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Most la.r§e deviagion results give asymptotic expressions to log P(Y, > z,) where

the event (Yl x,‘) is a large deviation event, that is , its probabxlxty goes to zero
T}&. o.uu\o\'j /—\
exponentially fast. We refer to such results as weak large deviation results.{In this paper
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(Y}), that is,

is a large deviation event.

J-we obtainsstrong large deviation results for arbitrary ra,ndom va.rla.bles
A svbn poc ® gubr gy bn 7or : sub n

obtamsasympt.otxc expressions for P YJ. é zﬂ where (Y,L ;é ()
These strong large deviation results are obtained for lattice valued and nonlattice valued
random variables and require some conditions on their moment genera.ting functions.

A., iesult that gives tl:ve" lext of the ayerage prob?})ﬂ:ty that Y,( lies in an interval

2h/b,,, around the point Yf. where b > 0, b} and y,'. -1+ y*, is referred to as a local
limit result for {ng}

I
this paperywe obtains] local limit theorems for arbitrary random

variables based on easily verifiable conditions on;thexr characteglstxc functions. These local

limit theorems play a major role in the proofs of the strong large deviation results of this
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1. Introduction

The establishment of a limit distribution for a sequence of random variables
{Y,., n > 1} provides an approximation to P(Y, < z). However, there are other as-
pects relating to the distribution of Y,, for which one often desires an approximation. This
could be P(Y, > z,), known in the literature as a large deviation, especially when it
tends to zero exponentially fast. Another example is k,(z,), the probability density func-
tion of Y,, at z,,. The term, a large deviation local limit result for Y,,, is used when an
asymptotic expression is established for k,(z,) and z,, is in the range of a large deviation
for Y,,. Still another example is the average probability that Y, gives to an interval of
length 2k/b, around a point y,, where h > 0 and b, — co. An asymptotic expression for
(bn/2h) P(|Y,, — yn| < h/b,) will be referred to as a local limit result for ¥,,. We say that

B, is an asymptotic expression for A,, in symbols A, ~ B,,, if A,,/B, — 1.

The theory of large deviations for sums of i.i.d. random variables and its many
generalizations has a long history, see for instance Cramer(1938), Chernoff(1952),
Ellis(1984), Varadl.an(1984) etc. However, most of these results give asymptotic expres-
sions for log P(Y,, > z,) and so we choose to call them weak large deviation results. For
arbitrary random variables Y, this paper gives asymptotic expressions for P(Y, > z,),
which we call strong large deviation results. These results are found in Theorems 3.1 and
4.3, which impose conditions on the moment generating function (m.g.f.) of Y,,. These
extend the well-known strong large deviation results for sums of i.i.d. random variables

due to Bahadur and Ranga Rao(1960).

The proofs of Theorem 3.1 and 4.3 depend on the local limit results for ¥,,. These

are established first in this paper in Theorems 2.1, 2.4 and 4.1. and they are in the spirit
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of Feller(1967) wherein can be found some of the first local limit results for sums of i.i.d.
random variables. DeHaan and Resnick(1982) established local limit results for extreme
values and Jain and Pruitt(1985) for sums of triangular arrays of i.i.d. random variables.
The local limit results in this paper apply to arbitrary random variables Y,, and require

some easily verifiable conditions on their characteristic functions.

We illustrate our general results with two applications in Section 5. The first appli-
cation is a local limit result for sums of dependent random variables given by a general
model considered in Chaganty and Sethuraman(1986a). The second application is a strong

large deviation result for the Wilcoxon signed- rank statistic under the null hypothesis.

We do not study large deviation local limit results in this paper. We have ob-
tained such results for arbitrary random variables in Chaganty and Sethuraman(1985)
for one-dimensional random variables and in Chaganty and Sethuraman(1986b) for multi-

dimensional random variables.
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2. Local Limit Theorems

Let {Y,,n > 1} be an arbitrary sequence of random variables which converge to Y
in distribution. We do not assume that Y, has a probability density function (p.d.f.). Let
{yn} and {b,} be two sequences of real numbers such that y, — y* and 4, — co. By a
local limit theorem for Y;,, we mean that if A > 0, the average probability that Y,, assigns to
an interval of length 2h/b,, around y, converges to the p.d.f. of Y at y*. This is the spirit
under which local limit theorems have been studied for normalized sums of i.i.d. random
variables by Feller(1967), for normalized extreme values in DeHaan and Resnick(1982) and
for normalized triangular arrays of i.i.d. random variables in Jain and Pruitt(1985). This
section is devoted to local limit theorems for arbitrary random variables Y,,. The main

result is the theorem stated below.

Theorem 2.1. Let {Y,,n > 1} be a sequence of nonlattice valued random variables
which converge to Y in distribution. Let f,. be the characteristic function (c.f.) of Y,
for n > 1 and let f be the c.f. of Y. Suppose that there are sequences {d,}, {6n} with

dn, — 00, by — 0o and an integrable function f*(t) such that

@) sup | Fa(0)| 1(J] < du) < 1°(1)

for each t, and
(2-2) sup fu(t)| = 6 = o(1/b,)
[t|2dn
as n — oo.
Then the random variable Y possesses a bounded p.d.f. f. Let h >0 and y, — y* as

n — 00. Then

bn

(2-3) 2h

P(|Yn — yn| < h/bs) — f(y*)
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as n — oo. Furthermore, there exists a finite constant M and an integer n, such that
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:;’).:' ¢
s

o,
(7
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Proof. Since fn(t) — f(t) pointwise and d, — oo, condition (2-1) implies that f is
integrable and hence Y possesses a bounded p.d.f. f. In view of condition (2-2) we can

find a sequence {),} satisfying
(2-5) An/b, — o0 and A,0, — 0

as n — co. We now introduce two distribution functions U, V,, with corresponding p.d.f.’s
Up, Up and c.f.’s &,, ¥, as defined below, to obtain the important identity (2-13):

% for |z) < h/b,

(2-6] unle) = {

0 otherwise.

(27 in(t) = T,
_ An [sin(Aay/2) 2 a
(2 ) = 32 (S and
Lof e < an

otherwise.

(29) )= {273

Let F, be the distribution function (df.) of Y,, and let G, = F, « U,, M,, = G, V,

3 "v
Ll

where * denotes the convolution operation. Then the p.d.f.’s g.,m, of G,, and M,, are
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' Since the c.f. M, (t) of M,, which is equal to f,(t)iin(t)dn(t), vanishes outside of t:": .
[—AnsAn), the inversion formula gives RS
N
: 1 [ 20
N (2-12) me(z) = — / exp(—itz)in, (t)dt P
. 2% ~An .':x )
> _‘.!_"
I Substituting z = yn, we get _;_.
: b” co x‘::..-'_t
: 37 | (Y —yn+yl <h/ba)valy) dy oy
: oo RSy
o _ Ag ,\..,'.__\
: (2-13) = / exp(—itya)rhn(t) dt DaRY
' 2m J_a, .
N = A, (say). -\;::
« AN
" Relation (2-13) is the starting point of the main part of this proof and it relates :-.::‘\-':.*
" Sepe st
Ny
Ej P(|Ya — yn| < h/bn) to the integrable c.f. fa(t). We first show that A, which appears NN
b
! in (2-13) converges to f(y*) and that it is bounded above and below by %g- P(|Y, -y, < A
% '.‘::“::.
E{ (h £1n)/b,) for small n > 0, which then establishes (2-3). Notice that ;ﬁj{::f.
i OO
; (2-14) = / exp(—ity,) ma(t) dt| < Anbn £ a
! 27 Jq,.< t]<An nlom - 27 :\‘.:.:.:,:.’
" RSAYAN
- and -.'::
; L (cityn) Arn(t) dt — = [ exp(ity") (2) R
— exp(—1ty,) m,(t)dt —» — / exp(—tty*) f(t) ac ORI
‘ (2-15) 27 Jog|t|<da me 27 J oo ) -
- KRS
v =fly’) ;:f-\:-‘,f.;
W) a0
. from condition (2-1), the bounded convergence theorem and the inversion formula. Hence '.',-;_.:-':'_-
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b * R
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N TN
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: bn AN
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Combining (2-17) and (2-18) we get

b 4b,, Anbp 1 [ .
(2-19) 2 P(|Yn — ynl| < (h—n)/ba) [1 ] <=t ﬂ/-wf (t) dt.

B TAnT

Substituting h by 2k and n by h, we get

(220) 22 P([¥a - yal < h/bn) [1 46, ] < Anf

n 1 (% ..
T TAA 2w t 2 /_wf (¢) at.

Since A\,0, — 0, b,/A, — 0, we can find an integer n, so that

ba
- —_— — <M
(221 w2 [2h P(¥o = tal <4/ b")J -

where

4 (<,
M=;/_°°f(t)dt,

uniformly in y,. This proves assertion (2-4). Now for any n > 0, we can obtain another

upperbound for A, when n > nj by using (2-21).

b, [
Ap=2 P(|Yn — yn + ¥l < h/ba)vn(y) dy
2 J_,
b
(2-22) < o7 P(Ya—yal < (h+n)/bn) + M va(y) dy
,y'>'1/bn
b, 4Mb,,
< - .
< 22 PV~ gal < (o M)/b0) + 33

Thus, from (2-16), (2-18) and (2-22) we get that

lim sup g% P(|Yn—yn| < (h— 1)/5a)
(2-23) " b
< f(y*) < limjnf 22 P(1Yn —ya| < (A + n)/bn)

This implies that
h— n
(—nlf(y‘) < liminf On P(|Y, = ya| < h/b,)
h n 2h
(2-24) < limsup -2”1 P(|Y, = yal < h/bn)

h
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Since n > 0 is arbitrary, this establishes (2-3). ¢

Theorem 2.1 is a local limit theorem for the average probability that Y, assigns to
intervals of length 2h/b,, where b, — oco. Conditions (2-1) and (2-2) of Theorem 2.1
require that the c.f. f,, of Y,, be bounded by an integrable function f* on [—d,,d,] and
goes to zero at a suitable rate outside [~d,,d,|, where d,, — c0. There is a trade off on
how large d,, and b,, should be and the rate at which f,, should go to zero outside [—d,,d,].
Remarks 2.2, 2.3 and Theorem 2.4 explore the tradeoffs.

Remark 2.2. Suppose that there exists an integrable function f* such that f*(t) — 0

as |t| — co and

(2-25) sup |fa(t)] < £2(2)

for all t. Then for any sequence {b,} with b, — oo, we can find an sequence {d,} such
that d, — oo and conditions (2-1) and (2-2) are satisfied. Thus when (2-25) holds, the

conclusions (2-3) and (2-4) of Theorem 2.1 hold for every sequence {b,} with b, — oo.
The above remark is used in Example 5.1 of Section 5.

Remark 2.3. The conclusions (2-3) and (2-4) of Theorem 2.1 hold if we replace condition
(2-2) by

An
(2-26) / |fa(t)|dt =0 asn — oo,
for some sequenée of real numbers {),}, such that A, — oo, and A, /b, — o0 as n — 0.

Theorem 2.4, stated below, shows that we can relax condition (2-2) and still obtain

the conclusions (2-3) and (2-4) for sequences {b,} such that d,, /b, — o0 as n — co.

Theorem 2.4. Let {Y,,, n > 1} be a sequence of nonlattice valued random variables which

converge in distribution to Y. Assume that condition (2-1) of Theorem 2.1 holds for some
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sequence of real numbers {d,} with d,, — co. Let {b,} be a sequence of real numbers such
that b, — oo and d, /b, — oo, that is b, diverges to oo slower than d,. Let h > 0 and

Yn — y* as n — oo. Then the conclusions (2-3) and (2-4) of Theorem 2.1 hold.

Proof. Let A\, = d,,, then condition (2-26) trivially holds. Thus Theorem 2.4 follows from

ST I Y V.Y T 7Y VY ANy ¥ 3 o4

Theorem 2.1 and Remark 2.3. ¢

The next theorem provides a convienent way to verify condition (2-1) of Theorem 2.1.
In Lemma 3.2 of Section 3 we use Theorem 2.1 and this method of verification of condition
(2-1), in the midst of our proof of a strong large deviation theorem for arbitrary random

variables T,.

Theorem 2.5. Let {Y,,n > 1} be a sequence of random variables with c.f.’s {f,(t),
n > 1}. Let {d,} be a sequence of real numbers such that d, — oco. Let g,(t) =
d;2log | fa(dnt)| be = well defined function of ¢ and twice differentiable in a neighborhood

of the origin. Suppose that there exists an § > 0, a > 0 such that for |¢| < 6,
(2-27) —gn(t) 2
for all n > 1. Then condition (2-1) of Theorem 2.1 is satisfied with d,, replaced by éd,,.

Proof. An application of Taylor’s theorem yields for |¢| < 6,

2

t

9n(t) = 9a(0) +t94(0) + - 9n(£n) G

42 S

(2-28) = 5 9a(£n) A
at? & -
<7 S

\:_\:_\:,

~ A
where &, is such that |£,| < |t| < 6. Therefore for |t| < 6d,, \;::\.‘:\::
NS

at? -
(2-29) gn(t/dn) < Py BN
2dn NN,
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Thus for |t| < 8d,,, we have for all n > 1,

|fa()] = exp(d}(ga(t/dn)))

< exp(~at?/2),

(2-30)

which is an integrable function. This completes the proof of the theorem. <

Remark 2.6. It may seem that the restriction of nonlattice random variables appears
only in the statements of Theorem 2.1 but not in the proofs. A close look at condition
(2-2) shows that it cannot hold if Y, is lattice valued. The restriction to nonlattice random
variables was therefore made more prominent in the statement of the Theorem 2.1 rather

than tuck it away in condition (2-2). We treat the case of lattice valued random variables

in Section 4.
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3. Strong Large Deviation Theorems

Large deviation results for arbitrary sequences of random variables, {T,,,n > 1}, ob-
tain asymptotic expressions for log P(T,,/an > m,) where the event {T,,/a,, > m,} repre-
sents a large deviation. A number of authors, including Seivers(1969), Steinebach(1978),
Ellis(1984) have obtained such results under suitable conditions on the m.g.f. of T5,. In this
section we obtain strong large deviation limit theorems for T, i.e., asymptotic expressions
for P(T,./a, > my,). Similar results have been obtained before when T, is the sum of
i.i.d. random variables by Bahadur and Ranga Rao(1960). The proofs of our strong large
deviation results depend heavily on the local limit theorems of Section 2. We shall develop

some notation before stating the main theorem.

Let {T,,n > 1} be an arbitrary sequence of nonlattice random variables with m.g.f.
#n(2) = Elexp(zT,)|, which is nonvanishing and analytic in the region @ = {z € C: |z]| <
a}, where @ > 0 and C is the set of all complex numbers. Let {a,} be a sequence of real

numbers such that a,, — co. Let

(3-1) Yn(2) = a;llog én(2), for z € 1, and
(3-2) Yn(u) = sup [us — ¥,(s)], for real u.
la|<a

Let {m,,n > 1} be a sequence of real numbers such that there exists a sequence
{rn} satisfying ¥/ (r,) = m, and d < 7, < a; < a for some positive numbers a,,d
and for all n > 1. The boundedness of 7, below by d > 0 is satisfied for example if
liminf,[(m, — E(T,)/a,)] > 0. Theorem 3.1 below gives a strong large deviation result

for T,,. One should note that condition(A) of Theorem 3.1 implies that (T,, — E(T,))/a,

converges to zero, in probability. Also, conditions (A) and (C) of Theorem 3.1 together
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imply that (T, — E(T,))/+/Var(T,) converges in distribution to the standard normal. A

strong large deviation result for T,, when 7, — 0 is proved later in Theorem 3.3. We now

=

2,

forall 0 < § < &;.

NN
state the first theorem of this section. NS
o
Theorem 3.1. Let {T,,n > 1} be an arbitrary sequence of nonlattice random variables. AL,
. .
Let {m,} be a sequence of real numbers such that there exists {r,} satisfying ¢/,(1.) = m,, ..
and d < 7, < a,, for all n > 1. Assume the following conditions for T},: ; o
(A) There exists 8 < oo such that |[¢,(2)| < fforalln>1, z€ Q.
|,
o
(B) There exists §; > 0 such that : ;:'
_ N
t 1 AR
sup ﬁ‘(ii'—)- = o(.——) .:'..:'_
|t|26 ¢n(rn) Von Lo
[ R oNE"
]

(C) There exists @ > 0 such that (r,) > a for alln > 1.

.

B

.

&
M )
el vl LA
"' L -_e_v_ "

Then "i

T, ) exP(_an'Yn(mu)) e
3'3 P — > m. ~ . . ,‘_\ 1
(3-3) (an =0 V211 an (1) ,-t:::::f
RN
Proof. Let K, be the distribution function of T,,. Let T,; be a random variable such that '.:.:'{';f::
y !. .- ;

(3_4) P(T; < y) = Hﬂ-(y) = / exp(u'rn - anwn(rn)) dKn(u) : e

-0

Let T = T} — a,m,. Then the cf. of T/, is given by

&n(Tn +1t)
Sn(rn)

Using these new random variables and the relation y,(m,) = m,7n — ¥n(7s), we have

(- [ o
= /:o e:p(—yYTn + an¥n(tn)) dHa(y)

nifln

= exp(an¥n(ra)) E(exp(~1.Ty) I(T; > anmy,))

(3-5) E(exp(itT.)) = exp(—ita,m,)

= exP(—an'Yu(mn)) E(exp(—r,,T,")I(T,', 2 0))
= exP(_an'Yn(mn)) I, (sa')')-

12
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This step, usually called the use of Escher transformation, is the starting point of
most investigations in large deviations. If the conditions (A), (B) and (C) are satisfied,

Lemma 3.2 shows that Theorem 2.1 of the previous section holds for T, and for any A > 0,
h

3-7 2V an ¥ (1a)P((k — 1)h < 1, T, < kh) ~ —,

(57 VA P ((k — 1 < Ty < kh) ~ =

uniformly for bounded intervals of k. Also, there exists constants M, n, such that for

n 2> np,

(3-8) |TaV/an¥!(ra) P((k —1)h < 1.Th < kh)| < M
for all £ > 1. We now write down lower and upper bounds for I,,:

I, = i E[exp(—7aTh) I((k — 1)k < 7, T} < kh)]
(3-9) k=1

kn
> Y exp(—kh) P((k — 1)k < 1aT}, < kh),
k=1

and

ka
In <) exp(—(k = 1)h) P((k — 1)h < 1,T}, < kbk)
(3-10) k=1

+ i exp(—(k — 1)h) P((k -1)h<7T) < kh)
k=kpr+1

where we choose kj = [1/h2]. Using (3-7) and (3-8) we get

kx
limninf[\/ﬂr,,\/antl;g(rn) I,.] > Z exp(—kh) h
(3-11) k=1
_ h(exp(—h) — exp(— (ks + 1)4))

1 — exp(—h)

and

limsup V277, /a9 (r,) I,

kn oo
(3-12) <Y exp(—(k-1)h)h+ Y Mv2mexp(—(k-1)h)h
k=1 k=kp+1
_ h(1 — exp(—knh)) M+/27exp(—knh)
1 — exp(—h) 1-exp(—h)
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“ . :}\"‘l
‘,.:. Letting h — 0 we get from (3-11) and (3-12), V)
1 PR
.\ (3-13) I ~ . I.:.I\.
:f_ " ‘/2_7”'1; \/an 'z (Tn.) ':SE:;
J ot
-‘33 This completes the proof of Theorem 3.1.0 ;:.'3.:}
™ N
A L
.- Lemma 3.2. Let {T’.,n > 1} be a sequence of random variables as in Theorem 3.1. j'._\'::-s‘
, Assume that the conditions (A), (B) and (C) of Theorem 3.1 are satisfied. Then for any '_’,'-
> h > 0, (3-7) holds uniformly for bounded intervals of k. Further there exists constants .‘:_::
. M, ny, such that for n > n,, (3-8) holds for all k > 1. ‘,-.:.-E
2, oy
* 'I .-
'’ “.-_'1
e Proof. Let d, = \/a,¥!(r,). The lemma follows once we verify the conditions of Theorem :;l‘,-é
. g
2.1 with ¥, = T%/d,.. The cf. of Y,, is given by e
¥y o
’ a Ta +1t/d 3 LAY
% (3-14) falt) = ﬁ‘_(_q';n(_rn)/_.'ﬁexp(—ztmnan/dn). ;:‘::
. LN
9 PO
Since ¢n(z) = a;!logd,(2) is a well defined and analytic function in 2, and || < ay, PN
v the following expansion is valid for |t| < (¢ — a;)/2and n > 1: e
- o
- Ty
xS (3-15) Yn(tn + it) = Yu(r,) + il (1a) — (t2/2)95 (1) + Ra(1n + 1t). _"
~ .~
2 Using condition (A) and Cauchy’s theorem for derivatives we get for |t| < (@ —a,)/2, oy
~" :'-::1.
18 AN
o _ (k) . k! oo
b (3-16) [¥n (Tn +1t)| < _—(a —a* fork > 1, :,-.:
. .' .‘i
and AN
.\ A _\"1
-‘\ . 2ﬂ |t | 3 ‘:.\:_-
: 3-17 t)| < ™ —=. e
N (3-17) |RBa(rn +it)] < (a —ay) -
A O
) Therefore for |t| < (a — a1)/2, we get from (3-15), (3-17) and condition (C), By
(3-18) 2
log fu(t) = —(itmpa,)/d, + an [zb,,(r,l +1t/d,) — ¢,,(-r,,)] PO
Ao
LSS
: = —(itmnan)/dn + an[itYl(1n) /dn — (¥ (7a))/(2d2) + Rn(rn + it/dy,)] ~y
3 = ~t2/2 + apRp(tn + it/dp), s
-, v.\:-.
‘ 14 S
> SN
4 .
R
o e
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by (3-19) |an R (T + 1t/ds)| < U — 0, asn — oo. "'-:\,p_
) ad, (a - 41)3 ".-\l'.
, Pi‘i
SIS,
Hence Y, = T /d,, converges in distribution to the standard normal random variable. We &m
p now proceed to verify conditions (2-1) and (2-2) of Theorem 2.1. Let ;‘q\:
. - 7 ‘:’)‘::v
. gn(t) = d%log | fn(dat)] }:{:f--}
.: (3-20) —itm, 1 el
— = R l .t — . '!« ,1 ‘
Flrn) + ) e lrn 4 ) = () )
. , R
e Thus e
3 O
o(t) = _Real(zggrn)-l- it)) : 'ﬁ:\:
¢ T, ™ a¥:
na\’n
§ _ _Real(y7(ra) +it67) m
j (3-21) ¢iﬁ(fu) .
$ = —1+ Real(it8], /4/1(rs)) T
X L
< -1+ [t]l6gl/ e, T
;" where 6y, is an appropriate complex number. By (3-16) we get that ij'::{jf;
: ) 313 i
(3-22) 0] < /= forn>1. DS
(a - 01)3
v O
v NN
) Therefore we can find § > 0 such that for lt| < §, NG '-;;
b, D
" o
' " '.*:'\:.
(3-23) ga(t) < —(1/2) foralln > 1. et
Lo
e ; ::\::
N This verifies condition (2-1) of Theorem 2.1 with d,, replaced by éd,, as noted in Theorem r.\ Ny
? 2.5. Now, from condition (B) we get that rrC‘f..r
o
a Tp + it NS
: sup |fa(t)| = sup |Zelfn £ ) W
- (¢]>6dn (t(261 Pnlra) Y,
: 1 R
(- 3-24 = % )
. ( ) 0[ \/a—n-] _?_':\'f
1 :rv!.
3 = o[ ] NN
. Tndn ':\ A -
- ey
N 15 S
) PR
i > 4
. . _:-f.'_::.
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DI
" since 7, is bounded and d,, = O{,/a,). This verifies condition (2-2) of Theorem 2.1 with :_’:*-.'
1 &5 LeX]
o bs = Tpdy,. The assertions (3-7) and (3-8) now follow from (2-3) and (2-4) respectively. ¢ e
-
5
," We now turn our attention to the case where 7, — 0 as n — oo, but not very fast.
L)
\)
o More specifically, we require that 7,,/a,, — co. In this case we can get the stronger result
o . that the conclusion of Theorem 3.1 holds without condition (B).

Theorem 3.3. Let {T,,, n > 1} be an arbitrary sequence of nonlattice random variables.

Let {m,} be a sequence of real numbers such that there exists a sequence {r,,} satisfying =

Y! (tn) = mp, 7n > 0. Also assume that 7, — 0 and 7,,/a, — oo. Let T, satisfy the f-_j:lzj.:

. conditions (A) and (C) of Theorem 3.1. Then :‘:
X T, eXp(=@nYn(mn))
.\. (3'25) P (_1 >m ) ~ . NN
% an n V2r1a\/an! (1) :;:-_’, -
Y
~ The proof of Theozem 3.3 is similar to the proof of Theorem 3.1. The only change is =g
i e
% that we apply Lemma 3.4 instead of Lemma 3.2 to obtain (3-7) and (3-8). AR
E‘l :'.:":'
' 2

X7

Lemma 3.4. Let {T., n > 1} be a sequence of random variables as defined in the proof

'S/ [y
.~‘ _»

of Theorem 3.1. Let 7, — 0 and 7,,/a,, — co. Assume that conditions (A) and (C) of

. om

S
LN
Y Tl

Theorem 3.1 are satisfied. Then for any h > 0, (3-7) holds for bounded intervals of k.

.
s

N
‘I

[
L Y

Further, there exists constants M, nj such that for n > nj, (3-8) holds uniformly for all

II..¢ e
»,

k>1.

A

4
L4

S

re i

Proof. As before let Y,, = T}, /d,, where d, = \/an®¥!(r,). We have already seen that in

AR
[ 2k I 4
il

Lemma 3.2, Y,, converges in distribution to standard normal random variable if conditions

i

(A) and (C) are satisfied. Also, Y,, satisfies condition (2-1) of Theorem 2.1. Let b, = 7,d,,.

R

)

[/
Py
".‘"*-

The assumptions on 7, imply that b, — 0o and d,/b, — 00 as n — co. Therefore the

PR LR
P
)
s

5
-

conclusions (2-3) and (2-4) are valid for Y,, by Theorem 2.4. This proves Lemma 3.4. ¢

7 16
Pl

.....
......

. - .‘ ...‘. et o - . .. . -. - >. . = ~ R St T et
------ _r.’\',\"\:’y;,' ST __\..\.'\"\ RS IR RN ~..._ R e S W i




AN My - 18 3 - ViV L WuN o aty gty i, ML UYL u W ARt e a s b g herad W SV UWIPAS TPARTNART

AR
Ay
LR
N RRAKT

o,

‘ﬁ i\. 5 \- ;‘F
‘:‘P:{:‘\'.s"s's‘: i

NS
. l\,‘,

.
3,

v e

7/,

Y
.
a

v
’

Y
L)

4. The Lattice Case
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This section primarily deals with local limit theorems and strong large deviation the-

N d

AN

S
N

ey,
s

orems for lattice valued random variables. These theorems are analogous to the theorems

XA
*»
s

for nonlattice valued random variables of the previous two sections. RS

Theorem 4.1. Let Y, be a lattice valued random variable taking values in the lattice N
\ {¢n + khy : k=0,%1,%+2,...}, where h, > 0 and n > 1. Assume that the span h, of Y,,

converges to zero as n — oco. Let Y,, converge in distribution to Y. Let f, be the c.f. of \

AR
Pl
Sy

Y, and f be the c.f. of Y. Let {d,} be a sequence of real numbers with d,, — co. Assume

.
LY

P

)

4
L)

that there exists an integrable function f* such that o

ol
;‘l"i
oS
%

: (41) sup | fu(t)] I(Je] < du) < £7(2) 2

L P e .

for each t, and

(4-2) sup  |[fu(t)] = 0n = o(hn), asn — co. r
; da<lt|<n/ha 7
»

3
"
-
N
.’
N
"-

Let y, be in the range of Y,, such that y,, converges to y*, as n — co. Then
1 .
(4'3) . ;L—_ P(Yn = yn) - f(y )$

where f is the p.d.f. of Y. Also, there exists a constant M < oo, and ng such that for

nZnOa

(4-4) [i P(Y, = y)] <M

uniformly in y. R
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:: Proof. Let y, is a possible value of Y,,. Then an application of the inversion formula e
< yields ‘é?;'_-‘ *
Ya, o
. (4-5) NN
N wfha i‘.'-_._d‘
A L P(Ya=yn) = — j Flt) exp(—ityn) de 2
!': A, n=Yn)= o /b n P Yn e e
1 2 ) 1 R ) o
= — [a(t) exp(—ityn) dt + — fn(t) exp(—ity,) dt R0
\ 27 {t|<dm 27 dpSit|<n/ha -':'&';'"
., ." .- ¢
y =In+1Iz  (say) RO
N It is easy to check that condition (4-1) and Dominated convergence theorem imply that
. Iy converges to f(y*) = (1/2x) [ f(t) exp(—ity*) dt. Next f'j::ff:
< . R
> 2 ERPAR
< | In2| < o suwp |fa(t)] Py
:;. (4-6) n de Slt‘(fr/h. :::.;_:.:.
, 0,
=T OGN
: - T
" which converges to zero as n — oo, by condition (4-2). This completes the proof of (4-3). A
: RO
2 Next, from (4-5) and (4-6) we get ol
. 1 1 R 9 o
: | EL Y I ACTP R i
: " ™ Jig<as n
. (4 7) < _1_ /w Ift(t)l dt + 0_,. :;:::f:..
. = or e h” -:‘cr.‘i..
- 1 co >~ ‘.;';
: < [Tireia=m, R
" TJeoo PSR
-~ YA
4 uniformly in y, for sufficiently large n > no. This completes the proof of the theorem. ¢ \_':'_\
oot LN
2 Remark 4.2. In the above Theorem 4.1, it is assumed that d,, < «/h, for all n > 1. R
'- Suppose on the contrary that d, > 7/h, for all n > n;. The above proof shows that :’::,.
: RSN
f the conclusions (4-3) and (4-4) hold. The condition (4-2) becomes vacuous and should be t -
. .
ignored. - o
REAY
" . . - - . =t
o The next theorem provides an estimate of the large deviation probability for arbitrary K _:; ¢
s [N
- sequence {T,, n > 1} of lattice valued random variables. We begin with some preliminar- LS
) : RS
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Let {T,, n > 1} be an arbitrary sequence of lattice valued random variables taking

values in the lattice {t, + kp, : k = 0,£1,+2,...}, p, > 0. Let the c.f. of T,, #(2), be :H'J-'J'
Pudsied
analytic and nonvanishing in the region 2 = {z € C : |z| < a}. Let {a,} be a sequence of e “::;
N ()
real numbers such that ¢, — oo and p, = o(,/a,). Let f:-" ?

(4-8) ¥a(2) = a; " log ¢a(2),

be a well defined analytic function on Q2. Let {m,,} be a sequence of real numbers contained

in the range of Ty, /a,, such that there exists 0 < 7, < a; < a satisfying ¥/,(r,) = m,, and

Tny/@n — 00 as n — oco. With this notation we are ready to state our next theorem.

Theorem 4.3. Assume that T,, satisfies conditions (A), (C) of Theorem 3.1 and the

j following condition (B’): : ..

(B') There exists §; > 0, such that for 0 < § < §,, 1

- T

: ¢n (Tn + 3t) [ Pn ] :_’--::.:'.
sup —_ | =00 }|—=]. et

i s<|t|<n/pa ¢n(rn) Vvan ‘ )

: Then -

: T, ) Pn exp(—an¥n(mn))

4-9 Pl—>m ~ —— ]
i ) <“n ") V2r\faa i) (1 — exp(—pnta))

where Yo (mn) = maty — Yu(rs).

Proof. Since m,, is in the range of T,,/a,, we can write a,m,, = t, +1,p, for some integer

, ln. Consider

an

P (ﬂ > mn) = P(Tn > tn + lupa)

T & & & & 7 & ¥

= Z P(Tn=tn+kpn)
k=ln

(4-10)

= exp(~2n¥n(ma)) 3 exp(anTn(mn)) P(Ta = tn + kpn) o
k=ln

= exp(—a"q"(m”)) Z exp(—(k - ln)pnrn) Pn(k) A

k=lg :\ .\-..'-

.-y ¥ =5 %
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where

(4-11) Po(k) = "‘""“‘; ’(“T")”“)’") P(Tn = tn + kpy).

Let us introduce for each n > 1 a lattice valued random variable 7|, which takes the

value (k — l,,)pn with probability P, (k). Therefore, we can rewrite (4-10) as

P (E > mn) = exp(—ann(mn)) E(exp(—1.TL) I(T}, > 0))

(4-12) an

= exp(—apnTn(ma)) In (say).
Let d, = \/a.¥!(r,) and Y, = T./d,. Then Y, is a lattice valued random variable
with span h, = p,/d,.. Note that h, — 0 as n — oco. If the conditions (A), (B) and (C)
are satisfied, the next Lemma 4.4 shows that Y,, converges in distribution to the standard

normal and satisfies the hypothesis of Theorem 4.1. Thus we obtain

—P(Y,.=kh,.)—»-1— as n — oo,

hn V27l"

uniformly in k € [~k,,k,], where k,h,, — 0. Also, there exists M < oo and ng such that

(4-13)

for n > ny,

(4-14) hi P(Yo=kha)| <M

for all k. We are now in a position to evaluate the expectation on the r.h.s. of (4-12).
Consider

I, = E(exp(—d,,r,.Y,.)I(Y,. > 0))

= E exp(—kpnTa) P(Yn = khy).
k=0

(4-15)

Let kn = [dn/Tnp2]!/2. Note that knh, — 0 and knp,7, — 00 since 7,,/a, — 0. A lower
bound for the r.h.s. of (4-15) is

kn
(4-16) Z exp(~kpnta) P(Yn = khy,)
k=0
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and an upper bound is given by :-."\.

kn o ~ ~7

(4-17) Z exp(—kpata)P(Y, = khyn) + Mh,, Z exp(—kpnt,) :::::3‘,"
k=0 k=ka+1 B

N

wherein we have used (4-14). Combining (4-15), (4-16) and (4-17) we get v

lim inf Lo eXR(=PaTm)) |

o
1] he > —=liminf(1 — exp(—knpnty)) RTINS

n RECAL

(4-18)

ol-4l-
3 )

and

<.

-.. -
A
S
- -
"
U

o
Sail
. 5’\.’

limsup (- exi(—p"r")) I, < \/—12—— + lim sup(M exp(—knpntn))
n ™ n

(4-19) " 1

V2

since k,pnTn — 00 as n — co. Therefore

hy
- (1 - GXP(—p,,Tn))\/Z_;.

(4-20) I,

The proof of the theorem is completed substituting (4-20) in (4-12). ¢

ni
We now state and prove Lemma 4.4 which was used in a major way in the proof of _:',::\2
A
the above theorem. ,-_‘;-_'.‘j-'
Lemma 4.4. Let Y, be a lattice valued random variable taking values in the lattice L
{(k = la)hn : k = 0,%£1,%2,...}, with probabilities {P,(k) : k = 0,%1,+2,...}, where ‘\:‘;'
P, is given by (4-11). Let h, — 0 as n — oo. If the conditions (A), (B’) and (C) are st

satisfied then Y, converges in distribution to standard normal. Furthermore, (4-13) holds

Y,

"\(5 N )

Yy 4 e
L4 P

’
NN

uniformly in k € [—k,, k,], where k,h, — O and the inequality (4-14) holds for all k.

NS
QN
A
Proof. The lemma will be proved once we verify that Y,, satisfies the conditions of Theorem I'_-;‘:'_';-
RO
2 T
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» 4.1. The c.f. of Y, is given by ‘““.)- X
! Falt) = E(exp(itYa)) N
: = Z exp(it(k — 1) k) Pa(k) :‘;;:"
A k=-oco h:”’.:
i 4-21) i P(T,=t, +k LA
l ( — . _ ( n nt pn) o
: k_z-:oo exp(it(k — lz)hn + (tn + kPn)Th) PREN) ,\:\
: . ua(m + it [ dn) S
. = exp(—1tmnpan/dn) ————,
. p( w/dn) bn(7n) :: N
! wherein we have used the fact a,m, = tn + lnpn. As in Lemma 3.2, we can show that

N Fu(t) converges to exp(—t2/2) and hence Y, converges in distribution to standard normal.
N Imitating the proof of Lemma 3.2, we can also show that if conditions (A), (B’) and (C)
-
L are satisfied then f,(t) satisfies the conditions of Theorem 4.1. The rest of the Lemma 4.4
’
J follows from Theorem 4.1. ¢
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5. Applications

IR
b . ,

In this section we give two typical applications to illustrate the large deviation limit

-
.
-I L4

' theorems and strong large deviation limit theorems of the previous sections. The first

example is a local limit result and illustrates Theorem 2.1. The second example is a strong

large deviation result for a lattice valued random variable and illustrates Theorem 4.3.

. Example 5.1. This example applies to a general class of sums of dependent random
variables considered in Chaganty and Sethuraman(1986a). Though it was proved in that
paper that the limit distribution could be both normal and nonnormal, our example applies

only to the case where the limit distribution is normal. We first present a particular

! application and then state a more general application referring to conditions found in e
. AN
: Chaganty and Sethuraman(1986a). j:j'.:
A S
‘ L Sy
: Let {X Y') , X;"') venes X,(‘")} be a triangular array of random variables with joint density v
! function

. n

. (5-1) dQn(x) = z7'(2x) /2 [cosh(sn/\/in)]" exp(— Z £2/2) dx,

) =1

!

'S where x = (z1,...,2,), 84 = Z; + ...+ Z, and z, is a normalizing constant. Such de-

. pendent random variables arise in generalized Curie-Weiss models used to describe ferro-

]

: magnets. The constant /2 inside the argument of the cosh function above plays an impor-

. tant role. Example 4.4 of Chaganty and Sethuraman(1986a) can be modified or Theorem

. 3.7 of that paper can be used directly to show that ¥, = (X\™) + ...+ x\)//n con-

i verges in distribution to a normal distribution with mean 0 and variance 2 (Example 4.4 of

4 Chaganty and Sethuraman(1986a) used the constant 1 instead of v/2 and obtained a non-

4
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normal distribution under a different normalization). We will now show that Theorem 2.1

applies to Y,,. Since

(5-2) (coshw)™ = Z exp(wy)An(y)

y€C,

3

with X, (y) = (23y) and C,, = {-n,—n +2,...,n}, the c.f. of Yy, is given by

(5-3) falt) = Elexp(itYs)) R
1 n :: :::‘. /
— »—1 — . _ 2 BOA
=z, Z 2n) 2 /exp(ztsn/\/ﬁ-}-ysn/\/in 'Ezj/2)dx An(y) SN
yECH =1 I
= exp(—t?/2)z;! Z exp(ity/V2n + y%/4n) A (). -
yEC S
Since f,,(0) = 1, we have “
F ey
(5-4) |[fa(t)| < exp(~t?/2)  for all nand ¢. S
':\__\:.
Thus fror: Theorem 2.1 and Remark 2.2 it follows that for any A > 0, {6,} — oo and ::"::':
e
Yn =, )
Sn h h y?
5-5 b — - -
(59 P (|2 < 1) =~ e (- 25)

with o = /2.

From the above discussion and from a full use of Theorem 3.7 of Chaganty and Sethu-

raman(1985a) we have the following application which we state without proof.

Let {X{™, xi™,..., X!™} be a triangular array of random variables whose joint dis- -r~ .
tribution is as given in (3.13) of Theorem 3.7 of Chaganty and Sethuraman(1985a). We :."_f::j:-:
N

will impose conditions on the probability measure P and the index r appearing in that :
R W

Theorem. Let P be the standard normal distribution and let r = 1. Under these condi-

[P

I ‘:-i'
tions, Theorem 3.7 of Chaganty and Sethuraman(1985a) shows that there is a sequence of =
(SN
A
constants {m,} such that S
NANRY
n e
(5-6) Y, = (Z X’!"' -nm,)/vn T
= :/:.r
! :}.‘:_:
24 KAy
N
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:' g e
~ has a limiting normal distribution with mean 0 and variance 2. Let f,(t) be the c.f. of BT
h L.
] Y,.. For this case, if we proceed as in the application above, we can establish (5-5) for all e
o OPACS
f: n and ¢t. This shows that (5-5) is true with the appropriate o. 4
. -
. e
< Example 5.2. We now obtain a strong large deviation result for the Wilcoxon signed-rank At

. statistic under the null hypothesis. This stregthens the well known weak iarge deviation 2_i
results for this statistic (see Klotz(1965)). \
v e

Let {X,, n > 1} be a sequence of i.i.d. random variables with median m. Arrange —
< :":':

" |X1],|X2],.-.,|Xnl| in increasing order of magnitude and assign ranks 1,2,...,n. The IO
) pASR
s Wilcoxon signed-rank statistic U, is defined as the sum of the ranks of positive X;’s. The N
A
.‘ statistic U,, is used to test the null hypothesis Hy:m =0vs H; : m # 0. Let T,, = U, /n. o
;- The random variable T, is a lattice random variable with span p, = 1/n. The cf. of T, ;;::::.
= under the null hypothesis Hy is given by f'f-_f'_::I
o . S
(5-T) H exp(kz/n) +1)/2], zeC.

N k=1
J It is easy to check that ¢,(z) is analytic and nonvanishing in the region @ = {z € C : |z| <
- 7/2}. Let
i
<. _-:::
o (5-8) ¥n(z) = n"!log én(2). oo

. ENC
3 fosd
We will verify that T, satisfies all the conditions of Theorem 4.3. It is easy to check ____

N that there exists § > 0 such that |¥,(2)| < 8 for |z| < m/2. Straightforward calculations
.\

N show that ¥/ (r) is bounded below by a positive number a for real r such that |r| < 7/2. w
- Thus T, satisfies conditions (A) and (C). Now to verify condition (B’) we first note that i~ ,!
b the range of ¥/ (s), for real s contains the open interval (0, 1/2) for all n > 1. Thus if :‘::"-':
:- (.: o
- {m,} is a sequence of real numbers contained in a proper subinterval of (1/4, 1/2) then
b, - el
. we can find positive numbers d, a; and a sequence {r,} such that d < 7, < a; < 7/2 : .
0N S
3 and ¢! (r,) = m, for all n > 1. Therefore \/nr, — o0 as n — oco. From the analysis in g
~ - :4
\.j 25 o
< R
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Example 3.1 of Chaganty and Sethuraman(1985) it can be seen that there exists no and

61 > 0 such that for 0 < § < §y,

(5-9) sup $nlra + i) < exp(—nabé?/4)
§<|ti<n/pu ¢n(7n)

for n > ng. This verifies condition (B’). Therefore the conclusion (4-9) of Theorem 4.3

holds and it provides an asymptotic expression for P(T, > nm,).
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