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THE p AND h-p VERSIONS OF THE FINITE ELEMENT METHOD.

THE STATE OF THE ART

I. Babuyka

Institute for Physical Science

and Technology

University of Maryland %

College Park, MD 20742/USA

1. INTRODUCTION

There are three versions of the finite element method. The classical h-.4
version-, whl~~hachieves he accuracy by refining the mesh while using low degrees
ve. io..yih * - r ?
p of the elements, usually p = 1,2. The p-version keeps the mesh fixed and the ,

accuracy is achieved by increasing the degree p. The h-p version combines both

approaches.

The p and h-p versions are new developments.J The p-version was implemented at

Washington University in St. Louis in an experimental code called COMET-X in the

middle of 1970. The essential part of the code were hierarchic elements. This type

of elements was first considered by Zienklewicz, Irons, Scott and Campbell [1970] in

conjunction with joining finite elements of different polynomial degrees. Hierar-

chic C0 elements were then described by various authors, e.g. Peano [1975], Katz,

Peano and Rossow [1978], Szabo and Peano [1983], Zienkiewicz, Gago and Kelly [1983].

The cohesive description of the p-version has been given in Szabo' [1979].

The first theoretical analysis of the p-version was given in Babu~ka, Szab6 and

Katz [1981]; and in Babuska and Szab6 [1982). The performance of the h-p version

was first theoretically studied in Babu'ka and Dorr [1981]. For theoretical analy- -

sis of the p-version in 3-dimensions, we refer to Dorr [1984] and Dorr [1986]. Ad-

ditional recent results are mentioned below.

For the implementational aspects of the p-version, we refer to Szab6 [1985],

Szab6 [1986] and Szab6 [1986a].

The p and h-p versions for two dimensional problems were implemented in the

commercial system PROBE by Noetic Tech., St. Louis with first release in 1985, and

the second one in 1986 (computations in the present paper are made by PROBE). The

three dimensional finite element code FIESTA having some p-version capabilities was

developed at ISMES (instituto Sperimentali Modelli e Strutture) in Bergamo, Italy,

and since early 1980 this program has been available in USA. A new implementation

for three dimensional applications on Cray computers was begun by the Aeronautical

Research Institute of Sweden (Glygtekniska F6rs6ksanstalten FFA), The p and h-p ver-

sions are used in the industry today.



- Although the p and h-p versions of the finite element method are relatively new

developments, many basic results are available. The aim of t---pPeent paper is to

give a survey of the basic available results and directions for further development.

The paper tries to survey basic theoretical implementational and computational as-

pects of the method as of today. ,'-

2. FINITE ELEMENT METHOD AND THE APPROXIMATION PROBLEM

Let B(u,v) be a bilinear form defined on HI x H2 , where H, and H2  be

reflexive Banach spaces equipped with the norm 1-11 and 1-12, respectively. Let

further F E H2 , i.e. F be a linear functional on H2 .

By the problem {B,F} we denote the problem to find u0 E H, so that

B(uo,v) - F(v) (2.1)

holds for all v E H2 .

If the bilinear form B(u,v) is continuous and satisfies the so called inf- V %

sup condition (see Babu~ka, Aziz [1972), Ch. 5), then the problem [B,F) has unique

solution.

Let now S1 E HI , S2 E H2 . Then the finite element problem [B,F,S1 ,S2) is

to find the finite element solution US1  S I such that

B(us1 ,v) = F(v) - B(uo,v) (2.2)

holds for all v E S2* .0

If the bilinear form B(u,v) satisfies the inf sup condition on S1 X S2 ,

then us1 exists, is unique and

JUs - U01 1 < C(S 1 ,S2 )Z(uo,H1,S 1 ) (2.3)

where

Z(uo,HI,S I ) = inf luo - r[ 1 . (2.4)

W(s~

For detail, see Babu~ka, Aziz [1972, Ch. 6] and Arnold, Babu ka, Osborn [1985]. We

will assume that

C(S 1 ,S 2 ) D (2.5)

where D is independent of SI ,S 2  and hence the norm of the error e - u 0

of the finite element solution is completely given by Z(uo,HI,Sl)

Remark 2.1. We do not need necessarily that (2.5) holds. Nevertheless, as- . _ S

* sumption (2.5) simplifies our conclusions.
"- .. Id°,-

Remark 2.2. The condition (2.5) is satisfied, for example, if H, -H2

B(u,v) = B(v,u), S = S and

*. .
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B(u,u) 1 9 lul 2 0

This condition is satisfied for selfadjoint positive definite problems as in the

theory of elasticity, etc. A

The exact solution u0  is, of course, not known. Nevertheless, we will assume

that it is a-priori known that u0 E K c H1 , where K is a certain set called the

solution set which is compact in HI . We define

Z(K,H1 ,sI) - sup Z(u,H 1,Sl)  (2.6)
u'-K

which characterizes the error under the assumption that we know only that the solu-

tion u0 E K.

Remark 2.3. A typical example is that HI = HI(Q) and

K - (u I ulk( k > 11.

This choice leads then to the classical error estimate of the error of the finite

element solution (h-version):

lel 1 Chl %I " "

H HH n

See, e.g., Babu~ka, Aziz [1972, Ch. 4]. A

There are many results available concerning the characterization of Z(KH I,SI),

the best selection of S1 of dimension n, etc. For an excellent abstract treat-

ment and survey of available results, we refer to Pinkus [1985. e n t
The space S1 in (2.6) is fully characterized by the finite element method, :

its h, p or h-p versions. The set K is characterized by the class of problems to

be solved. Hence, the performance of the finite element method relatively to the

solution set K is described by Z(K,H,S) which will be in the center of our

interest. Of course, others aspects are also essential for the assessment of the

performance of the finite element method. They will also be described In this

survey. e

3. THE MODEL PROBLEM

The performance of the method depends strongly on the class of problems for

which it is used. As said in Section 2, the performance is directly related to the

solution set K under consideration. We will concentrate here especially on the

class of problems which are characterized by the piecewise analytic input data. %

Let c R2 be a bounded domain and its boundary all be a piecewise analytic *-

r
curve r - u r where ri are (closed) arcs with the end points Ai,Ai+ I, . .

1,...,n (An+,1 A1). An example and the notation is shown in Fig. 3.1.

• ,.. %b,
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Fig. 3.1. The scheme of a domain with piecewise analytic boundary.

By Ai, i = 1,2,...,n we denote the vertices of Q and by wi, i - 1,2,...n the

internal angles. We will not exclude the case when the internal angle w = 2n. This

case is very important in practice (cracks) when two arcs (fully or partially)

coincide. " -. ,

Let rD = U and rN r - rD be the Dirichlet and the Neumann boundary,
iEV

respectively. We shall be interested in solving the problem

-Au +u - f on 9 (3.1a)

u - h on rD (3.1b)

= g on rN. (31c)

We will cast the problem (3.1) (for h = 0) into the form of a {B,F} problem. To "

this end let H H I = H2 = H(Q) = u E HI (Q) I u - 0 on rD} where by H1(Q) we

denoted the usual Sobolev space of functions with the square integrable first deriv-

atives. Let

B(uv) f (u L 2 + uv)dx dy (3.2a)daxax ay ay
and 

II::

F(v) - J fv dx dy + f gv ds. (3.2b) ,
rN

If h 0 0, then as usual we write u = z + w with w E H (9), w = h on rD and

z E HI(Q) being the solution of the {B,F1 1 problem with F1  being properly ad-

justed F.

The model problem {B,F) satisfies the conditions listed in Section 2 provided "':'.k-L

'U,- - 1



that f, h and g satisfy some mild conditions as, for example, f E L2(a), g E

L2 (rN) and h E H1 (ri), i E D and h continuous on rD.N. ,

The illustrative numerical computations presented in the next sections are re- .01 .

' lated to the two dimensional elasticity problem, i~e., for the (strongly elliptic)

system of two partial differential equations of second order instead of the simple

model problem mentioned above. The elasticity problem has very similar property as

the introduced model problem but has larger practical importance.

The finite element solution (for h = 0) is characterized by the selection S1

- S2 = S C H1 and all conditions inclusive condition (2.5) in Section 2 are satis- .
fled. If h Y' 0 and h is not a trace of a function in S, then we replace h ' -

by h' which is a trace of a function in S and consider the additional error %

caused by this replacing.

aew Characterization of the solution. Set K relates to the available information
about input data, i.e. the information about r, f, g, h. We will assume that

%'

r is piecewise analytic, f is analytic on 5, g, h are analytic on f This

assumption, namely, that the data are piecewise analytic, is practically always, , ,- ., .

satisfied in the problems of structural mechanics. t

Remark 3.1. In our illustrative computations we will also present the results

which are outside of the above mentioned frame, namely that g is a Dirac function

(concentrated load). Such an example is well taylored for our illustrations, but

needs more refined theoretical analysis which will not be addressed here.

Although our main emphasis will be on the problem with piecewise analytic input

data, we will also mention the results for the more usual solution set K as, for -

example, K - fu I lul k 11, etc.
Usua assmptons__(j

Usual assumptions in the regularity theory of the differential equations of el-

liptic type are based on the theory of Sobolev spaces of finite order, i.e. f E

Hk(Q), g EHI(M), etc., and often the boundary of the domain is assumed to be

smooth (i.e. not piecewise smooth). Such assumptions are not sufficiently realistic

in applications. ither they are too restrictive (smooth domain A) or too general

(f E Hk(g))

To further simplify our exposition, we will assume that 9 is a polygon. We

will make some remarks about the general case.

Remark 3.2. We will also, as illustrative example, deal with one dimensional

analog of our model problem, namely the problem

-u" = f, x E (0,1) = I (3.2a) %

u(O) - u(1) = 0 (3.2b)

with f such that the exact solution uo(x) is

44 "Olm



uo(x) = (x-)'a + a + bx, a > 14 (3.3)

where
x  for x > "

0 for x < .

and a, b are such that (3.2b) is satisfied. Obviously u 0 E H I). A

4. CHARACTERIZATION OF THE SOLUTION SET

As it was said earlier, the solution set K describes the solutions of the

class of problem to be solved. The performance of the method is then directly re-

lated to this set.

Let 8 = (8 .... 8n) be a n-tuple of real numbers 0 < $i < 1, 1 i n. For

any integer k > 0 we shall write B + k - (B1+k,B2 +k .... '
8n + k). By ri(x), .i he._.

1,...,n we shall denote the Euclidean distance between x ( 9 and the points B.

., i - 1,...,n. We denote then X) T r i W and Cx)+k(X)
n i +k ,+k iiaT-Tr i  Wx. The points BI  could be located at the boundary of 9, e.g. in the .'

4ltices Ai or outside. They also can be absent, but we will not elaborate on -at'

this case in this paper.. -

Define now

K1  - fu EH(a) I tIDul2  +2 (x)dx dy) 4  < Cdk-(k-2 )!,

k - 2,3 ... aJ = k. d > 1, d independent of k).

we denoted = (ala2) = + 02 , ai 1 0, i = 1,2, integers and

Du  3lalu
a 1 a 2 

,..

The functions belonging to K, are analytic on B - Bi. If Bi E a, then

they have singular behavior in the neighborhood of Bi, and the character of the %.%

singularity is given by $i and d.

It has been shown in Babuska, Guo [1986] that if the domain Q is a polygon,

B A (i.e. BI  are the vertices) and functions f, g, h are analytic on 0
and ri' respectively, then the solution of the problem (3.1) belongs to K1  for a

properly chosen constants 0, C, d. The case Bi 0 characterizes the solu- -' i

tions with the singularities outside of 9, e.g., when the domain has circular arcs

and h - 0. This case describes also well the case when the natural domain of the

analyticity of the solution contains . .-. ,
The set K1  obviously belongs to the family of countably normed spaces. For %

more about this family, we refer to Gelfand, Shilov [1964].

A-....
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Let us now introduce the more standard family of solutions sets VV

K - u E HI(a) I lul k < C, k > 11 N.,

H (n)

K3  tu E H'(I ll < c, k= > }< '
Hk2( -,..- .'

Y.
K4  = H{u E H 1() u - ri ilog rii 'Pi(ei)xi(ri))

where (ri1ei) are the polar coordinates with the origin in the vertex A., ai >

0 noninteger pi(ei) is a C= cut off function. it

The motivation of the solution set Kj, j = 2,3,4 is that the solution u of

(3.1) can be written in the form

u = u I + u 2 + U3  (4.I)

where J,

u E K2 , u2 E K3

and ~*
% ,'

U3  4- X C C

Functions u, and u3  satisfy the homogenous Dirichlet (essential) conditions,

while u2  relates to the nonhomogeneous Dirichlet conditions. The restriction k2

> 3/2 has been made for simplicity only and can be replaced by k3 > 1. For the

theory leading to the form (4.1) we refer to Kondrat'ev [1967], Kondrat'ev, Olejnik "P'p

<1983] and Grisvard [1985J.

Remark 4.1. We restricted ourself to the problem (3.1) only. The practically

important case of nonhomogeneous materials which is described by the equation

a 2u +-a 'u f
ax ax 3y ay

with a being a piecewise constant on the domains bounded by the piecewise analytic

curves can be handled in a similar way. Analogous situation occurs also when deal-

ing with the problem of elasticity. A ,. .

5. THE FINITE ELEMENT SPACE S

We introduce now the finite element spaces we will deal with later.

For reasons of the simplicity of the exposition, we will restrict our choices,

but our numerical example will also present more general cases.

Let M = {T} be a family of meshes T = (Ti where Ti c Q is an open trian-
gle, called element. Let hi = diam Ti, h(t) = max hi and let Pi be the A'

I- tET 1
diameter of the largest ball contained in Ti. We will assume that U is such that .. .'

for any i E T E EM

'%"" %:%:%

.L.. . '!., .' , , , . .. , " . ' .%



< (5.1)Pi

4.-., Pt.
i

i.e. that all triangles satisfy the minimal angle condition. Further we shall as-

sume that 5 - U Ti and that any pair Ti, rj E T, i j has either an entire
TiET

side or a vertex in common, or their intersection is empty. The number of elements

of T will be called cardinality of T and denoted by M(T).

Remark 5.1. We restricted ourself to triangles only. The results we will pre-

sent are valid more general, e.g. for rectangles, curvilinear, triangles and rect-

angles. A

In addition to a general mesh, we will introduce two special families of

meshes, the quasiuniform and the geometric mesh.

a) The family M , I w Y < =, of quasiuniform meshes: There exists con-
4U,

stant Y such that

h(t) =max h < Y min h
T i T i

i1

holds for any T E My'

b) The family MG'(B 1 ,... B) B. Q 9, j = 1,...,n, 0 < q < 1 1 < k <

- of geometric meshes:
n

Let ti E Mqk, T, n I B =0, then there exists
J=1 31 %"

min d(B i = i(i)

and
; ~~~~- 1-q () 1q' :
-. k -  < <k ,-

. q - h(T ) - q

where by d(B , i ) we denoted the euclidean distance between B. and Ti ,'

Obviously, if T E MU', then M(T) = h-2 (T) and the cardinality M(T) can be
arbitrarily large. If B i, J - 1,...,n, then for any M k we have a

M(T) Q where Q depends on n, 8, q, k. If B E al, then the cardinality

can be arbitrarily large. ,.

Finally we denote S(T,p) - [u E HD() I ul i  is a polynomial of degree

p for any T, E T). By N(S,T,p) - dim S(T,p) we denote the number of degrees of

freedom.
'p)~~, .°. 2(k

If T (M then N(S, ). If T E Bi  , then

S2 and if T E Mqk with B E at), then N(S ,p) p2 l1ogM1(T)I,

Remark 5.2. We assumed only triangular elements. For the rectangular

elements, instead of polynomials of the total degree p, we use polynomials of 0

degree p in every variable. In the case of the curvilinear elements we use the

standard mapped polynomials.

-'-..--74
=
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Remark 5.3. We mentioned only the case when the degree p is uniform, i.e. is

the same for all elements. The available theory covers also the nonuniform,

selective choice of the degrees p. A

Remark 5 .4. The meaning of the finite element subspaces is especially clear in

the one dimensional setting. For example, in the case of the geometric mesh with A• . ' P. '..4"

= 0, then nodal xi points are

x = qM-i, = 0 , M

where q < 1 is called the ratio of the mesh. -

6: THE BASIC APPROXIMATION THEOREMS

We will mention here some basic approximation for H1 = HI(Q), i.e. we will

study the magnitude of Z(K H'(9), S(T,p)). Numerical illustration will be given
S.,

in Section 7.

First let us consider any fixed mesh To and consider the p-version.

Theorem 1. k -1

Z(K2 ,HI(fl),S(To,P)) < Cp' - I  - CN 2 (6.1)

holds for any mesh To (satisfying (5.1)). For the proof, see Babu~ka, Suri [1985].

Theorem 2.

Z(K4,H(Q) ,S(Top)) Cllog pIYp - 2 a Cllog NIYN -a. (6.2)

For the proof, see Babu'ka, Suri [1985]. ..

Theorem 3. t K -K I and Bi  , i - 1,...,n. Then

Z(KI,H D Q),S(To,P)) Ce -ap - Ce - N2  (6.3)

where a depends on Bi, i - 1,...,n but is independent of p. For the proof,

see Guo, Babu~ka [1986].

So far we assumed that the essential boundary conditions are homogeneous. Let

us discuss now the case K3  when the Dirichlet conditions are not homogeneous. Let ,A.

r c rD be any side of an element T ET with the end points Pi' i = 1,2 and 1
let (p be defined on r so that

a) (p is a polynomial of degree p , .
b) p(P )  u(Pi, 1,2, u E K (because u E K3  u H (), k2 >

3/2, u(Pi) is well defined)

c) f (pI' ds - u'1*' ds for any ip being polynomial of degree p and %

O)(P )  0 , i =1,2.

I .. - 1'
4 o .



. lu d4

Now we replace the boundary condition on rD by p, i.e. uS = p and then we %7

get

Theorem 4."

k2-1
1-(k 2 -1 ) 2.-

z(K 3 ,Hl(),S(to,p)) < Cp ( CN 2 (6.4)

For the proof, see Babuska, Suri [1985).

Remark 6.1. In the one dimensional case we can prove more exact theorems. Let

us consider the problem (3.2) with the solution (3.3) and the case of one element

only. Then we have
Theorem 5. Let HI(1) =u' E L2 (1), uCO) = u(1) = 01 and lUlH1  "

lU'IL (I) Then H(I) -

a) if =0 then

€ Z~u O (1),S(p)) = Co(a) P (I+0(1)), [p - ® (6.5a)...
C2) 1 1

pp
with

2C cr(a) 2sin wal (6.5b)
'pC 0 (a) (-b

b) if i < 0, then

1 2)a-1 rp 1 (..6a" ~ ~Z(uoH I) ,S(p)) C C(a )(- - 1-0 +O' (6.6a)

where p p

0 > 0, rw- C1(a )  ar(a)lsin L (6.6b)

11

the form 0(-) is uniform with respect to E £ -c, E > 0 and we have the estima-" 0

tion: if 0 < r 2  1 - , then

WZ(u O ,H0 (1),S~p)) - I p I -  
+ (1-r ) I (6.6c)""''pp

if r 2 -r < 1, then.p
P+1-a a-,]

Z(u0 ,%H( I) ,S(p)) -r+ (1-r) (6.6d)
a~ a-,/

p p 2%

where equivalency constants depend only on a,

NI

c) if 0 < < 1, then there exists a constant C > 0 depending only on a

such that



C[(A) , o < e < -

Z(u ,H6(I),S(p)) < (6.6e)

c(p) , -- _
p

where 6 = min(e,r-O), e = arccos(1-1). On the other hand, if e < 0 , w - E, E

> 0, then there is a constant C(a,E) > 0 such that

2 a -Z(U o,H6o( I) , S(p)) > C(1) .(6.6f)

For the proof, see Gui, Babuska [19863.

If the singularity is outside the domain, the accuracy increases dramatically

with p. In Fig. 6.1 we see the value of Z for a = 1.5 in dependence on E and p. -

---

4..

4-4

aFig. 6.1. The error o£f the p-version with one element. "A*

Let us now consider the h-p version on the quasiuniform mesh r.

, ~Theorem 6. Let K = K2' respectively K3. Then .. -H1U I
1 i-1 (ki-1) - - -(k -1

H( oQ(e p  ( )),S(T,p)) < C(h(T))h (t)p -CN 2p (k-i (6.7), o

=1 min(p+l'kt), i = 2,3..'..'

The constant C in (6.7) is independent of h and p.....

For the proof, see Babuska, Suof e1986a]. ,-" w .m

The estimate for Kt has to be understood in the same way as in Theorem .

Theorem 7. Let K - K2. Then .,. ,. .
(k -.-

Z(K6,H (),S(T,p)) < Cg(h,p,Y)min(ha ,hmn( P-)p 2 a), (6.8)

Theorem . Let K K4. The



where
g(h,p,Y) = max(flog hlY,llog plY).

For the proof, see Babuska, Suri [1968a].

Finally, let us address the case of the h-p version on the geometric mesh.

Theorem 8. Let K = K, and let Bi be vertices of Q. Then there exists a

mesh and the degree p (dependent on the mesh) such that

Z(KI ,(f),S(T,p)) < Ce-a ' (6.9)

where a is independent of N.

For the proof, see Guo, Babuska [1986].

Remark 6.2. If the degrees of the elements are uniform, then the class K1

can be extended. See, Guo, Babu~ka [1986c].

Remark 6.3. In one dimensional setting much more can be said. We will discuss
the case 0 .,..

Let us first ask the question about the lower bound of the error Z(uo,H6(I),

S(T,p)) among all meshes and all degree distributions. The answer is given in

Theorem 9. /( -- a
O 2), HN V'-;-'C.)% q(610

where

q0 (r 1)2.

For the proof, see Gui, Babuska [1986].

Let us now consider the geometric mesh with the ratio q and various degree r-

distribution. We have -..- 5

Theorem 10. As N * * the optimal degree distribution tends to be linear with

the slope

So  (C-2) in q (6.11a)0in r '-. "

with

r (6.11b)

This means precisely that for each i 1,2,... VON

(M) (M)
llm[PM -i MN-1_1) '0-M

N N

For the proof, see Gui, Babu9ka [1986].

For the error estimates with linear degree vector of slopes S we have the follow- s.i '

ing

Theorem 11. For the geometric mesh with the ratio q combined with a linear

% %-



degree vector of the slopes s we have

a) if s > so , then %

Z(uo,H6(I),S(T,p)) C(a,q,s)q 2  (6.12a)

b) if s < so , then

Z(UoH,(I),S(T,p)) - C((,q i6.12c)
C),i(7) so, the

where q= and sO = (-) is teoptimal slope in the sense that the:'-
1hr /2 Nn 2nql

exponential rate attends maximum. Furthermore, the optimal geometric mesh and linear

degree vector combination is given by

q (/2- -1)qop " I)

(6.13) P,- %

s = 2a -1.
op Tp

In this case op

Z(uo,HI(I),S(T,p))= C()[(,/2 -I)2-1)N (6.14) %
• .,,..

In (6.12) - (6.16) the equivalence constants depend on (,q,s), and a, respec-

tively.

For the proof, see Gui, Babu'ka [1986].

Remark 6.5. For the optimal combination of geometric mesh and linear degree

vector, the estimate can be written as

Z(uO ,H (I),S(tr,p)) ,- e (6.15)

and we have seen in Theorem 9 that this exponential rate of convergence is the best

possible one. A

Remark 6.5. We discussed in Remark 6.2 the case of linear degree vector of

slopes s. Let us discuss now the case of the uniform vector of degrees.

Theorem 12. For the geometric mesh with the ratio q combined with uniformly

distributed degree p, the relation between the optimal choice of p and the num-

ber of element M in the mesh is asymptotically linear, i.e.

p - soM (as M )

with so  being the same as in Theorem 10.

For the proof, see Gui, Babu'ka [1986].

The analog of Theorem 11 is:
j. - '

, .4'

4,,"2.-1 kJ?,t"t". .lJ ,, .?a_,':J'J_• "J_ W.'J . r, "a%.l . ,%. /_,_,-.-=F l ]'d= - r 1.d--r. iriI.•-m r .=.r.m = . . .=-, =
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Theorem 13. For the geometric mesh with ratio q and the uniformly distrib-

uted degree p related with the number of elements M by p = sM, we have

a) if s > so , then (, 1 -.N

Z(uo,Ho(1),S(T,p)) C(c,q,S) q((6.16a)

b) if s < so , then

c) if s =s o , then one gets optimal rate of convergence

e- N,/in r ln q
Z(Uo,Ho(I),S(T,p)) - C(a,q) (6.16c)

where

o (a-)in q r - o min(2a-l,e). (6.16d)
ln r I +q"

The optimal combination is also given by -A

S qo = ( 1) (6.16e) J*1 1P

s = sop - 2- 1

and for optimal combination we get

Z(uo,H6(I),S(T,p)) - C(a) [/-1)2 . (6.16f)

For the proof, see Gui, Babuska [1986]. (

Remark 6.6. We can also interpret the optimal h-p version with uniform p as

the envelope of the h version with fixed p. In this case the for N - the mesh

tends to be geometric with the ratio q e-4/e . 0.5820 and the relation between .,

the degree p and the number of elements M tends to be linear with p (4/e 2 )(a_'4)M

- 0.5413(a-/4)M. For more detailed analysis, we refer once more to Gui, Babuska

[1986].--

Remark 6.7. In the case K = K, Theorem 8 holds when we restrict ourself to

the nonuniform distribution of degrees. The result holds also if curvilinear ele-

ments which have to satisfy certain conditions.

In the case when only uniform distribution of degrees is used, then these con-

ditions are weaker than in the general case. See Guo, Babu'ka [1986c]. A

Remark 6.8. We discussed only the model problem (3.1). The results hold for

more general equations. For the higher order equations, see Guo, Babuska [1986b],

and Babuska, Suri [1986c]. In the case of systems of second order or higher order

differential equations, there is much broader scope of essential boundary condi-
tions. For their treatment we refer to Babuska, Suri [1986b]. A

%.4
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Let us now make some comments to the theorems we mentioned above.

a) Comparing the performance of the finite element method with quasiuniform

mesh with respect to the number of degrees of freedom, then the p-version (with few '

elements) perform better than the h-version. In the case that the solution has sin-

gularity of the type occurring in the corner of the domain, the rate of the p-version -.,I'l

is twice that of the h-version. For the h-version there is a classical theorem men-

tioned in the basic books about finite element method

1 Cu-Wl C(p)hiiul (6.17a)
WES(r,p) H () H

n - min(p,k-1) (6.17b)

where C(p) is not specified (more precisely, the proof indicate that C(p) * as

p - =). This leads sometimes to the (false) statement that (6.17b) indicate that

for singular solution it is improper to use higher order elements. NO

b) The h-p version leads to the exponential rate of convergence when the input

data are piecewise analytic. In the one dimensional case, the ratio q - (,- -1)2

is the optimal one independently of the strength of the singularity. In the two di-

mensional case, the ratio of the same magnitude seems to be optimal although de

tailed theoretical analysis is not available yet. Some numerical evidence will be

presented below. For practical reasons q = 0.15 is recommended. -'4

c) Although we mentioned only the simple model problem, the results hold much 4

more generally. We mention especially the elasticity problem.

d) Very important problems arise in relation with the "locking" problem as in

the elasticity problems with near incompressibility (Poisson ratio v = 4)- It has

been shown by Vogelius [1983] that the p (and h-p version) is not influenced by the

locking problem and solves reliably the elasticity problems with nearly incompress-

ible materials without any difficulties. See also Babuska, Szabo [1982].

7. NUMERICAL ILLUSTRATIONS

In this section we will present numerical illustrations related to the theorems

we mentioned in the previous section. .

Example 7.1. Let us consider the plane strain elasticity problem when a is

the L-shaped domain shown in Fig. 7.1.

Let us assume that on ag tractions are prescribed, i.e. rD = g. We will assume

that the solution of this problem is the displacement vector u = (u I u2 ) where .-. .

- r [(K-Q(a+1))cos ae - a cos(a-2)O] q"

(7.1)

u2  r [(6c+Q(a+1))sin a8 - a cos(a-2)]"

where
m . 4
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B A

'I0 E
Fig. 7.1. L-shaped domain.

S . .. (w:J

a - 0.544483737 Q = 0.543075579.

G is the modulus of rigidity and K = 3-4 v, where v = .3. The sides CA and OE

are traction free. The solution has a typical singularity at 0 and is the first

mode of the stress intensity factor solution. Instead of the norm I'I weHICn) '

will be interested in the energy norm which is equivalent to the norm

[I . We then define the relative error I E, R_ elE/lulE

H (0)

First, we will consider the case of the uniform mesh with square elements shown

in Fig. 7.2.

The solution u can be interpreted as a member of the set K1 , with B1  C ,

K2 with k2 = - , E > 0 arbitrary or K4  with Y = C. Interpreting the so-

lution u as the number of the solution set K4 , the estimate (6.2) gives

u-u sI < C min[ha, hmin(a .a)

p - * d

where C depends on a but is independent of h and p.--'

Fig. 7.3 shows the relative error IeIER (for different p) in dependence N..

9 on h (in logleE xllog hi scale). We also show the slope ha in the figure.

We see that with respect to h, the error is in the asymptotic range also for

moderate p and h. Figure 7.4 shows the error in dependence on p and differ-

ent h. Because of the size of the computations the error is given for p > 4 only

for h - V2 , (for p - 4 and h = 1/10 the number of degrees of freedom N = 5119).

The slope p-2a (2a = 1.088) is apparent only for p _ 3. Figure 7.5 shows the ".

error in dependence on the number of degrees of freedom N for various p. Also the

performance of the p-version for h = '/ is shown in Fig. 7.5. We see that the p-

version is more effective than the h-version and that the theoretical asymptotic

slope (shown in the figure) is achieved for moderate accuracy and N.

...............*,.5-*.,* . -.% .. °..., . ° °'° .'.°° --.. . . . ..- o'-.' '..-.... . . . . . . . . . . .'. .,.. . . . . .- _ o' ... .,.- '..°....°'
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r #'
Fig. 7.2. The scheme of the uniform mesh.

40 P

20 _p=3

'5

2 4 6 80 i. ."o

.a.

Fig. 7.3. The relative error measured in the energy norm in dependence on h. -. +

*Remark 7.2. Let us illustrate the estimate given in Theorem 5. Introduce the

numerical constant 1 %

. W Z

where . is the right hand side of (6.5) and Ep - le 1

MES SIZ h(I

Table 7.1 shows the error and the numerical constant R for a - 0.7,

,, 3.5 and FE " 0. We see that for a smaller A Ia quicker than for a larger ... ,

.(i .e. smoother function). ?-

• . . R . -k',*%
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For more numerical results we refer to Gui, Babuska [1986].

So far we addressed the performance of the uniform mesh. Let us discuss now

the performance of the finite method on the geometric mesh. Fig. 7.6 shows the geo-

metric mesh with n = 2 layers and the ratio .15.

40%at I _ l l
w30 I rL

,e -h- 2,2 "

~~ ...

S z 15 I

-- -- ,0 N- N-- ---0 pVE~O

W W

7 78 .0

h- _L _> -

1i 2 3 45 67 8

DEGREE p OF ELEMENTS

," .1

Fig. 7.4. The relative error measured in the energy norm in dependence on p. $"A!

V. 70 --

0 p:3I

2 30 p:2 -VERSION

F5 20 p 3 .

p 0.2722

cc ~ hF 100 0.5

* NUMBER OF DEGREES OF FREEDOM

Fig. 7.5. The relative error measured in the energy norm in dependence on v.

Fig. 7.7 shows the performance of the p-version for various number n of layers

in logleIR x log N scale. Fig. 7.7 shows also for comparison the performance of . "

the method on the uniform meshes shown in Fig. 7.2. We see that for every number of

layers the rate is N. 54 4 1  where N is sufficiently large (dependent on n), and

that the error has the reverse S slope form. In the first phase the accuracy Is , .-

exponential (curved down) while in the second phase the accuracy is an algebraic

one. Further we see that the optimal number of layers and the degree p depends on

%
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the required accuracy. We will return to this question later in the discussion of

the expert system for the h,p version. See Section 11. Fig. 7.8 shows the relative 6,J.

error in the logeIE2 x N1/3 scales. We see that the envelope of these curves

which characterize the performance of the h-p version is nearly a straight line as

it has been theoretically indicated by Theorem 8.

TABLE 7.1. The error and the values of the numerical constant
in the one dimensional case.

a 0 .7 a "3.5 V,.

p

A Ap E E.

1 4.743 E-1 0.9877 1.021 0.2032
2 3.627 E-1 0.9967 3.402 E-1 4.335".o P
3 3.090 E-1 0.9985 3.093 E-2 4.488
4 2.756 E-1 0.9992 2.379 E-3 1.940 " .,

5 2.522 E-1 0.9995 4.760 E-4 1.1480
•. 6 2.344 E-1 0.9996 1.1400 E-4 1.300

7 2.204 E-1 0.9997 5.154 E-5 1.208
8 2.090 E-1 0.9998 2.210 E-5 1.153
9 1.994 E-1 0.9998 1.057 E-5 1.118 NIP -04

10 1.912 E-1 0.9999 5.1495 E-6 1.094
11 1.840 E-1 0.9999 3.053 E-6 1.077
12 1.777 E-1 0.9999 1.790 E-6 1.064"
13 1.722 E-1 1.000 8.999 E-7 1.054l
114 1.671 E-1 1.000 6.978 E-7 1.046
15 1.626 E-1 1.000 4.585 E-7 1.040

I C
S B

A n:2

N

Fig. 7.6. The geometric mesh with n -2 layers.

%.°%°.
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P-11~. J .' .

. i I WI ~ 4 b~

't ::-\ \ -,, 02722 ;7 \.2 6

n- 0. 
%[3

L~~~a . - 3 I

a - p.5 -LJl . %, I Ir

400 80000 O 04000 0000

pMBR OF OERES OF FF13OM %

Fig. 7.7. The performance of the p-version on various meshes in the scale
log le1,R log N.

The envelope together with the optimal pair (n,p) is shown in Fig. 7.9,

together with the approximate straight line.

The p and h-p version has various properties which are essentially different

from the h-version. We already mentioned the robustness of the p-version with re-

spect to the Poisson ratio (the nearly incompressible material). Let us discuss now

briefly the "pollution" problem which describes the influence of the locally un- r%,

smooth solution. For the h-version the well known interior estimate shows that the

influence of the local unsmoothness of the solution is also local. For the p-version

the effect is not so local as for the h-version. To illustrate this effect, let us

solve the plane strain elasticity problem (v - •3) loaded by the concentrated load .

(Dirac function) as shown in Fig. 7.10. On the sides BCDC'B' the tractions are

prescribed so that the exact solution is the classical Businesque solution on the %"\ %

half plane (hence B'AB side is traction free). The energy of the solution is infin-

ite and hence the usual theory has to be generalized. We will be interested (be-

cause of the obvious symmetry) in the finite element solution and its accuracy on

(shadowed in Fig. 7.10). As before, we will measure the accuracy in the energy

norm. The meshes used for the computation are shown in Fig. 7.11 (only half of the

domain is shown). The domain 9 is once more shadowed. The minimal (pollution

free) error on f is the error of the finite element method when the exact trac-

tions are prescribed on aL.

Fig. 7.12 shows the error leIE(O) for the meshes I-IV and the "pollution

free" error. We see that the p-version for any shown mesh does not converge al-

though for three layers the error is in the range of engineering accuracy. For ',,
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Fig. 7.9. The performance of the prinomeh-p veion. vaiusnmbro
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A.u

Mesh I Mesh 1U Mesh [[[ Mesh -.

-,, 1 0o.15,

~ -I 0.50.152 0.510.15 - 0.15 - 0.15

Fig. 7.11. The meshes used for the computation. .

-4 39.00

I __ Mesh I2I_-5 14.36 :,

-6 ] 5.29 -

-7 ~ Mesh D 1.94
- =

-81 1 0

-'- -8 - - 0.72 "

SMesh Ml'"% --" '
-9 026.

%0
-io Mesh

0.10
Pollution Free-11 -" - 0.04

I 2 3 4 5 6 7 8

p-Degree

Fig. 7.12. The error lelE() of the p-version and the "pollution free" error.

more details we refer to Babuska, Oh [1986]. Similar situation occurs also for %

weaker singularities and a high accuracy, e.g., in stresses. The accuracy has to be

achieved in practice by "filtering" out the singularity influence by using few

layers (in dependence on the strength of the singularity).

8. SOME IMPLEMENTATIONAL ASPECTS

The h and h-p versions of the finite element method give a large flexibility in

the change of degrees of the elements either uniformly or element by element. This

has to be respected in the architecture of the program. One of the essential features

is the use of the hierarchical shape functions. In the most simple setting of a squar-

master element shown in Fig. 8.1. The hierarchical shape functions are as follows:
We have 3 kinds of shape functions

a) The modal shape functions Ni(&,n).
I

P..'?'
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Fig. 8.1. The scheme of the master element.

b)~~~~~~. Th id.hpefntin

b) The idtera shape functions Ni(n).

The index above describes the dimension of the part of the element associated with

the shape functions.

a) The nodal shape functions Ai (&,n), i - 1,...,4 are the usual bilinear

functions associated with the four nodes.

b) The side shape functions N1C,r) i - l...,lI(p-1). Let

Pi f~ I(x)dx .

*where I 1 is the Legendre polynomial. The the side shape functions asso-.DA

ciated with the side -1 < E < 1, n 1 are

N P() .Ifl1

and hence we have 4(p-1) side shape functions.
2

c) The internal shape functions N(,r) i 1,...,(p-1) 2. The internal

shape functions are
2 .
N PC (VP j 1, k > 1.

k kV

The number of the internal shape functions can be reduced as in the case of the 4

serendipity elements. In this case the total number Q of all of the shape func-

*tions is0.'"r
1 9

Q - 41p + max(O,2.(p-2)(p-3)

*as used in the program PROBE. See Szabo' [1985]. Probe uses 1 p 8.

The shape functions are called hierarchical because the increase of' p leads

only to the addition of new shape functions. The use of the integrals of Legendre
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polynomials has essential advantages in the connection with the round-off error con-

trol.

The hierarchical type of this elements leads to the construction of the local
stiffness matrix by bordering technique when p increases. The same structure can

be achieved for the global stiffness matrix. This character then allows the flex- Vr

ibility to change the degree of elements and its use for the quality control and

adaptive approaches.

So far we mentioned only the square elements. Similar hierarchical structure

can also be used for the triangular elements.

The p-version (and h-p version) utilizes large elements. Hence it is important

to deal properly with the curved boundaries. It seems to be advantageous (as imple-
mented in PROBE) that the boundary is described exactly and not to be approximated,

e.g. by polynomials. This is achieved by using blending function mappings. This

approach, of course, leads to the loss of the important rigid body motion property ,

of the isoparametric elements. Nevertheless, if the boundaries are smooth, e.g.

piecewise analytic, then for higher p (say p = 3-4), the effect of this loss is in %

practice negligible as shown theoretically and by experience with PROBE. In addition,

the quality control indicates also this possible effect (see also, Section 10).

The architecture of the p-version finite element program has essential differ-

ences in comparison to the h-version. We mention here the type of meshes which are

used which influence the mesh generator and many other aspects, We will not elaborate

more. 4

%..

9. THE ASSESSMENT OF THE COMPLEXITY AND THE COMPUTATIONAL COST

The cost of using any finite element code consists of the computer cost and the

human cost. The relative part of the human cost growths due to the progress in the
hardware development and is often the major part of the computational analysis.

Hence, the assessments of the complexity and the total cost of the method is very

subtle topic. Some of the aspects will be also discussed in Section 12 where the use

of the h-p version and the experience with the code PROBE in the industry will be

addressed.

The computer cost of running the code consists of the cost of the basic compu-

tation itself, the cost of the assessment of the quality of the results and the cost

of various "bells" and "whistles" and the "niceties" for the user which any commercial

code has to have. The computational cost depends also on the robustness of mesh

design criterion and selection of other parameters leading to the desired accuracy,

and how effectively the user is able to make the proper choice of these parameters.

The computer cost is the cost of numerical operations and the 10 cost which often
can be the main cost. This makes any comparison a difficult task. It seems that

one of the best ways is to compare various codes in an industrial environment (see

also Section 12).
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Z' .
In general we have to relate the cost of the achieved (a-priori given by the

user) accuracy and the assessment of the reliability of the computed data (see also

Sections 10 and 11). In previous sections we measured the effectivity of the method

by the relation between the accuracy measured in the energy norm and the number of

degrees of freedom. Of course, the number of degrees of freedom does not reflect

some aspects of computational effort as the computation of the local stiffness ma-

trices, the influence of the sparsity of the global stiffness matrix and hence more

detailed analysis both theoretical and experimental is in place. The only count of

arithmetical operations, although important, is not sufficiently realistic basis for

the computational cost. Hence, very likely the most reliable way is to write a pro-

gram which implements the method and analyze its performance. To this end, we used

part of the program PROBE adjusted to given purpose. Although the results depend on

the programming, the computer, compiler, etc., the assessment based on such an anal-

ysis is the most reliable technique.

The major parts of the finite element computations are

a) input, treatment of the geometry, controls of the input, etc.

b) Computation of the local stiffness matrices and load vectors.

c) Assembly and elimination procedure.

d) Postprocessing inclusive accuracy assessment.

We will address here only parts b) and c). To analyze this question, let us

consider the mesh shown in Fig. 9.1 with r < m.

We mention that his mesh is topologically very close to the mesh shown in Fig.

7.6 (r - min(6,n+1), m - max(6,n+l)) or in Fig. 7.11. The cost of the parts b)

and c) of the computations dealing with the examples treated in Section 7 (Figs.

7.5, 7.11) is essentially the same as when dealing with the mesh of Fig. 9.1 for

properly chosen r and m.

3m

Fig. 9.1. The mesh for the complexity analysis.

Let us now count the number of operations for the two major parts b) c) men-

tioned above for the elasticity problem (2 unknown functions)

a) Computation of the local stiffness matrix. It consists of

1) Computation of the values of the shape function and the Jacobian in

one Gaussian point. 3..-"

2) Computation of the values in - p2 Gaussian points and the sum-

,' 3. . .. ,
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mation for obtaining one of the entries of the local stiffness matrix.

3) Computations of all entries - p4 of the local stiffness matrix.

4) Computations of mn local stiffness matrix.

The crude operation count indicates that we can expect s - mn p operations.
Nevertheless, this count is deceptive as will be seen below.

The number of the shape functions is

Q - [4p + max(O,4p-2)(p-3))]2 (9.1)
S - i

(the serendipity type of elements are used and hence, for 1< p 8 the

second term is not too large and the number of the shape functions is closer

to - p than p2 . The number of Gaussian points used is 2[- + 2 where [a]
to 2

denotes the integral part of a. A careful programming leads then to - p
.- _ -.

operations in the given range. In Fig. 9.2 we show the time for computations

of 25 local stiffness matrices (m = r = 5) in dependence on p in the dou- %

ble logarithmic scale (time units on VAX). The straight line with the shape

4 confirms the rate p we expected. The minor "wabling" of the time curve

is caused by using only even number of the Gaussian points.

b) The assembly and elimination form m > r. The frontal solver has been used

which joints the elimination and the assembly. The front is of order rp (when

properly counting (condensation approach) the dealing with internal shape functions.

Hence, one can expect the time is of order - (rp)2 mrp = mr3p3 . Fig. 9.3 shows the

""% :

256 %

64

t~~ ",""'-

1 6 4 _"

4'/
2.L.........

1 2 3 4"5-678

Fig. 9.2. The computer time for computation of 25 local stiffness matrices.

I•.

* . .. . ' ' .'



---- *.~- '~i . . ~-. .7.. -7 7 -7- *.*P -.j 7w -. -CI

27

time in dependence on p for various values m and r. The slope p3 is depicted

in the figure which agree with the expectation. e d

Fig. 9.4 shows the time in dependence on m with m = r and different p.

The slope of m 3  is shown in the figure. We see that in the given range, the rate

is closer to m 3  than to m 4 as one could expect. For small p and m the tests

are outside of the asymptotic range which had to be expected.

Analyzing Figs. 9.2-9.4 and the experience, we see that the number of opera-

tions for the h-p version with number of layers roughly proportional to p (see,

e.g. Fig. 7.9) leads to number of operation of order No where 1.5 K a 2.5,

where with p Increasing a Increases. The conventional h-version with p

1,2 will practically never lead to the accuracy of order of 1% for any reasonable

computational effort if the problem is not very simple. Nevertheless, for small

accuracy, a small p is desirable (see Fig. 7.9). Hence, the proper design of the
mesh and the degree of elements is very important. This will be discussed in the

next two sections.

The method is very robust with respect to the mesh design whcn some basic rules

are observed. The accuracy can be obtained by using higher degree without changing

the mesh.

512 - -

- 2x2 50x5

256 +- 2X2 __5x5

05 ----- o 3X3
5 x5 6x3 .

128 o----a 3xI-
_-1/ 5X2- -- I O x I !5 X 2, .

64 o----o ox2 10 x 2 3X3

lox I
j 32

+x I V

..,.

I *2 3 4 5 6 78 Vie% ,
- p _.-

Fig. 9.3. The time of the assembly and the elimination in dependence on p, m, r.
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0-01 0-6
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128 .- 5 --
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64 1 -- "5
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16 33

I,,%
4

-. , .* '
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Fig. 9.4. The time of the assembly and the elimination for r m.

10. A-POSTERIORI ASSESSMENT OF THE QUALITY OF COMPUTED DATA %

An essential part of the computational analysis is the a-posteriori assessment

of the quality ot the obtained results of interest. (For the survey of the main

ideas for the quality assessment, we refer to Noor, Babuska [1986)). Although the

energy norm is basic measure of accuracy, it's mostly not the most relevant measure

for engineering purposes.

The basic and practically most efficient method for assessment of the accuracy

of the data of interest is comparing computed data obtained for various p and use

of the extrapolation method. The computed data can be of various type inclusive

various equilibration checks, etc. Although PROBE provides many reliability checks,

theoretically the a-posteriori quality assessment is the least mathematically under-

stood part of the computation.

The assessment of the error measure in the energy form is the basic one and
relatively easiest to obtain because le1E -E E -EFE where EE (respectively EFE )

,. %,.

is the strain energy for the exact (respectively, finite element) solution and EFE

increases with increase of p. As we have seen earlier, the rate of convergence of

the p-version with properly designed mesh is higher than the algebraic one. Hence,

one can, for example (as implemented in PROBE) assume that ,.:.-.'-
,, .

2 (E EC (p)
IE - E FE

j. %P~ % f*~~*~
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with C and 8 to be computed from 3 consecutive degrees p - 2, p-1,p. Because ,
of the reverse S property of the accuracy mentioned earlier 8 growths with p

and then decreases to the limiting value when algebraic rate is achieved. The de-

sired accuracy should be practically achieved in the range of p when 8 is about

maximal. This gives an indication of the quality of the mesh for given accuracy.

We will illustrate the approach on our L-shape problem with the mesh of two

layers (n = 2) discussed in Section 7. Table 10.1 gives the basic data. Column 5

is the value of the energy norm in % of the true error. Column 7 shows the relative

error in % (C.P.R.E) when computed from the current values p - 2, p - 1,p of the

degrees. Column 8 shows the error (PRE) computed from the predicted strain energy

for p = 6,7,8.

Coming back to Fig. 7.8 we see that the value p = 4 4-5 which is indicated

by 8 as the optimal one is close to the envelope of the curves. The predicted

error CPRE is more reliable in the phase when 8 is increasings than decreasing

which is obvious because of (10.1). Nevertheless, as a whole CPRE is very reliable. '

Obviously, PRE is very accurate for lower p. M .

The reliability of the estimation we have shown above is closely related to the- -.*
monotone behavior of the error. Nevertheless, it is necessary to estimate also

other values of interest. We shall show the computation of the stress intensity

factor K for the case of the L-shaped domain analyzed in Section 7. The method of
computation of this stress Intensity was developed in Babu~ka, Miller [1984] and 4- L
Szabo, Babutka [1986). It has been shown that this method gives accuracy which is

roughly as the accuracy of the strain energy (i.e. the square of the energy norm

error). Table 10.2 shows the values of the stress intensity factor (normalized to

value 1). For more, see Szab6, Babu'ka [1986]. In contrast to the energy, we see
that the error changes sign and is not monotonic. This, of course, complicates the

%% ..g.%

extrapolation procedure.

Finally, let us show a more complicated example (where the exact solution is ,--

not known) of the cracked panel as shown in Fig. 10.1 with the used mesh. ? 9 *'.

Table 10.3 shows the values of the first and second stress intensity factor - -.

K, and K1 I.

The program PROBE has built in additional quality tests based on the equilib-

rium testing so that the user can place maximal confidence in the data of interest. _-

Let us underline that because of the hierarchic structure of the program the

computation for different degrees can be arranged in a computationally very effec-

tive way. " •

As we have seen, it is important to select effectively the parameters of the h-

p version, i.e. the mesh and the degree of the elements which lead to the desired

accuracy of the computed data of interest. This can be done by a feedback (adap- ,

tive) approach or by help of an expert system or by the combination of both.
•*
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TABLE 10. 1

2 3 4 5 6 7 8

lelIE
p N FEEi- C. P. R.E. P. R.E.

*1 41 3.88608797 2.684 (-1) 25.41 - 25.41
*2 119 4.12483255 2.971 C-2) 8.45 ---- 8.45

3 209 4.14811501 6.429 (-3) 3.93 1.93 5.34 3.91
4 335 4.15265042 1.893 (-3) 2.13 2.76 2.02 2.09

*5 497 4.15362580 9.084 (-4) 1.47 3.05 1.01 1.41
6 695 4.15297464 5.695 (-4) 1.37 2.45 .80 1.10
7 929 4.15413900 4.052 (-4) .98 1.83 .75 .89
8 1199 4.15423777 3.064 (-4) .85 1.39 .74 .74

- - 4.15454422

TABLE 10.2

1 2 3

p N K

1 41 .95268
2 119 1.02177
3 209 1.00250 . . **

4 335 1.00073
5 497 0.99991
6 695 0.99985
7 929 0.99987

*8 1199 0.99990

- - 1.00000

a6P

2-

DETAIL aA7

Fig. 10.1. Scheme of the cracked panel.
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TABLE 10.3 _

I 2 3 4 ,,

p N KI  KII

1 43 .42259 -.37480 ,.
2 125 .55588 -.25578 el k
3 221 .56161 -.28951
4 355 .59232 -.28319

5 527 .59825 -.29398
6 737 .60043 -.28897
7 985 .60119 -.29196
8 1271 .60132 -.29042

11. THE EXPERT SYSTEM AND THE FEEDBACK APPROACH

Remark 11.1. In Gui, Babu5ka [1986] (Part III) we developed and theoretically

studied a feedback system which leads to the simultaneous selection of the mesh and

(nonuniform) degrees of elements. This study has shown that the adaptive approach .

for the h-p version, based on similar principles as for the h version, is very corn-

plicated and other approach has to be likely considered. A

The feedback system for the p-version with uniform p (i.e. for fixed mesh)

can be relatively easy implemented. We have seen in Sections 8 and 9 that the hier-

archic structure of the p-version allows effectively change the degree. Hence, the

feedback of the p-version for the given mesh consists of successive computation for

increasing p until the value of the interest will have admissible accuracy. The

main question is what is the ratio of the cost of the entire computation to the cost

of the final one. Assuming that most ineffective computation mode, i.e. independent

computation far every p starting from p - 1 and that the cost W(p) of the com-

putation for degree p is W(p) - CpOL the ratio for (1 p 8) for a - 3

(respectively, a - 4) ranges from 1 to 2.5 (respectively, 2.1 4). Hence, a

more effective computation arrangement exploiting the hierarchic structure leads to

the ration in the range 1.5-2 at the most. This ratio is very comparable with the

ratio in the adaptive approaches based on the h-version for the energy norm accura-

cy. The feedback p-version can be easily used for any accuracy definition.

Above we have assumed that all computations starting from p - I are made and W 'p

that the mesh is given. The aim is obviously to construct the mesh and p - p0  so :% e%

that the desired accuracy is achieved and to compute only the solutions for p -

pO (which is very cheap because of the hierarchical structure) to get the error

estimates based on the extrapolation procedure.

Recently, a lot of progress has been made in the general developing of the .

knowledge based systems (expert systems) in general (see, e.g. Waterman [1986],

Hayes-Rogh, Waterman, Lenat [1984]) and various attempt has been made to apply the

~ ... ** 4 % P . ~ .. ~ .-/*.~..**..-- .
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system for computational mechanics problems (see e.g., Taig [1986). Fenves [[1986)).

In Babu'ka, Rank [1986] and Rank, Babu~ka [1986] and expert system was developed

which advises the user how to use the h-p version in an effective way. One of the P

main problems is to develop the set of rules which is then utilized in the system.

The finite element analysis can be essentially separated into two parts, the .

decision phase and the execution phase, which carries out the decision although '-
these two phases are often interwoven. The adaptive approach combines these two,

phases very tightly when user supplies only the basic data and the program takes

care about the entire process. The approach in the expert system mentioned above,

clearly separates the phases of decision and execution and adds the part of the ad-
vise and communication. It is using theoretical mathematical results mentioned in

previous sections in combination with heuristics. The system was developed for "d.?"'

treating polygonal domains and accuracy measured in the energy norm. We will show

now an example. For more details, we refer to Babu;ka, R&ik [1986).

Let the problem be the plane strain of the "cracked wre,,!h" (symmetric) domain ...

shown in Fig. 11.1. The first task is the construction of the geometry mesh. Fig.

11.2 shows it. From the theory of the h-p version, it is known, that areas in the

neighborhood of the corners (entrant) are critical and have tu be Jealt with. The

user is advised about it and a basic mesh which separate the critical areas is con-

structed. Fig. 11.3 shows this basic mesh. Program then computes rough solution on

basic mesh, computes the few stress intensity factors for every corner and computes

an optimization problem leading to the highst accuracy for the minimal cost, and

gives for given p the (optimal) distribution of layers. Based on this computation
the expert presents the user with the relation between predicted error and cost (N)

for the optimal mesh computation. Fig. 11.4 shows this graph. The user selects the- .

accuracy and the program constructs the mesh for final solution. Fig. 11.5 shows

this mesh (not all layers are shown). For example, the mesh for the error 1.8% (re-

spectively 1.3) leads to the predicted optimal degree p = 4, N - 2101 (respec-

tively 2517) and number of layers shown in Table 11.1. We denoted by SL (column 1)

the number of the critical area as shown in Fig. 11.1 and by L the suggested number

of layers in this area. The computation on this mesh leads to the errors 3.1% and

2.6%, respectively.

We see that the predicted errors are good quality although not perfect what

could be expected. Nevertheless, the optimal distribution of the layers was

predicted correctly.

If the error 3.1% is not acceptable, then p can be increased in the adaptive

mode. In our case, this would mean to increase N to 3059 which will lead to the

error 1.9%. (The other possibility is to construct the optimal mesh for higher -

accuracy.) •• --

Let us mentioned that the expert system we outlined cost about 10-20% of the .,..J....

entire computer cost.

,'%--- -%
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TABLE 11 .1
%~ %

N- 2101 N =2517. .

1 2 1 2 1 2 1 2

ISN L SN L SN L SN L I

1 3 6 3 1 3 6 3
2 2 7.2 2 3 7 2
3 2 8 2 3 4 8 2

4 9 3 4 4 95 5 3

I~~~ 8 -I,.
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Fig. 11.3. The basic mesh for the cracked wrench problems. 
. ..

17 p=2 
. ""

2? p=5
P=4,

1500 1000 2000 3000 , ,

Number of degrees of freedom N I N.

Fig. 11.4. Predicted error for cracked wrench problem. 
." ,

.,-.€. So,

lb.;1.0

Fig. 11.5. The final mesh for cracked wrench problem., 
.#'.
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Fig. 11 .6 shows the actual error for the meshes and degrees shown in Fig. 11 .4.

Finally, let us underline that the expert system and the problem of the optimal

mesh design is in a very beginning stage.

___ __ '.. .

'. ,. ..

00 I0002000 3000 "-'
Number of degrees of freedom N

Fig. 11.6. Actual error for cracked wrench problem...-

I12. INDUSTRIAL EXPERIENCE WITH THE p AND h-p VERSIONS OF THE FINITE ELEMENT METHOD. ;

As was said in Section 1 the p-version of the finite element method was first -

introduced in USA when the program FIESTA was released - Peano, Walker [1981). The j%

first release of FIESTA had elastostatlc capabilities for solving three dimensional A,.
*problems. The p-extension (i.e., increase of p) was possible through the specifi,-,

cation six group of hierarchic basis function corresponding to polynomial degrees e

*ranging from 1 to 4I. The program had appealed to engineers mainly because it al- '_, 1

*owdteuse of coarse meshes and therefore simplified data preparation tasks.

Visual checking of the mesh in three dimensions is generally very difficult and ,.-

often impossible when the h-version is used.,,...%..

The industrial users are usually far more concerned about human time than ma- ,..

chine cycle requirements but thus greatest concern is the elapsed real time between e

*problem definition and delivery of a reliable solution. This is because the costs "l

associated with numerical analysis are usually negligible as compared with the con- "'

sequences of not being able to deliver correct solutions on time within the project..",

schedule prescribed by management. :.>
The first release of the program PROBE was introduced to the aerospace industry I'

in June 1985 by Noetic Technologies Corporation, a St. Louis firm. This release had

*capabilities in linear plane elasticity only. The second release also has capabil--..

ities in linear two dimensional heat transfer, axisymmetric and planar thermoelas- •.
ticity. The first, release was~ot_ Interest mainly to~airframe designers, whereas .the""1-'-

13. ... "' " .' .
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second release is also of interest of engine designers.

The program PROBE was extensively tested and is used very successfully in the

industry, e.g., in the analysis of orthotropic panels, various cut-cuts fracture .=,
•4%

mechanics, problems involving laminated composites where the peeling stress was of

primary interest, etc.

Engineer users consider various features to be of important for them and judge

the programs and methods accordingly. The features are as follows:

1) Increased level of confidence in the computation. The usual observation of

the convergence of the data of interest (not only the energy norm) and various addi-

tional tests as equilibrium checks (having physical meaning), etc. give the user the . .

confidence in the computational analysis. (For some comments, see Section 8.)

2) Lower human time requirement due to simplicity and flexibility of input.

In an industrial test 30-40 fold saving in human time were reported in comparison

with conventional finite element technology (Barhart, Eisemann [1986]).

3) To get rapid convergence and flexibility, e.g., when large aspect ration

have to be used as e.g. in the case of composite joints. 4-....

4) The flexibility of mesh design, e.g. in fracture mechanics following the

crack growth, series of short cracks, optimal design problem, etc. (e.g. Schiermein, dj

Szabo [1986]).

5) Easy learning and robust performance. -'

The p and h-p version is very well responding to needs of this type. Never-

theless, further new features as dealing with plate shells, fabricated plates, e

dimensional problems, nonlinear analysis need to be developed.

13. RELATION TO SOME OTHER METHODS

The p and h-p versions of the finite element method has a relation to todays

form of the spectral method. The spectral method (see, e.g., Gottlieb, D. D.,

Hussaini, Orszag, [19843)expands the solution of the problem in high-order Fourier

or polynomial series, the coefficients of which are determined by weighted-residual

projections. The spectral method is used in the fluid mechanics, for example, in

the problem of transitional and low Reynold number, turbulent incompressible fluid

flow in simple domains. Recently, the research of the spectral method is focused on

extensions to more complex domains. The spectral method uses Galerkin type approach

and is assuming that the conditions (2.5) holds. The spectral method is, with the

use of polynomial approximation, closely related to the p-version with differences %

in applications and implementations. See Patera [19863 and the references given

there. The pseudospectral method can be viewed as the Galerkin method with the nu-

merical integration technique.

The spectral method was traditionally analyzed in the context with smooth solu- '4% .4-

tions. Only recently the needs of copping with the singularities and geometries in .1%_

the spirit of the h-p version is seen.

, ., :::,
.. "_.."e,''
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The p-version is also related to the Global Element Method by Delves Phillips %

[1980].

The p and h-p versions of the finite element method is relatively well devel-

oped and taylored for the needs of general problems in structural mechanics as we

have been seen in previous sections. The family of spectral methods which is ap-

plied in the field of fluid mechanics has various aspects which are related to the p "

and h-p versions discussed in this paper. ,
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The Laboratory for Numerical analysis is an integral part of the ..

Institute for Physical Science and Technology of the University of Maryland,
under the general administration of the Director, Institute for Physical
Science and Technology. It has the following goals:

o To conduct research in the mathematical theory and computational
implementation of numerical analysis and related topics, with emphasis
on the numerical treatment of linear and nonlinear differential equa-
tions and problems in linear and nonlinear algebra.

o To help bridge gaps between computational directions in engineering,
physics, etc., and those in the mathematical community.

o To provide a limited consulting service in all areas of numerical
mathematics to the University as a whole, and also to government
agencies and industries in the State of Maryland and the Washington
Metropolitan area.

o To assist with the education of numerical analysts, especially at the
postdoctoral level, in conjunction with the Interdisciplinary Applied
Mathematics Program and the programs of the Mathematics and Computer
Science Departments. This includes active collaboration with govern-
ment agencies such as the National Bureau of Standards.

o To be an international center of study and research for foreign
students in numerical mathematics who are supported by foreign govern-
ments or exchange agencies (Fulbright, etc.)

Further information may be obtained from Professor I. Babuska, Chairman,
Laboratory for Numerical Analysis, Institute for Physical Science and
Technology, University of Maryland, College Park, Maryland 20742.
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