume fl(v 0 ) is not > v0 . We restrict Vl(v 0 ) to vectors

vl(v 0 ) such that for every itemi, i 1 1,...,I and locationp, j - 0,1,.N,

Vlij(v 0 ) = flij(v0 ) if flij(v0) Lvoij;

flij(v0 ) <v ij(v 0 ) vi j  otherwise. (8.6)

(Note that we have extended the notation in the obvious manner). All such

asset vectors are feasible since fl(v 0 ) satisfies the performance

constraints in (t*,T]. From (8.2) and (8.6) we see that the cost of

transforming v0 to any vl(v 0 ) in Vl(v 0 ) is no larger then the cost of

transforming v0 to fl(vO). The cost of transforming v0 to any vl(v O)

in Vl(v 0 ) can be obtained precisely by a parametric solution of the

AVTP for v0 and fl(v 0 ). The parameters are the right hand sides of the

balance constraints for the items and locations for which v0 ij > flij"

% L'
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In this manner, the transformation costs for all vectors in Vl(v O) can

be obtained by solving only one, albeit parametric, stochastic transshipment

problem.

It is now a straightforward matter to select v (vo) as the

asset vector in Vl(v O ) that minimizes the sum of transformation and

holding costs in [t*,T]. Depending on the cost structure it may be

possible to further reduce the computational burden. For example, say

that it is possible to order Vl(v 0 ) so that the holding cost is an

increasing convex function on Vl(v 0 ) and the transformation cost is a

decreasing concave function on Vl(v 0 ). We can then select vl(v 0 ) as

the first asset vector for which the increase in holding cost exceeds

the decrease in transformation cost.

All that remains is the selection of VO . Let fo be the

solution of the FAVP over [O,t ). The best asset policy using fo has cost

TC(f0 ) - HC0 (f0 ) + HCl[vj(f 0 )] + MC[fo,vl(fO),t* ] .

V0 should therefore contain all vectors v0 that are feasible in [O,t*)

and satisfy HC0 (f0 ) <HC0 (v0 ) < TC(f0 ). However, we shall assume that

for all v0 in V0 , HC,[vl(vO)] & HCI[v*(f0 )]. V0 can then be restricted

to the v0 such that

HC0 (v0 ) <_HC0(f0 ) + MC[fo,v (fo),t*]. (8.7)

There may be many asset vectors that satisfy (8.7). Some of these

vectors are obtained during the implicit enumeration scheme (see Chapter V)

used to determine fo. The heuristic restricts V0 to precisely these

asset vectors. Hopefully, this will reduce V0 to a manageable size.

Otherwise, it may be necessary to further reduce the size of V0 using

heuristics based on the special cost structure of a particular problem.

In summary, the steps of the heuristic we propose are:



149

(1) Determine fo and fl(fO). Set v0 - f0. Set the

cost of the incumbent solution to infinity.

(2) If fl(vO) >v 0 set vl(vo) - f1 (vO) and go to step 5.

Othervise, construct Vl(V 0 ) using (8.6).

(3) Parametrically solve the AVTP for v0 and f1(v0 )

thereby determining the transformation costs for

all vl(v 0 ) in Vl(v 0 ) .

(4) Find V*(v0 ) that minimizes

eC1 (vl(vO)) + MC(VO ,Vl(VO ),t*)

(5) If the cost of [vo,vi(vo)] in (8.3) is less than

the cost of the incumbent, set [VO,vl(vO)] as the

incumbent asset policy.

(6) If v0 - f0 construct V0 using (8.7). Othervise, go

to step 7.

(7) If all elements of V0 have been examined, stop.

Otherwise, choose a new v0 and return to step 2.

This heuristic can be considered to be myopic in the sense

that if transformation costs are assumed to be irrelevant and arbitrarily

set to 0, the heuristic sets v* to the FAVP solution over [0,t*). In
0*

fact the ultimate myopic heuristic vould set v0 a f0 and never bother

with the construction of V0 . This vould greatly reduce the computational

burden as only one parametric AVTP would need to be solved to determine

an asset policy.

Assume that conditions are such that we are certain that at

t the asset position of every item at every location should increase.

Furthermore, say for all v0 in V0 , f1(v 0 ) L v0 . The heuristic then

chooses among asset policies of the form [v0 ,fl(v0 )]. It is interesting

.....
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to note that the heuristic may not select and the optimal solution may

not be IfO,fl(fO) . This is because transformations arenot instantaneous

so that some vector other than fo may leave the system better positioned

at t • This can result in a significant reduction in holding costs

over [t*,t) than would result if [fo,fl(fO)] were selected as the asset

policy.

Summary

In this chapter we generalized the FAVP by allowing management

to change the asset vector at any time during the horizon. We gave a

brief overview of the issues and difficulties involved in obtaining

solutions (operating policies) to this more general problem. We showed

that an operating policy must consider the costs and methods of transforming

one asset vector to another. For this reason we introduced the AVTP

and showed that the FAVP solution was an integral part of the solution

of the general inventory control problem. This general inventory control

problem appears to be very difficult and cumbersome to solve. However,

we outlined a heuristic using the FAVP and AVTP to obtain approximately

optimal operating policies for non-stationary multi-echelon inventory

systems.

4Z, .



CHAPTER IX

SUMMARY AND EXTENSIONS

Summary

The main goal of this dissertation was to develop a model and

methodology for determining "cost effective" asset policies for a two

echelon non-stationary one-for-one inventory system in which primary

customer demands at the bases form mutually independent NHPP. In order

to accomplish this, it was necessary to do three things. First, we had

to obtain the time dependent distributions of the pipelines at the depot

and bases. In Chapter III we derived the depot pipeline distribution

by considering the depot as a single echelon inventory system unto

itself. In Chapter IV we studied the supply interactions between the

depot and bases and thereby derived the time dependent distributions of

the bases' pipelines as functions of the depot's asset policy. We also

studied and obtained results on other important stochastic processes

that arise at the depot and bases. These results were used to derive

the time dependent distributions of customer wait at the bases and the

time dependent distribution of the delay at the depot before satisfying

a base resupply request.

Secondly, we had to precisely define what we meant by a cost

effective (efficient) asset policy. In Chapter V we discussed the
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problem of choosing meaningful inventory performance measures that

adequately distinguished and ranked different asset policies for a

non-stationary system. We decided that two performance measures were

necessary: one to monitor average performance over the horizon and one

to monitor the worst performance over the horizon. Specifically, we

chose to measure the average and maximum expected total number of customer

backorders outstanding at the bases over the horizon since at any point

in time a customer backorder directly corresponded to an inoperable

weapon system/end item. An efficient asset policy was then defined as

an asset policy that achieved, at the least cost, management specified

targets on the average and maximum expected total number of customer

backorders over the horizon.

The FAVP introduced in Chapter V assumed that during the

horizon management could not change the asset level of any item at any

location. Therefore, the cost of an asset policy was simply the cost

of procuring (holding) the assets that were placed at the locations in

the system at the beginning of the horizon. Hence, an efficient asset

policy could be obtained by solving (5.2).

In Chapter VIII we extended the FAVP by allowing management

to change the asset levels of one or more items at one or more locations

at one or more times during the horizon. In that chapter we considered

the cost of an asset policy as: the costs to procure, hold and dispose

assets during the horizon; the cost to review/observe the system condition

at management review times; and the cost of redistributing assets among

the locations in the system. Consideration of this latter cost led to

the formulation of the AVTP, a stochastic transshipment problem for

determining the least cost method of transforming one system asset

.. .. . .. .,;. ., ; .. €4 , . ... . . , . ..-, .).,..; .... ..
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vector to another. Under the above cost structure, an efficient asset

policy could be obtained as a by-product of the optimal operating

policy obtained by solving (8.1).

Lastly, we had to actually obtain efficient asset policies by

solving the mathematical pr-gramming problems (5.2) and (8.1). In

Chapter V we developed an implicit enumeration scheme to solve the

non-linear integer program (5.2). We established in Chapter VI the

efficacy of approximating the computationally cumbersome base pipeline

*distribution with a negative binomial distribution. Use of this approx-

imation significantly reduced the effort and cost involved in solving

(5.2). In Chapter VII we reported on some computational experience

with the FAVP. In that chapter we also briefly addressed the issue of

using the more facile steady state models such as SESAME (U.S. Army [1983])

to obtain approximate solutions to the FAVP. This is certainly an

interesting area for further research.

It is very difficult, costly and burdensome to obtain the optimal

solutions to (8.1). The reader can appreciate the enormity of the task

by noting the effort involved in solving the FAVP which is itself a

• .special case of (8.1). However, in Chapter VIII we briefly outlined a

heuristic using the FAVP and AVTP to obtain close to optimal solutions

to (8.1). Developing algorithms for obtaining exact and/or approximate

solutions to (8.1) is a natural and fruitful continuation of the research

presented in this dissertation.

Extensions

We mentioned above two areas of research that we felt were

, r,
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natural continuations of the research presented in this dissertation.

In this section we will briefly present some of our (untested) thoughts

on other extensions to some of the results we have presented.

The optimization scheme in Chapter V for solving the FAVP

requires that for any specific asset policy we be able to calculate the

average and maximum expected total number of backorders at the bases

over the horizon. However, the optimization scheme itself and the

other results in Chapter V are essentially independent of the actual

distributions of the pipelines and the backorders at the locations.

Therefore, the implicit enumeration scheme used to solve the FAVP is

robust in the sense that it does not depend on the most of the major

assumptions made in Chapter II. Therefore, the extensions we discuss

below will generally only impact upon how we calculate the distributions

of the pipelines and backorders at the locations in the inventory system.

(1) N > 2 Echelons: Because of our assunptions, the depot

(echelon-N) pipeline will always have a Poisson distribution with mean

given by (3.6). The time dependent distributions of the pipelines at the

echelon-(N-l) locations are precisely the distributions that we have

given for the base pipelines. In fact, all of the results obtained for

the bases in this dissertation hold for the echelon-(N-1) locations.

As long as the order and ship times between locations are constant, we

can establish an analog to Theorem 4.8 for locations below echelon-(N-1).

This allows us to write the pipeline at any time at locationj on echelon-K,

1 < K < N - i, as the sum of: a Poisson component representing the

number of units in-repair at locationj and the number of units due-in

from the external supplier; a Poisson component representing the number

of failed units sent to higher echelon resuppliers for which serviceable
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replacements could not yet have arrived at locationj (even if the

higher echelon resuppliers had infinite stock) because of the constant

order and ship times; and a component representing the number of higher

echelon backorders belonging to locationj. (4.30) and (4.32) can be

used to find the distribution of the number of depot backorders belonging

to Iocationi. The difficulty in extending our results to N > 2 echelons

lies in finding the distribution of the number of backorders at echelons

(K+l) through (N-i) that belong to location.

If location, is a "proportionate location" (see Chapter IV)

then we can use (4.6) to find the distribution of the number of higher

echelon backorders that belong to locationj. Otherwise, since our

research has shown that locations below the depot will usually not have

Poisson pipelines, we must modify the arguments we used to find the

distribution of Qj(t), t > 0. However, the same underlying approach is

still valid. Namely, for each higher echelon resupplier of locationj

we need to find the time interval over which backorders accumulated and

the number of resupply requests made by locationj during that interval.

The fact that higher echelon locations usually do not have Poisson

pipelines will probably lead to even more complex and cumbersome expressions

than (4.30) and (4.32). However, it is reasonable to expect that the

negative binomial will still be an effective approximating distribution.

In fact, since we have shown the negative binomial distribution with

proper mean and variance can be used to approximate (4.6), we know

that the negative binomial approximation is adequate for N-echelon

systems consisting of proportionate locations.

The implicit enumeration scheme given in Chapter V for solving

the FAVP is easily extended to problems with N > 2 echelons. We can

e
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generalize Theorems 5.6 and 5.7 so that bounds can be established on the

optimal asset levels at all the locations on echelons 2 through N. By

fixing the asset levels at all the locations on echelons 2 through N we

can calculate the distributions of the pipelines at the echelon-l

locations. We can then find the optimal asset levels at the echelon-l

locations in precisely the same manner that we found the optimal base

asset levels in Chapter V. Now, however, to find the optimal asset

vector we must not only search over all possible depot asset levels but

also over all possible asset levels at the locations on echelons 2

through N - 1.

(2) Finite Repair Capacity/Batch Repair Policy: Assumptions

4, 5, and 6, by maintaining the statistical independence of the times

different units spend in the repair facility, allowed us to use the

Splitting Property of NHPP to establish that the number of units in the

repair facility at a location had a Poisson distribution. This proved

extremely convenient when we determined the distributions of the pipelines

at the depot and bases. In principle, we could have removed Assumptions

5 and 6 at the bases. We would then have had to obtain the transient

distribution of a finite server queue (possibly with a batch service

policy). Such distributions are notoriously complex, difficult to

obtain, and cumbersome to use. Removing Assumptions 5 and 6 at the

depot would result in a non-Poisson depot pipeline. Computing the

distribution of Qj(t), j - 1,2,...N, would then require modification of

the arguments used in Chapter IV (see paragraph (1) above).

The analysis becomes even more difficult when Assumptions 5

and 6 are removed at the diagnostic facilities. Our arguments relied

heavily upon the fact that the output of a location's diagnostic facility

.U%
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was a NEPP. To establish independence among the components of a location's

pipeline we also relied on the fact that the number of departures from

a diagnostic facility during (tl,t 2] was independent of the number of

units remaining in the same diagnostic facility at t 2 . As far as we know,

these results are valid only when the diagnostic facility acts as an

M(t)/G(t)/- queue. (In stationary systems we could deal with M/M/s

queues at the diagnostic and repair facilities ([Kleinrock (1975)]).

We believe that losing the independence of the different components of

the pipeline at a location would lead to intractable expressions that

would, in practice, be impossible to implement.

(3) Other Demand Processes: Most of the results in this

dissertation can be extended to the case where customer demands at the

bases form independent NHCPP. The problems involved in using other

types of demand processes seem insurmountable. In fact, to the author's

knowledge, there is no adequate model for stationary continuous review

multi-echelon one-for-one inventory systems in which customer demands

do not form a homogeneous (compound) Poisson Process.

(4) Uncertainty in the Intensity Function: The correct way

to deal with a prior distribution on the demand intensity at a base is

to calculate the performance of an asset policy for each possible value

of the demand intensity and then to weight these performances by the

prior. Attempting to account for uncertainty in the intensity function

by developing a NHCPP model of demand ignores the correlation of demand

at the depot and bases when there is uncertainty in the base demand

intensity. At best this approach would be an approximation whose

effectiveness would have to be investigated.

(5) Indentured Items: An indentured item is a module that

Nii
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consists of several components that can be removed from the module.

The basic idea behind this type of design is that when a module fails

I(thereby causing a weapon system/end item to fail), a failed component

can be quickly removed and replaced. The module is then serviceable

while repair proceeds on the failed component. Therefore, the actual

downtime of the module will be less than if the repair had to be done

on the whole module. Since serviceable components are not always

available, a location's pipeline must include the number of modules

awaiting serviceable components. (4.30), (4.32) and (2.2) can be used

to find the number of backorders for each component at each location.

This quantity is then added to the rest of the quantities in each

location's pipeline. The FAYP can be straightforwardly extended to

consider the tradeoffs between investments in modules and components.

The other assumptions in Chapter II (including the assumption

of a one-for-one resupply policy) are identical to the assumptions in

METRIC (Sherbrooke [1968]). Most of the stationary continuous review

multi-echelon models in the literature are basically variants of METRIC

and they have adopted the same set of assumptions. The difficulties

and issues involved in relaxing these assumptions (along with some

suggested research directions) have been discussed in the literature

(see, for example, Kaplan [1980]) and will not be repeated here.

Further research into developing tractable models and methodologies

when some or all of these assumptions are removed would be useful in

the analysis of both stationary and non-stationary multi-echelon inventory

systems.
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APPENDIX A

PROPERTIES OF NON-HOMOGENEOUS POISSON PROCESSES

This appendix catalogs some useful and important properties

of non-homogeneous Poisson Processes (NHPP). Many of these correspond

to results for homogeneous Poisson Processes and many can easily be

generalized to non-homogeneous compound Poisson Processes. We assume,

for ease of exposition, that all mean value functions (MVF) are differ-

entiable.

PI: Let {{Ni(t), t > 0) i - 1,2,...) be a countable set of mutually

statistically independent NHPP with the ith process having intensity

Xi(t) and MVF mi(t) with mi(t) < ' for all t > 0. Define for t > 0,

N(t) - JNi(t) as the superposition of the NHPP. Then {N(t), t >0) is

a NHPP with intensity X(t) - J'i(t) and MVF m(t) = Jmi(t) for all t > 0.

Proof: Define for t > 0 and 191 < 1

g(zt) - E[zN(t)J

gi(zt) E[z Ni(t) e-mi(t)(l-z) i - 1,2,....

By independence

g(z,t) - e- mi(t)(l-z) t >0, Iz < 1

so that N(t) has a Poisson distribution with mean I mi(t). Clearly,

N(0) - 0, and the fact that N(t) has independent increments follows

from the fact that each Ni(t) has independent increments. //

For the remainder of this appendix let {N(t), t >0} be a NHPP
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with intensity L(t) and differentiable MVF m(t), t > 0. Property 2 is

given as a problem in Ross (1970) and Property 3 is given as a problem

in both Parzen (1962) and Ross (1970).

P2: For all 0 < s _ t, Pr(N(s) - 1IN(t) = 1) - n(s)/u(t).

Proof: Pr(N(s) - 1IN(t) - 1) _ Pr(N(s) 1, N(t) - N(s) - 0)
Pr(N(t) - 1)

-m()m(s) e-[m(t) - m(s)] re(s) (A.1)

e-m(t)m(t) M(t),

Given an event occurred in (O,t], P2 shows that the time that

the event occurred has the same distribution as a random variable with

distribution function m(s)/m(t), 0 <s < t and that the probability density

function of the time of occurrence of that event is

f(s) - A Pr(N(s) - lN(t) - 1) - " (A.2)

ds M(t)(A2

P3: Given N(t) - n, the joint distribution of the n epochs at which

events occurred, tl <. t2  ... < tn <_ t is the same as if they were

order statistics corresponding to n i.i.d. random variables Y'I Y2" .. ¥n

with common distribution

F(s) - 0 < s < t.
M(t) -s-

Proof: Let Y[l] <Y[2] ..- Y[n] be the order statistics corresponding

to 1S 2" ''Yn" The joint density function of these order statistics

is given by

g(sits 2, .,sn) n nI H f(si) 0 < s1 < S2 - < sn

where f(s) is given by (A.2). Thus,

nt n
g(s, i - 1,2,...,n) M - TI)(s1). (A.3)

Let hi be small enough so that si + hi < si+l . Then
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Pr(s 1 < t i 1 s + h1 , il,..,n)
Pr(s i < t i < + h i  il,..,nIN(t)-n) - Pr(N(t)-n)

- Pr(N(s 1 +h1 ) - N(s i ) 1 ,..n;

N(s1 ) - N(Si1 + hi_1 ) - 0 1 ,

N(s 1 ) - N(O) - 0;

N(t) - N(s n+h n ) - 0)/Pr(N(t) - n).

Since the intervals [si, s i + hi], i w 1,...,n do not overlap,

and the number of events in each interval has a Poisson distribution

with mean equal to the MVF over the interval, the above becomes after

some reduction and rearrangement,

_,(t) n
e 1 [m(s +h1 ) - M(s 1 )]

1 
__nn

-m~~~t) --t~ mt n [m(si +h i )  m(s i ) ] -
ee ~ t  m~ /n! ret n 1

Therefore,

Pr(s i < t i <s, + hi, i = 1,...nIN(t) n) n! n(s+h) m(si)
n - 1 h

Ihi m(t)n hn

1

Taking the limit of both sides as the hi + 0 uniformly we find that the

left side is just an ordinary probability density function and that

this exists since the right hand side limit exists by the assumption

that the MVW is differentiable.

Thus,

n: n n m(si+h1 ) - M(s )f(s Vs2,'...,S n N(t) - n) = t n lira) e(t) n  1 h1 -0 h

n! nfl) (sl)

m(t) n  1
which is precisely (A.3) I/

"4 '" " % b " % "• " . ." " " ' ., . % " ''' """" ''°"""%
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As a consequence of P3, if an event of the NRPP occurred

in (O,t] the time that this event occurred has distribution function

m(s)/m(t) and density X(s)/m(t), 0 < s < t, indelendentl, of any other

events that have occurred. The next two properties are simple corollaries

of this powerful fact.

P4: For 0 < s < t and 0 < k <n,

Pr(N(s) - kIN(t) - n) - () (t) (1 - M(t)) //
k mt (t)(A)

P5: Let Wk be the time of the kth event of the NHPP, k - 1,2,...

For 1 < k <_n, the density of Wk given N(t) - n is

k-i n-k
n! na-s)k- (1 - Mn(s)) nkX(S)

(k-1) ! (n-k)! M(t) M(t) M(t) (A.5)

Proof:

n
Pr(Wk < sIN(t) - n) I Pr(N(s) - JIN(t) - n)

J-k

Use (A.4) and differentiate to get (A.5). //

Alternatively, and as a direct consequence of P3, (A.5) is

obtained by noting that given N(t) - n, Wk E rs, s+ds] iff k-l of the

n events occurred before s, n-k occurred after s+ds and one occurred

in [s, s+ds]. Since the event times behave as independent random

variables with distribution function F(s), (A.5) follows. I/

P6: Let {{Ni(t), t > 0} i 1 1,2,...} be a countable collection of

independent NEPP with m(t) = Y mi(t) < - for all t > 0. Let N(t)

jNi(t) be their superposition. Then,

Pr(Ni(t) - lIN Mt 1 ) m i(t)/M(t).

Proof: Clearly, we have that

i ,
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Pr(N1 i(t) - 1, N(t) - 1) e ei t) i (t) IT emjt
j,'i

Dividing by Pr(Nt) -1) (see P-1) yields the desired result. I

P7: Let {{Nift), t > 0) i - 1,2...) and M1t), t > 0) be as in 6.

Then for t > 0,

an event of the superposition x W)
Pr { process that occurs at t is 4 (A.6)

from the ith NUP?

independently of the other events in (0,tI.

Proof: By P6, for h > 0,

Pr(N i(t+h) - N i(t) - ljN(t+h) - N(t) -1)

M i(t+h) - mi) W [Mi(t+h) - m (t)]/h

m(t+h) - m(t) [m(t+h) -m(t)]/h

Taking the limit as b -* 0 yields (A.6). Independence follows from

the independent increment property of the superposition process (Pl).//

P8: Let {(Ni(t), t > 0) i - 1,2....} and M1t), t >. 0) be as in P6,

and let Yi(t) be the probability that an event of the superposition

process that occurred in (0,t] was from the ith NHPP. Then, for t L 0,

independently of the other events in (0,tJ.

Proof: By L3 and PI

YjA) t x) m dx M (t)I

Independence follows trivially as in P7. I

Therefore, if an event of the superposition process is known

to have occurred in (0,tJ, the probability it was an event of the

%d d. I~- - -
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ith NHPP is given by (A.7) and the fact that this event was from the

ith NHPP has no effect on the probabilities that other events of the

superposition process that occurred in (0t] were or were not from

the ith NHPP. This immediately leads to

P9: Let {{Ni(t), t > 0} i - 1,2,... and {N(t), t > 0} be as in P6.

For m <n, m(t) m i(t) n-m

Pr(N(t) - MIN(t) - n) ) (-Q) (1 e ) /

Property I ensures that the superposition of independent

NHPP is itself a NHPP. Property 10, as a sort of dual to Property

1, ensures that a IEPP can be "split" into independent constituent

NHPP.

P1O (Splitting Property): Suppose an event of the NHPP {N(t),t >.0}

that occurs at time t > 0 is classified as a type i event with probability

pi(t), i - 1,2... (pi(t) - 1 for all t) and that classification of

each event is independent of the classification of other events. Let

N (t) be the number of type i events that have occurred by time t.

Then the counting process {Ni(t), t > 0) is a NHPP with intensity Xi(t)
t

X(t)pi(t) and MVF mi(t) = f A(s)pi(s)ds. Furthermore,{(Ni(t), t > 0)
0

i - 1,2,...) are mutually statistically independent.

Proof: Given an event occurred in (tl,t 2], the probability it was

classified as type i is
~t 2

c (tilt 2) = f P(X) 1(t 1,2,...
1 2 t 2) - M(t 1 )

. independently of the other events that occurred in (tl,t 2]. Therefore,

(Ni(t2) - Ni(tl)I N(t2 ) - N(tl)] is a Binomial random variable with

parameters N(t2 ) - N(tl) and ci(tl,t 2) so that for IzI< I
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N (2 N(t - t1 N(t) 2 N(t1)
i2z N JNt1  2 1~ ) 1-ci(it2 1

Since N(t 2 ) - 1(tl) is Poisson with mean m(t 2 ) - m(tl) and

gi (Z't lt 2 ) - Elz 1 2  1i 1 exp[-c i(t1 st 2)(1-z)(m(t2 )-(t 1 M).

Therefore, N1 (t 2 ) - Ni(tl) has a Poisson distribution with mean

ci(tl t 2 )[lm(t 2 )-m(tl)]I. In particular, Ni(t) has a Poisson distribution

with mean ci(O,t)m(t), i - 1,2,....

That each process has independent increments follows straight-

forwardly since {N(t), t >. 0) has independent increments and each

event is classified independently of other events.

Since for all i, Ni(O) - 0, {N.(t), t > 0) has independent

increments and the number of type i events in any interval has a Poisson

distribution, {Ni(t), t > 0) is a NHPP, i - 1,2,.... All that remains

is to show that the processes are mutually independent.

Let Z - (Zl , Z2 ... ) be a vector such that IzlI 1 for all

i and define the joint generating function g(Z,t) - Eb iNi(t) BY

the Law of Total Probability,

g(Z,t) - E N(t) [E01Z i~t IN(t))).

In light of the earlier discussion we know the joint distribution

of (Nl(t), N2(t),...IN(t)) is multinomial with parameters 1(t) and

Ci(Ot),i -1,2.... Therefore,

g(Z,t) -ENt 1((c 1(O't)Z~)~~

Since N(t) has a Po,.on distribution and J~ci((0,t)ZiJ < 1 we have that
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g(Z,t) - exp (-m(t)(1-jc 1 (O't)Z)

- eXp(-j m(t)c 1 (0,t)(1-Z)

i

where in the next to the last equality we used the fact that i ci(0,t)inl.

Independence is thus established for (0,t] and can be similarly established

for any non-overlapping time intervals. l

The next properties are simple properties of NEPP given

as problems in Parzen (1962) and included here for completeness.

Proofs are straightforward and therefore omitted.

Let To= 0;

Ti - time between the (i-lOst and ith event of a NHPP;

n
Wn Ti n 0,1,2,....,

1-0

Bn(t) - Pr(Tn < t) n M 0,1,2,....,

bn(t) - LB(t) n 0,1,l2, ...,;

Gn(t) - Pr(W. 0 n = 091,2....,

gn(t) - 'L-Gn(t) n - 0,1,2 ..
dtn

P12: b 2(tt t1) = e-m(t+ti1) -m(t 1) X(t+t 1 ) 0 < t,'t

P13: b n(tiisto ... n- ) ~t+4n-) e-(m(t+w n- 1) - in -

ni ni

By P?3, the nth inter-arrival time depends on the first

n-l inter-arrival times only through their sum, Wn-l'1 While they
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are not independent, the inter-arrival times have conditionally exponential

distributions. Of course, if X(t) - X for all t, the nth inter-arrival

time has an exponential distribution and does not depend on the waiting

time, Wn I .

P1_4: g n(t) - e- (t) m(t) n -1  X(t) t > 0.
(n-l)!

P15: j (tW n- n-((t+W 1 ) - m(W_ 1 ))xi5 n-i _) 1-Bs tlI_)- e t>0O.

P16: b (t) - f X(s) e -=(t+s)(,) n - 2 X(t+s) ds n > 2.0 (n-2)! t >0

P17: B n(t) - 1 B (t) ft em(t+s)m(s)n_ 2 X(s) do n > 2.
n 0 (n-2)! t > 0

Next page is blank.
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APPENDIX B

DESCRIPTION OF THE DATA BASE

We obtained data on three U. S. Army weapon systems in order

to establish a realistic data base for the testing and validation

reported upon in this dissertation. In this appendix, we give a brief

description of this data. All data are unclassified and some scenario

data were fictionalized but are typical of actual scenario data.

Each of the weapon systems described below actually consists

of over 1000 items. However, we restricted our data collection efforts

to the high cost items on each system since it is precisely these items

that tend to drive inventory budgets and policies.

The Army believes (U. S. Army [1983]) that item failures are

proportional to usage. Each weapon system (e.g. a tank) has a projected

yearly usage during peacetime. This forms the basis for determining

the maintenance factor for each item which is the expected number of

failures of the item per application of the weapon system per year.

Non-peacetime scenarios account for different failure rates by using a

usage modifier (applied to all items on the weapon system) for each day

in the scenario. The usage modifier on a particular day of the scenario

is the ratio of scenario usage to daily peacetime usage. For example,

an item on a tank may have a maintenance factor of .1 based on a usage

profile for the tank of 2 miles driven per day during peacetime. If
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the scenario calls for the tank to drive 6 miles on a particular day,

the usage modifier would be 3 and the failure rate for that day would

be [(.1)(3)1365]. For each weapon system we give a typical scenario

for the weapon system in terms of its daily usage modifiers.

i

.N *?
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Weapon System Name: Blackhawk Helicopter (BHAWK)

Number of Items in Data Base: 75

Distribution of Unit Prices and Maintenance Factors:

Unit Price (Thousands)

Maintenance < 1 1-5 5-10 10-25 25-50 50-100 100-250 > 250

Factors

< .01 0 0 1 4 0 0 0 0

.01-.05 0 2 5 4 0 0 1 0

.05-.1 0 1 4 6 1 0 1 1

.1-.25 0 3 2 8 0 1 1 1

.25-.5 0 0 1 2 2 0 0 1

.5-1 0 0 3 4 1 1 1 0

" 1-2.5 0 0 2 2 3 1 0 0

> 2.5 0 0 1 1 1 0 1 0

Support Structure: 3 bases: A Company: 30 helicopters;

B Company: 50 helicopters; C Company: 20 helicopters.

Order and Ship Time: 7 days between bases and Depot.

Repair Policy: No base repair. Repair time at depot is log - normally

distributed with a mean of 10 days and variance of 18 days.

On average, 5% of all failures are condemned.

Scenario: 30 day horizon.

Usage modifier of 1.5 on each day at A Company;

Usage Modifier of 2 on each day at B Company;

At C Company, Usage Modifier of 2 on days 1-5; 5 on days 6-15;

2 on days 16-18; 4 on days 19-25; 3 on days 26-28;

2 on days 29-30.
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Weapon System Name: Army Attack Helicopter (AAH)

Number of Items in Data Base: 155

Distribution of Unit Prices and Maintenance Factors:

Unit Price (Thousands)

Maintenance < 1 1-5 5-10 10-25 25-50 50-100 100-250 > 250

Factors

< .01 1 8 0 0 0 0 0 0

.01-.05 8 13 1 4 0 0 0 0

.05-.1 3 24 4 1 1 1 0 0

.1-.25 3 18 8 4 1 0 0 0

.25-.5 2 9 4 5 0 0 0 0

.5-1 0 3 2 4 5 1 1 1

1-2.5 0 1 1 3 5 0 1 0

> 2.5 0 2 1 0 0 1 0 0

Support Structure: 16 bases with a distribution of 24, 19, 11, 16, 58,

15, 16, 23, 13, 16, 24, 20, 16, 16, 16, and 24 helicopters.

Order and Ship Times: 2 days between bases and Depot.

Repair Policy: No base repair. Depot repair time 15 days. We assumed

no condemnations although on average, 5% of all failures

are condemned.

Scenario: 30 day horizon.

Usage modifier of 1.5 on each day at bases with < 20 helicopters.

For bases with > 20 helicopters:

Usage modifier of 3 on days 1-5; 2 on days 6-15;

3 on days 15-25; 1 on days 26-30.

Ir



173

Weapon System Name: M60A3 Tank (M60A3)

Number of Items in Data Base: 250

Distribution of Unit Prices and Maintenance Factors:

Unit Price (Thousands)

Maintenance < 1 1-5 5-10 10-25 25-50 50-100 100-250 > 250

Factors

< .01 3 6 1 1 0 0 0 0

.01-.05 16 12 5 3 0 0 0 0

.05-.1 9 4 5 4 0 0 0 0

.1-.25 14 9 2 2 0 0 0 0

.25-.5 36 8 1 1 0 0 0 0

.5-1 22 4 5 1 0 0 0 0

1-2.5 43 8 3 1 0 0 0 0

> 2.5 16 3 1 1 0 0 0 0

Support Structure: 10 identical bases each with 25 tanks.

Order and Ship Time: 2 days between bases and Depot.

Repair Policy: Very little base Repair. Depot repair time: 30 days. On

average about 7Z of the units that reach the depot are

condemned.
Scenario: 180 day horizon.

Usage modifier on day t is 1 + 1.5 sin2 7t/2.

Next page is blank.
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