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APPLICATION OF HARMONIC ANALYSIS METHOD
TO RESEARCH ON ROTOR AIRLOADS

Qiu Zhenhan

(Chinese Helicopter Research and Development Institute)

Abstract

According to the rotor vortex theory, the rotor circulation and the
rotor induced velocity are developed into Fourier series. The circulation

distribution along blade spanwise is expressed in Terms of segment-by-

segment linear functions. In consequence the induced velocity equations
and the circulation equations are derived. The engineering application of
the rotor vortex theory is provided. Then the induced velocity and its
harmonic components are obtained to provide a quantitative basis for the
vortex medel. For calculating each order barmonic components of the
induced velocity a simplified method is put forward which considers the
effects of each order circulation with neglecting those of higher order.
The method saves the computer time and is of significant beaefit.
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. APPLICATION OF HARMONIC ANALYSIS METHOD TO RESEARCH ON ROTOR —
i AIRLOADS T

g Qin Zhenhan
Chinese Helicopter Research and Development Institute

» ii',: ‘
,l,: s . >, .:'
; ubmitted 31 July 1984 R
% ‘
a1 . 'g‘i.,
This paper uses the rotor vortex theory T
i of Professor Wang Shichuen as a basis to develop _—
g the rotor circulation and induced velocity into 'Q
# Fourier series. The circulation distribution %@
" along blade spanwise is expressed in terms of qﬁ
N segment-by-segment linear functions and the f@
* linear equations for calculating rotor airloads i
. using the circulation as the unknown are derived. e
:3 This has resolved the practical application prob- *ﬁ
0 lems of the rotor vortex theory that for many \k
ﬁ years have not been able to be resolved. %F
- I. Preface y
b N
:e, h 3
N
Nal
Y There have been many theories and articles on the aerodynamic D Q
: al
. calculations of helicopter rotor-blades, and among which is the S
e NS
Y ]
5% rotor vortex theory of the stationary vortex system of Professor N N
S
i Wang Shicun[ll. But it requires proper modifications when applying éﬁ
" this theory to engineering calculations. Due to the limitation s
3 '* (]
o 3
& of resources in the past, the rotor-blade could only be treated &“’
u f:-r
:_ ,'¢
,; i: \!
\ AP L P h " A SR AT LY ] ‘l.‘('\\‘p Y]

RSB ALOIARE Sl L IO L LAWK (4 : BVAREIRE T IR I8 U AN AT T
RAMSIANEU AN FOL K LT ) :"‘!l's "‘,’A‘;'ﬁ‘? WP TN, AN VXN 0000, BNV ..h’l .‘c ’I An‘h b SO

v
p LA DA RA RS X RANAR i



T T T T OO P Mo da el Aol o drc o e Mol Aok sk Ak A0 A Ad 40 2. 848 4 oa L

q

b

as a rigid blade, and this is obviously improper. As the application
of computer develops in our country, the elastic deformation (bending,
twisting, etc.) of the rotor-blade can be considered simultaneously

and this can more truthfully reflect the rotor characteristics.

According to Reference [1], this paper develops the rotor circula-
tion and induced velocity into the Fourier series. This manipulation
makes the physical significance between the circulation and its
related parameters become very clear and is rather conducive toward
the understanding of the vortex model and the effects of various
vortex systems. Although the mathematical manipulations are quite
complex, a smaller computer capacity is required. While high accuracy
computations can be conducted on a computer with large capacity,
results can also be obtained using a computer with small capacity.

For example, it only requires half an hour to obtain results that
meet engineering requirements on the DJS-21 computer which only
processes ten-thousand operations per second. Therefore, it is

economical and suitable for engineering applications.

IT. Induced Velocity Equations

According to Reference [1], the axial induced velocity at any

point on the rotor hub can be developed into the Fourier series

9,(F)=vy,(7)+ i (94 (7 )co8nY + 00, (7 )sinny) (1)

A=} }
where 0, (7)o 4024+ 0uss Taep(7) m0s,, 4020+ Uttat Oarp(7) ™ Upq, + 020, + Uptere <
Here every induced velocity is agitated by the circulation which :
consists of attached vortex, vertical free vortex and horizontal N

\

free vortex.
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According to Reference [2], if the circulation distribution
along spanwise is expressed in terms of segment-by-segment linear

functions, the induced velocity derived from vertical free vortex

can be expressed as N
Uz=Uz,+ Z (vlncosﬂ*‘l'ﬂz.,ﬁnﬂ*) (2)
R= ]
where N (p-1
on=—K,[\(F)+ )] { 3} UCHtMIC)s/7)AT e+ (C\yLmIC,,,
mayls=1

NN
—C.(m1Cy,y) ATw) /5, + Z ((CiilmICy, /7)AT s
t=p

+C,(mI(Cpyy~Cpyy)AT ) / ba}

P -1
Uzee™ 2 (E,CrhATs=(1/2)KvC (oAl o+ (ECp/F)ATLI/Y,
t =]
NN

+ ZPC(l/z)KanAI'..—E,C,.,Al“.-l-(E.C,,/F)Ar.,J /5
t =

N (p-1
+ ZI‘ { 2 :(C:C’f'JCm+CaE"'JC:..)AI‘-.-(C.EMJCm/'r')Al".,)/b.

mes ¢t =]

NN
+ ‘Z," ((CstmICpsy+C(MICpyy) ATme—(Ci(m) C,../?)AI‘..J/b.}

-1
V20 3} ((E\Cpia/F)AT—=(1/2)KsCroAT e +(ECra/7) AT ) /3,

t =1
NN

+ Zp((E-Cm/;)M'.+(I/Z)KVC,,AF.,+(E.C,,/F)A[‘.,)/b,
t =

~ P -1
+ Z { Z UCm)IC,,+C(MIC;34) AT s = (C1 LM IC 135 /7) AT me) /s

ms=1(f=a|

NN
+ Z E(C-('"JCm+C.£mJCm)Af‘-,-(C..(MJC,../F)AF...J/b.}

tep
v

where K'-h/(‘nyl)! A=, =Ta &0-;0“‘_;'

E., and Cj[m] are the quantites related to K/ and the harmonic order

number m and n. For example
*  E/=KynC
CUmIm(Cmi(2 =M= 8)/2)u +3C=(( 2 + 8 = m)/2)u}

xCKy/(2(m—1)1)
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;;' where  (C =(1 —sinja,|)/cosla;|

W ,

':i cjk is the quantity related to the integration of the super geometrical

o function 13]

¥y - Frel , -

’»4 C(t, 1, @, B, 7 0) -I:"(p/F)‘F(a, B, v, (3/F)")d5

)

::1 For example

g Cns=C/(t, m, (m+1)/2, (m+1)/2, 7, 0)

)

: The expressions of induced velocities Ve and Vy agitated by the attach-

.;o: ed vortex and horizontal free vortex are similar to Equation (2).

;&5 .

gt

‘,:& III. Circulation Equations

;;.}

e

) According to Reference [2], the circulation is developed into

L

b Fourier series

5

r-r'+.§; (I‘..eosm¢+l'.,smmtb) (3)

S

,_3-: where

\ _ -

3 :C Fe=(a.b/2) {Uo+’(¢c+¢A)+("/z)¢z+Ac

\‘ .

- + E {K((r/2)b{—Fafddy’( e )/dF +(1/2)a} d.\.i(;)/"g;,}

. i=0

R Fae=(a b/z){v...-i- 2 {K('a +("/2))(b.... bi.)))dy'(e)/d7

B

" +(r/2)(ak. +al,))dy/(7)/d7 +mbly' (7)) }

&

] I‘.,-(a.b/z){ Vs + 2 {K(7bl+(B/2)(ak.,—0k.))dy'(€)/d?

Uy -

f‘:. i °

< +(1/2)(bd., +bl.))dy'(7)/d7 —maly'(7)} }

&

;‘ The circulation distribution along spanwise is expressed in terms

Bl of segment-by-segment linear functions, then the circulation equation

; in the form of ro

'
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9:‘:: o/ Astug,+ E S { B (7By,~0K/2)dy'(€)/d7a{T s
.0 twl j=0

+{(8/2)F BLjaiT{,— (Bl (B/2)dy'(F) [dFI0tT4 T s
ey +C(R/2)7 BualTl,— (KK [2=7B,)alT1,)dy (&)/dPT e
Y. +((B/2)(RK /2—7 B, )olT {,—7B,.0{T§,)dy! () /d7T 4.,
+ (FBlalT b — (4/2)(FBli+ (8/2)dy'(7)/dFall {4 T

—(W/2)7BOTLL s —(H/2)7 B dy (2) [d7aiT{.I" w}

(%)
RO =7 By, + AP +10,/2+1,+7B,,C,/(8xK,) (4)
A0
.,v"

) where Ay=a_p/2y K, =h/(4x),

. 1, - =

);i:;: B:i-BuJ"lyid’-le(l A B, =By,(1—=y'(7)))
;:lq.' ) (;zyzol-y'«onn)/bx t =1

f::‘ Th= { (FenVie=Y et ) 80+ (Vi =TV Ly )80y 28 KV,

e I(Y'(...,.u.-;myl.m)/bm t -Nl+ 1

a." - '.ol ~e) =

245 Y‘u-J- ’ y'o*'dp

U - S 2 3 < R 1 e rs ©

‘ an is the juantity related to Bo' BS and motion parame ¢rs. For

o
A example Bu=#(B8.+8.,)/{2((B/3)(1 —F})+(n¥/2)(1 —F,)B,3"
ks 70 .
5538

- where B,=1/(1+A4Ky)y B,=1/(1 +AKy(1+C*))

o

] ; ; . i ing—
f’. rlop’ rlsp and other circulation equations can be derived according
.- ly.
-" ,

iy
4

:253' . IV. Rotor-Blade Airloads

(X3

i
g. Each order %“armonic component of circulation can be obtained
.§ from the linear algebraic equations with circulation as the unknown
(X3

o wvhich are derived by substituting the induced velocity equations into
W

X

:::,'.: the circulation equations. According to the Zhukovskiy formula, the
4

XN

::::: airloads per unit rotor-blade length are:

Mt

.. dT\/d7 =(PR*/m\,)(W.I) (5)

I‘,at

i".l

A:.g
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where

N
W.=mF+using,; m,= mass of one blade; =T+ 2 (F-Mtb-i-l‘..,sinmtb)

ma ] ad
Thus, the expressions of each order airloads per unit rotor-blade B

length are obtained; and therefore the airloads are obtained. -

(dT./c‘;';).-(ﬂR’/m,)(;r.+(IJ'/Z)F,,] :
(dT./d7)u-(PR’/M.)[?I‘l.-i-(l*/z)l'u) :

(dT\/d7) = (PR /m ) (KT + 7T = (8/2)T0) _ 3
(dTl/d;)~-(pR‘/ml)(;r-¢+ (“/2)(1' (uox)l_r!..])l)] :E "
(de/d;)-v"(pR’/"':)(;f-;+(“/2)([ (-.m—l"(..m)] :(\"'.

1%
d

V. Examples and Discussions

A

Numerical computations were conducted using the H-34 helicopter ;ﬂ

as an example. The calculated values were compared with the measured .T

values during actual flight and the results are satisfactory: see E?

Figs. 1 and 2. 5;

. :3

Another helicopter with takeoff weight of 14,400 kg and rotor t\

diameter £ 21.3 m was used as an example to calculate each component iy

%

of the induced velocity and obtain the curves of the azimuthal varia- %;

tion of total axial induced velocity (Fig. 3). Due to the limitation EE

i

in space, only the second order components of the induced velocities é

- which are agitated by separate harmonic components of attached vortex, :
:3 vertical free vortex and horizontal free vortex, are given. See ?i
ﬁﬁ Table 1-3. The obtained harmonic components of the induced velocities %

have not yet been seen in any references. They provide a quantitative

basis for the analysis and research of the vortex model.
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::E'!‘ u
VoK
p }‘ It is very beneficial to perform example computations when only ':
igt considering the same order induced velocity which is agitated by ;
“ each order harmonic circulation befofe the same order, as shown in E
?.:-;: Fig. 4. 1If only the shaded areas are considered, comparison between ::

the obtained results and the effects to the induced velocity when

-
v

the total circulation is considered shows that their numerical values

A | o

R
. =~ . . . .
..‘_-;, are very close; see Fig. 5. The computation time, however, is greatly i
. ._w‘. ."\.
N -
reduced. The higher the order considered, the more distinctive the o
A¥¢ :j
effect of reduction of computation time. ]
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Tablel The harmonic compoaents of the induced velocity vs

]
¢ . . 0'%
N ’ Up Uprex 1073 ' up, %1073 Upge x 1078 upy, X 1273 ‘4‘
0
L 0.25 0 -0.908 | -0.2s0 0.462 0.694 ‘:f
0.38 0 -0.283 | 0.0318 0.937 n.9es Wi
0.48 0 0.423 0.126 0.858 0.749 I
.58 0 0.553 0.113 0.764 0.629
PN
! 0.65 ) 0.801 0.0925 0.688 0.318 Vi
B 015 ° 0.388 0.0719 0.558 0.414 \
o 085 . 0.513 0.0538 0.433 0.311
o 098 ° 0.418 0.0448 0.338 0.245
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) ‘ > .
o Table2 The harmonic components of the induced velocity vz \,
- .
F;», ‘ ’ : vzex10°1 i Czie < 1073 vz, x10°8 vzg X 1072 vz, x 1078
l:'.f hiled . - >
ouh | p
" 0.28 - 0.0827 0.104 ~0.502 0.0838 -90.0878 %
W 0.38 -0.124 0.153 ‘ ~0.933 0.396 -0.360 <
S 0.15 ~0.186 0.167 | -0.922 0.680 -9.533 w}
"",'n 0.5 -0.212 0.133 p o =081l 0.760 -0.584 *
2 l Al
0.6 -0.233 0138 | -0.480 0.508 -0.569
- .01 -0.250 0.118 ~0.474 0.830 -0.518 7
e 088 -0.283 ooz | -0zse | 0.833 -0479 N
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o Table3 The harmonic components of the induced velocity va
‘:G | .
E{o ’ omx100 | uiex20% Vi, x10°2 Unz X 1072 | ung, X102
) ’
0.25 -0.242 0.538 -0.572 -0.1m 0.00510
0.35 -0.132 0.471 -0.280 -0.201 - 0.000109
AP 0.45 -0.0530 0.342 0.114 -0.240 0.0695
iy 0.55 - 0.0282 0.285 0.290 -0.257 0.122
R -
Y 0.65 -0.00967 0.231 0.450 ~0.212 0.161
il o158 0.0039¢ 0.179 0.592 -0.285 PRI
Wi 0.85 0.00959 0.130 0.715 -0.295 J 0.22L
5 0.95 0.0107 o.109 0.768 -0.298 0.230
. '
Dy S EMENS rl' T woe | oo
L
\':" Y)e ,/ ‘A
o, VA LA

) . T Yo Y V' /AL
b v, UV /A A
Y AL LA
*) XA AN AT
‘.:.“ Fig.4 Relation betwees the isduced welocity and the Circulation ia simplified calculation
X )

t
o
o
15
gy
o
l.

,."
l|

i.
g
e,
."
:ﬂ
"

2
)
‘!"

“5‘
‘f}
Yl s
5 109 00 [ I
:?4

Bl Fig.5 Variatioa of d7/d* (N/m) with azimuth at B =0.27
——gimplified circulation; -----total circulation.

(Xuie Zhenzhong and Duan Yuzhang took part in the work of this
research subject).

- i -
-
fs!g’ll ‘e

E=

™ i
e >,
. \

:I v ?\!
A" 9 X\
46 %

o

s, 3
o o
(L} ol

E TSI L N
IR AN

o

b

>l

P

R PT
ll.f.“.f‘

"% . W A v o o M (o Cu T e o R P L P I T I PR TR C LN
R AR S L LS L N A
"? ‘.-ﬁnk -'.u.:"?.q‘? l'! . , L ' e ,‘ “1 8 A v, )

-
(IS A = " L . A . ‘0

o uy TR
NS SRR

Lo




REFERENCES

[1] [U.S.S.R] Mili, et el. Computation and Design of Helicopter
(vol. 1, Aerodynamics), National Defense Industry Publishing Company,
(1977), p. 178.

[2] Wwang shicun, The Induced Velocityof Lift Rotor, Journal of North-
western Industrial University, (1963) January.

(3] wang Zhuxi, Guo Duenren, Introduction of Special Functions, (1965),
p. 152.

C4) James Scheimaw, A Tabulation of Helicopter Rotor—Blade Differential Pressures, Stresses and Mo-
tions as Measured in Flight, NASA TM X-952, Langley Research Center, Langley Station, Ha-
mpton, Va., December 11, (1964).

n).'

X A N R X ALK 5

x:

10

Fhrl | SEEREERe| S

»

R R A RS 0583

-



SOME PROBLEMS IN THE FINITE-DIFFERENCE
COMPUTATION OF THREE-DIMENSIONAL
TRANSONIC FLOWS

Chen Tiemin
(Beijing Institute of Aerodynamics)

Abdstract

The mixed finite~difference relaxation iteration method is applied to
calculation of the wing-body combination with rectangular wings based on
the three-dimensional transonic small-disturbance potential equation in
the cylinder coordinates. Meanwhile, the influences of different computa-
tion regions and relaxation parameters (on subsonic points) on the ranges
of the computed Mach numbers, angles of attack and calculated results
are studied.

It is shown that extending the computation region brings about inc-
reasing the convergence range of the small-disturbance equation. and the
convergence rate and computation accuracy would be are enhanced if the
subsonic relaxation parameter is taken to be 1.9.

Also, it is demonstrated that the calculated results differ when the
finite or infinite region is taken as the computation region of the r~direc-
tion. Particularly the distribution of the pressure cooeficients near the
wingtip varies obviously as the incideat Mach number becomes larger.
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1
I. Introduction of Basic Method
i
/)
:: 1. Three-Dimensional Transonic Small-Disturbance Equation
“
) . .
3 The three-dimensional transonic small-disturbance equation in
o
K cylindrical coordinates is.
1
. APut Pt 9,4+ -1 - 0q=0 (1)
s where @ is disturbance potential; A=B = (Y +1)MLP, Br=m] ~-ML, ¥
N
b is specific heat; M3, is the incident Mach number. If r-direction
is selected as infinite region, through coordinate conversion
-,
- A =br/(1 +0or), the infinite region of r is converted to the finite
computation region I( . Here a and b are constants to be determined.
. Now Equation (1) can be rewritten as
N
.
()
K 12
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b L}
+258 0, J+ L2t gpm e (2)

Then Equations (1) and (2) correspond to the finite and infinite

regions (select proper a and b values) of r respectively.

2. Boundary Conditions (See Fig. 1)

(2) ke

Fig. 1. Boundary surfaces and diagrammatic drawing of model

Key: (1)Vertical plane of symmetry; (2) Upstream plane; (3) Outer
cylindrical surface; (4) Horizontal plane; (5) Downstream plane;
(6) Tail-trace plane.

On the surface of the body: Assume the surface equation of the
body symmetrical to the axes is r=R(x), then the boundary condition

of the tangential flow is
lim (r®.)=R(%)(R’ (%)= asing) (3)

where X is the incident attack angle.
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On the surface of the wing: Assume the equations of upper and
lower wing surfaces are Z=f,(x, ) , then the flow along the upper

and lower wing surfaces should satisfy

lim (9)=rfi(x, ¥)~a) (4)
0 +~0s

Here fi(%, ¥) =of,(=x, ¥)/oxy 0; represents the upper and lower wing sur-

faces.

On the tail-trace surface: It is known from the Kutta condition
that

P(x, ¥, 0.)—-®(x, ¥, 0.)=T(Y) (5)

There are two conditions on the upstream plane and the outer

cylindrical surface:

(1)If Equation (1) is used, it should satisfy, from the solutions

of small-disturbance wing lift problems,

sin 0

* (M= (1+ : )J:.I‘(J)dy (6)

where o=V +p7%, s is half of the span length.

(2) If Equation (2) is used, the disturbance potential is 0,
i.e.,

=0 (7)

There are also two conditions on the downstream plane:
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ﬁ: (1) If Equation (1) is used, should satisfy k\
e v
N i
M rsin g / . . r(y) 2
@(l)= 1+ )J‘ Iy 4, - S
o T )T ‘e -
1y Q’
% where S ;
oy " pwmV P —2rycos0 +5° , “%
L8 :
R (2) If Equation (2) is used, the disturbance velocity ks
% ) )
[ 18
M P,=0 (9) S
(N o
'!:‘ iy !
DR Tt
:? ) 3. Finite-Difference Formula, Finite-Difference Equation and Their 4&
B - N
NI Solutions $$
i )
. This paper uses the variable mixed finite-difference formula gﬁ
L]
o o R4
3: of Murman-Cole, i.e., jfxx at subsonic point uses central finite- 'g%
SR
s difference; at supersonic point uses incident finite-difference; e
~ r (or n ) and ©-direction both use central finite-difference. The i
) IS
¥, y
N finite-difference formula at special point (with boundary conditions gﬁ:
X) )
' substituted): SANY
K} \';'-a'
e
K
o (1) According to boundary condition (3), it can be obtained on -A,
(2 OO0
e - Qq'
" the surface of the body that: A
X3 A _1_fnthn | Pue=Sus_ pR - asing) ] T
. —(r®,), o =T an [ 7 A, R(R' —asing) (10) '_,‘:E;\r-
ot
: o
5 , o
(2) On the upper and lower wing surfaces ,
A .
W 2 [ 94,—% ‘
Issl ikt __ ' a ] NN
E:: (Qﬂ)l-hb- A0, [ A0, 'I(fo ) ( 11) ‘ ‘
., P "
..‘ v - Q 1 \.' '
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. (3) On the tail-trace plane, the pressure continuum and Kutta
[ "
:, Condition are applied
& 4] ,
' 1 [(®iyy=T)—9 Protr. — P

. (w )'..- [ Isdey —1 § irfog. Vi, )31 ] 12)
o wliein-TTR0. Al Ab., (
'
It
1§38

.._ Using the above finite-difference formulae, and on the plane

gy of i=constant and the straight live of k=constant, the algebraic
'{( simultaneous equations with ?i,j—l,k’ ?i,j,k and cPi,j+1,.k as un-
AN knowns are established. These equations are three-diagonal and can

A

ool be solved by the chase method. Assume the solution is ?i' then
o,

3". the solution after relaxation is

!‘g

R

o o= odi+(1 —0)¥; (13)

‘:i::j where «w is the relaxation parameter. The subsonic relaxation param-
o

i: eter ew,in the computation is selected as 1.9 or 0.9; the supersonic
L, -

1]

h relaxation parameterlﬁ’is selected as 0.9. The iteration method is
")
e conducted to solve for the entire flow field. The iteration stops
L)
el when the entire flow field satisfies
‘lil

‘ (P72 — 97, 0l< e (14)

.;i :

:: where £ 1is the convergence range and is generally selected as

¥

0 -
. € =0.1x107%.

ne

LN
f, The computation formula for pressure coefficient on wing is

Y C.- -29, ( 15)

o
S5
,§1~ On the surface of the body, the second-order term of the horizontal
AW

v disturbance velocity is reserved

"W Co=—29 —(v'+ 1 v)
W A Vet (16)
:.:
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ITI. Example
1. Wing-Body Combination Equation

(1) The wing is a rectangular wing with double-arc airfoil

z-.lbz.’—(%—x) (17)

The airfoil relative thickness ratio P =0.06; chord length b=1 is
a reference length; the aspect ratio )\=L/b=5.4; L is the span length

including the body.

2. The Body is the Model "AGARD-B" Body, the Equation for the Contour
of the Head is
R(x)=—- (sD+ 2)[1- 35D+ 23+ J- 5D+ 2]
(-5D<x<2D)

(18)

where D is the diameter of the cylindrical portion of the body.

Assume D=1, when x 2 2, then R=0.5 and extends into the downstream.

The origin of coordinates is selected at the intersection of
the line connecting the center points of the chord and the body axes.
The finite region of r is marked as I and the infinite region as
II. The sampling points in the x, r (or Q ) and ©-direction are

all distributed at nonequal distance.
ITI. computation Results

1. The maximum Mach number and attack angle in the computation
region I are Ma“,=0.926 and  =2° respectively; in the computation
region II they are Maa>=0'98 and O =4° respectively. This indicates
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that the coordinate conversion 7 =pr/(l+ar) in the r-direction can
increase the range of the calculated Mach number and attack angle

of the small-disturbance equation.

2. Figure 2 gives the comparison curves between the computed

results and the two-variable test results at Ma =0.965, & =2° and

o0
'?=0.5 (? is the spanwise relative location on the wing cross-section).
This figure shows that the conmputed results in region II are reason-

able.

c,
-0.4
[ ¥ -
4 Mc.-o.m.c-z'.y-o.s\
0.4 4 R (3)
cece ZREXRMA(4)

Fig. 2. Comparison between computed results and test results
Key: (1) upper surface; (2) lover surface; (3) computed results;
(4) two-dimensional test results.

3. Figure 3 shows that there is difference between the computed

results of region I and II. At € =0.1x10"4

, when the Maoo is larger,
there is a difference in the chordwise distribution of wing surface
pressure coefficients and it becomes more obvious near the wingtip.
This is because the outer boundary of region I is like a wall, causing
the local Mach number to increase and the absolute value of Cp on

the upper surface to be larger and that for the lower surface to

be smaller.
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/ Mooso.908,an0, 5=0.9 \" o
-0.4] rxm (1) 3
- ™ r"
o 08 gT.'(Z 0.5
Ma.-o.lsl.c-z’.i-o-z\' -,
1 e [ | _:
0.4 ~
1 %
|
Fig. 3. 1Influence of computation regions on computed results .
Key: (1) upper wing surface; (2) lower wing surface. o
v
B
: {
4. Figure 4 gives the curves of influence of subsonic relaxation 4
parameters on computed results. Under the same €, the computed b
. \ )
results at a)1=1.9 1s more accurate than that at a)1=0.9; its conver- .
-
',
gence rate is faster. There are similar phenomena in both computation ?
region I and II. This indicates that, under guaranteed convergence Ny
LY
. . >
condition, the larger 0)1 is selected (2> 2), the faster the convergence o>
)
2

rate of computation and the higher the accuracy of data.
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Mox=0.858,852°,7=0.2 \’ -

©0;*1.0,8210, N =130 "

0.4 et % 0.9,88 107 N3N et

» .- 4.
s Fig. 4. Influence of relaxation parameters on computed results F}
gk. Key: (1) upper wing surface; (2) lower wing surface. :
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A' three-dimensional computation of a jet in a crossflow has been per-
: 2* formed on a microcomputer. The SIMPLE method is adopted with some
modifications. A special computer code is developed in conformity with the
A limited memories of the microcomputer. Velocity and presure distributions
are ‘{iven and compared with the available experimental data satisfacto~
rily.

-

At

LNy LYy

x -

A
s

o i SN W 28 4
>

"f. 21

A

(AR ' F

; -, Ud ) A - N
» R [} a ot » LV S Q"' R e R R A T s T L TR S A LA E A N ML SR TR I
' '."! * “»)‘*‘!.'.!‘\ .-.l'-‘\.! ni."o 'v‘,'t |$. LG A M l.! : “ . . 4, » ) 'P o D ) o \1. 5RO { A% A

Lo LA Sl A L LA

On 20 LS




NUMERICAL COMPUTATION OF THE THREE-DIMENSIONAL VISCOUS INTERFERENCE
FLOW FIELD OF A VERTICAL JET IN A CROSSFLOW

Pan Huachen and Zhang Shiying
Nanjing Aeronautical Institute

Submitted 1 March 1985

A vertical jet shot out of a flat plate will interfere with a

low speed incident flow parallel to the flat plate (crossflow), caus-

ing complex flow phenomena to occur. The jet is deflected by the
crossflow, and its velocity is rapidly reduced; the incident flow
is blocked and drawn by the jet (Fig. 1). The jet and the incident
flow interreact with each other causing two symmetrical vortex cores

to develop under the jet.
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Fig. 1. Flow field of a vertical jet interferring with a crossflow
and its computation domain
Key: (1) crossflow; (2) vortex.

The vortex caused by this interference develops along the direction

of the wall surface and it can be used as a means to control the

(11

attach surface layer It can also be applied to heat transfer

engineering and other areas. There have been numerous experimental

studies on this kind of flow both in our country and abroad[l-4].

Due to the difficulties in measurement, it is generally difficult

to obtain detailed data of the entire flow field, especially near

the nozzle. It is impossible to conduct computation using two-dimen-
sional or nonviscous method because of the complexity of the flow;

the full three-dimensional viscous numerical computation method must

be used. This kind of flow possesses strong three-dimensional mixing
effects and needs to use appropriate turbulence model. According

to the principles in References [6, 7], we developed a computer program

and performed computation.
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: I. Basic Equations ‘.
‘&4 u
;«'0:_, :i
‘ The basic equation of a three-dimensional, steady, incompressible, §
o..' .
$, time-averaged Reynold number turbulent flow in the rectangular coordi-
Y . o _
ﬁ% nates is: continuity equation
o
oy ax, = " . (1)
A
;.l 2
*ﬂ The momentum equation (with the assumption of vortex viscosity)
",‘.“|
L)
AR ou; _ ap* . @ ou; au;)]
p”l 9x; =T axi + ox; ["'(5:, + 9X; (2)
il | | |
:%g where the effective viscosity /Ae is defined as
M () '
e -
Sl 3
:}:,: B,mp,4p, (3)
where/Al is the laminar viscosity. /lt is the turbulent viscosity
ifi and is determined by the following turbulence model
!
el
b ’ n,=C.pK*/¢ (4)
i where K is the turbulence kinetic energy. € is the dissipation rate
W
-,
o
y of K and is determined by the following equations
k)
l~
't
o oK o /n, &K
Puioxr = o\ o, ox; JT G —Pe (5)
u‘Q! .
e * o (M i) _ y
'w';:!' Py, = i \ o o, +(C,G-C,p¢) X (6)
":‘|
n , ,
»4 where G is the generation rate of the turbulence kinetic energy
& Gupf 42 ) (7) =
%h ox; x; / 4%y ;:
& P*
$‘; The coefficients used in the equations are adopted from the data &
B g [a%¢
X recommended by Reference [8]: [ ]
* i

58K C.=0.09, C,=1.44, Cy=1.92, 0,= 1, O,=].3 (8)

Since the above turbulence model is used, p* in Equation (2) is

2
TIAMESINE]

SO phm P +—§—-DK

>
d
#:.

RN where 2/3 K can be regarded as turbulent pressure term.
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”ﬁ: II. Solution Method

2
I WS o e S

The method used by this paper is based primarily upon the SIMPLE
al?l,

o

metho Said method adopts the iteration solution method. The

three velocity components u, v and w used to solve the x-direction

o momentum equation are all old values; u used to solve the y-direction

NS, | T AT

momentum equation is a new value; and u and v used to solve the z-

W direction momentum equation are new values. It was found during
. - actual computation that this kind of nonconforming value character
i%“ was an important factor which caused divergence in solving the equa-
N tion. Therefore, when we were developing the program the newly obtain-
ed u and v values were temporarily stored and old u, v and w values

were used to perform iteration for all three momentum equations,

e Wil
I AL
- SR A SRS > 20?2 T

‘-I'

i& thereby guaranteeing the conforming value character.

:}: In order to increase efficiency and lower cost, the existing ﬁ
'#3 INTEL-86-330 microcomputer was adopted to perform computation. Said ;G
IRy program requires more memory. The example in this paper requires g
g? more than 100 giga bytes in memory at least, and the available memory %
gﬁ ‘ space of the said microcomputer is only a little more than 100 K. &
5? ) Therefore, during the development of the program the technique of E
g% exchanging with secondary storage was adopted. Every three-dimensional E
5% group was divided into a dozen or so two-dimensional group and stored &
sq in hard disk. During computation they were called in separately :
gﬁ by a subroutine to take part in the iteration and then restored. \
§ﬁ This greatly saved memory space. Yet as a price, the computation

) speed dropped about 20 fold.

|- r=s

WY 25

Elka "

- IR

LHE S (% nY A . " e "\‘ YA O RIS T
4&%mf*.w.f;métm¢nkh O

AT AT T
,’.l‘.l.l.'..'. ff'

AR

’ Wl R4 4% )
‘.&?‘:l‘ﬂ,l.‘.!."‘\t'.! 1y L_a"’:,' d?'.»"'.c",n', .u' " ". 4




T T S P O P N P W T N W O R A TR T N Y WY WV P wrewtey

L A
¥,
R

Y

¥
N

III. Example

The experimental conditions in Reference [3] for the incident
flow and geometric data are used. The incident flow velocity is
39 m/sec and jet velocity is 156 m/sec with a velocity ratio of 4.
The symmetry of flow field only considers half of the flow field
cut by the symmetric plane, as shown in Fig. 1. The computation
domain is a box-shaped region with its bottom connected to the flat
plate. One of the sides is the symmetric plane and the other four
sides are the upstream, downstream boundaries and infinite boudnaries,
respectively. The gridis in the form of rectangular coordinates:
x-direction (flow direction) has 20 rows of grid, z-direction (per-
pendicular to the plate) has 16 rows and f—direction has 12 rows
for a total of 3840 grid points (measurement points). In order to
properly simulate the details of flow field near the jet nozzle,
a variable spacing grid is used to give dense grid near the jet nozzle
and sparse grid for further flow field. Using the nozzle diameter
D as the reference, the upstream boundary is 3.5 D from the center
of the nozzle and the downstream boundary is 8 D from the center
of the nozzle. The z-direction infinite boundary is about 12 D from
the plate and the side infinite boundary is about 5 D from the symmet-
ric plane. The method in Reference [6] is adopted.  Six grid points
are used to simulate a semi-circle jet nozzle. Meanwhile the total
area corresponding to the six grid points is made to be in agreement

with the area of the semi-circie jet nozzle.
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b The upstream boundary defines the incident flow velocity. The f:
L ..‘
: ) Sy
3 normal velocities on the infinite boundary, the symmetric plane bound- .?:
H N

ary and the flat plate are all assumed to be zero. The jet velocity

.: is defined by the jet nozzle. The gradient of the tangential veloci-
s: ties v and w on the downstream boundary are assumed to be zero, yet
" u is adjusted according to the total flow rate on the basis of its
X
gj value on the previoﬁs row. The wall surface is processed by adopting
25 the wall surface function method[sl.
8
f‘ The standard for computation convergence is set at when both
a . the corresponding remainders of the momentum and continuity equations
- reach 5%. This example required 90 steps and spent 170 hours on
:E the microcomputer.
)
V. Results and Their Discussions
i,
; In order to verify the computation, the results are compared
» with the test data of Reference [3, 4, 5]. Figure 2 shows the velocity
i contours on the symmetric plane. 1In the figure, the line with indexing
& . points is the jet center line drawn by using the peaks of the contours,
" and it can be seen that the line is in good agreement with the test
% - data. See Fig. 3 for the decay of jet velocity. In the figure,
5 wmax is the jet velocity at the jet nozzle, s is the natural coordi-
nates along the jet, Wj is the jet velocity along s. The computed
$ velocity decays faster than the test value, but the difference is
g not distinctive and both show that the rate of velocity decay follows
" a rule of first small, then large, and again from large back to small.
%
iy

Figure 4 is the projection of vortex core contour on the symmetric

% -

1
)

L}
'h
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lﬁ’ plane. The vortex core trace derived from the computed values is
it
G
R . . .
%9 more complicated. The low pressure centers basically coincide with
e the vortex core contour, otherwise the centripetal force that makes
)
kg the air streamlines turn vortically will not be generated. The curve
by
% in Fig. 4 is the projection of the low pressure centers on the symmet-
- ric plane, i.e., the approximation of the vortex core contour, and
. '
M matches well with the vortex core test values. Figure 5 is the com-
4, }
Yo . :
gg parison of computed values (left half) and test values (right half)
" . of the pressure coefficient distributions on the flat plate. Judging =
) 3
) . . ya
kb from the trend of pressure distributions, the computed values of 3:
.C." . " ¥
:@ pressure rise behind the jet nozzle on the flat plate are faster ag
R e
- than the test values. -
X N
" r
o %ﬁ- A
Kk ':"*
0 9 gl
& 5
& :'.r
‘}9 ':'.
a . N
oS hS
Xy LY
‘ - .
o i
. . - ‘
W axmeoxemll) AN
: O XRXMEWI(2) oo
. A
0 ..;
.’E o)
:_' A
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V)
!
T
s The three-dimensional viscous flow computation method introduced
1,
P p . .
{5 by this paper can compute detailed data of the interference flow
)
) field of a vertical jet in an incident flow. The comparison with
WY
o test results shows that the computed results are more accurate, espe-
N o
-~ 5
L cially the locations of jet contour, vortex core contour, etc. The 5 )
! fact that the computed jet decay is a little faster and the computed E
& pressure rise behind the jet nozzle is faster indicates that the ~
k )
+ vl
‘$ numerical dissipation might ke larger, but not enough to cause signif-
J
KB
icant influence on the prediction of the entire flow field. Therefore,
*: the said numerical method can be an effective tool for analyzing
“~
koA
SR flow field.
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