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Introduction and Summary
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The purpose of this study was to develop analytical and computational ",::"\

i techniques for performance evaluation of Autonomously Guided Platforms e
with Multiple Sensors (AGPMS). -

_ The fundamental principles used are: modeling of the many feedback ;::j:f.
t‘:; sensors, modeling of the sensor data, advanced estimation and detection \‘.:':.::

' N\a techniques, sensor scheduling problems, regulator theory and design, stochas- RN
tic control techniques, careful analysis of multiple time scales. . ¢

When multiple sensors are present, such as radar, various types of IR
X sensors and others, one has to consider carefully the “fusion” of the data
: from the various sensors in a dynamically changing environment. These
problems are essential in the success of the overall design and have not been
investigated systematically before with dynamic signal models.

Design of tracking control loops for each sensor class is a stochastic

gax LW

" control problem (not just a nonlinear filtering problem). When all loops
N are treated simultaneously, simplifications in the analysis and the resulting
implementation occur when one exploits the different time scales present in
N the various feedback loops. N
o In addition, AGPMS must have an adaptive control-decision: sensors e
) employed have diverse performance characteristics. This fact necessitates a 3 -
WS careful analysis of sensor models and target representations in those sensor i
'.:', A models. e
ﬁ: The techniques and models used in our analysis are fairly sophisticated, PN
. _J; vis-a-vis the classical treatment of these problems. In the classical treatment, i-_" N !
. one ignores the combined performance index for missile guidance and s
‘ tracking loops which is the N
- > f\I\n
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miss distance at tnterception, and instead one considers separately several
subproblems:

(a) selection of guidance loop configuration,

(b) setting loop gains for steady state accuracy requirements,
(c) stabilization for acceptable “gain and phase margins”, and
(d) study effects of noise and parametric uncertainties.

One iterates through this sequence of subproblems in the order described
until a satisfactory design is achieved. This approach has many deficiencies.
In this research, we exploit stochastic control and estimation to study several
interrelated problems.

In Chapter 2, we consider the design of pointing and tracking servomech-
anisms for a seeker using an imaging FLIR with a gimbaled platform from
a more or less conventional perspective. We specifically consider the appli-
cation of classical, single-input single-output servo theory and the extended
Kalman filter techniques. Our intent is to establish a basis for meaningful
comparison of the performance improvement achieved with the nonlinear
stochastic control theory which is the main subject of this research project.
Performance objectives for these systems are stated primarily in classical
terms, and it is essential to fully appreciate their intent and their implica-
tions in order to formulate well posed stochastic control problems which are
meaningful in the context of this application.

In Chapter 3, we summarize our research in stochastic control theory
relevant to tracking and missile guidance problems. Two classes of problems
are addressed: (i) optimal stochastic control of nonlinear systems with “fast®
and “slow” states; and (ii) stochastic scheduling and stability of systems
(linear and nonlinear) with Poisson noise disturbances (in the coefficients).

The work on (i) has been led to a rather complete theory for singularly
perturbed optimal stochastic control problems. The theory encompasses
several classes of models, including systems with states taking values in
bounded sets (e.g., angular variables) and systems with unbounded states.
Stability criteria for the “fast” states play a key role in the second class
of systems. Our main focus is on the existence and nature of “composite”
control laws for the fast and slow subsystems like those defined by Chow and
Kokotovic for singularly perturbed deterministic control problems. One of
the most important findings of this research is that composite control laws
for singularly perturbed stochastic control problems generally do not exist
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in the simple form suggested by the deterministic case. In fact, the limiting $a
optimal control law for the slow subsystem retains a dependence on the Nt
states of the fast subsystem. '3, A5

Stochastic control problems with fast and slow states are common in the _.;-_._ e
design and evaluation of tracking loops and missile guidance systems. They _::}_.::; !
occur whenever it is necessary to retain the interdependence of subsystems -‘{}:}_\_
operating on different time scales (e.g., sampling rates) such as the inter- S
action of sensor tracking loops and guidance control loops in autonomously ::-:l-::
guided missiles. e

The second class of problems treated in this chapter concerns stochastic :-:j:ﬁ;’.;'
dynamical systems with Poisson noise disturbances. These systems arise as oS
models of physical processes with intermittent noise disturbances. We have NG
obtained results on the control, scheduling, and stability of such systems. i"::;*
The control results are not discussed here. The results on scheduling are Al
primarily concerned with the derivation of optimality conditions and the !c'
verification that these conditions are well posed. -

We also consider the asymptotic stability of linear systems with Poisson N
noise coefficients. Criteria for stability of the moments of such systems have :'.j:\ -
been available for some time. As is the case with diffusion processes, criteria el
for almost sure stability of the sample paths are much more delicate. In the ! .
present case, a key result is a deep theorem of Furstenburg on the (ergodic) /_',‘:\
limit properties of products of random matrices. This result allows us to AN
develop an exact expression for the asymptotic, exponential growth (decay) :-::_":::
rate of the paths in terms of an ergodic measure. We give several examples I
to illustrate the nature of the computations and criteria. We also give tight Lo
estimates on the probability of a large deviation in a stable process; and '{I;-P.\
we give a condition for stabilization of linear systems with state and control ::::}:::: ,‘
dependent Poisson noises. AR

In Chapter 4, we consider the problem of simultaneous detection and ;:::E‘;-:
estimation when the signals corresponding to the M different hypotheses Ry
can be modelled as outputs of M distinct stochastic dynamical systems of RO

0

"
’ 'I A
"

the Ito type. Under very mild assumptions on the models and on the cost
structure, we show that there exists a set of sufficient statistics for the simul-
taneous detection-estimation problem that can be computed recursively by e

Pl

'l,i'l.‘.

7/

.‘:u Y *’
linear equations. Furthermore, we show that te structure of the detector nd ~ };_""
estimator is completely determined by the cost structure. The methodology g‘ 3
used employs recent advances in nonlinear filtering and stochastic control of :f_{-::*;
partially observed stochastic systems of the Ito type. Specific examples and ‘_::;.-:»:I;
applications in radar tracking and discrimination problems are discussed. ~:c‘~','}f,‘-
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Chapter 2

Seeker Pointing and
Tracking: Some Classical
Considerations

In this chapter, we consider the design of pointing and tracking servomech-
anisms for a seeker using an imaging FLIR with a gimbaled platform from a
more or less conventional perspective. We will specifically consider the appli-
cation of classical, single input single output servo theory and the extended
Kalman filter. Our intent is to establish a basis for meaningful comparison
of the performance improvement achieved with the nonlinear stochastic con-
trol theory which is the main subject of this reseach project. Performance
objectives for these systems are stated primarily in classical terms, and it is
essential to fully appreciate their intent and their implications in order to
formulate well posed stochastic control problems which are meaningful in
the context of this application.

In the following paragraphs, we first discuss classical design methods and
then control design based on the extended Kalman filter.

2.1 Classical Servomechanism Design

In the classical SISO approach, the seeker boresight angles — elevation, 6,,
and azimuth, ¢, — are treated as independent control loops. We consider
only the elevation angle 8, loop. Figure 1 illustrates the general configuration
of a servo-tracker in which it is desired that the boresight elevation angle
track the target line of sight elevation angle, 6;. The tracking error is defined
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o The general control system objectives are twofold: (a) loop stability, and
e (b) error regulation. Loop stability requires, of course, that the closed loop
A system eigenvalues lie in an acceptable region of the open left half plane,

Y and it is also typically required that specified stability margins (usually

¢ gain and phase margins) obtain. Error regulation usually refers to one or a

& combination of the following types of error specifications: L
N o 1. Provide acceptable ultimate state error coefficients for prescribed de- _' )
:' terministic target trajectories. A common example would be the re- S

N quirement that e(t) — 0 as t — oo when 6;(t) is a step or a ramp *-:"
~ ':.:- function. It is also common to add other time response shape require- "’\: \

¢+ ments, e.g., rise time and overshoot specifications.

), AN
~ 3 2. With 6; specified as a zero mean random signal with prescribed power :3-:.-
‘\-, .} density spectrum, provide an acceptable error power density spectrum '_'._:.
2 — which is frequently specified as an upper bound over a given fre- :-_.:n.::
, i quency band. N f:"
5§ .
. NP,
::2 ) For example, a typical FLIR performance specification defines normal ::::::4
: . he dynamic inputs to be those with line of sight rates less than 0.5rad/sec and :;‘::
. angular accelerations less than 0.5rad/sec? (see Interface Control Document MIATN
vy 5801647A, 30 September 1983). It further requires that the line of sight SUARLY
i [,E angular deviations remain within the bounds indicated in Figure 2. We . s
- will consider the design of a servomechanism to meet this deterministic :

- performance objective and then examine the implications of restating the

A design objectives in terms of a stochastic control problem.

:‘- = Figure 3 illustrates a choice of inner loop and series compensation which
. . allows the stated objectives to be achieved. Various choices of the parame-

- 3 ters satisfy the tracking requirement, and the final selection would be made
'_': by analysis of the tradeoff between tracking performance and stability mar-

. gins, Note that the performance specification as stated requires that the
A control loop be at least a type 1 servomechanism. This guarantees zero ul-
timate state error following step input signals and bounded ultimate state

¥, error following ramp input signals. The ramp input error bound is con- A
f.: trolled by the lead/lag ratio o). Increasing the type number of the loop or L
::_- increasing the lead/lag ratio will improve the ultimate state error response
o but substantially reduce stability margins. i "
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Suppose now that we consider the following stochastic version of the
above design problem. The target line of sight elevation angle is modeled
by the stochastic differential equation

d?

—0 = 2.2

dt? 0 =v ( )
where » is a zero mean Gaussian white noise. The motivation for such a
model is provided in the report [2]. It is easy to show that

E{e?} = / Gee(w)dw < o0 (2.3)

only if the control loop is at least a type 2 servomechanism. This is an
obvious consequence of the fact that the target model is not asymptotically
stable. It has important implications, however, with respect to the formu-
lation of well-posed stochastic control problems for this class of models.

2.2 Control Design Based on the Extended
Kalman Filter

In this section, we consider the application of the extended Kalman filter
(EKF) to seeker servomechanism design. The general configuration of the
control system is illustrated in Figure 4. The configuration shown is based on
an extension of linear disturbance accommodating/tracking servomechanism
theory (see Kwatny and Kalnitsky (3] and the references therein). The EKF
provides continuous. on-line estimates of a linear target/platform model in
relative coordinates, given observations involving nonlinear transformations
in the presence of additive measurement noise. These estimates are then
used by a robust disturbance accommodating servomechanism, where the
controller is optimal for the case of full state observations. In the following
paragraphs, we define the model, describe the design of the EKF, and de-
scribe the computation of the feedforward matrix functions U(w) and X(w).

2.2.1 The Model

The model details depend, of course, on the specific configuration of the
seeker. We consider a simple, reasonably generic situation. The FLIR is
mounted via two sets of gimbals on an inertial base and is therefore free to
rotate about a fixed point 0 in inertial space about two axes. We define the
following three coordinate systems all with origin at 0:
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1. the snertial frame with coordinates X,Y, 2

i & A

7
%

!
]

P,
},.
e

0 2. the target LOS frame with coordinates z,y, z
3. the boresight LOS frame with coordinates z', ¢/, z'

o The relative position of any two reference frames can be defined in terms
of the conventional elevation angle # and azimuth angle . We will use the
following notation:
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>t

i
L)

ALl
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O
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A
" A

te o
[}

_ 1. 6,,v, — boresight LOS angles, relative angles between the boresight
~ LOS frame and the inertial frame.

Wi
g ll
alasl

[A

‘.)
yy
X

G 4 &
LA

o
ot

2. 04,9 - target LOS angles, relative angles between the target LOS
. frame and the inertial frame.

%l ¥
&L

A
B

)T o redd

3. Af;, Ay - boresight/target deviation, relative angles between the tar-
get LOS frame and the boresight LOS frame.

For a system without a rotor and assuming that the inertia about the
z' axis and 2’ axis are the same, the equations of motion for the boresight
angles take the form y

a? :
. d2 -
~ Jigafs = 7 .

We assume that the torque r is related to the corresponding control RN
E input u by the linear relation

Ta = Kl ua, a=,0 (2.5) ™ :"‘:
oy The Target Kinematic Model RN
The target kinematics in inertial space are defined by

dar(t) = -—Aar(t)dt+ Zdw(t)

Vr(t) = ar(t) (2.6)

Pr(t) = Vr(t)
where the three vectors @r = target acceleration, V7 = target velocity,
Pr = target position, and
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3’ W(t) is » three-vector valued Gaussian process with independent compo-
oo nents with mean zero and
(4 VT _1 L, ifty=1t,;
; E E{w(t:)w" (t2)} —{ Os, else
) . The Platform Kinematic Model
< A platform vibration model is included for resonant vibration character-
. Y istics of the airframe :
2 d5(t) = Am8(t)dt + Bmdv(t) 2N
N _ " .
G Gm(t) = Tm3(t) (2.7) 2500
Ka N
N 5: ) Vi = @mlt) E:E;:
i Pul) = Vml) i
: e where @,, = platform acceleration, V,, = platform velocity, P,, = platform o
o e T .
r. position, 3 = a fictitious six-vector of states s.t. o
1id .—..‘
p. w [ ame ]| ;‘; b
i 82 T
Gmz A
« =— | Gmy - _ RO
= Gm = | Gmy e
S 84 AL
AN a Gms ’\1: s,
S ™ ¥
.- [ 86 | o
! The model parameters are —
5 T RO
2 A1 0 -a -b ('J: >
. X Am = Ay A= [ b —a ] (2.8) RN
T o A4 L
-:-: { g g g s':-t."s_u,’
AR 00 0 100000 ey
By = Tm=|0 010 0 0 R
4, 0 ¢ 0 000010 NN
;:.- 0 00O VAN
L0 0 ¢ [ e |
> ::j where a = 2¢8(1 - 2;’)"%; b= 2xf; ¢ = a,,b2¢\/1 —¢2; f = resonant
: o frequency in H,; 0 < ¢ < 1 = damping ratio; a,., = peak-to-peak vibration
2 acceleration in [m/sec?).
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The Relative Target-Platform Kinematic Model
Since the dimensions of the state models for target and platform are not
the same, we augment the former with some trivial states as follows.

The platform acceleration state equation can be written from Equation
(2.7) as

x
7

e

AN
o (3
AASARA B

,

-
f"

( ‘7%" ) = PAnP! ( ‘) + PB V(1) (2.9)

~
4

e
2
A

where P is a 6x6 permutation matrix

XX
hﬁ@%ﬁk?

We next write an equivalent state space model for the target acceleration

) () =[_0A 8} (?) +[§] B (210)
o-(%) (%)

T |

é(t):{[-oA 0]_[P A P-l]} . l—PB,,,

N
¥
X
._,
. ?
-
O.'

s

s

b )
- P X AN

Thus the relative kinematics can be written in the form

s() = Awag(t) + Boav
Gra(t) Tra$(t) = [13]0s]5 ()
Vealt) = Gralt)

Pra(t) = Vealt)
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k Finally, Equation (2.12) is written compactly as _\:; e
o) ~ e
v 5 b(t) = Zw(t) + Wi(t) (2.13) ?:E:E
> e D
where w is 12-vector, i/(t) is 6-vector. w = (Pyei, Vye1,§)T where ‘,':j:-‘f'
i fade
i O3 I3 |03 O3 Os =22
Zi=]03 O3| L O3 ,W= - — - ?)::.
- Os l Ay B, -:’.‘-:‘-' ]
.\ -*\f‘-
=~ The observations: For simplicity of notation, take w = (z, y, z, w)* where :'_‘;-'.;
X,Y,z are the relative position coordinates of target weight platform in inertial et
t frame fixed to the platform with z-axis pointing down. o
- The target location in the seeker boresight frame is given in terms of the ;.-_::.:::.n_
angles ©s, ¥s N
= P z :-:::;'.j-.
- y =T(¥,,0,) | v (2.14) DA
. o
E: where the rotation matrix T is given as e ;}
\] ‘e )
’ c089,co8t¥, co0sO,sin¥, sinO, ~ N N
o, T(v,,08) = —8in¥, cos¥, 0 (2.15) ". :
;_- —-8in0,cos¥, —sin0,sin¥, cosO, o
coordinates of the target trackpoint in the FLIR image plane are given by e
~ v
.':*: fo z L
P, = 2> PT(¥,,0,) | v (2.16) R0
r(t) z R
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where

P= [ g (1) (1) ] is a projection onto the y-z plane in the boresight frame

R(t) = V/z? + y? + 22 is range which is available by separate laser range
finder measurement

fo is focal length

Thus the observation equation is in discrete time

I
)

y(tr) (2.17)

LpT(¥,0,) |y
+ é(tk) k=1,2,..
= h(X,Y,Z)+¢
where
y is a 3-vector and the measurement noise

€ is 3-vector, Gaussian, zero mean, white noise process with Ry = E{£,£] }

2.2.2 The Extended Kalman Filter

To implement the EKF, we will need the 12x12 Jacobian matrix

Oh(w)

H(w) = =%

Let w = (z, y, z)! and note that k depends only on @. Define the 3x3 matrix

H(w) = a_g(ww)
The
H(w)= [iI(Tv‘), O3zg). (2.18)
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We implement the EKF in continuous ttme but with the observations y(ty)
available at discrete times only. (cf. Applied Optimal Estimation, A. Gelb,
pg. 188)

w(t) Zo(t) (2.19)
P(t) = zZP@t)+Pt)2T +Q

Now integrate over t; < t < t;4;, with initial conditions given at ¢; by the
update equations:

(tet) = D(te~) + Kily(te) — he(@(te—))] (2.20)
Define Hy = H(w)|w = d(ty+) then

P(trt) = [I— KpHi|P(tr—) (2.21)
K, = P(t,—)HF[HyP(tx=)HT + Ri]? (2.22)
and the matrix Q is defined “.y

Q = E{n(t)n" (1)}
where n(t) = Wi (t).

Remarks:

1. Equation (2.19a) is a 12-dimensional linear differential equation with
the same parameters, Z, as in Equation (2.13). It is the “on-line”
model.

2. Equation (2.19b} is a matrix-valued differential Riccati equation with
symmetric solution P(t), which must be propagated from t; to t;,;.

3. Equation (2.20) is the update equation of the on-line model. It con-
tains the “true” nonlinearity h(-) as it appears in Equation (2.17) ex-
cept that the most current estimate of the range R(t:) is used (instead

of e.q. V2% + yI + 22).
4. Equation (2.21) updates the Riccati matrix.

5. Equation (2.22) updates the optimal gain K} for the current update
evaluation.
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2.2.3 Computation of the Feedforward Matrices
Let z represent the boresight state, i.e.,

d

d
z=(O,, a—te., v,, E‘I")‘

and w the target state. We seek a control input u(t) and corresponding state
trajectory Z(t) so that perfect tracking occurs. That is

ABt) = 0 (2.23)
AW(t) 0 (2.24)

Moreover, we seek %, in the form
u=U(w),z= X(w) (2.25)
X(w) : Exact tracking requires that

d d
z= (6, Ee" v, 2

Recall the transformation from rectangular to polar coordinates (X, Y, Z) «
(R, 8¢, ¥):

v,)t (2.26)

X = RcosOcos¥, (2.27)
Y = RcosO;sinV¥,

Zz = Rsiﬂeg

R = (+y*+2%)5 (2.28)

6, = sin"Y(Z/R)
¥, = tan"}(Y/X)

Note that Equations (2.28b) and (2.28¢c) immediately provide ©; and ¥; as
functions of w. We still need $6,(w) and 4 9:(w). To obtain these, let

V, = target inertial velocity in target LOS coordinates

Vg = target inertial velocity in inertial frame coordinates

w; = target LOS frame angular velocity in target LOS coordinates
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Then we have

d_ . d d
w = (m‘l‘gSiﬂag,aeg,a\I’gcoseg)t (2.29)
V, = T(-8y¥)Vr (2.30)
P2W¢ = Per (231)
These lead to
%9 —sin¥ ¥ 0
159t - _ siny, cos¥,
[ é\h ] G(8r, ¥e)Vr [ —tan©;cos¥; —tanO;sin¥,; 1 Ve

(2.32)
which provide the required relations.

U(w) : Exact tracking requires ($6, $¥:) = ($6,,4¥,). Using the
equations of motion, we can write
4

d, d _
Z(5:0, 2V = K'T (2.33)

But from Equation (2.32), we have

d d_ d
7 (595 V) = (0G/98,)Vr|(9G/3%,)VRIGVR + Gar  (2.34)
where ap, is the target acceleration. Thus, we obtain from (2.33) and (2.34)

u = U(w)=diag(1/Kg,1/Ky) diag (Je,Jy) (2.35)
{l(8G/38,) Vg| (0G /3%¥:) VR)GVR + Gag}
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Summary:
In this Chapter, we summarize our research in stochastic control theory
relevant to tracking and missile guidance problems. Two classes of problems

i are addressed: (i) optimal stochastic control of nonlinear systems with “fast” T
and “slow” states; and (ii) stochastic scheduling and stability of systems s v oy
.- (linear and nonlinear) with Poisson ncise disturbances (in the coefficients). :';::::::'
:.‘: The work on (i) has led to a rather complete theory for singularly per-
. turbed optimal stochastic control problems. The theory encompasses several
classes of models, including systems with states taking values in bounded
! sets (e.g., angular variables) and systems with unbounded states. Stability

criteria for the “fast” states play a key role in the second class of systems.
The theory includes both absorbing (Dirichlet) and reflecting (Neumann)

': boundary conditions for systems with bounded state spaces. Its main fo-
e cus is on the existence and nature of “composite”® control laws for the fast
—_ and slow subsystems like those defined by Chow and Kokotovic for singu-
:::: larly perturbed deterministic control problems. One of the most important

findings of this research is that composite control laws for singularly per-
turbed stochastic control problems generally do not exist in the simple form

:; suggested by the deterministic case. :.‘;. ::-::‘

- In general, one cannot design an effective feedback control for the overall i‘ )

. system (fast and slow states) based on optimization of the natural limiting :-.;."i'

'

1:. This chapter was written by G.L. Blankenship. It is based on joint work with A. ‘_::::::::
Bensoussan and C. W. Li. \.: _::$
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system obtained by a standard asymptotic analysis of the model. That
is, one cannot generally “separate” the processes of asymptotic analysis and
optimization. In fact, the limiting optimal control law for the slow subsystem
retains a dependence on the states of the fast subsystem.

AN o

, j" Stochastic control problems with fast and slow states are common in the
o . design and evaluation of tracking loops and missile guidance systems. They

o :" occur whenever it is necessary to retain the interdependence of subsystems
be operating on different time scales (e.g., sampling rates) such as the inter-
- action of sensor tracking loops and guidance control loops in autonomously

guided missiles.
i The second class of problems treated in this chapter concerns stochastic
dynamical systems with Poisson noise disturbances. These systems arise as
models of physical processes with intermittent noise disturbances. We have
obtained results on the control, scheduling, and stability of such systems.
The control results are not discussed here. The results on scheduling are
L primarily concerned with the derivation of optimality conditions and the
verification that these conditions are well-posed. We use a constructive lim-
iting argument developed earlier for diffusion process models to obtain the
optimal scheduling policy and cost as the limit of a sequence of optimal
scheduling problems in which a finite number of switchings are permitted.
. The optimality conditions for these problems are quasti-variational tnequali-
ties (QVI’s) introduced for scheduling and inventory control by Bensoussan
and Lions. The properties of the Poisson noise disturbances cause the QVI’s
to be “first order” and “fully nonlinear” (in contrast to the classical case of
L diffusion processes). As a result, their analysis requires methods interme-
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;_' ; diate between those used for diffusion systems (elliptic models) and deter- "
b . ministic systems (first order). In particular, we use the method of viscosity ::-:
{ -4 solutions introduced by Crandall and Lions to establish uniqueness of the ale
L optimal cost when some of the switching costs are zero. "
A We also consider the asymptotic stability of linear systems with Poisson '
ﬂ = noise coefficients. Criteria for stability of the moments of such systems have
W been available for some time (S. Marcus). As is the case with diffusion pro-
ﬁ cesses, criteria for almost sure stability of the sample paths are much more
o delicate. In the present case, a key result is a deep theorem of Furstenburg
on the (ergodic) limit properties of products of random matrices. This result
A allows us to to develop an exact expression for the asymptotic, exponential
e N growth (decay) rate of the paths in terms of an ergodic measure. We give
h, several examples to illustrate the nature of the computations and criteria.
RS - We also give tight estimates on the probability of a large deviation in a sta-
t
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ble process; and we give a condition for stabilization of linear systems with
state and control dependent Poisson noises.

In the first section we consider the problem of optimal stochastic control
of diffusion processes containing “fast” and “slow” dynamics. The systems
are considered on an unbounded state space. The analysis highlights the
key role played by ergodicity of the fast state variables. We use a stochastic
stability theorem of Khas’minskii to determine the conditions under which
ergodicity holds and the optimal control problem is well posed. The lim-
iting control problem obtained as the small parameter goes to zero retains
an interesting interdependence between fast and slow variables. The work
reported in the first section of this chapter is a summary of a portion of
[3]. That paper should be consulted for details of the proofs and for other
related problems and results.

In the second section of this chapter we present a summary of some
work on the optimal stochastic scheduling of systems with jump process
parameters. The work described in that section is abstracted from the paper
[24]. The main results are a characterization of the optimality conditions in
terms of viscosity solutions to a class of Bellman equations.

In the third section of this chapter we present a summary of our research
on the stability properties of linear stochastic dynamical systems with Pois-
son noise disturbances as parameters. The main results in that section are
expressions for the ezponential asymptotic growth (decay) rates of the solu-
tions.

3.1 Stochastic Optimal Control of Systems with
Fast and Slow States
3.1.1 Introduction

In this section we address the following class of control problems. We have
a system governed by

dz = f(z,y,v)dt + V2dw

edy = g(z,y,v)dt + v2edb (3.1)
z(0) = z,y(0) = y.

where w and b are independent Wiener processes. The state z(t) represents
the slow system, while the state y(t) represents the fast system. The scaling
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, E . is such that the variations of the fast system per unit of time, in average as :'rﬂ
SIS well as in variance, are of order 1/e. The dynamics are controlled via the A
N4 ,\ . . . . . . « o e ~ ‘.‘\.
o Y parameter v(t). There is full information and the objective is to minimize K
- the payoff , 5
2 7240 = B [ e (et (0,v:(0), o(0)a (3.2 25
a‘ h
2 where r denotes the first exit time of the process z from the boundary T f%f.\
- of a domain O usually taken to be smooth and bounded. (We will, in fact, Wt
e < treat systems on unbounded domains.) Call o
S w(2,) = {5, (o))}, =
2 o) T
A A
;: - then u is the solution of the Beliman equation -:::::
e 1 S P 1D u R
N — Ay - zA,u + Bu® = H(z, Dyu ,y,-c-Dyu ) (3.3) T
9 - .)-'.(
& 'é: u=0 VzeTl '};
) AR
": with N
: i H(z,p,y,q)= inf [l(.’t, y,v)+p- fz,y,v) (3.4) "’j
7 veU 4 =
::.: 3 +9-9(z,v,v)] = S ‘L(z, P,v,9) .'.:“:?f
LY '~
. "E » We assume sufficient smoothness so that there exists a Borel map V (z,p,¥,9) -::q‘:
4 with values in U,y such that :-‘j,’
» | ),
:“EE &S H(’:Pv Y, 9) = L(t,p, Y, 99V) (3'5) T
:}_ ‘N We can then define an optimal feedback control for the problem by set- ,.:j:
;'.: o ting ::':‘
-y ry ) i
e e(z,y) = V(z, Dzue, v, Dv“e) (3.6) ':::":
YA and the process st
) . R ».
';::- >~ e = Ue(ze, ye) (3.7) heS
L] e
"':': . is an optimal control for (3.2). o
“ ) Such systems arise in the design and analysis of tracking loop systems oy
where the fast subsystem corresponds to the dynamics of the sensor control -
,,.:- . loop and the slow subsystem corresponds to the dynamics of the platform. .'.!
$s '/ Many other applications have models which exhibit similar features. o
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Our objective is to study the behavior of the equation (3.3) for € small,
and to interpret the results as a limit control problem approximating (3.1),
(3.2). Let us explain the type of results which one can expect.

Proceed formally with an asymptotic expansion

u(2,9) = u(2) + e4(2, ).

— Au - Ay¢ + fu = H(z, Dyu,y, Dyd) (3.8)

which we try to match for any z,y by a convenient choice of u and ¢.
Consider z in (3.8) as a parameter, as well as p = D, u; set

L(y,v) = {(z,y,v) +p- f(z,9,v)

G(y,v) = g(z,y,v) (3.9)
H(y,q) = At ‘IL(!/, v)+¢-G(y,v)|

which also depend parametrically on z and p.

One can then consider the Bellman equation of ergodic control relative
to (3.9). It is defined are follows: pick a constant x {constant with respect
to y) and a function ¢ such that

- &y + x = H(y, Dy¢). (3.10)
Suppc.e one can find such a pair x,¢ depending parametrically on z, p;
hence,
X = x(z, p).
- Au+ fu = x(z, D,u), (3.11)
then the pair u, ¢ will satisfy (3.8). One can thus expect a solution of (3.11),
vanishing on the boundary I' of O; to be the limit of u¢.
This procedure depends on the possibility of being able to solve ergodic

control problems of the type (3.10). This control problem itself is as follows:
Consider

dy = G(y, v)dr + v2db,y(0) = 0 (3.12)

ky(v(-)) = Ip_r.r:o %E/;T L(y,v)dr
then in general
x = inf{ky(o())}
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independent of y. The interpretation of ¢ is more delicate. Pick a feedback
v(y) and consider the controlled state

dy = G(y, v(y))dr + V2db, y(0) = y. (3.13)

It seems inevitable to require ergodicity of the process y to define a well-
posed control problem.
This means that as r — oo, y(r) behaves like a random variable following

a probability m:(')(y), depending on the choice of v(:) and of the parameter
entering into the definition of G. Suppose, moreover, that m is a probability
density with respect to Lebesgue measure; it is possible to give another
interpretation of x as follows:

x=inf( | L, o)mu)e). (319

In fact, taking account of
BL(y(7),o()) = [, Llwsv(o)mis)dy as 7 — o0
one understands the relations between both interpretations of x. Formula
(3.14) permits a better interpretation of (3.11), which turns out to be a
Bellman equation for the slow system.
Indeed
x(z,p) = inf{ | (1(z,9,9(6)) + p- £ (29, v(0))miO(o)ds}

Setting
T(e,o() = [ 12,9, 0()m o)y

7@ 9D = [, £z, v)me ) u)ay
then the limit problem is described by

inf J(0) = Ex{ | " e Pi(z, o)) dt)

dz = f(z,v(-))dt + V2dw (3.15)
z(0)=0
26
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It is interesting to note that the set of controls in (3.15) is changed
from the original definition. One must consider feedback laws v = v(y).
A control defined by a feedback with respect to the slow system is thus a
function v(z,y). To justify these considerations, it is thus important to make
assumptions in order that the ergodicity of the process (3.13) is guaranteed.
There must be one way or another a Markov chain defined on a compact set
for which Doeblin’s theorem holds (see J.L. Doob [1]). This is achieved when
one assumes that G is periodic in y together with the feedback or when one
considers instead of (3.13) a reflected diffusion. The first case was treated in
the paper [2]. In this section we shall consider the case of diffusions on the
whole space. Reflected diffusions are treated in [3]. This section contains
a treatment of most cases where a natural ergodic fast system governs the
evolution of the state. There are other situations where different techniques
of singular perturbations are used. Examples of such situations may be
found in the paper of R. Jensen and P.L. Lions [4]. For other approaches to
ergodic control, see [5].

Acknowledgement: This is joint research with A. Bensoussan of IN-
RIA.

3.1.2 Ergodic control for diffusions in the whole space

Assumptions - Notation

We consider
9(y,v): RO x U — R4

l(y,v): R® x U — RY (3.16)
continuous and bounded
Uaa (compact) cU (3.17)

U a metric space. For a given feedback v(y), which is a Borel function

with values in U,q, we shall solve in a weak sense the stochastic differential
equation

dy = (Fy + g(y, v(y))dt + v2db,(t), y(0) = y. (3.18)

The linear term Fy will be useful to ensure an ergodicity property later on

(F a stable matrix). The Brownian motion b, is defined through a Girsanov

transformation. We can find a system (2, A, F*, P¥) such that (3.18) holds.!

!We limit ourselves to feedback controls, since only those will appear in the singular
perturbation problem that we shall eventually solve. Of course, this is not at all necessary
for the ergodic control itself.
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We then consider the function

B (o() = B2 [ ey, o(e)at (3.19)
where
oft) = o(u(t),
and we set
$aly) = inf k5 (o() (3.20)
Setting A = —A — Fy - D, we can assert that ¢, is the solution of
Adq + ada = H(y, Déa) (3.21)

éa bounded , ¢, € W3PH(R"),2< p< 00
where W3#(R") denotes a Sobolev space with weight

ﬂ“(y) = e_“(l*’lVl’)‘/’ (3_22)

and
LP* = {2(y)|2Bu € LP(R%)}

9z 0%z

20,4 = ) -
w {ze ¥ Iaw,awaw

€ ”vl‘}

Invariant measures

Since the diffusion y(-) does not lie in a compact set, some assumptions on
the drift g are necessary to ensure ergodicity. We shall mainly use the results
of Khas’minskii [6]. We make the following assumption:

(A) There exists a bounded smooth domain D and a function ¢ which is
continuous and locally bounded on R% — D, > 0, € W P(R4 - D), and

loc
Ay - g(y,v)- Dy > 1,Vv,y€ R - D (3-23)
2
¥>0 ¢ > 00 as |y| — o0 and LD%’L bounded
In general, one can try to find ¢ of the form
¥(y) =logQ(y) + k (3.24)
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where 1
Qy)=;My-y+m-y+p (3.25)

M symmetric and positive definite and @ > 0; and D is a region containing
the zeros of Q.
The following condition must hold to have (3.23):

My + m|?
-ttt M 3.26
My +m-ytp (8.26)
—(Fy+g(y,v))- (My+ m)

1
2 My y+m-y+pVye R¢ - D;
for a convenient choice of M, m, and p. For instance, if d = 2, we can take
M =1I,m=0,p=0 and (3.24) is satisfied provided that, for instance
F< (—% _A) (3.27)

and D is a sufficiently large neighborhood of 0.

Consider a domain D; such that D ¢ D;,D; smooth and bounded. Let
I' and I'y be the boundaries of D,D,;, respectively. We shall construct a
Markov chain on T;. Let z € R9, we define

0'(z; N) = inf{t|y.(t) € D} (3.28)

6(z; ) = inf{t > 6'(z; 0)|y=(t) € D1} (3.29)

In (3.28), (3.29) y.(t) is the diffusion (3.18) with initial condition z. Using
¥(z), we can write

E}0'(z) < ¥(2). (3.30)
This implies also that the exterior Dirichlet problem
An —g(y,v(y))-Dn=0,ye R*-D (3.31)
lr = h,h € L*(T)

has a bounded solution given explicitly by

n(z) = Exh(y:(6'(z))). (3.32)
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The Markov chain on I'; is then constructed as follows. We define two
sequences of stopping times (relative to F*),

T0y 71,72

' '
T 15T 290

such that
=0

T, = inf{t > r',,|y(t) ¢D;},n21
it = inf{t > ra|y(t) eD},n >0

The process y(t) in the brackets is the process defined by (3.18), i.e., with
initial condition y. Let us set Y, = y(r),n > 1. Then Y, €Ty and is a
Markov chain with transition probability defined by

EY [¢(Ya+1)|F™) = ES¢(yz(8(2)))l2=Y.- (3.33)
We define the following operator on Borel bounded functions on Ty
P¢(z) = EJé(y.(6(=))) (3.34)
We can give an analytic formula as follows. Consider the problem
Ag - 9(y,v(y))- D¢ =0 in Dy, ¢lr, = ¢. (3.35)
We first note that

E:¢(v:(8(2))) = E3¢(y:(6'())

therefore taking account of (3.32) , we have

Pé(z) = n(z) (3.36)

where 5 denotes the solution of (3.31) corresponding to the boundary con-
dition h = ¢. Of course, in (3.36) £ € T'; are the only relevant points. We
then have

Lemma 1.1. The operator P is ergodic.

Proof. See (3] for the proof of this and all the remaining lemmas in this
section.

From ergodic theory, it follows

Pro) - [ (o)l < KligllemzeTy (387)
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where K, p are uniform with respect to the feedback control v(-), and x = x*
denotes the invariant probability on T';.
It follows that, since

P"¢(y) = E¥¢(y(r))

we can write
¢
[E9(u(r) - [ (n)n(do)| < Kllglje~ (3.38)
)
We can then define a probability on R%, by the formula

_ Je 1B2 [3 A(yy () de]x(do)
[ Awdut) = = T BT a0) (3.39)

VA Borel bounded in R9.

Following Khas’minskii, one can then prove that the invariant probability is
unique, has a density with respect to Lebesgue measure, denoted by m = m¥
which is the solution of

A’m + div(mg*) =0,m > 0, (3.40)

/’;‘ m(y)dy = 1.

where
A® = —-A +div(Fy-).

Consider now the Cauchy problem

az v —_
§+Az—g Dz=0 (3.41)

z(y,0) = 4(y)

Lemma 1.2. We have

z(y,1) < e|g)s, (3.42)

We deduce from Lemma 1.2 an estimate on the invariant probability
solution of (3.40). Using

fum @y = [ m*(s)é()y
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we deduce easily that
m*(y) < A, Vy, V() (3.43)

It follows that m" is uniformly bounded in LP(R%),Vp, 1 < p < oo. Let 8
be an element of C3°(R%), we have

X o

ey

— A(m8) + div(még) + Fy - D(0m) (3.44)

" %

e
*s"s

=m(D@- Fy — gdivl — 0trF) = f

and f € LP(R%),VYp,1 < p < oo.
From results on the Dirichlet problem, it follows that m# belongs to
WiP(R4),Vp,1 < p < oo. In particular, m@ is continuous. Therefore, we

>

.

e deduce that

- m'(y) > A > 0,Vy € K, compact (3.45)
- where the constant A, does not depend on v(-).
| Remark 1.2. The assumption (3.23) requires D nonempty. Otherwise
! (3.23) and (3.40) yield f mdy = 0, which is impossible.
E .- We also shall consider the following approximation to m. Let Bg be the
! :::: ball of radius R, centered at 0. Let us consider mp defined by
)
t
Lo A'mp + div(mpgg®) + Amp = Atpm (3.46)
)
s mplapy =0

mp € WJ"(BR)

".’..-:'J

in which A is sufficiently large so that

|

61 - €98+ (A+ 3eF)6* > C( ¢ + )

N/
'a.')

vEée R 0eR
Moreover, rr(y) = r(y/R) where r(y) is smooth r(y) = 0 for |y| > 1,

1
e r(y)=1, for [yy<- and 0<r<1.
Lo 2
R
. We have
. Lemma 1.3. rhp the eztension of mp by 0 outside Bg, convergesto m
' M in H(R9) strongly and hy = fhyq converges monotonically increasing to m.
E :: 32
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Hamilton-Jacobi-Bellman equation of ergodic control
We consider the following problem: Find a pair x, ¢ such that

X € R ¢ € WEP(RY), (3.47)
with ¢/ bounded at oo
A¢ + x = H(y, D¢) (3.48)

Our objective is to prove the following

Theorem 1.1. We assume (3.16), {3.17), (3.23). Then there is one and
only one ¢ (up to an additive constant) and a scalar x such that (3.47),
(3.48) hold.

We begin with some preliminary steps. Let us consider a feedback vq(-)
such that (c.f., (3.21)) we may write

Ada + ady = I(y, Va) + D¢y - g(y’ "a)- (3'49)

Then let m, be the invariant probability corresponding to the feedback v,
in equation (3.40). We then have
Lemma 1.4. The follouning relation holds

/ (aba — I(y, va))mady = 0 (3.50)
Lemma 1.5. We have

|$aly) - fr baln)a(do)| < { c jg; in R%-D (3.51)

where the constant does not depend on «, nor y.

Proof of Theorem 1.1.

Ezistence _ .

Let us set ¢ = $a —IA, #a(n)xa(do). Then ||pa/9||re < C. Moreover,
from (3.21) we also have

Ada + ada + Xa = H(y, Déa), (3.52)
in which
Xa = aA éa(n)xo(de).
1
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It readily follows from (3.52) that

%" bounded in W2?#(R%),2 < p < co,u > 0.

We can extract a subsequence such that
Xa X
ba— ¢ in WhP#(R4) weakly.

We can assert that :,'
.-,'f‘_'.-

¢as Ddy — ¢, D¢ pointwise, " "-':

hence, : f»'_:'..-‘_'_'.;' ‘

H(y, D¢,) — H(y, D$) pointwise, ’\_. '

- R A

Noting that H(y, D¢,) is bounded in LP¥, we can pass to the limit in (3.52), RS
and the pair ¢, x satisfies (3.47), (3.48). Tada
See (3] for the proof of uniqueness. N
RS

3.1.3 Singular perturbations with diffusions in the whole :f_\
space ::;:,;:

Sereld

Setting of the problem

We consider
f(z,y,v): R* x R4 x U — R™ (3.53)

9(2,¥,v): R* x R¢x U — R4
I(z,y,v): R" x R4 xU - R
continuous and bounded
Uad compact C U (a metric space). (3.54)

On a convenient set ({1, A, F*, P*) we define a dynamic system, composed
of a slow and a fast system described by the equations (3.1), with g replaced
by Fy+g(z,y,v). The cost function is defined by (3.2), and we are interested
in the behavior of the value function u(z,y). It is given as the solution of
the Hamilton Jacobi Bellman equation (noting 4, = —-A, — Fy- D)

1
- Azu, ~ ;A,u, + Bu, (3.55)
34
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a = H(z) Dsuny);Dvue)
- v =0, Vzel',Vy
] u € W3PH(0 x R%),2< p< o
N, By W2P#(0 x R%) we mean in fact, (since O is bounded) the set of functions
z such that z8,(y) belongs to W2P(0 x R9).
RS We shall denote by v(z, y) the optimal feedback. The assumption (3.23)
. is replaced by
- - Ay — g(z,y,v)- Dy > 1,Vz,v,ye R? - D (3.56)
L _~.
e and the requirement that D, ¢ have the same properties as in (3.23).
J': Approximation to the invariant measure
N We shall consider the following invariant measures. For a feedback v(y),
N consider m¥(z, y) which is the solution of e,
: Aym +divy(mg®) =0 (3.57) e
D)

N
RS
~

&
<,

m > 0, /;‘ m(z,y)dy = 1,m € H(R?),Vz.

L

For a feedback v(z,y) we shall consider m?(z,y) which is the solution of

Y

h - eAzme + Aym, +divy(mg¥) =0 (3.58)
N om
! ool = 0,mc € H'(0 x RY)

. " me > 0, /R‘ me(z,y)dy=1, Vz.

- T In particular, we shall call m, the solution of (3.58) corresponding to the
o feedback ve(z,y) as defined in the preceding paragraph. The construction
-

N of the invariant probability m, is done in a way similar to that of m. Let
us consider D,D; as in (3.23). To avoid confusion in the notation, let us
.. call I',I'; the respective boundaries of D,D; (instead of I', T, since now I
- denotes the boundary of O). We consider the stochastic processes

i

5 . dz = \fedw — xr(z,t)vd€,z(0) = z
»

‘ l;‘
: dy = Fy + g(z,y,v(z,y))dt + \/Edbu(t)a y(0)=y
v 35
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which are defined on a system (N, A, F*, P*¥) and w,b are independent
standard Wiener processes.
We define
6'(z,y; ) = inf{t|y(t) € D}
8(z,y; ) = inf{t > 8'y(t) ¢ D1}
and we have (c.f. (3.30))2

E6'(z,y) < ¥(y).

Define the sequence of stopping times 75 = 0, 1, 7' n41 a8 in section 1.2,
and the Markov chain X, = z(r,), Yn = y(r) which is a Markov chain on
O x I';. We then define the linear operator on Borel bounded functions on
O x Ty by the relation

P¢(z,y) = E;¥¢(=(6), y(6))- (3.59)
We deduce the analytic formula (c.f. (3.36))
P¢(z,y) = ne(z,y) (3.60)
where
— €A+ Ayn—g*- D) =0, (3.61)
on O x (R¢-D)

9
'7'[‘ =6 5;'[‘ =0
—€Azs+ Ay — 9" Dy¢=0 on OxD, (3.62)

9

The ergodicity of P¢ is proved like that of P (c.f. Lemma 1.1). Let
7¢(dz,do) be the corresponding invariant probability on O x I';. We then
define the probability u¢(dz,dy) on O x R4 by the formula

/o /,u Az, y)dp(z,y) (3.63)

_ Jo Jr,[BS" 357 A(a(e), y(t))dt)x*(d€, dn)
Jo I, ES"0(€, n)x<(d€, dn)

2Here E = E*? for short.
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h for any A Borel bounded on O x R%. Let us note that we can also give an -
analytic formula for the quantity c
, ol
Py ’e) Ry
e () =B [ AGzle), u(t)dt o
S ,‘: 0 A 4
LN '*. .,""‘. '»
e namely Yo
@ —eda+Aja—g'-Dya=A (3.64) N
:J: po in O x (R?-D) e
e
1: aa : -":":
E e =530 =0 o
! M) LN
"~ ~eAB+A,B—-¢" D,S=A in Dy L7
'f o8 S
ﬂ'l‘; =0, E"IP =0. :::;:\ .
We have .'"-:}'
dut(z,y) = m*(z, y)dzdy. (3.65) RSN
o ' Moreover, considering the Cauchy problem = :;‘:
S e
. L d BN
A 9z _ €eA,z+ Ayz—g°-Dyz=0 (3.66) S
N X at e
- LS,
s . az : . Y \‘
, & 3;'1‘ =0, 2(z,y,0) = A(z,y) . N ‘.1
::: - we have D
-~ .
.'-v Ly} M
L L [ M ome e dzdy= [ [ m*(av)2(z,v,0dsdy, :
-~ Vt>0 :
~ KOS
:E - and we deduce from this .}’f:;-_\,.‘
;o N
: :::E 0< A< mg(z, y) < 4y, (3.67) .;"&:
) Yz € O,Vy € K, compact of R? g
::' "& with constants uniform with respect to v(:), the left constant (but not the :_‘_a".{
’. v right) depending on the compact K. '_:f;.
b" To proceed we shall slightly reinforce the assumption (3.66) as follows '.\j-:j‘
<3 0N
Y Ay — ko|D¢| > 1,Vye R4 - D (3.68) e
- WA
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L X
1 and D, ¢ have the same properties as in (3.23). In (3.68) ko is a constant
g such that
L lg(z, 9, v)| < ko (3.69)
A Note that (3.68) is satisfied in the example (3.27).
‘ § Lemma 2.1. Let B, be the ball of radius p in R?, and B, = R? — B,.
Then
- [ [ me(z,v)dzdy < ap) (3.70)
Yo 0 /B,
o where A(p) — 0 as p — oo.
v Consider also as in (3.46) the solution m.g of
L4
B )
vé — €A, mer + A}meg + divy(merg®) (3.11)
f;: +Amep = Atpmer
- dmep
Y a; Ir, merlapy =0
i then we have
mer — me in L' ¢ H! as R — co. (3.72)
f‘
ﬁ:- A priori estimate
i We shall need the approximation of u, given by
, 1 -
MRS - A:“d! - ;Ay"GR + pueR (3‘73) "-..')':i—::
- -.- ' ..
(- ; R
.: '_'_-: = H(:L', D.u.p, Y, ;Dyucﬂ) E::.E:E:
el
x t¢ = 0 on 3(0 x Bg) ‘. ‘
~ and NN
' . 2 . AL
‘ uep — e in W)? weakly and in L™ weak star (3.74) NS
W,
K ',8 where loc is meant only for the y variable. We shall need also a similar :'t:‘. N
&= approximation in the case of explicit feedbacks; in particular v, e
. Lemma 2.2, The following estimates hold ? :’_
- IDsucl; < C,lulLm < C (3.75) ot
IDyuf}, <c* GRS
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Lemma 2.3. Let ¢(z) € H}(0O) c H?(O), then we have the inequality

/ / me| Dy (ue — ¢)|*dzdy (3.76)

+-:-//mc|Dv“¢|zdzd9
+/‘/ﬂm,(u¢ — ¢)¥dzdy < //meuz(A¢_ Bé)dzdy
+ [(D.4P + )

Convergence

Lemma 2.4. Let us consider a subsequence of u, such that
ue — u in HZ (O x R%) weakly. (3.77)

Then u is a function of z only, belongs to H}(O), and the convergence (3.77)
18 strong.

We now identify the limit. Let us recall the definition of m" given in
(3.57). Define x(z,p) by the formula

: x(@p)=inf [ m ) (z,y,o(0) (3.78)
v() Jre
+p- f(z, 9, v(y)))dy
and consider the Dirichlet problem
- Au + Bu = x(z, Du), (3.79)

ulr =0,u€ W“’(O)

We can then state the following
Theorem 2.1. We assume (3.58), (3.54) and (3.68). Then we have

u¢ — u in HZ (O x R?) strongly (3.80)

See [3] for details of the proof.
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Interpretation of the limit problem

The limit problem is written as

- Au+t u=inf{i(z,o() (3.81)

+Du- }'(z,v())} ulr=0

where we have set

T(z,9()) = [ m*(z, )z v, v(0))ay (3.82)

Ha o= [ m* (e 9y, ).

It is clear that (3.81) is a Hamilton Jacobi Bellman equation for a slow
system whose drift if ;’, and integral cost is [. For this problem the set of
controls is the set of Borel functions v(y) with values in U,q4. A feedback
on the slow system is thus still a function v(z,y). There exists an optimal
feedback for the limit problem, namely #(z,y) obtained in (3.6). Indeed
consider the function V defined in (3.5), then

6(3, y) = V(Z, Dy, y, Dv¢)

is an optimal feedback for the limit problem. In fact, this is the feedback to
be applied on the real system as a surrogate for v(z,y) defined in (3.58).
One can show by techniques similar to those used in previous paragraphs to
obtain Theorem 2.1, that the corresponding cost function will converge as ¢
tends O to u in H!(O x Y). Note that unlike the deterministic situation the
optimal feedback for the limit problem is not a function of z only. In fact
(3.83) corresponds to the composite feedback of Chow-Kokotovic [7] (c.f.
also [8] in the deterministic case).

3.2 Optimal Stochastic Scheduling of Systems with
Poisson Noises

In this section we consider the problem of optimal stochastic scheduling
for nonlinear systems with Poisson noise disturbances and a performance
index including both operating costs and costs for scheduling changes. In
general, the value functions of the dynamic programming, quasi-variational
inequalities which define the optimality conditions for such problems are

40
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not differentiable. However, we can treat them as “viscosity solutions” as %ﬁ
) introduced by Crandall and Lions. Existence and uniqueness questions are [ T 1
124 studied from this point of view. :ft:::j
S
» 3.2.1 Introduction IR
2 WRE
Optimal scheduling problems arise in many contexts, including inventory Saal
. control systems and resource allocation problems in military systems plan- ! -_,._\r_'-‘j
- ning. These problems typically involve stochastic dynamical systems, ad- ;_.:'_'-sj:.
mitting discrete state transitions at random times as control actions, and ;,:'.::.
s incurring both switching costs and continuous running costs. Using the Ererel
;.“ dynamic programming principle, one can show that the optimality condi- : 2 j.‘-j
tions for these problems are expressed mathematically by quast-variational b4
- inequalities (QVI). It is difficult to treat QVI’s explicitly, and most of the ":}:‘:
:-' work has focussed on proving existence, uniqueness, and regularity of solu- ::j':‘:q‘
- tions. :"-.sj::.*;\
N In our case, the state system is forced by Poisson noises. Since the '-'_.:j'_.:f:j
i infinitesimal generator of the state process is first order and has a translation ;‘:‘i
in the argument, the associated QV]I is first order and fully nonlinear; and '_:"’_:.1
P 80, the standard existence and uniqueness theory developed for diffusion - ;?tﬁh
o parabolic systems does not apply. To treat the problem, we use the method el }_.:}
- of viscosity solutions introduced by M. G. Crandall and P. L. Lions [9). :‘-;:}'_'::
: Various properties of viscosity solutions are developed in Crandall - Evans - RO
E Lions [11]. We use the approach in Capuzzo Dolcetta - Evans [12] developed !::—5"‘
for deterministic systems.3 ::{:?::‘
" We prove that the value function u associated with the optimization ,.:}:.:'_:;
" problem is a viscosity solution of the corresponding (QVI). Existence of RURh0Y
) solutions to the (QVI) is shown by using a discrete approximation to an g_‘,_:_f:'l,‘:f
- associated penalized system and then using results for accretive operators bl
o as in [15]. On the other hand, we use dynamic programming to obtain a ‘;__:f
' decreasing sequence of value functions u¢ optimal for controls with at most s
e | switches, which converges uniformly. This approach was used to obtain AR
v a maximum solution of certain (QVI’s) in Menaldi [10-11] without nonde- "j"".-_
! generacy assumptions. In Blankenship - Menaldi [20], related problems were ﬁ‘_i
. treated involving the application of (QVI) to power generation systems with SCSRS
’n scheduling delays. See also [21}[22] for a survey of viscosity methods for the ;',‘..;:?-_::I
$Cases with white noise models are treated in [13] and [14], while control problems - ‘:f':
3 for diffusion processes with jumps are treated in Bensoussan [15). See also [16] for an RSN
- introduction to the subject. Tl
o e
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control of diffusions.

The optimal stochastic control of linear regulator systems with Poisson
noise disturbances is considered in [23]; stochastic stability properties of
linear systems with multiplicative Poisson noises are derived in [25]. See
also {26].

Problem Statement

Let (Q, F, P) be a probability space and F;,t > 0 a non-decreasing, right-
continuous family of completed sub o-fields of F such that F; { Fy := F,t >
0. Consider the general nonlinear dynamical system

{ dy:(t) = g(yz(t), a(t))dt + h(yz(t), (t))dNo(y)(t)

()= z (3.84)

where N;(t),¢ = 1,...,m, are independent Poisson processes with intensities
Ai ¢ = 1,...,m. a(t) is a right continuous, piecewise constant random
function with finite range 1,...,m, and is measurable with respect to F,t >
0. Actually, o is an admissible control consisting of random switching times
0; and random switching decisions d; such that 8; are adapted to F; and d;
are Fy, - measurable so that

0=60<0,<...50;,_1<06; <0;31,0; = +00 as.

d.-e{l,...,m},d.-;éd.-_l if 6; < 00 (3.85)
And so
a(t) =d;if0; <t <0;41,§20
is indeed Fy - measurable.
Let the set of all admissible controls with initial setting d be

A% := {aja = {6;,d;} satisfies the “above” properties (3.86)

with initial setting dp = d}.
We take the performance index to be

J:(a) = E,,d{/:o f(y;(t),a(t))e‘ﬁ‘dt + i k(d.-_l,d;)e""'}
=1
= (3] /." F(ye(t), dicr)ePHdt + K(dioy, di)e P} (3.87)
i=1 7 ¥-1
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where 8 > 0 is a discount factor and k(d, d) is the cost of switching from d
to d such that*

LT

k(d,d) > 0if d # d; k(d,d) =0 (3.88)
k(d,d) < k(d,d) + k(d,d) if d # d # d.
Without loss of generality, we can define ko := mink(d,d), d # d. We

&K

|

’ s assume f > 0, g and h are bounded and Lipschitz continuous :,.:,7\
AR S
N la(es )] < Il < oo B
\v": s . " :."\.:
VY lq(z,d) — q(2,d)| < L|z - | (3.89) Qe
> r with g = f,g9and h,forall 2, 2 R™, d€el,...,m. i
*f: .. Under these assumptions, (1.1) has a unique solution. Defining the value ,_,a::'_f'“
O o function 4-_;.";
N u4(z) ;= inf J¥(a),z€ R",d€ {1,...,m} (3.90) 4T
.h;.' acAd >y
ot we want to design an optimal control «* such that L
\ - N N y \:-'.\
2 . ui(z) = J3(a*) = algL Ji(a). (3.91) B
. Sl
'. = Remark. Ng(;)(t) is an inhomogeneous Poisson process with intensity :ﬁ::.h\
j:-‘ function Ay(). -$:-::_\
NN Summary of Results, ETp
oL '_"}::J
}\‘: . In subsection 2.2 we show that the optimal value function u?(z) in (3.21) o]
Ty - maybe defined as the limit of the value functions u$(z) of systems with a e
Yecl finite number ¢ of switches as £ — oo (Theorem 2.3). We show that the SR

— convergence is uniform (Theorem 2.5); and we derive two representations of = “
> :_: ud(z) as the optimal value function (Theorems 2.6 and 2.7). We describe =3
N the associated optimal (control) switching policy (Theorem 2.8), and we use }-‘-:.:
N » it to obtain an additional estimate on the convergence of uf to ud. kj: !
VAR In subsection 2.3 we derive the QVI which must be satisfied by the A .
o optimal value function (equation (3.113)). We show that the optimal value
Aol function is a viscosity solution of the QVI (Theorem 3.1). Then we show A
RN that the solution is unique. N
o In subsection 2.4 we prove that the QVI has a viscosity solution by con- ‘,:::-._
':-}_: \ structing a sequence of solutions to a penalized system (equation (3.119)) :\:: ‘>
5 ’}. 4The case when the switching costs can be sero is treated in subsection 3.5. ::'u.
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and proving that these solutions are uniformly bounded and uniformly Holder
continuous (Theorem 4.4). We show that the limit of the sequence of solu-
tions to the penalized system is a viscosity solution of the QVL

In subsection 2.5 we consider the case when the switching costs vanish
(k(d,:l) = 0 for d # d in (3.19). In this case the optimal value function
u is independent of the initial control configuration d (since we can switch
without cost at any time), and it (formally) satisfies a Hamilton - Jacobi -
Bellman equation which is fully nonlinear in Vu. The method of viscosity
solutions is required to treat this case. We show that the optimal value
function corresponding to non-zero switching costs will converge to u as the
switching costs tend to zero, and that u is the unique viscosity solution
of the Hamilton - Jacobi - Bellman equation. The result is analogous to
those in Capuzzo Dolcetta - Evans [12]. Thus, the method of viscosity
solutions provides a complete framework for the treatment of the optimal
control problem (3.16) - (3.23) over the full range of parameter values and
operating regimes.

3.2.2 Dynamic Programming and Preliminary Results.

Before using dynamic programming to investigate the properties of the value
function u?(z), we need some preliminary results.

Lemma 2.1. For any stopping time r whick 1s adapted to F; and any
measurable bounded function g, we have

E[q(yz(t + T))IFr] = Ey,(r)?(yy,(r)(t))' (3.92)

Proof See {24] for the proof of this and all other lemmas and theorems
in this section.
Lemma 2.2. (i) For each d€ {1,...,m} and z € R",

w!(2) < min{u?(z) + k(d, &)} (3.93)
#d
(i) For any stopping time 0 > 0,
)
(@) < B{[ f(uele), djePdo+ ua(@)e} (394
Notation. Forz € R*,d € 1,...,m,
M®[u)(z) := ranin{ua(z) + k(d, d)}. (3.95)
#d
44
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Now, we want to use the dynamic programming principle to show there
exists a convergent sequence uj of optimal solutions of the problem with
respect to controls which have at most £ switches.

Foreachz € R",de€1,...,m, let

- -]
ul(z) := /o f(ys(s), d)e~P*ds. (3.96)
Notation. If u,v € C(R")™, then we say u > v if u? > v?, Vd =

1,...,m.

Define an operator ['q : C(R")™ — C(R") by

0
Tau(z) := :x):%E {/o f(yz(s),d)eP%ds + e‘p‘M‘[u](y,(O))} . (3.97)
Here we understand the infimum is taken for all stopping times § > 0

adapted to Fy. If u > v, then for each ¢ > 0, there exists a stopping
time 8, > 0 and d, Fy, - measurable such that

Caste) > B{ [ (0 e P+ (0 00) + K& ]} -

>E { /o o f(y=(8), d)e?*ds + e~P¥[v3(y(0.)) + k(d, d()]} —e

> Tqv(z) — .
Let € | 0, we have I'yu > T'qv. Let 0 < n < 1, then

L4[(1 - n)u + nv]

= infE { [n " F9s(e), d)eP4do + e PIMA(1L — m)u+ m'](yz(o))}

>0
> 8 { [ 000 e+ (2 - M0

+nM2[v](%(8))} }
> (1 = n)Tqu(z) + nlav(z).

Thus, I'q is a non-decreasing, concave function.
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Suppose we are given u,_;. We can define
ud(z) := Tque-1(z). (3.98)

Since u3(z) = T'yup(z) < ud(z), then by the non-decreasing property of I',
we have u$(z) = I'lug(z) < T'quo(z), and so

0<uf(z) Suf ,(2)<... < uf(z) < uﬂ—l—l (3.99)
Thus, u$(z) converges. We can define
uld () := Jim ul(z). (3.100)
Theorem 2.3.
ud(z) = inf{J23(ar)|ae € A? has at most £ switches } (3.101)
and thus
ud (z) = ui(z) := aién‘{‘ J3(a). (3.102)
Lemma 2.4. For each0 < 4y < min{l, m},
lug(2) — uf(2)| < Cylz - 2 (3-103)
for all1 <1 < 00 and z,% € R™ with '
-1~
c, =ML (3.104)

8- 7L(1 + /\mu)
where
’\ml.x = max{z\l, Y Am}.

If B> L(1 4+ Apax), then 7y can be taken to be 1.
Remark. Since N; has independent increments, then F, is independent
of any sub o-field generated by N;(t) — N;(s),s < ¢t,i = 1,...,m, so that for

t2>s,
E(ly8() - @)} [Fu] < [v2(s) — yi(s)|e=lHrmandlt=0),
Thus,
[u(u(2)) - w(uh(0))] < Cilué(s) - (o) .

Remark. If kg > ||f||/8 , then ug(z) is the optimal solution, i.e., no
switching occurs.
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We can obtain the following estimate by the method in [18][19].

! % Theorem 2.5. If0 < kg < [|f]|/B, then e
> ’.-'.::"
. ug — u ) < |1l (1 - Bkollf11)°. (3.105) DA
| W "-. ~-."
S :z: Thus, ue | uoo uniformly. __:."?:_
l . Theorem 2.6. -
s ¢ A
- uo(z) = juf B{[ f(ualo)sd)e™ds + Miluc)(4:(6))e™).  (3.106) i
-l.' 2 o "
)
S Theorem 2.7. If 3zg such that ud(zy) < M?[ul(xp), then 6, > 0 a.s o2
Yo and -
": d ' —Bs d -p6 AP
D - ud(z0) = E{ /o £ (¥zo (8), d)e=P"ds + ul(yz, (6))e =} (3.107) ?;‘f.t :
2 W
: B forall0 <0<0,. ;3‘;-
. s Now, suppose we have a Holder continuous function u? satisfying (3.21). 2_;&‘
i i We can define an optimal policy a* = 6;,d; € A% as follows. .
\ '.'J'::J' 4
;o 8o = 0,do = d, e
e NN
:' v If we are given 8;_1,d;_1, then set ,":-u'_"'
” I
! 9; := inf{ stopping time 8 > 6;_,|u%-1(y.(0)) = M%-1[u](y.(0))a.s.} o
4 (3.108) o
. If 8; < oo, set o
\: ) - - ::.:'
NN d; = any Fy, — measurable random variabled € {1,...,m},d # di_y PR
¥’ AN
L such that . _
.l M%-1[u](y=(6;)) = u®(y=(6:)) + k(d, d) a.s. (3.109) T
y and 3
:l o~ yz(t) controlled by decision d;_; when 8;_, <t < 6;. :-:-:-,-:
Q '~ .‘.‘.\.. N
: L Theorem 2.8. The control policy a* defined by (3.108 and (3.109) s !‘_
", optimal, i.c., ul(z) = J¥(a*) = min e 44 J¥(a). In addition, 6; — oo a.s. o
. as i — oo, :"'J-;Q 3
Y Corollary 2.9. We have the additional estimate 7
» N '_'
2 2 NN
< d_ 4| < _”f_”__ Rar A
"‘ ”ul “oo“ = ﬁzko(t'f' 1)' (3‘110) "ii’ 'F-
’ S
g . 3
b ;_: 47 )
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» ° 3.2.3 Viscosity Solutions of the Quasi-Variational Inequal- -":;‘
i L ity (QVI). -

. ™ -
N We want to derive necessary and sufficient conditions for the optimal solution
N ui(z),z € R",d € 1,...,m. Assume for the moment that the value functions
N - ul,...,u™ belong to C!(R"). Then by the necessary condition in Lemma
S 2.2, we have oy
! ud(z) — ud(y,(t 1/t _ o
;o E{ @)= s < 2 {2 [ f(uao), deds o
L{c . 0 "-,-'-_(
§ Bt _ 1 o
PN e Pt — LN
: + ( : ) ud(,,,(t))} (3.111) i

" {

E". and so, we obtain a differential form as ¢t | 0, "‘"
oo - 9(z,d) - Vud(z) - Aa[u?(z + h(z, d)) ~ w¥(2)] < f(z,d) - Bu’(z) (3.112) o
~ SN
. Yz € R* and d € 1,...,m. Combining (3.93), (3.107) and (3.112), we obtain e

'i i a quasi-variational inequality (QVI) S

% max{fu® - g¢- Vul — Aglu?(- + h%) — u¥] - f4,u? - M¥u]} =0 (3.113) T
¢ - LS

:3' 2e on R", where 3

" " 4 .§\-: ,

2 1) = £ d), g%() = 9(-,d), h%() := h(:, d). (3.114) TR

! S Note that (3.113) is a fully nonlinear first order partial differential equation R

'~ which does not admit a differentiable solution in general. But, we can treat ;_:-'

::j .. it using the method of viscosity solutions, which was introduced by M. G. N

N A Crandall and P. L. Lions [9], and which was used for deterministic switching ':::'

i problems by I. Capuzzo Dolcetta and L. C. Evans [12]. (e

W = We denote by BUC(R™)™, the space of bounded, uniformly continuous : _.‘;

oo R™.valued functions on R™. Nuled

f.: ) Definition. A function u = (ud,...,u™) € C(R")™ is said to be a ':;}:. 5

2 5, viscosity solution of the (QVI) if for each d € {1,...,m} and each ¢ € :.::.;;:I

S ] C'(R™) such that paONN

e

A (1) if u? — ¢ attains a local maximum at zo € R", then Sy

1\: "-' :‘. S

AN max{Bu?(2o) — g%(20) - V$(z0) — Aa[u*(z0+ h%(20)) - u¥(2o)] - f*(20), NS

‘..‘ .\‘-\ »

» AT

. e ud(zg) — M%[u(z0)} <0 (3.115) ‘;:::.

" '.\ N A* 4

. and bl

g

:'P -~ 48 .:"
TN 2

¥ 3 :

)

\... - e

h

T e e e L A A

:_-;.::;{:.:_;.;:\"-“S:‘S‘;:} ::}:&.:"-;:;«\"_-\-.._:‘.{_. -..‘:.. TN ..\_.{_.':,‘:,. ~a )_\'. -_.'. SR ..-,.- *x._\.;-_\._\,:\‘_".::.‘_-...._-‘\__. A



L — 3

‘
v
» -::’
. (i1) if u? — ¢ attains a local minimum at 2y € R", then
3 . max{Bu’(z0) — g%(20) - V$(20) ~ Aa[u?(20 + h*(20)) — u(20)] ~ F*(0),
: ut(z20) = M*[u(20)} 2 0. (3.116)
-
. . Theorem 3.1. Under the previous assumptions, the value function u =
(uly...,u™) with .
. dly) .= 3 d O
5 vie) = ol Ji(e) R
.~ IEAKRAN
‘ i8 a viscosity solution of the (QVI) (3.113). ,\f:f.‘-
v oL Before discussion the existence of a solution to the (QVI), we consider RIS X
TR the conditions under whizh (3.113) admits a unique solution, so that any AP AT
functions constructed to satisfy (3.113) must be the optimal solution. boensd
M Lemma 8.2. If u = (ul,...,u™) 1s any wviscosity solution of (3.113), GG,
DA then t:..:-_:::}.
< ud(z) < Mu)(z),Vz € R",d € {1,...,m}. (3.117) NN
3 . ll ..
. Theorem 8.8. If u = (u},...,u™) and v = (v',...,v™) are viscosity A3
. solutions of (3.113). Then u=v. '-\ 5;
’ NG N
<A ot
SRS 3.2.4 Existence of Viscosity Solutions. \:}.}":
- -\T 4.‘-. L%
« Now, we use a finite difference approximation to construct a sequence of .;"}t
' = solutions which converges to the solution of (3.113). S
IS Let p € C*(R™) such that
N
2 p(z) =0, 2<0
- p(z) >0, z>0 (3.118)
. 0<p(z)<1,p'(z)>0 forz>0
:' and p,(z) = p(z/¢), z € R™, ¢ > 0.
S Consider the penalized system for approximation.
r . 1
S'i Bui(z) - _[uf(z + eg%(2)) - w(2)] — Aalvé(z + h%(2)) - ul(2)]
Y- pe(ul(z) - ud(z) ~ k(d,d)) = f4 3.119
. + 3 pe(vd(2) - wd(2) - k(d, ) = () (3.119) Sy
o a#d RN
;- or :~‘-~'-‘:}~-§
\\( CR
s 1 Ad RS0
5 ug(z) - E[ﬂf(z +eg%(z)) - uf(z)] - g[ui’(z + h¥(z)) - u(z)] RO
e
N
- 49 N
¢ e
SR

e
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+3 S o) - @) - K@) = 314 (3120)

azd

We define operators A, IIj,II;: C(R")™ — C(R")™ such that Au =
(Alyy. ..y Amu), Mu = (M}y,...,N*s) and Mu = (Iu,..., [15*u) where

Mu(z) = -ﬂie[ud(x +eg*(a)) - w'(2)] (3.121)

Méu(z) = —%[ud(z + h¥(z)) - v!(z)] (3.122)

Mu(e) = 5 3 pulwi(z) - vi(a) - k(& ). (3.123)
d#d

Definition. (i) An operator S : X — X with domain D(S) is said to
be accretive on the real Banach space X if

Iz — 2+ 4[S(z) - S| 2 l}= - 2| (3.124)

for all z, z € D(S),Vy > 0.

(ii) An operator S is said to be m —accretive on X if S is accretive on X
and the range R(I +~S) = X for all v > 0 (or equivalently for some ¥ > 0).

The following lemma is from Evans [17].

Perturbation Lemma 4.1. If S is m-accretive on X = C(R")™ and
T s accretive, Lipschitz continuous everywhere defined on X, then (S+T) is
m-accretive on X, in particular, the range K I+ S +T) = C(R™)™.

Lemma 4.2. A is m-accretive on C(R™)™.

Lemma 4.3. ITyand II; are accretive.

By the Perturbation Lemma 4.1, A + IT is m-accretive and so, for each
€ > 0, we have a solution u, € C(R")™ of (3.120).

Theorem 4.4.

(i) 0<uf(z) < [If]l/B,e>0,d€1,...,m.
(i1) For each 0 < 4 < min (T(ﬁe)«:ﬁ’l)’
|ud(z) - ud(2)] < Cy|z - &|",z€ R", e>0,de{],...,m}

with the same constant C in (2.20). If B > L(1 + Amax), we can take
y=1
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N . N
2 7
. 7%
R ’.
Y From the above lemma, u2 are uniformly bounded and uniformly Holder £y
) continuous. Then by the Arzela-Ascoli Theorem, there exists a subsequence ¥
S € such that u — ud € C(R") for all d € 1,...,m. The convergence is ;?$:S
N uniform on each compact subset of R”. In fact, u is bounded and Holder i-_:::
.‘: o continuous with the same Holder exponent 7. A
- - Theorem 4.5. u,, — u locally uniformly in R™ and u solves (3.113) in ;.:*:4
” the viscosity sense. - “5'
3t Remark. In general, u is only Holder continuous. If we know u has ’T.':I_‘.f
s some regularity properties, say u' exists in some neighborhood, then one :".-‘
:: can show u satisfies (3.113) in the ordinary sense. The point is that the . ;_‘.;'
D, derivative of u is not continuous across characteristic curves. A
B 32 N
e » Ha A
. 3.2.6 The Case of Vanishing Switching Costs. o
; _F In the case when the switching costs vanish, Ic(d,;i) = 0 for some d # d in ,
.o (3.19), then the dynamics may be switched at any time without incurring a Lo
- N cost; hence, the minimum cost does not depend on the initial control. That ’
~ is, =g
" i wl=ul=...=u":=u (3.125) q_.-;;?
o )
f: - If we follow the arguments used in the previous sections, we can show that E:;I;
::: - u is bounded and Holder continuous with the same Holder constant C., used s
w in Lemma 2.4. If u were continuously differentiable on R”, then by the ,\fé
~ principle of dynamic programming, u would be (formally) a solution of the -
S Hamiltonian - Jacobi - Bellman equation Sa
g b7
o max {Bu— g% - Vu - Aglu(- + h%) —u] - f4} =0 (3.126) ;'.:{':{
U d=1,...m S
. W o
S N
A on R". However, u is not always C!. By invoking the same arguments used s
by in subsection 4, we can show that u is the unique viscosity solution of (3.126) A
N in the following sense: :::‘::::
:: ' Definition 5.1. A bounded and continuous function u on R™ is a vis- )
": 3 cosity solution of (3.126) if for each ¢ € C1(R") such that :-: .~
» . " \3:
7S TVA) piAa
) (i) if u — ¢ attains a local maximum at zo € R™, then B g
. NN
L % max_{Bu(z0) - g(z0)* - Vu(zo) (3.127) R
: Al geeoy! _.: '.:3
: oLy
o =Ad[u(zo + h'(2o)) — u(zo)] ~ f*(z0)} < O RS
A .‘- \‘
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» (i1) if u — ¢ attains a local minimum at zo € R™, then 6900
L max {Bu(zo) — 9(z0)% - Vu(zo) (3.128) S
f_ 4, d=1,...,m \
*‘ LI ~ A
2 ~Adlu(z0 + h*(20)) — u(20)] - f4(20)} 2 0 ‘g
A e . “
A We now establish that the optimality system is closed; that is, each value ﬁ'%::'
. function corresponding to non-zero switching costs will converge to u as the
N switching costs tend to zero. The result corresponds to a similar result in _-"_'
b N Capuzzo Dolcetta - Evans [12). NS
3 Theorem 5.1. Suppose we have a set of switching costs {k.(d,d)} such ‘;:'.f
RNy that R ~pr
L N k(d,d)>0 Vd#de {1,...,m} (3.129) N
: . ke(d,d) < k(d,d) + k(d,d),d#d #d RN
LAY
s E:: For each € > 0 let u, = (ul,...,u™) be the unique viscosity solution of the t'.'_::
' A corresponding QVI with switching costs {k¢(d,d)} and let u be the unique vis- Ak
N cosity solution of (3.126). If k¢(d,d) — 0 as e — 0 for alld,d € {1,...,m}, »f:
- i then u? > u ase — 0 for alld € {1,...,m}. =7
&3 Acknowledgment. We would like to thank Professor L. C. Evans for N
oo his contributions to this portion of our work. S
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> 3.3 Almost Sure Stability of Linear Stochastic PR
N L Systems with Poisson Process Coefficients _—
o ‘e .
o - A
': ‘ In this section we consider the problem of determining the sample path LY
AN stability of a class of linear stochastic differential equations with point pro- . N
v~ cess coefficients. Necessary and sufficient conditions are obtained which are N
i similar in spirit to those derived by Khas’minskii and Pinsky for diffusion s
. ':_:' processes. The conditions are based on the deep theorems of Furstenburg on -_E.-.E.
.‘ ‘_ - the asymptotic behavior of products of random matrices. Estimates on the -:::;
A probabilities of large deviations for stable processes are also given; together ','.:_‘_'.\
:: :‘; with a result on the stabilization of unstable systems by feedback controls. o -&
) -
o
2 3.3.1 The Problem and Main Results. »—.!
) e
: N ;‘: Copgider the linear stochastic system -
4 VLA,
¥ m e
S dz(t) = Az(t)dt + 3 Biz(t)dNi(t), (3.130) %
- i=0 p g
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: z(0) = zo € R™\ {0},t > 0, RO
% on the underlying probability space (0, F, P) with A and B; constant n x n ;.{..q
M real matrices, and {N;(t),t > 0}, ¢ = 1,...,m, independent Poisson pro- RO
. cesses - specifically, one dimensional counting process with intensity A; > 0 ‘::g
L «j.' and right-continuous paths. N;(t) € {0,1,2,...} counts the number of oc- i}'_f‘l
N currences in [0,¢]. We are interested in the almost sure stability properties e
of the solutions of (3.130). That is, if | - | is any norm on R™ (|| - || is the N
o induced matrix norm), we would like to characterize the asymptotic expo- :‘_",:f
ro e nential growth rate NI
; lim 21 (Iz(t)l) 3.131) 3
= foot o\ Tzo| @ oo
) e if it exists. ”‘. -
N . This problem is the analog of the one considered by Khas’minshii [27) S‘g&
4 :i and Pinsky (28] for diffusion processes, and by Loparo and Blankenship [29) "

for systems with jump process coefficients. Like previous results, the expres-

L/ ;i:..
st

. sion given here for the growth rate is not an explicit, readily computable N
v . . sye . _ﬁ:ﬂ.\_l
. one, except in simple cases. The stability properties of the moments of the £

solution of (3.130) were considered by Marcus [30] [31] (see also [32]). Ex-

2

plicit stability criteria are possible for the moments. Related results on the

. N
:{: optimal control and scheduling of systems with Poisson noises are given in .:'ﬁﬁ
'~ [23] [24)- See also [26]. sy
! The system (3.130) is interpreted in terms of the integral equation k&j

m

Y

L] t m t '\—'::

‘ X z(t) = zo + / Az(s)ds+ / Biz(s)dN;(s) (3.132) N
v . 0 =170 ,_'_::_5
. e G2
' 2 with the stochastic integral defined by the calculus explained in {31](33].% oo
. Let {r},j > 1} be the interarrival times and t; = r{ + .- + 7} be the ALY
Y R\ occurrence time for the Poisson process N;(t). Then N
“CRN \ﬁ:\':
' ¢ 0 N'(t) = o .'.-.‘-.
Biz(s)dNi(s) ={ . i ! 3.133 Ry

Py /o ia(e)dNi(e) { T Bix(tin), Ni(t) > 1. (8.133) N
Nfae

& Now, let {r;j,j > 1} be the interarrival times of the sum process N(t) = N
. Ni(t)+ - -+ Nm(t) with intensity A = Ay + -+ A, and p; be the process Py
S indicating which N; under went an increment at the occurrence time ¢; = .‘»"\-’1
R 71+« ++ ;. We assume the probability of multiple, simultaneous jumps is :3.-'4
» > ]
Y #We could also treat some of the more complicated point process models in [31] [33], :_;,-::,
- but the main ideas are best conveyed by the simple case considered here. e
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e,
: zero. The process z(t),t > O exists, has right continuous paths, and jumps
? att;,)=1,2,... If weset D; = I + B;, then
L z(t) = eAt-tva))D, | ... D, elA)zg, (3.134)
2 - This expression is the basis of our treatment of the almost sure stability
b, - problem. Its composition as a product of random matrices directed our
. attention to the work of Furstenberg and Kesten [35], Grenander [36] and X
2 ::: Furstenberg [38]-[41] on the limits of products of random matrices. N
- T Our main result is based on the following observations. First, for eachs = ::«::::::3'
. 1,...,m, the {r;:, J 2 1} are independent and exponentially distributed with ‘;}::.-:"a
X ii parameter ;. The random processes {rj, uj,j > 1} depend in a complex :-;;-‘k!‘
way on {r},{ = 1,...,m,5 > 1}. However, {r;,¢ > 1} and {p;,5 > 1} are Lo, o
- independent and form independent, identically distributed sequences. This .»j:::::
" follows from the presumed independence of the {N;(t),s = 1,...,m}; see "‘;-.:ﬁ-
- [25]. As a consequence, we have the following: RN
. Theorem (Stability). Consider the system (3.130) with the stated ety
assumptions on the processes Ni(t),s = 1,...,m. Then ““‘.'}‘j
1 n
.'5 A r= kll{?o ;E log || DmureA™...Dpujed™|| < oo (3.135)
)
" * ezists and 1
¢ r= klim i log||DmukeA™...Dpuset™||  a.s. (3.136)
=00
e The quantity r is the asymptotic ezponential growth rate of the process
L z(t); that is,
.o ,z(t)l re
% — s e for ¢ large
- |(0)]
B - Hence, r > 0 implies almost sure instability and r < 0 corresponds to almost hopyod
- sure asymptotic stability. This result is proved in section 3 of [25]. :::-:;'-::j
A It is possible to obtain a more detailed description of the long term ,‘-:.\
', behavior of {z(t),t > 0} by examining the behavior of products of random :'_x::'{;:\
" af matrices acting on specific initial states z(0) = 0. The key questions are: W
Does the limit of P |
1 R
R 7 198 [1Dp ™ - Dyyetrizl N
- exist? If it does, how is it related to the rate r in (3.136)? To treat these "-\.ixj:
, questions, we generalize some results of Furstenburg, Kesten, Grenander and :j::‘_...-'_:
' ﬂ others on random walks on semi-simple Lie groups to general semi-groups AL
. .': :-.
X ™ R
) -::-f': *
S RN
~
\':.'u'\'\..*-'.'.l‘.‘, . . -
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(not necessarily groups since the terms D, may be singular). This analysis
& is given in section 4 of [25]. The main result is as follows:
el Suppose u is the measure on the Borel sets B(R"*") defined by
. u(T) = P{D,,e*" € T},T € B(R™™").
- Let SG be the closed semi-group generated by the support of y, i.e.
=, SG = smallest closed semi-group D {D;e#*,0< t < 00,6 =1,...,m}.
gl
Let v be an invariant measure for 4; i.e., a solution of the integral equation
o pryv=v (3.137)
~
Let Qo be the collection of extremal invariant probability measures of 4 on
A M = sty {0}.
o Theorem For all v € Qq, \
m 00 "::. -
i r=3 N /M / log | Diezp( At)ule **dtdv(u) < infty (3.138) A
=1 Y haaiAad 'ﬁ
and L e RN
v 1 z — RY Y
:;: ‘Erg : log (———Izol ) = Ar, a.s. (3.139) :EZ:
) for all zo € EY, an ergodic component corresponding to v € Qo. Indeed, :\":::‘\:
L there are only finite different values, say, r| < r2 < ... < rg=r, < n. ~e J
o Furthermore, if Uyeq,EQ contains a basis of R™, then the system (3.130) 'f :::q
is asymptotically stable almost surely if ry < 0, while the system (3.130) s ‘{:_'.:
asymptotically unstable if ry > 0. In caser; < 0 and r; > 0, then the stability ::}::i:'
“ of the system depends on the initial state . ;ij
To apply these theorems to a specific problem, one must determine r or at iy
v least its sign; or, more generally, the collection Q¢ must be constructed and N,
- r, computed. If the semi-group SG is transient or irreducsble, then r, will DA
be independent of v (even though there may be many ergodic components). :;‘-:-::4
- (See Theorem 4.10 and Corollary 4.11 of [25].) In this case a theorem of N
Y Furstenburg ([38], Theorem 8.6) may be used to determine the sign of r, = r. iZaty
Application of this result to specific systems requires a close analysis of the E‘(_!
geometric structure of the semi-group associated with those systems. Several -‘\"\-,‘;:-j
w examples are given in the next subsection to illustrate the techniques. g
Two final results of interest in engineering practice concern the occurence -'_:E‘:
“ of large deviations in the paths of {z(t),t > 0} of a stable system (3.130) ::-:{:
. and the ability to stabilize a system like (3.130) with feedback controls. ik
e
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The following result is proved in section 5 of [25].

Theorem (Large deviations). If the system (3.130) is asymptotically
stable with r, < 0, then there ezist constants M(zo,R) and r,A < ¥y < 0
such that

P{sups > t|z(s)| > R} < M(zq, R)e™,t > 0. (3.140)

The constants may be determined rather precisely, see [25] for details.
Theorem (Stabilisation). The control system with state and control
dependent Poisson notses

dz(t) = Az(t)dt + Bu(t)dt + Cz(t)dNy1(t) + Du(t)dN,(t) (3.141)

is stabilized by the linear feedback control u(t) = — Kz(t) almost surely where
K is any matriz such that

M / " log [|(I + C)e(4~BE)||g=2¢gy (3.142)
0

. -]
+) [o log||(I - DK)e!A~BE)||c~Xg < 0

where A; 18 the intensity of N;(t) and X s the intensity of N(t) = Nyi(t) +
N3(t). If D = 0 (no control dependent noise) and (A, B) is controllable, i.c.,

rank ||[B, AB,..., A" !B]=1n
then (3.141) is stabilized by any matriz K for which the eigenvalues of A—- BK
lie to the left of R(s) = —A|log||I + C||| in the complez plane.
3.3.2 Examples and Applications.

We would like to use some examples to show how to apply our theorems to
determine stability properties of specific systems. As we shall see, in many
cases, it is difficult to find the necessary invariant measure because it is
associated with an integral equation with shift arguments. It is difficult to
evaluate a solution from this equation, although it exists.

Example 2.1. Consider the simple system

k -1
dz(t) = ( S : )z(t)dt+ ( o o ) z(t)dN(t) (3.143)
where N(t) is a Poisson process with intensity A > 0. Then

At — okt co.swt sinwt . w>0
~-sinwt coswi
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In this case, DeAt # eA*D and

SG = smallest semi-group containing De4!,0 < t < oo

B ,.. .‘_'."

where  is the probability measure on SG with density function Ae~*¢,¢ > 0
at each element DeA!. Since D is non-singular, we can take M = S9, the
unit circle. In order to solve v = p » v, we let I' € Borel set B(S?),

v k|

:-‘i'. v(l) = /saxs° xr(g o z)du(g)dv(z)
v = / " (=AD" o T)AeMdt. (3.144) -
> ) y

For z € T,z = (cos8,sin 8)T for some & > 0 and let

_ _ 1, _ -kt | cosflt —sin2t Y\ 1[0 1 cosf
y=ezp(-At)D" 'z = (sinﬂt cos {1t )a 10 sin@

- -l—e"" ( - sin(Qt - 0) ) .

AR

s Oy B

cos(Q2t — 0) >
Let ¢ be an angle between the y and z;-axis. Then o; ‘
»
tang = <00 _ _ i(wt—0) (3.145) E:
- " —sin(wt-0) ’ : - ',:
2
Differentiating (3.145), we get ':F_
r 0
= sec’ gdg = —csc?(wt — 0)d9, NS
" It
R A
s so that from (3.145) ‘-E:::.:: 1
> dp _ —esc’(wt—0) _ —escl(wt-6) _ il
. do sec? ¢ " 1+cotd(wt—-0) 5‘“_
"I "o
,‘::. Suppose v has density function f(6), 0 < @ < 2x. Thus, from (3.144), f\.'-
Lo
- oo d _ - _ 'v’ Ca®
- 1(0) = /o f(¢)|2%|xe Mdt = /o f(@)re™Mdt (3.148) E::_
. :::\‘ts"
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satisfies (3.146). Since SG is transitive on S, then the Haar measure v(6)
with density f(0) is a unique invariant measure of u. Thus,

= 1 du(g)d
ro= [ _loglgozldu(a)du(z)
c© r2v
_ At | cosf -l
_‘[) /o log | De (sin0 ) e~ dode
o pr2x H
- ke [ sin(6 — wt) _'\_ At
---/0 /o log |ae (cos(o-wt) ) |2’re dodt
- -]
= f log |ae*|Ae~2dt
°

=log|a| + §

Consequently, if ¥ < Alog|al, the system (3.143) is asymptotically stable,
while for k > —Alog|a| , the system (3.143) is asymptotically unstable.
Example 2.2 (Harmonic oscillator with damping).
Let y(t) be a point process, regarded as the formal derivative of a Poisson
process N (t) with intensity A. Consider the second order system

2(t) + y(t)2(t) + [w? + ky(t)]2(t) =0 (3.147)

2(0), z(0) given, t > 0,w > 0,k > 0.
Let z1(t) = wz(t), z2(t) = z(t) and z(t) = [z,(t), z2(t)]T. Then

dz(t) = ( —ow ‘(')’ ) z(t)dt + ( —(:/w) _01 ) z(t)dN(t) (3.148)

z(0) = ( w:(g;) ) given.

Set
| 0 w _ 0 0
A_(—w o)’ B_(-(k/w) —1)
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and

_ _ 1 0 _ [ coswt sinwt
D—I+B_(—(k/w) 0) eszt—( - sinwt coswt)'

Let SG be the smallest closed semi-group containing DeAt,t > 0. The
probability measure u on SG has density Ae~**,¢ > 0 at each element De4*.
Since D is singular, we take M = SO U 0. It is easy to see that the only
invariant set is

= {P‘ - (\/wzw+ k”\/w;: kz) 2= (W;: kz’\/«fﬂk+ kz) ’(0’0)}

with invariant measure v of 4 being defined by

v(P) = %,.’ =1,2 and 1(0) = 0.

Note that SG o S° = E is invariant, so that the stability of the transient
set F = SO\ E also depends on r, though E does not span R2. (See [25].)
Now, we calculate r, = r as follows.

r, = ! du(g)d
o= [ loglozidu(a)d(a)
1 [
=) / log | De?t P;|xe~Mdt
2l
bl k
= / log | coswt — — sinwt|Ae~*dt
) w
o 2
=1 / log |cos? wt — E(:oawt sinwt + k—sin’ wt| e~ Mdt
2Jo w w?
1 [ 1 k2, 1 k? k. -at
=3l log [5(1 + ;;) + 5(1 - ;i)coﬂwt - ;stwt] Ae~dt

=1/" log l(l + k—z) + l(l + E—) cos(2wt + a) | Ae~Mdt
0 2 w2 w3

1 k? 1 [ ~At
log= |1+ it i/o log[1 + cos(2wt + a))Ae™dt (3.149)
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where "
w x x
=—"" T ca<?i,
wne s om0
Let

Q0
L= / log[1 + cos(2wt + a)jAe~*dt
0

- -]
= / log[l+cost]ie'*(‘-°)/2“dt. (3.150)
A 2w

Using the fact .
/ log(1 + cost)dt = —x log 2,
0

we have
B+2x
/; log(1 + cost)dt = —2rlog 2, V3.

Thus, let p = A/(2w),

- 27plog2
L > -2 2) P T B0 .
1 xplog jgoe = (3.151)
and
S~ -pide L
I < —21rplog2j—z:le = —21rplog2;_—e-_—§; (3.152)
_ _2xplog2
T et 1
Thus, from (3.149), (3.150), (3.151) and (3.152), we have
xplog2 1. 1 k3 rplog2
- m <ry - Elog E(l + “—’2') < —CT;_—I. (3.153)

Hence, if £ < w, r, < 0. What happens for £ > w? We have to calculate k
from (3.153) to determine the sign of r,. From (3.153), if

1, 1 k? xplog?2

~log = 2 ) L1P08e

21032 (l+w3) T 1—e2
or

1/2
k> w [2¢zp (13’:”:%) - 1] (3.154)
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then r, > 0 and the system (3.148) is asymptotically unstable; while for

1, 1 k? rplog2
2 og = fadil RPN nd -2l
2%83 (1+w2) =1

or

1/2
k<w [2ezp (-25:’%8-1-2—) - 1] ! s (3.155)
we have r, < 0 and the system (3.148) becomes asymptotically stable.

Example 2.8 (Randomly coupled harmonic oscillators) (cf. [47]
for m = 1). Let y;(t),s,7 = 1,...,m, be independent processes which are
regarded as formal derivatives of independent Poisson processes N;;(t) with
intensities A;;, respectively. Consider the following stochastic system of m
coupled harmonic oscillators.

5(0) + wPal) = 3 bivs (0% () (3.156)
j=1

z(0), z;(0) given, t > 0,w; > 0,5 =1,...,m.

Let z3;_;(t) = wz(t), z2i(t) = 2(t) and z = [z1,...,Z2m]T. Then in stan-
dard notation m
dz(t) = Az(t)dt + Y Bijz(t)dN;;(t) (3.157)
=1
where

. 0 J
A = diag {Al,...,Am})Ai= ( —w; (‘())‘ )’

and all the entries of B;; are zero except the entry ez;2;-1 = b;; Jwi . Set
Dij = I + B;j.

Note that tr(A) = 0 and det(D;;) = 1, so we have D;jezp(At) € SL(2m).
We can define a measure p on SL(2m) with density A;je=*, t > 0, A =
TM=1 Aij at each element D;jeAt. In this case, it is difficult to determine
an invariant measure because the corresponding integral equation is hard to
solve. However, we can use a theorem of Furstenberg (Theorem 4.12 in [25])
to show the rate r > 0. Let

G = smallest subgroup containing D;;je4, 0 < t < 00,i,5=1,...,m

= smallest subgroup containing D;;,{,5 = 1,...,m;e4,0 < t < o0.
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Then G may not be transitive on S?™~1, If we assume no two w; are
equal, then the commutant ¥ of the smallest subgroup G, containing e4*,t >
0 is isomorphic to C, i.e., T € T if

T = diag {T1,..., T}

with

T; = ( :xé‘ z: )’aisﬂiek-
Since TeA* = ¢A'T, and T and e4* are normal, they preserve their eigenspace.
Thus, the invariant subspaces V of G are of the form 212'1 XooeX R,z-l, L<m.

Before verifying the hypotheses of Furstenberg’s theorem, we need a
non-degeneracy assumption:

(A) For any index set J = {j1,...,J¢}, £ < m, there exists an { ¢ J such
that b;x # O for some k € J. )

By assumption (A), 3bjx # 0 so that the entry es;2x—1(D},) = jbir/wi
tends to infinity as § — oo. Thus, G is not compact.

Let an index set J = {5,...,7:}. By assumption (A), 3¢ ¢ J such that
bix # O for some k € J. Then D;V NV. Hence, G is irreducible.

Note that G is connected. There is no finite index subgroup of G;.
Thus, any finite index subgroup H of G must contain G; and some mixed
powers of { D;;}. Moreover, the irreducibility of G is due to sufficiently more
non-zero entries of D;;, not the exact value b;;, so H is also irreducible.

In the cases where some w; are equal. The commutant £ properly con-
tains C and the invariant subspaces of G, are much more complicated.

Consequently, by Furstenburg’s Theorem ([38], Theorem 8.6),r, =r > 0
and z(t) grows exponentially a.s. This implies that all the states of all
subsystems grow exponentially.

Remark. If assumption (A) does not hold, the system can be subdivided
into proper subsystems X;, which have property (A), and ¥. States of I;
grow exponentially a.s. by the above arguments. The remaining subsystem
¥ depends on I; and its state thus grows exponentially a.s. Hence, the
system of n coupled harmonic oscillators is asymptotically unsteble.

Example 2.4 (Random telegraph wave).

Let z(t) be random telegraph wave which takes on the value set Z =
{—1,1} with transition probability satisfying

s(2)=(3 ) ()
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Then the differential equation for z(t) becomes

dz(t) = —2z(t)dN(t) (3.158)
2(0) = +1
where N(t) is a Poisson process with intensity A. If we consider the state
process
dz(t) = [k + wz(t)]z(t)dt (3.159)
z(0) = zg,w > 0, > 0,

then using (3.158), (3.159) and the fact z%(t) = 1, we get

d(zz) = dzz + 2dz (3.160)

= —2zzdN + z(k + wz)zdt
= wzdt + kzzdt — 2zzdN.
Combining (3.159) and (3.160), we have

(2)-(2)(2)a (3 5) (2) om0 v

Then,
_ gt | coshwt sinhwt
ezpAt = ¢ ( sinhwt coshwt ) ’
_ {1 0
D=I+B= ( 0 -1 ) .

Let SG be the smallest closed semi-group containing De4t, 0 < t < co and
the measure u is defined on SG with density Ae=>f,¢ > 0 at each element
DeAt. The corresponding invariant measure v is difficult to calculate exactly
and may not be unique since SG is not transitive on the circle S°. However,
SG is irreducible. By Furstenburg’s Theorem, the rate r is independent of

v.
Let
— oAt __ _kt [ coshwt sinh wt
X(t) =De® =e ( —sinhwt - coshwt ) ’
then
[1X(t)]2 = e**(cosh 2wt + sinh 2wt)1/? = elb+ekt,
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and Ty
*® -y *
(N r =/ log || X (t)]|2Ae~**dt _—
& “:: 0 : J‘:q':' .
> % -t AR
¢ = [ (k+w)tre Vdt v
SIS 0 O
K| ‘:: _ k+w . ._:.:\
. A . e %ala
> Again, we calculate __;F:
" DN,
P, ‘o . -
4 _ _k(ts+ts) [ cosh w(ty — t2) sinhw(t; — ¢3) AL
:: - X(tz)X(tl) =e sinhw(t1 - tz) COShw(tl - tz) :::-"::'
L ':,’ :s"“.'
' with Tt
:: - 1 X (t2) X (t1)]]2 = e*1*43)[cosh w(ty — t;) + sinhw(t; — t2)] :';S:.E
3 < LA
':: :': —_ ck(‘]‘i“’)ew(h-lz)’ l:::;::::
o ~ "\._\
LN so that o oo NS
/ ry = / / log || X (t2) X (21)||2Ae ™1 dty Ae~Madt, T g
g o Jo R
¥ © [ -t At S ;)
LS = / / [’C(tl + tz) + w(t1 - tz)lkc Idty de™**2dt, !
AR o Jo pcady
X .' . _ 2 k M
L =4 PR
..\- In general, SN,
7 © [ et
v r= / . ./ log ”X(tt) .. °X(t1)l|zz\e"“‘dt1 .os /\C_M‘dtz s"-.': s
. 0 0 o
AT . e
B _ t% +¢, Lisodd R
R - T £ is even _—"
P Thus, 5
: r=Jim %=k N
'-: ny Tlm £ A
A From (3.161), we know that stability of (3.159) is equivalent to that of
(3.161). Hence, the system (3.159) is asymptotically stable for k < 0 while
RS it is asymptotically unstable for £ > 0. This result shows that the ran-
7': e dom telegraph process z(t) does not affect the stability of the corresponding
\ deterministic system. 5
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4.1 Abstract NN
'
~f ‘:f:"’:'
! We consider the problem of simultaneous detection and estimation when ‘.{..?.:
-4 . . . v
the signals corresponding to the M different hypotheses can be modelled as NN
outputs of M distinct stochastic dynamical systems of the Ito type. Under Y CrN
. g very mild assumptions on the models and on the cost structure, we show '_,
! that there exists a set of sufficient statistics for the simultaneous detection- RN
‘A estimation problem that can be computed recursively by linear equations. :» N
. : Furthermore, we show that the structure of the detector and estimator is RS
T completely determined by the cost structure. The methodology used em- AT,

- ploys recent advances in nonlinear filtering and stochastic control of partially — ‘

. observed stochastic systems of the Ito type. Specific examples and applica- o
- tions in radar tracking and discrimination problems are discussed. PR

» . B

JL 4.2 Introduction :

- In a typical present day radar environment, the radar receiver is subjected v'_.i * R
b~ to radiation from various sources. A very important function of the radar ‘_:'\‘5::
' receiver is its ability to discriminate between the various waveforms received : _,:‘.C:
M and select the desired one for further processing. Furthermore, an equally :\';\ ~

-~ important function of the receiver is to estimate important parameters of the I
. :~.'_:\':.\‘!
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radiating source from the received waveforms. Thus the receiver is required
often to perform a “combined detection and estimation” function.

An abstract formulation of the combined detection and estimation prob-
lem in the language of statistical decision theory has been developed by
Middleton and Esposito in {1]. They correctly point out that optimal pro-
cessing in such problems often requires the mutual coupling of the detection
and estimation algorithms. Although from the mathematical point of view
estimation may be considered as a generalized detection problem, from an
operational point of view, the two procedures are different: e.g., one usually
selects different cost functions for each and obtains different data processors
as a result. It is then correctly argued in [1] that it is practically appropriate
to retain the usual distinction between detection and estimation. There are
various ways that the detector and estimator can be coupled leading to a
hierarchy of complex processors. We describe here some important cases.

4.3 Detection-Oriented Estimation

Here, the detection operation is optimized with a priori knowledge of the
existence of an estimator following it. The estimator is dependent on the
detector’s decision by being gated on only if the detector decides that the
desired signal is present. Here, the coupling is via cost terms that assess
the performance deterioration when the estimator is turned off while the
signal is present C, 3, or the estimator is turned on while the signal is not
present C,o. Therefore, the average risks corresponding to the operations
of detection and estimation can be minimized separately. This leads to
a detection test that is a modified generalized likelihood test. If the cost
terms C,;, C,o are constant, the coupling just reduces to a modification
of the threshold {1]. Since the detector’s decision rule does not depend on
the estimate, the structure of the optimal estimator is not a function of the
data region specified by the decision rule of the detector’s operation, when
the detector’s decision is to accept the signal. In practical terms, this means
that we can choose to estimate only when the detector has decided that the
desired signal is present.
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4.4 Coupled Detection-Estimation with Decision
Rejection

Here, detection and estimation run in parallel and are followed by rejection
of the estimate if the detector’s decision is not to accept the signal. Here, the
detector’s cost depends on the value of the estimate. Typically, one solves
the detection problem knowing the estimator. Then a second optimization is
performed over all estimators. This case usually results in relatively simple
estimators and complex highly nonlinear detectors [1].

Motivation for these problems stems from distributed target problems,
see in particular (2]-{7].

We concentrate in this section on a two hypotheses detection formulation,
but it is clear that the methods can be easily extended to M-ary detection
problems. The two hypotheses are Hy = the received signal is a process
yo: plus noise, Hy = the received signal is a process y, (different from yp;)
plus noise. Both processes are modeled as outputs of stochastic dynamical
systems of the diffusion type. The noise is the same in both cases. Due to
this fact, we can assume that noise is eliminated from the mathematical
formulation of the problem of detection, while as we shall see its presence
may be crucial for the estimation problem.

We did not study detectors with “learning”, and we suggest this is a
promising extension of the results reported here. We note, however, that
our formalism includes general “learning” algorithms. Most of the work on
detectors with “learning” is problem specific and does not utilize dynamical
system models for the signals as we do. The major criticism for the work of
Middleton and Esposito [1] is that although they used a Bayesian approach
to the estimation problem, they considered nonrecursive solutions and de-
tection was coupled to estimation through cost structure which explicitly
considers coupling of the detection and estimation costs. Clearly nonrecur-
sive solutions are not appropriate for advanced sensors employed in guided
platforms. Furthermore, it would be unrealistic to assume that the designer
has such explicit knowledge of the functional couplings between detection
and estimation costs.

Several other authors have analyzed the problem. Scharf and Lytle [13]
studied detection problems involving Gaussian noise of unknown level, thus
including noise parameters in the problem. As in (1], their solution is also
nonrecursive and focuses on the existence of uniformly most powerful tests.
Spooner [14], [15] considered in detail unknown parameters in the noise
model. Jaffer and Gupta [16], [17] consider the recursive Bayesian problem
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using a quadratic cost, Gauss-Markov processes and estimating only signal
parameters. Birdsall and Gobien {18] considered the problem of simultane-
ous detection and estimation from a Bayesian viewpoint. This work is close
in spirit with our approach, although the class of problems we can analyze by
our methods is significantly wider. We also follow a Bayesian methodology
during the initial phase of analysis. It becomes clear that by using Bayesian
methods one can analyze the problems under consideration in an inherently
intuitive, simple conceptual manner which can be easily obscured in highly
structured methodologies utilizing specific detector structures and cost rela-
tionships. As a result, one can analyze the special problems described earlier
as specializations of a wider picture and framework. The results reported in
[16] are limited by two important assumptions: (a) the observed data have
densities that display finite dimensional sufficient statistics under both hy-
potheses for the unknown parameters, and (b) the unknown parameters form
a finite-dimensional vector. Both nonsequential and sequential problems are
analyzed in [18]. The most important result of [18] is the proof that through
a Bayesian approach both estimation and detection occur simuitaneously,
with the detector using the a posteriori densities generated by two sepa-
rate estimators, one for each hypothesis. A particularly attractive feature is
that no assumptions are made on the estimation criterion and very flexible
assumptions are made on the detection criterion. When finite-dimensional
sufficient statistics exist, the optimum processor partitions naturally into
three parts: a “primary” processor which is totally independent of a priori
distributions on the parameters, a “secondary” processor which modifies the
output according to the priors and solves the detection problem, and an es-
timator which uses the output of the other two in estimating the unknown
parameters. Only the estimator structure depends on cost functionals.

Since dynamical system models are not utilized to represent signals in
(18], there is great difficulty in analyzing the far more interesting sequen-
tial problem. It is for this reason that one is forced to make the limiting
assumptions mentioned above. In our approach, we consider diffusion type
models for the signals, and we utilize modern methods from nonlinear filter-
ing and stochastic control to analyze the problem [19)-[23]. Corresponding
results for Markov chain models can be easily obtained, but we only give
brief comments for such problems here.
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4.5 Nomenclature and Formulation of the Sequen- g
tial Problem o
1Y) '.'4 '
In this section, we present a general formulation for the continuous time, :r::: :
N sequential, simultaneous detection and estimation problem when the .‘gnals i,
A can be represented as outputs of diffusion type processes [20]. To simplify I~
notation, terminology and subsequent computations, we consider only the L
I scalar observation case here. All results extend to vector observations in LA
K¢ a straight-fornard manner. The observed data y(t) constitute, therefore, a P
real-valued scalar stochastic process. ::-" :
‘1',. The statistics of y(-) are not completely known. More specifically, they :f\'\:
r depend on some parameters and some hypotheses. For simplicity, we shall ok
consider here only the binary hypotheses detection problem. Extensions to TR
.::‘ M-ary detection are trivial. We shall denote by Hy, H; the two mutually ::"{.
~ exclusive and exhaustive hypotheses. N
Under hypothesis Hy, the received data y(t) can be represented as: 3}.::.-
- T
7 dy(t) = hO(e(t),0%dt + du(t) (4.1) =
dz®(t) = f°(2°(t),0°)dt + g°(2°(t), 6°)dwO(t) R
N
where #° is a vector-valued unknown parameter that may be assumed fixed ::E-,';
or random throughout the problem. Here v(:), w(-) are independent, 1- :-J:s':
dimensional and ng-dimensional, respectively, standard Wiener processes N
l;:. [20]. In other words, when hypothesis Hy is true, the received data can be -~ ~_
thought of as the output of a stochastic dynamical system, corrupted by -_‘ )
white Gaussian noise. A%, f9,g° 6% parameterize the nonlinear stochastic :_'f
- system. j‘.::::'
g Similarly, when hypothesis H; is true, the received data y(t) can be dr.
-~ modelled as .
ot - "‘-"
- " e .
v dy(t) = hl(z'(t),0")dt + du(t) (4.2) e
., dz' (t) = f(t),0")det + g (z'(¢), V) dw'(¢) N
“ "-t':\'-
vl where now z! is n;-dimensional. The vector parameters §°,6' may have {"
- common components. For instance, in the classical “noise or signal-plus- ®
N noise” problem, any noise parameters clearly appear in both hypotheses ‘& o
g o) and would thus be common to 9, 1. : *f:zq '
> We note that we have the same “observation noise” v(-) under both ,\:‘. 33!
wIl) hypotheses. This is clearly the case in radar applications (see [6]). On ;" R4
' the other hand, when one is faced with state and parameter dependent g
> =
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i observation noises, a simple transformation translates the two models in the

)

p‘-

5 form (4.1) (4.2). We shall assume that &', f%,g',i = 0,1, have sufficient :: .
. e properties to guarantee existence and uniqueness of probability distribution o S',;
. functions for y(-) under either hypothesis. As a minimal hypothesis, we ‘:.»: N
2 - assume that the martingale problems for (4.1) and (4.2) are well posed :";_".'-
- [24] for all values of §%,6? in appropriate compact sets 8%, 81, respectively. IR
g Furthermore, neither (4.1) nor (4.2) exhibit explosions [24] for any value of S
- the parameters. Often we shall make stronger assumptions such as existence
_ of strong solutions to (4.1) (4.2), or smoothness of f%,g¢%,h%,i = 0,1, or
X existence of classical probability densities for y; under either hypothesis.
: We shall denote by pi(-,t | &),i = 0,1, the probability density of y(t)
5 pd under hypothesis H* and when the parameter obtains the value 6,5 = 0, 1.
; We shall denote the probability measures corresponding to y under H® or
Y H? by ), respectively. Asis well known, these are measures on the space of
LN continuous functions [24]. Finally, we note that although we have assumed
time invariant stochastic models in (4.1), (4.2) the results extend easily to
NS the time varying case.
. Following a Bayesian approach, we assume a priori densities for the two
) parameters 6%, which will be denoted by pi(-,0),i = 0,1 respectively.
YRR Similarly initial densities for z°(0) and z!(0) are assumed known and inde-
YO pendent of 89,01, respectively. They will be denoted by pi(-,0). The choice
* of these a priori densities is frequently a very interesting problem in applica-
' t tions, as they represent the designer’s a priori knowledge about the models
. -« used.
}: With these preliminaries, we can now formulate the problem. Let g

denote as usual the portion of the observed sample path “up to time t”,
e, i.e,, y* = {y(s),s < t}. Given the observed data y*, we wish to design a
processor which at time t will optimally select simultaneously which of the
two hypotheses Hyp or H) is true, and optimal estimates for the parameters
6° and 8. Moreover, the processor should operate recursively so as to permit
b real-time implementation.

) & To complete the problenz formulation, we need to specify costs for detec-

LA tion and estimation. Let ¢;(6°(t),6*),s = 0,1 be the penalty for “estimating®
&, by 5"(:) at time t. If ¢; is quadratic, we have the well known minimum

e

T variance estimates. Similarly, let 4(t) denote the decision, at time ¢, of
S wheter we declare hypothesis Hy or H; to hold. Then k(~(t),s),s = 0,1 will
: denote the penalty when the true hypothesis is H; and we decide 4(t), at
e " time t. Obviously, there are infinitely many variations on the possible choice

for a cost function. We shall consider only two possibilities in this report.
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Finite time average integral cost

3= B Meol@,00X(62(0) = 0} (43)
+ c1(6(2), 01) X {t, v(t) = 1}dt + Aak(7(t),1)dt}

and infinite time average discounted cost.
“ “ ~
Ja= E{ / C(v,6° 0%, z)e"dt} (4.4)
0

where C(q,a", #, z) is the integrand in (4.3) and « the discount rate. A, A4
are weights. The reasons for the characteristic functions appearing in (4.3),
(4.4) are rather obvious. The estimator will contribute cost only when uti-
lized, and it will be utilized for ° only when ~(t) = 0. We would like to point
out that this does not preclude both estimators from running continuously.
This scheme is used only to assess costs properly.

The appropriate formulation of the problem is as a partially observable
stochastic control problem. The admissible controls are

s S R"’{O’l}
® : R-e° (4.5)
" : R-e!

where all functions are nonanticipative with respect to y; i.e., measurable
w.r. to FY:

'7(')»60('% bl() € Ftv (4'6)
The cost is either (4.3) or (4.4). For the system dynamics, we proceed as

follows. The state equations are mixed consisting of the continuous compo-
nents

dz’(t) = fO(2°(),6°(t))dt + ¢°(2°(t), 6°(¢))dwO(t) (4.7)
dz'(t) = f'(z'(¢),6"(t))dt + 9" (z'(t), 0'())dw' (¢)
do®(t) = o
de'(t) = o
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and the discrete component z(t) which can take only the values 0 or 1 and is
constant. The initial densities for 2%, z!,0°,0! have already been described.
The initial probability vector for z(t) (which tracks which hypothesis is true)
is

Pr{z(0) =0} = Py, Pr{z(0)=1} =P, (4.8)
The observations are
dy(t) = (1 ~ z(t)h°(z°(t), 6°)dt + z(t)h1(z'(t),6")dt + du(t) (4.9)

Since (4.7) are degenerate, there are some technical minor difficulties,
which can be circumvented, however, using recent techniques. This com-
pletes the formulation of the problem.

4.6 Structure of the Optimal Processor

Following recent results [25]-[29] in stochastic optimal control theory, we
have obtained first the following results that reduce the partially observed
stochastic control problem described in Section 4.5 to an equivalent, infinite
dimensional fully observed problem.

Theorem_1: There exist optimal v, 89, 8! for the stochastic optimal con-
trol problem (4.3) - (4.9).

Proof: This follows from the results of Fleming and Pardoux {27] and
Bismut [29]. The only difference is that due to the structure of the dynamics
here (i.e., they do not depend on the controls ~,8% 81) we can show that
optimal controls exist in the class of strict sense controls as specified in
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Section 4.5 (i.e., 7(t), 8°(t), 6(t) are measurable with respect to Fy). S:\'-:::J
We then introduce as in Fleming and Pardoux [27] the associated “sep- o
arated” stochastic control problem. In the separated stochastic control _':;:':'
problem, the state at time t is a measure A; on RN (where N = ng + [\
n1 + 2), which is un unnormalized conditional distribution of the state S
z(t) = [zo(t), z1(t), Bo(t), 01(t), 2(t)]T of the problem formulated in Section -;:
4.5. The dynamics of the measure-valued process A; obey the Zakai equation ppe
of nonlinear filtering 26]-(31], and {20]. RS
In the sequel, we assume that all functions appearing in (4.1) ~ (4.9) are -
bounded and continuous and that g%, f°, ¢!, f! are Lipschitz in 20, 8°, 1,61, T
respectively. Due to the discrete component z(t) of the state z(t), we have ’_:;:§
to consider a two-dimensional measure valued process A%, Al, where A’ is NN
the unnormalized conditional distribution of the state ',.::-::
':\" v
z(t) = [zo(t), z1(t), Oo(t), 01(¢)] Lot
ool
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(slight abuse of notation here) when hypothesis H; is true, i = 0,1. We fur-

SN :

L

, I\. .

5

[ ther assume that for ¢ = 0, 1, the corresponding Zakai equation has a unique “
T solution which is absolutely continuous with respect to Lebesque measure; -
i.e., we assume the existence of conditional unnormalized probability densi- 7
‘- ties for z(t) € RN given y*. For results on this, see [30], [31]. <
.o Let u'(z,t) denote the conditional probability density of z(t) given yt Rt
l when hypothesis H; holds. Then u*(-,-) satisfies the Zakai equation '
- du' = Lv'dt + dy(t)h'u*,1 = 0,1 (4.10) e
where L* is the formal adjoint to the infinitesimal generator of the s*# com- :::
: .-t= ponent of (4.7); i.e., it has the form -
) ,
¢ 1 e X <
'ty L=~ a;(z)— + ) bi(z)=—— 4.11 R
5 :E 2 l.jz=l il )”"’f =21 H )a”‘ i ::\ff
# 1
; . Here _ _ :;
i _ (T Li_ |9 O i _| oo ~)
'i a—a(a),a-—[o 0] b—-[o 0 (4.12) .
f:: 5 To comp}etg the description of the “separated” stochastic control problem, '.:_:
. let C(~,6° 6%, z) denote the integrand in the cost definition (4.3). Then if Ny
l: we let 0 ::. o
_ | ¥ (zo,00,1) "
} l u(z,t) = [ i (orbut) ] (4.13) e

we can rewrite the cost (4.3) as

T — P s :.

I =B [cenie T [;]Mzdt} (4.14) -
L 0 1
Lo where = is the policy corresponding to a particular selection of 7(-), 6(-), ::'_: *
- 0'(-), and E, is expectation with respect to y. Note that u depends explicitly ;.-'.
.: _:< on y. A
PR The separated problem is to choose a policy » which is a function of :.‘
d u%, u! to minimize (4.14). This is a fully observed problem since u?,ul ?_;
.o satisfy (4.10) and enter directly into (4.14). We then have the following ~
o very important result: {\
‘ Theorem 2: Under the above assumptions, the optimal «,4°,6! (which o
L exist according to Theorem 1) are functions of u% u! only. That is, they e
N depend on y* only through the unnormalized conditional densities u?, ul. e
:' - ljl:
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Proof: The proof follows from appropriate modifications of the results
] in [25)-[29] and will appear elsewhere. The significance of the result is that .
o it provides the basic structure of the optimal processor by identifying u°, u! -:t::"-:
as the sufficient statistics for the original problem. Furthermore, the result ,-:.,:j:-
e is free from structural assumptions on the detection and estimation costs {::::'-,‘:
w and can be established in far greater generality than the results presented '.:'.\:_-\.";
here may indicate. N e
= In Figure 1 below, we give a pictorial illustration of the result. We basi- .-731_‘:
- cally have to run two “filters” in parallel, one for each hypothesis. The out- f.:-:::_.:-
put of each filter (which, by the way, is represented by the bilinear stochastic :',-:::-.::-'.
e p.d.e. (4.10)) is the unnormalized conditional probability density of z%, §° :’ -
~ or XLt
i
’n
2 -
’-
b ) . o
Filter Y | Estimator | 86,61
for HO
S
Iy :"~:“-."-
) I 2N
X AW
Filter u Detector
< Figure 1
r\
[N
o Figure 1 illustrates the generic structure of the optimal processor z!,6!

given HO or H1. Each filter is driven directly by the observations.
The estimator, detector and their coupling will depend on the explicit
-l cost structure. They are problem dependent. Their explicit functioning can
be computed as our final result indicates.

AR}
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A Theorem 3: The explicit dependence of 4 (which is discrete valued), N

: 6o, 0, on u% u! can be determined by solving a variational inequality on the el
N
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w space of solutions of (4.10). Ty
1, Proof: The result is rather technical. A complete proof will be given .
Y elsewhere. It follows by appropriate modifications to the results of [26], [32]. \':':
> This result opens the way for promising electronic implementation of the AT
YRS optimal processor by the following steps: (1) solve numerically the resulting :::-:"-f
._j o~ variational inequality using the methods of (33|, (2) implement the resulting -
- numerical algorithm by a special purpose, multiprocessor, VLSI device along
N, the lines of {34]. In simple cost cases, explicit solutions of the variational
I inequality can be obtained, of course.
G
% ;:: 4.7 Motivation and Examples from Radar Track-
). ing Loops
: \ The primary motivation for the mathematical problem studied in Section
e 4.6 comes from design consideration of advanced (smart) sensors in guided
YR platforms. To be more specific, let us consider radar sensors.
i The radar return from a scatterer carries (depending on the radar so- " 2
~ phistication) significant information about a scatterer. For example, range, SN
x . Doppler extend, shape and extend, motion, of a scatterer can be extracted A
:f ,’.‘j\- from a radar return by appropriate processing. In today’s dense environ- " ~f:'_\'
G, ment, a very important function of an advanced processor is classification of AN
. scatterers. This function is required, for example, by sensors participating ARG,
0 S; in a surveillance network (since threats must be classified, so that appropri- 5 ~,'
. ate response can be applied), in electronic warfare (since decoys and other ;?:_
j: - counter-measures can be designed to emulate target characteristics) and in S
L% : tracking radars (since the sensor often must develop a tracking path for a :;::h.:-::'
o designated priority target). RO
- A related equally important function of a radar receiver is the estima- vy
s tion of parameters embedded in the return signal. For example, pulse length, RN
‘ . pulse repetition frequency, amplitude scintillation spectrum, conical scan fre- ;:"_‘-.:::
LI quency, antenna pointing, surface roughness. The two problems of detection -'.::-:.~
’ :: and estimation are indeed closely related, as explained earlier. :‘_::'::}
v In our earlier work [2)-[5], we have developed statistical models for dis- F'.
v tributed scatterers which can represent accurately phenomena characteristic :;;r:'-a'
:3 f’\-‘ of distributed scatterer radar returns such as amplitude scintillation and an- j.:;.;-:.j
’ gle noise or glint. In addition, we have developed similar statistical models DA
\i 2 for the effects of multipath on radar returns, for sea clutter returns and for :;::{:::
": [ '-."-:"-}
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» chaff cloud returns. The models developed in [2]-[5] are of the form

o R dz(t) = A(t,0)z(t)dt + B(t,0)dw(t) (4.15)
o dy(t) = h(t,z(t),0)dt + dv(t)

-l'\ AL}

o '_'_‘ Furthermore, A, B, h are piecewise constant with respect to time since
- the models developed in [2]-[5] are piecewise stationary. For example in [2],

S we used models like (4.5) to describe the RCS scintillation for ships. The
[~ ‘;'.j same type models can be used for other distributed targets such as tanks or
::;g armored vehicles. For example, when the return appears spiky, indicating

:§ o higher probability of strong return, an appropriate model is provided by

N Y a lognormal process, where z(-) in (4.15) is scalar and h is chosen to be k)
2o an exponential function of z. For chaff clouds, a more appropriate model .
::: o is provided by a Rayleigh process, where z(:) is two dimensional, with the ‘:,
) t{ two components being identically distributed, independent Gaussian random _:
i processes and -
LY "

v h(t, z(t),8) = V zi(t) + 3(t)

-~ i" 25
\‘:: . Clearly then, in target discrimination problems with distributed targets :.':-
"::‘: - of this type, one encounters problems like those treated in Section 4.6. It is '.:'
f: ‘ important to note that since the first of (4.15) is linear, the corresponding T
O filtering and stochastic control problems described in Section 4.6 are defi- -
-~ % nitely more tractable. For further examples of this type, we refer the reader
: '::: . to {2]-{5].

NP Further research is needed to apply the powerful results of Section 4.6

DA to specific problems in order to evaluate current design principles and more
\4 = importantly, in order to suggest new electronic implementations capable of

performing in a dense, hostile environment. In particular, the methodology

od v * [ . - L3
L, ::s developed in Section 4.6 can be used to identify the cost structures that lead
_,:': . to the specific hierarchies suggested in the introduction.
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