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Computational Aerodynamics Group, Aerodynamics and Airframe Branch,
Aeromechanics Division, Flight Dynamics Laboratory from August 198 to
November 1984, This report was prepared by Dr. Miguel R. Visbal,
Visiting Scientist, wunder work unit 2307N603, "_omputational Fluid
Dynamics," with Dr. Wylbur Hankey as the Task Manager. The report was
submitted in March 1985,

The author would 1like to express his appreciation to
Dr. Wylbur Hankey and Dr. Joseph Shang for their valuable technical
guidance and advice during this work, My association with all the
menmbers of the Computational Aerodynamics Group has been both personally
and technically rewarding.

Computer time for the present study was provided in part by the

NASA Ames Research Center.
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SECTION I RN
INTRODUCTION PR

[t Y e Rt 4 4

b, In recent years, the numerical simulation of high Reynolds number
< transonic flows over airfoils has been presented in numerous
publications. A comprehensive review of the subject can be found, for N
example, in References 1 and 2, and therefore 1is not repeated here. -}_}:
This earlier work clearly illustrates the potential of Navier-Stokes
numerical methods for evolving into a reliable predictive design

technique. However, for this goal to be attained, two major problem
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areas still require further investigation. First, an assessment of the

e N

accuracy of the computed solutions must be conducted in order to clarify

Ly
i+, . s R . cpe R
- the uncertainties due to grid resolution, boundary condition formulation
b and numerical damping. Second, a suitable turbulence model must be
developed, capable of accurately describing flows containing transition,
o)
*
e’ scparation, wakes and shock wave/boundary layer interactions. This
s second problem area clearly constitutes the pacing item in computational
-~
:; aerodynamics and will most 1ikely require a continued process of
»
s, numerical evaluation of different turbulence modeling formulations. For
- this evaluation process to be meaningful, the degree of uncertainty
N
;. associated with the numerical simulations must be first established. It
N should be noted, however, that numerical resolution and turbulence .
o ' modeling cannot be entirely separated since grid resolution is dependent .-.7.
.. TS
3 on the turbulence model employed. 2
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e Since "exact" solutions are not generally available for complex ,;_?.'«_f'::::
. YA
transonic flows of interest, grid refinement studies constitute the only EE':\:

, suitable alternative for accuracy assessment. Even for two-dimensional Li:
-: flows, this approach can be very costly in terms of computer resources r::
AN

y and therefore the accuracy of the numerical solutions is customarily "'E"'E

judged by comparison with available experimental data. However, :

comparing computed and experimental results can be inconclusive due to

(1) lack of numerical resolution, (2) uncertainties in the measurements

L
.
la

(e.g. wind tunnel and probe interference), and (3) the inability to

o

1 4

LAY,

jsolate numerical errors from those due to turbulence modeling. With the
advent of powerful computers, more detailed <calculations of

. . . . v 3
two-dimensional transonic viscous flows are now possible™, and should

N

S help clarify some of the uncertainties inherent to the numerical

“~

N simulations,

i With the above background as motivation, the present research

o,

: critically examines several aspects of the numerical solution of the

'd

y Navier-Stokes equations for high Reynolds number transonic airfoil

N flows. This problem embodies many interesting flow features such as

:j leading and trailing edge regions, wake and shock/boundary layer

. interactions, The particular configuration considered was a modified o

P Whitcomb supercritical airfoil, denoted as DSMA 523.4 This airfoil -:_--"

- exhibits significant rear-loading and a strong viscous-inviscid ‘\‘_:

N .'-:-"_:

N interaction as compared with more conventional sections having little or :.'-‘\:M

. no aft-camber. In addition, this airfoil was selected as one of the test - ?‘

., .-‘..:_:.

. cases for the 1980 Stanford conference on complex turbulent flows.® -
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Computations were performed using the mass-averaged Navier-Stokes

. 6 . ey s .
equations  expressed in terms of general curvilinear coordinates and

with turbulence represented by an algebraic eddy viscosity model.7 The

governing equations were solved in nearly-orthogonal body-fitted grid58
employing MacCormack's explicit scheme9 and the implicit Beam-Warming

10 These two most commonly used numerical schemes were

algorithm.
chosen for their intrinsic differences in solving the system of governing
equations. A direct comparison between the two algorithms was performed
under identical mesh systems, boundary conditions and turbulence model.
Such a one-to-one comparison, the author believes, has not been
previously documented in the literature,
The main objectives in this investigation of transonic airfoil
flows can be summarized as follows:
(1) A comparative study of the re]ative. accuracy between an
explicit and an implicit Navier-Stokes code.
(2) Effects of grid refinement, numerical damping and farfield
boundary placement on the computed flowfields.
(3) Comparison of the vresults obtained with the Euler, the
thin-layer and the full Navier-Stokes equations.
(4) Evaluation of the algebraic turbulent eddy viscosity model by
detailed comparison of computed and experimental data for both

subcritical and supercritical flows.
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SECTION II
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MATHEMATICAL DESCRIPTION OF THE FLOW

P

Tn this investigation, viscous transonic airfoil flows are

simulated by means of the two-dimensional compressible Navier-Stokes

equations, The governing equations are written in terms of general

TR
curvilinear coordinates and mass-averaged variables, with turbulence \::
incorporated through an algebraic eddy viscosity model. The particular j
form of the flow equations, turbulence model and boundary conditions ;CF
employed are presented in this section. ;:;
1. GOVERNING EQUATIONS \»E‘"

The governing equations are taken to be the two-dimensional .‘;:;

‘»
\'e)

compressible Navier-Stokes equations expressed in terms of mass-averaged

P

TN

variabl es6 and general curvilinear coordinates with turbulence

represented by an algebraic eddy viscosity model. Two different forms of . \4;

\.':'.'_';'\

the equations are employed in this research. The explicit numerical :-;:::::

algorithm (described in Section III) utilizes the chain-rule conservative ,

form” » while the implicit scheme solves the strong conservative -,‘_:.'!

formulation.'2 f_-:

\._'.:.'

In terms of general curvilinear coordinates (f,7), the chain-rule ?.j,:-'

~0

conservative Navier-Stokes equations can be written as follows: --4‘
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and

3 o™ 20 eug At vy) o
N = (p + + v 0o
. Ty = (W 6)(uy o) 3
% P
o Tyy = 2(u + e)vy + AT(ux + Vy) (2.4) 35

- u €

. F4 FUT vTxy + Cp(Pr * P—)TX i,
C .~ rt o
s i u € e
7 By = UTyy * Viyy * 6 (pr 7 Ty s
. rt EY
‘s A
s =Y
.' The variables u and v denote respectively the x and y velocity
1; components. The density p, static pressure p and the absolute

S temperature T satisfy the equation of state for a perfect gas

-;'.

% p=oRT = (y-1) [pe - % p (u? +v?)] (2.5)

where e is the total energy per unit mass, R is the gas constant (1716

'
N ftz/sec2 - °R for air) and Y (=1.4) is the ratio of specific heats.

"

! The dynamic molecular viscosity u is obtained from Sutherland's formula.

4

The turbulent eddy viscosity € is given by the eddy viscosity model which

d

;j will be discussed later. Stokes hypothesis is assumed (i.e., X, = -2/3

E'-: (pu+e)). The molecular Prandtl number Pr, the turbulent Prandtl number
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o Pr-t and the specific heat ¢, are taken to be constant (Pr = 0.72, DR
. R
. o g
‘i Pr, = 0.9 and cp = 6006 ftz/sec2 - °R) s
ti The quantities Ex’ Ey, s ny denote the transformation .:;':T"

el
5,," metrics (see Figure 1 for an sketch of the basic transformation) -Zj_::
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U,V denote the contravariant velocities

U = gu+Ey (2.16)
V =nut nyV
and the viscous coefficients bi‘ Ci» d‘. are
b= (u+e)(3 62+ g2
‘ 1 35t Ey
| 1
, b =x(u+e)ge
. k)
! 2 X’y (2.17)
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By neglecting the viscous terms in the direction parallel to a solid
surface, the so called thin-layer approximation7 ijs obtained. Assuming
a body-conforming curvilinear coordinate system, with the £ andn

directions defined as shown in Figure 1, the thin-layer Navier-Stokes

equations become

T LS.t "eTaTa TS S S Ve L,

“a eV Y

>

(2.20)

Q)

oE: , 9E, _ AN
t5e e T o (@)

o N,
Q)
e

2 Finally, the Euler equations are obtained by neglecting all viscous
terms (i.e., by setting the right-hand-side of Equation (2.20) equal to

zero).

2, BOUNDARY AND INITIAL CONDITIONS

In order to completely define the problem, suitable boundary and
initial conditions must be specified. Referring to the airfoil
i computational domain shown in Figure 1, the following boundary conditions
are prescribed.

Along the outer boundary ABC, freestream conditions are given for

all the flow variables. On the downstream boundaries AD and HC,

- (2.21)
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Since the above farfield conditions are only approximate, the effec. of
the placement of the downstream and outer boundaries will be considered
in Section 1V,

Along the airfoil surface, the no-slip adiabatic conditions

(2.22)
g_n(T> 0

are imposed for viscous flows. For the Euler equations, the conditions

V=0

3 quy.

s(o)= 0 (2.23)
2 + 2 p = - +
« tng)PL = -e(nug + vy

are specified, where U , V are the contravariant velocities,
Equation (2.16). The boundary conditions (2.22) and (2.23) are applied
in conjunction with a body-fitted grid which is nearly orthogona’ at the
airfoil surface.

Finally, along the wake-cut ED, averaging is used for all the flow
variables so as to ensure continuity.

Since only steady flows are considered in this research, initial
conditions are not of primary concern to provide a converged numerical
solution. A simple uniform flow initial condition was always employed in
the present airfoil calculations, unless previous computed results were

already available.
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3. TURBULENCE MODEL

Turbulence is simulated by a modified version of the algebraic eddy

viscosity model of Baldwin and Lomax7. As depicted in Figure 2, three

* . » -
’

0
Yo n

separate regions are considered in the implementation of the turbulence

model. Namely, the airfoil boundary layers, the near-wake in the EZiZ£

vicinity of the airfoil trailing edge and the far-wake. gl

In the airfoil boundary layers, a two-layer formulation is E;Ezi

employed.  The inner turbulent eddy viscosity e; is given by the i};uj

Prandtl - Van Driest expression ‘1
€; = o(kYD)? |w| (2.24)

ey
D=1- exp|- Y(BWIIJBN‘L)IZ /26 (2.25)
W

ou VvV

A (2.26)

|w] =

where , is the vorticity, Y represents the distance normal to the airfoil
surface, K = 0.40 is von Karman's constant and the subscript w denotes
values at the wall.

In the outer region of the boundary layer, the turbulent eddy

viscosity € is defined as follows

e = pkC Y

o cp 'max Frax Tk1eb (2.27)
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where Fmax = max (Y]wlD), Ymax is the value of Y at which Fmax
occurs, B
Foo=l1+s55|c v, [ (2.28)
kleb kleb max
and

k = 0.0168, Ccp =1.6, Ck]eb = 0.3

The turbulence model switches from the inner to the outer
formulation at the first value of Y away from the wall where
€1.3 Eo. Transition 1is simulated by simply beginning the application
of the above turbulence model at the boundary layer trip locations

specified in the experiments.4

The far-wake turbulent eddy viscosity € K is computed as follows

e =0C. Ymax YDIF (2.29)
wk wk —F Fk'leb .
max
where
Frax = Max (Ylw])
- (12 2y _ g2 2%
UDIF (uf + v )max (u® +v )min (2.30)
ka = 0.058
and Ymax is the value of Y at which Fmax occurs. In the wake, Y is

measured from the wake centerline as determined from the location of
minimum velocity. The intermittency factor Fk]eb is obtained from

Equation (2.26) with CkIeb = 0.53. The constants Cw and C are

k kleb
chosen in order to match the above formulation with the theoretical

results given by Schh‘chting”' for an incompressible turbulent wake

(see Appendix A for details).
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The turbulent eddy viscosity in the near-wake Y is computed by
allowing the trailing edge eddy viscosity profile to exponentially reach
its far-wake value. Referring to Figure 2, the following expression is

employed

enw(x’Y )= % [e(xte’Y) ¥ ewk(xo'Y)]

(2.31)

The distance Xo = Xte is typically chosen to be of the order of
108, where § denotes the average boundary layer thickness at the trailing
edge. The sensitivity of the airfoil lift and drag coefficients to the
variation of Xo = Xte is addressed in Section IV. This near-wake ad
hoc formulation, similiar to that of References 14 and 15, represents a

preliminary approach within the context of a simple algebraic eddy

viscosity model.
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SECTION III
NUMERICAL PROCEDURE

The numerical precedure consists of two basic steps. First, a
body-fitted finite-difference grid, must be constructed about the airfoil
in order to simplify the implementation of the boundary conditions and to
provide sufficient resolution of the flow features. Second, the
finite-difference form of the governing equations 1is solved using a
suitable numerical scheme., In this investigation, grids were generated
by the elliptic technique of Visbal and Knight.8 Two different schemes
were utilized for the numerical solution of the flow equations. Namely,
the implicit factored algorithm of Beam and warmingm, and the explicit
unsplit MacCormack's algorithm.9 The grid generation method, the
numerical schemes and the criterion for convergence of the solution to
steady state are presented below.

1. GENERATION OF COMPUTAT IONAL GRIDS

Nearly orthogonal body-fitted grids were generated about the
airfoil using the method developed by Visbaﬂ]6 and Visbal and

Knight.3+17

This technique, which is based on elliptic partial
differential equationsw, employs the two-step procedure described
below.

a. Intermediate Transformation
As a first step, an orthogonal grid is generated with a

user-prescribed distribution of the mesh points alonq the airfoil and
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wake-cut (Figure 1). The intermediate transformation [& (x,y), X(x,y)]

satisfies the Poisson equationsw

h
1 P
Vg =g +E,. =068 =1 A (3.1)
XX yy EhX oF ﬁé_
VX = Xxx * ny =0 (3.2)
where (x2 ik
h, = (x2 + yz)?
g g g (3.3)
= (y2 2%
hx (xx + yx)

and the forcing function ¢ (£,x) results from the general expression for
the Laplacian in orthogonal curvilinear coordinates. In reference to

Figure 1, the boundary conditions for £ and x are

g = 0’ EX._ =
n 0] on ')
3
£ = £ oX = on I's
max , on (3.4)
£ = Ea(t) s X % 0 on T's
ok
W=O’X=Xmax on Tu

where t is the arc length along I‘3 and n denotes the normal to the
corresponding boundary. The boundary condition on 1‘3 simply indicates
that the grid points are distributed along the airfoil and wake-cut in a
desired monotonic fashion.

The transformation equations and boundary conditions

(Equations (3.1) - (3.4)) are expressed in terms of (&, x) derivatives, as

,
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' shown in Reference 17. The vresulting equations are solved for
- [x(£,%),¥(&X)] in a uniform rectangular grid in the (&, x) plane using
2 point successive overrelaxation (SOR) and starting from an arbitrary
i?- (non-orthogonal) initial mesh. The forcing function ¢ and the grid
"\ points on Ii, D 1,1 are dynamically adjusted during the solution
17
N process.
3 For the present airfoil grids, the above intermediate
N transformation technique is applied only in the vicinity of the airfoil
;’-’ (up to 2.-3. chords away). Since the grid is orthogonal, it can be
,l
‘;: easily extended to the outer boundary Ty using a straight-forward
"Z: algebraic procedure which results in an improved efficiency. In
ji addition, a relatively course mesh in the y direction can be utilized.
D b. Final Transformation
In the second step, a nearly-orthogonal mesh is constructed
with a user-specified distribution of grid points along I‘] and L.
::J: The distribution along I3 and T, is obtained from the intermediate
ny
-G mesh, Introducing the simple transformation y = x(n), Equations (3.1)
] and (3.2) become17
- 3.5
- v’ =P (E,n) = ¢ [ﬁ,x(n)] (3.5)
- (3.6)
w v*n = Q(E.n) = (ng +nf)S )
. where
N

T-yR if x, >y
i S = n xg £ —-7¢E (3.7)
: T REIRS:
-
g
. id
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R= Cegvgg = Yemge)/ Uxg * V) (3.8)

== 2 2 = -
T (xnxnn + ynynn)/ (xn + yn) Snn/sn (3.9)

and s denotes the physical distance along the £-1ines measured from F3
(Figure la). The inverse final tran§f0rmation equations and boundary
conditions are described in detail in Reference 17. The forcing
functions P and R are obtained from the intermediate grid using linear
interpolation. The function T is determined for a given n-spacing
through Equation (3.9). In this case, an exponential distribution of
then -lines is employed in order to resolve the airfoil boundary layers

and wake. The resul ting expression for T is

Tec(0) (3.10)

where C] is determined at each £-location by specifying the normal mesh
spacing next to the air'foﬂ.16

A typical C-grid is shown in Figure 3. The mesh is
nearly-orthogonal and displays substantial clustering in the viscous
regions and in the airfoil leading and trailing edge areas. Additional
applications of the present grid generation technique can be found in

References 8, 16 and 17,
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2. IMPLICIT NAVIER-STOKES (DDE

The implicit code solves the strong conservative formulation of the
Navier-Stokes equations [Equation (2.10)] using the approximate-
factorization algorithm of Beam and war‘ming.]0 This scheme in “delta"

form and with first-order Euler time-differencing can be written as

follows n n n )
32M 9B 9°N ~n -
{I +At [—32 - W]} {I tat [:Tﬁ_ B a—nT]} a4 =
-At 3_.(5.v.v)"+3—(E-l~l-w)n (3.11)
86 1 1 2 an 2 D 2 .
n
AR

(3.12)

where n denotes the temporal index (i.e. i"=§ (nAt)), and the

Jacobian matrices

A= % : B - % (3.13)
. éwz

M = i N = —<4
5 , 5

are given in Appendix B.

Application of second order central differencing for the space

derivatives yields

{I vt [“EAi,J gk ”i,j] } 8q3,5 ° ot [“a (Br - Valy 5

+u (Ez - W1)~ : -6 V1 -6 W2
n 1,J '3 i, n ij

(3.14)

I + At u B' 3. 2 ~ =
{ [n i,5 dn Ni,j}}AQi,\j Aq;!”j (3.15)
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~ where
‘5: g, = (i - 1)ag Lo l<ic<It
Y (3.16)
ny = (3 - 1on , 1<j<cdt ey
) :'{\.
o PN
*:. .}\:ﬂ
2%
-~ -
A :
N and g
4 = (f.., .- N (A iy
“ 6Efi.j “H%.J fi-xﬁ,j)/“ ’ ‘Sn f1.J (fI.J“i ch-‘s)/An .
= (3.17)
¢ uefig = (Fiag ™ fiog, 307288 mfy 5 = (fy ey - i 5 )/200
)
[~
)
~4
v
7.
- are finite-difference operators. The transformation derivatives (XE’ X
-
" ys, yn), required in Equations (3.14) and (3.15), are computed from the
body-fitted grid using second-order <central differences at interior
o)
'-: points and one-sided approximations at the boundaries. The scheme is
:;: implemented in a standard ADI fashion by solving Equation (3.14) for
each n-line (2 <j<JL-1), followed by the solution of Equation (3.15) for feet
’ . - - S
>, ALY
2 each £-line (2 < i < IL-1). This results 1in the solution of a :-:::::.-
-‘: f.\¢\-:
i: block-tridiagonal linear system along every coordinate line. :\‘i'
~ In order to maintain numerical stability, artificial dissipative -
3 terms must be added to the basic Beam-Warming algorithm.‘o Following
:;: Reference 19, explicit fourth-order damping )
A -
- LA
- <
-l R
: “wghtdy 5 (6 + &) a5 (3.18) A
: ’ QRION
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is appended to the right-hand-side of Equation (3.14). The implicit 0
0ty

second-order damping terms j:.::;.
o

¥

S

b2,

are inserted within the respective implicit operators. The damping :ﬁ_:jf
coefficientw is of order one andw; > 2u,. '
To accelerate convergence to steady-state the local time step D

. 20 f:,::-.

At 5 is employed :.::}::
o

5 "

_ .1 ‘J

Aty 5 = max (At L (3.20) v

1,J :.'!:;-

S5

where ois constant, typically from 1.0 to 2.0. For viscous flows, Ato -’
corresponds to a Courant number (CFL) of order 50-500 at the location of \
minimum grid spacing on the airfoil (see Equations (3.22)-(3.25) for the \'
definition of the CFL number). -
Finally, the boundary conditions are implemented in the explicit Z:i;;;f:
fashion described in Reference 12. A similar version of the present Z:?:f-_:j
implicit code had been previously validated for a variety of flow o]
. A 2] :_n‘_- "
configurations. f':::::l_'
3. EXPLICIT NAVIER-STOKES CODE L:j::": ;
N

The explicit Navier-Stokes code solves the chain-rule conservative :.‘."'

form of the governing equations (2.1) utilizing the explicit unsplit E',_i:
I,

predictor-corrector algorithm of MacCormack.’  Details of this AN
PN

S
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well-known algorithm can be found in Reference 22 and therefore are not
included here, As part of this scheme, a fourth-order pressure damping
term is incorporated in order to control numerical oscillations in

regions of large flow gradients. [his damping term, used in both the

predictor and corrector steps, has the form

v v

(r‘r

3 n -

— 1 2
+ X 3
(lul +alael) g, | 20

(3.21)

=
n
]
™
|
[nd
>
fpat
w

|
&

(e
|

--eAtAn3%ﬁ {(lvl +a|€ﬁl)%p 3’p _QJ

where a=fy RT is the speed of sound, U, Vv are the contravariant velocities
(Equation (2.16)) and B is the specified damping coefficient typically
ranging from 1.0 to 3.0.

In order to improve the efficiency for steady flow computations, a
local time step is incorporated in the basic MacCormack's algorithm.
This 1is accomplished by specifying a constant Courant number (CFL)

throughout the computational domain. Namely,

Ati,j = (CFL)Atmaxi ; (3.22)
where ) v T -
u v
At = + + A+
max1’j AE AS«E As?
. ~2—-3( _l_i_ (_}l__ R __E__) -1 (3.23)
P ASn Pr Pr
t
= (x2 + y2)? 3.24
Asg (Xg + yg) A ( )
22
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The prescribed Courant number is typically assigned a value of 0.9.

"._T - K

Previous versions of this explicit Navier-Stokes code have been S
successfully applied to a variety of fluid dynamic problems.z’23 "":."-Z::';—-':'
Unlike the implicit code which was written for a scalar computer, the
explicit solver is fully vectorized and exploits the vector-processing \’
capabilities of the CRAY computer. -3“

4,  STEADY-STATE CONVERGENCE CRITERION. R

]
Y

L
P

Since steady flowfields are obtained by time-integration of the

';".a"'-
s w ‘e e

Navier-Stokes equations from a given dinitial condition, a suitable

A

o ¢
h e

e
i e 4
e

convergence criterion must be specified. Convergence was assessed by

AL
B A
o

NS
o
P

A

carefully monitoring the airfoil 1ift (CL) and drag (CD)

e

/'J‘n"r "
PN
L 1

coefficients. For all cases computed, the monitored coefficients

o

wa
NYSNNS

DA

e

approached a steady value in a damped oscillatory fashion. Here, the

:
:
(.i
l._
<.
)

-
‘>
:.-
‘l‘
U

‘¢

flow was assumed converged when (1) the amplitude in the oscillations of

I

LA
-

CL was less than 0,05 - 0.1%2 and (2) when the variations in CD were

within 1-2 drag counts (1 drag count = 0.0001). For the implicit

DN

x
X
E o |

algorithm, the corresponding root-mean-square values of the residual were

typically 1077

for all equations. Al though, a more stringent
convergence criterion could be stipulated, the present one was found to

be suitable for engineering calculations.
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5. CALCULATION OF AIRFOIL FORCE COEFFICIENTS S Y
The airfoil 1ift and drag coefficients, denoted by C_ and C, CEZZE;:
-'x\::

respectively, were computed by integration of the pressure and shear )

stress along the airfoil surface. The stress vector at the wall, fk’

is given in cartesian tensorial notation as follows

f, = n1ok1 (3.26)

where

0 - I

is the normal to the surface and %K1 is the stress tensor e

e,
."1,.“

L
)

W

[ A W

)

x

X

<
TN AMRNY
Ve
r by
ta

where o = P+ T o = -p+ T and T T are given

xx* % vy xx* Txyr Tyy
in Equations (2.4). Performing the tensorial inner product (3.26) and

r !

AN

A AR
(AR

assuming u = v =0 and € = 0 at the surface, one obtains

£

PAAs
2

| n .
' f - - + = + v + St ]
T_er ptgu(n u ny 2] +1vnl W, (3.27) T

n 1 .
y ﬁ -p 43w (s + v+ (TR v (3.28)
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where fx, fy represent the stress components in the x and vy

directions respectively.
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) The total force on the airfoil per unit span (F,, F ) fis N
[ e ™
- . . . . e
N obtained by straight-forward integration :',;.:‘;.
~ IO

A N N
S

l:x = _{fxds ’ Fy =ﬁyds

L% ’
- “n
N, .

;\:s;
S

2,

e

3
4, t..l' (¢

]

using trapezoidal rule. Finally, the 1ift and drag coefficients are

R LA A

-~ given by AR
- _‘.- g
- N
\‘ __' - )
:‘. . -

e

i C, = (-Fxsina + chosa)/lapmui (3.29)

(]
1]

(F cosa + Fysina)/%pin (3.30)

T 4
S A N
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where & is the airfoil angle of attack.
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u SECTION IV

\ RESULTS AND DISCUSSION

b

-

- 1. FLOW CONFIGURATION AND COMPUTAT IONAL DETAILS

. X Computations were performed for an 11% thick supercritical airfoil
E designated as DSMA 523.4 This modified Whitcomb airfoil exhibits
,_‘ significant rear-loading and a strong viscous-inviscid interaction as
¥ compared to more conventional sections having littie or no aft-camber,
.;.: This particular airfoil was selected as one of the test cases for the
§ 1980 Stanford Conference on Complex Turbulent Flows.5 The experimental
.' dat;abase4 contains surface pressure distributions and velocity and
i density profiles along the upper surface, lower surface and wake for a
range of Mach number, Reynolds number and angle of attack. Two specific
cases were considered in this study. Namely, a subcritical case
: (Mo = 0.6, a =2,6°, Re. = 4 x 106) and a supercritical case
;‘_ (Mo = 0.8, a =1.8", Re_ =2x 10%). The corresponding flow
. parameters are given in detail in Table 1.

\ In the calculations, three different computational grids were
,, employed. These grids, referred to subsequently as coarse (92 x 31),
. medium (140 x 45) and fine (204 x 55), were generated by the procedure
described in Section III. As shown in Figure 3 for the fine grid, the
’ mesh is nearly orthogonal and displays substantial clustering in regions
' of high flow gradients. The details of all grids are summarized for
, convenience in Table 2.

:
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Numerical solutions of the flow equations were obtained utilizing

either the explicit wunsplit MacCormack's scheme or the implicit

oscillatory solution can occur for higher values of o and Ato.

Beam-Warming algorithm. Both schemes incorporated a local A t (Equations VoL
(3.20) and 3.22)) in order to accelerate convergence to steady state. :'::l:'
The effect on convergence when using a local At was investigated for both :’Eﬁ'
algorithms and is discussed next. .&\(\
RSN
Computations for the airfoil subcritical case on the coarse grid ;‘:::::;;‘_:
using Beam-Warming algorithm indicated a gain in efficiency of about six I¢ A
when a local At was employed (with Ato = 0,01 , o = 0.5 in Equation ,_:H
(3.20)). The convergence history for the airfoil 1ift and drag :S
coefficients is shown in Figure 4 and points out that an unphysical s'_\
RRSLN

\

However, when a steady state was reached, the results were as expected

A AN
o

independent of o and At .
MacCormack's code with a local At displayed a speed-up factor of ..?\;i
approximately seven for the computation of a flat plate supersonic :Ef:
(Mo = 3.0) boundary layer with mass injection. Figure 5 shows the '\'\::\
SNH

convergence of the skin friction coefficient at a given location. When

P

applied to the airfoil, the use of a local At resulted in small amplitude
oscillations about the steady solution (see Figure 6). These
oscillations disappeared when a constant At was imposed. Despite this
behaviour, using a local At during the early stages of the calculation

substantially improved the efficiency of the explicit algorithm.
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TABLE 1.

FLOW PARAMETERS

Case
Subcritical

Supercritical

Experimental

c

L D

0.18 0.58 0.011

0.18 0.65 0,017

Grid IL x JL

AS /c
n
min. max.
0.00025 1.03
0.00010 1.38
0.00005 1.25

x/c transition
o upper Tower C
2.6° 0.05
1.8° 0.35
TABLE 2. GRID DETAILS

No. of points
on airfoil
58
86

150

ast

Mc = 0.6
18.5
1.5
6.9

1 92 x 31
2 140 x 45
3 204 x 55
Legend
IL, JL:
A%i
AL
ash:

NOTE: For the above ¢rids,

away from the airfoil,
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No. of grid points in £and ndirections respectively.
streamwise grid spacing on airfoil (Equation (3.24))

grid spacing normal to airfoil surface (Equation (3,25))
normal spacing at airfoil surface in terms of law of

the wall coordinates (upper surface, x/c = 0.5)

the farfield boundary was located 10 chords
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The airfoil calculations were performed on a CYBER 175 and on the ?_'.f:‘.::'

NASA Ames CRAY XMP computer. The average rates of data processing, ‘_‘

.\...':n

defined as CPU time per grid point per iteration, are given in Table 3 P

for both algorithms. The efficiency increase on the CRAY XMP relative to Eji;«'

J-“.l:

the CYBER 175 was a factor of 55 for the vectorized explicit code, E‘;\:x

LY

However, the corresponding value for the scalar implicit algorithm was She

foed

only a factor of 5.1. For a typical airfoil steady solution on a 204 «x -_;a_.j:

et

55 grid, the implicit code was about 3.8 times faster than the explicit ::-:.::

N

code on the scalar computer. However, the situation was reversed on the e

:-::I vector computer, with the explicit code being 2.9 times faster. It ——
_::Z should be noted, however, that the efficiency of the implicit algorithm ’
o
;J' could be increased substantially by vectorization and by the techniques e
: of References 24 and 25. \
, A total of 23 different calculations were performed for the o
: selected airfoil confiquration. A detailed comparison of numerical 5;
results and experiments is presented below for the subcritical and '-;Z

RN

supercritical case separately. I:-',:-_’,

e

TABLE 3. A

- COMPARISON OF COMPUTER TIMES FOR EXPLICIT A
) AND -'-‘\
> IMPLICIT CODES P
_f- . '_Z'::I
& o
DPRA Approx. No. of Overall relative speedd —

. Al gorithm CYBER 175  CRAY XMP Iterations req'd CYBER 175 CRAY XMP DR
for convergence o
“-: \::
» BEAM-WARMING 4.4x10-3  8.6x10-4 900 3.8 0.35 *q
A a"a
4 MACCORMACK  0.6x10-3  1.1x10-3 25,000 1.0 1.0 - E Y
- I
S - - N
e .,\__\
- (a) DPR: Data processing rate, CPU (sec) .Q-::;
> {No. of grid points) (No. time steps) NN
7] ‘;Y_!
< (b) For 204 x 55 grid 3
3 30 R
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2. RESULTS FOR SUBCRITICAL CASE

Since in the experiments4 the ratio of wind tunnel height to
model chord was only four, interference effects are expected to be
significant and must be accounted for (assuming the data is correctable)
by adjustments in the freestream Mach nunber and angle of attack.
Al though the main objective of the present study is the comparison of the
two numerical schemes, an attempt was made to determine the effective
angle of attack for the subcritical case in order to provide a more
meaningful comparison with the experiments. For this purpose, several
computations were performed with the implicit code on the coarse grid at
various angles of attack. The Cp-distribution and lift coefficients,
shown in Figure 7, indicated an effective angle of attack(a) of
approximately 1.7 degrees in order to match the experimental CL. All
subsequent calculations were therefore performed with this value of a.

The sensitivity of the numerical solution to the relaxation length

X0-X in the near wake turbulence model (Equation (2.31)) was

te
investigated next. The flow was computed with the implicit algorithm
using two values of X0 =Xy o di ffering by aﬁ order of magnitude (namely,
0.2c and 2.0c where ¢ is the airfoil chord length). As Figure 8 shows,
the solution was insensitive to variations in the near-wake relaxation
distance. In the remaining calculations, the value X0-Xyo = 0.2¢ was
therefore employed. This value is approximately 85, where & denotes the
average boundary layer thickness at the airfoil trailing edge.

According to a formal truncation error analysis, the numerical

smoothing terms are of high order and therefore their effects on the

accuracy of the numerical solution are seldom considered. In the present

31

......................

B

‘4V¥’
‘." A Pd
ﬁlﬁlkl*

Xy
1 ]
AN

e
AN
s &
Y

\-I"f.l " A" -‘ A."-

?’J‘If_“' Te vt
l{rlﬂf'v"a.:n d L I

=z

4 y ‘%"“.‘ﬁjﬂl‘,‘"

X,
.

- -
! it
3‘;'{

)

g A
:/lfn@ | DO
LASES N L
ANARY | )

g
X
L4

"
|
L]
A
I‘.
SR |
.

.

L

-
-
-

LA

~-
o




AY u ¥ T - e A e g —w ¥ Bt 30 1 al - L e
P bt R RS R il Y S 6 D AR A A A Ul A S /e b A R e BaSe A B A A A T S A Bl IR N e P A e St i et i Biay B e Rty g4 h".“‘
.. -

i

N

1
study, the effects of artificial viscosity on the computed airfoil ;}:':':
viscous flowfield were investigated on a limited basis. Calculations .‘.E
were carried out on the coarse mesh using both codes and different 2-_;‘;
damping coefficients. The results for Cp, C, and Cy are given in J-*"
Figure 9. The variations of C, with damping were slightly larger for f-
Beam-Warming algorithm (Figure 9a) as compared to MacCormack's scheme E.:Y‘:;:‘.

(Figure 9b)., In both cases, the 1ift coefficient remained essentially

unchanged while C, varied by as much as 30 drag counts. Since the

D
effects of damping are expected to diminish as the mesh resolution Z:'."l.':'-
increases, computations were performed on the fine grid using ‘3—;
MacCormack's algorithm with two values for the damping coefficient \
differing by a factor of three. The corresponding variations in CL and _?‘,;
CD with the damping coefficient were 0.3% and eight counts respectively. "'-.".:i:f;-
In order to investigate the effects of numerical resolution, the ,-i

flowfield was computed on all three grid systems (Table 2) using both lj:;'.--_.'

Navier-Stokes codes. The results for the implicit algorithm are

displayed in Figure 10. The computed 1ift coefficient increased
monotonically with increasing resolution unlike the drag coefficient
which did not show any specific trend. The variations in CL and CD
through the second mesh refinement were only 2.2% and 5 drag counts
respectively as compared to 12% and 19 counts for the first grid
refinement. Al though some measure of numerical convergence is observed,
the Cp-distributions (Figure 10) indicate that further resolution on
the upper surface leading edge area is still required. Figure 11 shows

the Mach number contours near the relatively blunt leading edge for the

coarse and fine grids. Besides being much more smooth, the fine grid
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solution makes apparent the existence of an embedded supersonic region

(terminated by a shock) at the leading edge. The corresponding mesh
refinaement results for the explicit scheme, shown in Figures 12 and 13,
displayed a behaviour similar to that of the implicit algorithm. For the
explicit code, the variations in CL and CD after the second grid
refinement were 1,0% and 15 drag counts respectively.

A comparison between MacCormack and Beam-Warming results as well as
between the computed results and the experiments is presented below.
Figures 14, 15 and 16 contain the results for CP, CL and CD on the
coarse, medium and fine grids respectively. The agreement between the
two calculated Cp-distributions improves as the mesh is refined,
However, differences still persist on the airfoil wupper surface
immediately downstream of the embedded supersonic region. The computed
1ift and drag coefficients obtained with the two algorithms on the fine
grid (Figure 16) differ by 1.8% and 5 drag counts respectively. These
discrepancies are acceptable for engineering applications. The better
agreement (in terms of CL and CD) between the two numerical schemes
on the coarse mesh (Figure 14) can only be regarded as fortuitous.

In order to illustrate the importance of viscous effects for
supercritical airfoils, the inviscid flowfield was computed with the
implicit code on the coarse (Figure 14) and medium (Figure 15) grids.
Even for a small angle of attack, subcritical flow without significant
boundary layer separation, the decrease in (:L due to viscous effects is
substantial (approximately 29% for the medium-grid solution, Figure 15)

Referring to Figure 15, the discrepancies in CP and CL between

the fine-grid computational results and the experiments are in part due
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to uncertainties in the effective freestream Mach number and angle of
attack. The better prediction of the experimental 1ift coefficient on
the coarse mesh (Figure 14) simply points out that comparison with
experimental data can be misleading unless proper numerical resolution
criteria are first established.

A detailed comparison of computed and experimental velocity
profiles is given in Figures 17 - 19 for the airfoil upper surface, lower
surface and wake. As expected, the numerical profiles obtained with the
explicit and implicit codes are in very good agreement with each other at
all locations., On the suction surface (Figure 17), the predicted
profiles show higher values for the freestream velocity. This is
consistent with the higher computed C, (Figure 16) and can be
attributed mainly to uncertainties in the effective angle of attack. The
discrepancies between the measured and computed velocity profiles at the
airfoil cove (Figure 18) and in the near-wake (Figure 19) are most 1ikely
due to deficiencies in the algebraic turbulent eddy viscosity model
employed.

A qualitative comparison of computed density contours and the
experimental interferogram is presented in Figure 20. All typical
features of the subcritical flow about the airfoil are discernible and in
good qualitative agreement with the experimental, flowfield. A close-up
comparison near the trailing edge is shown in Figure 21.

It is interesting to compare the uncertainties in the numerical
simulation of different algorithms with the experimental uncertainties
associated with different wind tunnel occupancy periods.4 Figure 22a

shows two measured Cp-distributions for the same nominal subcritical
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conditions. The specific comparison indicates that the experimental
uncertainty is of the same order of magnitude as the discrepancies
between the two numerical algorithms (Figure 16).

3. RESULTS FOR SUPERCRITICAL CASE

Calculations for the supercritical flow case (Table 1) using both
numerical algorithms were limited to the fine grid (Table 2). The
coarser grid systems are not expected to provide sufficient spatial
resolution.

In order to achieve a more meaningful comparison between
computations and experiments, an attempt was made to determine the
effective freestream Mach number and angle of attack. As shown in
Figure 23, computations at the nominal conditions (M= 0.8, a =1,8%)
predicted a shock 1location much further aft as compared to the
experimental data. The freestream Mach number M« = ,765 and angle of
attack ¢ = 0.7° were found to approximate the experimental shock
position., These values were therefore employed in all subsequent
calculations. As suggested in Reference 5, the experimental CP and
CL were corrected to account for the shift in Mach number by keeping a
constant static-to-total pressure ratio, The present computations
indicated that this supercritical airfoil is extremely sensitive to small
variations in the freestream Mach number,

Since the farfield boundary conditions employed in this study are
only approximate (see Section II), the effect of the outer boundary
placement on the numerical solution must be investigated. For this
purpose, the supercritical flowfield was computed with the explicit
algorithm for three different locations of the farfield boundary (namely,
10, 25 and 50 chords away). The results for C C

and C are

P* "L D
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shown in Figure 24 and indicate that as the outer boundary is placed
further away from the airfoil the shock moves downstream with a
corresponding increase in 1lift., The difference in CL between the 25
chord and 50 chord solution is only 1.8%. Although additional outward
boundary placements have not been considered, it may be concluded that a
computational domain extending at least 50 chords away from the airfoil
should be employed for strong viscous-inviscid interacting calculations.
The farfield boundary effects might be 1less significant for more
conventional airfoils or for improved formulations of the boundary
conditions.

A comparison of the computed results and experiments is presented
below. Figure 25 displays reasonable agreement between the two numerical
Cp-distributions except in the vicinity of the shock where additional
spatial resolution in the streamwise direction is still needed. Both
computed solutions failed to predict the measured static pressure on the
upper surface downstream of the shock and on the lower surface cove. It
appears that this discrepancies point out deficiencies in the algebraic
turbulence model downstream of the shock-boundary-layer interaction and
in the cambered region. A comparison of the velocity profiles on the
upper surface, lower surface and wake is given in Figures 26, 27 and 28
respectively. The computed velocities are, as expected, in close
agreement with each other. Discrepancies between the experimental and
computed velocity profiles in the cove and near-wake are apparent.
Finally, a qualitative comparison of the experimental and numerical
flowfields is presented in Figure 29 1in terms of computed density

contours and the experimental interferogram.
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It is interesting to compare the uncertainties in the numerical

results of different algorithms with the repeatiability in the

experimental measurements. Figure 22b, reprinted from Reference 4, shows

the pressure distributions obtained for the same nominal conditions

during two different wind tunnel runs. For this case, the experimental

> uncertainty is found to be of the same order of magnitude as that
encountered in the numerical simulation (Figure 25).

The thin-layer approximation (Equation (2.20)) has been commonly

employed in the numerical solution of high Reynolds number airfoil
26

SN S S YIRS ST TR A AT IR S ;

flows, and justification for its use can be found in Reference 7.

Cd

o ARL GG TET e e

For unsteady transonic airfoils, significant discrepancies between the
thin-layer and the full Navier-Stokes results were observed by Chyu and
Kuwahara.27 On the other hand, Degani and Steger28 found good
agreement between the two formulations when applied to a supersonic
compression ramp. In the present study, the effect of the thin-layer

approximation was investigated for the airfoil supercritical flow. The

r_v
[Py

results, shown in Figure 31, indicated very good agreement between the

»

thin-layer and the full Navier-Stokes solution. Therefore, the use of

LS

the thin-layer equations is fully justified for this particular type of
flows.

To illustrate the extent of the viscous-inviscid interaction
effects for aft-cambered airfoils, the flowfield was also computed using
the Euler equations. As Figure 31 shows, the presence of the boundary
layer modifies the flowfield dramatically. Viscous effects result in a

much weaker shock (displaced upstream) and in a substantial decrease in

S5 T AL MO0 ey

: the "plateau" loading. This is a direct consequence of boundary layer
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comparison of the physical and artificial viscosities.

For the strong conservative form implicit algorithm [Equation
(3.18)], the magnitude of the numerical damping relative to the formal
truncation error leading term can be evaluated as follows.

‘weJ (6;, ' 6:1)(1}/' % (F€€€M2+ GnmnAnz)l -1
The corresponding expression for the explicit algorithm is

70 +D) 1 (F,, 062+ G__An?)

"A"E £ N ‘/l t &8¢ nnn , (4.2)
where O and D, are given by Equation (3.21). If the numerical solution
is not to be seriously degraded by damping, the above expressions must be
smaller than or equal to one. In other words, the smoothing terms must .
be of higher order as compared to the formal truncation error,

The damping-to-truncation error ratio was evaluated for the
computed solutions using Equations (4.1) and (4.2), and the results for

33
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displacement effects which reduce the effective airfoil aft-camber. The
viscous lift coefficient is almost half of the corresponding inviscid
value.

4, INVESTIGATION OF NUMERICAL ERROR DUE TO DAMPING

In the previous sections, the effects of different numerical
schemes, oarid resolution, damping coefficient and farfield boundary
placement were described. An additional assessment of the accuracy of
the computed solutions was performed by evaluating the amount of

numerical damping relative to the formal truncation error and by
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the continuity equation are given in Table 4 (the results for the

SR GN  g¥ 5 o andl S R

remaining equations were found to be similar). The root-mean-square
value of the damping relative magnitude was always less than one.
However, the maximum value was an order of magnitude greater. A contour
plot of the damping-to-truncation error ratio (Equation (4,2)) for the
continuity equation is shown in Figure 31 for the supercritical case.

Only contour values greater than one were drawn for clarity. As

PRV S L Foiiediit, g

expected, the region of large error is located in the vicinity of the

i shock, where the accuracy of the solution is already degraded.

DS

A second assessment of the numerical error due to damping was

performed by comparing the artificial viscosity, introduced by the

v = «q
.

smoothing terms, with the real physical viscosity U + €, This was done

for the explicit algorithm due to the particular form of the damping

terms (Equation (3.21)). Comparison of the damping term D, with the

a8y

r
a

normal diffusive terms in the streamwise momentum equation (Equations

- ¥ &
Pulylv ey 78

(2.1) - 2.4)) yields the following approximate expression for the
Y artificial-to-real viscosity ratio.
.,
o
; 7131428 [ opns
- Martificial . B4 *e |7 ﬁgzlpm
E = (4.3)

|2 (u +¢€)

Sl

: Contours of the above ratio are shown in Figure 32 for both the
subcritical and supercritical case. It can be seen than within the
airfoil viscous region the artificial viscosity is one order of magnitude
L\ smaller than the true viscosity v +e . A similar analysis can be
: performed for the £ ~direction damping term Dg. This term was only found
, to be significant for the supercritical case in the vicinity of the shock

where Dr becomes comparable in magnitude to the normal diffusive term.

39

SYIYOIVY WP 2SS IR LT




& ¥ ¥ ¥y ysvEncrv

I W W E A T e TR T W e ¢ o»

The above results can only be regarded as a preliminary attempt to
assess, a posteriori, the accuracy of the computed flowfields, and
further grid refinement still represents the only conclusive approach for

determining appropriate numerical resolution criteria.

TABLE 4. DAMPING-TO-TRUNCATION ERROR RATIO
FOR THE CONTINUITY EQUATION

Explicit Algorithm Implicit Algorithm
max. rms max. rms
SUBCRITICAL CASE 29.1 0.47 7.1 0.25
SUPERCRITICAL CASE 28.1 0.48 10.0 0.46
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SECTION V
CONCLUSIONS AND RECOMMENDATIONS

In the present study, a critical examination of the numerical
solution of high Reynolds number transonic airfoils was performed.
Solutions of the flowfield about a supercritical airfoil were generated
by solving the two-dimensional Navier-Stokes equations with an algebraic
turbulent eddy viscosity model. The governing equations were solved on
curvilinear body-fitted grids using two different numerical algorithms.
Namely, the explicit unsplit MacCormack's scheme and the implicit
Beam-Warming algorithm. Both subcritical and supercritical flows were
considered, with a total of 23 cases computed.

The numerical uncertainties associated with different schemes, grid
resolution, artificial viscosity and farfield boundary placement were
carefully examined. Numerical simulations produced by the two numerical
schemes with different conservative formulations exhibited nearly
identical velocity profiles and density contours. The maximum

discrepancy between these solutions was generally less than the

repeatable data scattering band of experimental measurements. However,

the uncertainty in the more stringent requirement of the computed Tift
and drag coefficient is still of the order of 2.0 and 20 drag counts
respectively for the finest grid (204 x 55) utilized. Further numerical
resolution, particularly in shock regions, is still required. This could
perhaps be achieved, in a more efficient manner, by the use of grid

adaptation techniques.
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extreme sensitivity of the flow to variations in the freestream Mach

.
A comparison of the supercritical flowfields obtained with the i:iz
Euler, thin-layer and Navier-Stokes equations was performed. The %{;:
thin-layer approximation gave essentially the same results as the full .
Navier-Stokes equations and therefore its use, for this type of flows, is &;i
clearly justified. However, numerical solutions of the Euler equations =
failed to provide a reasonable approximation of the flowfield due to the ;E;;
dramatic viscous/inviscid interaction effects for transonic aft-cambered EEZi
airfoils. ff?
Comparison of the computed results and the experimental data showed i;i;
a reasonable prediction of all of the essential features of the flow. '2253
However, detailed comparison of velocity profiles on the airfoil upper -ﬁkﬁ
surface lower surface and wake pointed out deficiencies of the turbulence —T;E
model in the cove region, downstream of the shock/boundary layer t;
interaction and in the near-wake. “i
The comparison of computed and experimental results was clouded by ESiE
uncertainties in both the measurements and in the numerical procedure. %Eis
In principle, the numerical uncertainties could be reduced to a desired RO
acceptable Tevel. However, the uncertainties in the measurements were iii}
not adequately documented in the experimental study. For the Ei?;
investigated supercritical airfoil, the problem is significant due to the ;:::

number and angle of attack. Therefore, before a conclusive evaluation of

.
I e
R

turbulence modeling can be conducted, an experimental study aimed at the o
i; determination of interference effects should be performed. An ;g:;
;3 alternative and Tess expensive approach of evaluating interference féi;
X effects would be the numericé] simulation of the entire three-dimensional :fii

wind-tunnel flowfield.
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APPENDIX A

CONSTANTS FOR FAR-WAKE TURBULENCE MODEL
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The similarity velocity profile in a two-dimensional incompressible
13
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turbulent wake can be expressed as follows

o) 2

E‘ Umax = U = UD'IF exp (-ﬂ ) (A.])

I

YN

- where

o oo 1/2

- n=1/2 (20T Ve y

N € X

| 0

> U ¢

o _ _ _ o 0, 1/2

L Upir = Ymax = Ymin = 6-3535 ( pX )

-~ . .

- €, s the turbulent eddy viscosity and Umax (2U,) and Umin are the

_-:; maximum {freestream) and minimum velocities, respectively.

L

.

. Assuming |w’~ lau/avl in Equation (2.30), and using Equation

3 (A.1) for the velocity, it can be easily shown that

o4

.,

- 2 2
::Z F=2Up;r n” exp (-n7)

(A.2)
= Fmax = 0.7358 UDiF ;
p ne €0 * (172 RSN
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max o U, s

e
2 eTeld
- t/_"-f_:J
-, Py
<. 'f‘-'.'q
. _'.-_'r‘
=t ’-".‘

X
v g .
‘\l. L]

*afe




b

Yl A A Ay

vegu

)
a" a
-

TEOM

DY

VY :| :

O

e e
A PP )

[ fe N

LA [ ’l

)
at.l

)

O,
o“hee

“ &

’ ...."-"-\- D)

Le
>
o,

3

hn DA S0 A M 5 R Bos Shs S S WP AR B0 AT B i

Substituting the expressions for UDIF’ Fmax and Ymax in
Equation (2.29) and temporarily dropping the term Fk1eb’ for
convenience, yields the following expression for the far-wake eddy

viscosity

€. = N S— €
wk 0.0579 o

Therefore, in order to have Ewk - € the constand ka must be

09
set equal to 0.0579.
For the wake, the constant Ck]eb appearing in Equation (2.28) is

determined as follows

Y
- max
Ckieb = B

where b is the wake half-width'S

£ X
b = 3.798 (-2—) 1/2
OU oo

and Ymax is given in Equation (A.3). The resulting value for Ck]eb

is 0.527.
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APPENDIX B

JACOBIAN MATRICES FOR THE NAVIER-STOKES EQUATIONS

The Jacobian matrices defined in Equation (3.13) are given below.

These matrices are obtained by straight-forward differentiation, after

rewriting the vectors E1, EZ’
in terms of the conserved variables

Jacobian matrix A is

0 Ex
oo &xtoud w(y-2) g, u
e - vl gy -(y-1) &y u

(26-ve) U (ve-9¢) g -t-1)ul

where
6 = 1/2 (v-1) (u + v?)

and U is given in Equation (2.16).

( p/J’

pU/J,

by

-(Y'l)Exv +€y u
U-(Y-Z)iy v
(ve-9) £y-(Y-1)vU

from Equation (B.1) by applying the substitutions

Vv » u
>
r]X E)(
n > F
Y y
45
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0
(v-1)g

(v-1)¢
yUu

Vi» W, (Equations (2.11) - (2.15))
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The Jacobian matrix B can be obtained
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The Jacobian matrix M is

0 0 0 0

,..
Y
Lt

o
w v
< o

1 -(b1 u + b2 v) b1 b2 et
M = ("‘Jf:\‘
e Ao

-(by u + by V) b b, 0

o
L4

B-2)

¥

A
-

-(blu2 + 2byuv + b3v2 by - by Y(Y - 1) u bou + by b,Y(Y - 1)
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where the coefficients bi (i =1, . . .,4) are given in Equation el

.
LA
2

“v “s?

(2.17). The Jacobian matrix N can be obtained from Equation (B.2) by

o]
.‘ 1)
A
RPN

replacing the coefficients bi with the corresponding coefficients di

‘;r,'h >
SESA

. (Equation (2.19)).
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FIGURE 29 Comparison of Computed Density Contours and

Experimental Interferogram, Supercritical Case
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