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version.'yhichgzchievesjbhe accuracy by refining the mesh while using low degrees

THE p AND h-p VERSIONS OF THE FINITE ELEMENT METHOD.

THE STATE OF THE ART

I. Babu3ka
Institute for Physical Science
and Technology
University of Maryland

College Park, MD 20Tu2/USA

1. INTRODUCTION

There are three versions of the finite element method. The classical E;;)
p of the elements, usually p = 1,2. The p-version keeps the mesh fixed and the
accuracy is achieved by increasing the degree p. The h-p version combines both
approaches. v G R

The p and h-p versions are new developments.J/}he p-vérsion was implemented at
Washington University in St. Louis in an experimental code called COMET-X in the
middle of 1970. The essential part of the code were hierarchic elements. This type
of elements was first consjidered by Zienkiewicz, Irons, Scott and Campbell [1970] in
conjunction with joining finite elements of different polynomial degrees. Hierar-
chic O elements were then described by various authors, e.g. Peano [1975], Katz,
Peano and Rossow [1978], Szabo and Peano [1983], Zienkiewicz, Gago and Kelly [1983].
The cohesive description of the p-version has been given in Szabd [1979].

The first theoretical analysis of the p-version was given in Babu3ka, Szabd and
Katz [1981]; and in BabuSka and Szabd [1982]. The performance of the h-p version
was first theoretically studied in Babu3ka and Dorr [1981]. For theoretical analy-
sis of the p-version in 3-dimensions, we refer to Dorr [1984] and Dorr [1986]. Ad-
ditional recent results are mentioned below.

For the implementational aspects of the p-version, we refer to Szabd [1985],
Szabd [1986] and Szabd [1986a].

The p and h-p versions for two dimensional problems were implemented in the
commercial system PROBE by Noetic Tech., St. Louis with first release in 1985, and
the second one in 1986 (computations in the present paper are made by PROBE). The
three dimensional finite element code FIESTA having some p-version capabilities was
developed at ISMES (instituto Sperimentali Modelli e Strutture) in Bergamo, Italy,
and since early 1980 this program has been available in USA. A new implementation
for three dimensional applications on Cray computers was begun by the Aeronautical
Research Institute of Sweden (Glygtekniska Forsdksanstalten FFA). The p and h-p ver-

sions are used in the industry today.
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~~ Although the p and h-p versions of the finite element method are relatively new Egagza
{-r’

developments, many basic results are available. The aim of the—present paper is to N

give a survey of the basic available results and directions for further development.

~ The paper tries to survey basic theoretical implementational and computational as-
pects of the method as of today. ,__ . _ . ___ -~ ‘!—\3{
| R
. Q-f'.,:t )
gy
2. FINITE ELEMENT METHOD AND THE APPROXIMATION PROBLEM gﬁhttﬁ

'a¥

Let B(u,v) be a bilinear form defined on H; x Hy, where H, and H, be

reflexive Banach spaces equipped with the norm |-|1 and |-|2, respectively. Let

rr
'r‘..l

* ;r

oAy

further F ¢ H;. i.e. F be a linear functional on H,. tg;i;ﬁ:

By the problem {B,F} we denote the problem to find ugp € H; so that :}faxf:
B(ug,v) = F(v) (2.1) !._.\‘

'.:_\:-__ ‘-::‘i

holds for all v € H2. :,?,;,4
N

If the bilinear form B(u,v) is continuous and satisfies the so called inf- :a:r;)§
_— et e

sup condition (see BabuSka, Aziz [1972], Ch. 5), then the problem {B,F} has unique ~i:ﬁ§ﬁ

solution.
Let now S; € Hy, S; € Hy. Then the finite element problem (B,F,S;,S;} is
to find the finite element solution uS1 € S; such that

B(us1,v) = F(v) = B(ug,v) (2.2)

holds for all v € Sy.
If the bilinear form B(u,v) satisfies the inf sup condition on Sy = 52'

then uS1 exists, is unique and

|U31 - U°|1 < C(s1'SZ)Z(UO'H1,S1) (2.3)
where
Z(UO.HA‘,S1) = inf 'uo - wl.l. (2.“)
wGS‘l

For detail, see Babu3ka, Aziz [1972, Ch. 6] and Arnold, Babu3ka, Osborn [1985]. We K X
will assume that }\ :
C(S,.Sg) < D (2.5)
where D 1is independent of S,.SZ and hence the norm of the error e = us‘| - ug .'jﬁlﬁf‘
AT N

. of the finite element solution is completely given by Z(uo.H1.S1)

In
N
T

MO

Remark 2.1. We do not need necessarily that (2.5) holds. Nevertheless, as- ~}ﬂ2§?ﬁ

. R

. sumption (2.5) simplifies our conclusions. . ‘%f':!
B ACASN

Remark 2.2. The condition (2.5) is satisfied, for example, if H, = H,, AN Sy

—_— ! 2 ;.;q}u

B(u,v) = B(v,u), S; = S, and B
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B(u,u) 2 YIUIf. Y

g: This condition is satisfied for selfadjoint positive definite problems as in the
: theory of elasticity, etc. A
-
o The exact solution Uy is, of course, not known. Nevertheless, we will assume
’% that it is a-priori known that ug €Kc H1. where K 1is a certain set called the
T' solution set which is compact in Hy. We define
§ Z(V,H1,S1) = sup Z(u,H;,S,) (2.6)
uekK
'{ which characterizes the error under the assumption that we know only that the solu-
j tion ug € K.
Remark 2.3. A typical example is that H; = H‘(Q) and
, “ S
. K = {u||u|k $ 1, k >} -_:.:‘::..
‘2 H () f:
b RN
A
;* This choice leads then to the classical error estimate of the error of the finite ‘:"a:‘
f
f element solution (h-version): K"&
“’ : f.’ ‘
H .
. lel ; < oyl - 5
% n ol :
'.-' -
:
;: See, e.g., Babu3lka, Aziz [1972, Ch. i4]. A :
[
N There are many results available concerning the characterization of Z(K,H;,S;), .:_i}ﬁ
E the best selection of S; of dimension n, etc. For an excellent abstract treat- *t : ‘
i ment and survey of available results, we refer to Pinkus [1985]. :: X ?
‘ »
The space S; in (2.6) is fully characterized by the finite element method, h
its h, p or h-p versions. The set K is characterized by the class of problems to ?F”}“
A
h be solved. Hence, the performance of the finite element method relatively to the .3ﬁ$.
Q» solution set K is described by Z(K,H,8) which will be in the center of our 5$g:'
3 ' ALY
interest.” Of course, others aspects are also essential for the assessment of the PR
3 performance of the finite element method. They will also be described in this :t: '
4 =
P
survey. -
lao :\‘%
:3- WNY
" 3. THE MODEL PROBLEM Ao
0 The performance of the method depends strongly on the class of problems for ,\
h\ -
{’ which it is used. As said in Section 2, the performance is directly related to the r:%t}.
h ’. l.
f solution set K under consideration. We will concentrate here especially on the ;:}:i.
3
ﬂ class of problems which are characterized by the piecewise analytic input data. ;S%:{
Let QcC R2 be a bounded domain and its boundary 3R be a piecewise analytic ;._.;v
\ r S0
: curve ' = U I‘1 where I‘i are (closed) arcs with the end points Ai'Ai+1' L =
i=1

i T,...,n (A ,y = Ay). An example and the notation is shown in Fig. 3.1.

3
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Fig. 3.1. The scheme of a domain with piecewise analytic boundary.
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By Ai' i=12,...,n we denote the vertices of Q and by w; i =1,2,...n the
internal angles. We will not exclude the case when the internal angle w = 2%. This NCS LY
case is very important in practice (cracks) when two arcs (fully or partially) Ny,

. s <.
coincide. SN,
let Tn= U T, and Ty =T - T, be the Dirichlet and the Neumann boundary, i
D i N D ...

1€D L -
respectively. We shall be interested in solving the problem

-fu +u = f on Q (3.1a) oy

'Y ."r‘)n/‘
u = h on T (3.1b)
D .
u g on T . (3.1¢) "::":’::’;
an N : s:_\i\j\
NN
A
We will cast the problem (3.1) (for h = 0) into the form of a {B,F} problem. To \"‘E-.;_xi
HCHES:
this end let H = Hy = Hy = H)N(Q) = {u € H'(®) | u =0 on TIp} where by H'(R) we
denoted the usual Sobolev space of functions with the square integrable first deriv- ':::'::'ff-.':
atives. Let '::':::':::"'
Ju av . 3u 2 Pt
u v u v et
B(u,v) = sfz (a—xa_x + -5-9-57 + uv]dx dy (3.2a) &-_‘_\f
and ,u". N
F(v) = [ fvdxdy + [ gv ds. (3.2b) :‘;‘:::Z;:I:
! N RN
RS St
. Alai
If h #£0, then as usual we write u =2z + w with wGHl(Q). w=h on I and 2
z € HB(Q) being the solution of the {B,F,} problem with F,; being properly ad- :,
justed F. Qe
The model problem {B,F} satisfies the conditions listed in Section 2 provided ,':'.\_j s
™ .
-
':Q'\ ‘.
NN
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that f, h and g satisfy some mild conditions as, for example, f € Lz(n), g €
Lo(Ty) and h € H' (ry), i €D and h continuous on Tp.

The illustrative numerical computations presented in the next sections are re-
lated to the two dimensional elasticity problem, i.e., for the (strongly elliptic)
system of two partial differential equations of second order instead of the simple
model problem mentioned above. The elasticity problem has very similar property as
the introduced model problem but has larger practical importance.

The finite element solution (for h = 0) is characterized by the selection S,
=S, =8¢ HB and all conditions inclusive condition (2.5) in Section 2 are satis-
fied. If h # 0 and h 1is not a trace of a function in S, then we replace h
by h' which 1is a trace of a function in S and consider the additional error

caused by this replacing.

Characterization of the solution. Set K relates to the available information
about input data, i.e. the information about T, f, g, h. We will assume that
I' is piecewise analytic, f 1is analyticon @, g, h are analytic on fi. This
assumption, namely, that the data are piecewise analytic, is practically always

satisfied in the problems of structural mechanics.

Remark 3.1. In our illustrative computations we will also present the results
which are outside of the above mentioned frame, namely that g is a Dirac function
(concentrated load). Such an example is well taylored for our illustrations, but

needs more refined theoretical analysis which will not be addressed here. a

Although our main emphasis will be on the problem with piecewise analytic input
data, we will also mention the results for the more usual solution set K as, for

example, K = {u | |u] K £ 1), ete.
H (Qq)

Usual assumptions in the regularity theory of the differential equations of el-
liptic type are based on the theory of Sobolev spaces of finite order, i.e. f €
HK(@), g € HYTI), etc., and often the boundary of the domain is assumed to be
smooth (i.e. not piecewise smooth). Such assumptions are not sufficiently realistic
in applications. Luither they are too restrictive (smooth domain Q) or too general
(f € H(a)y

To further simplify our exposition, we will assume that Q@ is a polygon. We
will make some remarks about the general case.

Remark 3.2. We will also, as illustrative example, deal with one dimensjional

analog of our model problem, namely the problem
-u" = f, x € (0,1) = I (3.2a)
u(0) = u(1) = 0 (3.2p)

with f such that the exact solution wug(x) is

3% ] W W P e " 2 " a2 "2 s " AT AP AN " AT p e e e p AT et at et a PN, WP N
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[y
6 L:J:i
ug(x) = (x-e)¢ +a +bx, a>}y (3.3) v
NS
where _,-.J'
X - & for x > ¢ . ¢
v - S
(x - ¢) . = 1
Ay
V] for x < g ::\
: 1 oo,
and a, b are such that (3.2b) is satisfied. Obviously ug € H (I). A :,:
L) k"
4. CHARACTERIZATION OF THE SOLUTION SET b .
»'Q 5 ;\
. . s : . LS N
} As it was said earlier, the solution set K describes the solutions of the \:;:
A AN
) class of problem to be solved. The performance of the method is then directly re- ::.‘:‘:.
D) g
lated to this set. ;{5
Let B = (84,...,B,) be an-tuple of real numbers 0 < 8; <1, 1< 1i < n. For s
L G .
v bR Y
u any integer k > 0 we shall write B +k = (By*k,By*k,...,8, + k). By r;(x), 2= hASAS
v RN
E 1,...,n we shall denote the Euclidean distance between x € @ and the points Bi -‘;:-:.:‘
n B AL
i Q, 1B= I1(.....n. We denote then &g, (x) = 1| 1| rii(x) and ¢, (x) = :i‘-:‘-
n + - L
. | | rii (x). The points By could be located at the boundary of Q, e.g. in the :_-.:
- >
" &erltices A; or outside. They also can be absent, but we will not elaborate on j:;,
o hY
y this case in this paper. ::'.:
; ‘e '.:
i Define now Lot
1 a 2,2 Y k-2 L
Ky = f{u €l | (!2 I0%|% of,, ,(xax ay)® ¢ cd“Fk-2)1, s
N
(R
c'.'- [
k = 2,3,...,|a| =k. d>1, d independent of k}. .-:"_.:-‘::;
f}.A
N As usual, we denoted a = (aj;,a,). |a] = a7 + a5, a; 20, i =1,2, integers and T
. SN
~ l.._l-'.\.'
~ a AR
y oo, 3%l RN
o a, a, : RSCSL
: 3x 3y NS
l i
4 . mn NN
,: The functions belonging to K, are analyticon @ - Z Bi' If Bi € 30, then A
; i=1 NN
B’ they have singular behavior in the neighborhood of Bi' and the character of the iy :n‘.
g
singularity is given by B; and d. ::\ .
) v )
3 It has been shown in Babuska, Guo [1986] that if the domain Q 1is a polygon, A
¢ R
; B, = A (i.e. B; are the vertices) and functions f, g, h are analytic on @ W
¢ i i i NI
‘ and T‘i. respectively, then the solution of the problem (3.1) belongs to K1 for a '_‘ic:
- L)
properly chosen constants B8, C, d. The case Bi f  characterizes the solu - -:'.-::
. &5
! tions with the singularities outside of Q, e.g., when the domain has circular arcs .- s
s, AN S
s and h = 0. This case describes also well the case when the natural domain of the ESAN
-4 el
. analyticity of the solution contains . R
:: The set K1 obviously belongs to the family of countably normed spaces. For _:-;_{.“
! more about this family, we refer to Gelfand, Shilov [1964]. o
SN
’: \._‘. R

o T ™

N NN L e

LSS LEEN Chs CAR ISR O

> » L] » - “ . = - . Y - - - .~ bl I = LY
N N e S A e

~ 5




R AT AT IR
X

i
g

NP

NS s A LA

g

4%

Raares ) LRI o b

R

i,

?: important case of nonhomogeneous materials which is described by the equation

~ 3 _d%u _3 _ 3u

N x 2 3x 3y 23y £

=

5 with a being a piecewise constant on the domains bounded by the piecewise analytic
:: curves can be handled in a similar way. Analogous situation occurs also when deal-
J

:j ing with the problem of elasticity. A
-

%

) 5. THE FINITE ELEMENT SPACE S

<

h‘.

h: We introduce now the finite element spaces we will deal with later.

'0

; For reasons of the simplicity of the exposition, we will restrict our choices,
g. but our numerical example will also present more general cases.

: Let M = {T} be a family of meshes T = {1;j} where t; ¢ @ is an open trian-
Ej gle, called element. Let hTi = diam 1;, h(1) = g?éT h‘i' and let p. . be the
3 diameter of the largest ball contained in Ty - We Will assume that M 1is such that
e

i for any vy €T €M

E§

N O Y B N O O A N S O T T o o o R ARSI

Let us now introduce the more standard family of solutions sets

1
Ky = {ue€ Hp(a) | [u] K, < Ci kg > 1)
H (Q)
Ky = (we vl @ | |yl < ¢ k>3
3 k2 - ' 2 2
H ()
a Y;
Ky = {uce HE(Q) | u = ry illog ri| L ¢; (8;) x4 (ry)}
where (ri.ei) are the polar coordinates with the origin in the vertex Ai' oy >

0 noninteger, ¢i(ei) is a C€° cut off function.
The motivation of the solution set Kj, j =2,3,4 is that the solution u of

(3.1) can be written in the form
u = uy; *up +uy (4.1)

where

u1 € Kz, u2 € K3
and

i 2CJL.J“EJ]' ufdd <k,

Functions uy and uj satisfy the homogenous Dirichlet (essential) conditions,
while u, relates to the nonhomogeneous Dirichlet conditions. The restriction k2
> 3/2 has been made for simplicity only and can be replaced by k3 > 1. For the
theory leading to the form (4.1) we refer to Kondrat'ev [1967], Kondrat'ev, Olejnik
<1983] and Grisvard {1985].

Remark 4.1. We restricted ourself to the problem (3.1) only. The practically
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L7
O
[
I
Y
-~

Y . i.e. that all triangles satisfy the minimal angle condition. Further we shall as-
sume that 2 = U 71; and that any pair ?i, ;J €T, i #j has either an entire
! Ty €T
i
t - side or a vertex in common, or their intersection is empty. The number of elements
: of 1 will be called cardinality of T and denoted by M(T).
1h

Remark 5.1. We restricted ourself to triangles only. The results we will pre-
sent are valid more general, e.g. for rectangles, curvilinear, triangles and rect-

angles. A

Ny

In addition to a general mesh, we will introduce two special families of

meshes, the quasiuniform and the geometric mesh.

, i
< a) The family MY, 1 €Y< o, of quasiuniform meshes: There exists con- .
e
I stant Y such that oy
y h(t) = max h < Ymin h ,'.‘
=1 1 Ti - T Ti e
- i i
iy Y BRI,
N holds for any 1 € MU' 2
o DA
% b) The family M3-K(s,,...,B), By @, J =T, 0<q<l, 1¢kc B0
£ = of geometric meshes: Ao
n f=Ny ."_' g
Let 1 € Mg’k. ;i n } B.‘l = @, then there exists P:
- j=1 ROAS
3 ’ R
"\ '-'h)\"
. min d(B.,'ri) = k(i) z;‘.r:‘--
. J‘_'-"
1¢j<n A
‘ and PR
- - - P A
" P RRPR.I € DREPR ol OO
- q - h(‘ti) - q NG
7, .-\'.r\.-
W where by d(B.,,t,) we denoted the euclidean distance between B, and 1,. ke
] Jr i J i Tl
> Obviously, if < € My', then M(T) = h™2(T) and the cardinality M(1) can be
arbitrarily large. If Bj f Q, j =1,...,n, then for any Mg’k we have a ‘
b M(T) < Q where Q depends on @, B8, q, k. If BJ € 3%, then the cardinality _‘::
‘. can be arbitrarily large. _.
Finally we denote S(T,p) = {u € Hl‘)(n) | ul, ~1is a polynomial of degree < E;
¥ p for any 14 € T}. By N(S,T,p) = dim S(T,p) we denote the number of degrees of .
' ﬁ freedom. :'f'f-'.'-'*
% - e
3 Ir T ¢ MJ. then N(S, ,p) = pzh-z( )o If 1€ g-k, B; ¢ 2, then .-j:-:.j:.
' SN
of [ :“_
: N(S,T,p) = 2 and ir T € M3K with By € 30, then N(S, .p) = p?|log,;,(T)|, -
Ny Remark 5.2. We assumed only triangular elements. For the rectangular :\
‘S' elements, instead of polynomials of the total degree p, we use polynomials of ;{;.-"
4 N ‘
b~ degree p in every variable. In the case of the curvilinear elements we use the ; "’
py b I
2 standard mapped polynomials. A
DO
e et
e e e e S S A S e L e L L e e S e T
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Remark 5.3. We mentioned only the case when the degree p is uniform, i.e. is

the same for all elements. The available theory covers also the nonuniform,

S A

EACHS

Ay
o

selective choice of the degrees p. A

o

] I:".I -’;-"!."-.'r‘

1

Remark 5.4. The meaning of the finite element subspaces is especially clear in

A &

the one dimensional setting. For example, in the case of the geometric mesh with A

> 3
~

N & Ay

= 0, then nodal X; points are

l~. .
[N
e

'-

v

L P'sﬁﬂ
oY
7
oS

where q < 1 1is called the ratio of the mesh.

6. THE BASIC APPROXIMATION THEOREMS

We will mention here some basic approximation for Hy = H1(Q). i.e. we will
study the magnitude of Z(Kj.H’(Q). $(T,p)). Numerical illustration will be given
in Section 7.

First let us consider any fixed mesh To and consider the p-version.

- e

L e e

Theorem 1. k1-1

20Ky HL(D),5(Tg,p)) ¢ oK1 o o 2 (6.1)

IO

holds for any mesh T, (satisfying (5.1)). For the proof, see Babuska, Suri [1985].

7

Theorem 2.

2(Kyy, HL(2),5(Tg,p)) < C|log p|p™2® =~ c|1log N|'NC.

Pl S

For the proof, see Babuska, Suri [1985].

Theorem 3. ~ ¢ K =K; and B & i =1,...,n. Then

.-
e

RN

1
2
Z(K;, B)(R),S(Tg.p)) ¢ Ce™@ o ce™®N* (6.3)

CRAAA A AA

where o depends on Bi' i =1,...,n but is independent of p. For the proof,
see Guo, Babu3ka [1986].

A
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So far we assumed that the essential boundary conditions are homogeneous. Let

Y

us discuss now the case K3 when the Dirichlet conditions are not homogeneous. Let

[c I, beany side of an element 1 € T with the end points P,, i = 1,2 and

let ¢ Dbe defined on I so that

a) ¢ 1is a polynomial of degree p .

b) o(P;) =u(Py), 1 =1,2, u€K; (because u€ Ky, u€H 2a), Ky >
372, u(P;) 1is well defined)

c) f ey’ ds = f u'y' ds for any ¢ being polynomial of degree p and

r r
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¥ Now we replace the boundary condition on I‘D by ¢, 1i.e. Ug = ¢ and then we

g get
)

-
A 4

"y "o "w
)

o

x

L

.
e

_. Theorem 4.

P4

i

-(k5-1) T
2(K3,H'(2),8(1,p)) < Cp 2 = CN . (6.4)

N
.

"
h

A A
Ay
2T

it e e Y
L)
-

! For the proof, see Babuska, Suri [1985].

Remark 6.1. 1In the one dimensional case we can prove more exact theorems. Let R
us consider the problem (3.2) with the solution (3.3) and the case of one element

only. Then we have

; B
kA S SKN]

Theorem 5. Let ﬁé(l) = {u" € Ly(I), u(0) =u(1) =0} and |u|..1
Then l-IO(I)

XY [ e,
N Ju 'LZ(I)' L
. ALY
. : o
Iy a) if g =0 then e
o :\.N‘

: A] _ 1 1 ® .
. Z(uo,Ho(I),S(p)) = Co(a) Sa-T (1*'0(5)) ’ [D + @) (6.5a) N
N p A
- with e
0N r(a)?si i
re Cola) = oRta) |sin ma) (6.5b) s
o mw2a-1 Tava
~
b) if ¢ <0, then e
- A
- ~1 1 _r2 a-1 P 1 .-.";\.J
0% 2(ug, Hy(D),5(p)) = Cila)(5—~) = (1+0(=)) (6.6a) ne
P P S
where RN
" 0>0, r = 8- VE c (@ = "_r_(_‘l)_l%/ﬂl_ , (6.6b) A
‘ /T + /€ %k S
2 St
.I' 1 .;-..:.n
_: the form O(—o) is uniform with respect to £ < -e, € > 0 and we have the estima- x,:
p Jew

tion: if 0<rég¢1 - %, then .

-,

. . p+l-a a-Y, S
\:g 2ug, HY(D,S(0)) = =T [+ (1) ] (6.6c) e
p2 P p s
~ /o R
: if 1-1r2¢1, then e
P \.::-."
N p+i-a a-Y, Yera
5 1 r 1 _ 2 oA
i3 Z(ug, Hy( 1), S(p)) — [—a—;,/: + (1-r) ] (6.6d) N
v P v
o e
where equivalency constants depend only on a, -.-v-.;:
< _;J\.
*}, ;\j\‘
> AN
} e¢) if 0 < g< 1, then there exists a constant C > 0 depending only on a :-:w:
RS
3 such that o~y
2N
" . 1
’q “.:‘.
> .
,:'f‘,\".:'-‘: \";‘hz‘i‘:‘n:{:‘{- 'V\..‘~ - X ‘.; . .~ . . . : S . R \}_.- : ; .:‘ NCATN) \;-.‘.-"- B N I s ..:.. _.}\: ‘-:_ :‘ : ..}\_ ~ _.':' o
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Z(ug Y (1), S(p)) < (6.6e)
) . -

where § = min(8,r-0), 6 = arccos(1E-1). On the other hand, if € <0 {7 -¢€, €
> 0, then there is a constant C(a,e) > 0 such that

1—( 8 <
p—

a

z(uo.ﬁg(r).s(p)) > cd) . (6.6f)

P
For the proof, see Gui, Babuska [1986].

If the singularity is outside the domain, the accuracy increases dramatically

with p. In Fig. 6.1 we see the value of Z for a = 1.5 in dependence on £ and p.

tog )

Fig. 6.1. The error of the p-version with one element. A

Let us now consider the h-p version on the quasiuniform mesh <.
Theorem 6. Let K = K, respectively K3. Then y
1 1 n1-1 (k,-1) - 2%—— -(ki-ni)
Z(K,Hy(@) (resp. H (2),S(T,p)) < C(h(T)h (t)p = CN p (6.7)
ng = min(p+l,k;), i=2,3.
The constant C in (6.7) is independent of h and p.

For the proof, see Babuska, Suri [1986a].

The estimate for K3 has to be understood in the same way as in Theorem 4.

Theorem 7. Let K = K. Then

z(Ku.H:)(a),s(T.pn < cglh,p,Nain(n® amin(epral) 20y (6.8)
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where
X g(h,p,Y) = max(|log h|Y,|10g p|").

For the proof, see Babuska, Suri [1968a].

Finally, let us address the case of the h-p version on the geometric mesh.

A Theorem 8. Let K = K, and let B; be vertices of Q. Then there exists a
5 - mesh and the degree p (dependent on the mesh) such that

-a?W

Z(K H(),S(x,p)) ¢ Ce (6.9)
(Y
! where a 1is independent of N.
: For the proof, see Guo, Babuska [1986].
]
bl Remark 6.2. If the degrees of the elements are uniform, then the class K1
can be extended. See, Guo, Babu3ka [1986¢c]. A
» Remark 6.3. In one dimensional setting much more can be said. We will discuss
? the case § = 0.
~
. Let us first ask the question about the lower bound of the error Z(uo.Hg)(I). . -21
& ~-:
z S(T,p)) among all meshes and all degree distributions. The answer is given in :::.:-r:-
2 IR
Y Theorem 9. '..E{ N
[ V(o A
) Z(ug, H)(D,S(T,p) 2 (@) —— qJ@™@N (6.10) ot
~ /Na-/z ".Nz"..‘
9 where )-:.\_:.-
' L0
, qQ = (v2 -1 )2. vt
X NN
o, M
For the proof, see Gui, BabuSka [1986]. :::::
. Let us now consider the geometric mesh with the ratio q and various degree ,.a._.b.
5 . }C -
! distribution. We have .»'.’-\:
Y LG
< Sy
:, Theorem 10. As N + = the optimal degree distribution tends to be linear with .-:".:}3'
] I — sl
“ the slope LS.
in q e
= .} —
2 sg (a-%) nr (6.11a)
2 with
1~ (6.11b)
~ 1+/(T Sy
This means precisely that for each i = 1,2,... [ |
] My ) T
4 - - ™
Umipy i = Py -i-1 %0° KOG
N N YOS
3 e
'y AN
‘ . For the proof, see Gui, Babuska [1986]. L S
- Al
b For the error estimates with linear degree vector of slopes S we have the follow- f:l.\d
EACA]
& ing PN
» NN
B CAC AL
5 Theorem 11. For the geometric mesh with the ratio q combined with a linear A
- —_— -
N : ‘F‘T-
. e
- W

~ o %) LIS A" P s P ] b e RS PRI IS %] v e “» LW ML e e e e L e e p™ e - ‘p.\ Ce 2™ T e L Tw e s '-'\ ‘t.\ \.‘- 0 N
SOMRHLHEEN N A O A S 2 2 N A A T A S B A N A K RN R AT, O, R R A (SR 0N
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FY Y \-ﬁ‘
< "L"\
% £
= degree vector of the slopes s we have —c
o a) if s > sy, then o
) 59
i) (VAW Ly e
. 2 P op
g: Z(uO.H(I)(I).S(T.g)) = C(a,q,s)q(a %)V eN/s (6.12a) e
et ’
* ra
b if s < sp, then .
b ) 0 :'&E
r", /SN ':: Y
. Z(ug, HY(1),8(T,p)) =~ Cla,q,s)r 2NS (6.12b) ;-.3-;
t';& - .\'\J
[ el e
a0 e) if s =sg, then 2
Yy
) - - .-.“w.:
3 Z(ug, H)(D),S(T,p)) = Cla,qe™(@&N 72lnalnr (6.12¢) R
; 0
% 1-/q ln g 3
- where r = = and sy = (a-%) nr is the optimal slope in the sense that the K iu.j
) e
pd 1=v/q » : .
= exponential rate attends maximum. Furthermore, the optimal geometric mesh and linear
degree vector combination is given by §:
P
"y 2 e
o QW%p ~ 2 -1 -:J"':
] e
! (6.13) o
Fa S = 20. -1o
- op v}1£
In this case :-’:}:
& - "y
g Z(ug, HY(D,S(T,p)) =~ C(a)[(vZ -1)27/(@7N (6.14) N
A s
o Y
ot In (6.12) - (6.16) the equivalence constants depend on (a,q,s), and a, respec- ’Eﬂl“
e tively. \3’:_5"
) For the proof, see Gui, Babu3ka [1986]. A N :.
) . d
w 1
"“ Remark 6.5. For the optimal combination of geometric mesh and linear degree X
.l n’
""; vector, the estimate can be written as ;
. -1.762/(a-} w
+ Z(ug Hy(D),S(1,p)) = e '-TO2/(a=DN (6.15) A
5 X
1Y N
:, and we have seen in Theorem 9 that this exponential rate of convergence is the best ::’.’-
P od e h¥ |
- possible one. A
4, <3
», Remark 6.5. We discussed-in Remark 6.2 the case of linear degree vector of .::‘.‘
l.. - LA I
-; slopes s. Let us discuss now the case of the uniform vector of degrees. : :
Y [
» 3
”{ Theorem 12. For the geometric mesh with the ratio q combined with uniformly kﬁ
_— e
distributed degree p, the relation between the optimal choice of p and the num- i%
W ‘o
'~$ ber of element M in the mesh is asymptotically linear, i.e. -"-' :
N o
3 AN
~ P = sgM (as M » =) A
I\S\l
: |
with s, Dbeing the same as in Theorem 10. ‘_a
[ R
:: For the proof, see Gui, Babuska [1986]. RN
b ‘ - e
~, The analog of Theorem 11 is: RS
-.: e
. -
'~ et
v AV
.l Y

LI PREPRL I R R IR IS Y YR I e )
[ A -I"f‘.f‘f\I.‘f~fﬁf‘I.’J_..-\..\f\

e I L G S A N T U S TN (25
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o la ' '_\ ;
‘T .‘A:
B Theorem 13. For the geometric mesh with ratio q and the uniformly distrib- " 3
j uted degree p related with the number of elements M by p = sM, we have :‘_“t_.‘.‘|
3 Ve
3 a) if s> sy, then :.:l'!
£ 1 q(cz-‘/z)nlN/s
Z(uy,Ha(1),8(T,p)) = C(a,q,S8) —5— (6.16a) .-
0’0 ' d ’ -
A (/M2 ':t:::
*I
:": : b) if s < sg, then rrt-h
1 g
i 1 'SV pa%s
!.‘ Z(UO,HO(I)gs(T,p)) b C(G.Q) —a— (6.16b) {a::
(vsN) :

W E.,;':.
‘ c) if s = Sg» then one gets optimal rate of convergence N _‘_
\i\i

,‘3 \)\
i : e-/(a_l/‘)N Yln r 1n q g
e Z(ug, Hy(1),S(T,p)) = C(a,q) -~ (6.16c) N
(VN) .
where T
! (a1 1-/q ey
’, = leZp)in g = 174 - - . o
% So T . r 17q ° o min(2a-1,a). (6.164) :\_;:1
C,l .-.l\:
o The optimal combination is also given by D)
’ g
- qQ = q = (/2 - 1)? (6.16e) f\fn‘
.: °p "-‘_'\
e : &
i: s = 85, = 2a-1 :';;\}-:
» EN
» RANL
v and for optimal combination we get e::":
P V(G‘/Z)N/Z -
X 1 [(/7-1)%] AT
~ Z(ug, H)(I),S(T,p)) =~ c(a) S (6.16f) N
- e
N, For the proof, see Gui, Babuska [1986]. A N
- Remark 6.6. We can also interpret the optimal h-p version with uniform p as ~Te
v *rtd
A the envelope of the h version with fixed p. Inzthis case the for N + = the mesh N
- L
4: tends to be geometric with the ratio q = e /e = 0.5820 and the relation between N
b ‘e J‘:-
ot the degree p and the number of elements M tends to be linear with p = (4/e2)(a-%)M N
= 0.5413(a-%)M. For more detailed analysis, we refer once more to Gui, Babuska o

P
N [19861]. A LN,
f o
\ Remark 6.7. In the case K =K,; Theorem 8 holds when we restrict ourself to .-::-:'
F N
'- the nonuniform distribution of degrees. The result holds also if curvilinear ele- atat
. ments which have to satisfy certain conditions. ;‘!
g ,‘f.\'
i:. In the case when only uniform distribution of degrees is used, then these con- -.:':
Y . LA
. ditions are weaker than in the general case. See Guo, Babuska [1986c]. A A
n\ \{\J
N
N . Remark 6.8. We discussed only the model problem (3.1). The results hold for a’,’:-,"
more general equations. For the higher order equations, see Guo, Babuska [1986b], ,'.-:::

L) v s
: and Babuska, Suri [1986c]. 1In the case of systems of second order or higher order :
NN
f differential equations, there is much broader scope of essential boundary condi- RN
o tions. For their treatment we refer to Babuska, Suri [1986b]. A .}..
- 4
R e
i p  p e A p A e A A ta T et ma i tan Sat ettt ama me e s et At at e t ot A TaTate et et At et atr e AT
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Let us now make some comments to the theorems we mentioned above.

a) Comparing the performance of the finite element method with quasiuniform
mesh with respect to the number of degrees of freedom, then the p-version (with few
elements) perform better than the h-version. In the case that the solution has sin-
gularity of the type occurring in the corner of the domain, the rate of the p-version
is twice that of the h-version. For the h-version there is a classical theorem men-

tioned in the basic books about finite element method

inf  Ju-w] < cemul (6.17a)

w€S(t,p) H (Q) H(Q)
n = min(p,k-1) (6.17b)

where C(p) 1is not specified (more precisely, the proof indicate that C(p) » = as
p + »). This leads sometimes to the (false) statement that (6.17b) indicate that
for singular solution it is improper to use higher order elements.

b) The h-p version leads to the exponential rate of convergence when the input
data are piecewise analytic. In the one dimensional case, the ratio q = (V2 -1)2
is the optimal one independently of the strength of the singularity. In the two di-
mensional case, the ratio of the same magnitude seems to be optimal although de
tailed theoretical analysis is not available yet. Some numerical evidence will be
presented below. For practical reasons q = 0.15 {is recommended.

¢} Although we mentioned only the simple model problem, the results hold much
more generally. We mention especially the elasticity problem.

d) Very important problems arise in relation with the "locking" problem as in
the elasticity problems with near incompressibility (Poisson ratio v = %). It has
been shown by Vogelius [1983] that the p (and h-p version) is not influenced by the
locking problem and solves reliably the elasticity problems with nearly incompress-
ible materials without any difficulties. See also Babuska, Szabo [1982].

7. NUMERICAL ILLUSTRATIONS

In this section we will present numerical illustrations related to the theorems

we mentioned in the previous section.

Example 7.1. Let us consider the plane strain elasticity problem when @ is
the L-shaped domain shown in Fig. 7.1.
Let us assume that on 93 tractions are prescribed, i.e. rD = @. We will assume

that the solution of this problem is the displacement vector u = (u1,u2) where

u; = %a r® [(k-Q(a+1))cos a8 - a cos(a-2)6]

(7.1)

%5 ra[(z+Q(m+1))sin ad - a cos(a-2)6]

where
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Fig. 7.1. L-shaped domain.

a = 0.544483737 Q = 0.543075579.

G is the modulus of rigidity and « = 3-4y, where v = .3. The sides OA and OE
are traction free. The solution has a typical singularity at 0 and is the first

mode of the stress intensity factor solution. Instead of the norm |-| we

1
H (R)
will be interested in the energy norm I.IE which is equivalent to the norm

|.|H1(n). We then define the relative error IeIE,R' lelg/lulg -

First, we will consider the case of the uniform mesh with sqQuare elements shown
in Fig. 7.2.

The solution u can be interpreted as a member of the set K1. with By =0,
K, with k, =a -¢€, € >0 arbitrary or Ky with Y = 0. Interpreting the so-
lution u as the number of the solution set K,, the estimate (6.2) gives

o hmin(a.p-a)
|u-us| < C min[h , —p_ZU._—

where C depends on a but is independent of h and p.

Fig. 7.3 shows the relative error |e (for different p) in dependence

le,r

IE Rx|log h| scale). We also show the slope h® in the figure.
’

We see that with respect to h, the error is in the asymptotic range also for

on h (in log|e

moderate p and h. Figure 7.4 shows the error in dependence on p and differ-

ent h. Because of the size of the computations the error is given for p > 4 only
for h =%, (for p =84 and h = 1/10 the number of degrees of freedom N = 5119).
The slope p-2a (2a = 1.088) 1is apparent only for p > 3. Figure 7.5 shows the
error in dependence on the number of degrees of freedom N for various p. Also the
performance of the p-version for h =) is shown in Fig. 7.5. We see that the p-
version is more effective than the h-version and that the theoretical asymptotic

slope (shown in the figure) is achieved for moderate accuracy and N.
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° Remark 7.2. Let us illustrate the estimate given in Theorem 5. Introduce the
* numerical constant Rg

[}

O
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» P gh

A p

s
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< where Eg is the right hand side of (6.5) and E, = |e|,.1 .
; ' Hy( I)
J

K Table 7.1 shows the error Ep and the numerical constant RS for a = 0.7,
f 3.5 and g = 0. We see that for a smaller Ré + 1 quicker than for a larger
~ (i.e. smoother function).

>

[ ad

PP P AT R LN P T T T Y
Co e N T e T T I

R S S N Ol SO o
2 A o 5 . N A 8

"

Ce L w a
< «°,
"\_i’.‘

s
(AUAES

[N

» 0

s

RN

A
NS

» 1 3 A 4
R S
oo
KV B A

o

PORAULAON.

¢
» ¥ o

YYD
wele!

“©r
l...
v

Z

2

f.l’
.

w r
£e

-

s 0 "
teter e 4]
L4

2

Py
.'It’d't“

L 8 K

w3
‘I

..
!
g
s
W
[APAEN

o .
S

FUIENEE
[y g

‘N a4
A
L

e

Do

e

e
o

3

~

.«



T v - e PR . .Y S -y Y T T AT W
i

18

o For more numerical results we refer to Gui, Babuska [1986]. A
|
g So far we addressed the performance of the uniform mesh. Let us discuss now
U
h the performance of the finite method on the geometric mesh. Fig. 7.6 shows the geo-
metric mesh with n = 2 1layers and the ratio .15.
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Fig. 7.7 shows the performance of the p-version for various number n of layers

3y

in loglelﬁ'R x log N scale. Fig. 7.7 shows also for comparison the performance of

o
2

4

’ the method on the uniform meshes shown in Fig. 7.2. We see that for every number of

layers the rate is N"E’m‘1

where N 1is sufficiently large (dependent on n), and
that the error has the reverse S slope form. In the first phase the accuracy is
exponential (curved down) while in the second phase the accuracy is an algebraic

one. Further we see that the optimal number of layers and the degree p depends on
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b ety

the required accuracy. We will return to this question later in the discussion of &f,

PASGY

" the expert system for the h,p version. See Section 11. Fig. 7.8 shows the relative :.p,:
» .-:

k error in the loglelE o N'/3 scales. We see that the envelope of these curves ".,'_ y

‘,' 1] * . k

which characterize the performance of the h-p version is nearly a straight line as

it has been theoretically indicated by Theorem 8.

l';
L] ¥
P Y
: L] H:y
: TABLE 7.1. The error and the values of the numerical constant h QQ(
: in the one dimensional case. '::\\:Z
@ = 0.7 a = 3.5 s
z P N
Ay
» A A oA
S Ep Rp ®p R Tl
‘ e
1 4,743 E-1 0.9877 1.021 0.2032 e
" 2 3.627 E-1 0.9967 3.402 E-1 4.335 DAY
) 3 3.090 E-1 0.9985 3.093 E-2 4.488 -l
2 4 2.756 E-1 0.9992 2.379 E-3 1.940 N
3 5 2.522 E-1 0.9995 4.760 E-4 1.480 i
L 6 2.344 E-1 0.9996 1.400 E-4 1.300 e
; 7 2.204 E-1 0.9997 5.154 E-5 1.208 o
4 8 2.090 E-1 0.9998 2.210 E-5 1.153 N
- 9 1.994 E-1 0.9998 1.057 E-5 1.118 o
o 10 1.912 E-1 0.9999 5.495 E-6 1.094 e
% 11 1.840 E-1 0.9999 3.053 E-6 1.077 p%y
< 12 1.777 E- 0.9999 1.790 E-6 1.064 T
13 1.722 E-1 1.000 8.999 E-7 1.054 S
14 1.671 E- 1.000 6.978 E-T7 1.046
N 15 1.626 E-1 1.000 4.585 E-7 1.040
- c
i 1
. | 8
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2
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-'I; Fig. 7.6. The geometric mesh with n = 2 layers. Qt-:‘{
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Fig. 7.7. The performance of the p-version on various meshes in the scale
logle]; o * log N.
’

The envelope together with the optimal pair (n,p) is shown in Fig. 7.9,
together with the approximate straight line.

The p and h-p version has various properties which are essentially different
from the h-version. We already mentioned the robustness of the p-version with re-
spect to the Poisson ratio (the nearly incompressible material). Let us discuss now
briefly the "pollution" problem which describes the influence of the 1locally un-
smooth solution. For the h-version the well known interior estimate shows that the
influence of the local unsmoothness of the solution is also local. For the p-version
the effect is not so local as for the h-version. To illustrate this effect, let us
solve the plane strain elasticity problem (v = .3) loaded by the concentrated load
(Dirac function) as shown in Fig. 7.10. On the sides BCDC'B' the tractions are
prescribed so that the exact solution is the classical Businesque solution on the
half plane (hence B'AB side is traction free). The energy of the solution is infin-
ite and hence the usual theory has to be generalized. We will be interested (be-
cause of the obvious symmetry) in the finite element solution and its accuracy on
a (shadowed in Fig. 7.10). As before, we will measure the accuracy in the energy
norm. The meshes used for the computation are shown in Fig. 7.11 (only half of the
domain is shown). The domain 5 is once more shadowed. The minimal (pollution
free) error on 6 is the error of the finite element method when the exact trac-
tions are prescribed on aﬁ.

Fig. 7.12 shows the error |e|E(§) for the meshes I-IV and the "pollution
free" error. We see that the p-version for any shown mesh does not converge al-

though for three layers the error is in the range of engineering accuracy. For
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more details we refer to Babuska, Oh [1986). Similar situation occurs also for

weaker singularities and a high accuracy, e.g., in stresses. The accuracy has to be

SIS PUCL LS

achieved in practice by "filtering" out the singularity influence by using few t}
layers (in dependence on the strength of the singularity). ?; )
~ada
L 8. SOME IMPLEMENTATIONAL ASPECTS ?iﬁ'
The h and h-p versions of the finite element method give a large flexibility in E;EEE
the change of degrees of the elements either uniformly or element by element. This ::j:&
has to be respected in the architecture of the program. One of the essential features ;;ﬂ:f
§ is the use of the hierarchical shape functions. In the most simple setting of a squar- ;'i?
:: master element shown in Fig. 8.1. The hierarchical shape functions are as follows:
5 We have 3 kinds of shape functions
5 a) The modal shape functions ﬁi(g,n).
' -
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Fig. 8.1. The scheme of the master element.

1
b) The side shape functions Ni(Eén).

.,'I

:"h‘\
,ﬂ
4

c) The internal shape functions N;(g,n).

Yy
27,

The index above describes the dimension of the part of the element associated with

the shape functions.

R I 4

a) The nodal shape functions ﬁi(ﬁ.n). i =1,...,4 are the usual bilinear

o

functions associated with the four nodes.
b) The side shape functions N;(E,n), i = 1...,4(p-1). Let
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where ZJ. j 21 1is the Legendre polynomial. The the side shape funetions asso-
ciated with the side -1 < g <1, n=-1 are
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N.(E,n) = P

I=n

Y
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and hence we have U4(p-1) side shape functions.
2
¢) The internal shape functions Ni(E.n). i = 1....,(p-1)2. The internal
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The number of the internal shape functions can be reduced as in the case of the
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serendipity elements. In this case the total number Q of all of the shape func-
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Q = 4p + max(0,3(p-2)(p-3)

as used in the program PROBE. See Szabd [1985]. Probe uses 1 < p < 8.
The shape functions are called hierarchical because the increase of p leads

only to the addition of new shape functions. The use of the integrals of Legendre

: T TR N P S
. LN D N
R S AR N L R A

PRI ‘.v_‘- e -,-_-'.v.-_. AR -'.. T L , - » Nt T T v T L
R N R R S O R I R DA W - e R A

>




polynomials has essential advantages in the connection with the round-off error con-
trol.

The hierarchical type of this elements leads to the construction of the local
stiffness matrix by bordering technique when p increases. The same structure can
be achieved for the global stiffness matrix. This character then allows the flex-
ibility to change the degree of elements and its use for the quality control and
adaptive approaches.

So far we mentioned only the square elements. Similar hierarchical structure
can also be used for the triangular elements.

The p-version (and h-p version) utilizes large elements. Hence it is important
to deal properly with the curved boundaries. It seems to be advantageous (as imple-
mented in PROBE) that the boundary is described exactly and not to be approximated,
e.g. by polynomials. This is achieved by using blending function mappings. This
approach, of course, leads to the loss of the important rigid body motion property
of the isoparametric elements. Nevertheless, if the boundaries are smooth, e.g.
piecewise analytic, then for higher p (say p = 3-4), the effect of this loss is in
practice negligible as shown theoretically and by experience with PROBE. In addition,
the quality control indicates also this possible effect (see also, Section 10).

The architecture of the p-version finite element program has essential differ-
ences in comparison to the h-version. We mention here the type of meshes which are
used which influence the mesh generator and many other aspects, We will not elaborate

more.

9. THE ASSESSMENT OF THE COMPLEXITY AND THE COMPUTATIONAL COST

The cost of using any finite element code consists of the computer cost and the
human cost. The relative part of the human cost growths due to the progress in the
hardware development and is often the major part of the computational analysis.
Hence, the assessments of the complexity and the total cost of the method is very
subtle topic. Some of the aspects will be also discussed in Section 12 where the use
of the h-p version and the experience with the code PROBE in the industry will be
addressed.

The computer cost of running the code consists of the cost of the basic compu-
tation itself, the cost of the assessment of the quality of the results and the cost
of various "bells" and "whistles" and the "niceties" for the user which any commercial
code has to have. The computational cost depends also on the robustness of mesh
design criterion and selection of other parameters leading to the desired accuracy,
and how effectively the user is able to make the proper choice of these parameters.
The computer cost {s the cost of numerical operations and the IO cost which often
can be the main cost. This makes any comparison a difficult task. It seems that
one of the best ways is to compare various codes in an industrial environment (see
also Section 12).
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N In general we have to relate the cost of the achieved (a-priori given by the ::\'
user) accuracy and the assessment of the reliability of the computed data (see also .ﬁ\'
v Sections 10 and 11). In previous sections we measured the effectivity of the method :':-j
- : by the relation between the accuracy measured in the energy norm and the number of ;
;:' degrees of freedom. Of course, the number of degrees of freedom does not reflect E:'-::}
. some aspects of computational effort as the computation of the local stiffness ma- 2";;::{‘
:: trices, the influence of the sparsity of the global stiffness matrix and hence more E_'f:}
) detailed analysis both theoretical and experimental is in place. The only count of <
arithmetical operations, although important, is not sufficiently realistic basis for :'_.:-:.'j‘
§ the computational cost. Hence, very likely the most reliable way is to write a pro- ;::'_::.-:‘:'
y gram which implements the method and analyze its performance. To this end, we used :.‘:
X part of the program PROBE adjusted to given purpose. Although the results depend on :.'L::"
. the programming, the computer, compiler, etc., the assessment based on such an anal- :T_',-\
':- ysis is the most reliable technique. RS
The major parts of the finite element computations are
: a) 1input, treatment of the geometry, controls of the input, etec.
:;.:, b) Computation of the local stiffness matrices and load vectors.
¢) Assembly and elimination procedure.
’:: d) Postprocessing inclusive accuracy assessment.
)‘, We will address here only parts b) and ¢). To analyze this question, let us
- consider the mesh shown in Fig. 9.1 with r ¢ m. R
~' We mention that his mesh is topologically very close to the mesh shown in Fig. g'.g.:'-
: 7.6 (r = min(6,n+1), m = max(6,n+1)) or in Fig. 7.11. The cost of the parts b) :.'.::':::-
) and ¢) of the computations dealing with the examples treated in Section 7 (Figs. ti:;"
7.5, T.11) is essentially the same as when dealing with the mesh of Fig. 9.1 for hhaly
:: properly chosen r and m. EE‘Ei_:
- NS
N
Y P
~ v
> ] ;3'*5
‘:' \'CSE
N o R
a o
e
§_ Fig. 9.1. The mesh for the complexity analysis. -\
‘. el
g Let us now count the number of operations for the two major parts b) c¢) men- ::":..&
: . tioned above for the elasticity problem (2 unknown functions) 57 g
: a) Computation of the local stiffness matrix. It consists of -f"e:
S 1) Computation of the values of the shape function and the Jacobian in ::_'_t:j";::.:
: one Gaussian point. ‘_:’,:1
= 2) Computation of the values in « p2 Gaussian points and the sum- :'-f‘

T
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mation for obtaining one of the entries of the local stiffness matrix.

3) Computations of all entries = pu of the local stiffness matrix.

4) Computations of mn local stiffness matrix.
The crude operation count indicates that we can expect s = mn p7 operations.
Nevertheless, this count is deceptive as will be seen below.

The number of the shape functions is
Q = [4p + max(0,Kp-2)(p-3))]2 (9.1)

(the serendipity type of elements are used and hence, for 1¢ p ¢ 8 the

second term is not too large and the number of the shape functions is closer

to = p than p2. The number of Gaussian points used is ZE%J + 2 where [a]

denotes the integral part of a. A careful programming leads then to = pu
operations in the given range. In Fig. 9.2 we show the time for computations
of 25 local stiffness matrices (m = r = 5) in dependence on p in the dou-
ble logarithmic scale (time units on VAX). The straight line with the shape

4 we expected. The minor "wabling" of the time curve

4 confirms the rate p
is caused by using only even number of the Gaussian points.

The assembly and elimination form m 2 r. The frontal solver has been used

which joints the elimination and the assembly. The front is of order rp (when

properly counting (condensation approach) the dealing with internal shape functions.

Hence, one can expect the time is of order = (r‘p)2 mrp = mr3p3. Fig. 9.3 shows the

Pt R 3]

s Ae A

Fig. 9.2. The computer time for computation of 25 local stiffness matrices.
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{ time in dependence on p for various values m and r. The slope p3 is depicted :;a;
&L
% in the figure which agree with the expectation. :3?3
AT
v Fig. 9.4 shows the time in dependence on m with m = r and different p. .ﬁﬁq
’ Ve
X The slope of m3 is shown in the figure. We see that in the given range, the rate
is closer to m3 than to mu as one could expect. For small p and m the tests ““Q
are outside of the asymptotic range which had to be expected.
' Analyzing Figs. 9.2-9.4 and the experience, we see that the number of opera-
5 tions for the h-p version with number of layers roughly proportional to p (see,
N e.g. Fig. 7.9) leads to number of operation of order N® where 1.5 ¢ a € 2.5, i(jq
8 AR
S where with p increasing a 1Increases. The conventional h-version with p = :sjk
Y e Y
A 1,2 will practically never lead to the accuracy of order of 1% for any reasonable 51:2
> computational effort if the problem is not very simple. Nevertheless, for small :I;C
accuracy, a small p 1is desirable (see Fig. 7.9). Hence, the proper design of the T
:' mesh and the degree of elements is very important. This will be discussed in the ':3?:
. N
A next two sections. i:{j
. ASAS
) The method is very robust with respect to the mesh design when some basic rules .\jn:
i L 3
i’ are observed. The accuracy can be obtained by using higher degree without changing e
f the mesh.
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10. A-POSTERIORI ASSESSMENT OF THE QUALITY OF COMPUTED DATA Fr
AT
L ]
An essential part of the computational analysis is the a-posteriori assessment :¢‘¢;
N
of the quality or the obtained results of interest. (For the survey of the main :::::
ideas for the quality assessment, we refer to Noor, Babuska [1986]). Although the ;jf‘\
energy norm is basic measure of accuracy, it's mostly not the most relevant measure ,}iif
, PR
; for engineering purposes. fﬁ“:“
The basic and practically most efficient method for assessment of the accuracy &;f;:
Sy
o

of the data of interest is comparing computed data obtained for various p and use

i

of the extrapolation method. The computed data can be of various type inclusive YA

various equilibration checks, etc. Although PROBE provides many reliability checks, &i;i?
theoretically the a-posteriori quality assessment is the least mathematically under- :ﬁ:{:-

stood part of the computation. v

The assessment of the error measure in the energy form is the basic one and !!E;ﬂ

f relatively easiest to obtain because |e|§ =Ep - Epg where Ep (respectively EFE) Ei;:?
is the strain energy for the exact (respectively, finite element) solution and Epg f:g:i

increases with increase of p. As we have seen earlier, the rate of convergence of ;r*;:

[/

the p~version with properly designed mesh is higher than the algebraic one. Hence,

>
R
'Q.

one can, for example (as implemented in PROBE) assume that

‘:.Jﬂ(s (x
99y
'l’t’l_'\_

-8(p)

4
N

2
lelg = (EgEpg) = Clplp
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with C and B to be computed from 3 consecutive degrees p - 2, p-1,p. Because
of the reverse S property of the accuracy mentioned earlier B8 growths with p
and then decreases to the limiting value when algebrajic rate is achieved. The de-
sired accuracy should be practically achieved in the range of p when B8 1is about
maximal. This gives an indication of the quality of the mesh for given accuracy.

We will illustrate the approach on our L-shape problem with the mesh of two
layers (n = 2) discussed in Section 7. Table 10.1 gives the basic data. Column 5
is the value of the energy norm in % of the true error. Column 7 shows the relative
error in § (C.P.R.E) when computed from the current values p - 2, p ~ 1,p of the
degrees. Column 8 shows the error (PRE) computed from the predicted strain energy
for p =6,7,8.

Coming back to Fig. 7.8 we see that the value p = 4 +5 which is indicated
by B as the optimal one is close to the envelope of the curves. The predicted
error CPRE is more reliable in the phase when 8 1is increasings than decreasing
which is obvious because of (10.1). Nevertheless, as a whole CPRE is very reliable.

Obviously, PRE is very accurate for lower p.

The reliability of the estimation we have shown above is closely related to the
monotone behavior of the error. Nevertheless, it is necessary to estimate also
other values of interest. We shall show the computation of the stress intensity
factor K for the case of the L-shaped domain analyzed in Section 7. The method of
computation of this stress intensity was developed in BabuSka, Miller [1984] and
Szabo, Babu¥ka [1986]. It has been shown that this method gives accuracy which is
roughly aé the accuracy of the strain energy (i.e. the square of the energy norm
error). Table 10.2 shows the values of the stress intensity factor (normalized to
value 1). For more, see Szabd, Babu3ka [1986]. In contrast to the energy, we see
that the error changes sign and is not monotonic. This, of course, complicates the
extrapolation procedure.

Finally, let us show a more complicated example (where the exact solution is
not known) of the cracked panel as shown in Fig. 10.1 with the used mesh.

Table 10.3 shows the values of the first and second stress intensity factor
Ky and Kjg.

The program PROBE has built in additional quality tests based on the equilib-
riun testing so that the user can place maximal confidence in the data of interest.

Let us underline that because of the hierarchic structure of the program the
computation for different degrees can be arranged in a computationally very effec-
tive way.

As we have seen, it is important to select effectively the parameters of the h-
p version, i.e. the mesh and the degree of the elements which lead to the desired
accuracy of the computed data of interest. This can be done by a feedback (adap-
tive) approach or by help of an expert system or by the combination of both.
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TABLE 10.1
2 3 4 5 7 8
lel:
N FE E' FE 'l—r'u E ’ C.P.R.E. P.R.E.
1 LN 3.88608797 2.684 (-1) 25.1 - 25. 1
2 119 4.12483255 2.971 (-2) 8.u5 - 8.u5
3 209 4.14811501 6.429 (-3) 3.93 5.34 3.9
y 335 4.15265042 1.893 (-3) 2.13 2.02 2.09
5 497 4.15362580 9.084 (-u4) 1.47 1.01 1.4
6 695 4.1529746M4 5.695 (-4) 1.37 .80 1.10
7 929 4.15413900 4.052 (-4) .98 .75 .89
8 1199 4.15423777 3.064 (-4) .85 LTU .74
® @ 4.15454422
TABLE 10.2
2 3
N K
1 LY .95268
2 119 1.02177
3 209 1.00250
y 335 1.00073
5 497 0.99991
6 695 0.99985
7 929 0.99987
8 1199 0.99990
© ® 1.00000
r_llijt
A J
] L)
> .A.l
3w 45
2
ERERRL
o
Fig. Scheme of the cracked panel.
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r TABLE 10.3 .‘:tf:-r
. C__s"\:
KIS A
] 1 2 3 I} \::\',:\:
e
\ o
p N S K11 1
OV
N\
: 1 43 . 42259 -.37480 RLAE N
y 2 125 -55588 -.25578 VN
X 3 221 .56161 -.28951 ?}
y 355 .59232 -.28319 b
5 527 .59825 -.29398 ) .
6 737 .60043 -.28897 O
7 985 .60119 ~.29196 e
8 1271 .60132 -.29042 LY
L
S v
11. THE EXPERT SYSTEM AND THE FEEDBACK APPROACH %;ERS
PO
Remark 11.1. In Gui, Babu3ka [1986] (Part III) we developed and theoretically gﬁ:?;
:_'.-\.‘_

studied a feedback system which leads to the simultaneous selection of the mesh and

'f--' 4
r
[y
oy 4
>

(nonuniform) degrees of elements. This study has shown that the adaptive approach

(T
for the h-p version, based on similar principles as for the h version, is very com- \:§$%;
ARG
plicated and other approach has to be likely considered. A ;ﬁii.}
AN
The feedback system for the p-version with uniform p (i.e. for fixed mesh) }j?ﬁ;j
can be relatively easy implemented. We have seen in Sections 8 and 9 that the hier- i.’.
sNa2 >
archic structure of the p-version allows effectively change the degree. Hence, the }u'\}
-~

feedback of the p-version for the given mesh consists of successive computation for

)
‘ ‘f'
DX,

Ay

increasing p until the value of the interest will have admissible accuracy. The

K
R0

'.('v
Y

main question is what is the ratio of the cost of the entire computation to the cost

L
of the final one. Assuming that most ineffective computation mode, i.e. independent ja:;f:ﬁ
AT
computation for every p starting from p = 1 and that the cost W(p) of the com- ji::::.
YN
putation for degree p 1is W(p) = Cp* the ratio for (1 < p 7 8) for a =3 AN
. s %
Talu’

(respectively, « =~ 4) ranges from 1 to 2.5 (respectively, 2.14). Hence, a

more effective computation arrangement exploiting the hierarchic structure leads to

the ration in the range 1.5-2 at the most. This ratio {s very comparable with the

o
N
ratio in the adaptive approaches based on the h-version for the energy norm accura- ;;;;t
cy. The feedback p-version can be easily used for any accuracy definition. {Sf‘-'
Above we have assumed that all computations starting from p =1 are made and ; ;N'
that the mesh is given. The aim is obviously to construct the mesh and p = Pg so ﬁj:;:
that the desired accuracy is achieved and to compute only the solutions for p ¢ h;iéi‘
Pg (which is very cheap because of the hierarchical structure) to get the error :‘E:;"

e

estimates based on the extrapolation procedure.

Recently, a lot of progress has been made in the general developing of the
knowledge based systems (expert systems) in general (see, e.g. Waterman [1986],
Hayes-Rogh, Waterman, Lenat [1984]) and varfous attempt has been made to apply the
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system for computational mechanics problems (see e.g., Taig [1986], Fenves [[1986]).
In Babu3ka, Rank [1986] and Rank, BabuSka [1986] and expert system was developed
which advises the user how to use the h-p version in an effective way. One of the
main problems is to develop the set of rules which is then utilized in the system.

The finite element analysis can be essentially separated into two parts, the
decision phase and the execution phase, which carries out the decision although
these two phases are often interwoven. The adaptive approach combines these two
phases very tightly when user supplies only the basic data and the program takes
care about the entire process. The approach in the expert system mentioned above,
clearly separates the phases of decision and execution and adds the part of the ad-
vise and communication. It is using theoretical mathematical results mentioned in
previous sections in combination with heuristics. The system was developed for
treating polygonal domains and accuracy measured in the energy norm. We will show
now an example. For more details, we refer to Babu3ka, Raik [1986].

Let the problem be the plane strain of the "cracked wreich" (symmetric) domain
shown in Fig. 11.1. The first task is the construction of the geomctry mesh. Fig.
11.2 shows it. From the theory of the h-p version, it is known, that areas in the
neighborhood of the corners (entrant) are critical and have t. be Jealt with. The
user is advised about it and a basic mesh which separate the critical areas is con-
structed. Fig. 11.3 shows this basic mesh. Program then computes rough solution on
basic mesh, computes the few stress intensity factors for every corner and computes
an optimization problem leading to the highst accuracy for the minimal cost, and
gives for given p the (optimal) distribution of layers. Based on this computation
the expert presents the user with the relation between predicted error and cost (N)
for the optimal mesh computation. Fig. 11.4 shows this graph. The user selects the
accuracy and the program constructs the mesh for final solution. Fig. 11.5 shows
this mesh (not all layers are shown). For example, the mesh for the error 1.8% (re-
spectively 1.3) leads to the predicted optimal degree p = 4, N = 2101 (respec-
tively 2517) and number of layers shown in Table 11.1. We denoted by SL (column 1)
the number of the critical area as shown in Fig. 11.1 and by L the suggested number
of layers in this area. The computation on this mesh leads to the errors 3.1% and
2.6%, respectively.

We see that the predicted errors are good quality although not perfect what
could be expected. Nevertheless, the optimal distribution of the layers was
predicted correctly.

If the error 3.1% is not acceptable, then p can be increased in the adaptive
mode. In our case, this would mean to increase N to 3059 which will lead to the
error 1.9%. (The other possibility is to construct the optimal mesh for higher
accuracy.)

Let us mentioned that the expert system we outlined cost about 10-207% of the
entire computer cost.
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Fig. 11.3. The basic mesh for the cracked wrench problems.

3

norm (%)
o

o

N

Predicted error p in energy

Fig. 11.4,

Fig. 11.5.

500 1000 2000 3000

Number of degrees of freedom N

Predicted error for cracked wrench problem.

F el L L N T B N T
g LA .o

. O TR T T I T I S A S PR T LR
_‘:. ’, & -'\"."V’ O.IV:‘:: q.’-.{s.;:u:.‘:. RN R R R

The final mesh for cracked wrench problem.

N N N
PN AT AP R

v

MG
R
...|-<--A *

'4."“ o
<

¢ eq. ¥ |
” “

’

‘: ':\“
AN Y
s \-'..'
K P,
e Ld



DARLELIS MO e eyt VR d Gl gy i SO

EACI AR AMCOVCE PR AL s Ar A v R bt T

A
RGN
¥
—
1
Fig. 11.6 shows the actual error for the meshes and degrees shown in Fig. 11.4.
Finally, let us underline that the expert system and the problem of the optimal BN
- )
mesh design is in a very beginning stage. %1}:
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12. INDUSTRIAL EXPERIENCE WITH THE p AND h-p VERSIONS OF THE FINITE ELEMENT METHOD

-
", %
W
As was said in Section 1 the p-version of the finite element method was first “:
LA
introduced in USA when the program FIESTA was released - Peano, Walker [1981]. The ::t.
first release of FIESTA had elastostatic capabilities for solving three dimensional ?Q.

P SR W BB S S_a. " IR

problems. The p-extension (i.e., increase of p) was possible through the specifi X,

Pe
cation six group of hierarchic basis funetion corresponding to polynomial degrees .:::i
. : ranging from 1 to 4. The program had appealed to engineers mainly because it al- th;
. Pt
* lowed the use of coarse meshes and therefore simplified data preparation tasks. (3{

Visual checking of the mesh in three dimensions is generally very difficult and

—m—

often impossible when the h-version is used.
The industrial users are usually far more concerned about human time than ma-

I & O

chine cycle requirements but thus greatest concern is the elapsed real time between

problem definition and delivery of a reliable solution. This is because the costs
' associated with numerical analysis are usually negligible as compared with the con-
sequences of not being able to deliver correct solutions on time within the project
; schedule prescribed by management.
¢ The firat release of the program PROBE was introduced to the aerospace industry
in June 1985 by Noetic Technologies Corporation, a St. Louis firm. This release had
capabilities in linear plane elasticity only. The second release also has capabil-

“ e e v

. ities in linear two dimensional heat transfer, axisymmetric and planar thermoelas-
.ticity. .The first.release was _of_interest mainly to_airframe designers, whereas _the
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second release is also of interest of engine designers.

The program PROBE was extensively tested and is used very successfully in the
industry, e.g., in the analysis of orthotropic panels, various cut-cuts fracture
mechanies, problems involving laminated composites where the peeling stress was of
primary interest, etc.

Engineer users consider various features to be of important for them and judge
the programs and methods accordingly. The features are as follows:

1) Increased level of confidence in the computation. The usual observation of
the convergence of the data of interest (not only the energy norm) and various addi-
tional tests as equilibrium checks (having physical meaning), etc. give the user the
confidence in the computational analysis. (For some comments, see Section 8.)

2) Lower human time requirement due to simplicity and flexibility of input.

In an industrial test 30-U40 fold saving in human time were reported in comparison
with conventional finite element technology (Barhart, Eisemann [19861]).

3) To get rapid convergence and flexibility, e.g., when large aspect ration
have to be used as e.g. in the case of composite joints.

4) The flexibility of mesh design, e.g. in fracture mechanics following the
crack growth, series of short cracks, optimal design problem, etc. (e.g. Schiermein,
Szabo [19861).

5) Easy learning and robust performance.

The p and h-p version is very well responding to needs of this type. Never-
theless, further new features as dealing with plate shells, fabricated plates, e

dimensional problems, nonlinear analysis need to be developed.

13. RELATION TO SOME OTHER METHODS

The p and h-p versions of the finite element method has a relation to todays
form of the spectral method. The spectral method (see, e.g., Gottlieb, D. D.,
Hussaini, Orszag, [1984) expands the solution of the problem in high-order Fourier
or polynomial series, the coefficients of which are determined by weighted-residual
projections. The spectral method is used in the fluid mechanics, for example, in
the problem of transitional and low Reynold number, turbulent incompressible fluid
flow in simple domains. Recently, the research of the spectral method is focused on
extensions to more complex domains. The spectral method uses Galerkin type approach
and is assuming that the conditions (2.5) holds. The spectral method is, with the
use of polynomial approximation, closely related to the p-version with differences
in applications and implementations. See Patera [1986] and the references given
there. The pseudospectral method can be viewed as the Galerkin method with the nu-
merical integratior technique.

The spectral method was traditionally analyzed in the context with smooth solu-
tions. Only recently the needs of copping with the singularities and geometries in
the spirit of the h-p version is seen.
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The p-version is also related to the Global Element Method by Delves Phillips
[1980].

The p and h-p versions of the finite element method is relatively well devel-
oped and taylored for the needs of general problems in structural mechanics as we
have been seen in previous sections. The family of spectral methods which is ap-
plied in the field of fluid mechanics has various aspects which are related to the p

and h~p versions discussed in this paper.
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The Laboratory for Numerical analysis is an integral part of the }}L:ii
Institute for Physical Science and Technology of the University of Maryland, -‘jkﬁi
* under the general administration of the Director, Institute for Physical .
Science and Technology. It has the following goals: f{hr(1
\\.’!...5'3
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0 To conduct research in the mathematical theory and computational RN O
xS

implementation of numerical analysis and related topics, with emphasis ) $J
on the numerical treatment of linear and nonlinear differential equa- S;EQE
tions and problems in linear and nonlinear algebra. »

(o] To help bridge gaps between computational directions in engineering,
physics, etc., and those in the mathematical community.
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0 To provide a limited consulting service in all areas of numerical
mathematics to the University as a whole, and also to government
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agencies and industries in the State of Maryland and the Washington OO
Metropolitan area. ;:,:,:
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(o} To assist with the education of numerical analysts, especially at the
postdoctoral level, in conjunction with the Interdisciplinary Applied
Mathematics Program and the programs of the Mathematics and Computer
Science Departments. This includes active collaboration with govern-
ment agencies such as the National Bureau of Standards.
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o} To be an international center of study and research for foreign
students in numerical mathematics who are supported by foreign govern- )
ments or exchange agencies (Fulbright, etc.) l
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Further information may be obtained from Professor I. Babugka, Chairman, ’
Laboratory for Numerical Analysis, Institute for Physical Science and ;
Technology, University of Maryland, College Park, Maryland 20742. A
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