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This final project:report summarizes @}r/r;earch in some basic problems P

that make programming of flexible robotic assembly tasks difficult. Fhereport™ E»i a5
- iN,¥
< 27 deseribes Emp’initial efforts of implementing and using an interactive graphic off- /Qi-l.;:
NN \

* line programming system, called WORKMATE. g‘h!‘reseu@l;’esults,\ described 3 §

in five technical papers,‘:ihclude: .'f—) —

AR K B B

-, 8 Locational Uncertainty, We developh?a powerful and efficient

wes 'J""‘ﬁ"’/feyﬁfé‘mfor estimating compounded and reduced locational uncer-
- tainties among sensors, robots, and objects based on their in-
dividual uncertain spatial relationships. This method is useful in

determining if Mpatial errors in a planned task sequence will E_v;"?’—z;_ﬁ’

fall within acceptable tolerances. =) TN
_,_d_//'j e ::’:s'::"\‘

e AL NG

/. Spatial Reasoning, A fast algorithm, using VLSI clipping .-::i‘ﬁ:::-'*‘;‘:
/" hardware in our Silicon @raphics IRIS graphics workstation, was w"uﬁ

- developed to determine if a simulated moving manipulator will
=T . collide with modeledsthree-dimensional objects during its motions.
" The method is implemented in WORKMATE, which can graphi-

cally indicate the piece of the manipulator “"ﬁihetr.ating"&any of

the objects at an animation speed of 4 to 6 picturesﬁe?s’ecéndﬂ' - and 3) QO
L® .

e Sensor UsagcsGI‘wo methods were developed, using different sen-

sor modalities, to estimate the grasping error when a manipulator

hand picks up an object. This error can be compensated by

proper modification of the manipulator’s motion.7 In the first ekl
method, a camera views the hand and the object it holds, and ‘ _-'-P(.'!‘_ -."‘-.‘:_éj
compares their image to a “model” grasp one. In the second "-"":":f_:;:'.j
method, a wrist force/torque sensor measures the moments of the Q:ESI-:\%‘:"-G
object during transfer motions and, based on a mass model of the i:;;-_:':.'_:r:;g‘;f
object, the object location relative to the hand is estimated. aagn T
- T
" An experiment in off-line assembly programming, using WORKMATE, is ‘,’.:‘,’.::Z:f.:’i;j
. ™ LN A(]
described. An assembly task, requiring sensory feedback, was programmed en- ‘ﬁ.:':\f o
‘tirely off-line, and the resulting program was subsequently executed on;;u:—{eal E_‘q
robotics testbed. ; Nt
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I OBIJECTIVE N

The objective of this research is to investigate some selected basic problems ' ',v.‘::‘m
in flexible assembly that make human programming of assembly tasks difficult
and to incorporate the results of such investigation into a graphics-oriented, as- A SALAS

sembly task development system. Lo,

.
4
’
L}
A
)

II AIR FORCE RELEVANCE

This research addresses some problems in flexible assembly of Y :E,
electromechanical components. Improved automation of small batch assemblies

should raise production efficiency, improve product quality, and lower costs.

Il RESEARCH DELIVERABLES

The bulk of our work is described in technical papers written under this
contract, and delivered to the sponsor in annual reports, or as part of this docu-

ment. These papers are first listed below. Following that, our research in these

- —

areas is summarized.

The following six papers have been written under this contract:

o In the research area of Locational Uncertainty:

- “On the Representation and Estimation of Spatial oy iving
Uncertainty,” by R.C. Smith and P. Cheeseman,; s
accepted for publication by the International '\vﬁ:&ﬁ
Journal of Robotics Research.” %&M

RS

)
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NN

A
» S
L4

%
Included in this project’s Annual Report of February 1985.
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- “Estimating Uncertain Spatial Relationships in E‘_:
Robotics,” by R.C. Smith, M. Self, and _
P. Cheeseman; accepted for publication in the . p—
proceedings of the workshop, Uncertainty in Ar- p_-.' ; "}:
tificial Intelligence, to be held in Philadelphia, oy '&
Pennsylvania, August 1986. % g
P 5.,,
e In the research area of Spatial Reasoning;: . "
' 3, B
- “Fast Robot Collision Detection Using Graphics NV
Hardware,” by R.C. Smith; published in the j-:j‘_: i
Proceedings of the Symposium on Robot Control :4‘\:.' :§

* ¢

(SYROCO), Barcelona, Spain, 1985. ; =
Sonred
e In the research area of Sensor Usage: N 1-,-1:"-
N ARG,
- “Determining An Object’s Location in a Robot's ";:';;?.::

’

Hand By Means of Vision,” by Eitan Zeiler, L=foTn
Robotics Laboratory Technical Note, SR1 Inter- e - .
national, August 1984.

- “Estimating Object Location in a Manipulator’s
Hand Using Force/Torque Information,” by
A. Bergman and R.C. Smith, to be submitted for
publication.

o In the research area of Off-Line Programming:

- “Robot WORKMATE: Interactive-Graphic Off-
Line Programming,” by R.C. Smith, Robotics
Laboratory Technical Note, SRI International,
February 1986.

TV 02 AT AA Y Y EHREIRAA Y Y Y Y YOS A O R Y Y VLY T v I —

*
Included in this project's Annual Report of February 1985.

fThe matcrial in this technical note was included in the body of this project’s Annual Report of
February 1985.
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IV THE DIFFICULTIES IN MANUAL PROGRAMMING

It is difficult to write programs for a flexible assembly system because of the
sensing and decision making capabilities entailed. From previous experiences at
SRI in sensor-guided assembly, we picked three related problems we considered

most important for research:

e Locational Uncertainty---Estimation of errors in relations among
workpieces, sensors, and effectors due to part tolerances, measure-
ment errors, and positioning errors.

e Spatial Reasoning---Analyzing the relationships among solid ob-
jects in a three-dimensional space.

o Sensor Usage---Selecting sensors, determining their parameters,
estimating sensor output values, and verifying actions by sensing
(execution monitoring).

In addition to these topics, research in off-line robot programming was per-

formed, and an inter-active graphic robot programming and simulation system
was developed, called WORKMATE.

A. Location Uncertainty

In many applications of robotics, such as industrial automation and mobile
robots, there is a need to represent and reason about spatial uncertainty. In the
past, this need has been circumvented by special purpose methods such as preci-
sion engineering, very accurate sensors and the use of fixtures and calibration
points. While these methods sometimes supply sufficient accuracy to avoid the
need to represent uncertainty explicitly, they are usually costly. An alternative
approach is to use multiple, overlapping, lower resolution sensors and effectors
and to combine all the spatial information (including the uncertainty) from all
sources to obtain the best spatial estimate. This integrated information can often

supply sufficient accuracy to avoid the need for the hard engineered approach.
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In addition to lower hardware cost, the explicit estimation of uncertain spa-

tial information makes it possible to decide in advance whether proposed opera-
tions are likely to fail because of accumulated uncertainty, and whether proposed

sensor information will be sufficient to reduce the uncertainty to tolerable limits.

A difficulty in combining uncertain spatial information is that it often oc-
curs in the form of uncertain relative information. This is particularly true where
many different frames of reference are used, and the uncertain spatial information
relative to yet another frame is required. Our approach presents a general solu-
tion to the problem of estimating uncertain spatial relationships, regardless of
which frame the information is presented in, or in which frame the answer is re-
quired. The basic theory assumes that the errors are ‘‘small,”” so that the non-

linear transformations from one frame to another are approximately linear.

A representation of spatial relationships which incorporates knowledge
about uncertainties, in the form of probabilities, was described in the previous
report and paper. It was a significant advance over previous work which
generally handled uncertainties only by worst-case analysis, and was thus very
conservative. Our initial research concentrated on spatial relationships with three
degrees of freedom (two translations and a rotation in the plane). Within that
framework, we presented a first-order method for estimating the error when un-
certain relationships were

(1) Compounded, increasing the overall uncertainty

(2) Merged, or “averaged,” reducing the uncertainty.

Compounding is illustrated by the sequential motions of a mobile robot,
whose every (noisy) move increases the uncertainty about its current location with

reference to its starting point.

In merging, two estimates of a relationship are combined to produce a better

estimate of the relationship. A (noisy) sensor measurement of the robot’s location
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can be combined with a second estimate of the location obtained by compounding
the movements, providing a better location estimate than either of the original

pieces of information.

Appended to this report is a new paper describing the final results of our
research on this topic. We have intcgrated the approach described in the previous
paper, with the formalisms of recursive estimation theory, which provides a solid

theoretical framework, and points the way to numerous extensions.

In the new paper, uncertain spatial relationships are tied together in a
representation called the ‘‘stochastic map.” It contains estimates of the spatial
relationships, their uncertainties, and their inter-dependencies. =~ The paper
describes the map structure, followed by methods for extracting information from
it. Finally, a procedure is given for building the map ‘“incrementally,” as new
spatial information is obtained. The map contains the first-order estimate of the
mean and covariance of the uncertain relationships described, using all the avail-
able information. In addition, general constraints on the spatial variables can be
specified, such as colinearity, or coplanarity of points, and the information in the
map will be updated accordingly. The constraints may even be given with
tolerances; i.e., the constraints can be stochastic, rather than absolute. The paper

b

illustrates a simple ‘‘rectangular” constraint on four poorly-known spatial points,

with a resultant large decrease in their uncertainties.

The theory is illustrated by an example of a mobile robot acquiring
knowledge about its location and the organization of its environment by sensing
at different times and in different places. The theory is readily extended to six
degrees of freedom, and the formulae for this extension are given in the paper’s
appendix. Ultimately, we believe our results are applicable to off-line planning of

sensor and manipulation strategies in numerous robotic domains.
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B. Spatial Reasoning

A particularly important problem in spatial reasoning is the problem of col-
lision avoidance---finding a safe trajectory for a manipulator through an environ-
ment of obstacles. The general problem is unsolved. Our work has focused on
developing tools that aid a user of an off-line robot programming system in defin-
ing robot trajectories that are collision free. Robot motions can be visually in-
spected by the programmer, if they are graphically simulated. However, ex-
perimentation showed that this kind of visual inspection for collisions in the simu-
lated robot workcell was tedious and prone to error. An automatic technique to
detect simulated collisions quickly was developed, and described in a previous
paper appended to an annual report. The technique relies on the use of VLSI
“clipping” hardware, which will be common in advanced graphic workstations of
the future. Such hardware exists in the IRIS 2400 graphic workstation used in
our off-line programming system, called WORKMATE. The algorithm can detect
collisions (in simulation) between a manipulator and its environment at high

speed---sufficiently fast for animation. It was implemented in WORKMATE.

C. Sensor Usage

It is highly desirable to develop approaches for determining the location of a
workpiece in a manipulator’s hand; the error in the grasp can then be estimated
and corrective motions made by the manipulator. Two methods were developed
to determine the error in the grasp: one, by viewing the hand-held object with a

camera; the other, by measuring forces and torques exerted by the object on the

robot’s wrist.
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1. Grasp Correction with Vision Pt gt

In the first approach, a prototype of the object is grasped by the L
manipulator, and brought to an inspection station, where a visual prototype of the X
object, when correctly grasped, will be trained. The manipulator presents the ob-

ject to the camera several times, each time positioning its gripper at the same

location under the camera. A binary image of the correctly grasped object is first :ﬁ'&‘_ -3
AR L
obtained, and image features of the object in this ‘‘model” grasp are stored. In ',-s.'? :;

e
A
(R
N K-
I\) L

; subsequent training steps, the object’s location in the hand is perturbed, in one

20"
3,
L4
\Y

degree-of-freedom at a time. Since the manipulator always positions its hand at

the same location, the perturbed object will appear to have moved in the image, ?Efif;:}
with respect to the model image. Image features of the object are extracted, and "&E‘E:;

associated with the known error magnitude, and the spatial degree-of-freedom in ; t&ﬁ:
which the error is introduced. The statistics over a number of such training steps \-,,;\» e
can be used to build a sensitivity matrix, which relates the magnitudes of the \szi -‘:
given errors in the spatial dimensions, to the magnitudes of changes in the image :ﬁ:g*'}:i
features of the object. L

After training, the manipulator can now acquire an object, with an un-
known grasping error, and bring the object to the inspection station. Features
from the image of the object are compared to the features stored for the object
when it was held correctly. By using the inverse of the sensitivity matrix,
developed during the training procedure, it is possible to estimate the grasping er-
ror based on the disparity of the image features. The method, its implementation,

and experiments are described in an appended paper.
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:I 2. Grasp Correction by Force/Torque Sensing :::;‘;1;-:"_
¥ In the second approach, a force/torque sensor mounted on the manipulator’s ’ o

& wrist is used to determine the grasping error. The position of the object in the "‘,&:‘ 'g‘

: . . . . Wt
::1 gripper is determined by measuring forces and torques at the robot wrist after e ‘:‘:".'E-'
i . o e

2{: putting the gripper in several different positions where the robot is either at rest s :_.."_:;'.;‘

or moving in constant velocity; the orientation error of the part in the gripper is %%}’-;.a,"
] CASLGY

:: determined by measuring forces and torques at the robot wrist during a controlled f':::";:E
3 . PR,
~ acceleration. RGN
~ IS SN
“y

. The procedure is practical to implement, and it is theoretically feasible to :;'4::,:::5
e accurately estimate the error in the grasp of a held object, even while the 3':;._.
o . l'-' A

> manipulator acquires and transfers it. One advantage of this procedure, com- {:J.';-.::\

) . i NAY

¢ pared with the previously described method, lies in removing the necessity of first e
oA moving the part to an inspection area, where the grasping error would be -

determine---thus saving time. A major implementation problem is that robot
'l
5 manufacturers do not currently provide the user with velocity and acceleration
- control over the robot. However, rather than controlling the acceleration of the
; robot, we can define several fixed motions for the robot to make, and measure the

b accelerations. When these motions are later made by the manipulator, the ac-
celeration parameter, estimated a priori, can be used in our calculations. The
’ detailed theory behind this method is presented in an appended paper.
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> D. Off-Line Programming With WORKMATE
‘j An off-line robot programming system, called WORKMATE, was developed
3 under this contract and demonstrated to the Industrial Affiliates of the Robotics
- Laboratory at SRI, and to the sponsor. Its description has been submitted as part
.

A of an annual report. The work has been extended, and a further off-line program-

a ming experiment has been performed. A robot assembly task was written off-line,

$ then executed on the real robotic testbed. The programs generated included the

o

S use of sensory feedback to determine part locations that were unknown before on-

Y. line execution. The results, described below (Section V), detail the deficiencies n b “g‘
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o and virtues of the current implementation, so that future research can be planned
I appropriately.

's; V OFF-LINE PROGRAMMING USING WORKMATE

9

L1

:\; A.  Overview

» 1. Assembly Stetion Con figuration
“3 The SRI Assembly Testbed Station consists of two PUMA 560 robots, con-
: trolled by VAL-II, and an Automatix AV-4 vision module. Each of these applica-
tion modules is controlled by a dedicated LSI-11. The LSI-11 module computers
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are controlled in a hierarchical fashion by a VAX-11/750 computer. In addition,
there is a Silicon Graphics IRIS-2000 workstation connected to the VAX.
2. WORK MATE Description
WORKMATE is an off-line programming system developed for the IRIS by
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0 Randall Smith of SRI International under AFOSR Contract F-49620-84- e E
A N
; K-0007P00001. The WORKMATE acronym stands for WORKstation Modeling, 28

') -
*" Analysis, Training, and Emulation. The system is able to model robots, fixtures, v 'K
and parts, using a polygon-based surface modeling package. Backwards arm solu-
; tions and relative positionings are included in the package; the ability to servo the
'L. robots requires a separate (forward) arm solution package that must be built for
each type of robot modeled. Figure 1 shows the model of the assembly station
’.: used in this experiment.
G
o

The system gives a true-perspective three-dimensional shaded polygon

¥

representation of the scene. Options include wire-frame depiction, and red-green

SALS x.:
? stereo for filled-polygon or wire-frame modes. Shading is based on a single light- N2 :"::
4 e . . N ALY
n source at infinity, with self-shading only; no shadows are generated. Scenes are .';4;:' :t
3 . . . . "" ‘
generated at four frames per second. The viewpoint is controlled by the mouse. . |
\‘ The current in-house hidden-surface algorithm requires special coding for intra- f{,\
e
. . . . ‘o
N object surface ordering as part of the modeling process. Because the polygons in }t:?
] N
each object have a consistent relationship with each other, they can be ordered ﬁ:&d
: mw--:
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Instead, the

objects are displayed in a fixed order, regardless of the viewpoint. This is seen as
jon. After the operator is satisfied,

ficat

the final program can be sent to a text file on disk for eventual execution.

and positioned, using various modes of motion. A robot
10

Figure 1: WORKMATE Model of the Assembly Station
‘servoed”’

The WORKMATE system has three main robot-connected capabilities. The

into a display tree at compile time. However, since objects can be moved, the sys-
one of the major areas needing improvement; preferably, special-purpose

program can be created, using ‘‘taught’ positions, and the resulting program can
i

tem does not attempt to make a viewpoint-dependent object tree.

hardware would eliminate the need for such labor.

be ‘‘played back” for examination and ver

robots can be *
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3. Off-Line Programming Scenario
The name ‘“‘off-line programming’ describes a system that is able to
generate executable programs at an arbitrary time, away from the actual robot
station that will be doing the work. In other words, the programming is not done

“on-line,” that is, using the running equipment.

An off-line programming scenario in our laboratory starts with the operator
sitting down at the IRIS graphics computer and generating a robot program using
WORKMATE. The robot program is a series of commands; it is a simple text file
that can be printed out or copied from one computer to another. Our programs

are sent to the VAX for storage.

At a later time, the program may be executed on the actual robot station.
A station-master program containing an interpreter reads in the robot program,
performs the necessary calculations and command decompositions, and dispatches
module-level commands to the appropriate LSI-11 module computers. The
module computers perform similar calculations and decompositions which result in
device-specific commands. Each of these commands is then sent to the ap-
propriate device, which may actually contain its own microprocessor controller.
Commands may be synchronous and tie up the controller until a reply is received;
they may be polled, in which case the controller goes off and later checks to see if
a response has been received; or, they may be of the “fire and forget’ variety.
Thus, both the module computers and the station supervisor computer may use
completion signals in various ways. In this manner, a set of completion messages

similar to the command messages flows up the computer hierarchy.
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B. Assembly Experiment
1. Assembly Parts

To demonstrate the capability of the off-line programming system, a lantern
flashlight was chosen as an example of part assembly. The flashlight selected was
the Eveready Energizer Halogen Light No. 209HS, a recent model that has been
designed well for ease of assembly. The flashlight consists of four parts: the case,
or flashlight body; the battery; the light bulb, reflector, and switch assembly; and
the cover top which surrounds and protects the light assembly. Figure 2 shows
the actual parts used in the experiment; Figure 3 shows a graphical display of the
part models used by the system.

a. The Case

The black flashlight case is molded out of a stiff plastic. It has a flexible
button attached flush on the outside, with a chamfered interface area on the in-
side. When the light assembly is put on the flashlight, a cylindrical switch plunger
on the assembly is inserted into the interface area. (The switch is activated by
pressing an outside button, which uses a rigid extender in the interface area to
depress the switch plunger.) The flashlight has a cylindrical mouth opening with
an 86 mm inside diameter. Although this opening is manufactured threaded so
that the light assembly screws into place after it has been inserted, for our experi-
ment the threads on the case were shaved off, resulting in a press-fit after inser-
tion. We felt that the experiment as carried out was sufficiently complex as to
demonstrate the concept of off-line programming, without introducing difficulties

that would strain the limits of both the capabililies of the robots and the time
constraints of the project.
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Ty
: b. The Battery e {2
l. The battery is a “super heavy duty” standard 6-volt lantern battery. It ‘f'ék‘
‘_. weighs 1.3 pounds, and has smooth metallic sides. The diagonal dimension of the 3 = 0
:__‘ battery is 82 mm, resulting in a +/- 2 mm tolerance for a straight insertion. The :' ‘
%:': battery is the first part to be inserted into the case. Figure 4 shows the system's :E )
view of the insertion (the second robot has been deleted for ease of display). ul,v L
\‘i: Figure 5 shows the actual insertion. 8
& ¢.  The Light Assembly '
3 The light assembly consists of a parabolic reflector containing the lamp, at-
" tached to the lens in front, the switch on the top, and a contact plate in the back.
:\1','.' The lens has a cylindrical threaded flange, 15 mm deep, that fits over the mouth
r"é, of the flashlight. The switch, as mentioned before, must be oriented in the proper
- direction so as to engage the interface area when the light is inserted into the
_2-_: flashlight case. The contact plate is a rectangle 60 x 90 x 7 mm thick, which
.: presses down against the battery springs in the assembled flashlight. Since the
s,,v rectangle is too large to let the light assembly be inserted directly, the light as-
sembly insertion requires a series of intricate movements. First, the assembly is
5 rotated 90 degrees so that the rectangular plate and the lens flange are end-on to
S the flashlight mouth, as shown in Figure 8. The assembly is lowered until the end
3 of the plate is beneath the rim of the case’s mouth (see Figure 7). Then, the light
; _ assembly is rotated back towards the case, which hooks the plate under the inside
: : of the mouth. The rotation is continued slightly and the assembly is lowered, to
ﬂ seat the switch in the interface area and hook the front end of the lens flange
R (closest to the white button) over the flashlight mouth. Finally, the assembly is
"; lowered still further and rotated slightly backwards again, to seat the rest of the
i S flange around the flashlight mouth.
\
\
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d.  The Cover NS NG
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The cover is made of a stiff, bendable black plastic. 1t is square, like the - ’_ —
outside of the flashlight case. The cover fits around the lens and the flange. It :J‘EEE§ .

has a pair of clips, or latches, that stick down on the left and right sides of the
case and serve to hold it in place. These are supposed to snap onto ledge depres-
sions when the cover has been pressed on fully with the proper alignment. Figure

8 shows the results of this step.
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Figure 8: Assembling the Cover onto the Flashlight Subassembly o .'.%
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2. Results ;:s::'_*:;

F AR
This section provides an overview summary of the results obtained from this '. - "
. .'~' s'-\}'

experiment. b

x'_'.":\.*
- e The ability to write programs for robots off-line, using F‘.{_':‘j:g
. WORKMATE, was demonstrated. x}".f-" )
o, :

' e The ability to write off-line programs entailing the use of sensory '4',,
5 feedback to determine previously unknown conditions and loca- D '.:
X, tions on-line was demonstrated. RYADAYS
~ SIS
~ NCELRE
> o The ability to send programs written off-line to an actual robot "- siese
station, and to execute them, was demonstrated. e

o PATAZAR
F‘\ IS
. e The execution of the programs faithfully followed the quality of PO,
- the program as designed off-line. A good program was able to -_’_:Zj{*_:-lj
! successfully assemble the flashlight. A
RACa,

- e Much was learned from the experiment. An important resulting i ‘ﬁ.:f:
$: point is that breakdowns occur when the simulation fails to model ::itis )
':.: the real world appropriately. BASAYAY:
2 i’m"
.a S ?EE-
‘J. /
E:E C. Experience with the System jtji:‘t
v We experimented with different configurations for the system. Based upon DROLAY
o P Ay
our observations, we found that the ease of use of the system depends on many 3

‘ LA
: factors. These can be broadly classified as making the user interface elegant, con- DALY
» trollable, and fast. '; :"::;::
g ‘-".:\::"-
N 5.
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1. Realistic and Detailed Model

Part of the process of making the user interface elegant is providing a realis-

tic and detailed model to the user. The hidden-surface algorithm should correctly
clip the unseen parts of the polygons from all viewpoints so that occlusion cues
; can be employed by the user to determine the relative locations of objects in
space. The parts should be shaded, depending upon their angle to the viewpoint
so that the user can employ shading cues to determine spatial orientation. Both

of these serve to make the scene appear more realistic.

l The scene as portrayed must also be detailed, although it is acceptable to
. make some approximations for the sake of efficiency. Explicit details make the

user feels that he understands the scene better; he instantly recognizes what is go-

;‘ ing on, as opposed to having to spend time figuring out what over-simplified blob-
| like models on the screen are supposed to represent. Details are also mandatory
.' when complicated, intricate motions are programmed by the user, based on the
configuration of the parts. For example, the light-assembly insertion was
programmed based on inserting the rectangular plate of the light in past the rim
of the flashlight case’s mouth. In order to do this correctly, all the details of these

parts had to be modeled accurately, as shown in Figure 9.

2. Simulation of Arm Motion

A usefu] feature of the system was the ability to simulate arm motion. Both
straight-line and joint-interpolated motion were modeled. Goal positions could be
specified as precision-point poses, absolute Cartesian points, or relative Cartesian

points.
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Figure 9: Closeup of the Necessary Details Used in Modeling the Light
Assembly Part

3. Movable Eye while Inside Routines
A recent extension to WORKMATE is the ability to relocate the eye while
the user is inside other movement-defining routines. It is useful to be able to
move around a scene and look at a situation from several different angles, espe-
cially during the definition of a complex or intricate movement sequence.
4. Motion and Alignment of Parts
A very useful feature of the WORKMATE system is the ability to move the
arm relative to coordinate frames attached to parts on the table (as well as the
traditional world- and tool-relative motions). In addition, the system has the
capability of defining motions to particular relative locations, i.e., directly above
the part, or aligned with the part, or both. This capability has the advantage of
specifying an entire movement sequence with just one instruction: one can specify
a motion to align the arm’s hand above a part to be mated, and the system im-

mediately generates the program instruction and moves the arm to that position.
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The *“‘above” position for each part is based on a prespecified height; the ‘‘align”
position projects the current location of the tool onto a prespecified axis of the
part, with the tool then oriented along the axis.
5. Real-Time Turnaround

We found that it was very important for the system to have a real-time tur-
naround, i.e., more than four frames displayed each second. If the rate is lower,
then not only is the illusion of motion destroyed, but also the mouse cannot be
controlled properly: The user overshoots with the mouse on mouse-driven motion
commands; he then corrects, but overshoots on the correction---all because the
feedback is not real-time. Long turnaround time is a serious problem for both ser-

voing the arm and moving the eye’s viewpoint using the mouse.

The speed of the system depends on the number of polygons in the model,
the amount of processing that has to be done to compute the display, and the
processor speed. The speed also depends on whether the entire software system
can be stored in the physical memory at once, or whether the system is forced to
page sections of the program to disk in order to keep up the virtual memory
space. We could not modify the first factors much, except work without one of
the robots in the scene when we were only testing out algorithms; however, we
were able to affect the last factor by cutting down the physical size of the code
and by using additional memory boards. Having sufficient physical memory to

keep the entire system in memory dramatically increased the turnaround time

from one frame every half-minute to subsecond rates.
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Cayi b 3,
6. Use of De faults sg\:‘:""é'-
It is important to maintain the speed of the system by designing the user in- A , 2ea
terface to require as few mouse clicks as possible. This can be done by extensive }:':E::'
use of defaults in the system parameters. ﬂlés::"":::s:{
_. T
A robot controlling system as complex as WORKMATE requires many .
parameters to specify the robot motion; e.g., which robot or hand is going to be -‘._";S;
moved, whether the movement is joint interpolated or straight-line, whether the i\g:cé‘:&_';
goal position is a precision-point joint pose or a coordinate point, and whether the e Ij
coordinate point, if used, is world relative, robot relative, or part relative. If a i:‘%&“d
part-relative coordinate system is used, the appropriate part must be specified. g

All of these commands only define the motion as output to the final generated
robot program; a similar series of parameters must be specified to define the mo-

tion used to servo a robot to the position to be taught.

The most straightforward implementation of the system requires the user to
specify each of these parameters for every motion taught. Even though the
specification of a single parameter requires only a single mouse click on a dis-

played menu, the amount of time spent clicking the mouse significantly slows the

use of the system down when each parameter must be defined. A solution to this

problem is to use defaults in any and all cases possible, while maintaining the §\ oy
Soridyt Sy

power to change parameters if required. For example, the system now works with .,j-':-ftﬁj
A A

the “current robot,” instead of requiring that the user specifies which robot he is E-:*‘-'.':.'-’ :

working with every time another movement is taught. This provision is impor-
tant because the amount of mouse clicks required to interact with the system basi-
cally defines the amount of time required to write a complete robot program. We
found that such an apparently insignificant matter as the number of mouse clicks

required for each movement had a large impact on system usability.
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D. Discussion

7
)

1. Successes

a. Rigid Parts
The modeling system is at its best when it represents rigid parts. The light

AR ¥ )

fr T~

assembly, the battery, and the case were all represented well by the system---espe-
cially when it came to acquiring the pieces using a robot.
b. Intricate Motions

The system excelled at programming intricate motions. For instance, seven

intermediate positions were successfully programmed to insert the light assembly

into the case, as detailed in the light-assembly parts section. Other motions were E.;%‘:::’:
successfully programmed to find the light, pick up the light, move out of the way, ?‘:E::‘:'z;
find the case, and move over the case. The movements entailed in inserting the Egg:.j:g
battery and the cover employed similar series of intricate motions. :;’:2
YO

One of the advantages of the system was the controllability of the view. "'j';
Since the scene can be viewed from any angle and at any degree of magnification, L.:.'L;_
it is simple to enlarge the scene from a convenient angle until the sections of the ,.%éi_‘
parts being assembled fills the screen. Small, significant motions can then be seen ?{‘;\'::
clearly and programmed easily. In contrast, in the real world it is often imprac- ﬁ:@a
tical or impossible to view an assembly process from a preferred angle, or shift ¢ !\Eﬁ
one’s viewpoint from one side of the assembly to the other because the robot’s --xfh“,;:‘
base is in the way. Finally, safety considerations often prevent the programmer ".i:?;:
from closeup of real parts held by a robot. *-';_";_'
The main advantage of the system’s capability for programming intricate E’:’:‘:_:
motions is the ease of writing the program. It is a simple thing to move the robot E:'.E:';
images around, teach different intermediate and final points, and have the system :._.\.-':.-
generate the text program so that the robots can repeat the motions at will. It is F%
much more difficult to set the actual robots and parts up, and attempt to go “*\qﬂ{.
through the process of teaching intricate motions using the actual hardware. ‘ S
There is a tendency in the second case to cut corners---to not program-in extra in- . i
Vool
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termediate poses, and to settle for a program that already ‘‘sort of'’ works. In the
case of off-line programming, it is a simple matter to add intermediate positions,
so as to make the insertion proceed well, because the programmer never has to
type the instructions. If an insertion works better with, say, fifteen intermediate

points, then the programmer trains these fifteen intermediate points. Also, it is

significantly easier to reprogram a motion off-line, which means there is no reason

' @
to settle for second-best. Eg&;};
c. Quick Reprogramming of Robot-Motion Strategies :'.E':'jf?
In addition to the ability to quickly reprogram a single motion, the system is .:;::':j
able to program a completely different type of motion in its place, i.e., changing F_".",'—"—"'d
the strategy of the movement. For instance, the battery insertion was originally '\

accomplished directly: the battery was acquired, positioned directly above the
mouth of the case, and inserted straight downwards into place. This worked con- ;é ‘_;
sistently while the ambient lighting was in its normal position. However, when '?{E:ﬂ]
the lighting was shifted significantly, the system was no longer able to acquire the '}Eﬁ:ﬁa‘
position of the case accurately, and the straight insertion program failed. To cor- :A‘Elh
rect for this, a staged insertion was programmed. The battery was tilted 30 ".':',:'_I“
degrees or so sideways, forming a tilted surface, in effect a chamfer, with its own E\';{E"
side and bottom. The battery was lowered until it contacted the back edge of the .';E,}_:‘
case’s mouth with its bottom, and then moved forward until it contacted the front :{i;:_
edge of the mouth with its side. Next, the battery was rotated back to vertical as r‘;f-‘tt-t;s
it was lowered into the case. In this manner, the robot system was able to deal :r.:d:‘!:\‘:‘,s
with more inaccuracy in the location of the case than in the straight insertion. s_-\"
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d. Program Verification

A benefit of off-line programming, which was expected and well realized, is
the verification of robot programs by simulation. When a robot program is first
written, the programmer expects for the most part that it will execute success-
fully. However, there are always difficulties involved in working with real robots.
To the extent that the simulation models the robots faithfully, the off-line pro-

gramming system significantly helps in the task of program verification.

The specific areas in which the simulation proves most useful are rea-
chability, singularity determination, and configuration analysis. It is very easy to
see, using the simulator, whether a part in a particular pose on the table is reach-
able by the arm, or whether the wrist must be contorted to approach the part
properly. Similarly, it becomes easy to notice, using the simulator, whether a par-
ticular movement or grasping operation forces the arm to come close to a joint
singularity. If this is the case, then that particular movement or grasping opera-
tion can be reprogrammed, the robot can be relocated, or the location of the part
can be changed or restricted to another region. It was also useful to verify the
robot programs in order to determine the robots’ configuration. For example, we
started out with the robots in opposite (right and left-handed) configurations.
However, after using the simulator to observe the robots work together, it was
seen that the robots were getting ‘‘tangled up’ with each other. The second
robot’s configuration was changed so that both of the robots worked in a right-

handed fashion. This produced much better results.

>
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N 2. D: fficulties

& The main difficulties encountered with the off-line programming system can
be attributed to the lack of power in modeling real-world phenomena. Difficulties

't include dealing with flexible parts, interpart contact and resulting grasp rotation,

u weight and slippage, dynamics, robot servoing, and sensing.

a. Flexible Parts

;.‘: The current off-line programming system has no way of representing flexible
parts. This discrepancy was felt mainly with the cover in two particular situa-
WY tions. Although the cover appears to be made out of a relatively rigid plastic, it is
mildly deformable. When the robot first grasped the cover and attempted to in-
§E sert it directly over the top of the flashlight, the insertion failed because the
’) squeeze of the robot’s motor-driven fingers, although not extraordinarily firm, dis-
! torted the outline of the bottom part of the cover from square to rectangular.
-. This caused the cover to become slightly too narrow to fit the flashlight success-
"' fully, and the flashlight was jammed. This problem was corrected by grasping the
3 cover at a different, more reinforced location.
E A second problem was encountered with the attempt to model the latches.
'Ef. The latches engage when the cover is lowered to a particular height (i.e., as far
v down as it can go) above the flashlight and is aligned properly back and forth un-
R til it is at the correct orientation. Even then, the latches are “‘capricious.” There
> was no way to model the random engagement or nonengagement of the latches,
Ei and so the off-line programming had to proceed in a feed-forward manner. The
‘ robot was programmed to catch one edge of the cover over the light assembly,
‘\3 center and align the cover, and then press downwards. The robot was then
‘.».z: lowered to slightly below the minimum height of the cover to provide a small ex-
X tra force in the insertion. We hoped that this would result in a successful latch- -
:- ing, and for the most part, this proved to be the case. So, even though the latch- :j_':-;:' ¥
g : ing process could not be modeled, operator knowledge served to complete the ‘:ﬂ:ﬂ:
{‘ : capabilities of the off-line programming system. and a workable motion program E::E:E;:.:
) -

could be generated.
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e
;
‘:' b. Interpart Contact and Grasp Rotation o ,’E ‘:,'
) The WORKMATE system is incapable of modeling the phenomena as- ':" 2
n sociated with the contacting of two parts. Interpart contact in general remains a ;’ '
j‘: difficult problem. When two parts contact each other, they do not interpenetrate; ; : '.‘,E:':‘,‘:E':;
13 instead, forces and torques are generated that serve to modify the motion of the W :"‘;'::'é
. contacting parts. In particular, when a part with smooth sides, such as the light %‘%g oy
’;:: assembly, is held in a gripper and pushed against another part, such as the flash- ‘

‘ light mouth, the part in the hand will tend to twist and rotate with respect to its

N former grasp in the fingers.

e This cannot be modeled by the existing system. Instead, the system shows

3 the light assembly maintaining a constant grasp relationship with the fingers, and

-' penetrating the model of the flashlight. However, the motion constraint

.. generated by the lens flange enveloping one side of the flashlight mouth and ac-

ting like a hinge is a significant part of the insertion. Thus, the operator is forced

s v & K
Ao M

to move the simulated hand around only, and to visualize what is happening to

3 3

the constrained light assembly without seeing it depicted in front of him.

An additional and related problem is the fact that there is currently no way

F N

to adjust the positions of parts once training a program is under way. The parts

stay where they have been placed by the robot. Thus, the battery ends up hover-

n

N

> ing in the middle of the flashlight, where it was released after its insertion, and

: the light ends up tilted inside the flashlight case. Although this is a cosmetic

: detail, it could become significant in a different assembly. An immediate solution

¢ . - .

» is to allow the operator to drag and position parts in the scene, as well as arm

Cad

g joints. A better, but more complex solution, is to model hoth the elfects of

)

gravity and part nonpenetration upon contact, which would result in the system
automatically placing the battery in the proper location.

3

I
N s - N
RANKNAN

; 27 AN
s e, LA

s ::f.f1:$.'_ d

¥ "::k’-\*“

’ . :l‘tgﬁ-

R e D N e N A e o o e e N T i sy

e S s A Ao A o VAR ENES N;'t NI SR R




c. Weight and Slippage

Another real-world phenomenon that the system fails to model properly is
that of slippage due to weight. During one programming session, the battery was
grasped at the top and to the rear of center. A combination of the excessive
weight of the battery and its smooth sides rotated the battery around the axis of
grasping until its center of gravity was beneath the grasp, and the battery was
canted 20 degrees. The system attempted to insert the battery directly into the
flashlight, and failed, because the simulation did not model the actual locations of
the parts faithfully.

d. Dynamics

An unanticipated problem stemmed from the fact that parts slip differently
when the robot moves at different speeds. In particular, parts that do not slip at
all when the robot is moving at slow speeds can suddenly change to flying out of
the hand when the robot is moving at faster speeds. The battery was particularly
pernicious in this manner, due to its smooth sides and its relatively large mass.
The current simulation is based on kinematics, and does not take dynamics into
consideration. In the end, we simply had to restrict the execution speeds of the
robots to values slow enough to ensure successful transfers. This problem may be
overcome by modeling the dynamics and friction associated with the objects.

e. Robot Servoing

There are two problems with servoing the real robot: moving too close to
joint singularities and attempting to change configurations. These problems are
caused by changes in the way the program is executed (although the programs
themselves do not change). The changes are a result of parts being relocated, and
the fact that the system can adjust its execution to go along with these relocations
by using part-relative motions and sensory feedback to determine the part loca-
tions, inside the program itself, as travel off-line. For instance, in a straight-line
motion near a singularity, the controller may command the robot to move too

quickly in an imprecise manner. In addition, especially if the verifier is not used

to extensively check programs out under enough different circumstances, it is pos-
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sible to train programs on the simulator that will not execute on the real robot

controller because the current position of the parts would cause the robot to
change configurations. A temporary solution is to ensure that the parts are in
some initial configuration that does not produce these problems. A long-term
solution is to create an intelligent and flexible execution interpreter that can
foresee such difficulties and modify the arm paths in real time to circumvent
them.
. Sensing

The biggest problems we had were with sensing. Since the current system
does not have a vision-module simulator, it is unable to predict accurately where
the center of gravity of the two-dimensional silhouette of a part, returned by the
vision module, is located. Instead, the simulation svstem uses the center of the
modeled part as its definition, which requires that a calibrated adjustment be
made on the value returned by the actual vision system. This is undesirable be-
cause it slows down the operator and is difficult to determine; furthermore, it can
introduce inaccuracies into the system. A vision-module simulator would
automate this process. In addition to this problem, the usual sensor difficulties
such as transparent parts, stray reflections, and parallax distortions, caused
problems in the execution of the robot programs. Figure 10 shows the actual vi-
sion module’s view of the parts on the light table. Notice that the transparent
rim of the light assembly in lower right has completely disappeared. A facility to
model the vision module’s processing of images would at least eliminate or call at-

tention to the known problems.
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Figure 10: The Vision Module’s View of the Four Parts

E. Conclusions

In this project, we explored the problems of building and working with a
robotic off-line programming system. We demonstrated the actual use of the sys-
tem with a robotic testbed: not only were we able to write robot programs, but
we were able to successfully execute them as well. The robot programs included
the use of sensory feedback to determine part locations that were unknown before
on-line execution. Many successes and problem areas were identified. An impor-
tant point is that the execution of the robot programs does not work well when

the simulation fails to model the physical phenomena of the actual system.

There is much left to be done in the area of exploring a general off-line pro-
gramming system. A mandatory package that needs to be added is an editor that
can model parts and move them around and display them under user control. In

addition, there is still much work to be done in the program editor; the abilities to
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reedit programs, to randomly edit movements, to branch and loop, and to call
robot subroutines, are all lacking. The lacks in sensor simulation have already
been discussed. Finally, the difficult problem of contact simulation, and the
resulting closed-kinematic-chain motion problems required for a full contact

simulation, remain as challenges to be worked on.
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Appendix A
PUBLICATIONS
(1) “On the Representation and Estimation of Spatial

Uncertainty,” by R.C. Smith and P. Cheeseman; accepted for
publication by the International Journal of Robotics Research.

(2) “Estimating Uncertain Spatial Relationships in Robotics,” by
R.C. Smith, M. Self, and P. Cheeseman; accepted for publica-
tion in the proceedings of the workshop, Uncertainty in Arti fi-
cial Intelligence, to be held in Philadelphia, Pennsylvania,
August 1986.

(3) “Fast Robot Collision Detection Using Graphics Hardware,” by
R.C. Smith; published in the Proceedings of the Symposium on
Robot Control (SYROCO), Barcelona, Spain, 1985.

(4) “Determining An Object’s Location in a Robot’s Hand By
Means of Vision,” by Eitan Zeiler, Robotics Laboratory Tech-
nical Note, SRI International, August 1984.

(5) “Estimating Object Location In A Manipulator's Hand Using
Force/Torque Information,” by A. Bergman and R.C. Smith, to
be submitted for publication.

(6) “Robot WORKMATE: Interactive-Graphic Off-Line Program-
ming,” by R.C. Smith, Robotics Laboratory Technical Note,
SRI International, February 1986.
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PERSONNEL

Principal Investigators:

Randall C. Srith, Research Engineer, Robotics Laboratory
David Nitzan, Director, Robotics Laboratory

Basic Problems:

Locational Uncertainty
Randall C. Smith, Research Engineer
Peter Cheeseman, Senior Computer Scientist

Spatial Reasoning
Randall C. Smith, Research Engineer

Sensor Usage
Eitan Zeiler, International Fellow
Aviv Bergman, Research Physicist

WORKMATE System Development

Modeling
Randall C. Smith, Research Engineer

On-Line Programming
Randall C. Smith, Research Engineer

Off-Line Programming
Randall C. Smith, Research Engineer
John K. Myers, Research Engineer

Experimental Verification
Randall C. Smith, Research Engineer
John K. Myers, Research Engineer
Antony J. Sword, Research Engineer
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Estimating
Uncertain Spatial
Relationships
in Robotics
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Abstract

In many robotic applications the need to rep-
resent and reason about spatial relationships is of
great importance. However, our knowledge of par-
ticular spatial relationships is inherently uncertain.
The most used method for handling the uncertainty
is to " pre-engineer” the problem away, by structur-
ing the working environment and using specially-
suited high-precision equipment. In some advanced
robotic research domains, however, such as auto-
matic task planning, off-line robot programming,

*Currently at General Motors Research Labs,
Warren, Michigan.

tCurrently at NASA Ames Research Ctr.,
MofTett Fiald, Californis.
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and autonomous vehicle operation, prior structur-
ing will not be possible, because of dynamically
changing environments, or because of the demand
for greater reasoning flexibility. Spatial reasoning is
further complicated because relationships are often
not described explicitly, but are given by uncertain
relative information. This is particularly true when
many different frames of reference are used, produc-
ing a network of uncertain relationships. Rather
than treat spatial uncertainty as a side issue in geo-
metrical reasoning, we believe it must be an intrin-
sic part of spatial representations. In this paper,
we describe a representation for spatial informa-
tion, called the stochastic map, and associated pro-
cedures for building it, reading information from it,
and revising it incrementally as new information is
obtained. The map always contains the best esti-
mates of relationships among objects in the map,
and their uncertainties. The procedures provide a
general solution to the problem of estimating un-
certain relative spatial relationships. The estimates
are probabilistic in nature, an advance over the pre-
vious, very conservative, worst-case approaches to
the problem. Finally, the procedures are developed
in the context of state-estimation and filtering the-
ory, which provides a solid basis for numerous ex-
tensions.

1 Introduction

In many applications of robotics, such as industrial
automation, and autonomous vehicles, there is a
need to represent and reason about spatial uncer-

" tainty. In the past, this need has been circumvented

by special purpose methods such as precision engi-
neering, very accurate sensors and the use of fix-
tures and calibration points. While these meth-
ods sometimes supply sufficient accuracy to avoid
the need to represent uncertainty explicitly, they
are usually costly. An alternative approach is to
use multiple, overlapping, lower resolution sensors
and to combine the spatial information (including
the uncertainty) from all sources to obtain the best
spatial estimate. This integrated information can
often supply sufficient accuracy to avoid the need
for the hard engineered approach.

In addition to lower hardware cost, the explicit

Accepted for publication in the praceedings of the workshop
Uncertainty in Artificial Intelligence, Philadelphis,
Pennsylvanis, August 1086. To be submitted for publication
in the International Journal of Robolics Research.
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v estimation of uncertain spatial information makes utilise graph transformations. -::\:-.j\ )
N it pou_ible to d?cide in advance whether proposed  In gummary, many important applications re- Q::::::~ '
¥ operations are likely to fail because of ““‘_"‘“‘"‘d quire a representation of spatial uncertainty. In ad- DN
! uncertainty, and whether proposed sensor informa-  gjtjon, methods for combining uncertain spatial in- . 2.
) tion will b,’ n.nﬁcxent to “d‘f“ “_“ uncertainty 0 formation and transforming such information from A S
N tolerable limits. In other situations, such a8 in- ,pe frame to another are required. This paper N SR
F\ expensive mobile robots, the only way to obtain presents a matrix representation of spatial uncer- Rt $ -
) sufficient accuracy is to combine the (uncertain) e

' : tainty that explicitly represents the uncertainty for
information from many sensors. each degree of freedom in the world of interest. A

A difficulty in combining uncertain spatial infor- method is given for combining uncertain informa-

j mation is that it often occurs in the form of un- tion regardless of which frame it is presented in,
- certain relative information. This is particularly and it allows the description of the spatial uncer-
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'..f tree where many different frames of reference are tainty of one frame relative to any other frame. The itz-'_*::.-
0 used, and the uncertain spatial information must necessary procedures are presented in matrix form, DAY "‘;x’.:
n be propagated between these frames. This paper suitable for efficient implementation. In particular, N
I presents a general solution to the problem of es- methods are given for incrementally building the "
, timating uncertain spatial relationships, regardless best estimate “map” and its uncertainty as new "J't"v' A7
ﬁ: of which frame the information is presented in, or pieces of uncertain spatial information are added. Vet i)
e in which frame the answer is required. The basic ataia
R theory assumes that the errors are “small”, so that NN ’~
0 the nonlinear transformations from one frame to 2 The Stochastic Map uﬁ A
another are approximately linear. \:.. . ‘

; Early methods for representing spatial uncer- Our knowledge of the spatial relationships among

‘:: tainty (e.g. [Taylor, 1976]) numerically computed objects is inherently uncertain. A man-made ob- PR OURER
e min-max bounds on errors in typical robotics appli- ject does not match its geometric model ezactly oA
o) cations. Brooks extended this analysis to symbol- because of manufacturing tolerances. Even if it AR
‘ ically computing min-max bounds [Brooks, 1982]. did, a sensor could not measure the geometric fea- :‘-ﬁ'{.‘-ﬁ‘\
This min-max approach is very conservative com- tures, and thus locate the object ezactly, because of ;«i‘?’f"'t '

pg pared to the probabilistic approach in this paper, measurement errors. And even if it could, a robot Tyt
) because it always assumes the worst case when using the sensor cannot manipulate the object ez- ,-}.\::'-f. Y
::j combining information. More recently, a proba- gctly as intended, because of hand positioning er- t-:‘-".': )
o~y bilistic representation of uncertainty was developed rors. These errors can be reduced to neglible limits s:.t:'.::\:
':J for the HILARE robot [Chatila, 1985] that is sim- for some tasks, by “pre-enginerring” the solution :.-",‘i: M

ilar to the method presented here, except that it — gtructuring the working environment and using Lo A
. uses only a scalar representation of positional un- specially-suited high—precision equipment — but DA

J certainty instead of a multivariate one. In a recent at great cost of time and expense. t.-'\-,'_: X
paper, Bro?ks developed a repl.'euntaf ion of spa- However, rather than treat spatial uncertainty t.-'.t ;1';

§ tial unce rtainty b?“d on bounding f:yhnders‘ and a as a side issue in geometrical reasoning, we believe s.';\jw-'\
!: combum':g operation based on the‘mtersectmns of it must be treated as an intrinsic part of spatial t {': ARy
H such cylinders [Brooks, 1985]. Smith and Cheese- | presentations. -
. man ([Smith, 1984], |Smith, 1985]), working on . . . o ey .
o problems in off-line programming of industrial au- In‘t}us paper, un‘certam spatial te!ahons}ups will ": ;

N tomation tasks, proposed operations that could re- D¢ tied together in a representation called the ;\_'S:.
2 duce graphs of uncertain relationships (represented #fochastic map. It contains estimates of the spatial "::
:g by maultivariate probability distributions) to a sin- relahonshx?s, their uncertainties, and their inter- ";'I".Q't‘c(
gle, best estimate of some relationship of interest. dependencies. A
A The current paper extends that work, but in the First, the map structure will be described, fol- .

:' formal setting of estimation theory, and does not lowed by methods for extracting information from ::: ".:,x: ‘-
2 ;?.*;I:EE:«‘.
C 2 ...‘p'_._-\.
N ANESERN
ne -\r;;‘. :‘_.A_

ST

% D-4 S
4 AL
DN RN,
e

é ;: PTA
A 5 Sy o S AL AR UL PO RT AR,
SRS S SRR RN NN RN RN



TR T EI_w,

PLTLTEBRES R R B DT LV . e e" s s "2 AT MR, S ATAT A AR o™ " e B

it. Finally, a procedure will be given for building
the map incrementally, as new spatial information
is obtained.

To illustrate the theory, we will present an exam-
ple of a mobile robot acquiring knowledge about its
location and the organisation of its environment by
making sensor observations at different times and
in different places.

2.1 Representation

In order to formalise the above ideas, we will define
the following texrms. A spatial relationship will be
represented by the vector of its spatial variables,
x. For example, the position and orientation of a
mobile robot can be described by its coordinates,
z and y, in a two dimensional cartesian reference
frame and by its orientation, ¢, given as a rotation
about the z axis:

z
x= |y

¢

An uncertasn spatial relationship, moreover, can
be represented by a probabslity distribution over its

where E is the expectation operator, and X is the
deviation from the mean.

For our mobile robot example, these are:

2 02 04y Ose
=9 |, Cx)=| oay 03 oy |.
3 Ozé¢ Tyé "3

Here, the diagonal elements of the covariance ma-
trix are just the variances of the spatial variables,
while the off-diagonal elements are the covariances
between the spatial variables. It is useful to think
of the covariances in terms of their correlation co-
efficients, piy:

% _ E(%;z;)

i \[EEEE)

n

pis ~1<p; S 1

Similarly, to model a system of n uncertain spa-
tial relationehips, we construct the vector of allthe
spatial variables, which we call the system state vec-
tor. As before, we will estimate the mean of the
state vector, X, and the system covariance matnz,

C(x):

spatial variables — i.e., by a probability density x; %,
function that assigns a probability to each particu- X2 2
lar combization of the spatial variables, x: x = l, %= .|, Clx)=
P(x) = f(x)éx. Xn %
Such detailed knowledge of the probability distri-
bution is usually unneccesary for making decisions, C(x;) C(x1,x2) C(x1,%n)
such as whether the robot will be able to complete a C(x3,x;) €(x3) C(x2,x%n)
given task (e.g. passing through a doorway). Fur- . . . )
thermore, most measuring devices provide only a ot ) :
nominal value of the measured relationship, and we C(xn,x1) Clxn,x2) C(xn)
can estimate the average error from the sensor spec- where:
: ifications. For these reasons, we choose to model ’
. an uncertain spatial relationship by estimating the
\ first two moments of its probability distribution— . =T
; the mean, % and the covariance, C(x), defined as: Clxi1x5) E(%%5), )
Cx;,%:) = Cxi,%;)T.
E 2 & E(x), Here, the x;’s are the vectors of the spatial vari-
£ & x-3% (1) ables of the individual uncertain spatial relation-
i N ! ships, and the C(x;)’s are the associated covari-
‘ C(x) & E(xxT). ance matrices, as discussed earlier. The C(x;,x;)’s
: D-5
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are the cross-covariance matrices between the un-
certain spatial relationships, which allow for de-
pendencies between the uncertainties of different
spatial relationships. These off—~diagonal matrices
provide the mechanism for back-propagating new
information added to the map, in order to im-
prove previous spatial estimates, and are signifi-
cantly more sophisticated than previous methods
for doing this.

In our example, each uncertain spatial relation-
ship is of the same form, 80 x has m = 3n elements,
and we may write:

z %
X = Y% ] *‘ = gi' [}
& &

Oz;2; Oaiy; O34y
Clxs,x;5) = Oxiy; Owiy; Tyid; |-
Ozié; Oyid; Oéid;

Thus our “map” consists of the current estimate
of the mean of the system state vector, which gives
the nominal locations of objects in the map with
respect to the world reference frame, and the as-
sociated system covzriance matrix, which gives the
uncertainty of each point in the map and the inter-
dependencies of these uncertainties.

2.2 Interpretation

For some decisions based on uncertain spatial re--

lationships, we must assume a particular distribu-
tion that fits the estimated moments. For exam-
ple, a robot might need to be able to calculate the
probability that a ceratin object will be in its field
of view, or the probability that it will succeed in
passing through a doorway.

Given only the mean, X, and covariance matrix,
C(x), of a multivariate probability distribution, the
principle of maximum entropy indicates that the
distribution which assumes the least information is
the normal distribution. Furthermore if the spatial
relationship is calculated by combining evidence
from many independent observations, the central

e At ANM S -~ Aafohet At ' ”

limit theorem indicates that the resulting distribu-
tion will tend to a normal distribution:

exp (-3 (x ~ %)7C~* () (x - %)]

Pl = Vo)

dx. (4)

We will graph uncertain spatial relationships by
plotting contours of constant probability from a
normal distribution with the given mean and co-
variance information. These contours turn out to
be concentric ellipsoids (ellipses for two dimen-
sions) whose parameters can be calculated from the
covariance matrix, C(x;) [Nahi, 1976]. It is im-
portant to emphasize that we do not assume that
the uncertain spatial relationships are described by
normal distributions. We estimate the mean and
variance of their distributions, and use the normal

distribution only when we need to calculate specific

probability contours.

In the figures in this paper, the plotted points
show the actual locations of objects, which are
known only by the simulator and dispiayed for our
benefit. The robot’s information is shown by the
ellipses which are drawn centered on the estimated
mean of the relationship and such that they enclose
a 99.9% confidence region (about four standard de-
viations) for the relationships.

2.3 Example

Throughout this paper we will refer to a two di-
mensional example involving the navigation of a
mobile robot with three degrees of freedom. In this
example the robot performs the following sequence
of actions:

o The robot senses object #1
o The robot moves.

e The robot senses an object (object #2) which
it determines cannot be object #1.

e Trying again, the robot succeeds in sensing ob-
ject #1, thus helping to localize itself, object
#£1, and object #2.
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THE ROBOT SENSES OBJECT #1 AND MOVES THE WORLD FROM THE ROBOT'S NEW FRAME
Figure 1: Figure 2:

Figure 1 shows two examples of uncertain spa- variance of the system state vector, we now dis-
tial relationships — the sensed location of object cuss methods for estimating the first two moments ) v indyy
#1, and the end-point of a planned motion for the of unknown multivariate probability distributions. B
robot. The robot is initially sitting at the loca- See [Papoulis, 1965] for detailed justifications of the
tion marked 'O’. There is enough information in following topics.
our stochastic map at this point for the robot to
be able to decide how likely a collision with the
object is, if the motion is made. In this case the
probability is vanishingly small. The simplest case concerns relationships which are

Figure 2 shows how this spatial knowledge can linear in the random varables, e.g.:

8.1.1 Linear Relationships

be presented from the robot’s new reference frame )
after its motion. As expected, the uncertainty in y=Mx+Db, o3
the location of object #1 becomes larger when it . :; N,
is compounded with the uncertainty in the robot’s where, X (n X 1) is a random vector, M (r x n) Y
motion. is the non-random coefficient matrix, b (r x 1) is ‘

From this new location, the robot senses object a constant vector, and y (r x 1) is the resultant

.
.

[ H

e

#2 (Figure 3). The robot is able to determine with randv.?m ve.ctor. Using the deﬁ'nitions from (1), and ":.':::\. RO
the information in its stochastic map that this must the linearity of the expectation operator, _E ) one NN
be a new object and is not object #1 which it ob- can eafxly verify that the mean of the relationship, TR
served earlier. ¥, is given by: N ‘o

1

LY l'
4""

In figure 4, the robot senses object #1 again. . . - \
This new, loop closing sensor measurement acts as y=Mx+b, (5) “ J.'_\_‘__.\:
a constraint, and is incorporated into the map, re- and the covariance matrix, C(y), is: ..::.‘-;_.\:\‘.:\.
ducing the uncertainty in the locations of the robot, :_.:J.'\-\.tj.\
object #1 and Object #2 (Figure 5). Cly) = MC(x)MT. (6) :};\l -‘:-.‘.\

At ﬂm
We will also need to be able to compute the co- "
3 Reading the Map variance between y and some other relationship, z, T
given the covariance between x and 2: .;":;::{
3.1 Uncertain Relationships .‘_-‘r"._f:}:‘.'_ N
ASAYERER
Having seen how we can represent uncertain spa- Cly,z) = MC(x,z), (7) :f-:":::{; :
tial relationships by estimates of the mean and co- C(z,y) = C(z,x)MT. R Stk
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The first two moments of the multivariate dis-
tribution of y are computed exactly, given correct
moments for x. Further, if x follows a normal dis-
tribution, then so does y.

3.1.32 Non-Linear Relationships

The first two moments computed by the formulae
below for non-linear relationships on random vari-
ables will be first~order estimates of the true values.
To compute the actual values requires knowledge
of the complete probability density function of the
spatial variables, which will not generally be avail-
able in our applications. The usual approach is to
approximate the non-linear function

y =1(x)

by a Taylor series expansion about the estimated
mean, X, yielding:

y=f(&) +Fxi+--,

where Fy is the matrix of partials, or Jacobian, of

f evaluated at X:

9
gb. n ...
=1

9z, 8zq

o s . on

33?.' Fﬁ' Tst. x=3
This terminology is the extension of the f; ter-

minology from scalar calculus to vectors. The Ja-

cobians are always understood to be evaluated at
the estimated mean of the input variables.

Truncating the expansion for y after the linear
term, and taking the expectation produces the lin-
ear estimate of the mean of y:

¥ =~ £(%). (8)

Similarly, the first-order estimate of the covariances
are:

Cly) ~ FxC(x)F%,
C(Yl ') [ FxC(", ')) (9)
C(s,y) =~ C(z,%)F%.

Though not utilized in our application, the sec-
ond order term may be included in the Taylor series
expansion to improve the mean estimate:

y = f(&) + Pxk + s Pacx(8T) + -,

We denote the (3 dimensional) matrix of second

partials of f by Fy¢. To avoid uneccesary complex-

ity, we simply state that the ith element of the vec-

tor produced when Fyx is multiplied on the right
by a matrix A is defined by:

)4

X=X

2 f.
{FsxA); = trace [( Tk
The secon? -order estimate of the mean of y is then:

az,-azk

§ & £(%) + 3 FxxClx),

and the second-order estimate of the covariance is:
Cly) = PxC(x)FL ~ %FxxC(x)C(x)T FL..
In the remainder of this paper we consider only

first order estimates, and the symbol “ss* should
read as “linear estimate of.”

N

3.2 Spatial Relationships

X7

Il

We now consider the actual spatial relationships
which are most often encountered in robotics ap-
plications. We will develop our presentation about
the three degree of freedom formulae, since they
suit our examples concerning a mobile robot. For-
mulae for the three dimensional case with six de-
grees of freedom are given in Appendix A.

8.2.1 Compounding

Given two spatial relationships, x;; and x;x, as in
Figure 2, we wish to compute the resultant rela-
tionship X;x. The formula for computing x;x from
x;; and X;i is:

n

xa‘j @ xjk
Zjk €OS Pij — Yyk 8in dij + Zi5
Zyk Sin d5 + yjk €08 By + Yis
$i5 + Psx
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We call this operation compounding, and it is
used to calculate the resultant relationship from
two given relationships which are arranged head-
to-tail. It would be used, for instance, to determine
the location of a mobile robot after a sequence of
relative motions. Remember that these transfor-
mations involve rotations, so compounding is not
merely vector addition.

Utilising (8), the first-order estimate of the mean
of the compounding operation is:

Rip 9 Riy O Rk

Also, from (9), the first-order estimate of the co-
variance is: ’
Clx;)  Cleisuxse) |
C(x.k) ~J ® J @
C(x,x,%i;)  Clxja)

where the Jacobian of the compounding operation,
J g is given by:
Jo 200 ®x5) _  Oxa

® 7 0k xk)  I0kisyXgh)

1 0 —(yix—w;) cosdy; —singi; 0
0 1 (zx—z;) sings; cosgy; O
00 1 0 ) 1

Note how we have utilised the resultant relation-
ship x;x in expressing the Jacobian. This results
in greater computational efficiency than expressing
the Jacobian only in terms of the compounded rela-

tionships x;; and x;,. We can always estimate the .

mean of an uncertain relationship and then use this
result when evaluating the Jacobian to estimate the
covariance of the relationship.

In the case that the two relationships being com-
pounded are independent (C(x;;,%;x) = 0), we can
rewrite the first-order estimate of the covariance as:

C(xn) = Jloc("ii)-’fo + Jzoc("ﬂt)";o

where J1o and J2g are the left and right halves
(3 x 3) of the compounding Jacobian (3 x 6):

Jo=[Jdie 320 }-

v

ARt g St kot i s i e St iat g e Bt el e b b et B b Bt g A )
P M

83.2.2 The Inverse Relationship
Given a relationship x;;, the formula for the coor-
dinates of the inverse relationship x;;, as a function
of X5 is:
a —%ij €08 $i5 — Yis 8in ;5
Xji = O%; = | ziy8inéij — yij cos ¢y

—bis

We call this the reverse relationship. Using (8) we
get the first-order mean estimate:

&;: = ORyj.
and from (9) the first-order covariance estimate is:
C(x,-.-) L] JeC(x.,)Jg

where the Jacobian for the reversal operation, Jgo
is:

A % = cos ¢|’,’ —sin ¢c’j Yse
Jo="==| sing;; —cosdi; —zj
%45 0 0 -1

Note that the uncertainty is not inverted, but
rather expressed from the opposite (reverse) point
of view,

8.2.3 Composite Relationships

We have shown how to compute the resultant of
two relationships which are arranged head-to-tail,
and also how to reverse a relationship. With these
two operations we can calculate the resultant of any
sequence of relationships.

For example, the resultant of a chain of relation-
ships arranged head-to-tail can be computed recur-
sively by:

X = X O X5 = Xij ® (X O Xt)
Xk B Xnt = (Xyj O Xjk) O Xt

Note, the compounding operation is associative,
but not commutative.

D-10
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'; that by analogy to conventional + and — we may and in Appendix A.
b write: It may appear that we are calculating first-order
_\ a estimates of first-order estimates of ..., but actu-
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Figure 6: The Changing Map

4 Building the Map

Our map represents uncertain spatial relation-
ships among objects referenced to a common world
frame. Entries in the map may change for two rea-
sons:

e An object moves.

e New spatial information is obtained.

To change the map, we must change the two com-
ponents that define it — the (mean) estimate of
the syatem state vector, X, and the estimate of the
system variance matrix, C(x). Figure 6 shows the
changes in the system due to moving objects, or the
addition of new spatial information (from sensing).

We will assume that new spatial information is

obtained at discrete moments, marked by states:

k. The update of the estimates at state k, based
on new information, is considered to be instanta-
neous. The estimates, at state k, prior to the inte-
gration of the new information are denoted by if:)
and C(xi.)), and after the integration by ’.‘Lﬂ and
cxi)y.

In the interval between states the system may
be changing dynamically — for instance, the robot
may be moving. When an object moves, we must
define a process to extrapolate the estimate of the
state vector and uncertainty at state k — 1, to state
k to reflect the changing relationships.

U R R AT Wy ey V'..h"'.l?.l':i

4.1 Moving Objects

Before describing how the map changes as the mo-
bile robot moves, we will present the general case,
which treats any processes that changes the state
of the system.

The system dynamics model, or process model,
describes how components of the system state vec-
tor change (as a function of time in a continuous
system, or by discrete transitions).

Between state k — 1 and k, no measurements of
external objects are made. The new state is deter-
mined only by the process model, f, as a function
of the old state, and any control variables applied
in the process (such as relative motion commands
sent to our mobile robot). The process model is
thus:

x(k-) =f (x(kt)p yk—l) ’ (10)
where y is a vector comprised of control variables,
u, corrupted by mean-sero process noise, w, with
covariance C(w). That is, y is a noisy control input
to the process, given by:

y=u+w. (11)

¥ =n, Cly) = C(w).

Given the estimates of the state vector and vari-
ance matrix at state k — 1, the estimates are ex-
trapolated to state k by:
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If the process noise is uncorrelated with the state,
then the off-diagonal sub-matrices in the matrix
above are 0 and the covariance estimate simplifies
to:

C(x{™) » PxClx{P )FT + PyC(ys-1)Fy.

The new state estimates become the current esti-
mates to be extrapolated to the next state, and so
on.

In our example, only the robot moves, so the pro-
cess model need only describe its motion. A con-
tinuous dynamics model can be developed given a
particular robot, and the above equations can be re-
formulated as functions of time (see [Gelb, 1984]).
However, if the robot only makes sensor observa-
tions at discrete times, then the discrete motion
approximation is quite adequate.

When the robot moves, it changes its relation-
ship, Xg, with the world. The robot makes an un-
certain relative motion, ygr =ug + wg, toreach a
final world location xj;. Thus,

XR =XR ®YR-

Only a small portion of the map needs to be
changed due to the change in the robot’s location
from state to state — specifically, the Rth element
of the estimated mean of the state vector, and the
Rth row and column of the estimated variance ma-
trix. Thus, i{t’l becomes iﬁ_):

Xr - x
*(kt)l = —_—1, *(k ) b — __-B— ,
and, analogously, C(x{t)x) becomes:
3 B'T 1
B' A'

Cix{™) =
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where:

R SRR D ¥R,

A’ = C(x}) & J,4C(x2)ITg + J20C(yr)IZ,,

B| = C(xk,x:) = J16C(xr,x,).

A’ is the covariance matrix representing the un-

certainty in the new location of the robot. B’ is

R ORI N R SO RO SR LRSS AR L SARARAS
SO I,hf\(. T T e ~I‘\-", '-\q“ .'\
e e B NS SR . .
\f\ \.' o - Lt L e CaP Ay

a row in the system variance matrix. The sth el-
ement is a sub-matrix — the cross-covariance of
the robot's estimated location and the estimated
location of the ith object, as given above. If the
estimates of the two locations were not depen-
dent, then that sub-matrix was, and remains 0.
The newly estimated cross-covariance matrices are
t-ansposed, and written into the Rth column of the
system variance matrix, marked by B'T.

4.2 New Spatial Information

The second process which changes the map is the
update that occurs when new information about
the system state is incorporated. New spatial in-
formation might be given, determined by sensor
measurements, or even deduced as the consequence
of applying a geometrical constraint. For example,
placing a box on a table reduces the degrees of free-
dom of the box and eliminates the uncertainties in
the lost degrees of freedom (with respect to the ta-
ble coordinate frame). In our example, state infor-
mation is obtained as prior knowledge, or through
measurement.

There are two cases which arise when adding new
spatial information about objects to our map:

e I: A new object is added to the map,

e II: A (stochastic) constraint is added between
objects already in the map.

We will consider each of these cases in turn.
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4.2.1 Case I: Adding New Objects

When a new object is added to the map, a new
entry must be made in the system state vector to
describe the object’s world location. A new row
and column are also added to the system variance
matrix to describe the uncertainty in the object’s
estimated location, and the inter-dependencies of
this estimate with estimated locations of other ob-
jects. The expanded system is:

&4 = #(=)
Xn41
C(x("‘))= C(x(-)) BT ,
B | A

where X541, A, and B will be defined below.

We divide Case I into two sub-cases: I-a, the
estimate of the new object’s location is independent
of the estimates of other object locations described
in the map; or I-b, it is dependent on them.

Case I-a occurs when the estimated location of

the object is given directly in world coordinates —

i.e., Xnew and C(Xne) — perhaps as prior infor-
mation. Since the estimate is independent of other
location estimates:

Xn+1 = Xnpew)

AR
; 'ﬁ b ) X
T

T
p

1

<) o

el
"“fi\t
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A

where A is a covariance matrix, and B is a row
of cross-covariance matrices, as before. B is iden-
tically O, since the new estimate is independent of
the previous estimates, by definition.

Case I-b occurs when the world location of the
new object is determined as a function, g, of its spa-

tial relation, %, to other object locations estimated . }{_:f-s

in the map. The relation might be measured or N

given as prior information. For example, the robot AN

measures the location of a new object relative to ISN

itself. Clearly, the uncertainty in the object’s worid :_.gi.;;:
location is correlated with the uncertainty in the Y

robot’s (world) location. For Case I-b: ——:‘3

:‘_:\::\__*.-'

I WA

Xn41 = g(x, ’)l -:\::\__‘.

‘Q."Q}-:"

*'H-l = 8(*- i)'

A = C(Xn+1) = GxC(x)G% +GyC(z)Gy, (14)
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We see that Case I-a is the special case of Case

I-b, where estimates of t' ¢ world locations of new ';'.\- S
objects are independent of the old state estimates - '::: N

and are given exactly by the measured information.
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That is, when: ‘.-\iz.r‘.t
tloLg

g(x,3)=s. »':.'::‘:::.:

i

4.2.2 Case II: Adding Constraints SN

&
i
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When new information is obtained relating objects

Rn+1 = Rnew, already in the map, the system state vector and s
variance matrix do not increase in size; i.e., no new -‘.\3‘"-'\'-
elements are introduced. However, the old elements l-::.‘\-‘_.\';
A = C(xp+1) = C(Xnew), (13) are constrasned by the new relation, and their val- :4:\::..
ues will be changed. P
. . LN
B: = C(Xn+1,%) = C(Xnew,%:) = 0. Constraints can arise in a3 number of ways: N
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e A robot measures the relationship of a known
landmark to itself (i.e., estimates of the world
locations of robot and landmark already exist).

e A geometric relationship, such as colinearity,
coplanarity, etc., is given for some set of the
object location variables.

In the first example the constraint is noisy {be-
cause of an imperfect measurement). In the sec-
ond example, the constraint could be absolute, but
could also be given with a tolerance.

There is no mathematical distinction between
the two cases; we will deacribe all constraints
as if they came from measurements by sen-
sors — real sensors or pseudo-sensors {for geo-
metric constraints), perfect measurement devices
or imperfect. A pseudo-sensor which measures
“rectangular-ness” is discussed later in the exam-
ple.

When a constraint is introduced, there are two
estimates of the geometric relationship in question
— our current best estimate of the relation, which
can be extracted from the map, and the new sensor
information. The two estimates can be compared
(in the same reference frame), and together should
allow some improved estimate to be formed (as by
averaging, for instance).

For each sensor, we have a sensor model that
deacribes how the sensor maps the spatial variables
in the state vector into sensor variables. Generally,
the measurement, 5, is described as a function, h, of
the state vector, corrupted by mean-sero, additive
noise v. The covariance of the noise, C(v), is given
as part of the model.

s = h(x) +v. (15)

The condstsonal sensor value, given the state,
and the conditional covariance are easily estimated
from (15) as:

§ =~ h(R).

C(s) » HxC(x)HX + C(v),

v wE_wy

where:
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The formulae describe what values we ezpect 'E‘\-'E'-h g
from the sensor under the circumstances, and the e,
likely variation; it is our current best estimate of "R’\*v"(-
the relationship to be measured. The actual sensor , ‘,-.ﬁ\\ Lo
values returned are usually assumed to be condi- AT
tionally independent of the state, meaning that the Yy K
noise is assumed to be independent in each mea- x
surement, even when measuring the same relation

with the same sensor. The actual sensor values, Fr_;\v‘r?j
corrupted by the noise, are the second estimate of :{f.,ft :-?
the relationship. .:::::“: :j

For simplicity, in our example we assume that SRS zj

the sensor measures the relative location of the ob-
served object in Cartesian coordinates. Thus the
sensor function becomes the tail-to-tail relation of
the location of the sensor and the sensed object.

described in Section 3.2.3. (Formally, the senso: NN
function is a function of all the variables in the state :‘\-'_';“-;\j:s‘;
vector, but the unused variables are not shown be- ':f.;-’:; :}n
low): u"*‘"é

s
STy
. ) A
£ = *“,' = OXk; e X;. 3:':’:‘:-: ‘::y;\:
N CER ARM
{

- C(x.) C’(x;,x,' ) T
C(’) = eJQ [ C(x"x‘) C(x") eJo+C(V).

Given the sensor model, the conditional esti-
mates of the sensor values and their uncertainties,
and an actual sensor measurement, we can update
the state estimate using the Kalman Filter equa-
tions [Gelb, 1984] given below, and described in
the next section:

2M =z + K, ['k ‘hk(ii—))] '
cix{*)=cx!) - KaBxC(x™'), (16)

-1
K. = Clx{")BI [HXC(xL")B; +Clvh] .




4.2.3 Kalman Filter

The updated estimate is a weighted average of the
two estimates, where the weighting factor {com-
puted in the weight matrix K) is proportional to
the prior covariance in the state estimate, and in-
\ versely proportional to the conditional covariance
. of the measurement. Thus, if the measurement
covariance is large, compared to the state covari-
ance, then K — 0, and the measurement has little
impact in revising the state estimate. Conversely,
when the prior state covariance is large compared
to the noise covariance, then X — I, and nearly
the entire difference between the measurement and
its expected value is used in updating the state.

The Kalman Filter generally contains a system
dynamics model defined less generally than pre-
sented in (10); in the standard filter equations the
process noise is additive:

x{)=f (x(kt)p uk—l) + Wiy

(27)
in that case Fy of (10) is the identity matrix, and
the estimated mean and covariance take the form:

Ot (2hus), ()

C(x{™") » PxC(x{*)FZ + C(ws_1).

If the functions f in (17) and h in (15) are lin-
ear in the state vector variables, then the partial
derivative matrices F and H are simply constants,
and the update formulae (16) with (17), (15), and
(18), represent the Kalman Filter (Gelb, 1984].

If, in addition, the noise variables are drawn from
normal distributions, then the Kalman Filter pro-
* duces the optimal minimum-variance Bayesian es-
timate, which is equal to the mean of the a pos-
2 teriors conditional density function of x, given the
prior statistics of x, and the statistics of the mea-
surement 5. No non-linear estimator can produce
estimates with smaller mean-square errors.

If the noise does not have a normal distribution,
then the Kalman Filter is not optimal, but pro-
duces the optimal [inear estimate.

If the functions £ and h are non-linear in the
state variables, then F and H will have to be eval-
uated (they are not constant matrices). The given
formulae then represent the Extended Kalman Fil-
ter, a sub-optimal non-linear estimator. It is one
of the most widely used non-linear estimators be-
cause of its similarity to the optimal linear filter,
its simplicity of implementation, and its ability to
provide accurate estimates in practice.

The error in the estimation due to the non-
linearities in h can be greatly reduced by iteration,
using the Iterated Extended Kalman Filter equa-
tions [Gelb, 1984]:

(-
+ Ky [lp, - (hg(if;;)) + Hx(ig:’ - ir:’))] .

cix) ) = cix”) - KuiBxCx{™),

- - -1
Ku.s = Ol VB [BxClx{)BE + ()]

where:

Note that the original measurement value, =, and
the prior estimates of the mean and covariance of
the state, are used in each step of the iteration.
The sth estimate of the state is used to evaluate the
weight matrix, K, and is the argument to the non-
linear sensor function, h. Iteration can be carried
out until there is little further improvement in the
estimate. The final estimate of the covariance need
only be computed at the end of iteration, rather
than at each step, since the intermediate system
covariance estimates are not used.
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5 Developed Example

The methods developed in this paper will now be
applied to the mobile robot example in detail. We
choose the world reference frame to be the initial lo-
cation of the robot, without loss of generality. The
robot’s initial location with respect to the world
frame is then the identity relationship (of the com-
pounding operation), with no uncertainty.

® &r] = (0},

C(x)

[Clxr)] = [0].

Note, that the normal distribution corresponding
to this covariance matrix (from (4)) is singular, but
the limiting case as the covariance goes to sero is a
dirac delta function centered on the mean estimate.
This agrees with the intuitive interpretation of sero
covariance implying no uncertainty.

Step 1: When the robot senses object #1, the
new information must be added into the map.
Normally, adding new information relative to the
robot’s position would fall under case I-b, but since
the robot’s frame is the same as the world frame, it
falls under case I-a. The sensor returns the mean
location and variance of object #1 (8, and C(s,)).
The new system state vector and variance matrix
are:

2= [2]-[0])
ot = [ o, S

[g c(on)]'

where x; is the location of object #1 with respect
to the world frame.

Step 2: The robot moves from its current loca-
tion to a mew location, where the relative motion
is given by yg. Since this motion is also from the
world frame, it is a special case of the dynamics
extrapolation.

. B
2= [2]-[%]
C C .
c = | conm e ]
_ [Cyr) © ]
! 0 C(ll) '

We can now transform the information in our
map from the world frame to the robot’s new frame
to see how the world looks from the robot’s point
of view:

eiR'
s JoC(xr)J3.

Xpw
C(xrw)

RXp1 = GXpO%,
C(xgr1) =~ JloJQC(xR)Jngo
+ J;,C(x; )J{O'

Step 3: The robot now senses an object from
its new location. The new 'measurement, 23, is of
course, relative to the robot’s location, xg.

R = *1 = il. ’
| 3 RO
C(xr) C(xgr,x1) C(xr,x3) ]
C(x) = C(xy,xg) C(xi) C(x1,%3)
L C(XQ,XR) C(x2,x,) C(x2)
[ Cl(yr) 0 Clyr)7e ]
= 0 C(I;) 0 .
| J1eC(yr) O C(x,)
where:

C(x3) = J10C(yr)ITe + J20C(22)37.

Step 4: Now, the robot senses object #1 again.
In practice one would probably calculate the world
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FOUR UNCERTAIN POINTS
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location of a new object, and only after comparing
the new object to the old ones could the robot de-
cide that they are likely to be the same object. For
this example, however, we will assume that the sen-
sor is able to identify the object as being object #1
and we don’t need to map this new measurement
into the world frame before performing the update.

o

B

L X & A -
P T

The symbolic expressions for the estimates of the
mean and covariance of the state vector become
too complex to reproduce as we have done for the
previous steps. Also, if the iterated methods are
being used, there is no symbolic expression for the
results.

Y

2P Bl O

Notice that the formulae presented in this section
are correct for any network of relationships which
has the same topology as this example. This pro-
cedure can be completely automated, and is very
suitable for use in off-line robot planning.

v e

of this stochastic map method, we will present an
O, example of a geometric constraint — four points
] known to be arranged in a rectangle. Figure 7
shows the estimated locations of the four points

¥y with respect to the world frame, before and after

; introduction of the information that they are the
vertices of a rectangle. The improved estimates are

‘ overlayed on the original estimates in the “after”

W diagram. We model the rectangle constraint as we
would any other sensor {with mean-sero noise):

'

3 s = h(x) +v.

LIPA T TS P L L L
..'_:\:','.';'.:s;',‘.:\,\j: ot T
) ',s :. v l'_\_ S 'u..\ o~ RN WA

As a further example of some of the possibilities-

APPLYING THE RECTANGLE CONSTRAINT

Figure 7:

In this case, we need a pseudo-sensor which
measures the “rectangularity® of four points —
X;,X;, Xk, X, labeled counter-clockwise from the
lower-right corner:

i~Z;+Zk— Tt
z= Yi~Yitve—u
(s — z5)(zx = 2;) + (v — ;) (v — v5)

The first two elements of 2 are sero when oppo-
site sides of the closed planar figure represented by
the four vertices are parallel; the last element of
% is zero when the two sides forming the upper-
right corner are perpendicular. Given four esti-
mated points, the prior conditional value of z and
the estimated covariance can be computed. The
new information — the *measurement” returned
by the pseudo—sensor — will be drawn from a dis-
tribution with mean 0 and covariance determined
by how much tolerance in the “rectangularity” pa-
rameters is acceptable. In fact, if we are going to
impose the constraint that the four points are pre-
cisely in a rectangle — i.e., there is no measurement
noise, C(v) = 0 — then we can choose h to be any
function which is zero only when the four points
are in a rectangle. If, however, we wish to impose
a loose rectangle constraint, we must formulate the
function h such that z is a useful measure of how
the four points fail to be rectangular.
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6 Discussion and Conclusions

This paper presents a general theory for estimating

uncertain relative spatial relationships between ref-

erence frames in a network of uncertain spatial rela-

tionships. Such networks arise, for example, in in-

dustrial robotics and navigation for mobile robots,

because the system is given spatial information in
the form of sensed relationships, prior constraints,

relative motions, and 80 on. The theory presented

in this paper allows the efficient estimation of these
uncertain spatial relations. This theory can be
used, for example, to compute sn advance whether
a proposed sequence of actions (each with known
uncertainty) is likely to fail due to too much ac-
cumulated uncertainty; whether a proposed sensor
observation will reduce the uncertainty to a toler-
able level; whether a sensor result is so unlikely
given its expected value and its prior probability of
fallure that it should be ignored, and so on. This
p iper extends the theory of state estimation to in-
ciude information in the form of uncertain spatial
relations between many different frames.

The estimation procedure makes a number of as-
sumptions that are normally met in practice. These
assumptions are detailed in the text, but the main
assumptions can be summarized as follows:

o The angular errors are *small®. This require-
ment arises because we linearize inherently
nonlinear relationships. In Monte Carlo sim-
ulations|Smith, 1985], angular errors with a
standard deviation as large as 5° gave esti-
mates of the means and variances to within
1% of the correct values.

o Estimating only two moments of the proba-
bility density functions of the uncertain spa-
tial relationships is adequate for decision mak-
ing. We believe that this is the case since
we will most often model a sensor observation
by a mean and variance, and the relationships
which result from combining many pieces of in-
formation become rapidly Gaussian, and thus
are accurately modelled by only two moments.

The theory presented in this paper can be ex-
tended to adaptively improve the models it uses.

For example, if the noise term in a camera model
is too large, the observed errors will be smaller on
average than expected. Adaptive filtering methods
can be incorporated into the methods described to
improve model estimates.

Although the examples presented in this paper
have been solely concerned with spatial informa-
tion, there is nothing in the theory that imposes
this restriction. Provided that functions are given
which describe the relationships among the compo-
nents to be estimated, those components could be
forces, velocities, time intervals, or other quantities
in robotic and non-robotic applications.
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Appendix A AL

)
)
}
i
: :: o
: Earlier in this paper we presented formulae for computing the resultant of two spatial relationships .
) in two dimensions (three degrees of freedom). In three dimensions, there are six degrees of freedom: ) :n "‘\‘.
translations in z, y, z and three orientation variables: ¢,0, . There are two common interpretations of . bV
l these orientation variables—Euler angles and roll, pitch, and yaw, defined below. L Oy
» L"‘.-P$R “
¥ Y,‘f\q‘;’ ; .
f PO
N Euler Angles ‘_-.::it,.},,. 3
;: :":-. \“:\."\
\ Euler angles are defined by: AN
| i
b Euler($,0,9) = Rot(z, ¢$)Rot(y', 8) Rot(z", ¥) '\.j{:"js}i
\ ANEIN
: ONGOR:
N The head to tail relationship is then given by: .h'; }"::.-:
s &,
A AN
1 z3 k\ﬂu o 3% %
| ° i’ N
‘\ X3 = 23 = TE ] ;..::‘:;‘:-'.-.-
b és Ag P NI
) 63 DN N
: ¥ oLl
". L 3 > ‘.:i.‘.( ‘:.'
:’ L) L_—_A_-i{ )
! where Tg and A are defined by: af T
. v&'t 23
. z3 E atan2(ay,,az,) Mt
E Te=Ry | v |+| wn |, A= atan2(az, cos ¢3 + ay, sin ¢, as, DA '_',.-}.:
z3 2 atan2(—n., sin @3 + ny, cos $3, —0,, sin ds + oy, cos $3 RRSLG A
’ Y
X AN )
! where R, is defined below and a,, etc. are the corresponding elements of the compound rotation matrix b e
g Rgj, defined by R3 = R;R;. Note that the inverse trignometric function atan2 is a function of two : ':-F._:.-_ "
5 arguments, the ordinate y and the abscissa z. This function returns the correct result when either z or .t‘r:-,':}_ K
:: y are sero, and gives the correct answer over the entire range of possible inputs [Paul, 1981]. :«.:}:;-L J‘-C
The Jacobian of this relationship, J, is: ':«‘,_J‘x-’ :
el
\ = _Oxs _ | Tsxs M Reuwer Osxs ] . 7 »
. a(x1,x3) Osxs K, 0O3xs K ?"a -
)
: RN
g -(VS - !h) (33 - 21) C?8(¢1) 02,232 — Nz, V2 |h\'|.::§|‘
) M= Ty — I, (23 — 21) sin(¢,) Oy T2 — Ny, Y2
: 0 ~zgcos8f; cosy; + yacosfysinyy — z28inf; o0,, 22 — ng, Y2 o -
l‘ :
., r::i-. :‘1.
Al 108 ARARL N
) P i Jeiny
\ Nz, Oz, Gz, ;‘}' s \
k Ri=|m, o o, |= RNNN
i N, O3 Gy ":‘.\pf:' -
A
N AN,
E D—20 :'c.‘ .\'o:‘n
RN
ACACALN
NN
. '. 'Fo '.\" o,
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-
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cos ¢, sin b,
sin ¢, sin 6;
cos b,

—cos ¢y cosf; sin ¢; — sin ¢y cos ¢
—sin ¢; cos 8, sin )y + cos ¢; cos ¢,
sinf; sin ¢,

cos ¢ cos @y cos Y, — sin ¢, sin ¢,
sin ¢, cos 0y cos ; + cos §, siny,
—sinf; cos ¢,

[ 1 |cosfysin(gs — ¢1)]/sinfs [sin 8 cos(vs — ¥3)]/ sin b ]
0 c08(¢3 - ¢1) sin 92 Sin(¢3 - Qﬁg)

K,
0 sin(gs — ¢1)/sindy [sin 8y cos($s — ¢1)]/ sinb; |

[ [sin 6, cos(@3 — $1)]/sinbs [sin(y3 — ¥2)]/ sin s 0]
Kg = sin 02 liﬂ(d)a - %) COS(lﬁs - VJQ) 0
| [sin 8, cos(¢3 — 41)]/sinb3 [cosfs sin(s — ¥2)]/sinfs 1 |
The inverse relation, X/, in terms of the elements of the relationship x, using the Euler angle definition,
is:
z —(nzz + nyy + n,z)
v —{02z + 0yy + 0;2)
_ | —(szz+ayy+a,2)
-4
-¢

where n, etc. are the elements of the rotation matrix R defined above.
The Jacobian of the inverse Euler relationship is:

b '} —nT 0 0 -1
J=-€1=[ R N], Q= 0 -1 o0 |,
8x 03)(3 Q -1 0 0

—[osz + 0py + 0,2]

—ns;zco8d — nyysing + zcosfcosy
~[nzz + nyy + n,z
0

—0,zc08¢ — 0,ys8in¢g — zcosfsiny
—@:Z¢c08¢) —a,ysingd + zsin b

NyZ — nsy
OyZ — 03y
ayZ — 83y

N

Roll, Pitch and Yaw Angles

Roll, pitch, and yaw angles are defined by:
RPY(4,6,9) = Rot(z, ¢)Rot(y',0) Rot(z", ¥)

The Jacobian of the head-to-tail relationship, with roll, pitch, and yaw variables is given by:

ST T T TT T T YT T s TesSsasTITRR W R R R T TN E-R- R e TR TV EEES LY VY eV, "R Y R Y W Y _E_ = T ® am s g AT E
L B " . g TR F 5
“‘
€ O N

J= Ox3 | Jaxs M Rrpy O3xs
3(x1,x2) Osxs Ki; 0Oixs Ko
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—(vs —w) (23 = 21) cos(¢1) 85,42 ~ 02,22
M= Zy— 1 (23 ~ z1) sin(¢y) @y, Y2 — Oy, 22
0 —z3co80) —y38inf; sinyy; — za8infy cosy; a,, ¥z — 05, 22

=
|
3
<
s
©
=
f
<
-
I

cos P cosd; cos¢)sinf;siny, —sing, cosy, cos P, sinédy cos ¢, + sin ¢; sin ¢
sin ¢ cosd; sin¢g,sinf; siny; + cosP; cosyf; sin @, sin by cos Y — cos ¢y sin ¢,
—sinf, cos 0, sin ¢ cos f; cos ¢y

"N

FoTy

e
y 4y
7 ¥

W

[ 1 [sinds sin(¢s — 41)]/ cosfs [0z, sin Y3 + az, cos 3]/ cosbs ] N )
K,=]0 cos(és — ¢1) cos 6, sin(és ~ 4,) @ 4
[ 0 [sin(¢s — 41)]/cosfs  [cos By cos(gs — $1)}/ cosds RSN
RN
[cos 83 cos(ys — ¥2}]/ cos b3 [sin(¥s — ¥3)]/ cosfs 0] \:_ ::!‘_}.;_-:
K; = cos 03 sin(ys — ¥2) cos(¥s — ¥2) ] e,
| lag, cos ¢s + ay, sin d3|/cosfs [sinf3sin(ys — ¥2)]/cosfy 1 | T

Note that for both definitions, the Jacobian has been simplified by the use of final terms (e.g. z3, ¥3).
Since the final terms are computed routinely in determining the mean relationship, they are available
to evaluate the Jacobian. Examinatic:: of the elements indicates the possibility of a singularity; as the
mean values of the angles approach a singular combination, the accuracy of the covariance estimates
using this Jacobian will decrease. Methods for avoiding the singularity during calculations are being
explored.
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Appendix E

DETERMINING AN OBJECT’S LOCATION
IN A ROBOT HAND BY MEANS OF VISION
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| ) An object being grasped by a robot may not be precisely aligned with the rq_',:.g::.',-;.
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for instance, even if identical pegs are grasped, discrepancies in their locations in

<

the robot’s hand will prevent proper insertion of the pegs into the designated

fixture holes. w.
A I:J‘__- _:.'..
. Ingngals
N Practical methods are described for calculating misgrasp location relative to -".:-r'.‘_é'::-'j'.‘:
L4 >
n AN
- ideal grasp location without any need for the complexity of geometric modeling ".»j-}"{'_:f}
and computation. A least-squares-error method and converging process are R
NS AN
~ . . . . . KR
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I INTRODUCTION

So far, the sensory capability of typical robot hands is not even close to that
of human hands. A robot’s hands, for example, cannot measure part slippage
while actually holding a part. One must also consider the locational error of the
robot hand servomechanism in object manipulation. This error combined with
the relative error of the object held, may make it impossible for the robot’s hand
to mate that object with a second object in a known location (e.g., in a fixture).
To overcome this problem, we must “‘measure’ the location of the held object
relative to other objects (e.g., to the fixture). One way to perform such
measurement is to bring the grasped object to a fixed location (‘‘viewpoint’)
under a camera, measure the object’s binary~-image features, and compare them
with those in a reference location, thus obtaining the locational error of the

object.

Although this approach is applicable to general error detection and
correction within six degrees of freedom (x, y, z, O, Ay, Tx)’ this paper deals with
error measurement and correction in only three degrees of freedom--x, y, and 0,.
The results nevertheless have practical application because a typical robot hand
consists of two parallel planes that constrain the errors in the grasped object to

only three degrees of freedom, arbitrarily assumed to be along x, y, and O,.

Our method minimizes the difference between the changes in the image
features and the normalized (x, y, O,) errors by using least-squares fitting. We
use linear approximation for the relationship between (x, y, Oz) errors and the
corresponding changes in the image features (area, perimeter, radii, movements,
and so on). Therefore, our technique is iterative and is limited to small grasping

errors (e.g., £ 30 mm in xory and 4+ 15° in Ol).
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O OBJECT LOCATION IN A ROBOT'S COORDINATE SYSTEM

o e
]
4

TP

Three coordinate frames of the robot system are defined in Figure 1--R

)
‘," (robot frame), H (hand frame), and C (camera frame)--such that T is translated
v (not rotated) relative to R and the principal ray of the camera is normal to the x-

y plane of R. In Figure 2 we define a coordinate frame O attached to the object
N such that its x and y coordinates are parallel and collinear with x and y of the

o~
N hand frame, respectively. We also define the z axis of the flange frame to be
, collinear with the y axis of the hand frame, and denote the distance between the
'\ flange frame origin and the hand tip by z hand.
.
Let ('l‘h) view, (Tnange) view, and Than p denote the arm-to-hand, arm-to-

. flange, and flange-to-hand coordinate transformation [Paul (1981)],

e (TyIview =(Tp,, Iview * Ty .
2
o %
! Figure 3 shows five coordinate frames: ROWGENY
A O
R e Arm frame R. ;;E';:

N v R

e Hand reference frame H, defined during a training procedure (to J

o be described later). e
. b
: . . . ' I '.\{‘-}“f

2 e Object reference frame O, also defined during the training HOSER N
2 procedure. ‘?;::5‘.::{'?{

A & )

' e Object frame O, which is attached to the grasped object in its

o actual, erroneous location.

. e Hand frame H’, which is reached after successive arm motions (to

be described later) until frame O’ converges upon and then
: overlaps frame O.
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Denoting a general transformation from frame F1 to frame F2 by [F1/F2)
[Smith and Nitzan (1983)], and denoting [H'/H] by DIFF, we obtain

DIFF = [R/H'|'! * [R/H]

Since we have assumed that the errors in the grasped object are constrained to be

only along x, y, or O,, we obtain [Paul (1081)]
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cos dOz - sin dO’ 0 dx

sindO, cosdO, 0 dy
DIFF =
0 0 1 0

0 0 0 1

where dx, dy, and dO, are the differences between the corresponding (x, y, O,)

values of frames H and H'.

DIFF values are computed for an array of (dx, dy, dO,) values by grasping
the object in different locations. These DIFF values are stored and then applied
in the following way to correct for the corresponding grasping errors. The robot
hand holding the object is moved to the reference location H underneath a sensor
to the place where the training procedure has been performed. The sensor data
are processed (as will be described later) to obtain the corresponding DIFF value.
The resulting DIFF value is then used to offset the next hand transform, [R/H], ,,
when an action would normally occur if there were no grasping errors, by
multiplying [R/H], , by DIFF. For each grasp j we correct [R/H], , as follows:

[R/Hlc,,,; = [R/H],,, * DIFF; .
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I IMAGE PROCESSING

A. Global and Local Features
We use a binary visuai sensor to measure the object's image features and
correlate them with the value of DIFF. Two types of image features are
distinguished: global [Gleason and Agin (1978)] and local [Bolles and Cain (1982)].
1. Global Features
Global features are those that can be obtained from the image when the
entire object is visible and not touching any adjoining objects. In the calculation

of global features, the object is assumed to be rigid. Global features are

A
[
-4
W)

(A

rr
P4
A4

]

computed from the outline of an object, not from the regions enclosed within that

outline.
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Global features may be classified according to their dependence on the
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position and orientation of an object. A few examples are given below.

o

R AY

v

a. Independent Global Features

o
(5

Lo
.I.,

¢ u"l
LYy

Some commonly used features that are independent of position and
orientation are

>
A
>
-

:

B V'f‘,'(‘.‘"
e

¢ NCELLS--Number of pixels in the blob
PERIMETER--Perimeter of the blob
MAJOR--Length of major axis of the best-fit ellipse'
RMIN--The minimum radius from the centroid to the perimeter.

HOLERATIO--Ratio of the holes area to the total area.

.Thc best-fit ellipse is determined by finding an ellipse whose second moments are equal to those
of the blub.




PPITS

Some commonly used features that depend on position and orientation are

¥ ¢ XMIN--The minimum x image coordinate of the blob

:i: o XMAX--The maximum x image coordinate of the blob

i"

_ e XPERIM--The fraction of the perimeter in x direction

M

e YPREIM--The fraction of the perimeter in y direction

| ¢
&
* o XCENT--The x coordinate of the blob’s centroid

o YCENT--The y coordinate of the blob’s centroid

53
RN
Fa e THETA--The angle of the major axis of the best-fit ellipse
WNJ

- e XDIFF--The width of the blob in the x direction

o

1 o YDIFF--The height of the blob in the y direction

]

5 e CGDIST--The absolute distance of the blob's centroid from the
" origin

¢ e SIGXX--Summation of x squared

e SIGXY--Summation of x * y

3 e SIGYY--Summation of y squared.

4

4 Because the above features are independent of position and/or orientation,

' they are most useful in eliciting the information necessary for determining object
. , location in robotic applications.
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2. Local Fealures

Local features are image features that can be detected in a small window;
e.g., small holes, corners (concave and convex), and the like. A matching method,
called the Local-Feature-Focus Method, has been explored and developed to
efficiently locate partially visible, two-dimensional objects [Bolles (1982)]. This
approach is applicable te the recognition and location of complex industrial parts
that may contain multiple occurrences of local features. The matching process is
robust because it bases its decisions on unique clusters of features; it is also
relatively fast because it concentrates on the most distinguished features, which

are selected automatically.

B. Geometric Features for Determining Object’s
Location in a Robot’s Hand
The problem we are dealing with here is that of determining, on the basis of
an object’s binary image, the location of that object as it is being held in a robot’s
hand. The use of global features is ruled out because the object is only partially
vistble. The use of local features is also excluded because there may not be
enough of them to locate the object. To surmount these obstacles, we use the

method deseribed below.

The image seen by the TV camera includes an image of the robot’s hand.
Since the latter image is unwanted, we “cut it off’’ by defining a window that
includes only a portion of the object’s image; we then measure the global features
of that portion. Since the object is only partially viewed, all these global features
may vary as the object’s location varies under a fixed camera and are thus
sensitive to the object’s position and orientation. Finally, we use a Jacobian
(called sensitivity matrix) that ascertains the correspondence between the object’s
locational perturbations and the resulting changes in the values of the global

features (see Section IV).
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Incidently, the foregoing method may also be used to inspect the shape of an
object in a fixed location. Any shape defect will manifest itself in a

commensurate variation of the object’s global features.

As will be described and explained in the next section, the sensitivity matrix
is constructed experimentally by perturbing the object sequentially along each of
the three degrees of freedom (x, y, and Oz), one at a time, and computing the
blob’s feature variations divided by the amount of the corresponding

perturbation.

Fifteen global features have been selected according to two criteria:

e Maximum sensitivity to object location
e Feature independence.

Figure 4 shows the resulting 15 x 3 sensitivity matrix, classifies the selected

15 features according to their locational sensitivity, and lists their code numbers

in the SRI vision module.

A mathematical model is required to convert the geometric-feature changes
into locational changes. In addition, an algorithm for using this model is needed.

The next section describes both the required mathematical model and the

corresponding algorithm.
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Feature Code " Feature

{in SRI Sensitivity
Vision Module Feature Derivitives Classification

(8) dNCELLS dNCELLS dNCELLS

dx (34 do,

dPERIM dPERIM dPERIM

Position- and

z orientation-
sengitive
(because of
image windowing)

dax ay do,

dx dy do,

dMINOR dMINOR dMINOR

dX dy do,

dTHETA dTHETA dTHETA

ax av do,

dXDIFF

ax ay do,,

dXPERIM dXPRIM dXPERIM

Orientation-

dx dy doz sensitive

dYDIFF dYDIFF dYDIFF

X ay do,

dYPERIM dYPERIM dYPERIM

dxX 4y do,

dXCENT dXCENT dXCENT

dx dy do,

dYCENT dYCENT dYCENT Position-
sensitive .

dX dy do,

f*'._ :'.

dCGDIST dCGDIST dCGDIST

v
o &

dax dy d0z

dSIGXX dSIGXX

AR

dx day dOz

Position- and
dSIGXY dSIGXY orientation-

sensitive

dx dy

dSIGYY

dy

FIGURE 4 "SENSITIVITY MATRIX OF GLOBAL FEATURES
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" IV MATHEMATICAL MODEL AND ALGORITHM

(j A practical method for computing the location of an object is described in

) this section. It converts geometric features of an object’s image into an object

') location vector based on a linear mathematical model that is calibrated

- empirically. This technique does not require the complexity of geometric

: modeling and computation. The model is essentially linear for small deviations

‘ from an object’s prototypical training location. The proposed algorithm
employing this method enables the robot to attain the desired location so that the

S grasped object’s location will coincide with that of the prototype.

4\ A. Mathematical Model

) Several geometric-feature changes in an object's image can be used to

; determine the three-dimensional position and orientation of that object. For

'f: sufficient information to be provided, the number of feature perturbations must
be greater than or equal to the number of parameters to which the system is

: sensitive.  In the case of the locational sensor, the number n of features measured

f- must in general exceed 6, because a larger number of features is likely to increase

5 the probability that every locational dimension will be well represented.

S The n features that are dependent on position and orientation can be

. described as components of a feature eigenvector

The location of an object in the robot's frame can be described by the

vector
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T{ The casual relationship between the feature eigenvector and the location vector el

‘,

may be expressed by

ot
x4
-,

.I

- f=TFP) |, s

) I’ )

i WAL
where T represent a nonlinear transfer function with multiple inputs and outputs. AT

Al N

Q To provide an algorithm that will compute an object’s location from the feature ;‘;'j

- - ~ o
E: eigenvector, we have to invert the T(P) form. We can use empirical calibration to -j:ﬁ}.
A - N

produce a linear approximation of the function T(P), then utilize it as a tool for :“

4 controlling position and orientation. %94
e .
R o

2 We assume that, as a function of position and orientation, all the features
e
» will be continuous, as will the first derivatives. Let us denote the reference
> location by
& _
3 P0 = (x0,y0,20,0,0,A 0,T.0) .
X4 y X
*.; The corresponding location of the sample object defines the reference feature " .
Ly v“’-
::E eigenvector as follows: C}
" o’
~! b
= f0 = T(P0) = (0,,10,,10,,.......... fo,) :
o~
.& The nonlinear transformation T(P} is dependent on many parameters, such as an E" '
; object’s geometric shape, the reference position of the sample object relative to
camera coordinates, the kind of independent feature groups that have been N
o' - t e
o~ computed, etc. Hence, as a first step of approximation, the location vector P will o~
;: be obtained for small locational variations. Since we have restricted ourselves to E\
) . . . . ol
small deviations, we can assume that the transformation of an object’s location to :
{504 o . e . = 5 . .
.\'_; its image features is linear; for a given P near PO, we may use the approximation
I
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P
X __ 4T _ -
B T(P) = T(P0) + -~ | * (P-P0)
dP |PO
b2 Denoting the Jacobian matrix of the function T, evaluated at the reference
location, by S we can write
I }
2 f =10 + S*(P - P0)
'_: S symbolizes the sensitivity matrix (see Section III).
3
S is computed during the training (i.e., calibration) procedure, one column
at time. This involves moving the robot's hand tip a small distance Dx, Dy, and
M Dz relative to the object’s reference position and, in the same manner, rotating
*
. the hand tip by small angles DO, DAy, and DT,. Meanwhile, the variations in
image features are computed and recorded, after which the following sensitivity
Y matrix is constructed:
P4
2 t‘lf1 dfl t:lf1 d:f1 t‘lf1 df1 011 Df1 Dfl Dfl D11 l)f1
N e mmm m—e e ——m —— e mme mmm e ——— ——
: dxr dy dz dO, dA  dT, Dx Dy Dz DO, DA DT,
! df2 df2 d12 d12 df2 d12 th sz sz sz D!2 sz
3 e e e e ——— — e —me ——— ——— —— ——
A dx dy dz do0, dAy dT, Dx Dy Dz DO, DA’ DT,
) § = ~
dfn dfn dfn dfn dfn dfn Dfn Dfn Dfn Dfn Dfn D!n
’ dx dy dz d(Jz dA’ d'l'! Dx Dy Dz DOz DA’ DTx
.
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Image features differ in their positional sensitivity according to object shape.
Therefore, the use of redundant independent features would improve the response
of the Jacobian S to a large variety of object shapes. It also is well known that, if
the data points are independent and spread randomly, then the more of them
there are (features, in our case), the better will be the estimation. It is the

locational coordinates [Nahi (1976)] that we are estimating in this instance.

Because the number of image features exceeds the number of the required
locational coordinates, of which there are three (x, y, O,) in our application, S will
became rectangular, thereby precluding the inverse of S. This means that the
locational vector cannot be solved directly by the multiplication of S! * f;

instead, a pseudoinverse of S must be used. Letting

f=1-10

P’

P-Po

we are actually trying to solve the following overdetermined equation system,

which does not have a unique solution:

Px’ t!’
Py’ f,’

s . Poz' =
tn’
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A location Pe¢’ can be found such that the computed product S*P¢’ fits the :{ﬁ.“:\.’ ":
2 s . . = LN
o measured/computed feature f optimally. The residual vector R is defined by {‘:.‘_’;3",- .
: - - — ‘l.'. ] "
R=t-S*Pc , i B s
. _ ST
:: where Pc’is the computed location vector. Since minimizing the normal of the ',:;?:.: “
) — — 3y
residual is the same as minimimizing the squares of R components, R is simply a :2‘.;\.'3 A
¥ ! d
" least-squares fit of the locational parameters to the redundant image features, ' b/,
(F- S * Pe’)T *(F- S * Pe') ---> min. LR
il DY
< :x'_.’;.:'_ "’.<.
3 The foregoing is like computing a plane that fits data containing more than SN,
=7\ .
three points as well as possible. The more data points are given, the better the
X estimated plane. The goodness of the fit is measured by the minimal sum of
5 distances of the points from the plane. In our case, however we are dealing with
" image features rather than points in a Cartesian-coordinate system; the desired
" product here is a three-dimensional locational vector. The solution (see [Strang
p (1980)]) is
N
N
N - -
: Pe' = (ST*gyl*sTxp
3 where (ST * g)1 * ST is called the pseudoinverse of the sensitivity matrix S. Note
: that ST * S is always a square matrix. For instance, given fifteen image features,
S is a 15 x 3 matrix, ST a 3 x 15 matrix, and ST * S a 3 x 3 matrix that can be
. inverted.
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B. The Algorithm
1. Sensor Range Extension

The estimation method described in Section III-B is restricted to an
extremely small range of measurable variations in the object’s location. The
higher the required accuracy, the smaller the range. This is because of the
nonlinearity of the transformation function of the image-feature vector with
respect to the locational vector. The smaller the changes, relative to a reference
location, the better will the linear approximation fit the real nonlinear function

T(P) around the reference point.

The algorithm proposed here for extending the measurable range of an
object’s location is valid as long as the tangents of T(P) do not change directional
polarity while the object moves beyond the linear region. Therefore, a procedure
consisting of several steps (take a picture, compute feature changes, utilize the
pseudoinverse to compute l-)’cj, and move by -I_”cj--with j denoting the number of
the steps) will cause a grasped object to move toward the prototype location. The
stated condition, i.e., that the tangent outside the linear portion of T(P) will not
change polarity, guarantees that the object will move closer to the reference
origin. On the other hand, while the object converges to the linear region of
T(lg), the errors of the least-squares estimation become smaller. This is why the

foregoing procedure converges such that a grasped object overlaps with the

A vy
‘-.ka‘-u*y

reference object.
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The correction procedure would terminate when P’c coordinates (dx, dy,

4
4

L
4

dO,) are smaller than the required sensor threshold error. Figure 5 shows the
result converging coordinates x-y to the origin. The experiment was done on an

object that moves in a plane in x, y, O, coordinates but only x-y was plotted.

Experiments show that, even when one of the three coordinates changes
polarity, the correction procedure does converge. Experiments confirm that the

coordinates are mutually dependent; when two coordinates move closer to the




depends on the defined

ire

»

[a)]
Z
<
o
[
(@]
[+ ]
@]
1
«
u
O
[72]
w
a
o
-
O
w
=
<
[+
-
-
<
Z
Q
-
<
Q
(o]
-
-l
<
Q
2
wn
w
o
D
Q
w

origin, the third one does too. The number of iterations
d.

range and the accuracy requ




i

.l
ey
o,
‘n
-
e

i Sl ¥ D B W

9=

>

4,

YA
\.j\ AR

- « L v v, v, ..
~f\l'- o, .:.-

2. The Algorithm

The algorithm is illustrated diagrammatically in Figure 8. The diagram
describes a section of automatic object location, as would be required in automatic
assembly. First the robot grasps a reference object and a hand tip ‘‘actpoint”
(actuation point) at the assembly station is defined. Second, the feature model
must be calibrated, and the system trained for a reference object at the
“viewpoint” where the camera sees the object. This involves computing and
recording the sensitivity matrix, one column at a time, of feature derivatives with
respect to each locational degree of freedom. Third, the calibrated relation
between features and location is inverted according to the least-squares criterion;
in other words, the pseudoinverse of matrix S is computed. Fourth, the robot
grasps an object, moves to the “viewpoint,” and the feature vector =110 is
computed. Then the pseudoinverse of the sensitivity matrix multiplies the feature
vector to provide locational coordinates. Finally, the robot is instructed to move

the object by -P¢’ toward the reference location, as was defined in the training

procedure.

Several iterations of picture-taking, computation of I—’c, and moves by -Pe
may be performed until each of the object’s coordinates is close enough to the
reference location to be under the error threshold. When the robot’s hand tip is
in this location, the controller computes its transformation DIFF relative to the
reference hand tip location determined during training. The last step is to
instruct the robot to move to the ‘“‘actpoint'’ location that compensates for
misgrasp: i.e., the hand tip is moved to the (T, ) actpoint*DIFF location. (To
compute DIFF, we use a routine called HERE VIEWPOINT:DIFF, which is a part
of VAL-II, the program language of the robot controller.) Finally, the system is

ready to grasp one more identical object.
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[ROBOT GRASPS REFERENCE OBJECT

MOVE BY MANUAL CONTROL, DEFINE HAND’S ACTPOINT
or example, a peg could be inserted into in a hole

MOVE ROBOT”S HAND BY MANUAL CONTROL
TO VISUAL-CHECK STATION--DEFINE VIEWPOINT

TRAINING PROCEDURE
ROBOT"S HAND TIP MOVES BY Dx.Dy,DOz'
and SENSITIVITY MATRIX IS COMPUTED

PI T T
COMPUTE: S = (S*5) *5

V.
<

ROBOT GRASPS AN OBJECT and MOVES TO VIEWPOINT]

e
<

TAKE A PICTURE
COMPUTE: f° = f ~ £0

P1 /K
COMPUTE LOCATION: Pc” » § LN 3

LOCATIONAL COMPENSATION
MOVE ROBOT"S HAND TIP BY -Pc”

N

Dyc < Dyth
Dozc § DOzt
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MOVE TO (T, )actpoint * DIFF LOCATION

N
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[ STOP

FIGURE 6 LOCATIONAL-CONTROL ALGORITHM
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V SYSTEM DESCRIPTION AND DEMONSTRATION

- e e
2N
P
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A. System Description

) NI
). ¢ \J #
¥ . Introduction \ !
3 1 niroductt i
The subsystem we used for our experimental demonstration is part of a :"Q

* .
: hierarchical, programmable assembly system. The latter consists of functional ?,', -
0 . . . . -
Rq modules, each including a major device (e.g., a robot arm) or a sensor (e.g., a -

o ‘.

vision processor), as well as auxiliary devices (e,g.,an end-effector, such as a
4 gripper). Each module is controlled by an LSI-11 computer, which stores reflex,
N bootstrap, and program routines for carrying out that module's functions. These
computers are connected with one another and with the main system computer by
means of a fast 10-MHz Ethernet communications network, using a single-coaxial-
cable bus [Smith and Nitzan (1983)].

Figure 7 uses a block diagram to describe the assembly system; some
modules that we did not use are shown within dashed lines. Our subsystem
included one PUMA robot with its controller, an SRI vision module with a black-
and-white graphic-display terminal (TEKTRONIX 4014-1), and an oscilloscope as
an x-y image monitor. The real-time system controller is a DEC VAX-11/730, and

S5

the multiuser software-development system is implemented by a VAX-11/750.

» The high-level programming language used is ‘*‘C''--developed and run on the ‘f-{
N VAX under the UNIX operating system. The ‘C" programs operate driver E:j
y routines that enable the software functions to run on the SRI vision module or the
I PUMA controller. %
Figures 8 and 9 show the part of the assembly system used by us. Figure
1 8 shows the manipulator module, including the PUMA robot and its end-effector,

and the PUMA controller with its module computer mounted under the arm's

supporting stand. The terminal depicted is connected directly to the robot's

23
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oy controller and controls the robot by running VAL-II programs. This temporary ;E!;‘-g::’

connection was used for debugging. The control box on the terminal side is used :;2'::.‘:\
¥ ,_\:;. '

for manual control of the robot and for the teaching mode. Figure 8 also shows a

black table beneath the robot’s hand that has a grid of holes; the vision module is

5 RN
. mounted under the supporting stand of the grid table. Two of the three lamps we :::::-?":-':
: used and the TV camera are shown suspended from the ceiling. Figure 9 contains Ef’:-:::";
)
the terminal that is connected to the VAX-750 and from which the entire system
: is operated through the Ethernet bus, as well as the graphic-display terminal and
the oscilloscope that serves as an x-y image monitor.
o
2 2. Module Types
The module computer contains a processor, network interface cards,
~ memory, and input/output interface cards for the analog and digital signals from
N and to the auxiliary sensors and devices of a module. The specific modules we
employed are described briefly below.
N a. Manipulator Module
A The manipulator module consist of a Unimation PUMA 560 robot and end-
; effector. The latter consists of a six-axis force/torque sensor mount on the
[ wrist(not used by us) and a pneumatic two-fingered (flat plates) hand.
The PUMA controller is equipped with a VAL-II program that controls the
. arm. The module computer provides a means for controlling the hand, reading ;\ .
X sensors therein as well as in the wrist, and for moving the arm indirectly b RO
y by RS
communication with the PUMA controller. z’:i
:.- '.',:.-
Here are a few examples of VAL-II functions used by us: :";::',-'.'}
LA AN
e WHERE (result)--Returns the location of the robot's hand tip. el
e
\'.A_'_'h ?.
e MOVE (location)--Moves to the specific location. -
53 -
oAl
N
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q, e HERE (location variable)--Defines the value of a transformation

B to be equal to the robot’s current location. In our application, the

\ “viewpoint” transformation is defined; then HERE

VIEWPOINT:DIFF computes the right-most transformation

DIFF. DIFF defines the current location relative to the

g “viewpoint’ location in 4 x 4 transformation form.

"\ b.  Binary-Vision Module

" The binary-vision module inciudes an SRI vision module [Gleason and Agin

N (1979)] with 128 x 128-element solid-state camera (one could attach up to four

R cameras), an LSI-11 computer module, and three lamps for high-intensity

o illumination. The camera is mounted on the ceiling, from which it sees the

; robot’s hand-tip. A preprocessor in the SRI vision module divides the camera

’,: video signal into binary (either black or white) data. The LSI-11 computer of the

9 SRI vision module includes an entire library of vision subroutines. The heart of

; image processing in the vision module is the connectivity analysis routine.

"

¥

) Two of the most important binary vision-module functions used by us are
described as follows:

4 Picture (BlobCnt)

i

o Take a picture, perform a connectivity analysis of the image, and return

" the number of connected regions (blob) and the blob centroid (BlobCnt)

‘ that is computed by accumulating the first moments of the area of the

;i blob about the x and y axes.

: GetFeature(BlobN, FeatN, Result)

; Return the value of a blob feature (indicated by the index FeatN) of a

: selected blob (indicated by the index BlobN). Examples of such features

. are blob area, perimeter length, and moments.

. We have used the capability of the vision module to specify a rectangular

4 “window”’ in an image, outside which data are ignored. The purpose of our

‘ST “windowing’’ application is to view the object only partially, ignoring the part

: that touches the gripper.
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%E one meter, and one pixel of a 128 x 128 array was equivalent to about 0.4 mm.
% B. Experimental Demonstration
v 1. Utilizing Precise X-Y-© Manual Table
T Our first experiment was to run the proposed algorithm; instead of the
E manipulator module, however, we used a precise x-y-6 manual table. The object
* was placed on the table, entirely visible to the camera. The table has an error of
X 0.001" for translation, and 0.01° for rotation.
' We trained the system (construction of the sensitivity matrix) for a
Ny translation of Dx = Dy = 0.1* and a rotation of DO, = 2°. The technique was
; to subtract from the object’s current location the xe, ye, O,¢ computed by the
2 system--in other words, to compute (P)j-(Pc¢)j+1 manually. This procedure was
| repeated until it converged to the origin. The accuracy we achieved was 0.005*
y (0.Imm) in x , y, and 0.4° in 4, within a range of 30 mm in x, y, and 18° in 6.
535 The compute-move process was terminated within 4 to 5 iterations.
i

2. Determining Object Location in Robo! Hand
3.: Figure 6 diagrammatically illustrates the sensor algorithm, including the
~ training procedure, the process of computing location, and the processing of the
? correction transformation DIFF. A special software package
) implementing that algorithm was written. This section shows a series of pictures
j taken of one . mong many experiments performed, recording the sensor processing
‘: step by step.
8
N
0
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A standard oscilloscope with external x, y, and z inputs is used as an x-y
monitor of the binary-image input to the vision processor. A graphic-display
terminal, a TEKTRONIX 4014-1, is used to display processed images as outlines.

We used a 75-mm, 1:1.4 lens. The distance from camera to viewpoint was about

o Mg Ros Ba b ReV Byt g 8,0 9ot Bt Gat Ryt W Wp® et ¥av gt Wa® a2 Sat But B Qa¥ Buv WY Cas 05% Fev Hut Bg* " Sgt e b

IR ’t"v’ IS
) (N W3
R

e

>
=
Z
=
-’_

Ay
" ¥ A N
sl,:'t > ,}r.ﬂ*_'.'._f‘?

- - L
0 e,




Pl e

BT T .V

et Y

We first placed a sample object (workpiece) manually in the robot’s hand;
this was by definition the reference grasp (idea! grasp). Figure 10 shows the
location of the robot’s hand tip; i.e., where the camera sees the grasped object.
This is where the viewpoint transformation of the hand tip is defined (computed).
Figure 11 shows how the robot is moved manually such that the workpiece
touches the edge of the peg; it is at this point that the actpoint transformation is
defined.

Figure 12a reveals part of the workpiece at its reference location, viewed
through a “window” as it is displayed on the graphic monitor. Figure 12b shows
four outlines of the workpiece at its training locations. The training translation of
each coordinate Dx and Dy is 3 mm and the rotation DO, is 2°, relative to the

reference location.

Figure 13 shows how the object is moved manually in a robot's hand to an
unknown location to simulate a misgrasp of an object. Figure 14a shows such a
misgrasp compared with the ideal grasp at a reference location. Figure 14b shows
five image outlines that are four compute-move iterations of an object’s locational
convergence process. It indicates clearly how the robot moves until a grasped
object is located at the reference location, with the number of iterations
dependent on the accuracy required. Figure 15 illustrates the final location of a
grasped object, compared with the reference location. In this specific experiment
the final location error Pe was Pe = ( Dx, Dy, DO,) = (0.088mm, -0.7mm,
-0.48mm). The terminal connected to the robot's controller shows (Figure 18) the
Cartesian coordinates (x,y,z,0,A,T), which coincide with the blob's outlines in
Figure 14b, in the robot frame. Figure 16 shows the intermediate locations until
convergence at a hand tip location labeled targ5, the training locations targx,

targy, targO, and the reference location viewpoint.
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{s} OBJECT MISGRASPED COMPARED {b) COMPUTE-MOVE ITERATION TOWARDS
WITH SAMPLE OBJECT GRASP THE REFERENCE LOCATION

FIGURE 14 OUTLINES OF THE OBJECT'S IMAGE




FIGURE 15 FINAL LOCATION OF MISGRASPED OBJECT
COMPARED WITH REFERENCE OBJECT
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FIGURE 16 CARTESIAN COORDINATES OF HAND TIP IN ROBOT'S FRAME
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When the process to minimize Pc terminates, the correction transformation
DIFF is computed (shown on the terminal of the robot controller diff in Figure
16). In the experiment the computer instructs the robot to move from arbitrary
location to viewpoint*DIFF location (Viewpoint = [R/H], the result shows almost
the same overlapped outlines as in Figure 15. Figure 17 shows the robot holding
an object at the hand tip actpoint*DIFF location (actpoint = [R/H],,. We can
see clearly here that the edge of the object (workpiece) touches the edge of the

peg just as the trained sample or reference object had done.

The accuracy of the system is limited to that of PUMA, which is 1 mm for
translation and 1° for rotation. Using the precise x-y-0 table, we achieved

accuracy of 0.1 mm, 0.4° (see Section V-B1).

FIGURE 17 ROBOT'S HAND TIP AT ACTPOINT:DIFF — ACTPOINT CORRECTED LOCATION
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VI SUMMARY AND FUTURE WORK " —

A. Summary E

A practical method and an algorithm for computing an object’s location in a AN,
robot’s hand have been presented. The method converts image features of that ."i!.-"’ '
object into an object location vector, doing this on the basis of a least-squares- -":ﬁ"?"z

. . . o . o e By ~
error estimation calibrated empirically during a training procedure. K2 Mgt

Application of the algorithm was implemented for object location in a plane
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by establishing three degrees of freedom--i.e., x-y for translation and O, for
rotation. That application is practical for a robot with a hand that has two flat

fingers. The method can determine object location even when only a part of the
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object is visible to the camera and, moreover, this ability is independent of the
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object’s shape. it is not like the method of maximal cliques, which can ascertain

VAN

the location of incomplete images, but depends on the kind and number of '.g_"'s"wix

1
>

subblobs that are visible to the camera. Furthermore, the maximal-clique ’ T ¢
approach is very expensive in terms of processing time. In contrast, computation E“:%*"M
in the method presented herein is very fast because the features are computed RPN
from binary images, and conversion from image features to location vectors

involves only one multiplication of matrices. RO

.
rAD

» ”‘ o

The method's ability to determine location of part of an object is used to
scparate the object from its gripper. We found that the technique works as long

as at least 407¢ of the object is visible to the camera. The nonlinearity of the
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transfer function restricts the range of measurable locations to +15 mm/8°, with
; a fairly high accuracy of +0.1 mm/0.4° (experimental results using a precise x-
[ y-q table). In other words, an error in object grasp can be reduced by a factor of

“ 150 for translation and by a factor of 20 ’-r rotation.
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One of the disadvantages of this algorithm is that it depends on robot
accuracy, which, in the case of PUMA, is limited to 1 mm/1° (in range of £+ 30
mm, + 15°). The slow segment in the sensor algorithm is the compute-move
process, which takes around 5 iterations. The movement of the robot is the
slowing factor. In the next section, a technique to reduce the number of iterations

is discussed.

B. Future Work

To improve the accuracy of the least-squares estimation module, one could
consider an algorithm of constrained least-squares estimation. For example,
different weights Wi could be assigned to each feature according to the reliability
of each data item. A linearity criterion could be applied: the closer a feature
measurement is to the reference feature f0 (linear region), the more reliable are
the data, and therefore the higher the assigned weight. We could also use feature
standard deviation as a criterion, among other possibilities. Here instead of
solving the system S * r= f”, we have to solve the equation system W * S * r

=W* —l;‘, and the solution for the location vector is:

P = [(W*sS)T * (W*s)"! * (W*s)" * wer,

To reduce the number of iterations, which would improve sensor speed, one
could inquire the partial derivative functions of the image features for each
locational coordinate. From these data, one could then construct lookup tables of
feature derivatives relative to locations, i.e., a table for each coordinate. Now,
instead of using one sensitivity matrix computed at the origin (reference location)
we shall use a variety of sensitivity matrices, each dependent object's location. A
new sensitivity matrix will be constructed specifically from those lookup tables
before each conversion. Using this approach, we shall probably achieve better
linear approximation of the transfer function, mapped onto a wider range of
object locations. We expect to minimize thereby the number of iterations, while

simultaneously extending the measurable locational range.
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; In the locational application we assume that the shape of an object remains

]
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geometrically constant, that any changes in one of its image blobs are attributable

*

to corresponding changes in its location. Another application one can look at is

D.;

[
»

the inspection of indexed objects. In this case, location remains constant, so that

any changes in blob features are due to defects in the shape of the inspected
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object. The sensor will detect a geometric mismatch between a prototype and a ¢ : "

similar object. Sy

s
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In the inspection application, the entire object should be visible and the ﬁ-?s':.’ii
BN D

global features should be independent of both position and orientation. A ;Q*:}f'-:i
subsequent object to be inspected will be moved to the same location, after which »Q;._{._'._ d

- O Ay

4 a corresponding feature vector f will be measured and computed. A different ::'-i'-f:-}
'j - - PN
3 vector {'=f-f0 can then be used to determine whether or not the object is TN
) . . . . . .. . . NP
. defective. This technique might be applicable for finding tiny defects. Using the phat R d
! sensitivity matrix S, we can obtain a deviation vector d = SP1 *f' that would '-i':_":‘.-?.*
f S
i classify an object as defectives rely on pretraining of defectives. ::‘:::‘,:j-'.
) N
3 .5-'.- X -'.. .
i In general, the mathematic model presented here can be used for location .
:: and inspection of an object by processing any kind of data, as long as it presents : \f.:i-'f :

well and is sensitive to the geometric shape or location of an object. For example,
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phase delay between transmitter and array of receivers of ultrasound waves

&

reflected from an object, each phase delay measured in a different receiver is a
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component of a phase delay vector f. Another example might be to use a 3-D
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vision system (like the White Scanner); it computes 3-D geometric features and
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uses an experimental sensitivity matrix to compute an object's location.
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Abstract

When an industrial manipulator is commanded to pick up an object, there is some unknown
error (difference) between the position and orientation (pose) of the object and that of the
i manipulator’s gripper. In current practice, this error is minimized by using very accurate
b but costly machines and part fixtures. For many potential applications, expensive fixturing
will probably have to be reduced—introducing locational uncertainties that must be mini-
mized by intelligent sensing. An approach is presented here for estimating the pose error of
g a workpiece in a manipulator’s gripper, after the part has been acquired, by sensing wrist
force/torque while the manipulator is moving. In principle, it should be possible to estimate
the error relationship while the manipulator is transferring the part to its destination, so

that the manipulator can correct any errors “on the fly.”

1 Introduction

Moving a workpiece from one location to another—whether to place it into a fixture or
v a machine or to assemble it with another component—is one of the primary functions of
1 an industrial manipulator. In current industrial implementations, these manipulators are
:' surrounded by expensive, special-purpose fixtures and use special-purpose grippers that
capture and orient the workpieces with high precision. When the manipulator grasps a
workpiece, the part pose in the gripper is assumed to be known approkimately by virtue of
the positioning accuracy of the manipulator, which is supposed to be sufficiently accurate
for the job. Thus, the workeell is preengineered so that a sensor-less robot can perform
the task—often at the great expense of designing and building special fixturing. This
. approach is justified economically for mass production, but for batch manufacturing it will
be economically imperative to reduce or eliminate the use of costly fixtures. With no
: fixtures, however, workpiece locations will become more variable, and when a manipulator
grasps a workpiece, the presumed grasp relation and the actual one may be significantly
different. Future robotic workcells therefore must accommodate the locational variation

efficiently through the use of sensing and intelligence.
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the error in the grasp and direct the manipulator to modify its motions to compensate for E-.jm
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‘ . . . 'y o, ]
b that error. It is advantageous to determine the pose of the workpiece while it is being held A
o rather than before it is grasped, because without special-purpose fingers and an accurate ::-3_:':;'_5;
3 - . Pdogd
> robot, the act of grasping the workpiece may introduce significant error. Prior work for f'-":',j
e .. . .. . '.-:.'.-' 8
- determining the pose of a part in the hand has been based on vision(1,2], ultrasonics(3], and .':_:.r '.-::
_; sparse range or tactile information sensing{4]. In general, sensors to estimate pose error D’\ $R
: DA,
) should be mounted on the robot hand; otherwise, it may be necessary to move the held Y ;..-:".;:
.’ L ‘..“ -
'\ workpiece to a sensing station. aindag
: B
. In this paper we present a novel method for determining the pose of a part in a robot 2
SRS
%) hand by using a wrist-mounted force/torque sensor while the manipulator is transfering the "\f:,f‘:
3 Xy
?,: part to its destination. Using this method, it should be possible to estimate the grasp error .;:%3;1-'2
. : . . . . . RN
: and modify the final manipulator motions to position and orient the workpiece correctly. a;i;‘::
F;,S;:g.. N
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2 Overview of Method ;..};?.;2‘.5
"y

. -., Y,
B

In Section 2.1 we describe the coordinate frames used in determining the pose of the object

to be grasped. In Section 2.2 we estimate the position (z,y, z) of the center of mass of the
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grasped object with respect to a coordinate frame of the gripper. This estimation is based

(Y

LLS

N} on the fact that in an inertial reference frame the torque of a force F' about a given point "e: <
, is given by r x F, where r is the vector from the given point to the point of application of E,'__f_,
. . . o : o e
o F. In simple terms, if an object is positioned so that its center of mass is directly below the :.-'.:-:.j:.
‘.;j support point, the torque about that point is 0. The torque increases when the horizontal E‘;-:j;_:'_::
. L W,
P distance is increased. A force/torque sensor, mounted with a known orientation on the R
*ﬁ manipulator’s wrist, will supply the information used in estimating the position, which can t.}f-ﬁ
n/ LAGACH
) then be compared to the forces and torques with the object in the desired grasp pose. :‘::' ::'Z
. SN
t . . . . . ! ‘
"~ In the second step of the procedure (Section 2.3), we are interested in estimating the RN
orientation error of the held object with respect to the desired orientation in the coordinate :_?;'—.}:
! e
::I frame of the gripper that holds it. From the conservation law of angular momentum and -1:::::-:
Y, AN
S Newton’s second law in an inertial reference frame, the torque about a given point is given -t\‘.‘-"
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by L&, where I is the inertia tensor and & is the angular acceleration about that point.
Force/torque sensory information is gathered while the manipulator is moving with a known
angular acceleration about that point—again, possibly during the object acquisition or
transferral sequence. From the above, the inertia tensor, I, of the object in its actual grasp

position is computed.

Given the inertia tensor, I, in the desired orientation (e.g., from a CAD data base) and
the computed inertia tensor I, the relative orientation, A, can then be computed from the
relation I' = AIAT, where A is a 3 x 3 rotation matrix. Because the above relation is
nonlinear, we have selected the Newton-Raphson iteration method to compute the elements
of A.

2.1 Coordinate Frames

In order to describe the relationships between the coordinate frames, we first establish some
notation. The relation of one coordinate frame, F3, with respect to another frame, Fj, can
be described conveniently by a 4 x 4 homogeneous coordinate transformation matrix [5),
which includes a 3 x 3 upper-left matrix, R, representing the rotation of F; with respect to
Fy (about F axes), and a column vector, p, describing the translation of the origin of >
from the origin of Fy (along the axes of F). In this paper we denote frame relationships

by specifying the rotation and translation separately, i.e., as (R, p).

The method we use assumes that certain information about the object to be grasped is
available from a model data base. We are interested in the mass properties of the object—
its mass, center of mass, and inertia tensor. We assume that the object is rigid and that a
coordinate Frame, O,, is attached to it with its origin at the center of mass and its 2-axis
along the direction of gravity (see Figure 1). In estimating the orientation error, we define
a coordinate Frame, O3, as the frame where the inertia tensor of the object is given. For
simplicity and without losing generality, we assume that the model of the inertia tensor
of the object is given, defined with respect to the object principal axes. The principal
coordinate frame is defined as the frame where the inertia tensor is diagonal. A sensor

coordinate Frame, S, is attached to the force and torque sensor. Further, we define a world
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coordinate system, W, whose z-axis is parallel to the direction of gravity.
N
2.2 Estimating the Object Position in the Hand =
In the following, we presume that the force/torque sensor mounted on the manipulator’s
wrist has already been calibrated to remove the effects of the manipulator’s hand mass.
Description of such calibration is commonly provided with the force sensor. Figure 1 shows
the relevant spatial relationships among the force sensor, object, world, and manipulator

reference frames. For simplicity, we will estimate the object position with respect to the

force sensor frame; the transformation from this frame to the hand frame is assumed to be

known.

1

1o
[
o

As described previously, the position estimation is based on the fact that in an inertial

v,
,
Y
{ I} .'
W

reference frame the torque of a force F about a given point is given by r x F, where r if

)
f":"{?
%
AL

the vector from the given point to the point of application of F. The position estimation is
done while the manipulator is either at rest or moving at a constant velocity; the forces and
torques acting upon the object are, therefore, due to gravity only, and the real orientation

of the object is not important, so we assign the coordinate O;, which is aligned with the

£ NE

world coordinate frame W, to the object. Thus, the forces and torques acting upon the

object in its coordinate frame 0, are:
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T

01 + 0§ + (mg)k ‘
01 + 0j + Ok, (1)

where m is the object’s mass (see Figure 2(a)). The force due to gravity is along the 2
axis of the object coordinate frame with origin at the center of mass, and there are no
torques about the object axes. Note that, since the axes of the world frame and frame 0,
are parallel, the orientation of the force sensor in either frame is R™! (see Figure 1). The

torqucs acting on the sensor are given by the standard relation {5]

TS = n((Fxp)+T)
T, = o((Fxp)+T) (2)
T; = a((Fxp)+T),
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where (n,0,a) are the components of R™! along the axes of the force-sensor frame j.'J‘.‘{:,_'._
(zs,ys, 2s). Note from (2) that the measured torques in the sensor frame are defined in SpNESAN
terms of the known force sensor orientation (n,o0,a), the known object mass, m, and the

displacement, p, of the force sensor frame from the object frame. Substituting (1) into (2),
A
we obtain " w"

br )
!

ns{mg)py + ny(mg)ps

<3
]

oz(mg)py + oy(mﬂ)l’s (3) ~:.- oy

=
0
]
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0:("'9)?1 + “y(mﬂ)l’z- NN \-;
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Knowing (n,0,a), m, and the T components, we can solve (3) for p = (ps, Py, p:). By
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aligning the sensor frame and the world coordinates, this solution can be simplified into the
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following:
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Tzs = ("W)Pv
TS = (mg)ps (4) e

TS = 0.
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Solutions for p, and p, are then easily obtained. To solve for the third displacement, p.,
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the object is rotated, for example, by 90° about the y axis. The new torque equations are, N
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TS =0
Tf = (mg)p, (8)

(mg)py.
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As many different static orientations can be used as desired to overconstrain the results,
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whose estimates can then be improved through averaging. Thus, the object’s displacement
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relative to the force sensor has been determined. It can be compared with the presumed

o
2 w‘z
A

e

displacement ( p in Figure 1), so that the robot can correct later motions by the computed

difference.
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2.3 Estimating the Object Orientation in the Hand
2.3.1 Method of Computation

In this section we are interested in estimating the orientation of the object held by the
hand, using information from its force/torque sensor. Again, for simplicity, the orientation

will be determined with respect to the force-sensor frame, rather than the gripper frame.

4

pre el |

From the conservation law of angular momentum and Newton’s second law in an inertial

reference frame, the torque T about a given axis is given by

B o,
L 8 S S

.._,
oy

T = I (6)

where 1 is the inertia tensor with respect to the axis of rotation (see Figure 2(b)) and & is
the angular acceleration about that axis. By measuring the torque T about the rotational

axis, and knowing w, the measured value of I, denoted by I', can be computed from (6).

The value of I in the desired orientation, denoted by 14, is derived by using information
stored in the CAD data base. Knowing the values of Iy and I, the difference between the
desired orientation and the actual one, represented by rotational error matrix A, can thus

be computed from the relation

I'= ALAT. (7)

In the case where the affect of gravity is included and the sensor coordinate frame is
not aligned with the world coordinate frame, i.e., there is an orientational difference, R,

between them, the torque measured by the sensor is
T=IR™'&+ (mg)R™p. (8)

We now wish to use (8) to solve for I'. To simplify this solution, we constrain the z-axis of
the sensor frame to be parallel to the z-axis of the world frame, i.c., along the gravitational

field. Under this constraint, R is a unity matrix and (8) is reduced to the following:

T =TI'< + (mg)p. (9)
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Substituting W, = &, = 0 and @, = &, by inspection of Figure 2(a) we obtain from (9)

T; wli, + (mg)p,
) | = | @h,+(me)ps |- (10)
T} wl,

We now use (10) to solve for I3,, I, and I,,.

To solve for the other components of the inertia tensor, the sensor frame is first rotated
by 90 degrees around its z-axis. The old y-axis is now parallel to the world-frame z-axis, and
the values of I, I}, and I,, are similarly determined. Finally, I},, I}, and I;, components
are evaluated in the same way by additional 90-degree rotation of the sensor frame about

its current y-axis.

Having determined the elements of I’ and knowing those of L4, we now use (7) to solve

for the elements of the rotational error matrix A. Expanding each element [}, in (7), where
k,l =1,2,3, we obtain

lhl Z z: aniay; 1;;. (11)
=1 §=1

One can solve this set of nonlinear equations in a;; by using the Newton-Raphson’s iteration
method (6],

J(an) + (a1 = 2a) (32 .

=0, (12)

where a, is the value of each of the nine a;; elements at the nth iteration, a,4, is the one
at the (n + 1)th iteration, and (gg)L is the Jacobian J at the nth iteration. This process
continues until the difference Aa, = (ap41 ~ a,) is sufficiently small for all a;; elements.

The rotational error may now be corrected by rotating the arm according to the a;; values.




2.3.2 Fstimation Accuracy

In order to determine how accurately the estimate will represent the orientation error of

the object, we utilize perturbation analysis techniques [6].

The condition number of a matrix determines how sensitive the solution of the set of

equations is to perturbation. The condition number, K(J), of the Jacobian matrix J from

the last section, is defined as

K(3) = 3l oo, (13)

where ||J[| and ||J~!|lcc are the norms of J and J=!, respectively. From perturbation

theory, we can bound the error in estimating the orientation error, §(Aa,):

l6(Aan)llco < 2U K(J)|Atn|loos (14)

where U is the resolution of the torque measurement and ||Aag|loo = ‘rg_a%(olAad.
-.—

From (14) one can see that if K(J) is large, then a relatively small perturbation in
the measurement will produce a relatively large perturbation in the orientation. In our
simulation, the condition number was not greater than 10.0, which is much smaller than a

typical condition number characterizing an acceptably behaved system (e.g., 400).
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The method that we describe has not yet been tried experimentally with a real manipulator; ‘ ASa
however, the computational procedure for determining orientation error of the object has :'F.E:-":}
been simulated using a number of different object models and assuming different orientation ti“,,.: 'j-:Ef
nd -
error magnitudes. The sensor measurement error, U, is included in the simulation, and was ﬁ te
taken from the specification of a commercially available force/torque sensor. In this error .;' P
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analysis, however, & was assumed to be known exactly. Y _,"j:'}. i
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In a particular simulation run, the following parameters were used: the torque sensor -.:fli‘_-r.:g
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resolution, U = 0.002 Newton-meters; the (perfectly known) angular acceleration about the .
S U A
direction of gravity (world z axis), &, = 10.0 meters per second?; and an applied orientation ‘_:":‘_.::
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error about the object z axis, Aa = 10.0 degrees, with the object presumed to be aligned ::'::f-_f >
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The resulting simulation converged in less than 4 iterations to the correct solution with
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an estimation error of less than 0.1 degree. h,,’f,pz )
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