
'AD-A173 1U 5 DOMn A ON 7

UNCLASSIFIED 8 ~ 1 R 6 !Ofl- R-6- 0A - F/

I1- -15 M24
Ill=

AFOSR-TR" 8 6 - 0 9 3 5

___ AN END OF THE YEAR REPORT TO

AIR FORCE OFFICE OF SCIENTIFIC RESEARCH

I AND

'-,ADQUARTERS MILITARY AIRLIFT COMMAND

for a Grant
Approved for public releasd

entitled distri. t t oa unlimited-

DEVELOPMENT AND EVALUATION OF A CASUALTY EVACUATION MODEL

SFOR A EUROPEAN CONFLICT

>

~~.,4
~>

... Prepared by:

I Jeffery L. Kennington

-: ~ ~~Department of Operations Research "' '' %

, ,, and Engineering Management

9). r

'-SOUTHERN METHODIST UNIVERSITY

Dallas, Texas 75275

-44

Deprte efmOeraton Resarc

Jefey . eninto 10 E14o\

UNCLASSIItu;P
SECURITY CLASSIFICATION OF THIS PAGEA (-AlJ NIo

REPORT DOCUMENTATION PAGE

Iii REPORT SECURITY CLASSIFICA7ION Itb. RESTRICTIVE MARKINGS

20 SECURITY CLASSIFICATION AUTHORITY 3. DiSTRIBUTIONAVAILABILITY OF REPORT

Approved for public release; distribution
2b DECLASSirICATION/DOWNGRADING SCHEDULE unlimited

N/A _

0 ERFORMING ORGANIZATION REPORT NUMBERIS) 5. MONITORING ORGANIZATION REPORT NUMBERIS,

AFOSR-TR. 8 (;- uV-3.15

6& NAME OF PERFORMING ORGANIZATION ~b. OFFICE SYMBOL 7s. NAME OF MONITORING ORGANIZATION

Southern Methodist University I1ffapplicable, MS

6c. ADDRESS lCily. State and ZIP Code$I 7b. ADDRESS (City, State and ZIP Code)

Department of Operations Research & Engineering Building 410
Management Boiling AFB, D.C. 20332-6448

So NAME OF FUNDING/SPONSORING lab. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION atr applicable)

AFOSR I NM AFOSR 83-0278

Be ADDRESS ICity. State and ZIP Codel 10. SOURCE OF FUNDING NOS.

Building 410 PROGRAM PROJECT TASK WORK UNIT

Boiling AFB D.C. 20332-6448 ELEMENT NO. NO. NO. NO.

61102F 2304 A
11 TITLE (include security ClauficationEVLOMET & EVALUA-

TION OF A CASUALTY EVACUATION MODEL FOR EUROP4A CONFLICT ________________

12. PERSONAL AUTHORISI

JR.rER LKENINGON
13&. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr.. Mo., Day) 15 PAGE'COUNT

Annual IFROM I lr 5TO3DflVM1 December, 1985 190
16. SUPPLEMENTARY NOTATION

17 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necesaryj and identify by block number)

FIELD IGROUP SUB. GR

19. ABSTRACT ICon tinue on reverse If necessary and iden tify, by block niinberl
The mathematical model presented in this paper is beyond the state-of-the-art for existing
mathematical programming software. Based on this working paper and discussions with LtCol
McLain, Professor Kennington Proposed a research plan to refine the McLain model and comput
tionally investigate new algorithms for solving the model. McLain and Chmielewski collected
the data and developed the model generator while Kennington and his students investigated
alternative solution algoithms.

20. DISTRISUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECUP ITY CLASSIFICATION

UNCLASSIPIEO/UNLIMITED 0 SAME AS RPT. CDTIC USERS EC

22s. NAME OF RESPONSIBLE INDIVIDUAL 22b TELEPHONE NUMBER 22c. OFFICE SYMBOL

DR MARC Q. JACOBS (nld rr oe

Proaram Managers Mathematical &Information Sfiences 767-4939 N

DD FORM 1473. 83 APR EDITION OF I JAN 73 IS -OBSOLETE. I

SECURITY CLASSIFICATION OF THIS PAGE

This work was initiated by Lt. Col. Dennis R. McLain and Mr. Thomas

E. Kowalsky of DCS/Plans, Headquarters Military Airlift Command at Scott

AFB. Lt. Col. McLain has transferred to the Pentagon and the work at

Scott is being continued by Mr. Kowalsky and Capt. Robert Chmielewski.

The work originated with a November 1982 working paper by McLain entitled

"Wartime Evacuation of European Theater Casualties to the United States".

The mathematical model presented in this paper is beyond the

state-of-the-art for existing mathematical programming software. Based

on this working paper and discussions with Lt. Col. McLain, Professor

Kennington proposed a research plan to refine the McLain model and

computationally investigate new algorithms for solving the model. McLain

and Chmielewski collected the data and developed the model generator

while Kennington and his students investigated alternative solution

algorithms. > 4&c -I

This model is a member of the class of optimization models known as

networks with side constraints. Within this general area, Kennington

managed three projects with three different students. Dr. Ellen Allen's

dissertation was directed toward multicommodity problems and appears in

Appendix A. A related study involving the Equal Flow Problem was

undertaken by Dr. Bala Shetty. This study is reported in Appendix B.

New convergence results related to both studies is presented in Appendix

C. A study on the general problem of networks with side constraints was

pursued by Dr. Keyvan Farhangian. The results of that report are

presented in Appendix D which is scheduled to appear in The Annals of the

Society of Logistics Engineers.

, I - m illi l l I 1lll

During 1984, Dr. Narendra Karmarkar, of Bell Laboratories, reported

that he had developed a new technique to solve linear programs based upon

a projective algorithm. He claimed a worst-case bound on solution steps

that was much better than the simplex method, and that his computer

software was at least 50 times faster than IBM's best implementation of

Dantzig's simplex algorithm. This new work could have major implications

for the Casualty Evacuation Model and Kennington spent 7 months, full time,

investigating this new algorithm. This investigation is reported in

Appendix E. The group found that while the new method clearly worked, it

was much slower than their existing software and much slower than the claims

of Dr. Karmarkar. As of today, no group has been able to substantiate

the claims of Dr. Karmarkar. Kennington and his team is not, at this

time, investigating the projective algorithm.

While Lt. Col. McLain and Capt. Chmielewski were completing the

model generator, Professor Kennington and a former student (Mr. David

Allen) worked on a long-standing problem in the area of military

communications system design. The problem is to assign frequencies to

nodes to minimize both co-channel and adjacent channel interference.

They designed an optimization model and a heuristic solution procedure

which virtually solves this problem. Problems with 600 binary decision

variables were solved in only 10 seconds on a moderately-sized mainframe.

This work is reported in Appendix F and this paper will appear in Naval

Research Logistics Quarterly.

During the last three months, Chmielewski and Kennington have been

debugging the Casualty Evacuation Model and developing the appropriate

,-

output reports from Kennington's solution software. The work so far has

been with a 4-day model. The goal is to solve a full 90-day model during

the Spring of 1986.

---- ,n,

Appendix A

USING TWO SEQUENCES OF PURE NETWORK PROBLEMS TO SOLVE

THE MULTICOMMODITY NETWORK FLOW PROBLEM

A Dissertation Presented to the Graduate

Faculty of the School of Engineering

and Applied Science

of

Southern Methodist University

in

Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

with major in

Operations Research

by

Ellen Parker Allen

B.A.S., Southern Methodist University, 1975

M.S.O.R., Southern Methodist University, 1981

May 1985

Allen, Ellen Parker B.A.S., Southern Methodist University, 1975
M.S.O.R., Southern Methodist University, 1981

USING TWO SEQUENCES OF PURE NETWORK PROBLEMS TO SOLVE THE

MULTICOMMOOITY NETWORK FLOW PROBLEM

Advisor: Professor Jeffery L. Kennington

Doctor of Philosophy degree conferred May, 1985

Dissertation completed April, 1985

This dissertation presents a new technique for solving very large

scale multicommodity network flow problems. The method obtains

successively better lower and upper bounds on the optimal objective

function value, stopping whenever the two bounds are within a

prescribed tolerance. Lower bounds are generated by partially solving a

Lagrangian dual of the original problem. Upper bounds are generated by

partially solving the multicommodity network problem itself, using a

resource directive decomposition scheme.

One great advantage to our approach is this: in both the lower and

upper bound routines, the problems decompose on commodities. As a

result, only a single commodity minimum cost network flow optimizer is

needed. Taking advantage of this natural decomposition also allows our

technique to solve substantially larger problems than other

multicommodity network codes.

iv

TABLE OF CONTENTS

page

ABSTRACT iv

LIST OF TABLES vi

ACKNOWLEDGEMENTS vii

CHAPTER I. INTRODUCTIONI... 1
1.1 Notation and Conventions 2
1.2 Problem Definition 4
1.3 The Casualty Evacuation Model 6
1.4 Accomplishments of This Investigation 8

CHAPTER II. A SURVEY OF RELATED LITERATURE 10
2.1 Pure Networks 10
2.2 Multicommodity Networks 12

2.2.1 Partitioning Algorithms 12
2.2.2 Decomposition Algorithms 13

2.3 Subgradient Optimization 14

CHAPTER III. THE ALGORITHM 16
3.1 Subgradient Optimization 17
3.2 Generating Lower Bounds 23
3.3 Generating Upper Bounds 27
3.4 The Algorithm 34

CHAPTER IV. COMPUTATIONAL EXPERIMENTATION 36
4.1 Description of the Computer Programs 37

4.1.1 MCNF 37
4.1.2 EVAC 37

4.2 Description of the Test Problems 39
4.3 Summary of Computational Results 39
4.4 Analysis of Results 41

CHAPTER V. SUMMARY AND CONCLUSIONS 47
5.1 Summary and Conclusions 47
5.2 Areas for Future Investigation 48

LIST OF REFERENCES 50

v

LIST OF TABLES

Table Page

4.1 Description of the Test Problems and Summary 44
Comparison of Solution Times for EVAC and MCNF

4.2 Detailed Timing Statistics for EVAC Runs 45

4.3 Graphical Comparison of EVAC and MCNF Solution Times 46

vi

ACKNOWLEDGEMENTS

I wish to express my gratitude to Dr. Jeff Kennington for his

support and encouragement throughout my graduate studies. As my

academic advisor and dissertation advisor his guidance and assistance

have been invaluable.

I would like to express my deepest appreciation to my husband, Dave

Allen, for his constant support, for his loving encouragement, and for

continually believing in me. I also wish to thank my precious daughter,

Angela Joy Allen, who, by her very arrival, provided motivation for me

to finish this work.

In addition, I gratefully acknowledge my parents, Charlie and Betty

Parker, for always encouraging me to pursue my dreams, for their

financial support through my undergraduate years, and for their

continuing emotional support.

I want to express my appreciation to Dr. Dick Helgason for his

indispensable insights regarding the convergence results in this work,

and for serving on my committee.

I want to thank Drs. Jay Aronson, Dick Barr, and Chuck Gartland,

for graciously serving on my committee and for their helpful and

constructive suggestions.

vii

- ,,,- •m m m =m m __I m -II

I would like to acknowledge Sheila Crain for her masterful typing

of this dissertation.

I wish to acknowledge Lt. Col. Dennis R. McLain for arranging the

support for this work through the Air Force Office of Scientific

Research under Contract Number AFOSR 83-0278.

Finally, I wish to thank my colleagues and friends in the

Department of Operations Research and Engineering Management, especially

Julie Ellis, Belinda Hargrove, Bruce Patty, and Bala Shetty, for helping

to make graduate school one of the most enjoyable experiences of my

life.

viii

CHAPTER I

INTRODUCTION

This dissertation presents a new technique for solving very

large multicommodity network flow problems.\ The specifi- application

which motivated this work originated with the United States Air Force

and was first presented to us by Lt. Col. Dennis McLain, the Assistant

Director of Operations Research for the Military Airlift Command at

Scott Air Force Base. "The problem is an extremely large casualty

evacuation model to be used by the Air Force in forming a plan for the

evacuation of wartime casualties. This plan would be implemented in

case of a European military conflict involving United States troops.

Lt. Col. McLain was the first to model this problem as a multi-

commodity network flow problem where the commodities correspond to the

various types of wounds. The nodes represent such entities as European

bases and United States medical facilities, and the arcs represent

specific aircraft flights. (A complete description of this problem is

given in Section 1.3.) This problem is far too large to be solved by

any known existing computer codes. In addition, since many of the

data are only rough estimates (the number of casualties of various

types expected at given locations), an exact technique is not called

for. Instead a technique is needed to discover a guaranteed c-optimum

for any given E >0.

2

This is precisely what our technique accomplishes. It generates

successively better upper and lower bounds on the optimum, stopping

when the two bounds are within a prescribed tolerance. We exploit

the multicommodity network structure in both the lower and upper bound

routines so that only a single commodity minimum cost network flow

optimizer is needed. EVAC, the computer code which implements our

technique, has been used to solve a series of test problems in less

time and requiring less memory than MCNF, a specialized multi-

commodity network flow problem solver. In addition EVAC is capable of

solving very large problems which MCNF is unable to solve.

1.1 Notation and Conventions

The notational conventions employed throughout this work are

described in this section. Matrices are denoted by upper case Latin

letters. The element of a matrix, A, which appears in the ith row and
.th
j column is indicated by A.. The symbol I is used to denote an

identity matrix with dimension appropriate to the context. Lower case

Latin and Greek letters are used to denote vectors. The symbol 0 is

used to represent a vector of zeroes with dimension appropriate to

the context. The unit vector, whose only non-zero component is a one

in the jth position, is denoted e. Subscripts are used to indicate

individual components of a vector, or as an index to indicate which of

3

a sequence of related vectors is meant. Superscripts on vectors corre-

spond to individual commodities. Note that vectors are considered to

be row vectors or column vectors as appropriate to the context; that

is, no special notation is used to indicate the transpose of a vector.

The inner product of two vectors, x and y, is denoted simply by xy.

1/2The notation Ilxll is used to express the Euclidian norm, (xx)

Scalars are written as lower case Greek or Latin letters.

Euclidean n-dimensional space is denoted R . Functions are

written as lower case Latin letters, and functional values have their

arguments in parentheses. For example g(y) is used to denote the

function g evaluated at the point y. The one exception to this

convention is the projection operation described in Chapter III. In

this case P[x] is used to express the projection of x onto the

specified region.

Upper case Greek letters denote sets, with the exception that

ag(y) is used to denote the set of subgradients of a function g at a

point y in the domain of g. The symbol c is used as the set inclusion

symbol and as a termination tolerance.

We use MAX{S} to denote the largest element of a set 5;

similarly MIN{S) indicates the smallest element of S. The symbol is

used for infinity, and S denotes the end of a proof. All other

notation is standard.

4

1.2 Problem Definition

A network is composed of two entities: nodes and arcs. The arcs

may be viewed as undirectional means of commodity transport, and the

nodes may be thought of as locations or terminals connected by the

arcs and served by whatever physical means of transport are associated

with the arcs. We limit our consideration to networks with finite

numbers of nodes and arcs. For a given network we denote the number

of nodes by m and the number of arcs by n. We impose an ordering on

the nodes and arcs so as to put them in a one-to-one correspondence

with the integers {1,...,m) and {1,...,n}, respectively. The struc-

ture of a given network may be described, then, by an m x n matrix

called a node-arc incidence matrix. Such a matrix, A, is defined in

this way:

+1, if arc j is directed away from node i

A ij -1, if arc j is directed toward node i

0, otherwise.

Additionally, for a multicommodity network, we are concerned with more

than one type of item (commodity) flowing through the arcs. We order

these commodities to correspond to the integers {I,...,K}.

We define the following quantities to be used in the formulation

of the multicommodity network flow problem:

-- A is the m x n node-arc incidence matrix corresponding to the

underlying network.

-- x is an n vector of decision variables for k = 1,...K. Note

that xk represents the amount of flow of commodity k on arc j.J

5

k.
-- c is an n vector of unit costs for k = 1,...,K. So

ck denotes the cost for one unit of flow of commodity k on arc

J

j.
k. k

-- r is an m vector of requirements for k = 1,...,K, so that r.
1

denotes the required number of units of commodity k at node i. If

r. < 0 then node i is said to be a demand node for commodity k
1

with demand = Irk1. If r. > 0 then node i is said to be a
1

kk
supply node for commodity k with supply z r . And if rk : a1

then node i is said to be a transshipment node for commodity k.

-- u is an n vector of mutual arc capacities. That is, the total

flow of all the commodities combined for arc j cannot exceed uj.

-- v kis a n vector of arc capacities for commodity k (k = 1,... .

vk , then, represents an upper bound on the flow of commodity k

on arc j.

We sometimes refer to the entire vector of decision variables
(xI K

(x ,... ,x) as simply x. Similarly we use c, r, and v to denote the

entire vector of costs, requirements and upper bounds, respectively.

Using these ideas, we may formulate the multicommodity network

flow problem for a given network with m nodes, n arcs, and K commodities

as follows:
kk

Minimize t c x
k

Subject to Axk r k , k = 1,...,K (MP)

Z xk < u
k

0 < xk <V k , k= 1,...,K.

6

1.3 The Casualty Evacuation Model

A large European military conflict involving U.S. Armed Forces

could result in more casualties than could be effectively handled in

European medical facilities. To alleviate this overcrowding, the

Department of Defense plans to implement the following evacuation

policy:

"During the first 30 days of a conflict, if a wounded

soldier cannot be returned to duty within 15 days, then

he will be evacuated to a medical facility in the United

States. In the next 30 days the limit on treatment time

is increased to 30 days."

Given a scenario concerning such a conflict (i.e. the number and loca-

tions of wounded and the types of wounds), this evacuation problem may

be modelled as a multicommodity network flow problem. Lt. Col. Dennis

McLain was the first to model the problem in this way. In Lt. Col.

McLain's model the nodes correspond to 9 European recovery bases and

95 United States locations. The arcs correspond to aircraft flights

connecting European and U.S. facilities. The commodities are 11

different patient types.

In order to enforce a capacity on a given facility, it is

necessary to duplicate the corresponding node using the capacity as an

upper bound on the arc between the duplicate nodes. For example, if

node A represents a hospital with 300 beds, then we substitute two

' mm mnm '7"

7

nodes, Al and A2, along with an arc whose capacity is 300. Further,

it is necessary to include 60 copies of the entire network, one for

each of the 60 one-day time periods. Additional arcs are created to

link each time period to the next. The model includes a dummy "sink"

node for each time period and one "super sink" node, along with

capacitated arcs to allow patients who have recovered to exit from the

system. These considerations produce a very large model. The

dimensions of the constraint matrix are shown below:

A, t12,541 rows

A2

Al

where A= ... A11 . The row dimension of this model is over 137,000,

which is far beyond the scope of any known existing computer code. To

put these figures in perspective, we note that Kennington reports that

the largest models he has solved using his primal partitioning code,

MCNF, have been on the order of 3000 rows [2].

Our plan has been to develop a specialized solution procedure

which would solve a scaled-down version of Lt. Col. McLain's model. We

anticipate aggregation of the data, possibly using some of the

following ideas:

8

(1) Aggregation of the time periods. Note that simply using

3-day time periods instead of 1-day time periods reduces the

problem size to around 46,000 rows.

(2) Aggregation of similar patient types.

(3) Aggregation of U.S. medical facilities so that facilities

which are located within a given number of miles of one

another are treated as one node.

At the writing of this dissertation we have not yet received any

large test problems from the Air Force. As a result, we are unable to

report on the problem size limitations of our technique. However, in

an attempt to test our software on a relatively large problem, we

solved a randomly generated test problem with around 9,000 rows. (See

Chapter 4 for the details of this problem.) This is the largest

problem we have attempted so Far.

1.4 Accomplishments of This Investigation

This dissertation proposes a new technique for solving extremely

large multicommodity network flow problems. Our method involves

generating upper bounds on the optimal objective value by partially

solving the problem using a resource-directive decomposition technique,

and generating lower bounds on the optimal objective value by partially

solving a Lagrangian dual of the problem. Both the upper

and lower bound routines exploit the network structure of the problem,

decomposing it by commodities and solving the resulting pure network

problems. In the limit both bounds must converge to the optimal

objective function value; in practice we stop when the difference

between the two bounds is within some termination tolerance.

9

Whether solving for lower bounds or for upper bounds a sub-

gradient optimization technique is used. At each iteration this

procedure requires the computation of a subgradient, the selection of

a step size, and a projection operation. In Section 3.1, we obtain a

new convergence result for a particular class of subgradient pro-

cedures. Then, in Section 3.2, we introduce a new heuristic, closely

related to the subgradient optimization procedure, which has worked

well for our test problems.

Our technique has been tested on randomly generated test

problems and on one problem which was formulated specifically to

represent the class of evacuation planning problems for which the code

was developed. In addition, the same set of test problems was solved

by MCNF [51], a general purpose multicommodity network flow problem

solver which uses a primal partitioning scheme. Computation times for

both codes are presented. Our code used an average of 68% of the time

needed by MCNF, performing significantly better on the problems with

fewer commodities. In addition our code required on the order of 1/K

the amount of main memory for a K-commodity problem, so it can solve

significantly larger problems than MCNF.

I .

10

CHAPTER II

A SURVEY OF RELATED LITERATURE

In this chapter we present an overview of the existing work on

which this dissertation is based. Section 2.1 deals with the work that

has been done in the area of pure network models. Then in Section 2.2

we address the broader area of multicommodity network methods. Since

our algorithm involves a subgradient optimization technique, both in

the Lagrangian dual portion and in the resource-directive decomposition

routine, we provide some references involving subgradient optimization

in Section 2.3

2.1 Pure Networks

Network problems are linear programming problems with node-arc

incidence matrices as their constraint matrices. Within this class,

known formally as minimal cost network flow problems, there are several

variations including transportation problems, transshipment problems,

assignment problems, maximal flow problems, and shortest path problems.

Ideas for solution of network problems can be traced at least as

far back as 1939, to the work of Professor Leoni6 Kantorovich [413.

Kantorovich, along with Professor Tjalling C. Koopmans received the

Nobel Prize in Economic Science in 1975, for contributions to the

theory of optimum allocation of scarce resources. Koopmans and Reiter

-I. >?

11

[54] and Frank L. Hitchcock [42], working independently, were the first

to formulate the transportation problem. The mid-fifties saw a surge

of interest and work in the areas of network algorithms. It was around

this time at Alex Orden [59] generalized the transportation model to

allow transshipment points. Lester Ford and Delbert Fulkerson [22]

[20] formulated and investigated solution techniques for the maximal

flow problem and the minimal cost network flow problem. The spe-

cialized algorithms that have been developed for solving network

problems may be classified into two groups: primal-dual techniques, and

specializations of the primal simplex algorithm. Primal-dual methods

for solving networks began with Harold Kuhn's Hungarian Algorithm for

the assignment problem [55] and culminated in Fulkerson's Out-of-Kilter

Algorithm [23]. Primal simplex based techniques originated with the

work of Professor George Dantzig [17] and continued through Ellis

Johnson's 1965 paper [47]. The basis for Johnson's work can be traced

to the work of Dantzig [18] and Charnes and Cooper [14].

Since that time much work has been done in the area of solution

techniques, and computational advances have been made by the develop-

ment of more efficient data structures. The credit for much of this

work goes to Professors Fred Glover and Darwin Klingman and their

colleagues at the University of Texas. This is evidenced by such

papers as Barr, Glover and Klingman [9] [10], Glover, Hultz and

Klingman [261 [251, Glover, Karney and Klingman [271, Glover, Karney,

Klingman and Napier [28], Glover and Klingman [291 [31] [30], Glover,

Klingman and Stutz [32], and Karney and Klingman [49]. Others who have

contributed to the research include Srinivasan and Thompson [63] [64],

12

Bradley, Brown, and Graves [131, and Mulvey [57] [58). In addition

significant work has been performed by Professors 3eff Kennington,

Richard Barr, and Richard Helgason of Southern Methodist University as

seen in such works as [3], [41], and [52).

Today network algorithms have been demonstrated to solve linear

network problems 50 times faster than general linear programming

algorithms [6]. Additionally a computer implementation of such a

technique may require only half the memory of the general L.P. package

[6]. These advances are due to the efficient data structures which

have been developed to allow a basis for a network problem to be stored

as a rooted spanning tree on the nodes in the network. Using this idea

all the simplex computations such as pricing, ratio test, and updates,

can be performed via labelling algorithms on the basis tree. This

eliminates the need to store the basis inverse in factored form.

2.2 Multicommodity Networks

Multicommodity network flow problems are problems in which

several different types of items (commodities) must share arcs in a

capacitated network. Each solution technique for multicommodity

network models can be classified as one of two main types of

algorithms: partitioning algorithms and decomposition algorithms.

2.2.1 Partitioning Algorithms

Partitioning algorithms are specializations of the simplex method

which exploit the multicommodity network structure by partitioning the

basis into more than one part. In one part advantage is taken of the

13

special network structure. Those who have studied primal partitioning

algorithms include Kennington [50], Helgason and Kennington [40], Ali,

Helgason, Kennington, and Lall [4], Hartman and Lasdon [36] [35],

Maier [56], and Saigal [61]. Ali and Kennington [6], in their

computational research, reported solution times averaging 5 times

faster than general linear programming codes. A dual partitioning

method was proposed by Grigoriadis and White [34]. A primal-dual

partitioning scheme was developed by Jewell [46]. In addition a

factorization technique was proposed by Graves and McBride [33]. MCNF,

the multicommodity network code with which we compared our solution

times, is a primal partitioning program.

2.2.2 Decomposition Algorithms

Decomposition schemes seek to solve the problem by decomposing it

into several smaller subproblems, each of which takes the form of a

pure minimum cost network flow problem. A master program coordinates

the solution process. Decomposition procedures for the multicommodity

network flow problem fall into two categories: price-directive schemes

and resource-directive schemes.

Price-directive decomposition is based on the well-known research

of Dantzig and Wolfe [19]. In a price-directive approach, the K-

commodity problem is decomposed into K single commodity problems. The

master program then uses the simplex method while the subproblems test

for optimality and select candidates to enter the basis of the master

problem. Ford and Fulkerson [21] were the first to develop this

r--

14

approach for solving multicommodity network flow problems. Tomlin [671

was the first to develop a computer code implementing this technique.

Others who have studied price-directive decomposition schemes are

Jarvis [43], Jarvis and Keith [44], Chen and DeWald [15], and Jarvis

and Martinez [45]. Price-directive approaches for generalizations of

this problem have been proposed by Cremeans, Smith, and Tyndall [16],

Swoveland [65] [66], Weigel and Cremeans [68], and Wollmer [69].

Resource-directive decomposition schemes decompose the problem by

commodities, and the master problem systematically distributes the

mutual arc capacities among the commodities. At each iteration the

optimal solutions to the single commodity subproblems are used to

compute a new set of allocations. Robacker [60] was the first to

suggest this approach for multicommodity network problems. Research on

this technique has been presented by Swoveland [65], Assad [8], Ali,

Helgason, Kennington and Lall [3], and Kennington and Shalaby [53].

2.3 Subgradient Optimization

The subgradient optimization technique was first proposed by Shor

[62] in 1964. Since that time subgradient algorithms have been applied

to many different optimization problems. Held and Karp [37] and Held,

Wolfe and Crowder [38] made use of the approach in solving the

symmetric travelling salesman problem. Bazaraa and Goode [11] applied

the algorithm to the asymmetric travelling salesman problem. Sub-

gradient methods have been used to solve the assignment problem [38].

Glover, Clover and Martinson [24] applied a subgradient technique to

I I I I I I I i | I i I i i I -.-- , ' ,

15

solve a special network with side constraints, and Ali and Kennington

[71 made use of it in research involving the m-travelling salesman

problem.

16

CHAPTER III

THE ALGORITHM

Here we present a new solution technique for the multicommodity

network flow problem. This technique involves finding successively

better upper and lower bounds on the optimal objective function value.

The algorithm terminates whenever the two bounds are within a prescribed

tolerance or when it can be shown that the current solution is an exact

optimum.

Lower bounds are generated by partially solving a Lagrangian dual.

At each iteration a Lagrangian relaxation of the original problem is

solved; since these relaxations decompose on commodities, only a

(single-commodity) minimum cost network flow optimizer is needed. A

subgradient direction is used to adjust the Lagrange multipliers for the

next iteration.

Upper bounds are generated using a modification of the resource-

directive decomposition technique first suggested by Robacker [60]. We

introduce a specialization of the subgradient direction approach which

was first applied to this class of problems by Held, Wolfe, and Crowder

[38].

With minor restrictions on the step sizes we show that both the

upper and lower bounds converge to the optimal objective value of the

original multicommodity network flow problem. Hence in the limit the

algorithm will converge to an exact optimum. In practice we seek a

near-optimum.

17

3.1 Subgradient Optimization

Let us first consider the general subgradient algorithm for

optimization of convex functions; later we will present specializations

of the technique for the upper and lower bound problems. Consider the

nonlinear programming problem

Minimize g(y)

Subject to ye r

where g is a real valued function that is convex over the compact,

convex, nonempty set r. A vector n is called a subgradient of g at a

point x if

g(y) - g(x) > n (y - x) for all y r

Note that if g is differentiable at x, the only subgradient at x is the

gradient. We denote the set of all subgradients of g at x by 9g(x).

The subgradient algorithm proceeds in this manner: Given a point

x in r, find a subgradient of g at x, obtain a new point by moving a

given step size in the negative subgradient direction, and finally

project this new point back onto r. This projection operation takes a

point x and finds the point in r that is "closest" to x with respect to

the Euclidean norm. We denote the projection of x onto r by P[x].

Using this notation we present the general subgradient optimization

algorithm for minimizing a convex function g [52].

18

ALGORITHM 3.1 SUBGRADIENT OPTIMIZATION ALGORITHM

Step 0 (Initialization)

Let yo be any element of r. Select a set of step sizes,

SlS2,3,... and set i*O.

Step 1 (Find Subgradient)

Let ni c ag(yi). If ni = 0 terminate with yi optimal.

Step 2 (Move to New Point)

Set Yi+l P[yi -sini]. Set i~-i + 1. Return to step 1.

Let us now turn our attention to the selection of step sizes.

Several ideas for choosing step sizes have been proposed. These

typically involve a sequence of constants, {A1,X2,A3 ,...3 which satisfy

the following conditions:

x. > 0, for all i,1

limxi 0, and (3.1)

.1

i

The subgradient algorithm can be shown to converge when any of the

following three formulae are used for determining step sizes [52J:

(i) si Xi 9

(ii) s i X i/llnill 2 ,(3.2)

(iii) s i X i[g(yi) - g*]/ fnij 1
2

where g* denotes the optimal objective value.

19

Propositions 3.1, 3.2, and 3.3 may be found in Kennington and

Helgason [521, and are given here as necessary preliminary results.

Proposition 3.1 [52]

Let yer, and let xERn. Then (x-P[x])(y-P[x]) < 0.

Proof

Choose a so that O<cr(1. Since r is convex, ay.(1-c1)P[X]Er. By

the definition of P[x], lix-P[x]Ij(Ilix-(cty+(l-ci)P[x])ll. Thus

IIx-P[x~fl 2 (-a+l-)~ll

zI [X-P[x]-cLdy-P(Xl) 11 2

Then (x-P[x])(y-P[xl) < Ily-P[xjjci/2. And, since a can be taken

arbitrarily close to 0,

(x-Plx])(y-PIx]) < 0.

Proposition 3.2 [52]

Let x, y c R n. Then IIP~x]-P~y]Jj. (ix-YI1.

Proof

Case 1: Supose Ptx] = P[y]. Then

IIPx]P~yll= 0 < jjx-yjj.

Case 2: Suppose P[x] J P[y]. Then since P[x]Er,

and P[Y)cr, from Proposition 3.1 we have that

(x-Plx))(P[y]-P[X]) < 0

and

(y-Ply])(P[x]-P[y]) < 0.

We may rewrite the above inequalities as

x(P[Y]-P[x])-P[x]P[yl+ljp[x]ll 2(0

and

20

Adding these inequalities, we obtain

(x-y)(p[y)_p[x])-*IIp[y)_p[x]112 < 0.

Then from the Cauchy-Schwartz inequality,

-(x-y)(PCy]-P[x]) < Hjx-yII IIP[y3-P[x]Hl.

Thus

I jP~y]-P~x]1 2 _< ix-yI1 1 I P~y]-P[x] I .

And since Pix] J ~]

IIPIXI-Ply]II. < Hx-yII. *

Proposition 3.3 [52]

If n 0, then, for any yer,

I1yi~1->iI2.j H1yi-y11 2 + iln12+sliyi-

Proof

Let i be any iteration of the subgradient algorithm. Suppose

Ti j 0. Let ycr. Then, by Proposition 3.2,

Ily.-yll + si 1Iill + 2siT.(y-yi)

Since P[yly and P[yj-s in] I=yi+1 , we have that

11y+1-112 <11iY12+ si2lini,2 + 2s i Ti (Y-y i

Our main convergence result is for the par'-icular step size

scheme:

s ig(yi) - 63/1IIn 1I2

21

where g is a lower bound for the optimal objective and where we are at

liberty to select bounds a and 6 for the XiJ such that for each i, 0 <

a Xi (< 2.

Proposition 3.4

Let (i) be a known lower bound for the optimal objective, g*,

with g*>5;

(ii) {XiJ be any infinite sequence such that

for all i, Oa<XI << 2 ; and

2
s(iii) i Aig(yi)-]/ i11.

If there is a constant C such that for all i, 11ni,1 < C, and if Y > 0

is given, then there is some n such that g(y) < g*+[/(2-))(g*-g)+

Proof

Let y>O be given. Let (i), (ii), and (iii) hold. Let y* be an

optimal point, and for all i, t1nill (C. Suppose, contrary to the

desired result, that For all n, g(yn)>g* [/(2-6)](g*-9)+y. Then, by

Proposition 3.3,

Ilyi+1-y*l 2< 22yi-y*1 22+Xi2g(yi)-5 2/21nill2

+ 2X i{[g(yi)-g]/I Inill }ni(Y*-Yi)

< Yi-Yy 2 +Xi 2 [g(yi)-g2 /1nill 2

+ 2xi{[g(yi)-.g]/ IiJJ 2}tg*-g(Yi],

since Ticg(yi) .

2Since B>Xi>O,then 6X i . So,

11yi+l-y*112 2 2 2yi-y, 2+BXiJg(yi)_]2/{inill2

22

+ 2X {[g(yi)- 3/jrn1II 2 [g*..g(y.)]

22_ 2

ly+- l < H1yf-y*1 2 5X 2~~i-93YIn

Since g*(<g(y.), a(A. , and fItii.I < C, then

2 2_ 2

We can choose an integer N so large that

C 2(1iy1 (-~~* - N.

Thus, since 2-0>0 and g*-gO

N(2-B)a(g-g)Y/C2 > Ilyi~y*1 2.

Adding together the inequalities obtained from (3.3) by letting i take

on all values from 1 to N, we obtain

IYl- l 2 < 1y-* 2_2ao(g-)/ 2 <0

a contradiction.*

23

It is shown in [39] that when r is compact, g is continuous on some open

set containing r, and ag(y) g € for all yer, there exists a

constant C such that Hrifk<C for all yer, and rcag(y), so that the

boundedness condition on the subgradients in Proposition 3.4 is easily

met.

3.2 Generating Lower Bounds

In this section we present a technique for generating lower bounds

for the multicommodity network flow problem. This technique involves

partially solving the Lagrangian dual problem using a subgradient

technique to update the Lagrange multipliers at each iteration.

Recall that the multicommodity network flow problem, MP, may be

stated as follows:
kk

Minimize Z c x

k

Subject to Axk = r k , k = 1,...,K (MP)

Z xk<u

k

0 < xk < vk , k =1,...,K

where

A is an m x n node-arc incidence matrix,
k.

c is an n vector of unit costs for k = 1,...,K,
k.

r is an m vector of node requirements for k = 1,...,K,

u is an n vector of mutual arc capacities,

k.
v is an n vector of individual commodity bounds for k=1,...,K,

kix is an n vector of decision variables for k=

24

and K is the number of commodities.

Consider a Lagrangian dual problem for MP, denoted by DP:

MAX h(A)
X>O

h(X) MIN[E ckxk + X(E xk _ u): (DP)

k k
k kk vk

Axk rk (k = 1,...,K); 0 < x < v (k = 1,...,K)]

where X is an n vector of Lagrange multipliers.

First we show that any feasible solution for DP is a lower bound

for MP.

Proposition 3.5 [12]

Let 1,-2 ,...., K) be a feasible solution for MP. Let

be a feasible solution for DP. Then h(X) < cx.

Proof

Since h(T) is a minimum, and since is feasible for MP, h(7X<

rck k +)(Exk _ u). Further since 7 is feasible
k k

for DP and x is feasible for MP, then x(/ik - u) < 0.
k

Hence h(X) < ci. a

In addition to this result, Bazaraa and Shetty [12] have proved

that if MP has an optimal solution, then DP has an optimal solution, and

that their optimal objective function values are equal. As a result, we

see that we may indeed solve (or partially solve) DP in order to obtain

a lower bound for MP.

In order to justify using a subgradient optimization technique for

solving DP, we must show that the objective function is concave and

develop an expression for a subgradient.

25

Proposition 3.6

The real valued function h is concave over A = {X:X ERn; X >0}.

Proof

Let X1 > 0. Let X2 >0. Let 0 < a < Then

12 kI. k 1 2 ku)
h(axi + (lc)) x + (x + (i-L))(Exk-u):

k k

x k k < vk (k19 ... 9K

MIN[acx
k + x x1 (zxk u)+(1_)XkCkA

k + (I- OX2(x k -u):

k k k k

Axk = rk(k=,...,K); 0 f k <Vk(k=1 K)l

> aMINIXckx
k + X (z xk U) .

k k

Ax k = r k(k~l,...,K);D < x k <V k(k:1 .. ,K)

+(-a) MIN [Zckxk + X2(Zxku)

k k

Axk=rk (l...,K);O < k< vk(k=19,...I

Sh(X1) + (-c,)h(X 2). Hence h is concave over A. S

proposition 3.7

Let x 0. Let i represent an optimal value of x corresponding

to h(X). Then d k-u is a subgradient of h at \.

Proof

Let X be any other point in
A with corresponding optimal

decision

variable values x. Then

h(,) r c +x x -u)

k k

4-i

26

k-k ' -k p
< Z c x + (E x _u) (since x is optimal)

k k

k k (7 k_u) + . k_-Z k) + (, u-u)
k k k k

Sk + X(k-u) + (k-u)(-I)
k k k

= h(j) + d(x-).

Therefore d is a subgradient of h at X. *

We now present our algorithm for computing lower bounds for MP.

Note that it is a specialization of the subgradient optimization

algorithm for this problem, and its convergence follows as a maximiza-

tion analog of Proposition 3.4.

ALGORITHM 3.2 LOWER BOUND ALGORITHM

Step 0 (Initialization)

Let UB be any upper bound on the solution to MP. Set i *-0; l0

0; a *- 2. Compute y. - h(Xo) and let x0 = (x,... ,x
K) be the

corresponding optimal values of the decision variables.

Step 1 (Find Subgradient)
k

Set Z- xi-u. If ni 0 0, stop with y optimal.
k

Step 2 (Move to New Point)

2 th
Set si +- ci(UB-yi)/IInill . Compute the j component of

Xi as:

(X i+1) MAX {(xi+sini)j , 0)

• , mmam" i m lji mm I 11

27

Compute yil , h(X i+) and let xi+ I be the corresponding optimal values

of the decision variables. Set ai ai/2. Set i i1. Return to

step 1.

3.3 Generating Upper Bounds

Here we describe a procedure for generating upper bounds for the

multicommodity network flow problem. This procedure is a specialization

of the resource-directive decomposition (RDD) algorithm using a sub-

gradient direction. First we describe the general RDD procedure; then

we present our specialization.

The RDD technique produces a sequence of feasible solutions by

distributing the mutual arc capacity among commodities in such a way

that the solutions to the K individual subproblems provide a solution to

the composite problem. At each iteration an allocation is made and the

resulting K (single commodity) minimum cost network flow problems are

solved. If the solution meets an optimality criterion then the

procedure terminates; otherwise, a new allocation is made, and the

process is repeated.

After introducing artificial variables, (a k), MP becomes:k

Minimize c kx + M Z la
k

k k

Subject to Axk + ak r (k=1,...,K)

k x k < ,
k

0 < xk < vk (k

a > 0 (k= 1,...,K)

28

where M is a very large positive number and 1 is an m vector of all

ones.

Let us restate the problem as:

1 K
Minimize z(y ,...,yK)

1 K k kSubject to z(yl,...,yK) = Z z (yk) (RP)
k

k
Zyk = u
k

0 < yk < Vk (k = 1,...,K)

k k k k k k k=k k k k
where z (y k) = MIN {c x +Mla : Ax +ak=rk; o<x <y; a >0} for k =

1,...,K. We shall refer to this formulation as RP. Note that z k(yk) =

MAX{r kpk -yk v :p kA-v kc k k<_M1;vk >0), by duality theory.

In order to justify using a subgradient optimization technique we

1 K
must show that z(y ,... ,y) is a convex function and develop an

expression for a subgradient.

Proposition 3.8 [52]

The real valued function z is convex over

1 k 1 KY = {y ... ,gy :yto; ... ;y >)

Proof

1 -K 1 K
Let (y ,...,y)EY and (y ,...,y)cY. Select a so that

O<a<l. Then

1z 1 -K -K]z[ay +(1-z)y ,...,(Xy + (1-a Y
k -k k
ZZ[ay (-~

k

kk -k ~ k k
Z Z MAX r u - [ay + (1-a)Y IV
k

k A-v k<c ; k < M1;v k > 0)

29

k k ykk kk kk
Z MAX{a[r -] + l-Q)[rkpk y vk1:
k

i kA-v k<ck; k <M1; vk 0

k k -k k
< a MAX {r kI -y k k

k

kA-v k<c k; <M1; vk }

k ^k k
+ (1-) Z MAX{ r . -y :

k

p kA-v k k k <M; v k >0}

...1, + (1-a)z(y ,...,y K

Therefore z is convex over Y. U

Proposition 3.9 [52]

Let y = K ,...,y be any allocation and let (k -k

denote the corresponding optimal solution to zk (- k) for k = 1,...,K.

-1 -K
Then n = (-v ,...,- is a subgradient of z at y.

Proof
1 Kk

Let y = (y ,...,y K)cY be any allocation and let (p ,v k) denote the

corresponding optimal solution to z k(y k) for k : 1,...,K. Then:

z(y1,...,y)-z(y1,... ,y K (rk -yv - (r k k- k k)

k k

k-k_ k-k k-k-k-k
>_ Z (rp -y) _ Z (rk - V)

k k

k (k)(y k_y k

k

30

Hence ni is a subgradient of z at y. a

Recall that the subgradient optimization algorithm requires a

technique for projecting a point onto the feasible region. We now

explore the projection operation for this problem.

Let us denote the feasible region for RP by Q. That is,
= {(y1 K ,* EK k yu; k _ vk(k =1,...,K)}. Given an

arbitrary allocation, -1 -K to project it onto 2, we solve

MiN1 1(yl ... ,yK)_(1 -- JK)11: YE }

k -k,2,1/2
= MIN {()(yj-yj) : y cal.

kj

Or, equivalently, we can solve:
k -k2

MIN {EE(yk -k ,) 2: y co).

kj J J

Note that this problem decomposes on j. Hence, for each arc j, we

solve:

MINtZ(y k-k) 2: Z y. k .= U y. kV (k=1,...,K)).
k j-j k i ;0<yj v

We will denote the above projection problem by P. The following

algorithm [52] is used to solve P for any arc, j.

ALGORITHM 3.3 PROJECTION ALGORITHM

Step 0 (Initialization)

If u. > Z vk or u. < 0, terminate with no feasible
iok i s

solution. Otherwise set I - 1; r-2K; L-Z v k; R+O. Compute

k

31-k -kk

the breakpoints, b. (i=1,...,2K), as yk and yk-v. (k=l,...,K).

Order the breakpoints so that b 1 < b2 < ...<b2K.

Step 1 (Test for Bracketing)

If r-1 =1 go to step 4; otherwise, set m[(l+r)/2]1I where [K] I

is the greatest integer < K.

Step 2 (Computer New Vblue)

-kk

Set C *- z MAX{MIN[y-y m, vk], O}
k

Step 3 (Update)

If C=c then set X -y* and go to step 5. If C>c thenm
set 1*-: L4-C; and go to step 1. If C<c then set r+m; R+C; and go to

step 1.

Step 4 (Interpolate)

Set X*-bI+[(b r-b1)(c-L)/(R-L).

Step 5

Compute the feasible (projected) allocation, y , for

k=l,...,K in this way:

k -k k

3 -J 3j,

y kkX* if y kvk*<y-k

0 if X* > yj

Terminate with the feasible allocation for arc j, (y1,...,yK).
3 3

An upper bound algorithm using the subgradient procedure is now

presented. Its convergence is a direct result of Proposition 3.4.

32

ALGORITHM 3.4 UPPER BOUND ALGORITHM

Step 0 (Initialization)

Let LB be any lower bound on the solution to MP. Choose a set of
1 K k

initial allocations, yO.: (yo'"'.yo) by setting yO k P[(l/K)(u)]

for k = 1,...,K. Set X 2; i - O; UB4-.

Step 1 (Find Subgradient)
kkM k k

Let (Pk,vik) solve z (yi) for k = 1,...,K. Let

1 k k
i ...,-v). Set UB*-z (yi). If 0, then terminate with

z(yi) optimal.

Step 2 (Move to New Point)

Compute si Xi [z(yi)-LB]/i1ni11 2 . Set Yi+l

P[Yi-Siri]. Set X i+lX i/2; ii+1. Return to step 1.

We now introduce a heuristic modification of the upper bound

algorithm, which has produced better results on our test problems.

Recall that n = (-v 1 ,...,-v K) is a subgradient of z at (y ,... ,yK

Then for each arc j, the vector

n(j) = (nej, nn+j e ,. .. ,n (k-1)n+Je.)

serves to isolate the components of n associated with the commodities

flowing on arc j. For each such arc j we compute an individual step

size at iteration i as

si(j) A Xijz(y1,...,yK)-z*]/Ilni(j)Hl
2

where z* is approximated by LB.

33

Using this idea we now present our heuristic upper bound

algorithm.

ALGORITHM 3.5 HEURISTIC UPPER BOUND ALGORITHM

Step 0 (Initialization)

Let LB be any lower bound on the solution to MP. Choose a set of

initial allocations, y. = (yl,...,yK) by setting y k - P[(1/K)(u)]

for k = 1,...,K. Set X0 -2; i-O; UB+-.

Step 1 (Find Subgradient)
k k k

Let (p k ,v) solve z (yk) for k = 1,...,K. Let ni

1-v Se B~zk k
i' ,-). Set UB k (yi) If i=O, then terminate with

k

z(yi) optimal.

Step 2 (Move to New Point)

Compute si(j)-i [z(y 1....K)-LB]/I1ni(j)1I2 for each arc j.

Set S diag(s i(1),...,s i (n)). Set

1K1

Set (yi1 ,-.+K)- P[(Y1""'.yiK) - Snil. Set xi+1 +xi/2; i-*-i+1 .
Set y e ~ ii+1

Go to step 1.

34

3.4 The Algorithm

In this section we present the composite algorithm for solving MP.

This procedure involves partially solving DP for successively better

lower bounds and partially solving RP for successively better upper

bounds on the optimal objective function value. The algorithm

terminates whenever (a) the solution to DP can be shown to be an exact

optimum; (b) the solution to RP can be shown to be an exact optimum; or

(c) the greatest lower bound and the least upper bound generated are

within a prescribed tolerance, e . In case (c), the best solution to RP

is presented as a guaranteed E-optimal solution.

ALGORITHM 3.6 COMPLETE ALGORITHM

Step G (Initialization)

Let c-f-termination tolerance (0<f<1); NOLB-number of lower bound

iterations to perform on each pass; NOUB-number of upper bound

iterations to perform on each pass; LB*--; UB+-.

Step 1 (Lower Bound)

Perform NOLB iterations of the lower bound algorithm (Algorithm

3.2). Let LB denote the best lower bound attained so far. If Algorithm

3.2 terminates in step 1 with an exact optimum, terminate with that

solution optimal for MP.

Step 2 (Upper Bound)

Perform NOUB iterations of an upper bound algorithm (Algorithm 3.4

or 3.5). Let UB denote the best upper bound attained so far. If

Algorithm 3.4 terminates in step 1 with an exact optimum, terminate with

that solution optimal for MP.

35

Step 3 (Check for Termination)

If e(UB)<LB then terminate with UB a guaralteed c-optimum;

otherwise, go to step 1.

In this algorithm the best solutions for the lower bound and upper

bound problems at each pass are retained and used as starting solutions

for the respective problems on the next pass. The details of our

implementation are presented in Chapter 4.

36

CHAPTER IV

COMPUTATIONAL EXPERIMENTATION

This chapter provides descriptions of our computer implementation

of Algorithm 3.6 and of the test problems used. Our code, EVAC, uses

MODFLO [] to solve the single commodity minimum cost network flow

subproblems which arise in Algorithm 3.2 and in Algorithm 3.5. MDDFLO

is a set of routines which may be used to solve a network flow problem or

to reoptimize a previously solved problem after changes are made in some

of the data. MODFLO, which is based on NETFLO [52], allows the user to

change bounds, costs, and/or requirements and then reoptimize from a

basis which was opLimal for the original problem.

We tested EVAC on 22 randomly generated multicommodity network

flow problems and on one test problem which was specially structured to

be solved by EVAC. The test problems ranged in size from 22 to 754

nodes and From 53 to 1,102 arcs with from 0 to 599 linking constraints

and from 3 to 20 commodities. The equivalent LP sizes are between 232

and 8,904 rows and between 470 and 12,111 columns. The 22 randomly

generated problems were created using MNETGN [5], a multicommodity

network problem generator. The problems were solved by EVAC and by MCNF

[51], a multicommodity network flow code which uses a primal parti-

tioning algorithm. Solution times are compared and conclusions are

drawn concerning the relative effectiveness of the techniques.

37

4.1 Description of the Computer Programs

In this section we present a description of MCNF and EVAC, the two

computer codes used in our experimentation. Both programs are written

in standard FORTRAN and have been tailored to neither our equipment nor

our FORTRAN compiler.

4.1.1 MCNF

MCNF was developed by Jeff Kennington at Southern Methodist

University, Dallas, TX. It is an incore multicommodity network flow

problem solver which uses the modification of the revised simplex method

known as the primal partitioning algorithm [36]. In this algorithm the

basis inverse is maintained as a set of rooted spanning trees (one for

each commodity) and a working basis inverse is maintained in product

form. The working basis inverse has dimension equal to the number of

binding linking constraints corresponding to the current basis. The

initial basis is created using a multicommodity variation of the routine

used in NETFLO. A partial pricing scheme is used; the pricing tolerance

is 1.E-6 and the pivot tolerance is I.E-8.

4.1.2 EVAC

EVAC is our implementation of Algorithm 3.6 for solving the

multicommodity network flow problem. Note that Algorithm 3.6 alternates

between generating lower bounds using Algorithm 3.2 and generating upper

bounds using Algorithm 3.5. Since both the lower bound problem (DP) and

the upper bound problem (RP) decompose on commodities, EVAC maintains

only the information concerning the current commodity in main memory.

The problem data and most recent bases for all the other commodities are

I

"ab'mmmmmmmmm•• •

38

kept on peripheral storage. At the user's option EVAC stores in main

memory as much of the current set of allocations, (y1,...,yk) and

1 k
current dual variables (-i .,... ,-v i) as desired. All our test

problems (with the exception of Problem 23) were solved with all the

allocations and dual variables in core.

Both the lower bound routine and the upper bound routine use

MODFLO as the optimizer for the single commodity subproblems. MODFLO

uses the same partial pricing scheme as NETFLO and drives the flow on

artificial arcs to zero using the Big-M method. The Big-M value that

was used for our test problems, except as noted in Table 4.1, was 7

times the largest unit cost in the given problem. At subsequent

iterations, initial bases for each commodity are just the optimal bases

for the previous set of Lagrange multipliers. A basis for the upper-

bound problem is generated by constructing a feasible basis from the

previous optimal basis using the rules described in [1].

In practice we did not update the multipliers for the step sizes

(a, in Algorithm 3.2 and X i in Algorithm 3.5) at every iteration, but

only when the improvement in the objective function was too small. As

Algorithm 3.2 requires a finitie upper bound (for calculation of the

step size in step 2) we used an initial value of UB4- 1.1*LB.

Thereafter for UB we used the best upper bound generated so far. The

parameters and tolerance used in all our testing were these:

C = .90

NOLB = 5

NOUB = 5

Pricing Tolerance 1.E-2

39

4.2 Description of the Test Problems

The multicommodity network problem generator, MNETGN, was used to

create 22 random test problems. We modified the MNETGN output so that

every arc appeared in every commodity's subproblem by adding arcs with

upper bounds of zero where necessary. The test problem ranged in size

from 22 to 754 nodes and from 53 to 1,102 arcs with from 0 to 599

linking constraints and from 3 to 20 commodities. The equivalent LP

sizes are between 232 and 8,904 rows and between 470 and 12,111 columns.

The number of linking constraints corresponds to a wide variety of

problems from pure network problems (no linking constraints) to problems

in which over 75% of the arcs are included in linking constraints.

Problem 15 was provided by Lt. Col. Dennis McLain, the Assistant

Director of Operations Research at the Military Airlift Command located

at Scott Air Force Base.

4.3 Summary of Computational Results

All the testing (except for Problems 15, 21, and 23) was done on a

CDC 6600 at Southern Methodist University, using the FTN compiler with

the optimization feature enabled. Except for Problems 7 and 23, a

guaranteed E-optimum was obtained for each problem with c > 90%.

Problem 7 experienced convergence difficulties when run using EVAC.

Problem 8 was created from Problem 7 by increasing the linking

constraint bounds by 10%. As indicated in Table 4.1, this slight

modification enabled EVAC to solve the problem easily. We limited the

number of lower bound iterations and upper bounds iterations to 100,

40

even though Problem 7 had not achieved 90% optimality by that point.

Because of this the solution times for Problem 7 are given in Table 4.1

but are not included in the summary data.

Problem 23 was created to allow us to test EVAC on a relatively

large problem. This problem (with 8,904 LP rows and 12,111 LP columns)

was too large for MCNF to solve in the available memory, so we were not

able to compare solution times for the two codes on this problem. In

addition, due to the memory limitations on the CDC 6600, we were forced

to use a CDC 205 to test Problem 23. For this reason the times for

Problem 23 are included in Tables 4.1 and 4.2, but are not included in

the totals and summary information. Since the testing on the CDC 205

involved a real-dollar expense, we were satisfied to stop when a 75%

optimum was attained. The test runs for Problems 15 and 21 were made on

a CDC Cyber 73. But since both the EVAC and MCNF runs for these

problems were made on the Cyber 73, the totals and summary data include

the times for Problems 15 and 21.

Details of the test problems are given in Table 4.1. The times are

in CPU seconds and exclude the time required to input the problem data

and print the solution reports. Table 4.1 also presents a comparison of

the times required for MCNF and EVAC to solve each problem. In order to

present a meaningful comparison of the solution times for MCNF and EVAC,

we also present the solution times for EVAC exclusive of the extra I/O

required to maintain the costs, bounds, and old bases for the sub-

problems on peripheral storage. Since MCNF maintains all this informa-

tion in main memory, this seems to be the most reasonable way of

comparing timing statistics. The column titled "Guaranteed % Optimal"

gives the best lower bound generated by EVAC as a percent of the best

41

upper bound generated by EVAC. The column titled "Actual % Optimal"

presents the actual optimal objective (as obtained by MCNF) as a percent

of the best upper bound generated by EVAC.

Table 4.2 provides the details of the times required by EVAC to

perform various steps of the algorithm. The column titled "% of Time in

Other" for the lower bound computations shows the time required for such

activities as computing the Lagrange multipliers, updating the unit

costs to reflect these changes, computing the resulting dual variables,

and various bookkeeping activities. The corresponding column for upper

bound computations reflects such activities as calculating the dual

variables, testing the termination criteria, and various other short

computations.

Table 4.3 summarizes the time comparisons graphically. The

problems are grouped by number of commodities, as they are in Tables 4.1

and 4.2.

4.4 Analysis of Results

It seems clear from Tables 4.1 and 4.3 that EVAC severely

dominates MCNF whenever the number of commodities is small. This is due

to the fact that, for EVAC, quite a bit of additional overhead is

involved in alternating between commodities. This overhead is not just

a result of I/O, although that is a great deal of it, but is also due to

the set-up time required for activities such as constructing a new

feasible basis from an old basis and calculating the resulting dual

variables. MCNF, on the other hand, is primarily driven by the number

of binding linking constraints in the optimal solution. This is because

MCNF seeks an exact optimum.

42

Letting T(EVAC) denote the average time required by EVAC

(exclusive of I/0), and T(MCNF) denote the average time required by

MCNF, we can express the following relationships:

For the 3-commodity test problems,

T(EVAC) = .354 * T(MCNF).

For the 4-commodity test problems,

T(EVAC) = .469 * T(MCNF).

For the 5-commodity test problems,

T(EVAC) = .666 * T(MCNF).

And for the test problems with 6 or more commodities,

T(EVAC) = .975 * T(MCNF).

It should also be noted that EVAC is capable of solving larger

problems than MCNF. This is due to the fact that EVAC stores only one

copy of the network defining data in main memory, where MCNF requires

one copy for each commodity. Also, EVAC maintains in main memory the

current basis, cost and bound data for only one commodity at a time.

Thus, for a K-commodity problem, EVAC uses on the order of 1/K the main

memory required by MCNF.

Note that the entries in the "Guaranteed % Optimal" and "Actual %

Optimal" columns of Table 4.1 are quite close. This indicates that the

sequence of lower bounds converged to values very near optimality. In

addition, from Table 4.2, we see that the lower bound iterations are

typically less time consuming than the upper bound iterations.

It is wnrth observing that EVAC was designed for very large

problems which would never be solved to optimality. Even if a problem

does not converge to within the requested tolerance in a prescribed

number of iterations, EVAC always provides a feasible solution which is

43

a guaranteed E-optimum for somec >0. In contrast, MCNF provides only an

upper bound on the optimum objective value, with no indication of how

close it is to optimality until an exact optimum is actually attained.

We conclude that EVAC works extremely well in obtaining a

guaranteed c-optimum for the multicommodity network flow problem. While

it is not as "robust" as the simplex-based MCNF, it is a good choice for

the class of problems for which it was developed, the very large

casualty evacuation models.

co N a 0' N A 0 '0N PI '0 0 0 WO F

w. ata gY~ am a, a, baa Am 0 g g we im am

0 cc UNe, % ;z Ch~ -2gw'0w, c

m o" 4 c I" N2~O NC 04 4 ,'c %a ,4 %' r- 0u

r4 %D~r v4 4 Nco

001

-C
v

:.- FC-. C9' n 4 0 4 I
-~~r Os% r-4.

- zP z u ?At w a g

Wta ?Itta taaNno4 wS w% .4 M cc c0

-- am v we am am a* at at&~~a be atatata atatata
&tJ OPN 4 IW " %D co 0 U r- a %0 -4S .

V - 4 L4

z

00 Wj 0 , 1 I 26j LIn
0rlr ~ ^ Ir4 0 N c .

c US

-Ln

00

0.~~ 1S4 P W 0 N5 0S5 O'0~%.0 s %^PN-P

6% NO 1010 wUSvwP- o_

Lm~~' -a-hwRwc
u 0% I % " A ' , r %N" *

cc us "NA W s C- c

uI L lo LIN r.. d. G~ L

e4 = -w -r

ataVta al ataa at ta bi bi e at a a at at v at at at at AV at
- -N -I %O U 4 WN. r- % ; 1M

cc aatt AV& a at atat attt aaat at atta aa

gat

m 1 - C4

at C-

cc 9 ~atta a4 atata M, A taty Iat 9 9 at at a1 at at g A

t- a~~ ~tata a at r4 04 e4 g g at aat at attaattaa
8. " 4 r4 4 C- -~ W

at

r4C

- at a1 at at at at AVat tat at atat'at ata, attat t1atI1 C4 III O 1 F 00 -

A,-a atTVc A t-

co- f

1%~~ 'D L.% 4 - V999
11 C- M0C4r 0%-----

4t V 4 .UNI U- Vl ,%IV0f ~

6j. 0 C

- -- - -- o r a NC.PlD~ C-
:C

ccI

46

TABLE 4.3

GRAPHICAL COMPARISON OF EVAC AND MCNF SOLUTION TIMES

E EVAC (EXCLUSIVE OF I/O)

250 MCNF

I EVAC I/O

200

z
0

150

z

z
0

4 100

50.

3-Commodity 4-Commodity 5 Commodity > 6-Commodity
Test Problems Test Problems Test Problems Test Problems

(3) (5) (5)

47

CHAPTER V

SUMMARY AND CONCLUSIONS

This chapter presents a summary of the results reported in

Chapter IV and shares conclusions regarding the relative effectiveness

of our technique. It also includes ideas for further investigation in

the area.

5.1 Summary and Conclusions

Algorithm 3.6 describes our technique for finding an E-optimal

solution for the multicommodity network flow problem. Our technique

differs from other approaches to the problem in that, rather than

solving the multicommodity problem directly, we compute sequences of

lower and upper bounds on the optimal objective function value,

terminating when the bounds are within a prescribed tolerance. Both

the lower and upper bound algorithms use a subgradient optimization

technique and both decompose on commodities so that only a single

commodity minimum cost network flow optimizer is required. At each

iteration of the lower bound routine (Algorithm 3.2), an initial basis

is generated from the previous optimal basis by modifying the costs to

correspond to the new Lagrange multipliers, and updating the dual

variables. At each iteration of the upper bound routine (Algorithm

3.5), an initial basis is constructed from the previous optimal basis

48

using the rules described in [1] to restore feasibility (if

necessary) after changing the bounds to correspond to the new

allocations.

The subgradients for the lower bounds are computed to be the sum

of the flows on the mutually constrained arcs minus the associated

mutual arc capacities. For the upper bounds, subgradients are

computed using the dual variables obtained when solving the single

commodity network problems.

Our computational work included solving each one of 23 problems

twice; once using MCNF, a primal partitioning code, and once using

EVAC, our implementation of Algorithm 3.6. On the average EVAC

required only 65% of the time required by MCNF (ignoring J/0). EVAC's

performance was far superior on the problems with fewer commodities

and was not as impressive on the problems involving many commodities.

In addition EVAC required on the order 1/K the amount of main memory

as MCNF for a K-commodity problem.

5.2 Areas for Future Investigation

Algorithm 3.6 involves two more or less independent processes.

That is, there is no reason why the lower bound generator (Algorithm

3.2) and the upper bound generator (Algorithm 3.5) could not proceed

independently, stopping now and then to exchange their best bounds and

test for optimality. Hence it appears that this procedure is

well-suited to exploit the benefits of a parallel processing

environment. In addition to the partitioning of the technique into

two separate procedures, within each of these procedures the

decomposition by commodities could take advantage of a parallel

49

processing scheme as well. It would seem reasonable to expect such a

scheme to speed up the execution time considerably, especially when

solving a very large problem.

There is also room for additional experimentation with the step

sizes, specifically with the multipliers on the step sizes. Perhaps a

scheme in which the multipliers were allowed to be reset to their

starting values a finite number of times would speed up convergence.

One might reset these multipliers whenever the improvement in the

sequence of upper (lower) bounds fell below some tolerance. This

would have the effect of restarting the algorithm at that point, but

with a far better "starting solution".

In addition this problem has a multiperiod structure. Since the

network is replicated for 60 one day time periods, it might be

advantageous to exploit this structure using a forward simplex

approach.

50

LIST OF REFERENCES

1. Ali, A., Allen, E., Barr, R., and Kennington, J., "Reoptimization

Procedures for Bounded Variable Primal Simplex Network Algorithms",

to appear in European Journal of Operations Research.

2. Ali, I., Barnett, D., Farhangian, K., Kennington, 3., McCarl, B.,

Patty, B., Shetty, B., and Wong, P., "Multicommodity Network Problems:

Applications and Computations," IE Transactions, 16, 2, 127-134

(1984).

3. Ali, A. I., Helgason, R. V., Kennington, J. L., and Lall, H.,

"Primal-Simplex Network Codes: State-of-the-Art Implementation

Technology," Networks, 8, 315-339 (1978).

4. Ali, A. I., Helgason, R. V., Kennington, J. L., and Lall, H.,

"Computational Comparison among Three Multicommodity Network Flow

Algorithms," Operations Research, 23, 995-1000 (1980).

5. Ali, A. and Kennington, J., "MNETGN Program Documentation",

Technical Report IEOR 77003, Department of Industrial Engineering and

Operations Research, Southern Methodist University, Dallas, TX, (1977).

51

6. Ali, A. I., and Kennington, 3. L., "Network Structure in Linear

Programs: A Computational Study," Technical Report No. 83-OR-1,

Department of Operations Research, Southern Methodist University,

Dallas, TX (1983).

7. Ali, A., and Kennington, 3., "The Asymmetric M-Travelling Salesman

Problem: A Duality Based Branch-And-Bound Algorithm," to appear in

Discrete Applied Mathematics.

B. Assad, A. A., "Multicommodity Network Flows -Computational

Experience," Working Paper OR-058-76, Operatons Research Center,

Massachusetts Institute of Technology, Cambridge, MA, (1976).

9. Barr, R. S., Glover, F., and Klingman, D., "The Alternating Basis

Algorithm for Assignment Problems," Mathematical Programming, 13, 1,

1-13 (1977).

10. Barr, R. S., Glover, F., and Klingman, D., "Enchancements of

Spanning Tree Labelling Procedures for Network Optimization," INFOR,

17, 1, 16-34 (1979).

11. Bazaraa, M., and Goode, 3., "The Travelling Salesman Problems: A

Duality Approach," Mathematical Programming, 13, 221-237 (1977).

12. Bazarra, M. and Shetty, C., Nonlinear Programming: Theory and

Algorithms, John Wiley and Sons, New York, NY, (1979).

It

52

13. Bradley, G. H., Brown, G. G., and Graves, G. W., "Design and

Implementation of Large-Scale Primal Transshipment Algorithms,"

Management Science, 24, 1, 1-34 (1977).

14. Charnes, A., and Cooper, W. W., Management Models and

Industrial Applications of Linear Programming, Vols. 1 and

2, John Wiley and Sons, New York, NY, (1961).

15. Chen, H., and DeWald, C. G., "A Generalized Chain Labeling

Algorithm for Solving Multicommodity Flow Problems," Computers and

Operations Research, 1, 437-465 (1974).

16. Cremeans, J. E., Smith, R. A., and Tyndall, G. R., "Optimal

Multicommodity Network Flows with Resource Allocation," Naval Research

Logistics Quarterly, 17, 269-280 (1970).

17. Dantzig, G. B., "Application of the Simplex Method to a Trans-

portation Problem," in T. C. Koopmans, Ed., Activity Analysis of

Production and Allocation, John Wiley and Sons, New York, NY, (1951).

18. Dantzig, G. B., Linear Programming and Extensions, Princeton

University Press, Princeton, NJ (1963).

19. Dantzig, G. B., and Wolfe, P., "Decomposition Principle for Linear

Programs," Operations Research 8, 101-111 (1960).

53

20. Ford, L. R., and Fulkerson, D. R., "Maximal Flow

through a Network," Canadian Journal of Mathematics, 8, 3,

399-404 (1956).

21. Ford, L. R., and Fulkeson, D. R., "A Suggested Computation for

Maximal Multicommodity Network Flow," Management Science, 5, 97-101

(1958).

22. Ford, L. R., and Fulkerson, D. R., Flows in Networks,

Princeton University Press, Princeton, NJ, (1962).

23. Fulkerson, D. R., "An Out-of-Killer Method for Minimal-Cost Flow

Problems," Journal of the Society of Industrial and Applied Mathematics,

9, 1, 18-27 (1961).

24. Glover, F., Glover, R., and Martinson, F., "The U.S. Bureau of

Land Management's New NETFORM Vegetation Allocation System," Technical

Report of the Division of Information Science Research, University of

Colorado, Boulder, CO (1982).

25. Glover, F., Hultz, J., and Klingman, D., "Improved Computer-Based

Planning Techniques," Research Report CCS 283, Center for Cybernetic

Studies, The University of Texas, Austin, TX, (1977).

26. Glover, F., Hultz, J., and Klingman, 0., "Network Versus Linear

Programming Algorithms and Implementations," CCS 306, Center for

Cybernetic Studies, The University of Texas, Austin, TX, (1977).

54

27. Glover, F., Karney, D., and Klingman, 0., "Implementation and

Computational Comparisons of Primal, Dual, and Primal-Dual Computer

Codes for Minimum Cost Network Flow Problems," Networks, 4,3, 191-212

(1974).

28. GLover, F., Karney,D., Klingman, D., and Napier, A., "A Computa-

tional Study on Start Procedures, Basis Change Criteria, and Solution

Algorithms for Transportation Problems," Management Science, 20, 5,

793-813 (1974).

29. Glover, F., and Klingman, D., "New Advances in the Solution of

Large-Scale Network and Network-Related Problems," Technical Report CCS

177, Center for Cybernetic Studies, The University of Texas, Austin,

TX, (1974).

30. Glover, F., and Klingman, D., "New Advances in the Solution of

Large-Scale Network and Network-Related Problems," CCS 238, Center for

Cybernetic Studies, The University of Texas, Austin, TX, (1975).

31. Glover, F., and Klingman, D., "Some Recent Practical Miscon-

ceptions about the State-of-the-Art of Network Algorithms," Operations

Research, 2, 370-379 (1978).

32. Glover, F., Klingman, D., and Stutz, J., "Augmented Threaded Index

Method for Network Optimization," INFOR, 12, 3, 293-298 (1974).

55

33. Graves, G. W., and McBride, R. D., "The Factorization Approach to

Large-Scale Linear Programming," Mathematical Programming, 10, 1,

91-110 (1976).

34. Grigoriadis, M.D., and White, W. W., "A Partitioning Algorithm for

the Multicommodity Network Flow Problem," Mathematical Programming, 3,

157-177 (1972).

35. Hartman, J. K., and Lasdon, L. S., "A Generalized Upper

Bounding Method for Doubly Coupled Linear Programs," Naval

Research Logistics Quarterly, 17, 4, 411-429 (1970).

36. Hartman, 3., and Lasdon, L., "A Generalized Upper Bounding

Algorithm for Multicommodity Network Flow Problems", Networks, 1,

333-354, (1972).

37. Held, M., and Karp, T., "The Travelling Salesman Problem and

Minimum Spanning Trees: Part II," Mathematical Programming, 1, 6-25

(1971).

38. Held, M., Wolfe, P., and Crowder, H., "Validation of Subgradient

Optimization", Mathematical Programming, 6, 66-68, (1974).

56

39. Helgason, R., "A Lagrangian Relaxation Approach to the Generalized

Fixed Charge Multicommodity Minimum Cost Network Flow Problem,"

unpublished dissertation, Department of Operations Research and

Engineering Management, Southern Methodist University, Dallas, TX,

(1980).

40. Helgason, R. V., and Kennington, J. L., "A Product Form

Representation of the Inverse of a Multicommodity Cycle Matrix,"

Networks, 7, 297-322 (1977).

41. Helgason, R. V., and Kennington, J. L., "An Efficient Procedure

for Implementing a Dual-Simplex Network Flow Algorithm,"

AIIE Transactions, 9, 1, 63-68 (1977).

42. Hitchcock, F. L., "The Distribution of a Product from Several

Sources to Numerous Localities," Journal of Mathematics and Physics,

20, 224-230 (1941).

43. Jarvis, J. J., "On the Equivalence Between the Node-Arc and

Arc-Chain Formulation for the Multicommodity Maximal Flow Problem,"

Naval Research Logistics Quarterly, 15, 525-529 (1969).

44. Jarvis, J. J., and Keith, P. D., "Multicommodity Flows with Upper

and Lower Bounds," Working Paper, School of Industrial and Systems

Engineering, Georgia Institute of Technology, Atlanta, GA, (1974).

57

45. Jarvis, 3. J., and Martinez, 0. M., "A Sensitivity Analysis of

Multicommodity Network Flows," Transportation Science, 11, 4, 299-306

(1977).

46. Jewell, W. S., "A Primal-Dual Multicommodity Flow Algorithm," ORC

66-24, Operations Research Center, University of California, Berkeley,

CA, (1966).

47. Johnson, E. L., "Programming in Networks and Graphs," Technical

Report ORC 65-1, Operations Research Center, University of California

at Berkeley (1965).

48. Kantorovich, L.V., "Mathematical Methods in the Organization and

Planning of Production," Publication House of the Leningrad State

University, 1939. 68pp. Translated in Management Science, 6, 366-422

(1960).

49. Karney, D., and Klingman, D., "Implementation and Computational

Study on an In-core, Out-of-core Primal Network Code," Operations

Research, 24, 1056-1077 (1976).

50. Kennington, J. L., "Solving Multicommodity Transportation Problems

Using a Primal Partitioning Simplex Technique," Naval

Research Logistics Quarterly, 24, 2, 309-325 (1977).

58

51. Kennington, J., "A Primal Partitioning Code for Solving

Multicommodity Network Flow Problems", Technical Report No. 79008,

Department of Operations Research, Southern Methodist University,

Dallas, TX, (1979).

52. Kennington, J., and Helgason, R., Algorithms for

Network Programming, John Wiley & Sons, New York, NY, (1980).

53. Kennington, J. L., and Shalaby, M., "An Effective Subgradient

Procedure for Minimal Cost Multicommodity Flow Problems," Management

Science, 23, 9, 994-1004 (1977).

54. Koopmans, T. C., and Reiter, S., "A Model of Transportation," in

T. C. Koopmans, Ed., Activity Analysis of Production and Allocation,

John Wiley and Sons, New York, NY, (1951).

55. Kuhn, H. W., "The Hungarian Method for the Assignment Problem",

Naval Research Logistics Quarterly, 2, 83-97 (1955).

56. Maier, S. F., "A Compact Inverse Scheme Applied to a Multi-

commodity Network with Resource Constraints," in R. Cottle and J.

Krarup, Eds., Optimization Methods for Resource Allocation, The English

University Press, London, England (1974).

57. Mulvey, J. M., "Pivot Strategies for Primal-Simple, Network

Codes," Journal of the Association for Computing Machinery, 25, 2,

266-270 (1978).

59

58. Mulvey, J., "Testing of a Large-scale Network Optimization

Program," Mathematical Programming, 15, 291-314 (1978).

59. Orden, A., "The Transshipment Problem", Management Science, 2, 2,

276-285 (1956).

60. Robacker, J. T., "Notes on Linear Programming: Part XXXVII,

Concerning Multicommodity Networks," Memo RM-1799, The Rand

Corporation, Santa Monica, CA, (1956).

61. Saigal, R., "Multicommodity Flows in Directed Networks," ORC

67-38, Operations Research Center, University of California, Berkeley,

CA, (1967).

62. Shor, N., "On the Structure of Algorithms for the Numerical

Solution of Optimal Planning and Design Problems," unpublished

dissertation, Cybernetics Institute, Academy of Sciences, U.S.S.R.

(1964).

63. Srinivasan V., and Thompson, G. L., "Accelerated Algorithms for

Labelling and Relabeling of Trees, with Applications to Distribution

Problems," Journal of the Association for Computing Machinery, 19, 4,

712-726 (1972).

60

64. Srinivasan, V., and Thompson, G. L., "Benefit-Cost Analysis of

Coding Techniques for the Primal Transportation Algorithm," Journal of

the Association for Computing Machinery, 20, 194-213 (1973).

65. Swoveland, C., "Decomposition Algorithms for the Multicommodity

Distribution Problem," Working Paper 184, Western Management Science

Institute, University of California, Los Angeles, CA, (1971).

66. Swoveland, C., "A Two-Stage Decomposition Algorithm for a

Generalized Muticommodity Flow Problem," INFOR, 11, 232-244 (1973).

67. Tomlin, J. A., "Mathematical Programming Models for Traffic

Network Problems," unpublished dissertation, Department of Mathematics,

University of Adelaide, Australia (1967).

68. Weigel, H. S., and Cremeans, 3. E., "The Multicommodity Network

Flow Model Revised to Include Vehicle per Time Period and Mode

Constraints," Naval Research Logistics Quarterly, 19, 77-89 (1972).

69. Wollmer, R. D., "Multicommodity Networks with Resource

Constraints: The Generalized Multicommodity Flow Problems," Networks,

1, 245-263 (1972).

Appendix B

Technical Report 85-OR-i

TRE EQUAL FLOW PROBLEI

By

Iqbal AliI

Jeffery Kennington
2

Bala Shetty
2

Southern Methodist University
Dallas, Texas 75275

(214)-692-3072

April 1985

Department of General Business

University of Texas at Austin

Department of Operations Research
Southern Methodist University

ABSTRACT

This paper presents a new algorithm to solve a network problem

with equal flow side constraints. The proposed solution technique is

motivated by the desire to exploit the special structure of the side

constraints and to maintain as much of the characteristics of pure

network problems as possible. Not only has specialized software for the

efficient solution of pure networks been developed, but the same compu-

tational efficacies lend themselves to the solution of sequences of

minimum cost network flow problems by using reoptimization procedures.

Our solution technique for the equal flow problem consists of solving

two sequences of pure network problems. One sequence yields tighter

lower bounds on the optimal value by considering the Lagrangean relax-

ation of the equal flow problem in which the side constraints are dualized.

The second sequence yields upper bounds on the optimal value for the

problem and maintains a feasible solution at all times. This sequence is

obtained by considering a reformulation of the equal flow problem based

on parametric changes in the requirements vector. The procedure has the

added attractive feature that it provides a feasible solution which is

known to be within a percentage of the optimal at all times. As such,

the algorithm terminates when a solution with a prespecified tolerance

on the objective function value is obtained. On NETGEN problems,

using the first 150 arcs to form 75 equal flow side constraints, we found

that the new algorithm is approximately 3 times faster than existing

techniques and requires only 50% of the storage.

KEY WORDS

Linear Programming

Network Models

Networks With Side Constraints

Equal Flow Problem

ACKNOWLEDGEMENT

This research was supported
in part by the Air Force

Office of

Scientific Research under
Contract Number AFOSR 83-0278.

I. INTRODUCTION

This paper presents a new technique to solve the equal flow problem.

This problem is easily conceptualized as a minimal cost network flow

problem with additional constraints on certain pairs of arcs. Specifically,

given pairs of arcs are required to take on the same value. Applications

of this model include crew scheduling [6], estimating driver costs for

transit operations 128), and the two duty period scheduling problem [25].

The equal flow problem may be solved using a specialization of the simplex

method for networks with side constraints. However, by exploiting the

special structure of the side constraints, we have developed a new algo-

rithm which results in a decrease in both computer storage and compu-

tation time.

It is well documented that pure network problems can be solved from

fifty to one hundred times faster using specialized primal simplex soft-

ware as compared to general linear programming systems. Motivated by this

great advantage, our procedure solves the equal flow problem as a sequence

of pure network problems and totally eliminates the need to deal with a

basis matrix.

1.1 Problem Description

The equal flow problem is defined on a network represented by an (m,n)

node-arc incidence matrix, A, in which K pairs of arcs are identified and

required to have equal flow. Mathematically, this is expressed as:

1i

Minimize cx

s.t. Ax -b

Xk wxk+K k - 1, ... , K

0 < x <u

where, c is a 1 x n vector of unit costs, b is an m x 1 vector of node

requirements, 0 is an n x 1 vector of zeroes, x is an n x 1 vector of

decision variables, and u is an n x 1 vector of upper bounds. The above

definition, henceforth referred to as P1, assumes that the first 2K arcs

appear in the equal flow constraints. This assumption is in no way

restrictive since, by rearranging the order of the arcs, any equal flow

problem with K pairs can be expressed in the above form. Note that the K

pairs of arcs are mutually exclusive, i.e. an arc appears in at most

one side constraint.

1.2 Survey of Related Literature

In 1961, Charnes and Cooper [7] presented a specialized algorithm

for the model:

Minimize cx

S.t. Ax - b

Cx - d

x > 0,

where A and C are some general matrices but A has some favored structure.

Their algorithm, called the double reverse method, takes advantage of

the special structure of the matrix A. Variations of this algorithm may

be found in [2, 8, 10, 15, 19, 24]. Specializations for multicommodity

2

problems may be found in [14, 20, 21].

In 1980, Shepardson and Marsten [25] showed that the two duty period

scheduling problem can be reformulated as a single duty period scheduling

problem with enual flow side constraints. They obtain a Lagrangean dual

for this equal flow problem, by dualizing with respect to the equal flow

side constraints. This Lagrangean dual is maximized using the subgradient

optimization technique. In 1984, Turnquist and Malandraki (28] modeled the

problem of estimating driver costs for transit operations as an integer

equal flow problem. They obtain a Lagrangean dual for their problem, by

dualizing with respect to the side constraints. Their algorithm is a

slight modification of the subgradient optimization technique. They

perform a line search between two successive solutions obtained during

the subgradient optimization process.

Beck, Lasdon, and Engquist [5] transformed the equal flow problem

into a quadratic programming problem which has a penalty for violating

the equal flow constraints. They solved this nonlinear programming

problem using the Fletcher-Reeves conjugate gradient method [9], a

successive linear programming code [133, and a convex simplex code.

If the penalty is sufficiently large, this approach is guaranteed to

converge to the optimal solution of the equal flow problem.

1.3 Objective of the Investigation

The objective of this investigation is to develop and computationally

test a new algorithm for the equal flow problem. This algorithm utilizes

the subgradient optimization technique and is based on the relaxation/

3

restriction procedure proposed by Glover, Glover, and Martinson [11] for

a generalized network model with special side constraints. We establish

that the equal flow problem may be solved as two sequences of pure

network problems, one sequence corresponds to computing a lower bound

while the other corresponds to computing an upper bound. In the limit,

both bounds will converge to the optimal objective value. Our implementation

terminates when the difference between the bounds is within a prespecified

tolerance.

The subgradient optimization technique requires the computation of

subgradients, choice of appropriate step sizes, and the application of

a projection operation. We show that the subgradients for the upper

bound can be computed using the optimal dual variables obtained by

solving pure network problems. We also develop theoretical results

that yield an easy implementation of the projection operation. The

step sizes selected are a modification of the ones proposed by Polyak

123]. For this choice of step sizes, we prove that our algorithm must

necessarily obtain an iterate at which the objective value is arbitrari-

ly close to the optimal objective value. In a computational study,

comparing our code with a code that is designed to solve network problems

with side constraints, we found that the new code runs approximately 3

times faster and requires 50% less core storage.

4

I1. THE SUBGRADIENT ALGORITW4

The Subgradient Algorithm was first introduced by Shor 127) and is

a general procedure for solving nonlinear programming problems. It may

be viewed as a generalization of the steepest descent (ascent) method

for convex (concave) problems in which the gradient may not exist

everywhere. The subgradient is simply substituted in place of the

gradient for those points for which the gradient does not exist. When

this occurs, the algorithm may move to a point with objective value

worse than the current point. Hence, the objective function does not

necessarily improve at each iteration and consequently the convergence

results of Zangwill [29] do not apply. Remarkably though, under fairly

minor conditions on the step size, convergence can be guaranteed.

Let the nonlinear program PO be given by:

Minimize f(y)

s.t. ycG

where f is a real valued function that is convex over the compact, con-

vex, and nonempty set G. A vector T1 will be called a subgradient of f

at y If f(y) - f(y) n(y - y) for all y c G. For any y C G, we denote

the set of all subgradients of f at y by 8f(;). The subgradient algorithm

makes use of an operation called the projection operation. The projection

of a point x onto G, denoted by P[x], is defined to be the unique point y C G

that is nearest to x with respect to the Euclidean norm. Using the projec-

tion operation, we now present the subgradient algorithm in its most

general form.

5

ALG I SUBGRADIENT OPTIMZZATION ALGORITHM

Step 0 (Initialization)

Let yo be any element of C, select a set of step sizes

So,1,S2,... , *and set i 0.

Step 1 (Find Subgradient)

Let £t E Bf(yt). If nt 0, then terminate with yt optimal.

Step 2 (Move to New Point)

Set yI+ i + P[y - sili], set i - i + 1 and return to step 1.

Various proposals have been offered for the selection of the step

sizes. Three general schema which have been suggested are:

i) "

ii)

i i(f(yi)-f*)

i 1Till 2

where f* is the optimal value of f over C. If the constants, it's,

satisfy the following conditions:

Ai ! 0, all i; lim Ai s O; and Ai W c,

then the convergence of the algorithm is guaranteed using (i) or (ii)

(see Coffin 112], Helgason [17], Kennington and Helgason [21]). For the

6

upper bounds, we use a modification of the third step size. The

following result is available for this scheme.

Proposition 1 (Polyak [23])

Let f be a real valued convex function over the compact, convex,

and nonempty set G. Also, let f* be the minimum of f and <nill < C for

all i and some constant C. Then there exists a y* c G with f(y*) -Pf*,

if scheme (iii) is used.

Note that in (iii), f* is the optimal value of f over G. Since the

optimal objective is unknown before solving the problem, we use a lower

bound on f* in our implementation.

7

III. THE LOWER BOUND

Recall that the equal flow problem, which we denote by P1, is

given by:

Minimize cx

s.t. Ax -b

Xk K+ k , k-

0 < x < u.

In our algorithm for P1, lower bounds on the optimal objective of P1 are

used for step sizes and for termination. In this section, we describe a

procedure to obtain these lower bounds.

Consider the following Lagrangean dual for P1, which we shall

refer to as Dl:

Maximize h(w) , where w [w1l w] K R , and

K
h(w) = Min{cx + I wk(xk - XK+k): Ax b, 0 < x < u).

k=l

Proposition 2 (Shetty [26])

Let x be a feasible solution to P1 and let w - [wl,...,wk be

a feasible solution to Dl. Then cx > h(w).

Proposition 3 (Bazaraa and Shetty [4])

If P1 has a minimum, then the optimal objectives for P1 and Dl

are equal.

As a consequence of Propositions 2 and 3, we may solve DI to

obtain a lower bound. We will now show that Dl may be solved using the

8

subgradient optimization technique for concave functions. This tech-

nique is similar to ALG I with a modification. Let p0,PlP2,..

denote a sequence of step sizes and let di E ah(w Then step 2 is

replaced by:

Step 2 (Move to New Point)

Set w+ 1 4- wi + Pidi, set i - i+l and return to step 1.

To use this algorithm h(w) must be concave, and we need a means

of generating subgradients. These two results follow:

Proposition 4 (Shetty (26])

The real valued function h is concave over R

Proposition 5 (Shetty [26])

For a given Z, let x be an optimal solution to

K
Min{cx + 1 Wk(X k - X(+k): Ax = b, 0 < x < u).

k=l

Then d - [(x - KI),''''(x, - 2K) is a subgradient of h at V.

We used scheme (i) for step sizes. Let UBND denote an upper bound and

assume that the optimal objective value is positive. Our algorithm for

obtaining lower bounds is presented below:

ALG 2 LOWER BOUND ALGORITHM

Step 1 (Initialization)

Initialize UBND, step size p, and tolerance c.

Set w - 0.

9

Step 2 (Find Subgradient)

Let- [x] solve
Le Ax = b,'' 0nK

h(w) Min{cx + I wk(x k - K+k): b, 0 < X < u}.

k=l

Set LBND h(w).

If (UBND - LBND) < E(UBND) then terminate;

otherwise, set d ;2 Yx] -
) .'' , - x2K)

Step 3 (Move to a New Point)

3a. Set w - w + pd, set p - p/ 2 .

3b. Go to 2.

10

-v

IV. THE UPPER BOUND

An alternate formulation of P1, which will be referred to as P2,

is as follows:

Minimize g(y)

s.t. yCS

where for any vector y = [yl,...,yK] ,

g(y) = Min{cx: Ax - b, 0 < x < u, xk ' 1K+k ' Yk for all k

and

S -{y: 0 < Yk f min(uk'uK+k) for all k.

Clearly, Pl and P2 are equivalent. That is, given an optimum for one,

we can construct an optimum for the other. We will now show that P2

is a special case of the nonlinear program P0 and may be solved using

the Subgradient Optimization Algorithm, ALG 1.

Proposition 6 (Shetty [26])

The real valued function g is piece-wise linear convex over the

compact, convex and nonempty set S.

To apply the subgradient algorithm, we need a procedure for obtaining

a subgradient of g at a point y. The following proposition shows that

the dual variables may be used to construct a subgradient.

Proposition 7 (Shetty 1261)

Let (1Tvl,vK+l,...,vK,v2K,'I) be the optimal dual variables for

11

Minimize cx

s.t. Ax -b (T)

X Y (vl)

,K+l yl (VK+l)

XK W YK (v)

X 2K = Y2K (v2K)

0 < x < u (1).

Then n - (v1 + VK+l,...,VK + V2K) is a subgradient of g at y =(yl,...,yK

As a result of Proposition 7, a subgradient at any given point

Y - (YI'''YK) C S required in our specialization of ALG 1 can be

obtained by solving Min{cx: Ax - b, xI f yl,...,X 2K = YK' 0 < x < u), which

we shall refer to as P3. After substituting xI W Yl,...,X 2K - YK' in

Ax - b, we obtain a pure network problem, which we shall refer to as

P4 and is given below:

Minimize cx

s.t. Ax-b

0 x < U.

To apply ALG 1, we need a procedure for constructing the optimal dual

variables (vl,VK+l,...,vK,v2K) for P3 from the optimal dual variables

12

for P4. Suppose the arc corresponding to j has "From" node j 1 and "To"

node J2 That is, arc j is the ordered pair (JlJ 2). Then we define

FROM(j) j 1 and TO(j) - j2 " Using this notation, the following propo-

sition gives the required formulae:

Proposition 8 (Shetty 1261)

Let 7 be the vector of optimal dual variables for P4. Then

[r, V,vK+l,...,VKV 2 K] with vj i-FROM(j) + 7TO(j)+ cj, j1,...,2K,

are optimal duals for P3.

We now present two propositions that justify the projection routine

used for the upper bound. The proofs may be found in Kennington and

Helgason [21] and Shetty [26).

Proposition 9

Let S be a nonempty, convex set and A e S. Then y* £ S is a

projection of y on to S if (y - y*)(y - < 0 for all y c S.

Proposition 10

Let w (9l,9 2,*..,y K) C RK with

Yk
< 0 for k= ,.,

0 < k< uk Uk a min(uk' UK+k) for k - +I,...,L+M

k > Uk for k L+M+,...,K

13

where L,M are integers and 0 < L,M< K. Then

P(y) " y* (0, ooo0, L I,.o.. P ,Uo is

a projection of y on S.

Following a description of the terminology used, our algorithm for

obtaining an upper bound for P1 is presented below. Let RFREQ denote the

frequency at which the constant X in step size (iii) is reset to its initial

value, X01 LBND denote a lower bound on Pl, UBND denote an upper bound on

P1, P denote the projection routine described in Proposition 10, E denote

the termination tolerance and Q denote the iteration count for the

upper bound.

ALG 3 UPPER BOUND ALGORITHM

Step 1 (Initialization)

Choose y C S.

Initialize LBND, RFREQ, C, and X0"

Set u (min(ul,UK+l),...,min(uKu 2K)).

Set Q * 0, set Ik * N0 for k-l,...,K.

Step 2 (Find Subgradient and Step Size)

For allocation y, let ; and IT, respectively, be the vectors of

optimal primal and dual variables for

Min{^x: A^ = , 0 < X < G). Construct x from x,y.

14

Set UBND - cx.

If (UBND - LBND) < c(UBND), then terminate with x optimal;

otherwise,
A

set vj - FROM(J) + 7TO(j) + cj J

set n + (v1 + vK+1,...,vK+v2x).

If Q -RFREQ, then set Q - 0, set X -+0' set Xk -0

for k 1,...,K, and go to 3;

otherwise,

compute Ak such that 0 < Yk knk < uk" k

set Xk4 min{k /2 , k}, k = 1,...,K,

set X min{(Xk,k 1,2,...,K}.

Step 3 (Move to New Point)

3a. Set y - P[y- 2 r(UBND -LEND)) , set Q - Q+l.

3b. Go to 2.

Note that the step size (Iii) presented before may be rewritten

for our function g as follows:

i(g(yi) - g*)

n , 0 < A < 2 ,

where i Bg(yi) and g* is the optimal value of g.

15

In our implementation, we use g, a lower bound on g, in place of g*.

The following propositions demonstrate that for i's close to g*, our

procedure must necessarily obtain an iterate at which g is arbitrarily

close to g*.

Proposition 11 (Kennington and Helgason [21])

If T) 0,

YI+I - 12 2 Y - y112 + s211 Tll 2 + 2s n(Y - Y for any y c S

and step size si.

Proposition 12

Let g* be the optimal value of g, and also let

i) a g* < < g*, 0 < a < 1,

ii) si) (g(Y9) - 1)11 2 , and

iii) 0 < C < N< < 2 for all i.

If there is a constant C such that 1I ini, < C for all i, then there

2
exists some i such that g(yl) < M6 + g*(-F- - -r- a) for any 6 > 0

and for some constant M.

Proof

First, we assert that there is some i such that

A2g 2X g* 4

(Y ,2 2i) (X2- 2 (X2 2XI) for any 6 > 0.

16

Suppose that for all i,

2 2Xg

S(Yi > 22 ,where

gy >(2 2X(A 2 2A~ (X2 2

6 > 0 is given. Let y* c S be an optimal point. By Proposition 11,

2 (gyi)j)2 x (g(y)-i) 7Tlpy* -)

yi1y1 2 < 11 yiY 2 + 2 +2

Since Ti C g(yj), nli(y* - Y)< g* -g(YQ.-

Thus,

2 W -g 2 2)gg*-g(yi))

11~ y*112 < 11 + X* 1 2 +)i +
11 yi1-2 2

rg(yi)(Xi 2X i)-X i + 2

~(y1 -y* 12+ (g(yi)-g) 2j

- y -)6

17

We can choose an integer N large enough that

C2 11 - y * 112

< N.
(g* - g)6

Adding together the inequalities obtained from (1) by letting i take

on all values from 1 to N, we obtain

SYN - y * [12 i - y * 112 - N(g* - g)6

a contradiction. This justifies our assertion.

By simplifying our assertion further we get,

6 g + 2g*
g(Yt) !2 +

(2Xi - A2) (2 - A) (2 - Xi)ii

6 a g*X 2g*

< 2 +
(2Xi i) (1 (2 - (2

6 2

2A+ g*(l+ (1 -c))
(2X i - x 1) 2 X i)

6
2 + g"(i 4 -- (1 O)

-2 2 2-Xi

(2X x 2

18

lim-

6 2 8S. 2 + g, (- ,
(2X - A) 2-8 2-0

2 0
< M6 + g*(- - a), where It ±s a constant less than
1 2-8 2-0

(2-c 2)

This completes the proof of Proposition 12.

19

V. THE ALGORITHM

In this section, we present our new algorithm for solving the equal

flow problem. Let ITERL denote the number of iterations spent in step la

in computing the lower bound before returning to the upper bcund, and

ITERU denote the number of iterations spent in computing the upper bound

before returning to the lower bound. Also, let T denote the iteration

count for the lower bound, R denote the iteration count for upper bound,

and p. denote the initial step size for the lower bound.

ALG 4 SUBGRADIENT OPTZMIZATZON ALGORITHM

FOR THE EQU, , FLOW PROBLEM

Step 0 (Initialization)

Initialize ITERL, ITERU, REREQ, X0, POP and tolerance C.

Set T - 0, set Q - 0, set R - 0, set w - 0, and set IFLAG - 0.

Set UBND - + -, set LBND - - G, set p , P0' and set - 0 for k=l,...,K.

Set Z - (min(ul,uK+l),...,min(uK,u2K)).

Step I (Compute Lower Bounds)

la. Call ALG 2 (steps 2 and 3a).

lb. Set T - T+l

If T - ITERL, then go to 1.

1c. (Initialize y)

If IFLAG 0 0, then go to 2; otherwise,

set y 4. ,

20

Step 2 (Compute Upper Bounds)

2a. Set T - 0, set IFLAG - 1.

2b. Call A1g 3 (steps 2 and 3a)

2c. Set R - R+l.

If R < ITERU, then go to 2b.

Step 3

Set R - 0.

Set p - pO.

Go to 1.

In the above algorithm, IFLAG is used in obtaining a starting y from the

solutions in la. The bases used in steps 1 and 2 are generated from the

optimal bases obtained in the previous iterations.

21

l II II ! I . . • 7- ..

VI. COMPUTATIONAL EXPERIMENTATION

This section describes the computer implementation, EQFLO, and

testing of our algorithm for the equal flow problem. The algorithm

was tested on a set of 35 test problems randomly generated using

NETGEN [22]. Computation times are compared with those of NETSIDE [2],

a general purpose code for network problems with side constraints.

Both NETSIDE and EQFLO are written in standard FORTRAN for an incore

implementation and have not been tailored to either the machine or

FORTRAN compiler used for testing.

6.1 Description of the Limputer Codes

NETSIDE was developed by Barr, Farhangian, and Kennington at

Southern Methodist University, Dallas, Texas. Designed to solve network

problems with side constraints, it used a specialization of the revised

simplex method known as the primal partitioning algorithm [15]. The

basis inverse is maintained as a rooted spanning tree and a working basis

inverse in product form. The reinversion routine is a modification of the

work of Hellerman and Rarick [18) and uses the "spike swapping theory"

of Helgason and Kennington [16]. The initial working basis consists of a

combination of artificial and slack variables. The working basis is

reinverted every 50 iterations. The pricing routine uses a candidate list

of size 10 with a block size of 400. Both pricing and pivot tolerance are

1.E-6.

EQFLO is our implementaiton of ALG 4, and makes use of MODFLO [I] to

solve pure network subproblems. MODFLO is a set of subroutines which may

22

UNCLASIFIED Ah0 -efu lr6- 0 M-

ll8 I N@INO

IIu~ °-
31 2-2

!m

• -m
. minm mi md m • 2,,0

be used to solve a network problem as well as reoptimize after problem

data changes. Based on NETFLO [21], this code allows the user to change

costs, bounds and/or requirements for a network problem and reoptimize.

The tuning parameters used in all runs were as follows: ITERL - 5,

ITERU - 10, REFREQ - 5, X0 . 0.75, pO - 0.01, and c - 0.1. IODFLO [1]

is used to reoptimize after each change to either the costs or right-

hand-sides.

6.2 The Test Problems

The program NETGEN, a generator for large-scale network test

problems, was used to generate 35 test problems. The parameters used

to generate these problems are described in Klingman, Napier, and Stutz (22].

The test problems have between 200 and 1500 nodes, and 1500 and 7000 arcs.

For each problem, the first 150 arcs were paired to form equal flow sides

constraints. The characteristics of these test problems are listed in

Table 1.

Our algorithm requires upper bounds on all equal flow arcs. Though

NETGEN generates bounds on some of these arcs, there were others with no

upper bounds. We set the maximum of all supplies and demands to be the

upper bounds on such arcs. These bounds were acceptable since the optimal

solutions obtained for our pure network problems were the same as the ones

listed in NETGEN. Furthermore, for all 35 test problems the first 150 arcs

were used to form 75 pairs of equal flow side constraints. We were unable

to experiment with more than 75 pairs due to a core storage limitation of

301K. NETSIDE required approximately 300K octal words of storage for

23

problems 28 through 35 with 75 pairs and any further increase in the

number of pairs would exceed the storage limitation.

Table 1 About Here

6.3 Computational Results

All 35 test problems were solved on the CDC 6600 at Southern

Methodist University, using the FTN compiler with OPT - 2. All 35

problems were solved twice using EQFLO; once with the same step size

for every pair of equal flow arcs and the second time with different

step sizes for different pairs. While using EQFLO to solve these

problems, ALG 4 was followed exactly the first time, whereas, the

computation of the step size for the upper bound was altered the second

time. The modification was as follows:

Step 3 (Move to New Point)

3a. Set (UBND-LBND) - k -
Se P Lyk - 'k IIn 112 "

set Q - Q+l.

Note that this modification results in different step sizes for different

equal flow pairs. The details of all runs are given in Tables 2 and 3.

The times are in CPU seconds and exclude input and output.

The value 0.01 used for p0 worked well for all test problems except

problem number 11. This problem experienced difficulties in converging

within 10% of the optimal. However, the problem did converge within 10'

24

of the optimum when we changed p0 to values between 3 and 10.

Tables 2 and 3 About Here

The computational results presented in Tables 2 and 3 are susmarized

in Table 4. Letting T(ALG) denote the CPU time required to solve the 35

test problems using code ALG, the relationship is given below:

T(NETSIDE) - 2.54 (EQFLO), same step size,

T(NETSIDE) - 3.00 (EQFLO), different step sizes.

Note that EQFLO performs better as the problem size increases. Although

EQFLO was slightly slower than NETSIDE on problems 1 to 10, its performance

increased substantially on problems 11 to 35. In particular, EQFLO ran

approximately 5 to 6 times faster than NETSIDE on problems 28 through 35

and these problems are fairly large. We expect EQFLO to perform even

better on much larger problems. This is attributable to the fact that

the time for pricing and updating increases dramatically for NETSIDE

with an increase in the size of the network, whereas, the time increase

should be relatively small for EQFLO because the above operations are

performed very efficiently using labelling procedures on the rooted

spanning tree.

Table 4 About Here

The 75 side constraints made the problems approximately three times

harder. That is, the pure networks were solved in 693 seconds while it

25

* . .f ~ , ,

required 1973 seconds to solve the equal flow problem. Klingman,

Napier, and Stutz [22] solved the same 35 pure network problems in

approximately 200 seconds using an advance start on a CDC 6600 at the

University of Texas at Austin. Richard Barr's best time on these

35 test problems is 104 seconds using ARC II [3]. This difference in

time is due to the fact that EQFLO is a real code (as opposed to all-

integer), uses an all artificial start, and does not use the advanced

data structure or candidate list incorporated in ARC II.

These 35 problems were the largest that could be solved using

NETSIDE under a core storage limitation of 301K octal words. However,

EQFLO required much less storage; approximately 50% less than NETSIDE.

This additional storage for NETSIDE results from the working basis

inverse and the arrays required during the reinversion process.

26

VII. SUMMARY AND CONCLUSIONS

This paper presents a new procedure for the equal flow problem.

Unlike the simplex method for the network problem with side constraints,

this new procedure does not require a working basis. We have showed

that using the subgradient optimization technique, the equal flow

problem may be solved as two sequences of pure network problems. One

sequence corresponds to a lower bound while the other corresponds to

an upper bound. In the lower bound, each network differs from the

previous one in that the cost vector has changed. In the upper bound,

each network differs from the previous one in that the right hand side

has changed. While solving the pure network problems with these

changes in the problem data, a reoptimization procedure is used to

obtain a good starting solution. Our technique terminates when the

difference between two bounds is within a prespecified tolerance.

Subgradlents for upper bounds are computed using the optimal

dual variables obtained by solving the pure network problems. The sub-

gradients for lower bounds are the difference between the flows on the

equal flow arcs, obtained while solving the Lagrangean relaxation. The

projection operation is easily implemented. The step sizes (1) and

(iii), described in Section I, are used for lower and upper bounds,

respectively. For these step sizes, we are gutranteed a solution at

which the objective value is arbitrarily close to the optimal objective

value.

We solved all test problems twice; once with the same step size for

27

all equal flow pairs, and once with different step sizes for each pair.

The tests were conducted on a set of 35 randomly generated problems and

a comparison was made with NETSIDE, a code that is designed to solve

network problems with side constraints. On the average, our code ran

approximately 3 times faster. However, Itts performance improved

substantially as the problem size increased. The new algorithm requires

only 50% of the core storage required by NETSIDE.

28

Table 1 NETGEN Test Problems

Problem Number Number of Nodes Number of Arcs
------- --------- ----- ----------------

Transportation Problems
1 100 X 100 1511
2 100 X 100 1700
3 100 X 100 2207
4 100 X 100 2405
5 100 X 100 3100
6 150 X 150 3450

7 150 X 150 4800

8 150 X 150 5470

9 150 X 150 6395
10 150 X 150 6611

Assignment Problems
11 200 X 200 1900

12 200 X 200 2650
13 200 X 200 3400
14 200 X 200 4150
15 200 X 200 4900

Capacitated Network Problems
16 400 1374

17 400 2511

18 400 1374

19 400 2511

20 400 1484
21 400 2904

22 400 1484

23 400 2904

24 400 1398
25 400 2692
26 400 1398

27 400 2692

Uncapacitated Network Problems
28 1000 3000

29 1000 3500
30 1000 4500

31 1000 4900

32 1500 4492

33 1500 4535
34 1500 5257

35 1500 5880

29

Table 2 Comparison of NETSIDE and EQFLO on 35 Test Problems
(Same step size for every equal flow pair)

Problem NETSIDE EQFLO
Number

Optimal Total Time % of Optimal
Objective Time at Termination

Total Pure Lower Upper Lower Upper
Network Bound Bound Bound Bound

1 2694547 30 50 7 19 24 98 108
2 2350637 24 58 7 23 28 95 105
3 1939836 27 127 9 55 63 99 110
4 1612265 33 79 10 33 36 98 108
5 1480741 33 40 12 13 15 97 108
6 2472907 71 46 22 9 15 98 108
7 2236784 96 59 28 14 17 97 107
8 2223900 84 58 32 11 15 99 108
9 1839835 115 44 36 6 2 98 105

10 2291942 105 79 36 19 24 96 106

i1* 4992 135 51 17 11 23 98 108
12 3573 105 93 23 20 50 95 105
13 3142 103 78 27 16 35 98 108
14 2787 118 34 31 1 2 99 101
15 2795 150 127 35 31 61 97 108

16 82161432 43 8 6 1 1 99 107
17 45601025 66 13 8 4 1 99 105
18 81600312 40 8 6 1 1 99 106
19 45601025 66 12 8 3 1 99 102
20 74065202 40 9 6 2 1 99 108
21 40137087 44 11 8 2 1 99 101
22 73429862 32 8 6 1 1 99 109
23 39354594 33 11 8 2 1 99 101
24 85926653 91 7 3 3 1 98 104
25 58203746 66 9 5 3 1 99 101
26 74267081 65 6 3 2 1 97 102
27 47295659 57 7 4 2 1 99 107

28 131316225 201 31 20 9 2 99 107
29 113594497 260 167 25 72 70 98 107
30 90569484 337 243 23 111 109 91 106
31 84943754 296 44 24 16 4 99 109
32 180390305 529 80 48 25 7 98 109
33 205246112 453 83 47 23 13 98 108
34 166247998 477 95 51 24 20 96 106
35 163964307 503 68 52 11 5 99 107

* P0 1 10.

30

Table 3 Comparison of NETSIDE and EQFLO on 35 Test Problems
(Different step sizes for different pairs)

Problem NETSIDE EQFLO
Number

Optimal Total Time Z of Optimal
Objective Time at Termination

Total Pure Lower Upper Lower Upper
Network Bound Bound Bound Bound

1 2694547 30 47 7 16 24 97 108
2 2350637 24 50 7 19 24 94 105
3 1939836 27 105 9 42 54 99 109
4 1612265 33 74 10 29 35 98 108
5 1480741 33 37 12 10 15 95 106
6 2472907 71 46 22 9 is 98 107
7 2236784 96 57 28 13 16 97 105
8 2223900 84 42 32 4 6 98 109
9 1839835 115 44 36 6 2 98 105
10 2291942 105 76 36 19 21 96 105

11* 4992 135 53 17 9 27 94 104
12 3573 105 79 23 14 42 95 105
13 3142 103 63 27 11 25 98 108
14 2787 118 34 31 1 2 99 101
15 2795 150 108 35 24 49 98 107

16 82161432 43 8 6 1 1 99 107
17 45601025 66 13 8 4 1 99 105
18 81600312 40 8 6 1 1 99 106
19 45601025 66 12 8 3 1 99 102
20 74065202 40 9 6 2 1 99 108
21 40137087 44 11 8 2 1 99 101
22 73429862 32 8 6 1 1 99 109
23 39354594 33 11 8 2 1 99 101
24 85926653 91 7 3 3 1 98 104
25 58203746 66 9 5 3 1 99 101
26 74267081 65 6 3 2 1 97 102
27 47295659 57 7 4 2 1 99 107

28 131316225 201 31 20 9 2 99 107
29 113594497 260 81 25 28 28 97 107
30 90569484 337 148 23 62 63 93 104
31 84943754 296 44 24 16 4 99 109
32 180390305 529 80 48 25 7 98 109
33 205246112 453 78 47 22 9 98 108
34 166247998 477 86 51 23 12 97 107
35 163964307 503 68 52 11 5 99 107

* p0 - 10.

31

04 LM C1 U ~ NI c,

I Y I"I 4- C) I C

w C4

-4 S I

0W M

CI IP I@ ~

m I z (U a% e

o~c I c4n.~
g..I4 ~ in'~ O - I

I 101 01 N N C' ICN

b..C IIr10 &M I~

0 I 1 .1 I1

CL .- I ~

10 I 01 II 32

REFERENCES

1. Ali, A., E. Allen, R. Barr, and J. Kennington, "Reoptimization

Procedures for Bounded Variable Primal Simplex Network Algorithms",

Technical Report 83-OR-2, Department of Operations Research and

Engineering Management, Southern Methodist University, Dallas,

Texas, 75275, (1983).

2. Barr, R., K. Farhangian, and J. Kennington, "Networks with Side

Constraints: An LU Factorization Update", Technical Report 83-OR-4,

Department of Operations Research and Engineering Management,

Southern Methodist University, Dallas, Texas, 75275, (1983).

3. Barr, R., F. Glover, and D. Klingman, "Enhancements of Spanning

Tree Labelling Procedures for Network Optimization", NFOR, 17,

16-34, (1979).

4. Bazaraa, S., and C. Shetty, Nonlinear Programming: Theory and

Algorithms, John Wiley & Sons, New York, N.Y., (1978).

5. B-ck, P., L. Lasdon, and H. Engquist, "A Reduced Gradient Algorithm

for Nonlinear Network Problems", ACM Transactions on Mathematical

Software, 9, 57-70, (1983).

6. Carraresi, P., and G. Gallo, "Network Models for Vehicle and Crew

Scheduling", European.Journal of Operations Research, 16, 139-151,

(1984).

7. Charnes, A., and W. Cooper, Management Models and Industrial

Applications of Linear Programming, Volume II, John Wiley & Sons,

New York, N.Y., (1961).

33

8. Chen, S., and R. Saigal, "A Primal Algorithm for Solving a

Capacitated Network Flow Problem with Additional Linear Con-

straints", Networks, 7, 59-79, (1977).

9. Fletcher, R., and C. Reeves, "Function Minimization by Conjugate

Gradients", Computer Journal, 7, 149-154, (1964).

10. Glover, F., and D. Klingman, "The Simplex SON Algorithm for

LP/Embedded Network Problems", Mathematical Programming, 15,

148-176, (1981).

11. Glover, F., R. Glover, and F. Martinson, "The U. S. Bureau of

Land Managements's New NETFOR4 Vegetation Allocation System",

Technical Report of the Division of Information Science Research,

University of Colorado, Boulder, Colorado, 80309, (1982).

12. Goffin, J., "On Convergence Rates of Subgradient Optimization

Methods", Mathematical Programming, 13, 329-347, (1977).

13. Griffith, R., and R. Stewart, "A Nonlinear Programming Technique

for the OptImization of Continuous Processing Systems", Management

Science, 7, 379-392, (1964).

14. Grigoriadis, M., and W. White, "A Partitioning Algorithm for the

Multicommodity Network Flow Problem", Mathematical Programming,

3, 157-177, (1972).

15. Hartman, J., and L. Lasdon, "A Generalized Upper Bounding Algorithm

for Multicommodity Network Flow Problems", Networks, 1, 333-354,

(1972).

34

16. Helgason, R., and J. Kennington, "Spike Swapping in Basis Reinversion",

Naval Research Logistics Quarterly, 4, 697-702, (1980).

17. Helgason, R., "A Lagrangean Relaxation Approach to the Generalized

Fixed Charge Multicommodity Minimal Cost Network Flow Problem",

Unpublished Dissertation, Department of Operations Research and

Engineering Management, Southern Methodist University, Dallas,

Texas, 75275, (1980).

16. Hellerman, E., and D. Rarick, "Reinversion with the Preassigned

Pivot Procedure", Mathematical Programming, 1, 195-216, (1971).

19. Kaul, R., "An Extension of Generalized Upper Bounded Techniques for

Linear Programming", ORC Report No. 65-27, Department of Operations

Research, University of California, Berkeley, California, (1965).

20. Kennington, J., "Solving Multicommodity Transportation Problems

Using a Primal Partitioning Simplex Technique", Naval Research

Logistics Quarterly, 24, 309-325, (1977).

21. Kennington, J., and R. Helgason, Algorithms for Network Programming,

John Wiley & Sons, New York, N.Y., (1980).

22. Klingman, D., A. Napier, and J. Stutz, "NETGEN: A Program for

Generating Large Scale Minimum Cost Flow Network Problems",

Management Science, 20, 814-821, (1974).

23. PolIjak, B., "Minimization of Unsmooth Functionals", U.S.S.R.

Computational Mathematics and Mathematical Physics, 9, 14-29,

(1969).

35

24. Sakarovitch, M., and R. Saigal, "An Extension of Generalized Upper

Bounding Techniques for Structured Linear Programs", SIAM Journal

of Applied Mathematics, 15, 906-914, (1967).

25. Shepardson, F., and R. Marsten, "A Lagrangean Relaxation Algorithm

for the Two Duty Period Scheduling Problem", Management Science, 26,

274-281, (1980).

26. Shetty, B., "The Equal Flow Problem", unpublished dissertation,

Department of Operations Research, Southern Methodist University,

Dallas, Texas, 75275, (1985).

27. Shorn, N., "On the Structure of Algorithms for the Numerical

Solution of Optimal Planning and Design Problems", Dissertation,

Cybernetics Institute, Academy of Sciences, U.S.S.R., (1964).

28. Turnquist, M., and C. Malandraki, "Estimating Driver Costs for

Transit Operations Planning", Presented at the Joint National

Meeting of ORSA/TIMS, Dallas, (1984).

29. Zangwill, W., Nonlinear Programming: A Unified Approach, Prentice

Hall, Englewood Cliffs, New Jersey, (1969).

36

Appendix C

Technical Report 85-OR-7

A GENERALIZATION OF POLYAK'S CONVERGENCE

RESULT FOR SUBGRADIENT OPTIMIZATION

By

Ellen Allen1

Richard Helgason
I

1
Jeffery Kennington

Bala Shetty
2

August 1985

1Department of Operations Research

Southern Methodist University

Dallas, Texas 75275
(214) 692-3072

2Department of Business Analysis

Texas A & M University
College Station, Texas 77843

(409) 845-0810

Comments and criticisms from interested
readers are cordially invited.

ABSTRACT

This paper generalizes a practical convergence result first

presented by Polyak. This new result presents a theoretical jus-

tification for the step size which has been successfully used in

several specialized algorithms which incorporate the subgradient

optimization approach.

KEY WORDS

Subgradient Optimization

Nonlinear Programming

Convergence

ACKNOWLEDGMENT

This research was supported in part by the Air Force Office

of Scientific Research under Contract Number AFOSR 83-0278. We wish

to thank David Anderson of the Department of Mathematics of Southern

Methodist University for helpful suggestions concerning the form of

Proposition 7.

A. '

I. THE SUBGRADIENT ALGORITHM

Let g be a finite convex
functional an e

. For each yeR,

define the subdffereftial of g at y by:

39(y) {r i : cRn and for all zee, g(z) > g(y)+ f-(zy)).

Any nc~g(y) is called a
jmbzjadie of g at y. It is well known that

if y is a point at which g is
differentiable, then 3g(Y) - {Vg(y)), a

singleton set.n

Let G 0 0 be a closed
and convex subset

of *
n . For each yER

n

define the pRoectio n of
y on G, denoted by P(y),

to be the unique point

of G such that for all
zCG, 11 P(y)_yU II z.-yIy . It is well known that

the projection exists in
this case and that for all

x,,R t1P(x)-P(Y)11

< ix-Y•

Consider the nonlinear programming
problem given by:

minimize g(y)
(NLP/SD)

subject to yEG,

where we assume that for all yCG, ag(y) # t and that the set of optimal

points r o *. We denote the optimal objective
value by V.

The subgradient optimization
algorithm for the solution of

LP/SD

was first introduced by Shor
11] and may be viewed as a generalization

of the steepest descent
method in which any aubgradient

is substituted for

the gradient at a point where
the gradient does not exist.

This algoritlm

uses a sequence of positive
step sizes {9i). which in

turn depend on a pre-

determined sequence of fixed
constants (X i and (in some cases) certain

other quantities.

I4

SUBGRADIENT OPTIMZATION ALGORITf{

Step 0 (Initialization)

Let yo£G and set i 0..

Step 1 (Find Subgradient and Step Size)

Obtain some T1 i g(yi).

If -i M 0, terminate with y optimal; otherwise, select a step

size s i .

Step 2 (Move to New Point)

Set yi+l - P(yi-sii), i - i+l, and return to step 1.

Unfortunately, the termination criterion in step I may not hold

at any member of r and is thus computationally ineffective. Hence, some

other stopping rule must be devised. In practice this is often a limit

on the number of iterations. The functional values produced by the

algorithm will be denoted by gi a -(Yi)"

Various proposals have been offered for the selection of the

step sizes. Four general schema which have been suggested are:

si = xi 1 (i)
8 -1 . A I II),1 (2)

e," xi III ill 2 (3)

8i M x (gsi-P) /ll1n i 1, 2 (4)

where p, the target value, is an estimate of y and all Xi > 0.

The papers of Polyak [9] and Held, Wolfe, and Crowder [6] have

provided the major impetus for widespread practical application of the

algorithm. Schema (4) has proven to be a particularly popular choice

2

among experimenters. Theorem 4 of Polyak [9] is the most often quoted

convergence result justifying use of this schema. For many mathematical

programming models, the target value is a lower bound on the optimum

(i.e., [1, 2, 3, 4, 7, 8, 10]). For this case Polyak's Theorem 4, using

schema (4), requires that A, W 1 for all i. For all the above studies,

a decreasing sequence of X's was found to work better than 1, W 1 for

all i. Hence, the existing theory did not justify hat we had found to

work well in practice. The objective of this paper is to present new

theoretical results which help to explain what has been found to work

well in practice. Specifically, we have generalized Polyak's result for

a decreasing sequence of X's. In addition, we also loosen slightly the

restrictions imposed on the sequence {X when the target value is larger

than y.

3

4~

II. POLYAK'S CONVERGENCE RESULTS

Some of the convergence results for the subgradient optimization

algorithm appear unusual in that they specify only that a functional

value within a given tolerance of the optimal value y will eventually be

produced. The results of Theorem 4 of Polyak [9] use the following

general restrictions on the sequence (A I used with schema (4):

0 < < X, < 0 < 2, (5)

where a and are fixed constants.

The results contained in this theorem include:

under (4), (5), and (essentially) the assumption that there is some

K>o such that 1j), 11 < K,

(A) if p > y, either

(a) there is some n such that gn < P ,

or

(b) all g> p and lim gn - P;

and

(B) if p < y and all Xn - 1, given 6 > 0,

there is some n such that g n - Y + (Y-P) + 6.

In the next section we will relax condition (5) to the following:

0 < X, -! < 2 and E. X, - -, (6)

where 8 is a fixed constant, and we will present a generalization of (B)

for a decreasing sequence {Xi

4

III. NEW CONVERGENCE RESULTS

The main results in this section appear in Propositions 5 and 7.

Proposition 5 corresponds to part A of Polyak's Theorem 4 with slightly

weaker conditions on the sequence {J}, and Proposition 7 is a generali-

zation of part B of Theorem 4.

Proposition 1

If ycG, then

[Y-Y1' 112 < 11 Y-Yi 112 + s2 [nill 2 + 2 si (g(Y)-g,).

Proof

Let yCG.

SY-Yi I 2 = U y-P(yi-Sini) 112

=]P(Y)-P(Yi-Slqi)I
II 1, 2

2 211 Y-yill+snill ril+siri(-i

ii y-yi +s I nll 1, 2+2sp(g(y)-g,).

Proposition 2

If ycr, then under (4),

{{ 1+1 112 < .I Y-Yi 1I 2+X i (g -p)[Xi(gI-p)-2(g1-y)]/lj Ti 2.

Proof

Let ycr. Substituting in Proposition 1 for si from (4) and

using g(y)-y, we obtain

Y-Yi+ l 112 < l_yi 2+ 2 (g ()2/m ,_ 2 (y-gi) / (Y i 2

Y-Y i 2+Xi (g,-P)[X, (g-P)-2(g,-Y)] / II nil 2.

5

Proposition 3

If ycr, p>y, and g, > p, then under (4),

y-yi+1' 2 < 11 2 + Xi (X,-2) (gi-p) 2 I niln 2.

Proof

Let yEr, p>y, and g8>p

Now, Xi (gi-P)- 2 (gi-y) < A, (gi-P)-2 (gi-P) - (Ai-2) (gi-P).

Thus, X i (gi-p)[i(gi-p)-2(g--y)] / II n 1 1
2 < Xi(i - 2) (gi-p) 2 /lhill 2.

The result now follows from Proposition 2.

Proposition 4

If ycl, p>y, and all g,>p, then under (4) with all Xi<2, there

is some i such that limIly-Y 1 1 P.

Proof

Let yeT, p>y, all X <2, and all gi p. Since each X,<2, then

also each Ai (Ai-2)(8 -P) 2 / 1n ,l11 < 0, and from Proposition 3, {I y-yill 2}

is a monotone nonincreasing sequence. This sequence is bounded below by

zero and thus converges to some value, say '.

Proposition 5

If p>y and there is some K>O such that all I njl l <ic, then under

(4) and (6), given 6>0, there is some M such that g f p+6.

Proof

Let 6>0 be given, with p>y, and all l nill <K. suppose, contrary

to the desired result, that all g1 > p+6. Take any yEt. Then from

Proposition 3,

xi(2-X)(giP) 2/l/ i1 2 < 11 Y-Yil1 2 _-11 Yy- i+l 211.

6

Since A i < 2, ri{jj <K, and pi-) 6,

Xi (2-B)62/K2< i y-YiJ 1 2 2y_yill1 2 (7)

Adding together the inequalities obtained from (7) by letting i take on

all values from 0 to n, we obtain

(X6+ * --+Xn) (2-6)6 2 1K2 < 11Y-Y 0 112 -ily_yn+2 (8)

As n goes to -, the left side of (8) goes to w, whereas, by Proposition 4,

the right side of (8) goes to tIy-yo 2_I-2, a contradiction.

Proposition 5 gives a practical convergence result when the target exceeds

the optimal value. At worst we eventually obtain an objective value

arbitrarily close to the target value.

Proposition 6

if ycr, g'>p, and Xi < B#2, then under (4),

11 Y-yi+J 12 ! ily-yill 2

+ Xi(gi-p)(2-6) ((y-g,)+ ($/(2-0)) (Y-P)] /lfnl 2.

Proof

Let ycr, gi>P, and , ! 0 2.

Now, X i (gi-p)-2(gi - ,y) < (&i-p)-2(gi-y)

• (y-p)+(2-$) (y-gi)

a (2-B) [(Y-g i) + (8/(2-B)) (y-p)).

Thus, Ai (g, - p) [I(g±-P)-2(gi - ,Y) 3 / I) nill 2

i Xi (gs-p) (2-0) [(y-g,) + (6/(2-0)) (y-P)] /Iln~jI 2.

The result now follows from Proposition 2.

Proposition 7

If p<cy and there is some K>O such that all 1I n i ll <K, then under

(4) and (6), given 6>0, there is some M such that & M + (+(2-B)) (y-) + .

7

Proof

Let 6>0 be given, with p<y, and all 11n,11 <K. Suppose, contrary

to the desired result, that all gi > y+(6/(2-0)) (y-p) + 5, or

('f-gi) + (0/(2-8)) (y-p) < -8. Since 0<2 and &i>p, then

Ai (gs-p) (2-0) [(y-g) + ($/(2-0)) (y-p)] ii nil 2

< -6X i (gi-p) (2-0) / 11 nil 2. (9)

Take any yer. Then by (9) and Proposition 6, we have that

6Ai(gi-p) (2-4) / 11 nhill 2 < 11 y-yiII 2_11 Y-YI+liI 2.

Since II ni ll <K and g>y>Pt then also

xi6(y-p) (2-0) / K2 < 11 y-yill 2_11 y-yi+1ll 2. (10)

Adding together the inequalities obtained from (10) by letting i take on all

values from 0 to n, we obtain

(X0+. * .+n) 6 (Y-P) (2-0) / K2 < 11 Y-Yo [1 2 - 1 Y-Yn+ 2 (11)

As n goes to o, the left side of (11) goes to -, whereas, by Proposition 4,

the right side of (11) goes to 11 Y-Y0 I P 2 2, a contradiction.

The above is our generalization of Polyak's Theorem 4 Part B.

At worst we eventually obtain an objective value whose error is arbitrarily

close to 0/(2-0) times the error present in the target value estimate of y.

8

IV. CONCLUSIONS

Proposition 5 gives the convergence result obtained under (4)

and (6) for a target value at or above the optimal value. It is

readily apparent that Proposition 5 is compatible with Polyak's result

(A). Proposition 7 gives the corresponding result for a target value

under the optimal value. We have found this to be a more practical

result (see e.g., [1, 2, 3, 4, 7, 8, 10)). Taking $=l, we have

Polyak's result (B) as a special case of Proposition 7. Proposition 7

shows more clearly the dependence of the demonstrably attainable error

on the upper bound 8 for {X i}. This paper has not addressed the question

of any convergence rate associated with the use of (4) and (6). Goffin

15) has provided such results when schema (2) is used.

9

REFERENCES

1. Ali, I., "Two Node-Routing Problems," unpublished dissertation,

Department of Operations Research, Southern Methodist University,

Dallas, Texas, (1980).

2. All, I., and J. Kennington, "The Asymmetric M-Travelling Salesman

Problem: A Duality Based Branch-and-Bound Algorithm," (to appear

in Discrete Applied Mathematics).

3. Ali, I., J. Kennington, and B. Shetty, "The Equal Flow Problem,"

Technical Report 85-OR-1, Operations Research Department, Southern

Methodist University, Dallas, Texas, (1980).

4. Allen, E., "Using Two Sequences of Pure Network Problems to Solve

the Multicommodity Network Flow Problem," unpublished dissertation,

Department of Operations Research, Southern Methodist University,

Dallas, Texas, (1985).

5. Goffin, J., "On Convergence Rates of Subgradient Optimization

Methods," Mathematical Programming, 13, 329-347, (1977).

6. Held, M., P. Wolfe, and H. Crowder, "Validation of Subgradient

Optimization," Mathematical Programmng, 6, 66-68, (1974).

7. Helgason, R., "A Lagrangean Relaxation Approact, to the Generalized

Fixed Charge Multicommodity Minimal Cost Network Flow Problem,"

unpublished dissertation, Department of Operations Research, Southern

Methodist University, Dallas, Texas, (1980).

10

8. Kennington, J., and M. Shalaby, "An Effective Subgradient Pro-

cedure for Minimal Cost Multicomodity Flow Problems," hanagement

Science, 23, 9, 994-1004, (1977).

9. Polyak, B., "Minimization of Unsmooth Functionals," U.S.S.R.

Computational Mathematics and Mathematical Physics, 9, 14-29,

(1969).

10. Shetty, B., "The Equal Flow Problem," unpublished dissertation,

Department of Operations Research, Southern Methodist University,

Dallas, Texas, (1985).

11. Shor, N., "On the Structure of Algorithms for the Numerical

Solution of Optimal Planning and Design Problems," dissertation,

Cybernetics Institute, Academy of Science, U.S.S.R., (1964).

l1

Appendix D

Technical Report 83-OR-4

NETWORKS WITH SIDE CONSTRAINTS:

AN LU FACTORIZATION UPDATE

By

Richard S
BarrI

Keyvan Farhangian
2

1
Jeffery L. Kennington

Southern Methodist University

Dallas, Texas 75275

(214)-692-3072

Revised

September 1985

1 Department of Operations Research

School of Engineering and Applied Science

Southern Methodist University

Dallas, Texas

2 Consilium Associates, Inc.

Palo Alto, California

ABSTRACT

An important class of mathematical programming models which

are frequently used in logistics studies is the model of a network

problem having additional linear constraints. A specialization of

the primal simplex algorithm which exploits the network structure

can be applied to this problem class. This specialization maintains

the basis as a rooted spanning tree and a general matrix called the

working basis. This paper presents the algorithms which may be used

to maintain the inverse of this working basis as an LU factorization,

which is the industry standard for general linear programming soft-

ware. Our specialized code exploits not only the network structure

but also the sparsity characteristics of the working basis. Compu-

tational experimentation indicates that our LU implementation results

in a 50% savings in the nonzero elements in the eta file, and our

computer codes are approximately twice as fast as MINOS and XMP on a

set of randomly generated multicommodity network flow problems.

ACKNOWLEDGEMENT

This research was supported in part by the Department of Defense

under Contract NL .ber MDA903-82-C-0440 and the Air Force Office of

Scientific Research under Contract Number AFOSR 83-0278.

KEY WORDS

Linear Programming

Network Models

Networks With Side Constraints

Logistics

NOTE TO EDITOR

PLEASE SET ALL NUMERALS UNDERLINED AND LETTERS UNDERLINED IN BOLDFACE.

DO NOT SET UNDERLINES.

I. INTRODUCTION

Good software for solving linear programming models is one of the

most important tools available to the logistics engineer. For lcgistics

studies, these linear programs frequently involve a very large network

of nodes and arcs, which may be duplicated by time period. For example,

nodes may represent given cities at a particular point in time while

arcs represent roads, railways, and legs of flights connecting these

cities. Some nodes are designated as supply nodes, others demand nodes,

while some may simply represent points of transshipment. The mathematical

model characterizes a solution such that the supply is shipped to the

demand nodes at least cost while not violating either the upper or lower

bounds on the flow over an arc.

If the main structure of a logisitcs problem can be captured in a

network model, then the size of solvable problems becomes enormous.

Hence, more realistic situations can be modelled that would otherwise lie

outside the domain of general linear programming techniques. For example,

one current logistics planning model involves 200 nodes and (365 days/yr)

(30 years) - 10,950 time periods to give over 2,000,000 constraints.

Network problems having 20,000 constraints and 20,000,000 variables are

solved routinely at the U. S. Treasury Department.

Unfortunately, the pure network structure may require simplification

of the problem to the point that key policy restrictions must be omitted.

The work presented in this study builds upon existing large-scale network

solution technology to allow for the inclusion of arbitrary additional

-i-

constraints. Typical constraints include capacities on vehicles

carrying different types of goods, restrictions on the total number

of vehicles available for assignment, and budget restrictions. The

addition of even a few non-network constraints can greatly enhance

the realism and usability of these models. Our approach exploits-

to as great an extent as possible-the traditional network portion of

the problem while simultaneously enforcing any additional restrictions

imposed by the practitioner.

For general linear programming systems, the most important

component is the algorithm used to update the basis inverse. Due

to the excellent sparcity and numerical stability characteristics,

an LU factorization with either a Bartels-Golub or Forrest-Tomlin

update has been adopted for modern linear programming systems. For

pure network problems, the basis is always triangular and corresponds

to a rooted spanning tree. The modern network codes which exploit

this structure have been found to be from one to two orders of

magnitude faster than the general linear programming systems. In

this paper, we have combined these two powerful techniques into an

algorithm for solving network models having additional side constraints.

Let A be an m x n matrix, let c and u be n-component vectors, and

let b be an r-component vector. Without loss of generality, the linear

program may be stated mathematically as follows:

minimize c x (1)

-2-

subject to: A x = b (2)

0 < x < u . (3)

The network with side constraint model is a special case of (1) - (3)

in which A takes the form

A M EnL~1I -
where M is a node-arc incidence matrix.

1.1 Applications

There are numerous applications of the network with side constraint

model. Professor Glover and his colleagues have solved a large passenger-

mix model for Frontier Airlines and a large land management model for

the Bureau of Land Management (see [7, 8]). A world grain export model

has been solved to help analyze the port capacity of U. S. ports during

the next decade (see [2]). A cargo routing model is being used by the

Air Force Logistics Command to assist in routing cargo planes for the

distribution of serviceable spares (see [I). Lt. Col.-Dennis McLain,

has developed a large model to assist in the development of a

casualty evacuation plan in the event of a European conflict (see

[14]). A National Forest Management Model has been developed to

aid forest managers in long term planning for national forests

-3-

(see [10]). In addition, work is currently underway which attempts to

convert general linear programs into the network with side constraint

model (see [4, 16]).

1.2 Objective of In%-.stigation

Due to both storage and time considerations, the basis inverse is

maintained as an LU factorization in modern LP software (see [3,5, 15]).

The objective of this investigation is to extend these ideas to the

primal partitioning algorithm when applied to the network with side

constraints model.

1.3 Notation

The ith component of the vector a will be denoted by a.. The

(ij) th element of the matrix A is denoted by A... A(i) and A[i]
1J

deoe h th .th

denotes the i column and i row of the matrix A, respectively.

0 denotes a vector of zeroes, 1 denotes a vector of ones, and e
k denotes

a vector with a 1 in the k th position and zeroes elsewhere. Sigma is

used to denote the scalar signum function defined by

r 1, if y > 0

y(y) 0, if y " 0

-1, if y < 0

The identity matrix is given by "I".

-4-

II. THE PRIMAL SIMPLEX ALGORITHM

We assume that A has full row rank and that there exist a feasible

solution for (1) - (3). Given a basic feasible solution, we may par-

tition A, c, x, and u into basic and nonbasic components, that is,

A = [B: N), c - [cBi c], x = [x -N] , and u = [uB u N]. Using the

above partitioning, the primal simplex algorithm may be stated as

follows:

PRIMAL SIMPLEX ALGORITHM

o. InitiaZlization. Let [xB i N] be a basic feasible solution.

1. P'icin9. Let - c B B- 1 . Define

x Ni , 0 and 11 N(i) >cNN N

1= {i xN = u and 1l N(i) < c NN NB' i N92 {:x i uian - N i

If ' 1U '2 , terminate with [Ix B x N] optimal; otherwise,

select k E 91 U *1 and set 6 - 1 if k c 91 and 6 4-i, otherwise.

2. Ratio Tut. Set y - B-1 N(k). SetLB
rmin jxj

A2 -(y)= Jyj1 0,

Set A min {6I, A2 N}

A1 ~~1 uko~~=

If A =, then go to 3; otherwise, Lerminate with the conclusion

that the problem is unbounded.

- s-

3. Updt Va/ue6. Set N _ N + A and x B x B A 6 Y" If

A = Uk, return to step 1.

4. Update Basiz Inverse. Let

B
-3 {j :x = 0 and 0(y. 6)1

j jB B

4 x. = u. and -o(y) - 6}.J j

Select any Z E p3 U 4" In the basis, replace B(1) with N(k),

update the inverse of the new basis, and return to step 1.

-6-

III. THE PARTITIONED BASIS

The network with side constraint model may be stated as

follows:

1 1 2 2(4
minimize c x + c x (4)

subject to: M xi b (5)

S x1 + P x2 b 2 (6)

0 < xI < u1 (7)

2 2
0<x <u . (8)

We may assume without loss of generality that,

(i) The graph associated with M has n nodes and is connected (i.e.,

there exists an undirected path between every pair of nodes).

(ii) IS ! PJ has full row rank (i.e., rank [S P] = m).
1

(iii) Total supply equals total demand (i.e., 1 b = 0).

Since the rank-of system (5) is one less than the number of

rows, we add what has been called the root arc to (5) to obtain

M x 1 + e p a = b 1

where 0 < a < 0 and I < p < n.

Then the constraint matrix for the network with side constraints model

becomes

S P

-7-

It is well-known that every basis for A may be placed in the

form

B = _T (9)

where T corresponds to a rooted spanning tree and

T +T CQ DT -T CQ

B L 1] (10)

_Q DT -, Q

where Q = F - D T- I C. The objective of this paper is to give

algorithms which maintain Q-1 as an LU factorization.

IV. THE INVERSE UPDATE

Recall that the partitioned basis takes the form

key nonkey

LD F

Let L _T__C

and let F'
g=B L =..

LDT I Q

The inverse update requires a technique for obtaining a new Q-I after

a basis exchange. Let Bi, Lit Bi. and Qi denote the above matrices at

iteration i. Then we want an expression for Qi+l in terms ofQ i.

The transformation takes the form

Bi 1 ' E (11)
i+l i

where E is either an elementary column matrix or a permutation matrix.

Let E be partitioned to be compatible with B. That is,

E3 4 E: m

n m

By examining the (2,2) partition of B i+l, we obtain
-i -- T-

Qi 1 (E4 E3 T 1 C) Q.I (12)

-9-

In determing the updating formulae, we must examine two major

cases with subcases.

Case 1. The leaving column is nonkey. For this case, E takes the form

E

and (12) reduces to Q1+1 E4 Qi

Case 2. The leaving column is key.

Let y e T- 1 C. If yk 0 0, then the kth column of C can be interchanged

with the jth column of T and the new T will be nonsingular.

Subco.e 2a. Y 0 0. Suppose yk # 0.

Then E -E 3 T1 C reduces to43

II I
I I
I I

R -ei T-1 C 4-row j (13)

6 i
Si I

L J ,and

Qi+l R QiI. Case 1 is applied to complete the update.

SubcoA 2b. 0 = 0. For this case no interchange is possible, the entering

column becomes key, and Q i+l Q

-10-

V. AN LU UPDATE

Let

I I

1

0-0

0 I

and

Li

II' m
II

matrices of the form given by U i and L i are called upper etas and lower

etas, respectively. Suppose we have a factorization of Q-I in the form

-11-

(m mm m mIm w mm Im m m m

- =U21 U2... Um Fs F s-i ... F1 , (14)

where F F are a combination of row and column etas. The

right side of (14) is referred to as the eta file where only the

non-identity rows and columns are stored. Suppose that the kth

column of Q is replaced by Q(k) to form the new m by m working basis

Q. This section presents algorithms which may be used to update (14)

^-1
to produce Q in the same form.

5.1 Nonkey Column Leaves The Basis

If k =m, then let = Fs ... F1 Q(k), let

I

L M-i

and let

I -- -

I I-B I•U

m--

1

-12-

'-i 1 •M-i '%"m s 1We will show that Q =U ... U L F ... F.

If k < m, then let Rk = I and

Q = U ... Uk R uk ... U ... F 1 (15)

k k+1We next define a new upper eta,U , and a new row eta, R ' such

that
k k+1 U-'k k+lR U =UR .(16)

Substituting (16) into (15) yields

-l=1 Uk k+1 kF 5
.+2 (7

Q- ... U U R uk+2...U m Fs ... F (17)

Wk+l k+2

We again define two new eta's, U and R , such that

k+l k+2 , k+l k+2
R U =U R .(18)

Substituting (18) into (17) yields Q - UI Uk k k+1 Rk+ 2 uk+3

Um Fs ... F1.

Repeating this process eventually yields

-1 1 k "kk .. um-l m sQ - ... U UR ...UFR. (19)

Let .
F s F Q(k), let

I I

L II I
I I

--[/ k I

I I
I [Y /

Yk+1 k

m/-yk

-1 !

and let

-'k-l
-1

I __

I •
I -k I

W n I _ •

[Then U L x - and wew ilshow thatQ - . .U Ui ... U

L R F" ... Fl

We now present the algorithm which updates the LU representation

of Q-I when the leaving column is nonkey. Assume that ^(k) is replacing

Q(k) in the working basis.

-14-

ALG 1: LU UPDATE FOR NONKEV LEAVING COLUMN

1. Set - Fs ... F Q(k).

2. If k 4 m, set I - k, R I, go to 4.

3. Set m - I, where I is m by m.

Sett m - 1/8•m~m m

Set fml I, where I is m by m.

Set Tim -. , for 1 < j < m.
jm

Stop with - U ... Um- UmmF ... Fl.

4. Set a- Rl[k] Ut+ (Z 1).

Set R£ + I - Rt.

Set RJ+ "

SetU U

Set 4- 0.k,9.+1

(RU =1 Rk+ I)

Set Y - k + 1.

5. If k < m, go to 4.

(uk+l Um _k m-i R7.)

Set R7 5.

6. Set 4- I, where I is m by m.

Set Lk i/

Set L jk4 -j/$k, for k < j < m.

Set I, where I is m by m.

Set ,k -%, for 1 < j < k.

Set k 1.
kk

Stop with Q-1 -U ... uk-1 Uk Dk+l ... m tm R F ... F.

-15- ,

We now present the justification for step 3 of ALG 1. For k m,

we claim that Q-1 U1 ... Um-l Um tm Fs Fl. Note that Q Q(m)

U1 ... Um- Um m. But by construction Um tm 0 em. Consider

Proposition 1.

Let a be any m-vector and E be any column eta. If i = 0, then

Ei
$ = .

1 u-i m m1
By Proposition 1, U ... U e = e . Therefore, Q- Q(m) = e . For

1 < k < m, let y Fs... F1 Q(X). By construction = 0 for £ < j < m

and 'y 1. By Proposition 1, Ui.. m U tm - y. By the con-

struction of U ... u, we have U... U =e
t . Therefore, if the

leaving column is Q(m), then step 3 of ALG 1 produces Q-.

We now present a theoretical justification for step 4 of ALG 1.

Proposition 2.

Let I

uP+l and R . row*

.+ -I

column £

where L ' 1.

If
-- I

I I
Ii I Ii

I I

UP a and Rp+ I = row k

I I I
I I

I I
I I _I _

column 2,

-16-

where 0, if i - x
ai, otherwise,

and

fD , if i 2.

Yi. otherwise,

then Rp Up+' DP Rp+I

Proposition 2 is a theoretical justification for step 4 of ALG 1.

The proposition to follow shows the precise structure of R7 F F Q.

Consider

Proposition 3.

Let U* - Fs ... F Q. If D* R U*, then

U*[i], i * k

k i"

e otherwise

- 2 k-i -kWe now present the results to prove that Q U ... U U

r R tFs ... F

Proposition 4.

U1 ... k- tk m 7 m Rm s F Q(k) ek

Proposition 5.

U1 uk-i k .. m m Rm F Fl (= e for i # k.

By Propositions 4 and 5, we have

Corollary 6.

-i 1 k-i k1Q ... U D R ... FmjmRm s .. 1

Hence, ALG 1 produces the updated working basis inverse.

-17-

5.2 Key Column Leaves The Basis

In this section, we present an algorithm for updating the working

basis inverse to accomplish a switch between a key column and a nonkey

column. That is, = R Q-1 where R is given by (13) and

Q-1 = UI ... Um Fs ... Fl. (20)

^-1
We wish to obtain Q in the same form as (20).

To accomplish this update, we begin with = R U1 Um Fs ... F

We apply Proposition 2 to R U1 creating the factorization Q 1 R 2 U2 ...

Um Fs ... F1. We continue with the application of Proposition 2 until

-^ 1k- k Uk m s
we obtain Q R U F ... F. Proposition 2 does not

k DCk
apply to R Uk. However, a simple update would be to let Cm =..o= L = I

and use the below factorization:

^-l 1 k k . m s F1
Q u . RU U F ... F

LEFT FILE RIGHT FILE

This update simply involves application of Proposition 2 until it does

not apply (k - £*) and then shifting the remainder of the left file

to the right file. We call this update the TYPE I UPDATE.

We will now give an update in whichR U k ... Um is modified as

opposed to moving them to the right file. Let

I;

k - row k

! .

_ . m-.mmmmmmmm • m m m-1m i

k+l k+l k k+l k+l k-4-
Then we define matrices U and E such that E U = U E

k k m k+l l
Following this procedure, R U ... U can be replaced by Uk *.. 0m Em'

so that

Q-1 . t1 ... Uk-i tk+l ... Um Em+l F S ... Fl .

Further, we define a row eta It and a column eta
such that E =

Therefore,

- ... Uk-i lk+l... Dm A V Fs ... F

LEFT FILE RIGHT FILE

We call this update the TYPE 2 UPDATE.

We now present a set of propositions which justify the TYPE 2

UPDATE.

Proposition 7.

Let

uP+l ... --..--- _ _ a _Sand EI IY Y
71"''74-' I 4

1 k* ln
=- p -- -- -- -

where Z ' and 0. = O.

-19- :

_ ,, , h ,m ~ m mmm i + ~ ul I INII I nn .. .

If

I aI I *i

u
p +

, andE
p + l -

-l.. - -- I- * --- l...--a an I k+ no0 £+ ii~

-1 I

where
S n ' if i

Yip otherwise,

0 O, if i = z+,

TI + pi IY*, otherwise,

then Ep up+ ' 'p+l EP+I.

-20-

The following proposition is used to replace the cross matrix

Em + l with a row eta P and a column eta _.

Proposition 8.

Let

E 1'7- .. 7£ ! +"Yn
if

0

1- n

I * I
I * I

I

I f

I •
E = Y1 .. Y......2

I I

I ----- 4-
i £+l+l

* I

0

! lUn

I ,* I

where X and Y are such that XY y "(o - ip

then E "

We now present the update algorithm for the case in which the

X th column of T is being switched with the k th column of C. Let

e _ T ._ -1 C.

-21-

If'

ALG 2: LU UPDATE FOR A KEY LEAVING COLUMN

i. Set R 1 - I.

Set R 1[k] 4- Y"

Set i - 1.

2. If i = k, go to 4.

Set a - Ri[k] Ui(i).

i+l i
Set R 4R.

Set Ri+l
Set i .

Set 4- 0.
ki

3. Set i i + 1 and go to 2.

4. Set Uk I.

Set Ek Rk Uk.

5. Apply Proposition 7 to Ei Ui
+ l to form Ui+l Ei+l

Set i i + 1.

6. If i < m, go to 5.

7. Apply Proposition 8 to Em to obtain where X =1.

At the completion of step 7 we have
- = ... Fs Fl.

-22-

VI. COMPUTATIONAL EXPERIMENTATION

Three test problems were selected for the experiment.

SC205 is a staircase linear program which was generated by Ho and

Loute [12] and transformed into a network with side constraints9

Gifford-Pinchot is a model of the Gifford-Pinchot National Forest [10)

which has also been transformed into a network with side constraints.

RAN is a randomly generated problem.

These problems were first solved and the pivot agenda was saved.

That is, entering and leaving columns for each pivot were saved on a file.

This file was then used by each code so that all three basis updates

follow the same path to the optimum. The number of nonzeroes re-

quired to represent Q-1 at various points in the solution process is

illustrated in Figures 1 and 2. For both problems, the LU Type 2 up-

date dominated both the LU Type 1 update and the product-form code in

terms of ncnzeroes in the inverse. The average core storage required

for Q-1 using the product-form update is approximately double that

required for the best LU update.

Figures 1 and 2 About Here

Given the above results, we developed three specialized network

with side constraints codes and computationally compared them with three

general in-core LP systems and a special system for multicommodity network

flow problems. All codes are written in FORTRAN and have not been

tailored to either our equipment or our FORTRAN compiler. None of

the codes were tuned for our problem set. A brief description of each

code follows.

-23-

NETSIDE1, NETSIDE2 AND NETSIDE3 are our specialized network with

side constraints systems. The first maintains Q-1 in product form, while

the second and third maintain Q-1 in LU form using a Type 1 and Type 2

update, respectively. All use the Hellerman and Rarick [Il] reinversion

routine. The working basis is reinverted every 60 iterations. The

pricing routine uses a candidate list of size 6 with block size of 200.

MINOS [15] stands for "a Modular In-Core Nonlinear Optimization

System" and is designed to solve problems of the following form:

minimize f(x) + cx

subject to: Ax = b

where f(x) is continuously differentiable in the feasible region.

For this study f(x) = 0 at all x and therefore none of the nonlinear

subroutines were used for problem solution.

For linear programs, MINOS uses the revised simplex algorithm

with all data and instructions residing in core storage. The basis

inverse is maintained as an LU factorization using a Bartels-Golub update.

The reinversion routine uses the Hellerman-Rarick [11] pivot agenda

algorithm.

XMP is a library of FORTRAN subroutines which can be used to solve

linear programs. The basis inverse is maintained in LU factored form.

The pricing routine uses a candidate list of size 6 with two hundred

columns being scanned each time the list is refreshed. The basis is

reinverted every 50 iterations.

-24-

LISS stands for "Linear In-Core Simplex System" dnd is an in-core

LP solver with the basis inverse maintained in product form. The

reinversion routine is a modification of the work of Hellerman and

Rarick [11]. The basis inverse is refactored every 50 iterations. A

partial pricing scheme is used with 20 blocks.

MCNF stands for "Multicommodity Network Flow". ..CNF uses the primal

partitioning algorithm also. The basis inverse is maintained as a set of

rooted spanning trees (one for each commodity) and a working basis inverse in

product form. This working basis inverse has dimension equal to the number

of binding GUB constraints. A partial pricing scheme is used. Our computa-

tional experience is given in Table 1.

The row entitled GUB Constraints, gives the number of LP rows which

correspond to "GUB Constraints". The row, entitled "Binding GUB

Constraints", gives the number of GUB constraints met as equalities at

optimality using MCNF. All runs were made on the CDC 6600 at Southern

Methodist University using the FTN compiler with the optimization feature

enabled.

Based on these results, we conclude that for lightly constrained

multicommodity network flow problems

i) X)P and HINOS run at approximately the same speed,

(ii) NETSIDE1, NETSIDE2 and NETSIDE3 run at approxfimately the same

speed, and

(iii) the three NETSID codes are approximately twice as fast as XMP

and MINOS.

-25-

REFERENCES

1. Ali, A., R. Helgason, and J. Kennington, "An Air Force Logistics

Decision Support System Using Multicommodity Network Models", Tech-

nical Report 82-OR-i, Department of Operations Research, Southern

Methodist University, Dallas, Texas 75275, (1982).

2. Barnett, D., J. Binkley, and B. McCarl, "The Effects of U. S. Port

Capacity Constraints on National and World Grain Shipments", Tech-

nical Paper, Purdue Agricultural Experiment Station, Purdue

University, West Lafayette, Indiana, (1982).

3. Bartels, R., and G. Golub, "the Simplex Method of Linear Programming

Using LU Decomposition", Communications of ACM, 12, 266-268, (1969).

4. Bixby, R. E., "Recent Algorithms for Two Versions of Graph Realization

and Remarks on Applications to Linear Programming", Technical Report,

5. Forrest, J. J. H., and J. A. Tomlin, "Updated Triangular Factors

of the Basis to Maintain Sparcity in the Product Form Simplex

Method", Mathematical Programming, 2, 3, 263-278, (1972).

6. Glover, F., and D. Klingman, "The Simplex Son Algorithm for LP/

Embedded Network Problems", Technical Report CCS 317, Center for

Cybernetic Studies, The University of Texas, Austin, Texas, (1977).

7. Glover, F., R. Glover, J. Lorenzo, and C. McMillan, "The Passenger-

Mix Problem in the Scheduled Airlines", Interfaces, 12, 3, 73-80, (1982).

.. Glover, F., R. Glover, and F. Martinson, "The U. S. Bureau of Land

Management's New NetformVegetation Allocation System", Technical

Report, Division of Information Science Research, University of

Colorado, Boulder, Colorado, (1982).

-26-

9. Graves, G. W., and R. D. McBride, "The Factorization Approach to

Large-Scale Linear Programming", Mathematical Programming, 10, 1,

91-110, (1976). . . .

10. Helgason, R., J. Kennington, and P. Wong, "An Application of Network

Programming for National Forest Planning", Technical Report OR 81006,

Department of Operations Research, Southern Methodist University,

Dallas, Texas, (1981).

Li. Hellerman, E., and D. Rarick, "Reinversion With the Preassigned

Pivot Procedure", Mathematical Programming, 1, 195-216, (1971).

12.- Ho, J. K., and E. Loute, "A Set of Staircase Linear Programming

Test Problems", Mathematical Programming, 20, 2, 245-250, (1981).

13. Kennington, J. L., and R. V. Helgason, Algorithms for Network

Programming, John Wiley and Sons, New York, New York, (1980).

14.. McLain, D. R., "A Multicommodity Approach to a Very Large Aero-

medical Transportation Problem", (working paper) Operations Research

Division, Military Airlift Command, Scott Air Force Base, Illinois,

(1983).

15. Murtagh, B., and M. Saunders, "MINOS User's Guide", Technical

Report 77-9, Systems Optimization Laboratory, Department of

Operations Research, Stanford University, Stanford, California,

(1977).

16. Wagner, D. K., "An Almost Linear-Time Graph Realization Algorithm",

unpublished dissertation, Department of Industrial Engineering and

Management Sciences, Northwestern University, Evanston, Illinois,

(1983).

-
-27-

nonzeroes in Q-1

5000 Product Form

4000

3000

LU Type 1

2000

LU Type 2

1000

2> Iterat4ons
80 160 240 320

Figure 1. Nonzero Buildup In The Working Basis Inverse On
SC205 [22].
(317 columns, 119 nodes, 87 side constraints)

nonzeroes in Q

600-

Product Form

500

LU Type 1

400 LU Type 2

300

200

100

.,Iterations
160 320 480 640 800

Figure 2. Nonzero Buildup In The Working Basis Inverse On
Gifford Pinchot [20].
(1160 columns, 533 nodes, 84 side constraints)

II

- Ot- A

am m 0

WW 40 wO C

N -A

A. mN -

9-4,0 N M

w' - I 0a M a,
A

...... oM 51 O4 0r *N 040 1'C m

*,....80N~~~ 2 ~ -- 4

m .4 - '1,. - .09N -

s 2 ft a .a

* N 0. 4

*OC~4 4 ~ 8 =a A4
NOCON ~~ C w a -. 4 ~ 94l .9f

mum4 49 16 W* -1 ..

Appendix E

Technical Report 85-OR-3

THE PROJECTIVE TRANSFORMATION ALGORITHM BY KARMARKAR:

A COMPUTATIONAL EXPERIMENT WITH ASSIGNMENT PROBLEMS

By

J. Aronson
1

R. Barr
1

R. Helgason1

J. KenningtonI

A. Loh
2

H. Zaki
1

Department of Operations Research
Southern Methodist University

2 Department of Industrial Engineering

University of Houston

Revised August 1985

ABSTRACT

This paper describes a computational experiment comparing a

pure network code, IBM's MPSX/370, and our implementation of a

heuristic version of the projective transformation algorithm first

suggested by N. Karmarkar. On five randomly generated dense assign-

ment problems, we found that the pure network code was 18 times

faster than MPSX which was 14 times faster than our projective

tranformation code.

KEY WORDS

PROJECTIVE ALGORITHM

LINEAR PROGRAMMING

NETWORKS

ACKNOWLEDGEMENT

This research was supported in part by the Air Force Office of

Scientific Research under Contract Number AFOSR 83-0278.

I. INTRODUCTION

This paper describes a pure network implementation of the new

projective transformation algorithm for linear programs developed by

N. Karmarkar (2]. The projection of the gradient in the transformed

space is accomplished by solving a least squares problem using the

LSQR routine of Paige and Saunders [4]. On dense assignment problems,

we found that a pure network code NETFLO [3] is approximately 250

times faster than the new code and MPSX/370 is 14 times faster than

the new code. Other computational experience with an early version of

the algorithm may be found in Tomlin [5].

m ,W nwmunnnnnmm m N|1

II. THE ALGORITHM

Let the linear program be given by

min cx (1)

s.t. Ax = b (2)

< x < u . (3)

The algorithm which we implemented may be stated as follows:

PROJECTIVE TRANSFORMATION ALG

0. Initialization

Let z* denote the optimal objective value of (l)-(3) and let x

be a starting point such that Ax = b and X < x < u. Select the step

size S with 0 < 8 < 1.

1. Form Transformation Matrix

d - MIN(u. - x., x' - £J), D = diag(d I ... , d).

2. Transform Constraints

B = ADl

3. Project Gradient

^~ • -BD cc = Dc - B(BB)

4. Transform To Original Space

h = Dc

5. Determine Max Step Size

a L= M I N x j - j

2

-- _ -

a = MIN x - ul

h.<Ojh j

a = MIN (al, a2)

6. Move To New Point

x = x - aLh

7. Check For Termination

If .9cx < z*, stop with x a near optimum;

otherwise, go to 1.

3

III. THE CODE

We developed a FORTRAN code, called PTANET, for the projective

transformation algorithm which was specialized for pure network

problems. That is, A is assumed to be a node-arc incidence matrix,

less one row. Hence, A has full row rank. Step 3 was performed using

the subroutine LSQR developed by Paige and Saunders [4]. That is, we

solve the following least squares problem,

min I] B'x - Dc 112

to obtain c. We used the 1978 version of LSQR since that version

returns the residual. The only two calculations involving B, p = Bv

and p = u B, were performed by special routines which exploited the

network structure of B.

LSQR uses an input parameter, EPS, for termination of the least

squares solution. An EPS of 1.E-8 was found to be too large. That

is, an x was generated in which at least one component of JAx - bi

was greater than l.E-6. Similar problems were encountered when we

ran LSQR in single precision. Hence, all arrays are double precision

and we used the following tolerances and input limits for LSQR:

EPS = I.OE-12

ATOL - EPS*1O00.

BTOL - EPS*IO00.

CONLIM = l./(1O.*DSQRT(EPS))

ITNLIM - 1000.

4
I'

The core storage comparison between PTANET and the pure network

code NETFLO (3] is as follows:

Code Arc Length Arrays Node Length Arrays

NETFLO 3 6

PTANET 10 5

The 1982 version of LSQR requires fewer arrays. The above implementation

of PTANET does not have the minimum number of arrays that can be achieved.

5i

IV. THE EXPERIMENT

Due to the fact that our algorithm requires a starting point

such that Ax = b and k < x < u, we restricted our test problems to

dense assignment problems. That is, an assignment problem with N 10

has 20 nodes and 100 arcs. The costs were randomly generated integers

on the interval (1, 100). For a problem of size N, the starting

solution was x. = I/N for all J.J

We solved all problems using NETFLO first. The optimal objective

value was then fed to PTANET to use for termination. We ran PTANET

with 0 = 0.9. We also ran PTANET which rounded to the nearest feasible

solution whenever N arcs had flow of at least 0.5.

The same problems were also run on MPSX/370 using the default

parameter settings. Since two runs on the same problem may take a

different number of iterations, we ran each problem three times and

reported the average of these runs.

Our results are given in Table 1. All runs were made on the IBM

3081-D24 at Southern Methodist University. NETFLO and PTANET are

written in FORTRAN and were run using FORTVS with OPT = 3. NETFLO

solved all 5 problems in less than I second, MPSX took 18 seconds,

while PTANET required 255 seconds. The final three iterations for each

run with PTANET required approximately seventy percent of the total

computational time. This is due to the ill-conditioning of B = AD. As

the flows approach their bounds, the components of D become quite small.

At optimality, every flow is either at its upper or lower bound.

6

V. THE NULL SPACE MATRIX

It appears that the main computational problem with the

Projective Transformation ALG, as stated in Section II, is that

if there is error in the calculation of d in Step 4, then x

becomes infeasible. That is, Ax # b. Therefore, many iterations

are required by LSQR to obtain a sufficiently accurate d so that

feasibility is maintained. In order to overcome this numerical

problem, we modified the algorithm to use the null space matrix to

accomplish the projection.

Recall that the direction is obtained by the following steps:

2. B=AD.

3. c - (I-B (BB) c.

4. d = Dc.

Suppose A is m x n and let Q" be the (n x n - m) null space matrix

corresponding to A. The null space matrix corresponding to B = AD is

D-1 Q. By the property of the null space matrix,

I-B'(BB')-IB = D- Q(QD- D- Q)- QD-

Hence, 2, 3, and 4 can be replaced by the following:

2. Construct Q.

3. c^ - D-IQ(QD-ID-IQ)- QD-IDc.

4. d = Q'(QD- DI Q)- QD-Dc.

By applying LSQR to

min j D- Qx - Dc 112'

7

q

we obtain

x* - (QD-lD-IQ)-I QD-IDc.

Then d is simply Q'x*.

For pure network problems, Q can be generated from A and any

basis (rooted spanning tree). The columns of Q' may be constructed

by tracing cycles in the basis tree after a nonbasic arc is appended

to the tree. We modified PTANET to use Q and developed special

routines to calculate D-1 Qx and y'QD- required by the 1982 version

of LSQR.

Computationally, we found that an inaccurate x* from LSQR still

produced a feasible direction d. However, these directions would

not necessarily guarantee that optimality to the original problem

could be obtained. Our experience with a 20 x 20 assignment problem

is presented in Table 2. With a tolerance of l.E-10 and smaller,

convergence was achieved. However, with a tolerance of l.E-8, the

objective function stalled at an objective value 13% above the true

optimum. That is, we were trading a worse direction in exchange for

a guaranteed feasible direction. Since the dimension of Q' was very

large and DI Q' becomes ill-conditioned after a few major iterations,

this trade-off does not pay off. NETFLO solved this problem in 0.02

seconds.

8

VI. CONCLUSIONS

Based on our computational tests, we were unable to confirm

the original claims which were reported concerning this algorithm.

The biggest difficulty appears to be that both AD or D- Q' become

very ill-conditioned as components of the solution vector approach

either their upper or lower bounds. Two approaches have been

suggested to help alleviate this problem. When a variable gets

close to either its upper or lower bound, fix it to the appropriate

bound and drop it from the problem. Scaling should also assist in

this difficulty. We also found that skipping steps 2, 3, and 4 and

using the same direction two successive major iterations can reduce

the computational time by up to 25%. However, to make our present

code competitive with MPSX/370 these ideas would have to perform

spectacularly.

The problem of a feasible interior starting point can be solved

by a two-phase approach. The problem of a satisfactory stopping rule

can be solved by iterating between the primal and the dual. When the

two bounds are within a given tolerance, then the algorithm terminates.

These procedures could increase the computational times by a factor

of four.

9 mmm mmmmm ~ m m m mI

REFERENCES

1. Ali, A. I. and J. L. Kennington, "Network Structure in Linear

Programs: A Computational Study", Technical Report 83-OR-I,

Operations Research Department, Southern Methodist University,

Dallas, Texas (1983).

2. Karmarkar, N., "A New Polynomial-Time Algorithm for Linear

Programming", AT&T Bell Laboratories, Murray Hill, New Jersey

07974 (undated).

3. Kennington, J. L. and R. V. Helgason, Algorithms For Network

Programming, John Wiley and Sons, New York, New York (1980).

4. Paige, C. C. and M. A. Saunders, "Algorithm 583 LSQR: Sparse

Linear Equations and Least Squares Problems", ACM Transactions

on Mathematical Software, Vol. 8, No. 2., (1982), 195-209.

5. Tomlin, J. A., "An Experimental Approach to Karmarkar's Linear

Programming Algorithm", Ketron, Inc., Mountain View, California

94040 (1984).

10

' .-4 nL
E- CN C'.J

0 0 00 0% -T -4 -1 IT 0% r-4 -4 -ta
co en c Lti * -I aLn M, 0 .- 4 arn C% 0

w4-

0 *1 coA n % % - 4 ("4 N

-4 -4

.14

N 0)

'--4

U))
w) u 0D r- en C4 07 -41 -- (N 07 (I ~ (

-4~'. *4 m- 0 -4m %-4m
C1 C44 -4a

m0

rI
.0 Q)

0)
u 04 0 - 0L' L4 ,4

0~~~1 ar H N4 W -H 0' C -4 .4ON

r4C . U0) l -q ri () 4 -44 U

0) -r Hx4W Hr

0) w L)

Q)) a-'-4

1. - ' -4 E* 1-4 E-' E' N -4

r-i 41

E-4 -4
0.V

r. w n
o- LE4)C

z 14 C

-4-

'-I

~ U Q)

,[-4

w-. cn M 4

o >
°-,

(V

a' 0

'.41

>

o 0

0 0

(U4

000

w Ce -4

cc -I

0

~ 0
w

r..

-4

(112 0

ccJ

'4

4--4

-o 0

12E

Appendix F

Technical Report 85-OR-5

THE FREQUENCY ASSIGNMENT PROBLEM:

A SOLUTION VIA NONLINEAR PROGRAMMING

By

J. David Allen

Switching Systems Division
Rockwell International

P.O. Box 10462
Dallas, TX 75207
(214)-996-5701

Richard V. Helgason

and

Jeffery L. Kennington

Operations Research Department
Southern Methodist University

Dallas, TX 75275
(214)-692-3072

Revised November 1985

Comments and criticisms from interested readers are cordially invited.

ABSTRACT

This paper gives a mathematical programming model for the problem

of assigning frequencies to nodes in a communicitions network. The

objective is to select a frequency assignment which minimizes both co-

channel and adjacent channel interference. In addition, a design engineer

has the option to designate key links in which the avoidance of jamming

due to self-interference is given a higher priority. The model has a

nonconvex quadratic objective function, generalize1 upper bounding con-

straints, and binary decision variables. We developed a special heuristic

algorithm and software for this model and tested it on five test problems

which were modifications of a real-world problem. Even though most of the

test problems had over 600 binary variables, we were able to obtain a

near optimum in less than 12 seconds of CPU time on a CDC Cyber-875.

ACKNOWLEDGEMENT

This research was supported in part by the Air Force Office of

Scientific Research under Contract Number AFOSR 83-0278.

KEY WORDS

Nonlinear Programming

Integer Programming

Communication Networks

NOTE TO EDITOR

PLEASE SET ALL LETTERS UNDERLINED IN BOLDFACE. DO NOT SET UNDERLINES.

I. INTRODUCTION

One of the most critical design problems in a radio communication

network is the assignment of transmit frequencies to stations (nodes) so

that designated key communication links will not be jammed due to self-

interference. In this investigation, we describe a novel new optimization

model and a solution technique which can be used to assist design engineers

in this process.

1.1. Problem Description

A radio communications network consists of radio stations, each

equipped with one or more transmitters and receivers. When a given

station has the ability to receive information intelligibly from a trans-

mitting station, a link is said to exist from the transmitting station to

the receiving station. The interconnection of these stations and links

may be viewed graphically as a set of nodes, representing the radio stations,

joined together by directed arcs, representing the links.

We assume in our model that one transmitter and several receivers are

locatd at each radio station (node). The transmitter is tuned to a

specified center frequency, and the receivers are tuned to the transmit

frequencies of the neighboring stations to which the station is to be

linked. A channel is associated with each center frequency in a way

similar to the way channels and frequencies are associated in a television

set. When a TV is tuned to channel 4, for example, it is really being

tuned to receive video signals being broadcast at 67.25 MHz.

For our model, a given center frequency will be associated with

each channel number. Using this definition, the frequency assignment

problem may be defined as follows:

"Given N transmitting stations (nodes), assign 1 of F transmit

channels to each node in such a way as to minimize the number

of designated key links jammed due to co-channel and adjacent

channel interference."

We say that a link is jammed if either of the following conditions

occurs:

(i) a node receives two signals on the same channel that are less

than a dB apart in signal strength, or

(ii) a node receives a signal on a given channel while a neighboring

node transmits on an adjacent channel. If the neighbor's

signal strength exceeds the signal strength of the current node

by more than 0 dB, then the incoming signal will be garbled.

The constants a and $ are functions of the hardware used in the

network. Some of the determining factors are the receiver selectivity,

the type of signal modulation, and the purity of the signal.

We now introduce the notation used to describe the mathematical

model. Let f c (1, ..., F) denote a channel and n c {, ..., N} denote

a node. ei will denote a vector whose entries are 0 except for the ith

which is 1. Let

Xfn- 1 if channel f is assigned to node n

and 0 otherwise,

2

xf - the row vector [x, ..., xfN], and

g(xl,...,5F) - a weighted number of jammed links with

assignment (x,, ... I xF)"

Using the above notation, the mathematical model of the frequency

assignment problem is

min g(xl' "'' (1)

s.t. E xfn = 1, all n (2)
f

Xfn E {0,1}, all f,n. (3)

For this application, g(.) is a nonconvex quadratic function and

therefore (1) - (3) is a member of the class of binary nonconvex cost

nonlinear programs.

1.2 Related Literature

A heuristic procedure for solving a similar problem using a graph

coloring algorithm has been evaluated by Zoellner and Beall [7). Closely

related models have been investigated by Morito, Salkin, and Williams

[5) and by Mathur, Salkin, Nishimura, and Morito [4]. Their models

are general linear integer programs with a single constraint. Using

a special branch-and-bound algorithm, they successfully solved their

model with up to fifty channels.

1.3 Accomplishments of the Investigation

We developed a novel new mathematical model of the frequency

3

assignment problem which takes the form of a binary nonconvex quadratic

cost nonlinear program. The model incorporates weighting constants that

allow a design engineer to tune the model to a particular application.

We present an elegant specialization of the convex simplex algorithm

to obtain a local optimum for this model. In addition, specialized

software has been developed for this model and tested on five versions

of a real-world problem. The software works quite well requiring less

than a minute of computer time for all five test problems.

4

II. THE OBJECTIVE FUNCTION

In this section, we define the weighted interference function,

g(x1' "''' LF) . This function is generated from a set of signal

strength matrices, (A1 , ..., AF) , two weighting matrices, and a set
f

of critical values a, 8, and 61, ...* 6N" Let a denote the
N ij

received signal strength in dBu/m of a signal which originates at

node i and is received by node J, and let Af denote the matrix whose
f

elements are a ij. Let the weighting matrices P and W be determined

as follows:

i tp if (ij) is a designated key link

P., otherwise

and

Wl, if (ij) is a designated key link

w

w2, otherwise.

The constants Pit P2 9 wit and w2 are tuning parameters which are used

to provide weights in the interference function for the key links.

Gamma is used to denote the scalar function, defined by

= , if x > 0

Y(X)

0, otherwise.

5

Using Y(-), we define the three matrices

S y(%-I - afk I)Wk + Pij i# j

k # i,j

f ik >6

qij

0, otherwise;

E" y. f+l -a f) w
Z aj -aik - w~ik,

k 0 i,j

a f > 6
ik kf

r =

0, otherwise;

and

E Y(a f- a f -)wk i#jk 0i (ajk - ak Wik9
fk # i,j

aif
> 6kf

ij

0, otherwise.

Using these matrices, the interference function is given by

g(x 1, ..., PXF)

f-F f-F-I f-F

E £ xQfx" f + E x"f ff l + z _S

f-l fl f=2 -f f f-I

co-channel adjacent channel adjacent channel

interference interference from interference from

channel above channel below

6

In addition it is often desirable to use all of the channels.

Therefore, we appended the function

i-N-i juN
3 z E xf Z

f iml j=i+l

to g(-) so that in the absence of self-interference, the channels

would be equally distributed among the nodes. The scalar w3 is also

a tuning parameter.

Using the above formulae, we now give an example which presents

the matrices required to define g(.). Let a - 2, B - 3, w3 0, 6n = 0

for all n, and plJ wij = 1 for all i,j.

iifIf

0 1 2 5 0 2 3 5

1 0 3 3 2 0 5 5
A 2 3 0 2 A2 3 5 0 1

u 4 3 2 0 and -5 5 1 0 ,then

-0 1 0 1- -0 1 0 0-

1 0 2 1 1 0 1 0

0 2 0 1 Q2 0 0]
L1 1 1 0- 0 0 1 0

-0 0 1 - 0 0 0 0

0 0 0 1 0 0 0 0

R, 0 0 0 0 S2 1 0 0 0

I0 0 0 0 , and 0 0 0 0

7

III. THE ALGORITHM

Let x" - [X-, .0., X]F. Then the frequency assignment problem

takes the general form:

min g(x) X C x (4)

S.t. X Xfn 1 , all n (5)
f

Xfn C {0,1, all f,n (6)

where the diagonal elements of C are 0 and all other elements are positive.

The continuous relaxation of (4) - (6) is obtained by replacing (6) with

0 < Xfn 1 1, all f,n. (7)

The model (4), (5), (7) is a nonconvex quadratic program and a local

optimum can be efficiently obtained by application of the convex simplex

algorithm as described in Zangwill [6). Suppose we begin with a feasible

integer solution ... , . We assume that all nonbasic variables

have a value of zero. Let ..., 9. denote the subscript such that
~l' N

x .. n = 1. Then a nonbasic variable xfn with a value of zero,1 n

prices favorably if [Vg(x)] (ei - 2j) < 0 where i = (f - 1) N + n and

j - (f - 1) N + k. The line search for this problem requires that wen

solve the problem

min g(x + (ei - ej)A). (8)

But dg(; + (ei - e)A)

dA

= (ej - e) Vg (- + ei - !J)

(e - (C + C') (- + e-

8

S(Vg(x)] (e i - j) + (e i - (C + C-) (e i - eJ).

Since Xfn priced favorably, then [Vg()]' (ei - ej) < 0.

Also, (e, - eJ)- (C + C') (ei- ej)

20 (C + CO) 21+e (C +C') - !'~ (C +C') e (C +C')

But, the diagonal elements of (C + C') are 0 and all other elements are

nonnegative. Hence, the solution to (8) is A* - 1 and the exact change

to the objective function will be Vg (x) (ei - ej) - ei (C + C') e

- j' (C + C*) t,, a strict decrease. Therefore, in the new solution

Xfn is set to 1 and xZ n is set to 0. Since this holds for everyn

iteration of the convex simplex algorithm, integrality is maintained

and a local optimum for (4) - (6) can be obtained by finding a local

optimum for (4), (5), (7).

Let ; be any initial assignment for the frequency assignment

problem. Using this initial assignment, the algorithm may be stated

as follows:

For f - 1, .. , F.

For n - 1, ... , N.

Ln n k where xkn -1.

i : = (f -) N + n.

j :=(f-l) N+k.n

p : = [Vg(;)]' (ei - ej).

If p <0

then

xI : 0
n

Xf : -

Repeat as long as p < 0 for some f and some n.

9

IV. COMPUTATIONAL EXPERIENCE

We implemented the frequency assignment algorithm in a FORTRAN

code. All data, including the matrices Qf, Rf, and Sf, are stored in

high speed core. Special subroutines were written to evaluate both

g(.) and Vg(.) at a point. The code begins with F different starting

solutions and stops when a local optimum is found. The initial assign-

ment for run r e {1, ..., F) is to assign frequency {[(n + r - 2) modulo F]

+ 1) to node n. The best solution obtained from all F runs is the

output.

Five test problems were generated from the real-world 43 node network

illustrated in Figure 1. The lines connecting nodes are the designated

key links. The problems all have the same topology but differ in the

selection of the critical values and the weighting constants. A random

assignment was generated and the matrices were modified so that this

assignment produced a cost of zero. Hence, the optimal objective value

for each problem is zero.

Our computational experience is reported in Table 1. All runs

were made on a CDC Cyber-875 using the FTN5 compiler with OPT - 2.

The "Initial Ob Value" row is the average objective value for the F

initial solutions. Note that all five problems were run in less than

1 minute of CPU time and the "Final Obj Values" were quite close to the

optimum as compared to the initial assignments.

Figure 1 Table 1

About Here

10

V. CONCLUSIONS

Our optimization model and computer software provide a practical

approach to assist communication network designers in obtaining near

optimal solutions for the frequency assignment problem. The fact that

the diagonal elements of C in the quadratic objective function x" C x

are zero, allows a very efficient implementation of the convex simplex

method which maintains integrality. Hence, if we begin with an integer

assignment, the convex simplex algorithm follows a sequence of integer

points until a local minimum is obtained. This procedure is so fast

that very large problems can be easily handled by this approach.

11

REFERENCES

1. Collins, M., L. Cooper, R. Helgason, J. Kennington, and L. LeBlanc,

"Solving the Pipe Network Analysis Problem Using Optimization

Techniques", Management Science, 24 (7), 747-760, (1978).

2. Kennington, J. L., and R. V. Helgason, Algorithms for Network

Programming, John Wiley and Sons, New York, New York, (1980).

3. Kennington, J. L., "A Convex Simplex Code For Solving Nonlinear

Network Flow Problems", Technical Report 82-OR-6, Department of

Operations Research, Southern Methodist University, Dallas,

Texas, (1982).

4. Mathur, K., H. Salkin, K. Nishimura, and S. Morito, "The Design

of an Interactive Computer Software System for the Frequency-

Assignment Problem", IEEE Transactions on Electromagnetic Compati-

bility, Vol. EMC-26, No. 4, 207-212, (1984).

5. Morito, S., H. Salkin, and D. Williams, "Two Backtrack Algorithms

for the Radio Frequency Intermodulation Problem", Applied Mathematics

and Optimization, 6, 221-240, (1980).

6. Zangwill, W. I., Nonlinear Programming: A Unifi.ed Approach, Prentice-

Hall, Inc., Englewood Cliffs, New Jersey, (1969).

7. Zoellner, J. A., and C. L. Beall, "A Breakthrough in Spectrum Conserving

Frequency Assignment Technology", IEEE Transactions on Electromagnetic

Compatibility, Vol. EMC-19, No. 3, 313-319, (1977).

12

Table 1. Computational Results With 43 Node Model

Problem
Row
Description 1 2 3 4 5

odfB 10 10 12 10 10
8dB 25 25 25 25 30
F (channels) 10 12 14 14 14

Binary Variables 430 516 602 602 602
Iterations 525 341 497 540 526
Solution Time (secs) 5 7 10 11 11

Initial Obj Value 3153 1561 1875 1671 1670
Final Obj Value 164 103 79 5 4

Jammed Key Links 8 4 3 0 0

- -. -

.83-3 * *

LLI

'AS

ph -

pVh

00
-H

I

