MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A
Intramolecular Conversion of a Five-Membered Iridacycle to a Three-Membered Counterpart by CO₂ Extrusion

Author(s): Peter A. Chetcuti, Carolyn B. Knobler and M. Frederick Hawthorne

Performing Organization Name and Address
The University of California at Los Angeles
Department of Chemistry and Biochemistry
405 Hilgard Ave., Los Angeles, CA 90024

Abstract
Thermolysis of the metallacycles 1a and 1b in refluxing toluene for 24 hours results in loss of CO₂ and the formation of a product characterized by the formal oxidative addition of the 16-electron Ir(I) metal fragment (CpIrPPh₃) into the nitrile triple bond, generating the kinetically very stable side-bonded nitrile complexes 2a and 2b, in high yield. An X-ray diffraction study was undertaken of 2a confirming its structure as that containing a Ir(III)-C=N metallacycle.
Intramolecular Conversion of a Five-Membered Iridacycle to a Three-Membered Counterpart by CO$_2$ Extrusion

by

Peter A. Chetcuti, Carolyn B. Knobler and M. Frederick Hawthorne*

Prepared for Publication in organometallics

University of California at Los Angeles
Department of Chemistry and Biochemistry
Los Angeles, California 90024

May, 1986

Reproduction in whole or in part is permitted for any purpose of the United States Government

This document has been approved for public release and sale; its distribution is unlimited
Intramolecular Conversion of a 5-Membered Iridacycle to a 3-Membered Counterpart by CO\textsubscript{2} Extrusion

Peter A. Chetcuti, Carolyn B. Knobler and M. Frederick Hawthorne
Department of Chemistry and Biochemistry
University of California at Los Angeles
Los Angeles, California 90024

Abstract

Thermolysis of the metallacycles 1a and 1b in refluxing toluene for 24 hours results in loss of CO\textsubscript{2} and the formation of a product characterized by the formal oxidative addition of the 16-electron Ir(I) metal fragment "CpIrPPh\textsubscript{3}\" into the nitrile triple bond, generating the kinetically very stable side-bonded nitrile complexes 2a and 2b, in high yield. An X-ray diffraction study was undertaken of 2a confirming its structure as that containing a Ir(III)-C=N metallacycle.
We have been investigating the reactivity of metallacycles generated by the cycloaddition of aryl nitrile oxides to low valent metal carbonyl complexes.\(^1\) We wish to report the formation of side-bonded nitrile complexes whose chemical characteristics appear to be more readily attributed to the result of oxidative addition across the nitrile triple bond by a metal fragment than by \(\sigma\)-complexation of a nitrile to a low valent metal.

Thermolysis of 1a and 1b \(^2\) in boiling toluene for 24 hours leads to the formation of the remarkably stable 2a and 2b, respectively, with extrusion of CO\(_2\). All \(^1\)H, \(^1\)\(^9\)F and \(^3\)\(^1\)P NMR data, as well as elemental analyses, are consistent with the structures shown for 2a and 2b.\(^3\) The structure of 2a was also confirmed by an X-ray diffraction study described below. The IR spectra of 2a and 2b exhibit

a CN stretching frequency at 1758 cm\(^{-1}\) and 1756 cm\(^{-1}\), respectively, a decrease of 472 cm\(^{-1}\) and 468 cm\(^{-1}\) from the corresponding free nitriles. Similar large decreases in the CN stretching frequencies have been observed in other complexes which are believed to contain side-bonded nitriles,\(^4\)\(^-\)\(^8\) as opposed to the more common mode of nitrile coordination which occurs by \(\sigma\)-bonding through the nitrile nitrogen lone electron pair.\(^9\) In order to establish whether the formation of free nitrile occurred by decomposition of 1, to generate the 16-electron metal fragment \(\text{CpIrPPh}_3\) which then coordinates free nitrile, or if an intramolecular mechanism was involved, 1b was decomposed in the presence of a 20-fold excess of \(p\)-ClC\(_6\)H\(_4\)CN. If nitrile formation occurred by the former mechanism, 2a would be the predominant product, whereas if an intramolecular process was involved, then compound 2b should be obtained. Both \(^3\)\(^1\)P and \(^1\)\(^9\)F NMR identified 2b as the predominant product (80% yield by NMR); no resonance in the \(^3\)\(^1\)P NMR was observed for 2a. This result indicated that no nitrile exchange had occurred and that the formation of 2 involved an intramolecular process. The \(^1\)\(^9\)F NMR of the products of decomposition of 1b gave two resonances, one of which corresponded to 2b and the other to free p-FC\(_6\)H\(_4\)CN. The yield of p-FC\(_6\)H\(_4\)CN was 9% by NMR in the absence of p-ClC\(_6\)H\(_4\)CN and 20% in the presence of p-ClC\(_6\)H\(_4\)CN; the \(^3\)\(^1\)P NMR contained a minor resonance at 17.09 ppm together with the major resonance due to 1b in both cases. The \(^1\)H NMR spectrum of the reaction products gave no evidence of hydrides which could be formed as
a result of C-H oxidative addition of the solvent or intramolecular hydride abstraction. The nature of the minor product resulting from loss of P-FC_6H_4CN from 1b and having a 31P NMR resonance at 17.09 ppm was not determined.

The stability of 2a and 2b and their mode of formation strongly support a product which would result from formal oxidative addition of an Ir(I) 16-electron fragment to the CN triple bond thereby generating an Ir(III) Ir-C-N metallacycle, rather than simple π-complexation of a nitrile to a metal center. The nitrile ligands of 2a and 2b are not easily displaced. In contrast, the nitrile ligand of the side-bonded nitrile complex $(PPh_3)_2Pt(\pi-CF_3CN)$, is readily displaced by CO and diphenylacetylene at room temperature. The only side-bonded nitrile complexes comparable to 2a and 2b are molybdenocene nitrile complexes for which no crystallographic study is available to confirm their structure.

An X-ray diffraction study was undertaken of compound 2a, which established the nitrile ligand to be side-bonded to the Ir (Figure 1). The Ir-C(6) bond length is 2.11(2) Å, which is the expected length for an Ir(III)-C bond; the Ir-N bond distance is 2.17(2) Å which represents a long Ir-N single bond. The C(6)-N bond distance is 1.23(3) Å, which represents a lengthening of 0.08 Å to that of the free nitrile. No structural information is available to compare this C-N bond distance with other side-bonded nitrile complexes; a number of acetylene η^2 complexes have been structurally characterized and are observed to undergo large reductions in the C-C stretching frequencies and accompanying lengthening of the C-C bond. The average increase in the C-C bond length on coordination is 0.08 Å. The lengthening observed for the C-N distance of 2a is of the same magnitude, suggesting a similar reduction in the bond order.

From the intramolecular mode of formation of the nitrile complexes 2a and 2b, and their great chemical stability when compared to other side-bonded nitrile complexes, it appears that 2a and 2b are best described as formal Ir(III) metallacycles.

Acknowledgements: We are grateful to the Office of Naval Research for the support research (Contract No. N00014-76-C-0390). We also thank Johnson-Matthey Corporation for a generous gift of iridium chloride.

Supplementary Material Available: Tables of positional and thermal parameters, interatomic distances and angles, and observed and calculated structure factors (18 pages). Ordering information is given on any current masthead page.

- 3 -
We have synthesized a number of metallacycles by cycloaddition of aryl nitrile oxides with low valent metal carbonyl complexes. A preliminary communication has been published (Walker, J. A.; Knobler, C. B.; Hawthorne, M. F. J. Am. Chem. Soc. 1983 105, 3370.) and a complete report of this synthetic route to these metallacycles and their reactivity will be submitted shortly; the general reaction is outlined below. The metallacycle yields vary between 60 and 80%.

2. Selected data for 1a and 1b (full details will be reported elsewhere).
1a: Anal. Calc. for C_{31}H_{24}ClIrNO_2P: C, 53.17; H, 3.46; Ir, 27.45; N, 2.00; P, 4.42. Found: C, 52.92; H, 3.57; Ir, 27.12; N, 1.91; P, 4.33. \(^1\)H NMR (CD_2Cl_2): 6 7.37-7.15 (complex multiplets, 19 H), 5.39 (d, 5 H, J = 1.0 Hz). \(^{31}\)P(\(^1\)H) NMR (CD_2D_2): 6 -2.22.

1b: Anal. Calc. for C_{31}H_{24}FNO_2P: C, 54.37; H, 3.54; Ir, 28.07; N, 2.05; P, 4.52. Found: C, 54.12; H, 3.66; Ir, 27.92; N, 2.01; P, 4.44. \(^1\)H NMR (CD_2Cl_2): 6 7.46-6.74 (complex multiplets, 19 H), 5.393 (d, 5 H, J = 0.88 Hz). \(^{31}\)P(\(^1\)H) NMR (CD_2D_2): 6 -2.09.

3. Selected data for 2a and 2b (full details will be reported elsewhere).
2a: Anal. Calc. for C_{30}H_{24}ClIrNP: C, 54.83; H, 3.69; N, 2.13; P, 4.71. Found: C, 54.66; H, 3.60; N, 1.97; P, 4.08. \(^1\)H NMR (CD_6D_6): 6 7.15-8.24 (complex multiplets, 19 H), 5.90 (d, 5 H, J = 1.46 Hz). \(^{31}\)P(\(^1\)H) NMR (CD_6D_5CD_3): 6 16.56.

2b: Anal. Calc. for C_{30}H_{24}FirNP: C, 56.23; H, 3.78; Ir, 29.99; N, 2.19; P, 4.83. Found: C, 55.70; H, 3.94; Ir, 29.42; N, 2.15; P, 4.71. \(^1\)H NMR (CD_2Cl_2): 6 4.67-6.82 (complex multiplets, 19 H), 5.267 (d, 5 H, J = 1.2 Hz). \(^{31}\)P(\(^1\)H) NMR (CD_6D_5CD_3): 6 16.29.
10. Crystal data for 2a: \(\text{C}_{30}\text{H}_{24}\text{ClIrNP} \): \(M_r = 657.1 \); yellow-brown parallel-piped; orthorhombic; space group Pcn (standard setting, Pbcn); \(a = 10.638(2) \text{ Å}, b = 14.298(3) \text{ Å}, c = 33.310(5) \text{ Å}; V = 5066 \text{ Å}^3; Z = 8; D(\text{calc.}) = 1.72 \text{ g cm}^{-3} \). A total of 4254 unique reflections were collected of which 2495 were considered observed (\(I > 3\sigma(I) \)) and were used in subsequent calculations (Haiber diffractometer built by Professor C. E. Strouse of this department; \(\text{MoK}_\alpha \) radiation; graphite monochromator; \(\lambda = 0.7107 \text{ Å}; 0-2\theta \) scan; \(0 < 2\theta < 54^\circ ; \mu = 5.733 \text{ cm}^{-1} \)). The structure was solved by the heavy atom method using SHELX 76. In the final least-squares cycle, based on \(F \), 307 parameters were refined including positional and anisotropic thermal parameters for one Ir, thirty C, one Cl, one N and one P. Refinement is currently at \(R = 0.077 \) and \(R_w = 0.086 \). The goodness of fit is 2.26.
Figure 1: ORTEP drawing of \([\text{C}_5\text{H}_5](\text{PPh}_3)\text{Ir}(\eta^2-\text{NCC}_6\text{H}_4\text{Cl})]\) (2a).

Hydrogen atoms have been omitted for clarity and phenyl groups are depicted schematically.
toluene, 110°C, 24hrs.

- CO₂

\[\text{Ir} \quad x \quad \text{Ph}_3 \text{P} \]

1a, x = Cl
1b, x = F

2a, x = Cl
2b, x = F
<table>
<thead>
<tr>
<th>No. Copies</th>
<th>No. Copies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Office of Naval Research
Attn: Code 1113
800 N. Quincy Street
Arlington, Virginia 22217-5000</td>
<td>2</td>
</tr>
<tr>
<td>Dr. David Young
Code 334
NORDA
NSTL, Mississippi 39529</td>
<td>1</td>
</tr>
<tr>
<td>Naval Weapons Center
Attn: Dr. Ron Atkins
Chemistry Division
China Lake, California 93555</td>
<td>1</td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory
Attn: Dr. R. W. Drisko, Code L52
Port Hueneme, California 93401</td>
<td>1</td>
</tr>
<tr>
<td>Scientific Advisor
Commandant of the Marine Corps
Code RD-1
Washington, D.C. 20380</td>
<td>1</td>
</tr>
<tr>
<td>Defense Technical Information Center
Attn: Dr. H. Singerman
Applied Chemistry Division
Annnapolis, Maryland 21401</td>
<td>1</td>
</tr>
<tr>
<td>U.S. Army Research Office
Attn: CRD-AA-IP
P.O. Box 12211
Research Triangle Park, NC 27709</td>
<td>1</td>
</tr>
<tr>
<td>Mr. John Boyle
Materials Branch
Naval Ship Engineering Center
Philadelphia, Pennsylvania 19112</td>
<td>1</td>
</tr>
<tr>
<td>DTNSRDC
Attn: Dr. William Tolles
Chemistry Division, Code 6100
Naval Research Laboratory
Washington, D.C. 20375-5000</td>
<td>1</td>
</tr>
<tr>
<td>Naval Ocean Systems Center
Attn: Dr. S. Yamamoto
Marine Sciences Division
San Diego, California 91232</td>
<td>1</td>
</tr>
</tbody>
</table>
END
12-86
DTIC