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FOREWORD ."
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Visiting Scientist, under work unit 2307N603, "Acmputational Fluid

Dynamics," with Dr. Wylbur Hankey as the Task Manager. The report was

submitted in March 1985.
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Dr. Wylbur Hankey and Dr. Joseph Shang for their valuable technical

guidance and advice during this work. My association with all the
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SECTION I

INTRODUCTION 'p

In recent years, the numerical simulation of high Reynolds number

transonic flows over airfoils has been presented in numerous

publications. A comprehensive review of the subject can be found, for

example, in References 1 and 2, and therefore is not repeated here.

This earlier work clearly illustrates the potential of Navier-Stokes

numerical methods for evolving into a reliable predictive design ~ -

technique. However, for this goal to be attained, two major problem

areas still require further investigation. First, an assessment of the

* accuracy of the computed solutions must be conducted in order to clarify

the uncertainties due to grid resolution, boundary condition formulation

and numerical damping. Second, a suitable turbulence model must be

developed, capable of accurately describing flows containing transition, 4

separation, wakes and shock wave/boundary layer interactions. This

second problem area clearly constitutes the pacing item in computational

aerodynamics and will most likely require a continued process of

/numerical evaluation of different turbulence modeling formulations. For

this evaluation process to be meaningful, the degree of uncertainty

associated with the numerical simulations must be first established. It

should be noted, however, that numerical resolution and turbulence

modeling cannot be entirely separated since grid resolution is dependent
-- P.4

on the turbulence model employed.



Since "exact" solutions are not generally available for complex

transonic flows of interest, grid refinement studies constitute the only

suitable alternative for accuracy assessment. Even for two-dimensional

flows, this approach can be very costly in terms of computer resources

J and therefore the accuracy of the numerical solutions is customarily

judged by comparison with available experimental da ta. However,

* comparing computed and experimental results can be inconclusive due to

* (1) lack of numerical resolution, (2) uncertainties in the measurements

* (e.g. wind tunnel and probe interference), and (3) the inability to

*isolate numerical errors from those due to turbulence modeling. Wi th the

advent of powerful computers, more detailed calculations of

3two-dimensional transonic viscous flows are now possible ,and shoul d

-help clarify some of the uncertainties inherent to the numerical

* simulations.

With the above background as motivation, the present research -

*critically examines several aspects of the numerical solution of the

Navier-Stokes equations for high Reynolds number transonic airfoil

flows. This problem embodies many interesting flow features such as

leading and trailing edge regions, wake and shock/boundary layer

*interactions. The particular configuration considered was a modified
4

Whitcomb supercritical airfoil, denoted as DSMA 523. This airfoil

*exhibits significant rear-loading and a strong viscous-inviscid

interaction as compared with more conventional sections having little or

no aft-camber. In addition, this airfoil was selected as one of the test q

cases for the 1980 Stanford conference on complex turbulent flows.5

2



Computations were performed using the mass-averaged Navier-Stokes

equations 6 expressed in terms of general curvilinear coordinates and
7

with turbulence represented by an algebraic eddy viscosity model. The

governing equations were solved in nearly-orthogonal body-fitted grids8

employing MacCormack's explicit scheme and the implicit Beam-Warming

10
algorithm. These two most commonly used numerical schemes were

chosen for their intrinsic differences in solving the system of governing

equations. A direct comparison between the two algorithms was performed

under identical mesh systems, boundary conditions and turbulence model.

Such a one-to-one comparison, the author believes, has not been

previously documented in the literature.

The main objectives in this investigation of transonic airfoil

flows can be summarized as follows:

(1) A comparative study of the relative accuracy between an

explicit and an implicit Navier-Stokes code.

(2) Effects of grid refinement, numerical damping and farfield

boundary placement on the computed flowfields.

(3) Comparison of the results obtained with the Euler, the

thin-layer and the full Navier-Stokes equations.

(4) Evaluation of the algebraic turbulent eddy viscosity model by

detailed comparison of computed and experimental data for both

subcritical and supercritical flows.

V
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SECTION II

MATHEMATICAL DESCRIPTION OF THE FLOW

Tn this investigation, viscous transonic airfoil flows are

simulated by means of the two-dimensional compressible Navier-Stokes

equations. The governing equations are written in terms of general

curvilinear coordinates and mass-averaged variables, with turbulence

incorporated through an algebraic eddy viscosity model. The particular

form of the flow equations, turbulence model and boundary conditions

employed are presented in this section.

1. GOVERNING EQUATIONS .4

The governing equations are taken to be the two-dimensional

compressible Navier-Stokes equations expressed in terms of mass-averaged
6variables and general curvilinear coordinates with turbulence

represented by an algebraic eddy viscosity model. Two different forms of

the equations are employed in this research. The explicit numerical

algorithm (described in Section III) utilizes the chain-rule conservative

form while the implicit scheme solves the strong conservative

* . 12formulation.

In terms of general curvilinear coordinates ( , ), the chain-rule

conservative Navier-Stokes equations can be written as follows:

- + G +F GF G .)-
-X + Y + x + y 0 (2.1)

where T

= [p,pu,pv,pe] (2.2)

• °%m -"



~~pU V - .-'r,.

%pU 2+p-T xx "xy
F pu Tx G= pv + p - (2.3)

pUV-T y

(pe + p)u F F4  (pe + p)v G 4

and

txx = 2(p + c)ux + AT(ux+ vy) .,

= (j + )(U + vx )

% 
xy 

y

= 2(p + E)v + X (u + v)(2

F UT + VT + C p, r+Fik)Tx4 Vy 

4'rt
G4 =U x + V + C (Pr + -)T

rt

The variables u and v denote respectively the x and y velocity

components. The density p static pressure p and the absolute ",

temperature T satisfy the equation of state for a perfect gas

pRT = (y - 1) [pe - p (u2 + v2)] (2.5) .'.

where e is the total energy per unit mass, R is the gas constant (1716

2 2
ft /sec - R for air) and Y (=1.4) is the ratio of specific heats.

The dynamic molecular viscosity pi is obtained from Sutherland's formula.

The turbulent eddy viscosity F is given by the eddy viscosity model which .

will be discussed later. Stokes hypothesis is assumed (i.e., T = -2/3

(a+e )). The molecular Prandtl number Pr, the turbulent Prandtl number

-2,,,6.
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Pr and the specific heat c~ are taken to be constant (Pr 0.72,t
2 2Prt = 0.9 and c = 6006 ft /sec -R)

The quantities C~ C,,, TI denote the trans forma ti on

metrics (see Figure 1 for an sketch of the basic transformation)

(2.6
where J is the transformation Jacobian

a(,Y x y C y 1/(x Ey - x i (2.7)

The Navier-Stokes equa ti ons (2.1) can be cast in strong

conservatior form 2 as follows

~ +a~F +a~ =0(2.8)

where A

A F + G) J(2.9)
F (rix y)I

In order to facilitate the implementation of the implicit algorithm

(Section III), Equation (2.8) is rewritten in the following fashion . ~

PIN.. A AA
3g- + 2E +.53E2l.=- vi 'V1) V
at aE anJ a

+ q 9L ' 3W2~~% (2.10
an T1(.0

7
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where .

X 4X/ pu

pvU + p1 pV + n
1 > (P E=~K puV + nP (2.11)

ppvl + nyp
(p + pe) V

,.. .;

b u + b2 v
V=i b2u + bv (2.12)

biuu + b2(vu + uv ) + b3vv +bT'

0

I -.n C2.

3 U + 4 -(2.13)
c uu + c uv + c vu + c vv + c T ...-.-

I ) 2 7 3 rl 4 ?1 5

/0
c u + c v

WvCu + c + (2.14)I j U ". .'.''

c uu + c vu + c uv + c vv + cT"

r 0

p0

d Iu n + d 2v 
.. 

Ti''

,% ,.- '.

W d du n + d vn  (2.15) e
2 J 2 n '

duun + d(vu + uv1) + d vv + d T
I2 3 8I 4 " '

8% .
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it,V denote the contravariant velocities .*J

u °' + "#
(2.16)

V nx + nyV

and the viscous coefficients bi, ci, d are -

= x y "'".. .,b, (1 + E)(I E ." .".b3 x

2 + 0
(2.17)

b = + )2 + _ )3 """X"

b = Cp(i r +~ )(+2 ) ::::::bP- )W + c2)

' r Pr

=-(ip + £)( n +

I yyn)(4 "•"
c -(1 + -)(j C×ny n 

"
22
C T y- E. TI%

c = (0 + C)( ny 2x n .En) (2.18)
3~ 3W P y x

-( + E ) (& xn + 4 y ).
c = -cp( + E m)(n + y

5 pprr y y
t  

.% *'

*-% .'.:

d = U~ + ""( " "+" "9

d (ucnn(2.19 ) ",.
4

(11 + F)( n + 2 ) P 1
3x 3y

d + On +
d = (W + n x2 + ri 2)""

P r r t  x" '
~ ~ r~

9
%%".



By neglecting the viscous terms in the direction parallel to a solid ,

" surface, the so called thin-layer approximation7 is obtained. Assuming

a body-conforming curvilinear coordinate system, with the E and T.

directions defined as shown in Figure 1, the thin-layer Navier-Stokes

equations become

+E, + _ _ W2 (AA (2.20)an t C r n T

ii<

Finally, the Euler equations are obtained by neglecting all viscous

terms (i.e., by setting the right-hand-side of Equation (2.20) equal to

zero). • ....- 4

2. BOUNDARY AND INITIAL CONDITIONS

In order to completely define the problem, suitable boundary and

initial conditions must be specified. Referring to the airfoil

computational domain shown in Figure 1 , the following boundary conditions

are prescribed. -. -.-

Along the outer boundary ABC, freestream conditions are given for

all the flow variables. On the downstream boundaries AD and HC,

-P .

(2.21) V I

10

;-p
v .: -. ."-"
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Since the above farfield conditions are only approximate, the effec, of

the placement of the downstream and outer boundaries will be considered

in Section IV.
, %• %'

Along the airfoil surface, the no-slip adiabatic conditions

u = V =0 •,

P = (2.22)

7T- (.o

are imposed for viscous flows. For the Euler equations, the conditions

V = 0

0 (2.23)

(n2 + T)2 = pU(nxu + nyV

are specified, where U/ ,V are the contravariant velocities, . ;

Equation (2.16). The boundary conditions (2.22) and (2.23) are applied ,,-

in conjunction with a body-fitted grid which is nearly orthogona, at the "::-:

.

airfoil surface-.

Finally, along the wake-cut ED, averaging is used for all the flow...-,
variables so as to ensure continuity

incnucinwt• oyfte grd hchisnary rhoon-t h

Since only steady flows are considered in this research, initial

conditions are not of primary concern to provide a converged numerical

solution. A simple uniform flow initial condition was always employed in

the present airfoil calculations, unless previous computed results were

already available. -,

S_,
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3. TURBULENCE MODEL

Turbulence is simulated by a modified version of the algebraic eddy

7
viscosity model of Baldwin and Lomax . As depicted in Figure 2, three -

separate regions are considered in the implementation of the turbulence
-a'-

model Namely, the airfoil boundary layers, the near-wake in the

vicinity of the airfoil trailing edge and the far-wake.

In the airfoil boundary layers, a two-layer formulation is

employed. The inner turbulent eddy viscosity ci is given by the

Prandtl - Van Driest expression

Ci P(kYD) 2 IJ (2.24)

D /2j (2.25)

Du iLv (2.26)

°y .

where w is the vorticity, Y represents the distance normal to the airfoil

surface, K = 0.40 is von Karman's constant and the subscript w denotes

values at the wall.

In the outer region of the boundary layer, the turbulent eddy

viscosity E is defined as follows

()k C Y F F(2.27)

cp max Fmax Fkleb (2.2)"-

12
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= where F max (YIwID) Y is the value of Y at which F
H e Fx ma m

occurs, -Y

F 1 + 5.5 C 6 (2.28)

kleb kleb max

and

k = 0.0168, C = 1.6, = 0.3 ZSc p Ckl eb

The turbulence model switches from the inner to the outer

formulation at the first value of Y away from the wall where

C.> C Transition is simulated by simply beginning the application' 1- O"

of the above turbulence model at the boundary layer trip locations

specified in the experiments. 4

The far-wake turbulent eddy viscositywe is computed as followswk

wk P Cwk Ymax DI (2.29)

Fma x  Fkleb

where
N..

F = max (Y{wI)
max

UDIF (u' + V2)ma- (u' + v2)i (2.30)
DFmax mrin (.0

Cwk = 0.058

* and Y is the value of Y at which F occurs. In the wake, Y is,.max max
.%

measured from the wake centerline as determined from the location of

minimum velocity. The intermittency factor Fkleb is obtained from

Equation (2.26) with Ckle, = 0.53. The constants Cwk and Ckleb are
kl. wk kl-

chosen in order to match the above formulation with the theoretical ,
.-- ~13. ,-"

results given by Schlichting for an incompressible turbulent wake

(see Appendix A for details).

13
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The turbiulent edd~y viscosity in the near-wake t is computed by

allowing the trailing edge eddy viscosity profile to exponentially reach

its far-wake value. Referring to Figure 2, the following expression is

employed

C x,y 2 + ILCY + X ~Yl
nw 2 (1 te-Y wko'0

+Ak (X~ Y - C(xt ,Y)}(.1
X--1

A =tanh [8 (~~ -

L 0- te

The distance x - xt is typically chosen to be of the order of

106, where 6 denotes the average boundary layer thickness at the trail inq

edge. The sensitivity of the airfoil lift and drag coefficients to the

variation of x - x teis addressed in Section IV. This near-wake ad

hoc formulation, similiar to that of References 14 and 15, represents a

preliminary approach within the context of a simple algebraic eddy

viscosity model .

-'14
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SECTION III .-

NUMERICAL PROCEDURE ,.

The numerical precedure consists of two basic steps. First, a

body-fitted finite-difference grid, must be constructed about the airfoil

in order to simplify the implementation of the boundary conditions and to

provide sufficient resolution of the flow features. Second, the

finite-difference form of the governing equations is solved using a

suitable numerical scheme. In this investigation, grids were generated

8%%
by the elliptic technique of Visbal and Knight. Two different schemes

were utilized for the numerical solution of the flow equations. Namely,

10
the implicit factored algorithm of Beam and Warming , and the explicit

5. 9unsplit MacCormack's algorithm. The grid generation method, the

numerical schemes and the criterion for convergence of the solution to

steady state are presented below.

1. GENERATION OF COMPUTATIONAL GRIDS

Nearly orthogonal body-fi tted grids were generated about the

16airfoil using the method developed by Visbal and Visbal and

817
Knight.8' This technique, which is based on elliptic partial

18atis18

differential equations employs the two-step procedure described

bel ow.

a. Intermediate Transformation
*

As a first step, an orthogonal grid is generated with a ..

user-prescribed distribution of the mesh points along the airfoil and

15p -'-4
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wake-cut (Figure 1). The intermediate transformation [ (x,y), X(x,y)]

satisfies the Poisson equations1 6

V :xX +")Yy E (3.2)

where 2 . -o.-

(3 3) ''

h - (x2 + yh) E

X X + 0 (3.2)

x x :..:.;?:

and the forcing function * (E,X) results from the general expression for

the Laplacian in orthogonal curvilinear coordinates. In reference to

Figure I, the boundary conditions for C and X are

E 0, 3 = 0 on ' -
3n

En E-on-r 2
= max = 0onI.'.Z.

max , an (3.4)

M=(t), X: 0 on r 3
3

-o n I'an X Xmax

where t is the arc length along r3 and n denotes the normal to the L.-,_

corresponding boundary. The boundary condition on P3 simply indicates

that the grid points are distributed along the airfoil and wake-cut in a

desired monotonic fashion.

The transformation equations and boundary conditions

(Equations (3.1) - (3.4)) are expressed in terms of ( ,x) derivatives, as

#.2

16-'-;.



shown in Reference 17. The resulting equations are solved for

[x(C,X),y(E,X)] in a uniform rectangular grid in the ( , X) plane using

point successive overrelaxation (SOR) and starting from an arbitrary -

(non-orthogonal) initial mesh. The forcing function and the grid

points on Ij, 1, are dynamically adjusted during the solution

17
process.

For the present airfoil grids, the above intermediate

transformation technique is applied only in the vicinity of the airfoil

(up to 2.-3. chords away). Since the grid is orthogonal, it can be

easily extended to the outer boundary 14 using a straight-forward

algebraic procedure which results in an improved efficiency. In

addition, a relatively course mesh in the X direction can be utilized.

b. Final Transformation

In the second step, a nearly-orthogonal mesh is constructed

with a user-specified distribution of grid points along r and

The distribution along r3 and r4 is obtained from the intermediate
3

mesh. Introducing the simple transformation X = X(in), Equations (3.1)

and (3.2) become17

2C P (E'n) c [ ,x( (3.5)

v2n Q ) =(T2 + r (3.6)
V X y-

where

T-yR/× if X > y (3.7)
". ~ ~~T + x R/y i× <y

.4

17



9 9 9 .. . * . .. .. ..*

R =(x y{ y x ) (X' ' 38

T =-(x x + Yn + y') s - /S (3.9)

U. ~:,..

44 ~ ... " .

and s denotes the physical distance along the &-lines measured from r3" -

(Figure la). The inverse final transformation equations and boundary

conditions are described in detail in Reference 17. The forcing ,.
functions P and R are obtained from the intermediate grid using linear

interpolation. The function T is determined for a given n -spacing

through Equation (3.9). In this case, an exponential distribution of

then -lines is employed in order to resolve the airfoil boundary layers

and wake. The resul ting expression for T is .-. ,

T c Cl( ) .(3.10) T c W°

.-..-1

where C1 is determined at each C-location by specifying the normal mesh . -
16

spacing next to the airfoil. 1 .
A typical C-grid is shown in Figure 3. The mesh is

nearly-orthogonal and displays substantial clustering in the viscous

regions and in the airfoil leading and trailing edge areas. Additional

applications of the present grid generation technique can be found in
References 8, 16 and 17.

18 -. ,
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2. IMPLICIT NAVIER-STOKES CODE

The implicit code solves the strong conservative formulation of the

Navier-Stokes equations [Equation (2.10)] using the approxim a te.-

10factorization algorithm of Beam and Warming. This scheme in "delta"

form and with first-order Euler time-differencing can be written as "-'-I,

fol l ows 1

+A t I +At a"

*. V<.1 IW

, n + I n n-..,

" (3.12)

where n denotes the temporal index (i.e. n : (nAt)), and the

Jacobian matrices

, . f- , .

A B-1  ,- (3.13)

av N=

are given in Appendix B.

Application of second order central differencing for the space

derivatives yieldsr iiAi a j]} Ku (E v"
I + At A 62 Mi  A. = -At (E- V., ij -At i ,j

+ n (E - W)i j  - 6V - 6 W2"- i, j ' J (3.14)

- + At 2 i, Ni,j n j -i6j AN 1  (3.15)

19
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.where ...--r.-

here. (ji I)A , < i < IL

(3.16)

(j - l)n , I < j < JL

.'Ip..-
P".,

and

6 fi. (f , (f fi (fij+ fi j- / An
."

ij 1,3' n-, ri' 1,3 1.+h
(3.17)

fi (f f i-lj)/2A. Unfi (f ) / 2 6n

are finite-difference operators. The transformation derivatives (xt, xn ,

y , y required in Equations (3.14) and (3.15), are computed from the

body-fitted grid using second-order central differences at interior

points and one-sided approximations at the boundaries. The scheme is

implemented in a standard ADI fashion by solving Equation (3.14) for

each n-line (2 <j <JL-l), followed by the solution of Equation (3.15) for

each &-line (2 < i < IL-l). This results in the solution of a

block-tridiagonal linear system alonq every coordinate line.

In order to maintain numerical stability, artificial dissipative

terms must be added to the basic Beam-Warming algorithm. 1 Following ..

Reference 19, expl icit fourth-order damping A.-.

- eAtJ. (64 + 6) qn (3.18)e ,j ij (.8

20
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is appended to the right-hand-side of Equation (3.14). The implicit

second-order damping terms .,

-WiAtJ., 62 J. .l , -WiAtJi 52 6 i I (3,19)--, ,jj E

are inserted within the respective implicit operators. The damping

coefficientw is of order one and i > 
2 we.

To accelerate convergence to steady-state the local time step

20
is employed".'• A t~i ,j is,:

At. .= max ,to (3.20) a'.-

where ais constant, typically from 1.0 to 2.0. For viscous flows, At0

corresponds to a Courant number (CFL) of order 50-500 at the location of

minimum grid spacing on the airfoil (see Equations (3.22)-(3.25) for the

definition of the CFL number).

Finally, the boundary conditions are implemented in the explicit

fashion described in Reference 12. A similar version of the present

implicit code had been previously validated for a variety of flow

confi gura tions. 
21

3. EXPLICIT NAVIER-STOKES CODE

The explicit Navier-Stokes code solves the chain-rule conservative

form of the governing equations (2.1) utilizing the explicit unsplit

predictor-corrector algorithm of MecCormack. Details of th i s

21



well-known algorithm can be found in Reference 22 and therefore are not

included here. As part of this scheme, a fourth-order pressure damping

term is incorporated in order to control numerical oscillations in
regions of large flow gradients. Fhis damping ter, used in both the .--:

predictor and corrector steps, has the form

D D + D n  :

-AtA (WI + a p  (3.21)
4p

rj 2 ar -",".
= -~At~.~[ (lv +-a o.) 4- j,

where a=Fi-Y is the speed of sound, U, V are the contravariant velocities

(Equation (2.16)) and is the specified damping coefficient typically

ranging from 1.0 to 3.0.

In order to improve the efficiency for steady flow computations, a

local time step is incorporated in the basic MacCormack's algorithm. .. '.*%

This is accomplished by specifying a constant Courant number (CFL)

throughout the computational domain. Namely,

At (CFL)At (3.22),JJ \*..

where At =[ iii 11At : +.LVIL+ a I_ Sf + 1S2

maxi,j A A As

) r r

+ 2 + y2)i iI(3.24)

22 --'"
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ASn = (x' + y2) A (3.25)

The prescribed Courant number is typically assigned a value of 0.9.

Previous versions of this explicit Navier-Stokes code have been

successfully applied to a variety of fluid dynamic problems. 2 ' 2 3

Unlike the implicit code which was written for a scalar computer, the

explicit solver is fully vectorized and exploits the vector-processing

capabilities of the CRAY computer.
* ..;;:

4. STEADY-STATE CONVERGENCE CRITERION.

Since steady flowfields are obtained by time-integration of the

Navier-Stokes equations from a given initial condition, a suitable

convergence criterion must be specified. Convergence was assessed by

carefully monitoring the airfoil lift (CL) and drag (CD )L D
coefficients. For all cases computed, the monitored coefficients

approached a steady value in a damped oscillatory fashion. Here, the

flow was assumed converged when (1) the amplitude in the oscillations of

CL was less than 0.05 - 0.1% and (2) when the variations in CD were

within 1-2 drag counts (1 drag count = 0.0001). For the implicit - - ,

algorithm, the corresponding root-mean-square values of the residual were -

typically 10 -  for all equations. Although, a more stringent

convergence criterion could be stipulated, the present one was found to
It.. ;

be suitable for engineering calculations.

23
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5. CALCULATION OF AIRFOIL FORCE COEFFICIENTS .

The airfoil lift and drag coefficients, denoted by CL and C'

respectively, were computed by integration of the pressure and shear

stress along the airfoil surface. The stress vector at the wall, fk'

is given in cartesian tensorial notation as follows

f n a (3.26)
k I kl

where

is the normal to the surface and 0ykl is the stress tensor

-w..o -

n1  .....'

a-a

where F -P -+ T CFa -p + T and T are givenx xxI y yy xx' XI x y y
inEutos(.) efrigthe tensorial inner product (3.26) and %

assuming u = v = 0 and = 0 at the surface, one obtains

f=p+IV n u+ V VI ;

-v F 3~- C l 7u T1j +XI vIu (3.27) I

= + + 1 ad (3.28)

where ai f represent the stress components in the x and y%
y %J-

directions respectively.

24
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The total force on the airfoil per unit span (FX, F s

obtained by s trai ght -forward integration

Fx ffxds , y F fy

using trapezoidal rule. Finally, the lift and drag coefficients are

given by

CL (-Fxsinct F cosa)/1 p U2  (3.29)

CD (Fxcoscz + F sinca)/1 p U2COC (3.30)

where a is the airfoil angle of attack.

ka 25
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SECTION IV

RESULTS AND DISCUSSION

1. FLOW CONFIGURATION AND COMPUTATIONAL DETAILS

Computations were performed for an 11% thick supercritical airfoil

4
designated as DSMA 523. This modified Whfitcomb airfoil exhibits

significant rear-loading and a strong viscous-inviscid interaction as

compared to more conventional sections having little or no aft-camber.

This particular airfoil was selected as one of the test cases for the

1980 Stanford Conference on Complex Turbulent Flows. The experimental

database4  contains surface pressure distributions and velocity and

density profiles along the upper surface, lower surface and wake for a

range of Mach number, Reynolds number and angle of attack. Two specific

cases were considered in this study. Namely, a subcritical case

6
(M. = 0.6, a = 2.6, Rec = 4 x 10 and a supercritical case

6
(Mt = 0.8, a = 1.80, Rec = 2 x 10 . The corresponding flow

parameters are given in detail in Table 1.

In the calculations, three different computational grids were

employed. These grids, referred to subsequently as coarse (92 x 31),

medium (140 x 45) and fine (204 x 55), were generated by the procedure

described in Section III. As shown in Figure 3 for the fine grid, the

mesh is nearly orthogonal and displays substantial clustering in regions

of high flow gradients. The details of all grids are summarized for

convenience in Table 2.

27
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Numerical solutions of the flow equations were obtained utilizing

either the expl i ci t unspl i t MacCormack 's scheme or the impl i ci t

Beam-Warming algorithm. Both schemes incorporated a local A t (Equations

(3.20) and 3.22)) in order to accelerate convergence to steady state.

The effect on convergence when using a local At was investigated for both

algorithms and is discussed next.

Computations for the airfoil subcritical case on the coarse grid

using Beam-Warming algorithm indicated a gain in efficiency of about six

when a local At was employed (with At o  0.01 , o = 0.5 in Equation

, (3.20)). The convergence history for the airfoil lift and drag

coefficients is shown in Figure 4 and points out that an unphysical

* oscillatory solution can occur for higher values of a and A to*

' However, when a steady state was reached, the results were as expected

independent of a and At0 . -"-"-'

MacCormack's code with a local At displayed a speed-up factor of

approximately seven for the computation of a flat plate supersonic

(M. = 3.0) boundary layer with mass injection. Figure 5 shows the

convergence of the skin friction coefficient at a given location. When

: applied to the airfoil, the use of a local At resulted in small amplitude

oscillations about the steady solution (see Figure 6). These

oscillations disappeared when a constant At was imposed. Despite this

*" behaviour, using a local At during the early stages of the calculation

substantially improved the efficiency of the explicit algorithm. ... **5

28
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.1~ TABLE 1. FLOW PARAMETERS

x/c transition Experimental

Case M. Rec  a upper lower CL  CD

Subcritical 0.6 4x0 6  2.6o 0.05 0.18 0.58 0.011

Supercritical 0.8 2xl0 6  1.8o 0.35 0.18 0.65 0.017

P-J
TABLE 2. GRID DETAILS

+]

As /c As /c No. of points AS ..
n1 2

Grid IL x JL min. max. min. max. on airfoil Mo = 0.6 M= 0.8

1 92 x 31 0.010 0.060 0.00025 1.03 58 18.5 --

2 140 x 45 0.005 0.050 0.00010 1.38 86 11.5 --

3 204 x 55 0.003 0.025 0.00005 1.25 150 6.9 2.1

Legend

IL, JL: No. of grid points in and ndirections respectively.

As : streamwise grid spacing on airfoil (Equation (3.24))

grid spacing normal to airfoil surface (Equation (3.25))

As 2. normal spacing at airfoil surface in terms of law of

the wall coordinates (upper surface, x/c = 0.5) U

NOTE: For the above grids, the farfield boundary was located 10 chords

away from the airfoil. 29
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The airfoil calculations were performed on a CYBER 175 and on the

NASA Ames CRAY )XP computer. The average rates of data processing,

defined as CPU time per grid point per iteration, are given in Table 3

for both algorithms. The efficiency increase on the CRAY )XMP relative to

the CYBER 175 was a factor of 55 for the vectorized explicit code.

However, the corresponding value for the scalar implicit algorithm was
IJ

only a factor of 5.1. For a typical airfoil steady solution on a 204 x

55 grid, the implicit code was about 3.8 times faster than the explicit
code on the scalar computer. However, the situation was reversed on the

vector computer, with the explicit code being 2.9 times faster. It

should be noted, however, that the efficiency of the implicit algorithm

could be increased substantially by vectorization and by the techniques
0q

of References 24 and 25.

A total of 23 different calculations were performed for the

selected airfoil configuration. A detailed comparison of numerical

results and experiments is presented below for the subcritical and

supercritical case separately.

TABLE 3. . .

COMPARISON OF COMPUTER TIMES FOR EXPLICIT
AND

IMPLICIT CODES

DPRa Approx. No. of Overall relative speedb

Algorithm CYBER 175 CRAY )GP Iterations req'd CYBER 175 CRAY XMP
for convergenceb

BEAM-WARMING 4.4x10 "3  8.6x10- 4  900 3.8 0.35

MACCORMACK 0.6x - 3  1 .1 xlO"5  25,000 1.0 1.0

(a) DPR: Data processing rate, CPU (sec) .. ,-.
(No. of grid points) (No. time steps)

(b) For 204 x 55 grid
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2. RESULTS FOR SUBCRITICAL CASE

Since in the experiments4 the ratio of wind tunnel height to

model chord was only four, interference effects are expected to be b

significant and must be accounted for (assuming the data is correctable)

by adjustments in the freestream Poch number and angle of attack.

Al though the main objective of the present study is the comparison of the

two numerical schemes, an attempt was made to determine the effective .-. .. w

angle of attack for the subcritical case in order to provide a more

meaningful comparison with the experiments. For this purpose, several

computations were performed with the implicit code on the coarse grid at

various angles of attack. The C -distribution and lift coefficients,
p

shown in Figure 7, indicated an effective angle of attack( a) of
I

approximately 1.7 degrees in order to match the experimental CL All

subsequent calculations were therefore performed with this value of a.

The sensitivity of the numerical solution to the relaxation length

xo-xte in the near wake turbulence model (Equation (2.31)) was

investigated next. The flow was computed with the implicit algorithm

using two values of xo-xte differing by an order of magnitude (namely,

0.2c and 2.Oc where c is the airfoil chord length). As Figure 8 shows,

the solution was insensitive to variations in the near-wake relaxation

distance. In the remaining calculations, the value xo-xte = 0. 2c was

therefore employed. This value is approximately 86, where 6 denotes the

average boundary layer thickness at the airfoil trailing edge.

According to a formal truncation error analysis, the numerical "

smoothing terms are of high order and therefore their effects on the ..

accuracy of the numerical solution are seldom considered. In the present ,_w.

31
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study, the effects of artificial viscosity on the computed airfoil

viscous flowfield were investigated on a limited basis. Calculations

were carried out on the coarse mesh using both codes and different

damping coefficients. The results for Cp, CL and CD are given in

Figure 9. The variations of Cp with damping were slightly larger for

Beam-Warming algorithm (Figure 9a) as compared to MacCormack's scheme

(Figure 9b). In both cases, the lift coefficient remained essentially
unchanged while C varied by as much as 30 drag counts. Since the

D
effects of damping are expected to diminish as the mesh resolution

increases, computations were performed on the fine grid using

MacCormack's algorithm with two values for the damping coefficient

• 'differing by a factor of three. The corresponding variations in CL and

,* C0 with the damping coefficient were 0.3% and eight counts respectively.

In order to investigate the effects of numerical resolution, the

flowfield was computed on all three grid systems (Table 2) using both

Navier-Stokes codes. The results for the implicit algorithm are

displayed in Figure 10. The computed lift coefficient increased

monotonically with increasing resolution unlike the drag coefficient

which did not show any specific trend. The variations in CL and CD

through the second mesh refinement were only 2.2% and 5 drag counts

respectively as compared to 12% and 19 counts for the first grid

refinement. Although some measure of numerical convergence is observed,

the C -distributions (Figure 10) indicate that further resolution on

the upper surface leading edge area is still required. Figure 11 shows

the Mach number contours near the relatively blunt leading edge for the

coarse and fine grids. Besides being much more smooth, the fine grid

32
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solution makes apparent the existence of an embedded supersonic region

(terminated by a shock) at the leading edge. The corresponding mesh '"

refinement results for the explicit scheme, shown in Figures 12 and 13, ¢I
displayed a behaviour similar to that of the implicit algorithm. For the

explicit code, the variations in CL and CD after the second grid

refinement were 1.0% and 15 drag counts respectively. .;;

A comparison between MacCormack and Beam-Warming results as well as

between the computed results and the experiments is presented below.

Figures 14, 15 and 16 contain the results for Cp, CL and CD on the

coarse, medium and fine grids respectively. The agreement between the

two calculated C -distributions improves as the mesh is refined.
," % ..

However, differences still persist on the airfoil upper surface

immediately downstream of the embedded supersonic region. The computed

lift and drag coefficients obtained with the two algorithms on the fine

grid (Figure 16) differ by 1.8% and 5 drag counts respectively. These

discrepancies are acceptable for engineering applications. The better

agreement (in terms of CL and CD) between the two numerical schemes

on the coarse mesh (Figure 14) can only be regarded as fortuitous.

In order to illustrate the importance of viscous effects for

supercritical airfoils, the inviscid flowfield was computed with the, ,~.....

implicit code on the coarse (Figure 14) and medium (Figure 15) grids.

Even for a small angle of attack, subcritical flow without significant

boundary layer separation, the decrease in CL due to viscous effects is

substantial (approximately 29% for the medium-grid solution, Figure 15) ,'$

Referring to Figure 15, the discrepancies in Cp and CL between

the fine-grid computational results and the experiments are in part due

33
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to uncertainties in the effective freestream Mach number and angle of

attack. The better prediction of the experimental lift coefficient on

the coarse mesh (Figure 14) simply points out that comparison with

experimental data can be misleading unless proper numerical resolution

criteria are first established.

A detailed comparison of computed and experimental velocity

profiles is given in Figures 17 - 19 for the airfoil upper surface, lower

surface and wake. As expected, the numerical profiles obtained with the

explicit and implicit codes are in very good agreement with each other at -

all locations. On the suction surface (Figure 17), the predicted

profiles show higher values for the freestream velocity. This is

consistent with the higher computed CL (Figure 16) and can be #'

attributed mainly to uncertainties in the effective angle of attack. The

discrepancies between the measured and computed velocity profiles at the

airfoil cove (Figure 18) and in the near-wake (Figure 19) are most likely

due to deficiencies in the algebraic turbulent eddy viscosity model

employed. -. J

A qualitative comparison of computed density contours and the

experimental interferogram is presented in Figure 20. All typical

features of the subcritical flow about the airfoil are discernible and in

good qualitative agreement with the experimental, flowfield. A close-up

comparison near the trailing edge is shown in Figure 21.

It is interesting to compare the uncertainties in the numerical

simulation of different algorithms with the experimental uncertainties

4 -associated with different wind tunnel occupancy periods. Figure 22a
..

shows two measured Cp-distributions for the same nominal subcritical W'
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conditions. The specific comparison indicates that the experimental

uncertainty is of the same order of magnitude as the discrepancies

between the two numerical algorithms (Figure 16).

3. RESULTS FOR SUPERCRITICAL CASE

Calculations for the supercritical flow case (Table 1) using both

numerical algorithms were limited to the fine grid (Table 2). The

coarser grid systems are not expected to provide sufficient spatial

resolution.

In order to achieve a more meaningful comparison between

computations and experiments, an attempt was made to determine the

effective freestream Mach number and angle of attack. As shown in

Figure 23, computations at the nominal conditions (M.= 0.8, CL = 1.8°

predicted a shock location much further aft as compared to the

experimental data. The freestream Mach number Moo = .765 and angle of
attack a = 0.7* were found to approximate the experimental shock

position. These values were therefore employed in all subsequent

calculations. As suggested in Reference 5, the experimental Cp and '

CL were corrected to account for the shift in Mch number by keeping a

constant static-to-total pressure ratio. The present computations J.-

indicated that this supercritical airfoil is extremely sensitive to small

variations in the freestream Mach number.

Since the farfield boundary conditions employed in this study are
only approximate (see Section II), the effect of the outer boundary

placement on the numerical solution must be investigated. For this

purpose, the supercritical flowfield was computed with the explicit

algorithm for three different locations of the farfield boundary (namely,

10, 25 and 50 chords away). The results for Cp, CL and CD are
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shown in Figure 24 and indicate that as the outer boundary is placed

further away from the airfoil the shock moves downstream with a

corresponding increase in lift. The difference in CL between the 25

chord and 50 chord solution is only 1.8%. Although additional outward

boundary placements have not been considered, it may be concluded that a

computational domain extending at least 50 chords away from the airfoil

should be employed for strong viscous-inviscid interacting calculations.

The farfield boundary effects might be less significant for more

conventional airfoils or for improved formulations of the boundary

con di ti ons.

A comparison of the computed results and experiments is presented

below. Figure 25 displays reasonable agreement between the two numerical

C p-distributions except in the vicinity of the shock where additional

spatial resolution in the streamwise direction is still needed. Both

computed solutions failed to predict the measured static pressure on the

upper surface downstream of the shock and on the lower surface cove. It

appears that this discrepancies point out deficiencies in the algebraic

turbulence model downstream of the shock-boundary-layer interaction and

in the cambered region. A comparison of the velocity profiles on the

upper surface, lower surface and wake is given in Figures 26, 27 and 28

P respectively. The computed velocities are, as expected, in close

agreement with each other. Discrepancies between the experimental and

computed velocity profiles in the cove and near-wake are apparent.

Finally, a qualitative comparison of the experimental and numerical

flowfields is presented in Figure 29 in terms of computed density

contours and the experimental interferogram.
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It is interesting to compare the uncertainties in the numerical

results of different algorithms with the repeatiability in the

experimental measurements. Figure 22b, reprinted from Reference 4, shows

the pressure distributions obtained for the same nominal conditions

during two different wind tunnel runs. For this case, the experimental

uncertainty is found to be of the same order of magnitude as that

.-. encountered in the numerical simulation (Figure 25).

The thin-layer approximation (Equation (2.20)) has been commonly

employed in the numerical solution of high Reynolds number airfoil

flows, 26 and justification for its use can be found in Reference 7.

For unsteady transonic airfoils, significant discrepancies between the

thin-layer and the full Navier-Stokes results were observed by Chyu and

V 27 28
Kuwahara. On the other hand, Degani and Steger found good

agreement between the two formulations when applied to a supersonic

compression ramp. In the present study, the effect of the thin-layer

approximation was investigated for the airfoil supercritical flow. The

results, shown in Figure 31, indicated very good agreement between the

thin-layer and the full Navier-Stokes solution. Therefore, the use of

the thin-layer equations is fully justified for this particular type of

flows.

To illustrate the extent of the viscous-inviscid interaction

effects for aft-cambered airfoils, the flowfield was also computed using

the Euler equations. As Figure 31 shows, the presence of the boundary

layer modifies the flowfield dramatically. Viscous effects result in a

much weaker shock (displaced upstream) and in a substantial decrease in

the "plateau" loading. This is a direct consequence of boundary layer
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displacement effects which reduce the effective airfoil aft-camber. The

viscous lift coefficient is almost half of the corresponding inviscid

value.

4. INVESTIGATION OF NUMERICAL ERROR DUE TO DAMPING

In the previous sections, the effects of different numerical

schemes, grid resolution, damping coefficient and farfield boundary

placement were described. An additional assessment of the accuracy of

the computed solutions was performed by evaluating the amount of

numerical damping relative to the formal truncation error and by

comparison of the physical and artificial viscosities.

For the strong conservative form implicit algorithm [Equation

(3.18)], the magnitude of the numerical damping relative to the formal

truncation error leading term can be evaluated as follows.

~J(64 + 64)1/1 1 (FA E 2 + G(4.1)

The corresponding expression for the explicit algorithm is

J-(D + Dry (F- nqr~l) 42 -

J D F G An2

where D . and D are given by Equation (3.21). If the numerical solution

is not to be seriously degraded by damping, the above expressions must be

smaller than or equal to one. In other words, the smoothing terms must .-

be of higher order as compared to the formal truncation error.

The damping-to-truncation error ratio was evaluated for the

computed solutions using Equations (4.1) and (4. 2), and the results for
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the continuity equation are given in Table 4 (the results for the A..

remaining equations were found to be similar). The root-mean-square

value of the damping relative magnitude was always less than one.

However, the maximum value was an order of magnitude greater. A contour '

plot of the damping-to-truncation error ratio (Equation (4.2)) for the

continuity equation is shown in Figure 31 for the supercritical case.

Only contour values greater than one were drawn for clarity. As

expected, the region of large error is located in the vicinity of the

shock, where the accuracy of the solution is already degraded.

A second assessment of the numerical error due to damping was

performed by comparing the artificial viscosity, introduced by the

smoothing terms, with the real physical viscosity 11 + E. This was done

for the explicit algorithm due to the particular form of the damping

terms (Equation (3.21)). Comparison of the damping term D with the

normal diffusive terms in the streamwise momentum equation (Equations

(2.1) - 2.4)) yields the following approximate expression for the

artificial-to-real viscosity ratio.

Vartificial+ (43)
+ 2 (p+ )

Contours of the above ratio are shown in Figure 32 for both the

subcritical and supercritical case. It can be seen than within the

airfoil viscous region the artificial viscosity is one order of magnitude

smaller than the true viscosity p + E; A similar analysis can be

performed for the -direction damping term D This term was only found

to be significant for the supercritical case in the vicinity of the shock

where 0 becomes comparable in magnitude to the normal diffusive term.
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The above results can only be regarded as a preliminary attempt to

assess, a posteriori, the accuracy of the computed flowfields, and

further grid refinement still represents the only conclusive approach for Z.".

determining appropriate numerical resolution criteria.

TABLE 4. DAMPING-TO-TRUNCATION ERROR RATIO

FOR THE CONTINUITY EQUATION

Explicit Algorithm Implicit Algorithm
. - ..

max. rms max. rms

SUBCRITICAL CASE 29.1 0.47 7.1 0.25 .

SUPERCRITICAL CASE 28.1 0.48 10.0 0.46

% ..-.-

% %-.'.
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SECTION V

CONCLUSIONS AND RECOMMENDATIONS

In the present study, a critical examination of the numerical

solution of high Reynolds number transonic airfoils was performed.

Solutions of the flowfield about a supercritical airfoil were generated

by solving the two-dimensional Navier-Stokes equations with an algebraic

- turbulent eddy viscosity model. The governing equations were solved on

. curvilinear body-fitted grids using two different numerical algorithms.

Namely, the explicit unsplit MacCormack's scheme and the implicit

Beam-Warming algorithm. Both subcritical and supercritical flows were

considered, with a total of 23 cases computed.

The numerical uncertainties associated with different schemes, grid

resolution, artificial viscosity and farfield boundary placement were

carefully examined. Numerical simulations produced by the two numerical

schemes with different conservative formulations exhibited nearly

identical velocity profiles and density contours. The maximum

q*. discrepancy between these solutions was generally less than the

repeatable data scattering band of experimental measurements. However,

the uncertainty in the more stringent requirement of the computed lift

and drag coefficient is still of the order of a.O and 20 drag counts

respectively for the finest grid (204 x 55) utilized. Further numerical

resolution, particularly in shock regions, is still required. This could

perhaps be achieved, in a more efficient manner, by the use of grid

adaptation techniques.

-.4.
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A comparison of the supercritical flowfields obtained with the

Euler, thin-layer and Navier-Stokes equations was performed. The

thin-layer approximation gave essentially the same results as the full

Navier-Stokes equations and therefore its use, for this type of flows, is

clearly justified. However, numerical solutions of the Euler equations

failed to provide a reasonable approximation of the flowfield due to the

dramatic viscous/inviscid interaction effects for transonic aft-cambered

airfoils.

Comparison of the computed results and the experimental data showed

a reasonable prediction of all of the essential features of the flow.

However, detailed comparison of velocity profiles on the airfoil upper

surface lower surface and wake pointed out deficiencies of the turbulence

model in the cove region, downstream of the shock/boundary layer

interaction and in the near-wake.

The comparison of computed and experimental results was clouded by

uncertainties in both the measurements and in the numerical procedure.

In principle, the numerical uncertainties could be reduced to a desired

acceptable level. However, the uncertainties in the measurements were

not adequately documented in the experimental study. For the

investigated supercritical airfoil, the problem is significant due to the

extreme sensitivity of the flow to variations in the freestream Mach

number and angle of attack. Therefore, before a conclusive evaluation of

turbulence modeling can be conducted, an experimental study aimed at the . .

determination of interference effects should be performed. An

alternative and less expensive approach of evaluating interference

effects would be the numerical simulation of the entire three-dimensional

wind-tunnel flowfield.
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APPENDIX A .. _

CONSTANTS FOR FAR-WAKE TURBULENCE MODEL

The similarity velocity profile in a two-dimensional incompressible T-
turbulent wake can be expressed as follows13

Urax - U U exp (-2) (A.l) 

where"?" "where/2 1/ p  Uc 1/2 y-

x

= -U = 6.3535 ( 0)/"."

UDiF Umax min px

is the turbulent eddy viscosity and Ura (=U ) and Umin are the

maximum (freestream) and minimum velocities, respectively.

Assuming wl J1 in Equation (2.30), and using Equation

(A.1) for the velocity, it can be easily shown that

F =2 2F = 2U n  exp (-2.

(A.2)
F = 0.7358 U
max DiF

and
0 x 1/2 (A.3) ..- ;

Ymax 2 U
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.77

Substituting the expressions for UDF Fma and Yma in

Equation (2.29) and temporarily dropping the term Fklb for
Z. %p

convenience, yields the following expression for the far-wake eddy

viscosity

CkA
Aw 0.05790

0V

Therefore, in order to have F_ w 6o the constand Cw must be

set equal to 0.0579. -

For thte wake, the constant Cebappearing in Equation (2. 28) is .

determined as follows

Y
C kleb b a

whiere b is the wake half-width1

b 3.798 (0 /

and Y is given in Equation (A.3). The resulting value for Cke
max ke

* is 0. 527.

MMN
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APPENDIX B

JACOBIAN MATRICES FOR THE NAVIER-STOKES EQUATIONS

The Jacobian matrices defined in Equation (3.13) are given below.

These matrices are obtained by straight-forward differentiation, after i '!

rewriting the vectors E1, E2, V1 , W2  (Equations (2.11) - (2.15)) "

in terms of the conserved variables (p/J, pU/J, pV/J, pe/J). The ,..-

Jacobian matrix A is

0 0

A- u U U((y-2)x u -(y-lxV U (Y-l) x

A y X x y
y, -v U xv -(y-l) C y u U-(y-2) y v (Y-1)c y (B.1) "-K.

(24 - ye) U (ye - ) x -(y -1)uU (ye-4) y-(y-1)vU y U
X y

14 .

wh ere
1/2 (y-1) (u2  V2

and U is given in Equation (2.16). The Jacobian matrix B can be obtained "
Z .. Z

from Equation (B.1 ) by applying the substitutions

I. xX X

ny 
"-

45
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* ~~~~~ ~ ~ ~ ~ ~ 717 97..7 q.. .. . . . .* . . . . . . . ... . . . .

The Jacobian matrix M is

0 0 0 0

(b u +b V) b b 0

-(b2 u +b 3 V) b2 b 3  0-2

2-2
-(b u + 2b uv + 2 - 2 3 -( 1)u bu+b) ( W

+ b 4 Y(Y - 1)(U 2+2_ -e) -b2b4 Y1

wher 2hoffcet b v 0 1  .,) ar gien in Eqato

.44
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