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3 ES INTRODUCTION
W\ e
: g 'I{La.rge Space Structure (LSS) research program was originally formulated T .
) | ———181€¢-1982 in response to Mcreasing concern that performance robustness of Air W
% Force LSS (;qm?w systems would be inadequate to meet mission objectives. fn-particu=—" . A
: Q- y,Aarrl%ncertaimies in both system dynamics and disturbance spectra characterizations K X
- (both time varying and stochastic uncertainty) significantly limit the performance :‘.r.;';.
S attainable with fixed gain, fixed architecture controls. Therefore, the use of an adap- tﬁ:..-;::
t tive system, where disturbances and/or plant models are identified prior to or during :".‘_?_'{
‘7 :J; control, gives systems designers more options for minimizing the risk in achieving per- :t"_:f'\
N . formancg objectives.) \ 9o —1‘_3 B ., i\.‘*;-."-:‘:
< < The aim of adaptive ¢ontrol is to implement in realftime and on&ne as many as O
S possible of the design functions now performed offffine by the control engineerffo -.';:
N give the controller “Ghtelligence?>’ To realize this aim, both a theory of stability and 3:’.,5-
. L performance of such inherently nonlinear controls is essential as well as a technology Lﬂ.
2 capable of achieving the implementation. /¢ D7 it M Efo rel K" it :3.-‘
','- . The issues of performance sensitivity, robustness, and achievement of very high :""2-'5
. performance in an LSS system can be effectively addressed using adaptive algorithms. »{‘"-\
" - The need to identify modal frequencies, for example, in high-performance disturbance '“*:«!
< rejection systems has been shown in ACOSS (1981) and VCOSS (1982). The deploy- g
» (\ ment of high-performance optical or RF systems may require on-line identification of “_“;:
> critical modal parameters before full control authority can be exercised. Parameter s
e g sensitivity, manifested by performance degradation or loss of stability (poor robust- "7,';"
- ’ ness) may be effectively reduced by adaptive feedback mechanizations. Reducing the "_.\
“ N effects of on-board disturbance rejection) is particularly important for planned Air E:::,::'-:E:
e T Force missions. For these cases, adaptive control mechanizations are needed to pro- {‘-.-'-\:f:
* % duce the three-to-five orders-of-magnitude reductions in line-of-sight jitter required by iT;‘
3 - the mission. :::\\’
5 ~ Research is essential to identify the performance limitations of adaptive strategies éz&'{:\‘
. for LSS control both from theoretical and hardware mechanization viewpoints. The ;";
L long range goal of this proposed research program is to establish guidelines for select- TS
: E ing the appropriate strategy, to evaluate performance improvements over fixed-gain "‘\C\
19 mechanizations, and to examine the architecture necessary to produce a practical ;.:".':?_3
> - hardware realization. The initial thrust, however, is to continue to build a strong ;{*"
2 e theoretical foundation without losing sight of the practical implementation issues. "_';?_—:?
. N
:: %
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RESEARCH OBJECTIVES

The aims of this research study are to extend and develop adaptive control theory
and its application to LSS in several directions. These include:

(1) Theoretical Development: The initial emphasis has been on slow adapta-

@

(&)

O]

tion, since this covers many LSS situations. Later on we will examine fast
adaptation. The theory developed here will provide for:

(a) estimates of robustness, i.e., stability margins vs. performance bounds;

(b) estimates of regions of attraction and rates of parameter convergence to
these regions;

(c) extension of the present linear finite dimensional adaptive theory to
include nonlinear and infinite dimensional plants and controller struc-
tures; and

(d) extensions to decentralized systems.

Parameter Adaptive Algorithms: Assesses the behavior of different algo-
rithms, including: gradient, recursive least squares, normalized least mean
squares, and nonlinear observer (e.g., Extended Kalman Filter).

Parametric Models: Assess the impact of model choices. In particular we
will examine the effect of explicit and implicit model choices. An explicit
model, for example, is a transfer function whose coefficients are all unk-
nown. In an implicit model model transfer function, the coefficients would
be functions of some other parameters. Implicit models usually arise from
physical or experimental data, whereas explicit models are selected for
analytical convenience.

Adaptive Nonlinear Control: Although our early effort is to study adaptive
linear control, there are many LSS situations where the control is nonlinear,
e.g., large angle maneuvers, slewing.
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2 @ Qoo
:; CURRENT STATUS hes ':::
5 E At the present time we stand at the beginning stages of the theoretical develop- z:;-:'_
o ment in adaptive control. The result of recent efforts are contained in the selected ‘_':::i\,
; .ﬁ papers in the Appendix and the references therein. A summary of earlier efforts is C"::'Z:
- contained in the recently published textbook Stability of Adaptive Systems: Passivity et
2 and Averaging Analysis, MIT Press, 1986. This publication is an outgrowth of :?'.&.
' . . R,
. research supported under this contract and involved a considerable amount of colla- S _,.:.,'\‘
o~ borative effort among several researchers in the field of adaptive control. The text :E:i
- discusses adaptive systems from the viewpoint of stability theory. The emphasis is on R
; :}: methodology and basic concepts, rather than on details of adaptive algorithm. The f?.},:
analysis reveals common properties including causes and mechanisms for instability ::jr?;.:‘
= and the means to counteract them. Conditions for stability are presented under slow :E:;E}_
% ¢ adaptation, where the method of averaging is utilized. In this latter case the stability _h ‘?‘
., result is Jocal, i.e., the initial parametrization and input spectrum is constrained. Based ﬁ"{:
\, on this analysis, a conceptual framework is now available to pursue the issues of slow If:::l:;
adaptive control of LSS. ‘:\'
. To remove the restrictiveness of slow adaptation requires an understanding of the .-;”-J’
transient behavior of adaptive systems. A preliminary investigation is reported in E»f_'\-
J:-‘ Kosut et al. (1986) which is reprinted in the Appendix. The transient behavior of not- ﬁ:,:
~ slow or even rapid adaptation is a significant problem in the adaptive contro! of LSS, '.jE:E ,
» e.g., rapid retargeting. b ‘\‘.
-~ Another approach to adaptive control is to calibrate (or tune) the controller based }. i {
% on a current estimate of the LSS model. This involves not just knowing ore model, ',:;:;
‘- but rather, a model ser. This problem, which we refer to as adaptive calibration, is el
. essentially that of developing a technique of on-line robust control design from an -
; identified model. Although we have worked on this problem for some time it is only “E:-\.;
recently that we have established a theoretical basis for estimating model error from ..}5
-~ system identification [see Kosut (1986), a reprint is in the Appendix]. This research L
' has raised many new questions which need to be considered, e.g., what is the appropri- 2
oS ate robust controller parametrization; how does it relate to model parametrization; how if;::lj;'.
- to iterate on the data if the estimate of model error is too large; what are the heuristics ;:i:j:-
o for experiment design. E:‘,:
- =
% 3]
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COLLABORATIVE RESEARCH EFFORT b0

It should be emphasized, and acknowledged, that a great deal of collaborative 2 S
effort has been, and is being, expended by several researchers in the field of adaptive
control. The text referred to before is in part due to the two visits by Dr. Kosut to the * Eﬁf e
Department of System Engineering at the Australian National University. Support for =k
these visits has come from this contract, a travel grant from the NSF International Pro- ﬁ >
gram (INT-85-13400), and a Visiting Fellow Award from the Australian National
University. B oA
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Based on our recent results as reported here, we envision near-term activity in
several directions, including:
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(a) transient analysis of adaptive control; e
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(b) analysis of adaptive calibration;
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(c) decentralized control structures; J‘
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(d) effect of nonlinear and infinite dimensional phenomena;
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(e) effect of different algorithms and parametrizations. ‘:
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Issues in Control Design for Large Space Structures | %‘“, TS
gy
S ‘ E*f.;..;
" Robert L. Kosut and Michael G. Lyons ;g?.{l';
Integrated Systems Inc ’ ;t;l-ti'
! 101, University Avenue : i b
Palo Alto, Ca. 94301 NN
SRR
N g ¢,
. . '\'\'\
o Abstract ' k*‘: A
’ C oy
:T The development of a design methodology for the control of Large Space Structures , Q, s
-~ (LSS) involves many different issues. In this paper we present a selective discussion of the -'3-‘:'.7'_:.{",
. theoretical and practical issues that seem most relevant. The discussions cover various types f.ﬁ'_',‘
L of control design procedures, including both robust (non-adaptive) as well as adaptive, with ,j\:
i - an emphasis on their practical use. N A
. b _
: ~ . -: J.'.'-...
N 1. LSS Control Problem Setting O
: s
) . . - Ot "-.(
, é\. 1.1 Control Design Objectives j_.‘_f::;
‘ »' ‘.v-..
i Problems associated with vibration control and accurate pointing of LSS systems typically '{“ "‘
; , involve a combination of the following control-performance objectives. .‘-:..'f_',"’-_
’.n' _:- A .':'.
.): p 1. modal damping augmentation to enhance transient settling or improve quasi-static RIAGRK
. . . . - > ™ 4
2 vibration propagation behavior, AR
i 2. stabilization of the attitude control system, ’EJ.»':_T,"..'
Y ’ 3. eigenvector modification to reject narrow band steady-state disturbances, and IASERAN
. S
X :;.' ; 4. maneuver load management to minimize structural loads or modal excitation (transient .-.‘_::J:
y or steady-state). ":‘:'\3-‘,:
“' SR
! ._, ’ 1.2 Modeling §g -
) Lrare
; The basis for selecting a control strategy must include an adequate description of the rel- AN
/ . . . 4 . L
o evant structural dynamics together with a description of how system performance is to be NN
' v, DA
;’ b ‘ measured. Initially, continuum models were suggested as the basis for proper system design N
" ' since discretization of the model could be postponed or eliminated. Ur.fortunately, practical 3RO
‘o spacecraft configurations do not present simple boundary conditions or simple shapes, hence T
e partial differential equation (p.d.e.) representations are nearly impossible to write. However B
X such continuum models have provided useful insight into appropriate discrete representa- R
i: .;; tions. Finite element models can provide adequate fidelity, at least over the frequency range ‘..r’r
i needed for the control design model, and are supported with sophisticated software tools _L‘;z
! easily adapted to the needs of control design [1]. o
b
[} ta, KR
1.3 Two-Level Control Architecture N
. ' The natural structural properties of LSS systems compel the use of a two-level control system f::: X
- architecture as shown in Figure 1. The two levels are a colocated rate-damping control system e
. and a noncolated high performance control system. The colocated system consists typically ’ N
: R of rate damping devices, either active or passive, and requires a coarse knowledge of system LA
Y dynamics. These are inherently robust but yield low performance. They essentially provide e
X a wide-band, Low-Authority Control (LAC) and are often referred to 2s the LAC-system. )
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Figure 1: Two Level Control Architecture for LSS Systems.

The high performance control is non-colocated and requires accurate knowledge of critical
modes, and hence, is very sensitive to disturbance and structural parameter variations. This
controller system is essentially a narrow-band, High-Authority Control (HAC), and is referred
to as the HAC-system. Typically, HAC provides high damping and mode shape adjustment
in selected modes to meet performance requirements.

LAC synthesis principally involves passivity methods and rate feedback mechanizations,
usually with colocated actuators and sensors (2].

HAC synthesis, in addressing performance goals associated with dynamic wavefront and
line-of-sight error suppression, requires high modal damping and mode shape changes. Hence,
HAC is dependent on accurate narrow-band models. For such requirement, it is essential
that control design techniques manage both dependence on model fidelity and system gain in
regions where model fidelity is poor. This has generally been accomplished using fixed-gain
robust control theory, [4). With this architecture it is likely that only the HAC would be
tuned by an adaptive system since the LAC is inherently robust.

1.4 Adaptive Techniques

In general, uncertaintites in both disturbance spectra and system dynamical characteristics
limit the performance obtainable with fixed gain, fixed order control, e.g. HAC system.
The use of an adaptive control mechanization where disturbance and/or plant dynamics are
identified prior to or during control, gives system designers more options for minimizing the
risk in achieving performance benchmarks.

In the case of LSS systems, the performance levels are extremely high. Hence it is nec-
essary that disturbance and plant models are accurately known. Since model data obtained
from ground testing is unlikely to sufficiently match the actual on-orbit system, it follows
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1. r'_;"-i:
3 i
: 3
. ALY
1. that on-line procedures are needed for identification and control. }}:ﬁ'_:
p The generic properties of closed-loop system performance vs. structural parameter vari- Gh!
3 ations are depicted in Figure 2. LA
2 b, o
M - e . "
4 2. Control Design for HAC/LAC Architecture o
s
In this section we wil discuss the steps involved in control design for the HAC/LAC ar- :
b chitecture. Although the architecture is specialized, the control design methodology is not
. and can be quite general. We will discuss three methodologies for design: (1) an LQG
2 e based methodology whose genesis is the ACOSS/VCOSS programs, and (2) a more recent
RS approach involving what is known as “Q-parametrization” and Ho.-optimization”. These
' l latter methods are frequency domain oriented rather than state-space oriented like the LQG
Ry approach. (3) We will also discuss an adaptive control strategy which can be utilized for ’ paves
= online self-tuning. We refer to this approach as “adaptive calibration”. N,
. R
Y . . :'::';-:
& 2.1 Limitations of Design RN ¢
) A
; ' Independent of the design method, the defining characteristic of the vibration control prob-
2 lem is that there are an infinite number (theoretically) of elastic modes, with low natural hREAR
;o damping, and the controller bandwidth extends over a significant number of these modes :}:::‘;.;
. ] (Figure 3). The low frequency modes interact not only with the attitude controller but ::.:E-.
: e contribute directly to the deformation geometry of the structure which itself may require NN
accurate control. Proper control synthesis requires that performance criteria be precisely -_1,{..» .
I formulated or the control problem i« ill-posed. o]
e The control design approach must properly handle the poorly known higher frequency :::‘_:.;\_
-,': < modes by not destabilizing them while controlling the low frequency modes. Indeed, no ey
b matter where the controller roll-off frequency is situated, the infinite nature of the modal AN
- o,
, o 10 -
. ) .\:. ‘:.
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N spectrum implies that there will be modes within and beyond the roll-off region. Further.
> more, destabilization is likely and almost certain to occur in the roll-off region, a situation
.. which can only worsen for closely packed modes and low natural damping. This phenomenon
s sometimes referred to as “spillover” is one of the most crucial problems faced by the contro)
designer. In more general terms, spillover can be viewed as an aspect of the problem of
robust control design; this will be discussed more in a later section.
S 2.2 Modeling of Flexible Spacecraft

A central issue in the active control of space structures is the development of “correct”
b mathematical models for the open and closed loop dynamical plants. Programs such as
% NASTRAN and SPAR are the primary current tools for generating dynamical models of
y conceptual spacecraft whose structure cannot be idealized by simple models of beams, plates,
- and beams with lumped masses.
r Finite element structural programs generally provide the control designers with a set
3 of modal frequencies and a set of mode shapes (eigenvectors) corresponding to appropriate
boundary values (e.g. free-free modes). These eigenvectors are given in discretized form,
; i.e. a set of modal displacements in the z, y and z directions at each nodal station. In
' some cases, modal rotations are also required. In addition, coordinates and a “map” of the
' structure’s nodes must be provided to allow the reconstruction of physical displacements in
terms of their modal expansions.

The important point here is that, for any nontrivial flexible satellite configuration, the

5 volume of information is so large that the data handling must remain entirely within the
- computer and its mass-storage facilities. Development of this database, in a form usable
Ll

by control synthesis software, is a fundamental necessity for the synthesis and evaluation of

s complex control which require modal truncation, actuator/sensor location and type changes, J o
. and evaluation of system performance for parameter and system order changes. Preparation - }j‘::,.
a of a structure for controls is a major part of the overall effort required to develop structural - '2.‘\-_.:;.
control systems. v k"\"'
4 et
. 2.3 Nonlinear Models i .
' : oy - . . . fo T
’ For single-body monolithic structures, the fine-pointing attitude dynamics are subsumed in ;:"k.;
the rotational rigid body modes included in the modal matrix. When only “small” motions "tg
% of a space structure are being considered, the conventional linear structural dynamics anal- Y

4
Ak

yses (NASTRAN and SPAR) are adequate, and the rigid-body modes are formally handlgd
. together with the elastic modes, even though the actuators necessary to control them will
5 be different, in general, from those used to control elastic vibrations. When larger attitude
. angles need to be considered, if the angular rates remain small, the linear equations are
. still applicable provided that the rigid-body modes are now given in terms of three attitude
: angles which then constitute the first three modal coordinates. The displacements are then
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interpreted as the linear deformations of the structure with respect to the rotated frame. SAOAN
> This procedure removes the kinematic nonlinearities resulting from the linear stretching of t:: .
X ‘ the structure under the classical rigid-body modes. However, for large angular rates, non- t:::.‘
< linear dynamic effects have to be modeled, even though structural deformations can still be e
B represented by linear equations. - .
e ASANS
1 ’. .-\X\)
S

: 2.4 Two-Level Control Design: The HAC/LAC Methodology :

The two-level approach consists of a wide-band, low-authority control (LAC) and a narrow-

h ¢

')

Ve,
AAA

band, high-authority control (HAC). HAC provides high damping or mode-shape adjustment ot <
.- in a selected number of modes to meet performance requirements. LAC, on the other hand, :';:._?
y fj' introduces low damping in a wide range of modes for maximum robustness. Figure 4 shows ,::::g
the control design procedure with integrated LAC and HAC designs. 'x_'-. 3
N LAC is usually implemented with colocated sensors and actuators. However, the theory, g:‘,f;
Il based on the work of Aubrun, is applicable to multiple actuators/sensors with cross-feedback }.QS
i and possible filters {2]. ‘%’:_}
o HAC uses a collection of sensors and actuators not necessarily colocated. Selecting the N
_.-‘,':.: increase in damping ratio is realized by any number of methods including LQG with fre- ::-‘\'f.
" quency shaping, Q-parametrization, or Hos-optimization. These methods provide roll-off I
; . over desired frequency regions. HAC may destabilize modes not used in the design. LAC is, R
e e 4
a 12 VBE
TR O S S I 0 O T U T T PP X . RO
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Figure 5: Need to Integrate HAC and LAC,

therefore, necessary to “clean up” problems created by HAC.

The need to integrate HAC with LAC is shown in Figure 5. HAC is based on models valid
over a limited frequency region. It produces large increases in damping ratio and disturbance
rejection in the frequency range of interest. The effect of the HAC controller on modes
not used in the control design and outside the controller bandwidth may be stabilizing or
destabilizing. LAC is designed to provide protection such that adequate damping is provided
in the mode most adversely perturbed by HAC. With reference to Figure 5, the LAC moves
the entire uncertainty region above the zero level damping ratio.

In the next few sections, a more in-depth discussion of the blocks in Figure 4 will be
presented, in particular, actuator/sensor location, model and controller reduction methods,
and HAC/LAC synthesis. These methodologies rely on certain properties of feedback con-
trol: this raises the issue of robust control design which is fundamental to the whole design
philosophy of feedback, especially for LSS, and this will be discussed first.

2.5 Robust Control Design

This section will describe how to evaluate the robustness of a control design. The evaluation
is independent of the methodology used to achieve a particular design. To illustrate the tech-
nique we will consider the robust control problem of vibration suppression with unmodeled
high frequency dynamics. Figure 6 shows the control system where P(s) is the plant transfer
function matrix from actuator inputs to LOS sensor measurements, and where C(s) is the
controller transfer function matrix. Neglecting the rigid body modes in P(s) and assuming
infinite bandwidth sensors and actuators,

P(s) = 3 Guls)
k=1

where i

82 + 26 w8 + wi

Suppose that n of the modes are known. Let P,,(s) denote the known part of P(s).

Gi(s) = M,.
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For example, Pn(s) can be obtained from P(s) by modal truncation, i.e., the first n-
modes of P(s) are retained. One can ask the question: is this the best choice for a given
model order n? In general, it depends on what is meant by “best”. For closed loop control,
it is usually better to retain those n-modes which most affect the closed-loop performance.
How to select these modes will be discussed in the section on model reduction.

Assuming the modes have been selected, define model error as

6(s) = P(s) ~ Pa(s) = D_ Gul(s).
keNn
Observe that 8(s) is stable because both P(s) and P,(s) are stable. Hence, it can be shown
that the closed loop system is stable if

7 {6(jw)] < bim(jw) = 1/7[Qn(jw)]

where Qn(s) is given by Qn(s) = C(s)[I + Pa(s)C(s)]! and 7(-) denotes the maximum
singular value of the matrix argument. The quantity §,m(w) is referred to as the “stability
margin”, hence, the subsecripts “sm”. (See [3,4].)

The stability robustness test depends on the location of uncertainty. Additive perturba-
tions such as those just discussed result in the test as shown. The table in Figure 7 shows
a variety of stability margins corresponding to generic forms of model error. In Figure 7,
P = plant, C = control, M nominal model, and § = model error. The stability margin is
expressed as a function of C and M which are known quantities. Examples of some model
error testts are shown in Figure 8 for the CSDL #2 VCOSS model.

2.6 Performance Robustness
The stability robustness tests can be extended to evaluate performance robustness to model
error. The evaluation is determined by how performance is measured. Consider the closed
loop system

y(t) = H(s)d(¢)

where H(s) is the closed loop transfer function. Although d(t) is not precisely known, it
can be considered as the output of a weighting filter W (s) driven by “noise” w(t) so that
d(t) = W(s)w(t).

Typical performance bounds depend directly on the frequency dependent quantity
[H(jw)W (jw)]. A natural frequency domain performance criterion is then

g[H(jw)W (jw)] < p(w)

where p(w) is selected on the basis of power, energy, and magnitude specifications on the
output signals. In terms of model error, performance specification is satisfied if

o(8(jw)] < bpm(w)
Where §,,,(w) is the performance margin given by

Spm(w) = [1 = pn(w)/p(w)]bsm(w)
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and p,(w) is the performance of the nominal closed loop system H,(s) with no mode! error. B
Then, Rj
pn(w) = T[Ha(jw)W (jw)] ﬂ '.:.i
which must always be smaller than p(w) in order for §pm(w) to be meaningful. Note that 7 E::;.
Spm(w) > 8,m(w) as would be expected since performance includes stability. As before, the woH
location of uncertainty modifies the calculation of §pm(w). g~
RCS
N
2.7 Usefulness of Stability/Performance Robustness Tests n
O
The stability /performance robustness tests are indispensible in obtaining a realistic pre- E: ]
liminary design. They are used in a number of places in the design cycle to establish the o
HAC/LAC gains, effect of actuator/sensor dynamics, and the criteria for model and con- N n-ad
troller reduction, which will be discussed in the next section. The tests are also invaluable :j :ﬁ:
in establishing criteria for online system identification and control, which will be discussed :_'.:; A
later on in this section. o]
'i* -:\‘.
nd e
2.8 Model Reduction —
- T
In general, the requirements for model reduction for active control of large space structures "' .__;:: ‘
must include the following: "o:-;.:;'_
1. The reduced model should be suitable for control design and synthesis. It should &n,‘:;-;
incorporate all features critical for the selection of a feedback structure and control -t
gains. ‘b.:-'_.'_-
El N
2. The reduced model should accurately incorporate actuator effectiveness, sensor mea- :Pﬁ.
surements and disturbance distribution [1]. i t::.“::
3. The dynamical characteristics of interest in the structure should be represented in the 2 E!.'
reduced model. -
NS
A basic methodology for model reduction which has been used successfully in ACOSS/VCOSS N oy
and a number of other programs such as internal balancing, is now described. Other ap- ~ o
proaches also exist which will be discussed in the sequel. N 'l'\
hyo
- 2.9 Internal Balancing Sl
- 2
j To determine the most important modes for control design, many criteria must be considered ot *}ﬁ
\; including controllability, disturbability, observability in performance, and observability in Es: N -:"'
4 the measurements. Any mode which is highly controllable, observable, and disturbable N
must clearly be included in the design model: however highly controllable-but-uncbservable -y
modes, for example, are difficult to judge. Moore [5] has developed an “internal balancing” I NNAN
approach whereby asymptotically stable linear models are transformed to an essentially e :.\{::-
unique coordinate representation for which controllability and observability rankings are K '}'{.;'\'.
identical. The definition of internally balanced coordinates follows: fe¥a )
- 5
Definition: An asymptotically stable model . )
, NN
t = Az + Bu s .;\.;\.,
y =Cz 0N
u':‘ l-,-'j {
is internally balanced over [0, 00| iff P
IR 4
'n..:-"
/m eABBT A dy = /oo AT CTCeAdt = Z 2 R :‘_}::'.
0 0 A
N
where R eh
2’=diag[afag...a,’,] ‘27, 03203. !
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Figure 9: Open Loop Modal Analysis. NN
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:’,',:’_‘- Notice that the balanced representation is such that the controllability Gramian and ::_’ "Q
’qf; observability Gramian are equal and diagonal. The 0;’s are termed “second-order modes.” : ::-;;r
PR In general, the required transformation “scrambles” the original coordinate system such that S
‘E the physical meaning of the states is lost. :5- )
‘. However, for lightly damped structural models with decoupled dynamics, the internally -
:f » balanced coordinate representation is approximately equal to a scaled representation of the e
X, model states. Thus it is possible to write approximate formulae for the states in terms of ALY
: the original model. Three modal rankings are considered: :*t _
. o disturbance inputs to LOS ,‘
- e actuator inputs to LOS e
$ ® actuator inputs to sensor outputs . ;\1:\ \
g )
- These “second-order modes” rankings give important evaluations about which modes to 2
N M

retain and validity of a actuator/sensor placement. These rankings are shown in Figure 9 i
along with LOS modal cost [6] computed using the colored noise disturbance.

Here the absolute values of the modal costs (for the VCOSS 1 model) are used. The
RMS second-order modes and modal costs are plotted versus mode number in Figure 9.
Immediately evident is the clustering of these modal phenomena. The disturbance effect as
seen through the line-of-sight is constrained to clusters of modes as is the ability to measure
and control the model. The coincidence of the controllable clusters and disturbable clusters
indicates a favorable actuator/sensor configuration for the problem.

s

P N,

ey

2.10 Frequency Weighted Balanced Realizations

Balanced realization model reduction can be extended to finding a reduced model P,(s) of
a high order model P(s) such that

agp?{Wo(J'w)[P(J'w) - Pa(jw)|W,(jw)} <1

A

where W,(s) and W, (s) are output and input frequency dependent weighting matrices. These
can be chosen to reflect closed-loop requirements on model error, vis a vis, frequency domain
stability and performance margins. For example, stability of the closed loop system with
C(s) designed from P,(s) is guaranteed if

Wo(s) =1
Wi(s) = Cn(s)|I + Pa(s)Ca(s))!.
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The problem is that W;(s) is dependent on P,(s) which is unknown. The let out is that
its shape is partially determined by the performance specifications, thus, we can make an
initial guess. This technique is referred to as “advanced loop shaping.” This involves an
iterative problem which is solvable via successive approximation.

2.11 Compensator Order-Reduction

An alternative to plant order reduction is to design a high order compensator and then reduce
the compensator order. Let C(s) denote a high order compensator of order N designed to
control P(s) of order N or larger. Let Ca(s) denote a reduced version of C(s) of order
n < N. Motivated by the stability robustness theory, view C(s) — C,(s) as a perturbation.
Hence, the closed loop system with P(s) and C,(s) is stable if

sup7 {W (jw)[C(jw) - Ca(iw)]} < 1

where W (s) = (I + P(s)C(s))~1P(s).

The weight W (s) is stable because the high order control C(s) stabilizes the closed loop
system. In this case W(s) is known and we can apply internal balancing to find C,(s). The
disadvantage to this method is that it is necessary to find a high-order compensator. The
advantage is that once it is found, internal balancing applies immediately since the weights
are known. On the other hand, direct plant order reduction does not involve control design
for the high order plant, but does involve an iterative process since the weights are functions
of the (unknown) reduced model.

2.12 Low-Authority Coﬁtrol Design

LAC systems, when applied to structures, are vibration control systems consisting of dis-
tributed sensors and actuators with limited damping authority. The control system is allowed
to modify only moderately the natural modes and frequencies of the structure. This basic
assumption, combined with Jacobi’s root perturbation formula, leads to a fundamental LAC
formula for predicting algebraically the root shifts produced by introducing a LAC structural
control system. Specifically, for an undamped, open-loop structure, the predicted root shift
(dAn)p is given by

() % 3 3 Carbanten (1)

where the coefficient matrix C,, is a matrix of (damping) gains, and ¢an, #n denote respec-
tively the values of the nth mode shape at actuator station a and sensor station r.

Equation (1) may also be used to compute the unknown gains C,, if the d\, are con-
sidered to be desired root shifts or, equivalently, desired modal dampings. While an exact
“inversion” of equation (1) does not generally exist, weighted least-squares type solutions
can be devised to determine the actuator control gains C,, necessary to produce the required
modal damping ratios. This determination of the gains is the synthesis of LAC systems.

For structures which already have some damping or control systems in which sensor,
actuator, or filter dynamics can either be ignored or are already embedded in the plant
dynamics, the root perturbation techniques and cost function minimization methods above
can similarly be used to synthesize low-authority controls.

2.13 Robustness of LAC Systems

When sensors and actuators are colocated (i.e. @ = r), are complementary, and only rate
feedback is used, formula (1) reduces to

(RGN I IO N N TN
P:?S.'c.‘f?l)t).l.
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Figure 10: LQG Control With Frequency-Shaping Filters .

which shows that the root shifts are always towards the left of the j-axis if all the gains
are negative. This robustness result is obviously based on the assumption that both sensors
and actuators have infinite bandwidth, and also that the structure was initially undamped.
Several departures from this idealization occur in the actual practical implementation of
the LAC systems. The most severe of these results from the finiteness of the actuators’
bandwidths. More precisely, the second-order roll-off introduced by the actuator dynamics
will always destabilize an undamped structure. However, when some natural damping is
present in the structure, or when a passive damper is mounted in parallel with the actuator,
additional active damping can be obtained without destabilizing the structure.

2.14 High-Authority Control Design

The HAC control design procedure can be based on any number of multivariable design
methods, e.g. LQG, Q-parametrization, Ho.-optimization, etc. Increased penalties in the
LQG cost functional are placed at those frequencies where less response is desired. The
concept of frequency-shaped cost functionals was introduced prior to ACOSS [7].

The frequency shaping methods are useful in several areas of large space structures
control. Three principal applications are important: (1) robustness (spillover avoidance),
(2) disturbance rejection, and (3) state estimation.

{”‘...“’.- * 3
'-"'"‘v L

o
e

»

P SRR

]

-..‘.‘.."
X NN
frE
INARRRNER

AR
ARy
s.‘_.‘c’

2.15 Management of Spillover

">
i I‘f“
)

Spillover in closed loop control of space structures is managed by injecting minimum control
power at the natural frequencies of the unmodeled modes. Procedures for controlling spillover
at high frequencies are usually discussed, although similar techniques are applicable for other
regimes.

The high frequency spillover may be controlled by modifying the state or the control
weighting. Conversion to the frequency domain gives the following performance index:

R(jw) = ( (? ;’g“’g) ) R

The problem of robustness (spillover management) is solved by making Q and R functions
of frequency. Figure 10 depicts the modification to the nominal LQG controller. Observe that
frequency shaping adds filters whose inputs are the innovation outputs of the state-estimator
in the LQG controller.
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3.16 Summary

The application of frequency-shaping methods to large space structures leads to a linear con-
troller with memory. However, additional states are needed to r:present frequency-dependent
weights, hence, there is an increase in the controller order. The software needed for these
controller designs is similar to that for standard LQG problems.
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Figure 11: The Unity-Feedback Structure.

3. Controller Design Using @-Parametrization and H, Op-
timization

During the last decade, mathematical theories of servo design have been based mainly on
quadratic minimization of the Wiener-Hopf-Kalman type, usually applied to state-space
models, e.g. LQG controls. However, despite the academic success of these methods, clas-
sical frequency response techniques relying on “lead-lag compensators” to reduce sensitivity
have continued to dominate industrial servo design. One reason is that quadratic design
tends to have poor sensitivity. On the other hand, the frequency domain description has
proven to be more suitable to characterize uncertainties which arise in the plant approxima-
tion/identification, and frequency domain technique usually results in more robust design,
e.g. frequency-shaped LQG can be viewed as an indirect frequency-domain design approach.

Two direct multivariable frequency domain design techniques have become popular in
recent years: the Q-parametrization technique and the H,,-optimal sensitivity.

3.1 Q@-Parametrization Design

Consider the linear unity-feedback systems shown in Figure 11 where P(s) is the given linear
time-invariant plant. C(s) is the linear compensator, u) is the reference input, uz, and do are
respectively the plant-input disturbance and plant-output disturbance, and y; is the plant
output.

The closed loop system input-output transfer function is given by

-Cc(I+ PC)~'P -C(I+ PC)!
P(I+cP)! (1+pPC)!

c(I + PC)-1

Hy= | pe(r+ Pcy-1

(For simplicity, we drop the argument s in P(s),C(s) etc. in this section.)
By introducing the parameter (transfer function)

uy
Hvu =1 u2 | — [ u ]
d, vz

Q=cCc(l+PC)},

Hyy can be rewritten as

Q -QP - ]
PQ (I-PQ)P I-PQ

Note that the closed loop input-output transfer function, for the given plant P, is com-
pletely specified by the parameter Q in a very simple manner: it involves only sums and
products of P and Q.

In a typical control system design problem, the two most important closed loop transfer
functions are H,,,, and M,,4,: H,,u, is the transfer function from reference input u; to
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output y; and Hy,q, is the transfer function from plant-output disturbance d, to output y;.
They specify respectively the servo-performance and regulator performance of the feedback
system S. The two transfer functions are given by

val = PQ
Hy,a, =1-PQ

and

Therefore the control design problem reduces to choosing the parameter Q so that the closed
loop system S is stable and that H,,, and H,,q, are “satisfactory”. After the parameter Q
is chosen, the corresponding compensator C can be obtained by the formula

C=Q(I-PQ)™!

Hence, there is a one-to-one correspondence between C and Q. Consequently, for each
parameter Q chosen, there is a unique compensator C which achieves the specified Q.

The selection of the parameter Q in the design process raises several questions: What are
the conditions on Q so that the resulting compensator C is realizable (e.g. proper)? What
is the class of all Q’s which result in a stable feedback system? How is an “optimal” Q chosen?

Realizability: If the plant P is realizable, then the compensator C is realizable if and only
if the parameter Q is realizable. Note that a physical plant is always realizable.

Global Parametrization: If the open loop plant P is stable, then the closed loop system
S is stable if and only if Q is stable, since sums and products of stable transfer function
matrices are stable. Consequently, the class of all stabilizing compensators is given by

{Q(I - PQ)™!| Q isstable}

and the class of all achievable stable input-output transfer matrix H,,,, and the class of all
achievable stable disturbance-to-output transfer matrix Hy,q, are given respectively by

{PQ| Q isstable} and
{I - PQ| Q isstable.}

These sets give global parametrization of all stabilizing compensators, and all achievable
I/O characteristics in terms of a stable proper transfer matrix Q. In other words, the class
of all “feasible” designs are parametrized by Q.

If the open loop plant P is not stable, additional constraints have to be added to the
choice of Q, in addition to stability and realizability of Q. For example, Q@ must contain
right half plane zeros to cancel the unstable poles of P. Currently, there are three approaches
to obtain global parametrization of a given unstable plant: (i) Factorization representation
theory [8]; (ii) Direct approach [9]; (iii) Two-step compensation [9].

Optimality: The Q-parametrization alone does not quantatively address the issue of op-
timal design. The designer selects Q@ from the class of “feasible” designs, on the basis of
the desired input-output response, a priori knowledge of external disturbances, bandwidth,
dynamic range and uncertainty of the plant, etc.

Optimal design based on the Q-parametrization and fractional representation framework
has become very popular in the research community. The Ho,-optimal sensitivity design is
among the results available.

3.2 H,-Optimal Sensitivity Design

The Hq-optimal sensitivity design is an extension of the Q-parametrization technique to
include a quantitative performance measure of the closed loop system and achievable op-
timality based on the performance measure. Roughly speaking, the Ha design problem is
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i R,
Y s
')-. the following: Given an open loop plant P(s) and a low pass weighting function W (s), find ot
L the compensator C(s) so that the Ho,-norm of the weighted sensitivity (I + PC)™'W is Nt
5 minimized subject to the stability of the closed loop system. *. 3
\ Using the Q-parametrization formulation, the problem is equivalent to the following: . ,Q;—,f:
e Find a @ in Hy, such that the closed loop system is stable and that (I — PQ)W is mini- N :::t
;: mized. Since the weighted sensitivity function is affine in @, the equivalent problem is easier Ry
ey to solve than the original problem. Ll ':f.‘
5o .
. Solution to the H,,-Optimal Sensitivity Problem: Based on the fractional represen-
i‘ tation (coprime factorization) formulation, several solutions have been proposed and algo- SO
y rithms given. However, all the proposed algorithms are conceptual in nature, suitable only -
. for simple text book example. More effort is needed towards a numerically robust synthesis .
\ procedure. :
5 g "
L
Ny
.4 -:.
[ ' .
. 4. Adaptive Control Techniques S
:'a Uncertainties in both disturbance spectra and system dynamical characteristics will limit \
:: the performance obtainable with fixed gain, fixed order controls. The use of adaptive type -
: control, where disturbance and/or plant dynamics are identified prior to or during con- '
> trol, gives system designers more options for minimizing the risk in achieving performance '..‘_:
benchmarks. For the case of LSS systems where performance levels are extremely high, it -
~ is absolutely necessary that disturbance and plant models be equally accurate. Since data . S
‘l’-.' from ground tests do not usually represent the flight condition accurately, it follows that an o ".r’
. . . . ! . LA AN
L. on-line procedure for identification and control is necessary. NN
‘: The need to identify modal frequencies, for example, in high performance disturbance - ::'V
> N . . . AN A
rejection systems has been shown in [1]. Th= deployment of high performance optical or RF a B
. systems may require on-line identification of critical modal parameters before full control ' ;:-::‘.
e authority can be exercised. Parameter sensitivity, manifested by performance degradation . ;("\
~ or loss of stability (poor robustness) may be effectively reduced by adaptive feedback mech- AN
o . € LN
’. anizations. Yot
) Most adaptive control algorithms can be described in the form shown in Figure 12. For . . -
3 example, one could select from the folowing catalogs of major areas: DEIRAN
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Model Control Design Adaptation
ARMAX Model Reference Gradient
State Space Self-Tuning Recursive Least Squares
Pole-Placement | Recursive Max Likelihood
Extended Kalman.Filter

The schemes also differ in terms of update rates. Typically the outer control loop is at a fast
rate, whereas the parameters from identification are updated more slowly. Adaptive schemes
are referred to as recursive if the identification rate is a fixed multiple of the controller rate.
If identification is used when necessary for calibration the scheme is referred to as adaptive
calibration.

Although a great deal of research results are available about adaptive control and iden-
tification, unmodeled dynamics and broadband disturbances will significantly upset most
algorithms.

4.1 Adaptive Calibration:

The use of a “slow” adaptive control, which is more practical than recursive adaptive control
in most space applications is described in this section. It is referred to as a method of
adaptive calibration. The term “slow” means that there is sufficient time to run batch
identification before the control system is modified. The methodology provides a guaranteed
level of performance given an “identified” model of the system together with the model
error between the system and the identified model. In fact, the methodology generates
performance versus model error tables (to be stored in the computer) from which the control
design is immediately obtained. Moreover, the order of the control design is determined
strictly on the basis of model error and performance demand.

4.2 Application of Adaptive Calibration:

The basic problem with control based on identified models is that without a measure of
model error it is very easy to destabilize the system - particularly when the goal is high
performance - as in LSS systems. Adaptive calibration is an approach which incorporates a
measure of model error with robust control design in an iterative way so that identification
is performed only where it is needed. A proposed adaptive calibration system is shown in
Figure 13 with test results, using the CSDL #2 model, shown in Figure 14. The adaptive
calibration procedure involves the following steps:

. The model M(s) is a 10-mode model which has been obtained from 1/O data.

. Estimate §(w) = model error versus frequency using FFT. This is the dashed curve in
Figure 15.

. Using the identified model M(s) and the model error §{w), synthesize a robust control
(section 2).

. Calculate §,,, - stability margin. This is the dashed curve in Figure 15. Compare to
model error § both plotted in Figure 16. If acceptable go to Step 6 and implement
controller. Otherwise go to Step 5.

. Modify filter windows, number of parameters (e.g. number of modes), or input spec-
trum and then repeat Step 1 to obtain new ID model. Figure 16 shows result of
identification after one mode is added in the frequency domain region where the test
fails.

. Implement controller.
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Abstract

" . £ hoa
S A summary of methods of averaging analysis is presented for continuous-time adaptive . *l_-‘;.:u
o systems. The averaging results of Riedle and Kokotovic {1} and of Ljung (2| are examined H if}":::
;: . and are shown to be closely related. Both approaches result in a sharp stability-instability o ':'.'
Y boundary which can be tested in the frequency domain and interpreted as a signal dependent - ::.‘;;
positivity condition. L
Y . v OTRTEE
ey ¥ RN
" M 1. Introduction FRRGSR
CRR SRR
’ L For a large class of adaptive systems, as well as for some output error identification schemes, i :-:.:
g a stability analysis in the neighborhood of the desired behavior leads to investigating the S
7. stability of the linearized adaptive system described by an equation of the form, f_.:{'.'.::‘
E: . s
2 8 = —ezH(2'0) (1) ’ \f-'-;i
' i where 0(t)eRP is the adaptation parameter vector, z(t)eRP is the regressor, and ¢ > O is :2:53
, the adaptation gain. The theory developed in [3,4] shows that the stability of adaptive ey
3 ) systems in the neighborhood of the equilibrium trajectories is dependent on the stability of ‘ "::: ‘,::
t: B this system of linear time-varying equations. System (1) for example, can be obtained as -.?:;ﬂ
- a result of linearization of the adaptive system in the neighborhood of a “tuned” system, : :-'tf:
3 i.e., a system where the adaptive parameters are set to a constant value #,¢RP and whose N
. . behavior is deemed acceptable. Hence, in (1), 8(t) is the vector of parameter errors between —
W the parameter estimate at time ¢ and the tuned value 8., z(t) is the regressor vector from the ::::;«
:: L. tuned system (e.g., filtered revisions of measured signals), and the scalar ¢ is the magnitude . ::'_':.j'_:
Y of the adaptation gain which essentially controls the rate of adaptation. The operator H N
Y - depends on the actual system being controlled or identified and also on the tuned parameter ' .:-:::-2
" setting 4.,. K ..,..:\.
: NS It is shown in [3] that if the zero solution of (1) is uniformly asymptotically stable (u.as.), Loead
v then the adaptive system is locally stable, i.e., the adaptive system behavior will remain in a 52t
. neighborhood of the desired behavior provided the initial parameter error 8(0) and the effect 1 f:l'-.‘}
X | . of external disturbances are sufficiently small. Although these results were arrived at using ::-:_\"
. input-output properties, local stability properties can also be obtained from the results on ;~

7, . “total” stability [5). 3
by 2. RN
9 N
i° 1.1 Unmodeled Dynamics and Slow Adaptation :I__Z;j
3 NS

: K2 In the ideal case there are a sufficient number of adaptive parameters (the number p) such -_‘;:j
) — that the tuned parameter setting results in H(s) being strictly positive real (SPR), i.e., o
:(: . H(s) proper and stable, and Re H(jw) > 0,YweR,. Under these conditions, we have the . :i,
NN following known results: (i) the zero solution of (1) is stable, i.e., (t) is bounded but not :-‘_:::
'\-"- necessarily constant; (ii) if, in addition, z(t) is persistently exciting, then the zero solution ::::\j
¥ is u.a.s., thus, 8(t) — O exponentially fast as ¢ — co. The trouble starts when there are an NP
- i
: 28 33 5

: SN




insufficient number of paramecters to obtain /H(s)eSI’R, as is the case in adaptive control
when the plant has unmodeled dynamics.

In this paper we will examine the stability of (1) when € is small, z(t) is persistently
exciting, and H(s) is not necessarily SPR but only stable. We will refer to this case as slow
adaplation.
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1.2 Approaches Based on Averaging (s .‘_.:-_“.:-:4
oot

In a recent paper by Riedle and Kokotovic (1], a classical method of averaging as described ¥ ::f
by Hale [6] was applied to the linearized adaptive system. The result is a sharp stability- o) :.:::.';'
instability boundary determined by a signal dependent positivity condition which asserts wsh
that the zero solution of (1) is u.a.s. if -
. AR

A(Q_[a(w)e(w)’] Re H(jw)) > O (2) A

wefl .. :{.r"

DS O

where Q and {a(w),we} are, respectively, the Fourier exponents and coefficients of u(t). o 2}?{3
Condition (2) can be considered as a signal dependent positivity condition, but unlike the —
SPR condition Re H(jw) is not required to be positive at all frequencies. Thus, this A ::‘t:
result is significantly weaker than the SPR condition required in the proof of stability of bel :':::f.:
adaptive systems, e.g., [7,8]. In order to apply the averaging theory to obtain this result, the ::_-:’:.-:
linearized system has first to be decoupled into slow (parameter) states and fast states. It is ALY,

72>
o
'
.‘

this transformation which is essential to the averaging approach and is a major contribution

in the Riedle-Kokotovic method. :‘.’
Averaging has also been applied to the counter-example of Rohrs et al. [9] by Astrom S ﬁ:-'_:'\-j
{10,11}. In this analysis, by “freezing” the parameters, the parameter and state equations are R P
decoupled thereby obtaining the asymptotic trajectories. Both of these averaging analyses .',:":
assume that the system is periodic or almost periodic, an assumption that can be dispensed B, oadal
with by introducing the notion of a sample average [12]. & ..?_:
In [13], the averaging approach is extended to nonlinear systems by introducing the ._:'_:__
integral manifold which completely separates the parameter and state equations. This latter NI O
approach is valid for the nonlinear adaptive system, and not just the linearized part. Related o) “::f
results can also be found in [14]. i
Averaging methods for adaptive systems have appeared in earlier work, the most notable 3 .. a
of these being the averaging method developed by Ljung (2] for use in discrete-time recursive -~ ",
parameter estimation. The analysis shows that the convergence properties of the estimates -:::-::'.
can be determined from the stability properties of a related set of ordinary differential .2 :
equations; the method usually referred to as the ODE analysis. ::: N
In this paper we summarize the results obtained by Riedle and Kokotovic [1,13] and ;f-eﬁ'-
show (heuristically) how they are related to the local stability analysis in [3,4] and the ODE O
averaging approach of Ljung in [2]. o '_::

A
2. Adaptive Error System N
Although it is unlikely that a truly generic adaptive error system can be formed to capture RO
all the nuances of adaptive systems, the SISO adaptive system shown in Figure 1 is offered ".': K :'::
as a good representation for the purposes of analysis. The system equations are: = :f:::'.-ﬁ
SN
e=e, — H,v 3a o St
z2=2z,~ Hpyv ((3b; & p ‘
v=20 (3¢c) e
0 =elz (3d) R
A
The development of (3) can be found in [15,16] and in [17]. In (3), ¢(t) € R is a measured error i:
signal which drives the parameter update (3d), z(t) ¢ R is the regressor, and 0(t) € R? is R |
the parameter error between the current estimate at t and a tuned parameter setting 0. € R¥. S :':-'
. “I.'

. -.;«.-’.."_~.',:-.:-.::.-;-.::*:;\;-.:\‘;\""."-"-'-'-;'-:',‘-'-.' :: R A N L A T W A T,
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s The selection of 8, is based on complete knowledge of the actual plant and disturbances. The
£ system corresponding to this setting is referred to as the tuned system. The signals e.(t) € R
. and z,(t) € RP are outputs of the tuned system, and are referred to as the tuned error and ooy
-_:'; tuned regressor, respectively. The signal v(t) € R can be regarded as the adaptive control -
< error. N
- The operators H,, and H,, are dependent on 4, and describe how v effects the error and ;:: N
i regressor signals. We assume here that H,, and H,, are linear-time-invariant (LT I) with :?
stable proper transfer functions H.,(s) and H,,(s). This would arise, for example, when the N \\
o plant to be controlled is LTI and the adaptive controller is linear in the adaptive parameters. IS
o~ The stability of H,, and H,, is a consequence of the definition of 8, as the tuned parameter _:{'{
> setting. RN
The operation I' depends on the choice of parameter update algorithm. We will restrict e ‘,;:
: ! attention here to the following representatives: o
v Gradient :EJ-
| (P2)(e) = ex(t)
N7 (4) oy
:R €e>0 '.\'f
N
e
ERT Y

v
i

Recursive Least Squares

- (T2)(t) = P(t)=(t)

@ d p-1 ' oo
- 4P1(1) = =()=(t) (5) SR
A P(0) = P(0)' >0 O
L Y
| s . ¥ N
3. Global Stability and Passivity A -
:::j It is of interest to determine under what conditions the adaptive error system (3,5) produces ’
bounded outputs (#,e,v,z) for all bounded initial parameter errors (o) € RP. This is what :' :
- is meant here by “global” stability. As it turns out, it is possible to prove such a result B
b provided that:
. (i) Heo(s) € SPR with gradient (6)
' I .
h (i) H,(s) - } € SPR with least squares (7
.2 3 (iii) z.,2, € L2, and cither (8)
" i‘: B) e.,éo € Lz n Lm (g)
: 30 >

v _my P '-',",‘}IJ'II P F I N SR - - - . . . - . - - - - - . - ot
i‘s"'-f.‘&"‘.'t. A AR W ST S R S AL LU I8 SO TRV L AT A T RIRT Ry Y A N A AN R N R s s JH T DY
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b) e.,é. € Lo and
z € PE (persistently exciting) (10)

Parameter convergence to a constant in RP or to a well defined subset in RP, requires that
(9) be strengthened to:

c.,éoeLGLw, zcEPE (ll)

The above results can be found in [7,15,16] and in [18]. Although of theoretical significance,
they are not feasible to obtain in practice. In the first place, due to unmodeled dynamics [9),
H.,(s) € SPR is practically impossible to achieve in adaptive feedback and even in some
output error identification. (This is not the case in equation error identification.) Secondly,
when e,,€ Ly, as in (10), it is required that z € PE which cannot be guaranteed in advance
since z is inside the adaptive loop. Case (11) which requires z, € PE - which is feasible to
establish - conflicts with e,,é. € LyN Lo,. The latter implies e.(t) — 0 which can only occur
for z, € PE - and where there are no unmodeled dynamics which we argue is not possible.

With these impossible to satisfy theoretical requirements, it is doubtful that a global sta-
bility theory can be attained which relies on passivity, i.e., condition (6,7). On the practical
side, however, there is substantial evidence of well engineered algorithms that work without
SPR [10]. These do not work for all 8(0) and for all e., z, in Lo, but rather, for restricted
magnitudes and signal spectrums. For example, if H,,(s) is SPR for w < wpy, then it is
expected that the adaptive system will be well behaved provided there is insignificant exci-
tation above wp,y,. The following example illustrates some of this phenomena.

Example: Consider the model reference adaptive control (MRAC) system studied by Rohrs
et al. [9] with plant

2 229
P =
()= 31 Grm)ira
reference model 3
H"f(s) = s+ 3

and adaptive control law
u=-fy+0r

The adaptive parameters are obtained from the gradient algorithm,

~

8, =ye
33 = -re
e =y-H,yr

For this example we have the tuned error given by

e. = H,r
with
Hos) = — 4589., _ 3
83 + 318% + 2595 + 229(1 + 20.;) s+ 3
We also have
Heo(s) = 458

83 + 3182 + 2595 + 229(1 + 26.,)
Observe that H..(s) and H.,(s) are stable provided that

0.1 € [0, 17.03)

Since H,,(s) has a relative degree of three, it follows that H..(s) is not SPR, and so global
stability is not guaranteed.

Figure 2 shows 8,(t) vs. 83(t) for simulations corresponding to two selected inputs:
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Figure 2: Parameter drift to inputs R1 and R2.
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Figure 3: Blow-up of drift to input R1 .

rn(t) =1+sin3t
r2(t) =1+ sin 5t

with initial conditions 8, (0) = 65,8, = 1.15 which satisfy the DC tracking requirement. The
response to ry(t) undergoes a transient and then drifts down a line in R? to an apparent
stable orbit. Figure 2 shows a blow-up near the stable orbit as well as a trajectory which
starts just below it and, drifts upward. The response to rz(t), however, is unstable in the
sense that the parameters continue to drift and eventually 0 (t) will exceed 17.03 and the
system becomes unstable.

Most adaptive control systems show the characteristic behavior illustrated in our exam-
ple. The parameter first exhibit a transient followed by a steady-state drifting. The papers
by Astrom [10,11] contain many examples. In the example here, the drifting appears to
occur along a line in R3. In one case (input 7)) the drift stops and the parameters settle
into a periodic orbit. With an apparently modest change in the input spectrum (r3) the
parameters now drift into the instability region. Therefore, either the orbital center has
drastically changed and is now outside the constant parameter stability set, or else there is
no stable orbit at all anywhere along the R? line of drift.
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} In the forthcoming sections we will establish conditions under which the qualitative
i properties of the drifting phenomena can be predicted under slow adaptation. Our analysis is T A
N local and based on the classical methods of linearization and averaging for nonlinear systems. ":5 ;:: ]
: co:r;\ (
: 2y . . "’f‘ - I‘
4. Local Stability: Small Gain Theory and Averaging ' .-5:'.; )
Another way to view the system (3) under ideal conditions (6)-(11) is to arrange the system in A
the form shown in Fig. 4. Here, the forward path operator is defined by themap N =2 — v -~\"$:',-"
such that "\?v‘,:_'rf}‘:
A
z=2z+2 (12a) Ell:ji
0 = e[ze. — zH,,(2'0)) (128) -
v=2z'0 (12¢) tl;“.f‘ ,
e oaer
BN
with Z obtained from the feedback path, reT :::'._:
of .,-; .
F= —Ho(¢9) (13) 2 2
Observe that N is in effect the linear adaptive system that we mentioned earlier. Clearly z MTB- 3
is the amount by which the regressor z(t) differs from the tuned regressor z,(t). o :’:‘:"’
Now, let T : 2 — £ denote the loop-gain operator defined by (12) and :i: ;{*\'{
- L P
= "qu(¢'0) (14) ;r.c' > ,
S )
Small Gain Theory asserts {19] that if, for some p € [1, 00|, the L,-gain of T is less than one, - S.f_: )
then the system is Lp-stable. Let v,(T") denote the L,-gain of T, i.e., -::r:: ;
PR
2p(T) = inf{k: 3b > 0 s.L.|| T3}, < k||3||, + b,VZ € L,} (15) BTN

when p = 2, it is possible to show that for all z € L,,
llvllz < c|6(0)| (16)
where c is a constant independent of z [16]. Hence,

ITz|l2 = [|Hzwvil2
< 12(H,u)c|0(0)|

Comparing this result with the definition of gain (15), we see that v2(T') = 0. Thus, under
ideal conditions, the loop-gain of the adaptive error system is zero!

Now, suppose that H.(s) is not SPR and e.(t) # 0. One would expect that small
deviations in the S PR'ness of H.,(s) and small non-zero magnitudes of e,(t) could be toler-
ated without trouble. Unfortunately, this is not quite the case. In the first place (16) holds
without persistent excitation. This means that system N (12) is only uniformly stable (in
the sense of Lyapunov). Recall that uniform stability is not robust to typical perturbations.
Uniform asymptotic stability of N (equivalently exponential asymptotic stability, since N

(17)

9. 33

'l 3
- N T I T A I O G T UL I T P RN T LY SR BRI SR S L oY )
AN IR S 3 S NN R N R M I NN R RN NN OO IAY WRRYONISAYS S

At N BRI PP T OGP PIIOPNT NLAST LA LU OCNEERT PSS SR VAT A A R s

LA

“l
.
s




' N - . A - . - LR I R e A e et I R R KRS
S
» b"-'.
é is linear) is robust to a large class of perturbations. Thus, a basic idea behind the use of : M
various forms of linearization theorems in the analysis of adaptive systems, is to insure that &7:
e the system N is u.a.s. (uniformly asymptotically stable) which necessitates that z.(t) be {.i;:.::
e persistently exciting. Since space limitations do not permit us to elaborate on linearization ;.:' w0
theory here, the interested reader is referred to [3,4]. We will, however, see that averaging :': ,_r
imposes a natural linearization. DN
s By restricting the magnitude of §(0) and the magnitude and spectrum of z,(t) and e.(t), i;;_‘ -
A
it is possible to obtain conditions to prove local stability [3,4]. The local stability property .\"t N |
5 hinges on two premises: (i) the error system trajectories are in a (not necessarily small) o W .:
oy neighborhood of the tuned solution, and (ii) the linear time varying system which maps " ’
w — @ as given by \‘ >N
3 b = —(P2.) () Hool2L()80)) + (Tw)(8) (18) g
- AN
- is Loo-stable, i.e., there exists constants k and b s.t.||0]|cc < k||w|loo + b. The choice of I' :E;’Jf's:'
*” comes from (4) or (5) and z.(t) is the tuned regressor. We can regard (18) as a linearization RO
- of the update algorithm. There are several ways to establish the L, stability of (18). OIS
x g
A 4.1 Gradient Algorithm ;;Z:‘;}':;J:
‘.’_\ .'."
. We first consider the case when T represents the gradient algorithm, i.e., (I'z.)(t) = €z.(t) ';'_':_' '::h
t? with € > 0. oty
In (20}, it is shown that if H,,(s)eSPR and z.¢PE, then for all ¢ > 0,w — @ is exponen-
o8 tially stable, and hence, Loo-stable. In (21, if Heo(s) = Heu(5)+5A(5), Heu(s)eSPR, A(s) is
S stable, and z,e¢PE then for sufficiently small € and ||2. |00, w — # is still exponentially stable,
and hence is Ly-stable. This latter method relies on loop-transformations and application
.' of small gain theory.
Another approach is to use averaging. In [1] it is shown that if z,ePE with the Fourier
. series representation
~ z.(t) ~ D afwe)e (19)
k
s and if the eigenvalues of the real matrix
“ B =) a(wi)a(~wi) Heo(—jwi) (20)
X k
all have positive real parts, then for all sufficiently small ¢ > 0,w — @ is exponentially stable,
&: and hence, L.,-stable. Moreover, if any one eigenvalue of B has a negative real part, then
w w — 0 is exponentially unstable. Hence, there exists weLo5.t.]8(t)] — oo ast — oo expo-
nentially fast. It is obvious then when H,,(s) is not SPR, but only approximately so, then
'ﬁ the Riedle-Kokotovic result provides a sharp stability-instability boundary. Note that when
. H.,(s) is SPR and z.ePE we have from {20] that w — # is exp. stable for all ¢ > 0. At the
n present time, averaging theory as applied here, does not hold for all € > 0 even when H,,(s)
:‘ is SPR. On the other hand, the result in [21] remains valid for H,,(s)eSPR(A(s) = o)
B because then ¢ > 0 is bounded above by infinity.
N Example In this example we illustrate what happens when ReA(B) > 0 but € is too large.
e Consider the scalar system
;:: 0= —ez, Hey(2.0)
N

with z,.(t) = sin(.35t) and H..(s) = 1/(s? + 28 + 2). In this case B is a scalar and it is easily
. verified that B > 0. The simulations in Figure 5 with §(0) = 1 show that the zero solution
L is u.a.s. for ¢ = 4 (and for all € < 4), but is completely unstable for ¢ = 8 (and for all ¢ > 8).
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4.2 Recursive Least Squares Algorithm L
o M
In this case we have from (5) that NI NN
RN
M N
(Tz.)(t) = P.(t)z.(2) G
e Y VA
4 P.(t)7! = z.(t)z.(¢)", P.(0) > O. R
When z,¢PE there exists a > 0 such that _ f:.w::
T ,;- ':.J‘\;"
. SRS
P.(t) = P.(o)} + / 2.(r)za(r)dr > at- I. R
o e
Thus, it is convenient to define R(t) = }P.{t)~* fort > 0. Hence R(t)~! =tP.(t) < 11 and b .
we can write (18) and (5) as, ’ Tty
LY
. L et
0 = 1R ' w - 2, H.(2.6)) 2 y::":*
. (21) Ao
R=Yzz - R) RN
AL
When H,,(s) — } is not SPR we can now follow (2] and for t > s and s sufficiently large, A
approximate the right hand side by its average. Letting “overbar” denote average (assuming ;{':-::
it exists) we have: RN
. 15-1,— — % NS f_‘.~_:z
0(t)~ ¢ R (w- (2.H,2.)0) (22) R
_Ii(t) ~ Hz.zl - R) v
.'-n s “ ..’
Integrating from s to s + T',T > 0, gives RGN
y .\'...q:
s+T =1 . o2 r':::-.‘:'
os+T) - 0(@)l/ [ dt/e = BN w - (HoWDB) (23) 7 R
1) — .'r:.
o+T —_ RSN
[R(s+T) - R(s)]// dt/t = 2,2z, - R (24) DOV
[ ‘a F.:;_:.;.
Now change time scales s + T — 7 + Ar,Ar = f,”'r dt/t and letting s — oo gives the NN
differential equations: ) 9 %.f_*{
ba(r) = Ra(r)'[@ - BOA(F) (25) s
, - S
Ra(r) = 2.2}, — Ra(r) (26) " _-\_:..\:_\
with B = z,H,, 2!, given by (20). These equations actually describe the asymptotic behavior W ;_"‘_:
of (18) in just the same way as they do for discrete-time [2]. In order to validate the N0y
approximations in each of the steps leading to (25) and (26), it is necessary to introduce ot -
NN
s R
.“:.}-"4; I :: ;(_ ..":-,.-.n‘-.-: .p:,,.:- .: 4 \ -‘ ,l-;"".:f:.':‘.':'.l:)::.-",,“-::,-,}::.-::‘-",-"(‘-;:_-;:‘(-:'-: o ,..::_.: ,"; .,. FORATA _;_.;__:_,: e
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! various regularity conditions. A complete proof can be found in {2,22]. Here, as warned, we oY
i E offer only heuristics. B
! Observe that in (26) as r — 0o, R4(r) — 2z.2,. Thus, when H,,(s) - % is not SPR and S
RS z,ePE with Fourier representation (19) the asymptotes are stable if YL
‘.. ‘: .. :JC‘.A"‘
: Re A(L) >0 (27) Y
By *l
! q where )-8 -

- L' = z‘z. - : A“
~ ‘ ) - (9 &
R = (Zp alwr)a(-ws)') ™! Ly a(wr)a(wr) Heu (- jws) RS

U
. Ny If Re H(jwg) > p > O at low frequencies, and if |a(wy)| is small at frequencies where : ::.::'.:
i Re H(jwi) < 0, then Re A(L) = p. Thus, all parameter asymptotes have a uniform rate of * AN
Pl convergence which is not the case for the gradient algorithm with a time-invariant gain. : ‘ A
1 e
Ny 5. Averaging: A More General Approach e
oA R

N In this section we will establish a general form of the adaptive error system (3,5) which is L ~l
,! . useful for application of averaging methods. The first step is to transform (3,5) into a set of Pl F
e nonlinear time-varying differential equations. To do this observe that if H,,(s) and H,,(s) RS
:'. ’ are strictly proper functions (a convenient illustrative, but not necessary, assumption) then '_-}::::::
W, we can write SRR
\ i,. H(s) =c'(sI - A)~'b (29) e ;‘:‘t:'.
i H;v(s) = D(sI - A)-lb ﬁ- .-.v
ICHE Aol A
e where A € R™*" b € R",D € RP*", with (A,b,[c D']) a minimal representation. Also, SN
= he Re A(A) < 0O reflecting the fact that H,, and H,,(s) are stable. The error system (3) is then el
';j equivalently expressed as .'-:‘:{"
i . e=e, —cz ' . Y

z=2,—-D e
N , : (30) R
<N z = Az + b2'0 o
" UM . \':\ -
p’i v 6 = (T2)e N
NN
i By eliminating the variables e and z we can reduce (30) to the coupled state-space description: A
e
) :n.' . \:_'.
n
. = Az +g(t,4,2) (32) AN
f i With the gradient algorithm (4), let hat
. #(t) = o(t
(¢) = 6(t) (33)
1t)=¢

and
[(t,0,z) = z.(t)e.(t) - Q.(t)z + 'z Dz

o Q.(t) = z.(t)c’ + e.(t)D (34)

LT AT,
n .

(4

\ 9(t,0,z) = b(z.(t) — Dz)'0

:S 3 With the recursive least squares algorithm (5), define:

N .

% R() = ;PO (35)
. t

- -’h

e and let

$ o0 = 0=1 (36)
2 - col{R(t)} )T T

o

v 36
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) where the operator col{ R} stacks up the columns of the matrix R to form a vector. Thus, b NN
] “ P

R (z.(0eu(t) -Q.()z +'zD2) o

f(t,,2) = | col{z.(t)z.(t) ~-z.(t)(Dz) - Dzz.(t) (37) R
+Dx(Dz)' _ R} ':.3 :: g

s\
o
(47

g(t,¢, z) = b(z.(t) = DI)'@ (38)
The col{-} operator was used by Ljung in [2] to develop the discrete-time version of (31,32).
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5.1 The Integral Manifold :f?
ShaYy

The basic idea in the application of averaging methods to (31,32) is to see what happens when -~

~(t) is small. Essentially, ¢(t) slows down and we would expect to be able to approximate 32 -:f'_'_
the right hand side of (31) with its average, i.e., A
é ~(1)f(4) (39) T

where _ T o f"
7@ = Jim 7 [ 16,63 8))at (40) 5 Ey
T—oo T Jo - \."-:i-:
assuming the limit exists. (Such is the case, for example, when f(t,#,z) and g(t,¢,z) are . ;';:::4-:
periodic in ¢t for all bounded ¢ and z). The function Z(t, ¢) is referred to as the state of the ';: 2 ,-::';‘
Jrozen parameter system, i.e., Z(t, ¢) solves (32) whenever ¢ is a fixed vector. To emphasize b
this point we may express Z(t,#) as the solution to the partial differential equation. ;::::::'_'.:
a_ o ':_f}‘_ﬁ

2= A% +9(t,6,8),5(0,9) = 2(0) g

- R

The frozen parameter system was introduced in the averaging analysis proposed by Astrém o ":"‘ ;
[11]. ' XN
In order to remove the approximation in (39) we introduce the integral manifold as o :‘ki
suggested by [13] [see [6] for discussion of the integral manifold] £ ":‘ e
The integral manifold M of (31,32) is the set, &: .\.1
S RS ) S

M = {t,¢,z:z(t,) = h(t,, ¢(t,)) implies z(t) = h(t,¢(t)),Vt > t,} (41) - ::;:_‘.,::
RS '.:_\ '

By substituting z = h(t, ¢) into (31,32), the manifold function h(t, ) is seen to satisfy the .:3..:’_
partial differential equation R -:'..‘-}_:-:
LR OK

dh dh " .
Whenever «(t) is sufficiently small, a reasonable approximation to h(t, @) is given by h,(t, ) ) ~"\\,
which is the solution to R
She = Ah, +g(t,8,ho) (43) N v
= F(O)h, + G(0)=.(t) ) Eﬁm
where the last line follows from (34) with o 5::"’::5 '
R }::‘\-' ]

F(0) = A-b0'D, G(8) = bp' (44) S ;é:;
In (42), 6 and t are regarded as independent variables and, hence, we can define the X .-' 2
stabilizing parameter set e ::::".,:;
D, = {0 € R? : Re A(F()) < 0} (45) - :-:;;:-3$

R
Thus, for y(t) sufficiently small, we can refer to h(t,$) with 8eD, as the stable manifold, .:'f"-:

which we will approximate by h,(t,8),0¢D,.
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:g E An important observation to make at this point is that the approximate manifold function

g U ho(t, ¢) satisfies the same partial differential equation as the frozen parameter system state

¥ Z(t, ¢). The only difference is in initial conditions. However, if 8¢ D, then as t — oo we have

:: ' g ho(t,4) — T(t,¢) — O exponentially.

! The final transformation on (31,32) is obtained by examining the behavior of (¢, z) in

» the neighborhood of the stable manifold. Introduce the error state,

L €=z - h(t,9) (46)
:

v
: . Using (46), and (31,32), we have
0 ¢ =7(t)f(t,¢,h(t,4) + €) (47)
N o € = F(0) - 7(t)ho(t, ) (1, 6, h(t, 8) + €) © (48) L
'.5 g where we have used hy(t, ¢) to denote % (t,¢). If y(t) is sufficiently small it can be shown that :
'-: . under suitable regularity conditions we can approximate h(t,$) with the frozen parameter
2 :,: state Z(t, ¢) and obtain the approximate system,
W »
é=1(t)/(t,4,7(¢,9) + €) b
NS . _ _ T
D £ = F(0)€ — 1(t)Z4(t, 8) 1 (¢, 6, Z(t, 4) + £)
o ' . il :
')'3 Moreover, if () is sufficiently small and ¢ remains (moving slowly) in D, then &(¢) — O g,
"i ,": exp. fast. As a result, by the same reasoning as in Section 4, the stability of the asymptotic 853
’7'!, & system: ) _ !t ud
3 da(r) = T(6a(r)) (49) i
A N
o where . RN
MR _ .1 (T d e :::.4.-;..
] - — > ¢ d
i 79 = Jim 7 [ 1(e.0,2(, 90t (50) s
~ i assuming the limit exists. The stability of (49) is given as follows. The proof is in [6]. - L
1 Theorem ' AT
; s Let ¢° denote a solution of . o :j: ;:_.
BES f(g) =0 T
4‘ and define the matrix, _ : “::$
~ _ T, ., R
o ¢=2 R
O Then, provided Re A(G) # 0, the equilibrium solution ¢4(r) = ¢° of the asymptotic system n :'.::'::'
XE (49) is: RN
e U i ._q.\! .
- (i) u.a.s. if max; Re )i(G) <O. 0 '\{,
o (ii) unstable if max; Re A;(G) > 0. ™ ; w
ol S
* 4 . B : 1 ..- S.Q
%) . 5.2 Application to Gradient Algorithm 45 :‘;:
K EIAN N YR AR
o Applying this result to (33,34) with the gradient algorithm and with z,¢PE and Z;e, = 0, N
i gives G = — B from (20). Since 4(t) = ¢ > 0, we can only conclude that if Re A(B) > 0 and 3
4 € is sufficiently small, then 8(t)eD, long enough for transients to die out, which is unprovable
:: N as yet in general.
> Observe that 4, € RP such that z;¢; = 0 does not deﬁge an equilibrium of the actual
:"! < system. All we can say is that with ¢ > 0 small, there is a 8(t) which orbits near (to order

€) the equilibrium of the asymptotic system. We can also choose to consider Z;¢, = 0 as
a defining equation in a candidate tuned setting. Other conditions would also have to hold
(e.g. small e.(t), etc.) which may be obtainable with proper input selection. In other words,
the signals present during adaptation should be similar to those present during tracking or
disturbance rejection. Otherwise, the algorithms choice of the tuned setting (Z;¢; = 0) may
- be undesirable.
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5.8 Application to Recursive Least Squares Algorithm

Under the same conditions and with the same provisions as above, G = —L with L from
(28). This time, since 4(t) = 1/t — 0 as t — oo, we can conclude that if Re A(L) > 0, then
f(t) — 0 as t — oo at a rate 1/t. In this case, due to the presence of 1/t, the parameters
6(t) asymptotically approach the solution of (49).

6. Concluding Remarks

The averaging theory described here, as well as averaging theory in general, has its uses
and limitations for adaptive system. In the first place, the theory requires slow adaptation
which can be counter-productive because performance can be below par for the long period
of time it takes for the parameters to readjust. Secondly, averaging theory is a form of
linearization so that the (nonlinear) adaptive system must be initialized in a (not necessarily
small) neighborhood of the tuned system. On the positive side, however, we do obtain
frequency domain conditions which explain the system behavior near the tuned solutions.
In this sense, we can consider the results of averaging theory to be necessary conditions for
good performance of adaptive systems.

To obtain the heralded goal of frequency-domain stability conditions, it may be inevitable
to encounter linearization. Somewhat less intuitively appealing results can be obtained
without resorting to direct linearization or averaging, e.g., in [4,17,21). These results arise
from a combination of small gain theory and perturbation theory.
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- Abstract JouR
. An approach is presented to the problem of on-line robust  system identification as a means lo estimate the system transfer 2345
{ = control design, referred to here as adapiive calibration. It is an  function. a3
iterative approach which modifies the filter and model structure The paper is organized as follows: Section 2 discusses the T
.~ characteristics used in methods of system identification involving  catibration problem and the issues in robust control design. :'.,:J‘,
. the filtered prediction error. An estimate of model uncertainty is ; ¢ problem of termining model AN
.~ A . Section 3 addresses the p de g e
~ obuiined which is then used to predict closed-loop system uncertainty bounds from system identification methods. An NN,
" - performance with the new control if it were implemented. M o ample s presented in Section 4. N
e :,'4 predicted performance does not meet the specified performance Y,
L the filters and/or model structure are modified to enhance model 2. Calibration and Robust Control Design b
N accuracy in the ‘fmqu?ncy range required. ~ An_ analysis is In this section we discuss the general problem set-up for -':‘:"h“
“ presented along with an illustrative example. adaptive calibration in the context of disturbance attenuation. ::‘-::
< . The system to be calibrated is shown in Fig. 1 and is described RV
3 . 1. Introduction . in discrete time by* )
» Stringent closed-loop performance demands require very ) eCs
i accurate models for controller design within the system ¥ = Golghu() + w0 @n .
bandwidth. Since the actual dynamics are not likely to be u(®) = - Folq)y@® 2.2)

sufficiently like those obtained from testing methods, it is of
practical importance to be able to identify the system dynamics

*

where Go(g) and Fylg) are the transfer functions® of system

Y on-line and then tune the controller to the updated model. The  dynamics and feedback compensation, respectively. The function
v problem of on-line system identification and control tuning, »(?) Tepresents the effective disturbances as Seen at the output
y referred to here as adaptive calibration, is a litle like the story e assume that Fo(q) is a stabilizing controller for Golg), but R
about Columbus: **He didn’t know where he was going; when he i3 10 be replaced with another controller which is expected to ,
. arrived he thought he was someplace clse; and when he retumed ~ improve performance. The controller Folg) can be ‘thought ?{ NI
o he wasn’t sure where he had been. And amazingly, he did it all 8 a controlier from a previous calibration or as a “‘back-up )
- with borrowed money!”* The moral of the story is that in order low-authority stabilizer. In a large space structure, for example,
. o obiain a mode) from on-line identification which has the  €o-located rate dampers arc used throughout the structure to
o requisite accuracy, either unlike Columbus, we need to know  Provide robust stability, but these being of low-authority provide
oot where we are going, i.c., know the answer a priori, or else like  low performance.
Columbus, derive a means of calibration which will In order to tune or replace the controller Fg(q) in Fig. 1
[y - automatically adjust the identification accuracy, motwithstanding  we need a better model of (2.1) then what was used to design
2 X our ignorance of the true dynamics. Fo(q) in the first place. What we mean by the term model is: N
- Although we use the term calibration to refer to control (a) a nominal model of Gp(g) and w(1) in (2.1) o
N 4 design based on an identified model, we are of course really (®) & ser of uncertainzy associated with the nominal model.
‘o discussing an adaptive controller. In this case, although we limit .
v oursclves 10 infrequent controller adjustments, we ultimately face  1hes¢ together with
the same issues in the robustness of continuously changing (¢) a performance measure
" ad: ptive controllers, e.g., Anderson et al. (1986). constitute a robust control design problem for disturbance
* .: In this paper we show how frequency domain bounds on  Aitenuation.
. the unmodeled dynamics of the identified model can be extracted
(I from standard system identification procedures. Such bounds are i . .
- X required in order to evaluate the performance robustness of the The varizble q is used to denote the forward shift operator, ie., s
.. control design, e.g., Doyle and Stein (1981), Safonov et al.  9%(t) = X(1+1). v_:r
> (1981), and Vidyasagar (1985). The basis for the results here . , . , > >
R can be found in Ljung (1985), (1986) and Wahlberg and Ljung , Strictly speaking, Golg) is an operaior whereas the complex func- Y
o (1986), involving the use of parameter estimation methods of 907 Cuta) z € C.is 8 trunsfer funciion, ~os
R ® Research supponied by AFOSR Contract F49620-85-C-0094. e
- v
- -~
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Performance Measure

Supposc that performance is specified in terms of average
power, i.e., it is desired that

N
we{0} & im & T A0 < e Q30
- =1
and in addition that
wg{i P} < e (2.3b)

If ?,(w) and @ (w) arc the power spectral densities (PSD) of
¥(r) and u(1), then (2.3) is equivalent to°

3

% oo < e (2.42)
-%
g

o [OUeMo < (2.4b)
-5

Note that @ is normalized frequency which is constrained to
the interval { - x, x). Let
u(t) = - F(@y() 2.5)

be the feedback compensation which is to replace that in (2.2).
If ®/(w) is the PSD of v(r) then

D)) = |S(e )P, (w) (2.6a)

O (@) = |0(c )P () (2.6b)
where

5@ 2 [1+Gy@FQN™! .- (2.7a)

0@ 2 F(@)S(q) (2.75)

For (2.6a) to be meaningful it is assumed that w(r) has a PSD.
Unless otherwise siated, ihis is a sianding assumption whenever
we say that a signal has a PSD.

Suppose that there exist functions ®F*(w) and @P*(w)
such that

O w) < GP<(w) 28)

o) < PP (w) 2.9)

are sufficient to satisfy (2.4)

Robust Control Design
I G and @ o) are perfectly known then the
compensator F(q) can be designed to satisfy (2.8) by any
number of methods. Realistically, G(q) and ®,(w) may vary
or are not perfectly known. Suppose we have the set of
uncertainty in Gg(q) given by
Go@ = 6@ + A (2.10)

where G(q) is a known nominal value whereas the only
knowledge about A(q) is that it is stable and bounded by

i) < 8(w) @1

In order to provide closed-loop stability for all uncertainty of the
form (2.10), (2.11) it is necessary and sufficient that [see ¢.g.,
Callier and Desoer (1982))

* The PSD of »(1) is defined as the two-sided Fourier wansform of the
sutocorrelation function:

N
Ry = Jlim 3 T HOK—)

Note that the Fourier wransform of Ry(1) exists if R(1T) is in [i(R).

A2 Johalt SRt DA

@) $@) 211 +G6@FQI" is sable 2.12s)
(i) 8(w) < 8 (w) & M), ¥ we [-x,x)(2.120)
Gii) Oq) & F(g)Siq) is suable Q.1%)

The function §,,(w) in (2.12b) is referred to here as the
stability margin. The sensitivity function (2.6) can be writien as,
S@) = S@l1 + Al@din’ @.13)

This, together with (2.6), (2.11), gives the following frequency
domain sufficient condition for (2.8) to hold:

o < [fig] oum < o). v eetan @140y

A

0.0 s [T o) < o @), v o an @14b)

A

Observe that 8&w) < 8,,(w) is necessary for (2.14) to be
satisfied, ic., (2.14) implies stability robustness. Conditon
(2.14) can be thought of as a condition for performance
robusiness. That value of 8(w) for which equality holds in
(2.14) is referred to as the performance margin and is given by

Spm(@) = Su(w) (1 = p(w)) (2.153)
where
p(w) & m{% .%ﬂ} (2.15b)
Hence, (2.8) will hold if
) < Som(@) , Y @ (2.16)

Observe also that (2.16) makes sense only if the nominal
closed-loop system strictly satisfies (2.8), i.c., if

pow) <1 , Yoe[-xn) 217

Condition (2.16) can be used to evaluate candidate
compensator designs F(q). If the candidate satisfies (2.16) then
the design can be implemenied with confidence. If not, then
(2.16) provides information as to the range of frequencies over
which the design needs to be modified. Such information can be
incorporated in the next design iteration, e.g., frequency-shaped
LQG as described by Safonov (1981), Gupta (1980), and Stein
and Athans (1985). In order to apply (2.16), it is necessary to
have a nominal, dynamical model G(q) , the model error bound
8w), and the disturbance PSD @ (w). It is clear that
knowledge of @/(w) can be relaxed to knowing an upper bound
on @, (w) in (2.16). The practical question to ask is how do we
obtain this information? In terms of on-line tuning, can we do
this automatically?

3. System Identification and Mode! Uncertainty

In this section we show how system identification methods
- specifically, parameter estimation - can be used to provide a
nomina! model G(q), a model error bound S(w), and an
estimate of @, (w).

Consider the lcast squares parameter estimator

Oy = Mg In®) G.1a)

' N
NGO = S e} (10)r

G.1b)
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where D is a subsct of R” and ¢€41,0) is the filicred error
signal dependent on 0. Suppose €41.8) has the PSD given by
@ (w,0). Then,

6 2 Jim_ 6y = u&n;’w(o) (3.29)

L 3
1® = {0} = o [ o0  (2b)
-%

The usefulness of (3.2) is that if N is large then 6(V) is
approximately ©. Moreover, recursive methods produce
estimates which asymptotically approach b eg. Ljung (1985),
(1986).

Parametric Models

The results and notation of this section, which are needed in
the sequel, are taken directly from Ljung (1985, 1986). Assume
that €Le, 0) is generated from a parametrized observer or
predictor as follows:

€(1,0) = L(q)k(, 0) 3.3)
where L{q) is a stable filier operating on the prediction error

€, 0) = y(r) - y(, 6) (EX))
Here y(r, @) is the one-siep ahead prediction of y(r) based on

some parametric model for the data set {y(:), u(t)} generated
from (2.1), (2.2), i.e.,

YO = Golgu(?) + v(r) (3.5a)
u(r) = - Folqhy(®) (.5b)

where v(r) is a zero-average sequence with PSD given by
®,(w). A typical parametric mode] is

) = G(q, 8)u(r) + H(q, B)e(r) 3.6

where G and M represent system dynamics and e(r) is
‘‘unpredictable’’, ¢.g., a zero average sequence with constant
PSD. Hence, we have

(3.72)
(3.7b)

1, 0) = [1 - HY(g, 0)ly(r) + H™'(q, 0)G(g, O)u(r)
€(1, 8) = HY(g, 0)[¥(1) - G(q, O)u())

The parametrization of (3.6) can always be selected so that the

map (u,y) =y defined by (3.6) is stable. For example,
consider the scalar ARMAX model,
A@y() = B(qu(r) + C(qle(r) 3.8)

where A, B, C are polynomials in q~! whose coefficients are
the elements of 6. Hence,

G(q. 8) = B(q)A(Q) (3.92)
H(q.0) = C(q)A(g) (3.9b)
then
A B
91, 0) = [I - -C-% ] ¥ + 'Ef% u(t) (3.102)
A J ]
€1, 0) = zf.% [y(v) - 7}3 u(:)] (3.10b)

Observe that (u, y) — 7 is stable if 1/C(g) is stable,” which is
alv-ays possible to enforce. Hence, we take the set DC R? in
(3.1) as,

D= {0e R :(uy) =5 in (3.6)is sable} (3.11)

Note that when C(q) =1 we have the equation error model,
which together with (3.1) gives the least squares solution. In this
case the set D = R?. Notc also that filicring of the prediction
error is equivalent to pre-filtering the data set, i.e., replace

{r, wtr), 2= 3, - - - N} with {Lighy(s), Ligyuis), s= 1, - - - N}.

Frequency Domain Interpretation of ldentification

The PSD of the filicred prediction error, denoted by
0,;0. 0) in (3.2) is given by:

O, ) = |L(e )iy (w, 6) G.112)
O (w, 0) = IH'(, 0)2IA(, 0)%D,(w) + O (w)]  (3.11b)
where A(q, 6) is model error [see (2.10)), ie.,

8(q. 8) = Gylg) - G(q, 0) (3.12)

and @ (w) is the PSD of v(r). The above expressions are
obtazined by combining (3.6), (3.7), and (2.1), together with the
following assumptions [sce Ljung (1985, 1986)):

(A1) Gglqg) stable 3.13)
(A2) Folg) = 0 (3.14)
(A3) O, (w) =0 (3.15)

Because the plant Gy(q) is stable (A1), a stabilizing feedback is
not required (A2). It is often the case that for practical reasons,
a feedback is present regardless of the plant stability. The
expression for ®g(w, 8) in (3.11b) is then,

@, ) = P, 032 {IA(®, 0)'D(0) + B(w) + 2Re[A(e®, O)P.(w)] }

In this paper we concentrate on the simple case when no
stabilizing feedback is required, i.c., when assumptions (Al)-
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(A3) are satisfied. e

Supposc we have determined 6 € D from (3.2). We then ,“_r

have the transfer functions G(g, ) and H(q, 6). Passing the :,,\-:'_.({

daa  {y(u(r=1,.} through the predictor with =9 S0

gives the prediction error N

Yy

e = Hlie 00 -G bunl 16 T

'F"

Hence, the PSD of ¢(r, 8) is, f:};-::.

O w, 8) = IH (g, B)IAE®, )P, (w) + O @) (3.17) OO

In (2.14) we computed upper bounds on @,(w) and D (w) ':.\‘1:"

which depends on knowledge of |A(¢, )} and @ (w). From NS

(3.17) we see that it is precisely these functions which are the .?_',

“unknowns,” ie., the function H(g, §), ®(w,8), and O () e~

can, in principal, he computed asymptotically from the data set ..-‘::q:

{y(:), u), 1= l....,N} as N — e, An interesting equivalent ‘\";'_"

expression for (2.14) can be obtained by using (3.17) w N

eliminate ®(w). By introducing the shorthand notation ~ ~:

D) = O, 8) , G = G, ), ec. (3.18) o |

and by dropping the explicit ® and e dependence, we have 3 \:;:

from (3.17) that Yo

o, = HPd, - IAPO, (3.19) ;.::2::

Hence, the inequalities in (2.14) become, AN

®, < Y(ANSH®, < OP* (3.200) N

o, < Y(A)dHD, < oF* (3.200) i

where i

Y®) & (-85, - (B G2y

5 & Wdso,)? (3.22) : ‘
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Recall from (2.12b) that
5. &2 ud (3.23)

Let 0y and Q_ denote the complementary frequency ranges
defined by

0 = {we[-x1x:8.>8)} G.24)
o = {we[-xx:5,, < 5} (3.25)
Thus,
Y3, =+ , VYoefl,
sup Y(6) = (3.26)
§>0 YE) < , VYaefl
where
8 = 5pfOom (3.27a)
YG,» = T(E':/s_.)’ (3.27b)

Observe that ¥ w € R, it is not possible to insure satisfaction
of any finite requirement such as @ (w) < 0;"‘(0) < o,

Supposc an upper bound Q' (W) on @(w) is available.
Hence,

Q<o , Yo (3.28)
and it follows from (3.19) that
(3.29)

A2 8,8, ., Yoe[-x1x)

where .
& & (8- oPe,)?

Consequently, we have

Yoe{~x£x (3.30)

YG,)=+% , Voef),
s%p YS) = ) () , Yoe ) (@B31)
Y5, » Yoep
where
o) = {we 0y:8,>8,} (3.32a)
o = {weny:5.<8,} (3.32v)

A typical plot of Y(8) vs & for some e £§ is shown in
Fig. 2.

The expression in (3.31) together with the performance
requirement of (3.20) provide an indication as to the
*‘goodness’” of the identified model. Thus, at those frequencies
where (3.20) fails, i.c., for w e 0,4 where

O = {0ei-x1x: wp ¥(6) > n} 3%
s o | OFe o
N £ min {m , _’lf"ﬂzé.} (3.33b)

it is necessary to either abandon the specification or else perform
the parameter estimation (3.2) under different conditions. For
example, some choices are to modify the filter L(q), change the
parametric model order, or change the parametric model
structure. Exactly what the rules are for such re-identification
remains an open question, but certainly will rest on the
eaperiment design criteria discussed in Ljung (1985, 1986),
Wahiberg and Ljung (1986), and in Goodwin and Payne (1977).

For example, one possible way to alier the filler L(q) is to
enforce the condition:

44

PIAFITAIY,

e e e e mi ey me i me e e A
ST e e S T e e e N
BN NG S A AN O T«

(syp Y& M) Uyl we Ry,
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Laew! = ol . e )
Effect of Finite Data Record

Calculation of the bounds in (3.31) involve knowledge of
0w, 8), D), G(* 8), ew. Firmtof all, & from (3.2)
is thc asympiotic estimaie. What is actually available is 6,,
from (3.1) for some finite N, e.g., typically on the order of
N = 1024, Secondly, for any value of O computation of
®(w, §) involves the infinite data record {e(s, 0),7=1,2,...},
whereas what is realistically available is {c(r, 0),r=12,.. N}
The effect of finite data record on transfer function estimation
accuracy has been examined in Ljung (1985, 1986), where the
following approximation of J)(8) in (3.1b) is established for
sufficiently large N:

]
IMG) = 2= [ WeM™Erw, 0 dw  (3.353)
2% -%

Also
Ew, 8) = Hl(e™ 8)[Y(w) - G(e, UMw)]  (3.35b)

with Ey, Yy and Uy the Discrete Fourier Transforms (DFT)
of €y, and u, respectively.” We use the definition that

N .
Xvw) & DFT{xn} & & T e’ (336)
=l

Observe that the DFT is actually computed at discrese
frequencies, e.g., if N is even then :
2nk N

— )

5 3.37)

Based on the definition in (3.36), an estimate of the PSD of x(r)
given finite data {x(0,¢=1, .., N} is

oY) = + K@) (.38)

This estimate of @,(w) is not always smooth and often looks
“*noisey’’. Smoothing can be accomplished by introducing a
lag-window which is effectively a frequency domain correlation
of [X{w)® with a weighting (or window) function W(w) (sce,
e.g., Jenkins and Watts (1968) and Ljung and Glover (1981)].

A Calibration Procedure

The following steps, depicted in Fig. 3, are illustrative of a
calibration procedure which follows more or less naturally from
(3.31) and the parameter estimator of (3.2).

N
. k= ?'0“,

Step 1: Obtain 6~ from (3.1) using the model
structure (3.3)-(3.7).

Step 2: Using the  identified  system
G(q. 8y), H(q, b)) design  a  controller
u(r) = - F(q)y(r) satisfying (2.17).

Step 3: Using Oy, filler the dau set

{y(f). u(n), =1, ..., N} 10 obtain the sequence €(r, By)
defined by (3.16).

* The approximations in (3.35b) follows from the fact that
it y(1) = T(qu(1) then I¥yw) - TEe™WUnw)l < C/ VN  with

C=2 wp Ku(OIE RUT(R)U , being the pulse response.
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Step 4: Using a PSD approximation estimate
@w, 6y) and O w) from £, 6y) and w(y),
respectively, and then calculate u:p Y(®) vs. w from

(3.31).

Step 5: Check performance robustness using the test,
sng(S) €M , Yoe|-xrx]

with 0 given by (3.33b). If the inequality holds for
all o, then implement the controller from Step 3.
Otherwise, go to Siep 6.

Step 6: At those frequencies where the test in Step §
fails, either relax performuance or reduce the model
error by repeating Sicp 1. This involves changing the
ilter L(g) or increasing the madel order or both.

4. Application to a Laser Pouinting Experiment

In this section we obtain the model error estimate 8,;(w)
of (3.24) using data from a laser pointing experiment. Analysis
of this laser pointing experiment can be found in Walker, Shah,
and Gupta (1984). As described there, the objective of the
experiment (see Fig. 4) is 10 control the jitter of a laser beam.
The single actuator consists of a proof-mass which exerts a
reaction force on the flexible beam when the proof-mass is
moved by an applied armature cument input. A rate-sensor is
provided on the actuator to measure actuator velocity (required
when very high bandwidths are used). As the flexible beam
vibrates, the laser beam changes its angular direction. A second
sensor, a quad detector, mounted on the structural support picks
up the position of the beam, as long as it is in its field-of-view.
The laser beam strikes a mirror on the flexible member and then
is reflected back by another mirror mounted on the proof-mass
actuator. The resulting beam is split by a beam splitter into two
rays, on¢ going to the quad detector and the other going to a
screen where the jitter is magnified. The proof-mass actuator
controls both the flexible beam vibrations and the optical path tilt
and hence can reduce the laser beam jitter. The mass of the
actuator is greater than the flexible beam and therefore the
interaction between the modes of the fiexible beam and the
actuator is significant.

Obtaining the Model for Contro! Design

Jitter control was desired in the region of 4 Hz to 20 Hz.
Consequently, a sine sweep was applied to the actuator lasting
about sixicen seconds, sweeping from 4 Hz to 20 Hz. The
sampling rate was 51.2 Hz. Figure 5 shows that the magnitude
of the input signal between O Hz and 4 Hz and between 20 Hz
and 25.6 Hz is very low and therefore the model will not be
accurate in those frequency ranges. Figure 6 shows a
comparison with the “‘true’’ transfer function (the smooth dashed
line) and a transfer function estimate obtained by simply taking
natios of the DFT's of the output and the input, i.c.,

along with the empirical transfer function estimate. Figure 8
compares the 8" order “‘true’’ system (dark line) with the 4%
order ‘estimate (dashed line). The model emor is obviously
significant, panicularly from about 3 to 9 Hz where control is
critical.

We now compute §,{(w) from (3.22). In Fig. 9 we plot
Sz(w) in comparison with the ‘*true’’ model emor between the
8% order model and the 4" order model, e,
iG(e @, 8,) ~ G(e/®, B,). Except for some noise at the low and
high frequencics, the estimate is very accurate where necessary.
Therefore, it is possible to be confident about implementing a
controller based on the model set  G(q, 8o + Aq),
A(e™) < 8,(w). That is, if the test in Step 5 holds there is lit-
tle chance of failure, whereas if the test fails one should proceed
with caution before implementing a new controller. In the latter
cuse it would be prudent to re-identify with filicred data, e.g.,
using the heuristic in (3.34). The results of such iterations are
not explored in this paper.

§. Concluding Remarks

Preliminary results of calculating frequency-domain model
error bounds from identified models has been presented. This
calculation is critical if identified models are to be of use in con-
trol design. The results show that the proposed estimates are in
good agreement with the true error in the frequency band that is
critical for control design. Many issues remain, namely:

(1) What are the best ways to smooth the model error esti-
mates, e.g., ‘*‘windowed’’ PSD;
What are the heuristics for iterating on the
identification algorithm when the estimated model error
is too large over some frequencies, ¢.g., increase model
order and/or tune the data filters (these involve experi-
mental design issues of input selection, etc.);
What is the effect of structured uncertainty on the esti-
mate of mode! error;

@
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TRANSIENT ANALYSIS OF ADAPTIVE CONTROL

by

R.L. Kosut,l"'5 IMY. Mareels? B.D.O. Anderson 2
R.R. Bitmead? and C.R. Johnson, Jr.34
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Telephone: 415-853-8400
Subject Area: 14.4 Adaptive Control
Key Words: Adaptive control; transient analysis;
robustness analysis; averaging; small gain theory;
fixed point theory.
ABSTRACT

Methods are developed to analyze the transient behavior of an adaptive system.
It is shown that both small gain theory and the method of averaging can be used to
predict some of the observed transient phenomena. An important tool in the analysis
is fixed-point theory, illustrated by the Contraction Mapping Principal, which enables a
sequential application of linear analysis to the separated state and parameter equations
describing the adaptive system. It is also demonstrated that averaging theory applied
on finite time intervals can predict transient phenomena without requiring slow
adaptation.
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1. INTRODUCTION

In this paper we consider an analysis of the transient response of adaptive control
systems. An understanding of the transient is required in order to satisfy practical
requirements such as those arising from constraints on tracking response and
disturbance attenuation. For example, consider an adaptive system subject to abrupt
set-point changes, e.g., step inputs. Typical system requirements are stated in terms of
rise-time, overshoot, undershoot, and settling-time. Unlike a non-adaptive system, two
sets of such requirements are needed; one set determined by the goal of the adaptive
system, i.e., when the adaptive parameters are near convergences, and another set of
requirements dealing with the transient, i.e., when the adaptive system is learning. The
latter requirements include reasonable length of time for learning as well as bounds on
responses imposed by hardware limitations.

Analysis of the adaptive systems transient will require sharper estimates of signal
bounds and rate of convergence than currently exist. Consider the ideal case of perfect
model matching, i.e., when there exists a constant unique setting of the adaptive
parameters which produce zero error for all inputs. In this situation although it is
possible to prove global stability and exponential parameter convergence, the system
states can be arbitrarily large and the theory does not offer guidelines for adjustment,
e.g., Goodwin and Sin (1984). Local stability analysis based on the method of
averaging -- which is valid also in the non-ideal case -- provides some transient
information but is restricted to parameter trajectories which vary slowly in a convex
subset of the constant-parameter stability set, see e.g., Astrom (1983, 1984), Bodson et
al. (1985), Riedle and Kokotovic (1986), and Anderson et al. (1986). Certainly one
can argue that the latter is not restrictive in practical system tuning when the plant is
slowly varying and initial parametrizations are close to a tuned setting. The drawback
is that although the convergence rate is exponential, it is also very slow, whereas
simulations show that onset of instability may produce very rapid learning, see e.g.,
Anderson (1983). Moreover, estimates of the convergence rate and the region of
attraction obtained from the method of averaging can be quite conservative, and hence,
do not provide a complete representation of the achievable transients leading to good
performance, e.g., Mareels (1986).
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In this paper we present an approach to the analysis of the transient based
primarily on the use of fixed-point theorems, e.g., Kosut and Bitmead (1986). Here
we discuss how the Contraction Mapping Principal can be used in conjunction with
other methods of analysis including small gain, passivity, and averaging. Simulations
will be provided in the final version of the paper which illustrate the use and
limitations of the theory. The theory presented here is limited to a simple continuous-
time gradient algorithm. Extensions as well as discrete time algorithms will be
presented in the final version.
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2. ADAPTIVE ERROR SYSTEM

s
A general structure for an adaptive system is shown in Fig. 1 and is described by i
the operator equations ’:
f'b
€ w P ew P eu w .-
=P = (2.1) i ‘
¢ u P ow P ou u [N ’- i
;",j::
u = - F@O) @2) SR
RPN
0 = Q(eu, e, ¢) ’ e(to) = 90 (23) 0t
-
The adaptive system consists of three subsystems: AR
(1) the plant subsystem P which takes exogenous inputs w -- consisting of ) Z;EZ:'.:
references and disturbances -- and the adaptive control inputs u into the :::I ]

error e and regressor ¢,

(2) the control subsystem which transforms ¢ into x via the control matrix
F(0), which is parametrized by © the adaptive parameter vector; and

o

(3) the adaptation subsystem €2 which uses the error signal e, the regressor
signal ¢, and the initial parameter value 8, to generate the parameter 6. -
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teired

. The structure of (2.1)-(2.3) can describe most of the standard forms of either _ ';{:-’.3;'2
Y LA

i continuous-time, discrete-time, or hybrid adaptive controller. Details on this structure CRENLY

can be found elsewhere, ¢.g., Kosut and Johnson (1983), Anderson et al. (1986). For ‘f'ﬁ ‘

§ example, a typical form for (2.2) is the bilinear structure 'x; /
X ROy
u=-90"% (2.9 3

! Typical forms for (2.3) include the simple continuous time gradient algorithm Sy
. A0

- 0 = epe 2.5) Ao
+ NN
o= or the discrete-time normalized gradient algorithm ,-_j:-j{:.{

s AT

=g —2 _ )

By % =& TueT @6 R

. where 8 is the difference operator, ie., (89)(1) = 6(r) — 6(r-1). In (2.5), (2.6), € ::'_;.'—z-f-;it

LA N - J‘.’.‘ g
v and p are positive constants and |- | is the Euclidean norm, i.e., | ¢ | = (¢67¢)'2% ;.‘_E'.“_ﬁg*
o A NAT
. For illustrative purposes we will concentrate first on the continuous-time gradient TR
:: algorithm (2.5). A convenient form for analysis is the adaptive error system which is {:
formed by introducing the parameter error ::;3?»}_:'-‘_-2:;

&l RROGINAY
& 8 = 6() - 64 @7 iﬁ:’e’
. We refer to O+« as a suned parameter, which is a constant vector of parameters ':';:'::
t:f producing desirable performance properties of (2.1), (2.4). When 0O(z) is held fixed at "%E":\'

O+ the resulting system is referred to as the tuned system and is described by XY ‘}E

¥ AN

€s w S
| [ ] =P FAnk
.

;é & Us ey
Bt AL SAS
_ - 2:a%e

L use = = F (9.)¢. = - 9.¢- 2.8) t-:,-?f:‘f\f
o8 The signals es, ¢«, and u« are referred to as the tuned error, regressor, and control, :;:l_'.:'j;-j:
respectively. If P is a linear-time-invariant (LTI) operator with transfer matrix P(s), S
;:2 then it can be shown (Kosut and Friedlander, 1985), that the adaptive system (2.1), ';I.f;';f;?._{
(2.4), and (2.5) can be described in error form by '-—‘-'%,‘"

E.i' 8 = ege » B =By R ARATR
4':::4'\'-'

. e = es—H,(070) 2.9) A
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LA

¢ = ¢~ Hy(9'0) o
where H,,, Hy, are stable LTI operators, dependent on Oe, with transfer functions !,: ‘:}:%
H,[(s), Hy,(s), respectively. Stability of H,,, H,, follows from the definition of the
tuned parameter setting. .

The system (2.9) can be shown to be globally stable, i.e., stable for all § € RP,
provided that H,(s) is SPR (strictly positive real), the tuned error e«(r) is zero, and RN
¢O+(z) is bounded. Zero tuned error can be relaxed to e«(r) bounded and decaying
exponentially fast to zero. Moreover, if ¢+(f) is persistently exciting then (2.9) is N
. globally exponentially stable, i.e., stable for all 8§, € IRP. These results are typical, 5

but not particularly useful for a transient analysis. In the first place the signal bounds
are crude. Suppose for example that
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- which is certainly SPR. Suppose also that =3 constants K >0 and a > 0 such that
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We then have the following bounds: RN

‘ @ Wi < 1§ (2.122) «
‘ ®) 1081, < | & Ve (2.12b) |
© 16— ool < (Kla)l § 1/(2e)'? (2.12¢) ~

@ lIo - dell. < [K/(20)'2)| & I(26) 2.12d)

If, in addition, ¢«(f) is persistently exciting, ie., 3 To>0, 0y > 0 such that r

ey
[y o

{I
A
\
?

Ay
o

CACAN
44,

- :
A
LAY
-‘gr:r?

4
\." v
1.

',)

e
P

3 N
L4 l.l‘i

[4
e

&
R PUPRRE Rl Y

.f‘.{\l
O

s+To

{7 [ 0000} > 0 , V520 @13)
s

1

1"""‘_’

{l-/l”‘
2P

l{‘

?
.

then 8() >0 and &) — de(r) > 0 exponentially with rate of convergence no
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7
where
~
™ 21T o0
B eee— 2-1
n (14€ToBo)? (2.15a)
4
B Bo = Il (2.15b)
Hence, for small € we have
! A -_1,- €0 , as €—0 (2.16) ’\»
2 Observe also that for large € the convergence rate decreases, i.c., "',I,j
R o VR
y @S E—oo 2.17 —eTed
2ol @1n o .
: ) -i\_n:..:'
- Thus there is a limit to the convergence rate as seen by (2.16), (2.17). ‘:~:::\':\":
N
:§ The weakness of the bounds in (2.12) and the convergence rate estimate (2.14) is :;2_-;‘:;::2
that they are conservative. It is often prudent, for example, to choose a small €. By ALY
R (2.12) we then have boundedness, but very large values can accrue since ‘,\:33
- [l6 ~ doll.. ~ (€)~12, likewise the convergence rate estimate is very low. Simulations Qa‘,‘;?é
v\ ]
- have verified this behavior in certain cases. }.,-;bf“f.
YR )
& ~ One may well ask the question: are these results intrinsic to the adaptive system .
. or merely a result of the stability theory? The answer may ultimately turn out to be ~ )'f;f
2 both, but for now we concentrate on the limitations of theory. It is obvious that when :::f-j;:::l:j
H_(s) is not SPR the global theory breaks down completely. We turn then to local :Iﬁ:af_:
i theory, e.g., the method of averaging. For example, from Anderson et al. (1986) it is g ""_‘"
shown that if
b T
~ Re Ay { Jim 1 l[@.(x)a:r,,, D@dt } > 0 (2.18)
—) o
:.(' and 8, is in a convex subset of the constant parameter stability set, then for all small
>0,
E: limsup |8 | = (1 + O@E)]0(lesll..) 2.19)
[ X
o Moreover, 8 (r) approaches the above limit set exponentially fast with a convergence

rate of O(e). Thus, local stability is insured. We also have local instability insured
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if any eigenvalue of the matrix in (2.18) has a negative real part.

The results in (2.18) and (2.19) are intuitively pleasing since they are robust, e.g.,
if ReH,_(jw) > 0 at the dominant frequencies of ¢«(r) then (2.15) will hold. Thus,
- H,, can be “‘almost’’ SPR, at least where it counts. Also, the instability result keeps

us from proposing kakimaymy excitation signals. The drawback, however, is that the

-

“I
-

%4
o
o X4

l" -

?:’1

bounds required on € are conservative, and simulation results allow for much larger :; "
values, see e.g., Mareels et al. (1986). Secondly, if H,, is SPR then we know from A%
the global theory that € need only be positive, yet the averaging result requires € 'f_: ‘-N-E
small. In the next few sections we hope to shed some light on these issues. ~ ;:Z;;'-::ji
DR oy
. 3. LINEAR ANALYSIS DAY
N .:.::w.
N .y ‘_—ﬂ"-\\‘
) _ o : DRSO
. We now consider only the prototypical ideal adaptive error system QO Qi
; 0 = —e¢H($'0) , O(p) = 6 G- o %M}j
Py ' e Lo
¢ = 6. - G@O) 3.2) ‘g
ﬁ 23
For convenience we have dropped all exogenous notation. We assume that the ..: ;';‘.' .
operators H and G are linear integral operators which are exponentially stable, i.e., ~ ;:. }ﬂ
as in (2.11) we have for some positive constants K and a that < "*“\
! t : ;"f-\‘
' | Gu)e)y | or | (HuXD) | < K™} u(v) |dt (3.3) -
) e

of hvs
¥ Although system (3.1)-(3.3) does not at all represent all the myriad variants of :L'::Z::
8 o e
‘ adaptation mechanisms, we assert that any scheme for obtaining a transient analysis of ;:‘ :-;_J-_f_-,
) this system will apply to the variants as well. Before describing some approaches, we - :‘\;";:
begin with some examples which illustrate transient phenomena. - J

- - -: -’_.
: We start by examining (3.1) and (3.2) separately, as if they were decoupled linear - _:
" systems. Consider first (3.1), and assume that ¢(r) is a given function of time. If we 2 RN
7 N
' take the scalar case with H =1, (3.1) becomes, NN
) -

3 0 = - ed(nd , 600) = 6, (3.4) =:: %—:
y . ,"\%‘
. Assuming ¢(¢) is our ‘‘input’’ the exact solution of (3.4) is ! R’t
) S : :;\ *\
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!

8¢ = 6pexp { - ¢ ! ¢X(t)dt } (3.5)

Itis clear that |0(r) | < | Oy | as stated in (2.12a). Suppose ¢(r) is given by
o) = ae™¥ + sin ot (3.6)

where b and ¢ are positive constants. Suppose that for z € [0, 1], ae¥=a>>1.
Then

o = a , te[0,1] 3.7
We then have
6() = Ggexp{-eax} , te [0, 1) (3.8)
As time goes on ¢(r) — sin ¢t and hence

0 > Bpexp { - £ ¢ < sin 2ct} (3.9)

Thus, 6(r) & O exponentially as expected, since (3.6) is (asymptotically) persistently
exciting for (3.4). Observe, however, that the early convergence rate from (3.8) is ea?
which may be considerably larger than the final convergence ratc of €/2 from (3.9).
It is precisely this kind of transient phenomena which needs to be addressed.

Now consider (3.2) separately and suppose that

G@s) = -9—:; , a>0 (3.10)
and that
0)) = —re™® |, a>A>0 (3.11)
System (3.2) becomes
¢~be = ~x
(3.12)

x==@+0(x+0(0)e() , x(0) =0

The solution x(r) is then explicitly given by:
t

£ F(1, 1)0(t)0«(1)dr

x(1)
3.13)

4
Fe,) = exp{-[(a+06()as}
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e
e It is clear that x(r) - O exponentially. However, x(f) may obtain quite a large peak .:;.;;
W value, particularly if A << a. Recall that A = O(€) as seen from (2.15)-(2.17). In &‘ o~
W fact when A << a the initial behavior of (3.12) is like » g
e
e i = = (a-rx—rou) (.14) ¥ &
1,1 "
:::, If a-r<0, or even near zero, then x(r) will initially grow until a - re ™ @
n becomes negative. In fact the time to reach the peak in x(f) is approximately = i
' LI ;
o = l ;.J:-.‘
::: [ Y In(r/a) (3.15) o ;-‘:.:;:
Ly LSS e
;3 Hence, the ‘‘more’’ initial instability (r > @) the longer it takes to turn the system < 1_‘,&’;
. around and the bigger will be the value of |x(s,) |. [The full paper will contain -
S NN
‘;;- simulations of those phenomena.} be. '-_:f.:'j
1) s
';Z" We now discuss analysis techniques which can predict the demonstrated transient - -{C_::
% behavior for (3.1) and (3.2) separately. In the next section we will see that these P ;,f:.
i separate linear analysis can be joined by applying fixed point theory. AR
-\. For systems (3.1) consider the interval [#, fo + 7]. Define the sample average o j}-
3 matrix R
(.:. ..q- -.v-'.t.
- 1 ol T & =
v R = 3 [o@ewa (3.16) PN
\$ ‘o \‘2 :-::-I
“w Pel el
:; We then have that ~ 2::(:
07(5p + TIO(1+T) < 67(1p)l] — NRIO(7p) (3.17) ¥ A
) SR
s where wdd
- e
% n = 2L (3.18) 2
- = . ot
o (1+eB7Y? o
) with g n-.-!
2 2 5.19) DR
o = su ? . RN
A o 40! .
L N
% The proof of (3.17)-(3.19) is omitted here but follows directly by using the Lyapunov E:: ‘!?:5
function V(r) =|0(r) > and then differentiating along (3.1). Observe that for all ~ 5_._'!4
,_z €>0, we have 1€ (0, 1) and also that s 'i:::;:
LY e
:?: -'; ‘\E:::.:
N R0
18 X i
2 Y
L. O
" r :{t:
57 0. €
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II-nR| <1 (3.20)

which verifies (2.12a). It is usually the case that R is at worst rank deficient, i.e.,
1 < rank(R) < dim(0), in which case it can be shown a submatrix of /-mR of
order rank(R) is contractive, i.c., a lincar combination of © parameters is contracting
over [to, 1o+ T). A similar result can be obtained for the system

0 = - edH(¢'0) (3.21)

where H is not necessarily SPR but can be expressed as H = H + H where H is
SPR and H is ‘‘small’’. The result is analogous to (3.17)-(3.20) but with the
exception that €||H]| is required to be sufficiently small and R is given by

T
= L
R = — '{ (H ¢)(H ¢)Tdt (3.22)

An earlier version of this result is in Anderson et al. (1984).

Now consider system (3.2) as if 6(r) had given properties. It is convenient to
define the regressor error

CORER OB 0 (3:23)
We then have (3.2) written as
¢ = ~GOE e+ (3.24)
Hence,
¢ = —0(7) (3.25)
where Q is the linear integral operator
Q = (+GONIG (3.26)
whose kernal satisfies
06,V = G, - }G(t, $)07()0(s, s 327)
x
It follows from (3.3) that if
6| < re™ |, A>0 (3.28)
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y then . :“:’::
-~ (2
150 | < Kigull. Zn (N - &) (3.29) F]
a-2A

which may be obtained from (3.3) and (3.28) by applying the Bellman-Gronwall g4s
lemma. If a> >\ then the peak value of | &(r) | could be as large as, but no oy :’{&
larger than, o ]

# < Kigell, = o (3.30)

For small A the term € can be quite big unless of course r is small, i.c., 6(r) o0
is small to begin with. From the previous example we saw from (3.8), (3.9) that even
though A may be of order € ultimately (3.9), it is possible during certain transients > "‘:.',i.‘v
for A to be large, e.g. (3.8) Further examples will be presented in the final paper. poAbAS

4. NONLINEAR ANALYSIS WA
[} -

4.1 Fixed Point Theory RS2,

In this section we show how the linear analyses of Section 3, separately applied NG o

to (3.1) and (3.2), can be brought together. This is accomplished by application of the R

- Banach Fixed Point Theorem (FPT), i.e., the Contraction Mapping Principal (CMP).

We need the following definitions. hudr

If M is a subset of a Banach space B with norm |||, and I is an operator | 3‘{;:-;
mapping M — B, then T is a contractionon M if 3 constant ¢ € [0, 1) such N
that S

ICx-Tyll < olk-3 , Y xyeM @1 Lo
v

The constant © is the contraction constant for T on M. A fixed point of N
IF':M— M is a point (function) xe M such that x=Tx. We now have the
following theorem as stated in Hale (1969). :

Contraction Mapping Principal (CMP): If M is a closed I:i »‘e..-:‘-

subset of a Banach space B and I'' M -5 M is a contraction

on M, then T has a unique fixed point in M. 8% NS
~

-
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In order to apply the CMP to the adaptive system (3.1), (3.2) we need to identify
the operator I" and the space M. For example, consider the operator I' defined by

¢ = ¢ -GO @) (4.2a)

8 = —edH(©™0) , 6(0) = 6 (4.2b)

It is clear that fixed points of I' are solutions to the adaptive system, ic., 6 =T0 is
equivalent to (3.1)-(3.3). In fact, the solution to (3.1)-(3.3) is unique and is also a
fixed point of T'. A convenient choice for the space M is

M={0ecloT:6ly < r} 4.3)

where we choose the norm on M as
= A 4.4
1161y, 'es?(fn | €¥6(2) | 4.4)

with A and r chosen positive constants. We proceed to apply the CMP as follows.
First, we establish that ' maps M — M. Hence, pick any 0e M, ie.,
|8(r) | < re™™, and solve (4.22). With 8(r) so chosen (4.2a) is a linear system and
the analysis in Section 3 applies. In particular, (3.29) holds. We proceed to (4.2b)
which is again linear since ¢ (1) is obtained from (4.2a) and is not dependent on
O(r). Thus, the results of (3.16)-(3.20) apply. We then enforce {0l < r, which
restricts the relation among 6y, K, a, A, and r so that I'=M — M. In this case
we also obtain that I" is contractive on M under the same conditions causing
I': M — M. These conditions will be stated in the full version of the paper.

The choice of M in (4.3) leaves too much imprecision in 6(). A ‘‘finer’”’
choice is to select the norm on M to be,

= B
16l = - | €760 | 4.5)

where B e RP? with Re A(B) > 0. This allows for greater possibilities in the
transient of 6(r).
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1 Other choices of I' are also investigated. For example, consider . :.-:}"'

A A

6= bty v

h".\.

et

rryoy: 10 = -¢66'0 , 60) = 6, (4.6) A

‘-'.\

:*‘ v=-G¢9 L

:: Again solutions of (3.1)-(3.3) are fixed points of I" and vice versa. In (4.6) I' maps {:; ‘.'{R /
] [ (N
2 regressor error, i.e., deviations about ¢e. Application of the CMP to I' in (4.6) I

! yields conditions on transient behavior. These are verified by simulations. RS

- s e

:~: -.1'\.‘(

-4
[
P
P,

)

4.2 Method of Averaging

- g > s
Y s
E One further possibility to predict transient behavior is to utilize the method of = a' s
ol averaging over finite time. This analysis is not then dealing with stability. In this - *‘_’:
.&3 analysis we can retum to the system of (2.1), (2.4), (2.5) which in state form is Rl
% : ' L
n described by e o~

6 = ede , 6(0) = 6pe IRP .
~J‘ " :-Ih::
- o e In3s
t‘é e = cx , ¢ =Dx @7 S~
b \"\.§
. -y .\S:' -
i x = A@®)x + B(OW(r) s, x(0) = xe R" e (
. ' - .!,.

(Recall that ©(r) is the actual adaptive parameter, not the deviation from ©.). To -~ ;\E

apply averaging requires a time-scale decomposition (sce, ¢.g., Riedle and Kokotovic f-?_ ‘ ,:;t
- (1986), Anderson et al., (1986)). This is accomplished by introducing the frozen :."‘-",
& system state x(t, 0), i.c., for each fixed 6 € R?, 5 \
A E AR )
3 ' R0
) 5, 0) = 4O + [ MOB@M(T)dn 4.8) R
;‘ 0 RIS _-:

. v .\.‘ £
E., and the state error F.E;__

) —:: el
E‘ 21) = x() - x(1, 6(1) 49 R

L p "'.
% £
; R
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The result is that for sufficiently small time intervals -- not necessarily small € -- the . RSN
parameter transient behaves like the solution to the linear system

£ (6-6p) = elb(s, )2, 8) ~ K1, 8))(0 ~ 6p)] (4.10) N

i
| PR
oC

'y 2
""

where ¢(r, ©,) and &1, ©;) are the frozen system regressor and error, respectively, r.,.;.f,
and R(t, 8p) is given by

R(t,00) = §(H,9) + &H,0) 4.11) | oS
ol

o In (4.11), H,, and H,, have their usual definitions, vis a vis (2.9), except now are

1B

dependent on ©p rather than ©@.. Averaging analysis proceeds from here in the usual P
way and will be documented in the full version of the paper. {;5. Py

5. CONCLUSIONS b N,

!

Y e
.}
-

NI

i‘ l..‘

e
3 .0 -

In this investigation of the transient properties of adaptive control systems we
have shown that some of the interesting phenomena can be analyzed. The tools for
analysis involve a combination of small gain theory, passivity, and the method of
averaging with these all linked together by the Contraction Mapping Principal.
Although each of these tools, in principal, involves straightforward calculations, it is
clear that the level of complexity of a realistic adaptive system is well beyond hand
calculation. Hence, an area for further work is in the development of software tools
which can eliminate some of the tedious parts of the analysis.
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ABSTAACT

The use of flxed point theorems i{s considered for
the stadbility analysis of adaptive systems. The
particular fixed point theorems considered are the
Contraction Mapping Principle of Banach and the
Schauder Fixed Point Theorem. 1t {s shown how the
contraction property can dbe achieved by exponential
stadbllity of the homogeneous part of the linearized
adaptive system, The region ©f linearization
validity 1s estimated by considering fixed as well
as adaptive tuned systems. Fixed-point theorems
are shown also to be wuseful for a transient
analysis of the adaptive system.

1. INTRODUCTION
A general structure for an adaptive system is
shown in Fig.1 and is described by the operator

* equations
e R Hew(8) ‘
= H(8)w = L (1.12)
3 Hou(®)
8 = nle.9), 80) = 8 (1.1p)

The adaptive system shown consists of three basic

subsystems:

‘1. The adaptation subsystem @ which uses the error
signal e, the regressor signal ¢, and the
intitial parameter value 8, to generate the
parameter 9,

2. The error _ subsystem He,(8) which is
parametrically dependent on § and takes the
exogenous inputs w - consisting of reference,
disturbance and noises - and produces the error
signal e used for adaptive parameter
adjustment,

3. The regressor subsystem "OV“)' also dependent
on 8, maps w into the regressor signal ¢. The
regressor is derived from measured signals and
usually §s constructed so as to represent the
states of the system model.

The decomposition of the adaptive system shown in

€1.1) 13 non-standard in that the plant and/or

controller 1is not explicitly visible. This
structure i3 chosen to highlight signal properties
and general operator characteristics rather than
plant/controller structures and parametrizations.

A similar decomposition can be found §n Kosut and

Anderson (1986) and Anderson et al. (1986).

In thia paper we will show how the Banach Fixed
Point Theorem (the Contraction Mapping Principle)
can be applied to study the local stability
properties of (1.1). To apply the theorem we
utilize the techniques of linearization about a
tuned system trajectory. In this paper the
constant parameter tuned system concept introduced
in Kosut and Friedlander (1985) is extended to the
more genersl oase where the tuned systesm oan de an
ideal adaptive system.

2. THE TUNED SYSTEM AND LINEARIZATION
In this ecction we develop an incremental
version of (1.1) which couples the deviations of e,

64

¢. B from tuned signals ea, ¢a, Oa. We first
develop the incremental forz and then discuss the
meaning ©of the tuned signals, For brevity we
introduce the notation

e en €
x e [¢]. xe = Joa], % » file u-xe (2.1)
] (9 [}
let Q(x) denote the operator
Hey(B)w
QAx) = [Hou(blw (2.2)
ale,e)

Thus, (1.1) 1s equivalent to the single expression

x = Q(x) (2.3)
Using (2.1) with (2.3) gives

X = Q(xs ¢ X) - xs (2.%)
which may also be written as

X e 8+ F(X) (2.5)
where

Se Hoyu(0s)vw = ea
& = Qlxs) = xu = |8q] = [Hey(n)w - o } (2.6)

[ Qes,08)w - 0B¢
and
Hew(BasB)w = Hoy(Ba)w

F(x) = Q(xeek) = Qxa) = JHg (0008)w = Hyy(Be)w
Q(esr@,0s¢4) - 0(en,00)

2.7

The abstract nonlinear operator representation
(2.5) 15 completely equivalent to the adaptive
system (1.1)., System (2.5) i3 referred to as the
error system version of (1.1) corresponding to
tuned signals es,¢n,8s. One of the reasons for
working with the error eystea rather than the
original system is that robust stablility of the
original aystem is more easily expreased with
respect to the system behaviour relative to the
ideal (tuned) behaviour. We will return to this
point later in the paper,

We now estadlish a ptual fr k for
linearization. Suppose that FP(X) s locally
Frechet differentisble with respect to & for all x
in some neighborhood of % = 0, e.g. |{X|| & r where

. 48 & nors on a Banach space B. Then, for all
”i' $r, we may act as 1if there were a linear
operator L such that

L&) » l’%f-;ill(i); ieo

N N N I SR SRR
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(30/39)".“ (39/30)“". 0 []
(2.8)

Hence, (2.9) is equivalent to
X = 8¢ L(X) * a(X) (2.9a)

where

a(K) = F(X) - L(¥X) (2.90)

Assuming for the moment that H(B)w and f(e,¢)
are sufficiently regular operators, then L defined
in (2.8) will be a linear integral operator with a
locally integrable kernal function. Under suitable
conditions on the existence of solutions to (2.9),
we can express (2.9) equivalently by

X o=k ¢+ N(X) (2.10a)
where

X = (I-L)7'8 (2.100)

N(%) = (I-L)7'a(X) (2.10¢)

The signal ¥, is referred to as the linearized
error system .response. Intuitively, if N{(0) = 0
and [[N(x ] s sufficiently small, then [|x]|
will be small. This would establish that the
‘adaptive system behaves very nearly like the tuned
system. This result can be rjgorously established
by appealing to the Banach,Fixed Point theorem, or
as it is often referred to, the Contraction Mapping
Principle. Before it 1s stated some definitions
are needed.

If M is a sudbset of a Banach space B, and T is
an operator mapping M-B, then T is a contraction on
M if there is a constant ¢ ¢ [0,1) such that

© HTx-Tyl| s ofx-y]], V¥x,y em (2.11)

‘The constant ¢ is called the contraction constant

for T on M, A fixed point of T:MsM 13 & point xeM
such that x = Tx, f.e. xcM 18 invariant under T.

Theorem V: Contraction Mapping Principle

If M is a closed subset of a Banach space B and
T:M+M is a contration on M, then T has a fixed
point in M. -]

This statement of the Contraction Mapping
Principle can be found in Hale (1980). Applying it
to the error system (2.9) gives the following
result.

Theorem 2: Linearjzation
Let B denote a Banach space and let B, denote
the closed subset of B defined by

Bp = (£ cB: ||f]]| ST} (2.12)
where r is a positive constant, Aasume that:

At: N(O) = 0 (2.13)
A2s | N(x)-N(Y) )] S Kyr|ix-y]]. ¥x,yeBp (2.14)

Under these conditions, if r>0 satisfying

(1) Kyr < (2.15)
(11) ||} s rOr-Kym) (2.16)

then 3@ unique soluton ¥ of (2.9) such that

HHIER (2.17)

Remark: There are any number of choices for the
Banach space B in Theorem 2, Useful cholces
include the Lebesgue spaces LP(J). pel1,=] with the
usual norm definitions, and the space of
continuous, bounded fucntions C(J) with nors
[Ix]lc = supl{x(t)]: ted}, where typically J = R,
or 4 = [(0,T), T ¢ =, By introducing exponentially
weighted multipliers on the operators and signals
in (2.9), we can then think in terms of a norm on
€[0,T) such that |{x||c = supl|ertx(t)]|:tet} where
A §s a chosen positive constant. In this way we
obtain convergence rate information about the
system (2.9), and hence, the adaptive systenm,

Conditions Al and A2 establish the local
Lipschitz continuity of N(x). Morcover,
Hxi} s r=> |[N(x)]| $ Kyr®. This quadratic boung
on N(x) i insured 4f F(x) is  Frechet
differentiable for x|] s r, because then it
follows tnat ||x||p s r »> ||atx)]|r = o(]}{x]{]).
The truncated norms are removed under the action of
(I-L)"' on a(x), 1.e. N(x) = (1-L)"'a(x).

Proof: Let T be defined by the right hand aide of
(2.10), 1.e,

T(x) = xp, + (1-L)"'a(x)
Observe that from (2.16), T:B.+B., i.e.
Hrxil s [IxLii * Knr® S r, ¥xeBy

Furthermore, (2.16) implies that T is a contraction
on Bp, i.e.

[1Tx-Ty|| 8 Kyr ||x-y||. ¥x.yeBp

with contraction constant Kyr < 1. By Theorem 1,
there is a unique fixed point xeBp of T, Since
x = Tx is equivalent to (2.10) which 18 equivalent
to (2.9), the theorem is proved. o

Discussion

Theorem 2 asserts that the adaptive system
signal trajectory is close to that of the the tuned
system (r-small) if the linearized response X, is
small. Observe that the smallest value of r s
limited by the size of ||%.|| which depends on the
interaction of (1-L)~' with &, We will see later
that § varies considerably with the choice of tuned
signals. Alsc, depending on this choice, both L
and 6 may contain integrators and thus, although X(
can be bounded, neither (I-L)~' nor § may be
individually bounded.

Theorem 2 @gives qQualitative {nformation
regarding the effect of the nonlinear term N(X).
Condition (2.17) shows that the stronger the
rﬁ:r_lliixearuy (larger Ky), the smaller the allowadble

x .

Lbeyond this type of information, Theorem 2 is a
little opaque because the internal dynamics of the
operator is not visible. Even so, we can still
regard as good the intuitive fdea that a small
linearized error response is essential for robust
behaviour near a tuned trajectory,

Before proceeding we remark on the possibility
of relaxing the conditions of Theorem 2. This can
be done by eliminating the uniqueness requirement
and only establishing existence. One approach is
to use the fixed point theorem of Schauder. The
following theorem statement is in Hale (1980).

Theorem 3: Schauder Fixed Point Theorem

I1f M is a convex, compact subset of a Banach
space B and T:M+M is oontinuous, then T has a
fixed point in M.

The cost of eliminating uniqueness (T oontractive
on M) is that M sust novw be & oOOmpact, convex
subset of B, whereas in Theorsm 1, M need only be a
closed subset of B8, For example, suppose
B = C[0,T], the Banach space of continuous, bounded
functions on {0,T), t<=. Then & convex, compact
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subset of M 1is the bdounded and slew limited
functions feb, 1.8, |f(t)| $r, Wwtc(O,T) and
{rO-r(0| s kfr-1], ¥1,1c(0,T]. We point out in
Section 4 that since T must be finite, Theorem 3 is
useful for a transient analysis of the adaptive
system,

system (3.5) ia esasily seen to be esguivalent to

b . coe - b, B(O) = De-0s(0)
e = Hoy(On)w = Hou(0a)v

¢ o Houl0edw - Hov(oe)v

A For the moment, led by Theorem 1 and Theorem 2, N
E we Will examine the linearized response. Veooev- ¢er (3.6)
3. THE LINEARIZED RESPONSE where

i

s

[ ]

LT

m»

In this section we will examine the linearized
system (7.10b), i.e.

X o 8 LRy (3.1)

In order to be more specific about (3.1), 1t fis
necessary to be more specific about the structure
of (1.1) and the choilce of the tuned »algnals
es, 40,00,
3.1 Tuned System

1n the formulation so far, the choice of tuned
signals is arbitrary. The most coamon choice is
where 6s is a fixed parameter in RP chosen as 1if
the plant were known, and €us,¢s are generated as
shown in Flgure 2, 1.e. from

f{es,¢s) = 08

Hence, the size of the linearized response is
determined by the ability of the adaptation
subsystem to hold ® near gs. !

An alternative scheme for generating e, ¢s,0s
is shown in Fig.3. In this case 6s i3 not fixed
but is the output of an adaptation subsystem., The

Heu(Bs) = Goy = GgyBi (19Gyy0é) 'Goy

Hey(0s) = Gy = Geybi (14Gy0i )Gy,

Hou(0a) = (I+Gy 0d)" "Gy,

Hoy(60) = (14G4y06)~ "Gy, 3.1

In the case when e',¢", 6" arise from the tuned
system in Fig.2, where oschF then (3.6) becomes

3 = coe, B(0) = Be-or

e = es - HeylBa)v

|

; en Hew( 8a)w
n = H(8a)w « (3.2) - - Hoyle B)v

} rn_. H ¢ = o evie

é ¢ ou{Bs)u v e cood (3.8)
In this case ve have from (2.6) that The linearized system associatea with (3.8) 1is

. ° defined by (2.10), (2.8) is:
- s = 0 (3-3)

tl‘ = clenes « guep + engL), B.(0) = Bo
€, = ~Hey(0a)(9idL)
WL = Hyy(6e)(¢iEL) (3.9)

Observe that the "inputs" to (3.9) are ¢s«,es and
Bo. Since es s small by definition, the main

o d ference between the system in Fig.3 and the cause of a large linearized reaponse is the initial
" system in Fig.! 1s that H(-) and ¥ are ideal parameter error Be = B¢ - 8a.  Since Hey(fe) and
o versions, or simplified models, of H(:) and w in Hoy(6e) are stable and es is small, it follows that
Fig.1. For example, Fig.3 could represent an ideal the stadbility of (3.9) necessitates the stadility
adaptive system which is globally stable, whereas of
Fig.) contains unmodelled dynamics and disturbances ,
which remain unaccounted for in the ideal case. In L = ~c 00 Hey(80)(04Fy) (3.10)
~, this case we have

A

Hew(0e)w = Houloe)w,
6 o [Houtondw - Houtoe)u 3.0
0

One of the major differences between the &°'s in

This system, which is a linear time-varying system,
can be analyzed by passivity methods [Kosut and
Fretdlander (1985)), amall gain theory [Anderson et
al. (1984)), and averaging [Riedle and Kokotovic
(1985)]. When Hgy(Be) is not strictly passive,
vwhich is the normal case for actual systems, the
latter two approaches offer similar atability

~ (3.3) and (3.4) is that & in (3.4) is bounded results, namely, if ¢ < 0 is sufficiently ssall,
::-5 wheres & in {(3.3) may not be bounded. The r angd if : .
LY is that 0 typically contains integrators. However . AT
* in both cases (I1-L)~'s 1s bounded, again, by the dminlavglesHey(Bs)eil) > 0 (3.0 N ".‘..a
action of the integrators (n L, i.e. the terms *
anOICIns in/;o. nees ! then (3.10) is exponentially stable, i.e., M1, ‘v '-" :,.
- 13.2 Adaptive System Structure 030 such that solutions of (3.10) satisfy L) e
Consider the adaptive system of Fig, & - - >,
s described b’ 4 4 s ’ ,t‘,(t—)l H "e °“’ ‘)IIL")I' Vt-tr 2 0 ‘3¢‘2) ‘&—.’m>
e w G Gaul (W If condition (3.11) fails to hold because at lJeast o
‘e, -G - ew v (3.5a) one eigenvalue {is negative, then (3.10) 1i»s \-’..l“.'\‘
5\ ¢ -v Gaw © -v unstable. This means that the adaptive syatem is Wl L
~ " ey locally unstable. "._-:\'('.{
v = ¢ (3.5b) When ¢>0 is amall, the adaptation is alow and RS
. (3.9) is a two-time scale system with B the slow LA
> with adaptatiun Bubsystem given by the simple variable. Notlce thst if (3.11) holds, and hence ain \
1 gradient algorithm (3.10) te exponentially stikbiv, It 18 posaible to “Cula
Y achieve bounded §,,8.,8. for any initial Q0
b 0) = . parametrization 3. Puus, any tanitial
8 ‘ cee,  0) L . (3.5¢) parametrization 8, will be tolerated by the \'.'.i ::-
e The operator G in (3.5a) 18 the "plant® and is dinearized eystem, In  the actual sysiem, .::u'\¢
o sasumed here to be @& matrix of 1linear limitations arise from the ooupling between the ot
o time-invarisnt operators with transfer function linearjzed system and the neglected nonlinsar terms - Seety)

L

G(s). Using the definition B « B-0s from (2.1),

66

as 1a evidenced by the restriciions on |fi.||

R IAY
\.‘"tﬂb*\.'"- ‘.; ‘-'s
W a et py 3!

P W W),

-
™

D A I NI

Y
"



LA

R A

PFPAPS

e ’\"5’& ) A ."‘." .". i

e

»
v

XA

RPN S

s PRt R

XA AL AAN R N

s e aa

toplied by (2.16)., These can be partially relaxed
by initially taking into account the two-time scale
system behaviour and developing & two-time ascale
linearization theorem analogous to Theorem 2, Such
results, derived from the method of averaging of
Bogolyubov and Mitropolskt (1955), have been
developed for adaptive systems, eo.g. Astrom (1984),
Rejdle and Kokotovic (1985b), Bodson et al (198%),

Anderson et al (1986). Qualitatively, these
results assert that Af B, s & stable
parametrization, then for sufficiently small ¢>0,
8(t) will wmove slowly through the constant

parameter stabllity set - provided (3.11) holds -
and arrive at an 0(]{ee||a) neighborhood of a tuned
setting 6s. Moreover, 0s can be determined from
avglespe] » O provided es¢s has an average value.

Kote: 1n general, the exponential stabllity of the
linearfzed system will {insure the contraction
property required in Theorem 2, How to ensure
an exponential satablity 4in the linearized
aystem {8 not completely solved, but at present
it can be ensured from passivity, small galn,
or averaging analyses, see for example Anderson
et al (1986). The interesting aspect of the
contraction (fixed-point) argument is that the
mechanism for the contraction need not be
apecified.

In the case when ea,¢s,8e arise from the tuned
system in Fig. 3, then (3.6) can be written as

e=es ¢+ 8o~ Hoylba)v

b= 0+ 8y - Hyy(Ba)v

ve¢'d

b = clee-greal , B(0) =0 (3.13)
where 69.60 are given by (3.4), i.e.

8¢ = Heyle)w = Heyloe)¥

8¢ = HoulBa)w - Hyyloa)w (3.14)

‘The linearized systems assoclated with (3.13) as
. defined by (2.10), (2.8) is:

€, = 6p ~ Hoy(0s)(ed¥)
8L = 6 ~ Hyy(00)(9iB)
B = closiy « magL), B(®) =0 (3.15)
Comparing (3.15) with (3.9), the operatora Hey(6e),

Hev(8e) in (3.15) are 1linear and time-varying,
because 6: i3 time-varying (Fig.3), whereas in

(3.9) the operators are 1linear time-invariant
because 6+ is fixed (Fig.2). Another difference §s
that the "inputs™ 4n (3.15) are wusually

significantly smaller that in (3.9). 1In (3.15) the
inputs are 8.8y from (3.14), whereas in (3.9) the
insuts are ¢ees and 8,. Certainly ¢ses is small
because es 18 samall. Also, &e,8y can be small if
the fdeal system (fig.3) s not significantly
difterent from the actual system (Fig.2). However,
the '‘nitial parameter error B, can be quite large
and, as slready discussed, can limit the region of
linearizastion validity, e.g. (2.16), whereas 1in
(3.1%) the effect of B, as an input is subsumed by
the linearization about the tuned trajectory of the
idea) adaptive systes (Fig.3).

The stability analysis of {(3.15) proceeds in
much the same way as the analysis to (3,9). Two
phases of the analysis can be distingulshed, There
is first a transient phase, during which e« ia not
necessarily moving slowly even if ¢ is small, For
example, when the inltial parametrization is near
instability it 18 quite possible that the pehaviour
of 8¢ 18 erratic - such behaviour has bean seen in
simulatiuns. After the transient phase, 08 Way
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then move slowly and begin Lo approach & constant
tuned setting. Let us first consider the tersminal
phase, afler the transients have dlsappesred.
Suppuse that 8s te+e, 0s(t)<BacHP, where 6s 48
like the tuned parametrization in Fig.2. In the
ideal case we may have ea(1)<D and ee(l)+ga(1)
exponentially fast, where ¢s{t) i3 like ¢s(t) in
Fig.2. Thus, neglecting the effect of the
exponenitially decaying terms, (3.15) becomes

61, - coo®L , B.(0) =0 (3.16)

€ = 8¢ - Hey(Bad (o)

- .6_. - IIQV(B.O.n)(;CBL)

Te = HeylBu)w

Ty = Hou(Badw = Hyu(Ba)d (3.7
Since Hey(6u) and Hyy(Ba) are stadble LTI operators,
the stability of (3.16) and (3.15) depends on the
stability of

B = - coeley(Ba)(3idy) (3.18)
which is precisely the aystem in (3.10), and 30 the
methods of analysis discussed after (3.10) also
apply. To reiterate, the main difference between
(3.15) and (3.9) is the finput magnitude. Hence,
{IXL]| s much smaller in (3.15) than in (3.9), and
80 the limitation on linearization validity as
expressed in (2.16) is more easily satisfied,

. TRANSIENT ANALYSIS

The drawback of carrying out the analysis of
the error system described by (3.13) is that the
properties of the error signals e,§,8 depend on the
properties of es,¢s,6s as generated from the ideal
acaptive system in Fig.3. Although a global
analysis of such systems is avallable [see, e.g.
Narendra, Lin and Valavani (1980), Kosut and
Friedlander (1985)) the results are qualitative and
the signal bounds are coarse. Thus a detalled
description of the ildeal system behaviour is not
available, Since the averaging analysis referenced
in Section 3 can describe the system behaviour in
some detail for small >0 with stable initial
parametrizations, it follows that a transient
analysis of the ideal system (Fig.3) is needed for
other initial parametrizations. This includes both
stable and unstable initial parameterizations. At
the same time we need & transient analysis when ¢
is not necessarily small, or as small as required
by averaging theory, or when t switches from large
to small values, e.g. a8 in recursive least squares
with a constant forgetting factor, In this latter
case the adaptation mechanism can be written as in
Ljung and Soderstrom (1983),

B(¢) = B,
R(®) = R(*)" >0

B = cR™'ge
R~ cles ™ R), (5.1)
Here ¢ is small but the choice of R(0) « (¢/0)l
with large o > 0 results in an effective large
initial gain ol, Other schemes can also be
envisfoned when ¢ in (3.5c) changes size depending
on the size of e(t) on aome measure, e.g. ||e||
over some time window {t-T,t]), etc,

The Contraction Mapping Principle (Theorem V)
can, in principle, be applied to the transient
analyais problem. Suppose that the ideal system
(Fig.3) i» glven by

b0 = - conpita , Ba(0) « B(O) - B

== H.(Eu)(o-'ﬁl)

es = 0 (4.2}

Copy available t5 DiiY Asan not
permit fully logitle 1 praduction
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foremost among these 18 '™ chuice of  Lun 2
signals. Tuo particuler natwal ohclees for
signals  are sdvanc. . which have respective
advantages. Other eotf{ects are such th.ngs as
sen-itivity of the conirolled plant to paramet~r

The notation §3 a LIt aveward, but Be = Ge-Be where
08 i3 Llw tunec tise-varying estimate in Fig.3; 0
» 18 the fiaed [iral valwe for which es = Da_und 'y
) 13 the fins) regresso: function when 6 = 6. In
orger to utilize Theorem 3 to establish the
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transient behaviour of (&.,2) it s necessary to
1dentify the operator T and the closed space M.
For example, one choice 13 to define T as the
Rapping <0 defined iaplicitly by

$ 5 -co0’0, 0(0) = B(0)-Be
o= 8- N (Bede'w) {4.3)

The set M can be chosen as
M= t6cC(0,T: ||o-0p]] 5 n, optt) = e'Bp(0))

variations sbout 8¢ (cinnected with the va. dity of
lincarization), «ctual magnitude chosen for the
galn ¢ (refleciing the trad: off petween
contraction oconstant/exponentias Qegree of
stavility and perturbation sagnitude), ohuice of
reference signsls, etc,, which reflec the
influence of the actual plant, specified . atrol
objective and law, and specific adaptalion rule on
the behaviour ¢ the somplete adaptive aystem. Our
thesis 1s that .he an.iysis, vis e.g. FPT's, of the
signal-based operator formulation depicted (n
Figure V' 1s & purticularly natural end flexitle

(4. &a) approach to th: enalysis of robust adaplive
co:trol, This .=»chnique provides counsiderabdble
with norm tnatgnt into the Qu:litalli.e lssues implicsted in
;.. schiieving  robust adaptive control . The
2o liciim = sup |E(R)} (4.40) quantitative issues require very such more specific
A tel0,T) site information (Poubell et al.).
where BcRPXP with ReA(B) < 0. The relationships REFERE:CES
._-‘- between B,T, and n are critical in the transient
-,"- and will be discussed in the presentation as space Anderson, B.D.O., R.R. Bitmsead, C.R. Johnson Jr,
'_)_'- in the paper is liaited. Note also that the P.v. Kowkotovic, R.L. Kosui, 1.M., Y. Mareels,
transient analysis can be carried out by appealing L. Praly and B.D. Riedle (1986), Stability of
' to the Schauder Fixed Point Theores {(Theorem 3) Adaptive Systems: Passivity and Averaging
40y where the space M above 13 modified so that ¢ is Analysis, to appear, MIT Press, Cambridge, Mass.
YA slev  limited, il.e. Jett) ~ atv)] s «|t-1],
Y opf ! ¥t,1c[0,T). Then M is a compact, convex subset of Astrom, K.J. (1984), *Interactions betueen
. CL0,T) as discussed after the statement of Theorem excitation and wunmodeled dynamics In adaptive ; R
3. In this latter case we are only able to control®, Proc.23rg 1EEE Conf. on Dec. and Contr., e
o establish existence. However, if the wmap T {is Las Vegas, NV, 1276-1261. *.‘(..-“
. locally contractive on [0,T), then unlqueness is r
tel also established. Bodson, M., S. Sastry, B.D.0, Anderson, I.M.Y, Y
ot . Mareels, and R.R. Bitmead, (1986), ™Nonlinear LY
N averaging theorems and the determination of ooy
D e CONCLUSIONS parameter convergence rates in adaptive control®, "'-.*\f
Two fixed point theorem (FPT) on Banach spaces Systems and Contr. Letters, to appear. !‘ }'X’f
have been presented alongside an  operator T o
Y forsulation of adaptive control in terms of signala Bogolyubov, N.N. and Y.,A. Mitropolskil (1961),
' 8,6.¢ - collectively denoted x. The Banach spaces Asymptotic methods in the Tneory of Nonlinear
PPN under consideration are varjious function 8spaces Oscillations, Gordon and Breach, New York.
,"f {x{t):tcT) for T being the time-index set and
' _"4- compact subsets §n this aspace correspond to Hale, J.K. (1980), Ordinary Differential Equations,
. " collections of neighbouring (under the appropriate Kreiger, Molaban, FL, originally published (1969),
. norz) time functions. A fixed point of the Wiley (Interscience), New York.

operator equations of adaptive control is
. identified with the complete time hiatory of Xosut, R.L. and B, Friedlander, (1985), “Robust
N adaptive control: conditions for global stability®,
‘-

1EEE Trans, on Auto. Contr., AC-30(7):610-624.

x(«9,8,e) for the adaptive control problem. The
; role of the FPT's is to allow derivation of
: conditions for these ajignals to remain close as
b . functions of time to nominal, well-behaved

Kaosut, R.L. and 8.0.0, Anderson, (1966), “"Local

¢ s, trajectories ¢s+,6s,00. stability analysis for & class of adaptive
FR The formalism of appealing to these FPT's systems”, I1EEE Trans. on Auto. Contr.,
4 ' dictates that a formulation such as (2.5) i» AC-31(1):86-89. !
) achieved for an error system. Our approach to this Sa d
is to involve a linearization about our nominal Ljung, L. and T, Soderstrom, (1983), Theory and ! l!
) __." values, Local contractivity of the nonlinear Practice of Recursive ldentification, MIT Fress, O
,-: operator equation 1s implied by exponential Cambridge, Mass. s
» stability of the linearized adaptive control araaY
problem. This implication is at the very heart of Riedle, B.D. and P.V, Kokotovic (1985L), ™A LTS,
our aethod. Smallness of the additf{ve operators stabllity-tnstadbllity boundary for disturbance-free ..’-_.‘-,‘
-, due to unmodeled dynamics, linearization, ete., is 8low adaptation and unmodeled dynamics", JEEE "‘.."_.‘
'y then invoked to prove the good behaviour of the Trans. on Auto, Contr., AC-30:1027-1030. ‘\ \S
.t adagtive control system via the FPT, e i
It 1s clear that there are ®many aspects Poubelle, M.-A,, H.J. Wood, R.L. Kosut and R.R. .s~
affecting the quantitive application of these ideas Bitmead, ®Floating-point theorems for stablility ‘iﬁ
* v.'f - Should anyone ever deem this appropriate - ang analyais of adaptive control", under contemplation. '...r.,"q,,‘
o . . )
Oy o ,,.\_.\‘
\J »
: R
“- W
. o
) ﬁi : !‘!", Wy
f Ca o e
. L]
. <. s
:‘.- :;::.‘.“t'
b A
: Cor - vl
e 68 " e

A

Rl B 3
4-":"}1"3" ’
4255 ‘

e p A AR A r A" a e o m e p a5 a e mn iy mamn s e e
o e A L o e e o S o
D) . B B gl e

_:(\'4‘_:1‘.;-'.;-:\.‘\'q:,‘i'_;q'\-'_..:\J'\I ot N VT
L} N R N - . »

b 5
;:




DM T X XA NP R 4 VAR AR AR P
ndy Yo DI Ty s W
LA *-‘dﬂN”¢" &4 s E \.-. o I.‘-l-. -\},mr -l-\-\-ﬂ.-*\ ", ~\u L \.-n)- -t
FRANAIIY KA BRI AAANT LAPILANCN 2R,
AN AN 5 M > F IR U SR Fols A s R 41

Bl TN

-'I’I" - A ) ‘\

L J *
@ o
pr ’
A
i &
) ﬁ C4
2 L3
a :u
X 2 5
B . A
\{'
[ nu d
% — pF m g @ ..r
> »
]
s 5 & B 5
x hd ] & * o e b
o > - o
e <> .v. (;-
& ]
.
- o ;
" 2 m v,
: ] 3 a N
“ .“ @ [ *
: = P . = es .W ‘P
* N o &
s » ) [ s &,
T c
3 z ¢ & @ ) 3 h
'z ' ~ M o~
<> @ X
& L ) - _.:-..
A g P %
: 2 X
® - & a4 ® h
S
kK, o )
_ S e ©
v s : e
> & 4
eh = S o - anﬂ %9
” g
2 . x 0%
b~ © M.. .m. l-r.
L3 < e ! 3
z M = s h
A .
e ..
2 : 3
{
h ¢
o .
-4
[

e
NN

M4

. >
" Y4 . ¢ .Iﬁ
- s
e
.
r
)
)
n
. A
. i "
. .

L 1‘,* .y



ey
DAL

R

L

g 537

NNy,

A

o)

S

225055 202N NS XV NTI N

-

Suems } Gavd LeWers

Yo aygmn .

BOW EXCITING CAN A SIGNAL REALLY BE?

1.M.Y. Mareels*!, R.R. Bitmead!, M. Gevers!?,

C.R. Johnson? Jr, R.L. Kosut? and M.A. Poubelle*.

Research Assistant with the National Fund for Scientific Research,
Belgium, whose support is acknowledged.
Department of Systems Engineering, Research School of Physical
Sciences, P.0. Box 4, Australian National (niversity, Canberra, A.C.T.
2601, Australia.
School of Electrical Engineering, Cornell University, Ithaca, N.Y:
supported by NSF Grants No 85-13400.
Integrated Systems 1Inc., Palo Alto, and Department of Electrical
Engineering, Stanford University, U.S.A.
Turramurra Institute of Technological Sciences, N.S.W., Australia.

| NN
S
LA
: t'/.livl!;:'c.‘.."..&

et
‘nl
§

&~

‘

D
e Tt
.t ’

»

-,

:-'-‘ &

.

Pl
’

.
.'~
a am

.-_-.{,

o
)
XN

..- "l

".a
l.

{

’

l,l‘ -
A
!. -’ n.

Sy

P

Y,

P
a8

L
’

-
bl

gy A

LR

N

70 TN

- -

1‘\.-‘\.5'

P PR . T A ALY L LI S T L I A e e TS
oA At ARARER K Yy LSO AT At L L L N
AL A AL PRI U R R ¥ I |




¢ WY 0 ‘P 4 Y R \ W 4 »
~ WL P e Ay S0 % P RN T A AR e &9 LR IR R SN Y aRu® ¥ -

‘ ' ABSTRACT
u,
o
)
,,O
Y The rate of parameter convergence in a number of adaptive estimation
%Q schemes is related to the smallest eigenvalue of the average information

matrix determined by the regression vector. Using a very simple example,
we illustrate that the input signals that maximize this minimum eigenvalue

may be quite different from the input signals that optimize more classical

input design criteria, e.g. D-optimal criterion.

>

) SAATGALLY:
» .
Sy
rr s r.v
L YL ’5’5
piA

1wy

Key words: Exponential convergence, persistence of excitation, experiment

AN,
FL
L L

design

’5“.\5‘:
“ s P
} }'.i"ll-f

5

vy
RS
Py
-4
»
Shf

")
o

‘,‘-
A

N
a
LN

[y
[

P
Y
5

L
7
X

“l

b e, }
iy
2§

v,

A

W

, N

! T \
v NN

’ “~

V .E_\'-

W)

[
Y \)vt\w:\ X




.\
4
h
7,
’
[ ]
.
1]
-
r
-
T
L4
L g
£
L}
T
t
t
"
,
»
»
.
x
.
L}
*

x
1
A |
R
o
%
]

) :‘I

N

LRAEN

» % v Y
..

‘ I-Q
]
W
X/

iy
'y
.

. , 1. PREAMBLE "
(% R
[ o Listen: The concept of "persistently exciting" (PE) signals has Q.f',;}]
- o, ,4

ﬁ invaded the adaptive systems literature at an exponential rate. Currently, m
|
3" many papers on adaptive estimation or adaptive control contain long h By
. L
.:'_:E derivations proving that there exists some T>0, some t530, and some o0, v
b, S
B8>0 such that a certain regression vector @(t) satisfies the following f
[ ’ . b 1
b condition !
3 5
¥ - t+T ,:f_‘.:: >
T B1>1 [ emeT(m) ary e for all tit,. (1) $oivs
* t i.‘l-\‘:i
s, * .}' ’ . . . rae . 5 h" 'Y
o This is the celebrated persistency of excitation condition. The regression :_C":
L :.\:-'- 1
3 vector ®(t) can take many forms, depending on the problem, but the ;'._{'}"
‘c‘ :t* .'s’.d
b P: following form is typical: E’ g
b oT(t) = —L— [ult) act)...u(M=1)(t) y(t) y(t)...y(P"1)(¢)]
- -_’ (S"”)n 1 A
. (2) )
M )
‘s "e . s » . . . W
- ' We have assumed & single input single output (SISO} system for simplicity, 5“&-
» with input u(t) and output y(t):; ¥ is a positve constant and n is the order ':j_ﬁ
J Lt
e v N )’.
= of the system. -'.\:‘:-?.
e :’-::-.g
It is beyond the reach of this short technical note to dwell on '::"':k
"
g the many occurrences of the persistency of excitation condition in adaptive :-;-_1;—;4
4 S
j,). estimation and adaptive control theory, but for those readers unfamiliar E-\}:«;J
L o, MOeN
e with this field let us just say that this condition is often appealed to to 5\}:
Slane
N :-_} establish the exponential convergence of & linear time-varying error P‘-'f‘j
s, o :‘.-:\:.
: - system. This insures the exponential convergence of all internal variables .j:.:-':.
S e AN
A '3:'.: to their desired values in the idealized case (constant system, exact model é&'.r.
\.
- matching, etc.) and their boundedness in certain non-ideal cases [ |
;: ':)_ (time—varying parameters, unmodelled dynamics, etc). And so it goes. :'-'-.'-f?:'
L4 - \._:-"_..‘
) The simplest and most informative occurrence of the PE condition :’}:f_{
2 AN
A A

e is in the analysis of gradient slgorithms for the estimation of a parameter ;_5- .I':
"‘: A vector. The error equations have the form :'Z'_:::j:'.
R et
7’ o(t) = celt)e(t) (3) R
- PNy

- -
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~4-
where o(t) is the parameter estimation error, ©>0 is the adaptation gain,
¢(t) is the regression vector and e(t)=—eT(t)e(t) is an error signal. It
can be shown that, subject to ¢ satisfying (1), (3) is uniforwmly
exponentially convergent to zero. Further, if additionally ¢ is small

(actually €BT<<1) then the convergence rate of (3) is bounded below by

k = € Agin(R) + 0(c?)
where
T
n—l'lj T
= lim 5 o(TYol(T)dr
Toee 0

assuming this limit exists. That is

je(t+1) | ¢ Ke KTe(t)|
for all t and T and some 1(K<» fixed, with k being approximately linear in
e [1,2,3).

One is then drawn to ask how to maximize the convergence rate of the
error system (3) by manipulating designer variables - specifically ¢ and ©.
In most adaptive situations the algorithm gain € is constrained to be small
relative to the regressor magnitude by the requirements of noise rejection
- the variance of the parameter error in adaptive filtering is typically
proportional to cB* {4] - so that the small ¢ assumption concurs with
engineering dictates. The meaningful subproblem then is: given that ¢ is
already smail. how can we best choose ¢ to achieve maximum convergence rate
or, more fully, with ¢ determined by (2) how should we choose u(t)?

Our aim in this paper is not to develop broad new frontiers in the
robustness of adaptive systems, on which entire books could be written [1],
but rather to analyse critically the PE condition itself with a view to
answering some of the practical questions raised above. The overwhelming
body of work so far has been algebraic in nature in establishing conditions
for the regression vector @ of some particular adaptive system to satisfy
(1) for some « and B. Our discussion above shows that it makes good sense

to keep ¢8 (or ¢f') small, and that, if €AT is sufficiently small, the
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convergence rate is proportional to ¢x. It follows that it is desirable to

W B3
1
I
. ‘-.f-" OO
~ )3' /i
=

.5}\ ‘e
generate regressors ¢(t) that will maximize o and %/g. The question we j\,»_:‘
i Yl
want to investigate is: "How can we achieve this by & proper choice of : RENN

ult)?*. N
:.3 This is clearly an optimal input design-type question. Input design NN ;.:;
*
was more fashionable a decade ago in the system identification literature, N
': where persistency of excitation also originated. However, most of the ?".r::'./_'}
: et
.. effort was aimed at maximizing the determinant of the information matrix f-\-';‘f-
9 ALY
-~ (this is called D-optimality), rather than its minimum eigenvalue, or the :‘é_"
‘v" inverse of its condition number. 1In this note we examine the very simple TN
y o]
¢ case: :'::-J_ ..:-{‘.,
- EREAN
\ u(t) b g
E; o(t) = , H(s) = s*a y(t) = H(s)u(t) FRT A A
y(t) ”-ﬁ—i':
TN
and we solve the optimal input design problem for three different criteria. PR
v.‘o. et
_ We seek the input u(t) that meximizes, respectively, Amin(R), et
n PN
. Apin(R) /AgaxR), and for comparison purposes, det R. Given the connections . TR
RO
o, we have established with the convergence rate of an adaptive algorithm, we :.f::.-_ .'(-C
™ _.:‘:.-‘:.{:_:
N shall show that meximizing the determinant leads to & rather poor input :)::::':-'f_
.’\‘.':':'-
! design. The main reason for its popular use is probably the simplicity of Rl
computation of the optimal input. ﬂfrﬁ
o Ny
,::. Some of these issues of experiment design in an adaptive systems :::-‘-2-‘:
» . .I f -.l
context have been raised before [5] simply to emphasize the connection. "".:.'-f:"'?,
&'-, 4
'-', Here we stress the unexpected difference between adaptive experiment design
- and optimal off-line experiment design.
~t
s One reason for our interest in this question arises from experimental
’ attempts to generate PE signals for simple linear systems, with an edequate
'.Q
¢ "richness"” of the regression vector ©(t) leading to a particular minimum
e convergence rate of the error variables. It is often thought that only en
P
academic researcher with a very twisted mind could generate signals that
>
::: will violate the PE condition (e.g. try u(t) = cost? going through a low

] 74
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pass filter). As it turns out, the problem is not to generate a &(t) that

NAA
s”x{'.

> P e

satisfies (1) for some o>0, but to obtain an « that is large enough to

L g
.
- o
f\-‘;n
X,

produce a reasonsble convergence rate for the adaptive algorithm. In other

fal '3
.

b

words: How does one turn exponentially slow convergence into exponentially

fast convergence? Finally, we wish to mention that we are by no means the

A

first to discover that exponential convergence can be exceedingly slow, and N

some authors have conjectured that the slow convergence was probably due to

VA

a poor choice of input signal (see e.g. [6]). Given the practical ;i*\

importance of the question we raise, it is surprising that almost no o é{;
d attempts have been made to answer it. The purpose of this note is to give < FIF
some very preliminary answers based on the analysis of the simplest o ;;?
W possible case. We believe that our results provide a lot of insight, at R :

least for us, which may help crack the more general case.
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.. 2. _EXAMPLI GRATIA*

In this section we consider the situstion of a two dimensional

9 ) regression vector:

o(t) = (u(t) (Hu)(t)T; terRr (2.1)

LA

consisting of the input u(t) and the filtered signal (Hu)(t) - where H is a

strictly stable, causal, linear time invariant operator with transfer

Al
Yy

function

> H(s) = ;b;;

scC, a0 (2.2)

o This is typical for the adaptive identification or control of a first order :t'-l-:}'r
e -..::_ﬁ.
fe
plant. The design variable is the input u(t), which we want to select so :.:f.::
w I
“h as to guarantee "optimal” performance of the adaptive system. Under the f.;_

mild assumption that the input allows the definition of a power spectrum

{1], this boils down to investigating the properties of the matrix:

.. T

| R = lim & I o(t)o(t)Tdt (2.3) =
Tre T BN
0 \‘.\..-.
-'\
) L)

[ 4
.

i

The input’s power spectrum is defined as

o« Pa
+o ,‘-:":"
’ sw) = [ rMeTar; wer (2.4)
-9

‘: where r(T) is by assumption Fourier transformable, and is defined via

::: o+T
- .
r(r) = lim 2 j' ultiultsmydt: T,& € R (2.5
Tteo
o &

where the 1limit exists uniformly in « (for u(t) defined on R*,

- oY ad@in(0,-7)). Under mild conditions the spectrum uniquely determines the

input.
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b aly
i R *
: Obviously (2.5) and (2.2) imply the existence of R (2.3), moreover R is N j::_‘\
'5 ...' -‘:-
Y given by: A
a
) +00 +o ';
0
N | s(waw [ swren(was
'O - -» C‘J"-
! R = (2.6) o
+o +o
§ j S (W)ReH( jw)dw ] S(W) |H(jw) | 2dw T
< . - S
f .
N where in this case ::
! .v _b 1 L
ReH(jw) = = =w— (2.7 W T
,‘ a we R
- ’ Ez "i .
: b 1
Y 2 "
IH( jw) |2 = (2.8) Y
L Jw) 2l —2:;"—‘ ) ::'_,‘{
a
' We compare the following three input selection criteria: \ :
?
. Selection Criteria: 3
& Over the class of input functions (u(t), teR"), which have a power "
: )
3 spectrum (as defined in (2.4)-(2.5)) and which satisfy the constraint: :'
) LY ) ;
g 2
b, 0| swa <1 (2.9) b
)} e ; _
: .f" X
! maximise, either R, ]
. .
(c1) det (R) . lem
: |\: N '-:\:.
or '\‘ :-'::f:-'
RS
(€2) Agin(R) s ‘;‘;:-:
s
or B
: (c3) Az (R) Agax(R) 2 R
e min' N/ *pax'®). vils '{G

b "8
-

s
Y
< W,
) ;
o
. Solution: et
s AN
0 :c. KA
Define < -::;-::-:
RO
LSS
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s w l

Y h' I S(W) —— du

' s W

% —! + l

; «=z = 2 (2.10)

“ - e

. ’ [ swa

2 . -

te]

”n‘. & and

SRS M(x) = , (2.11)¢
b

¢ 1 % =

- J Surprisingly, we have that

Y 0

1 R =M [ swas (2.12)

¢ .

- .

e é and

X 0 ¢ax¢l (2.13)

.-‘ A..: e

A Therefore, the optimal input functions acording to (Cl) or (C2) satisfy

(2.9) with equality, whilst for (C3) the magnitude of the total input power

)
-

is immaterial. Consequently, the optimal inputs are characterized as:

3
A
N '.;; 4+ +e
:5) - Cl-optimal: I S h—,!—l— @ = of: I S(Wds = 1 (2.14)
'4;: N 40 +o0
b . c2-optimal: [ s@) gri— v =af: [ swids =1 (2.15)
b2 5 -  at! ~.

ot +00 +o0
4. ] 1 .

' o c3-optimal: [ SW) - v -oda s a1 (2.8
- ' - as +1 -
e 2.

v > where the ofc(0,1) maximise respectively detM(a), Ip;pM(®) and
» ApigM(@) NApa M(a) over oe(0,1): and B is any number in (0,1].
2 %
LS
1' !‘!

e

= * This matrix M should not be confused with the M matrix of Poubelle
. et.al.[6].
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P2 -10- L
f:; After some simple calculations, we arrive at:
x'
e of =172 (2.17)
)
of = 2 < (0 (2.18)
4+—
N o?
4
)
:3, of = —3— € (0,1) (2.19)
<y 22
2
\! a
N Equations (2.14)-(2.19) characterize all "optimal" solutions. In order to H\ SxFR
N WY
AY oy v{an
:j get some more insight, we verify whether there exist optimal inputs of the > :ﬂ‘\ﬁ

1S

by

"

¥

[ %
!(“\.

u(t) = /2 cosw¥t, t € R*, w¥ ¢ R* (2.20)
S 2
:* with power spectrum: $,‘ e
) N
N S(w) = H(S(W-w¥F)+8ww¥)) (2.21) 2;
L}
. Solving for w¥ we find respectively for Cl, C2 and C3: - i
w¥:a (2.22) an
-, S _\:
- 2 Y
N WE = a(l+-2)M (2.23)
~ S
, 2
o Wt = a(2Ry¥ (2.24)
\ a®
h =
P
b For this type of input (2.20) we collected in Table 1 the relevant
M
.'»h quantities (det R, Apin(R), Apin(R)}/Agax(R}), as a function of b and a. 1In \
:’; Table 2, the same quantities are displayed for b/a = 1. :g :‘L :
\‘ . \‘
' AN
’ :; he :t?\
ROECR X
" For the purely sinusoidal input u{t) (2.20), the dependence of the » {':f&
:',i determinant of R on the frequency w is displayed in Figure 1. (Notice that [:_' --f.-!‘.
< B
:::\, the determinant is normalised by the D.C. gain squared.) The minimum e s
N ) v:;v“)
P eigenvalue and the condition number are displayed as functions of frequency é ;l:';l
—— ‘.,
\, respectively in Figure 2 and 3. The full line corresponds to a D.C. gain ."-—..-:
g, % e o, '.‘fn
. Y NN
. of 10, whilst the dotted line correponds to a D.C. gain of 1. { .:-"'\‘
LY :‘\:::\
A\ ~ at '{
€55
i 'C -
b o -‘.\
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N EES
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Table ):
Amin(R
Criterion ¥ det R min(R) 'i"(n)
b2 / I b,
1 b2 b2 . /I6% | e 17 a7
1 a a7 Mg~ 17 39| T
toarl g ow
2 he 2
s 2(2*%?)%? %2 4a2
c2 a 1"‘—"22a 5 -—rb E‘z— + 2
(4+32) My
— 4 2 4 2 2 4 2
\ s 227 325 1)-/ 2ele1 | 31/ Daeely
¢ a/ 273 X3 52 B2 v
2 (225+1)2 2(225+1) (Rgr1)+/ 23462341
Table 2: (D.C. Gain = 1)
Apin(R)
. . wk . min
Criterion det R Apin(R) —))
o1 1 3-45 3-/5
a 3 ) KT, 1
6 1 1
c2 a@ 75 5 5
2 2-/T 2-/T
C3 av? -9- ——3 .
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b 3. DISCUSSION : z
) 4 J
) Consideration of input sequences that maximize the minimum eigenvalue ":
of R (as in criterion (C2) of the preceding section) is encouraged in the -
. A
e introduction. This point is argued persuasively, and with more detail, in i
b {5]. What is not examined in [5] is the difference in the subsequent input "
choice relative to the more common objective of determinant maximization h b
’. [Bi. As stated earlier, the purpose of this note is to draw attention to ':_"
» .r'
}_ this difference via examination of a simple example.
o, s
. 1. The most immediate observation is that maximizing the winimum N
eigenvalue of the information matrix yields a different "optimal"” input
’\
3 sequence from the one derived by maximizing the determinant or the I
LY O
l'.I ’.
: ratio of the minimum and maximum eigenvalues. A -;’:
- :-\ ! f}l‘ ‘
B 2. In the first order example of Section 2, the frequency w¥ of the i ," ‘
g [
N selected sinusoid is the breakpoint (or 3dB) frequency of the plant in -:,, t::
~ ’ .."" :.r_
> (2.2) with determinant maximization; while w* is larger for minimum g
- . 7 ‘
eigenvalue and minimum-to-maximum eigenvalue ratio maximization *q’ ;
",': objectives. In fact, as the D.C. gain (b/a) of the plant increases, so
7 Y
- do the selected input frequencies for the minimum and minimum/maximum l‘.\ OO
: i,
eigenvalue maximization criteria. T
¢ S .
_ 3. One interpretation of the tradeoff inherent with w*¥ selection for o ,
»
: minimum eigenvalue maximization is its tendency to make R in (2.12), or “o
: R
equivalently M(a) in (2.11), equal the identity matrix by attempting to . - -
o '
X keep the plant gain close to one while simultaneously attempting to '_' ':.':\".'
‘N e ..:~*‘-
. achieve a 90° phase shift in order to null the off-diagonal terms on ’;-_i.:-‘:
X . N NS
: average. Table 2 indicates the compromise between these conflicting t‘_: :‘&-“S ‘
. objectives when b/a = 1. This interpretation also explains why the Y
. o PR
W input frequency that maximizes Xp;,(R) increases as the plant D.C. gain N g\ 'h
o " NS Y
) increases. . : o
~3 .
4. We should also note the nonuniqueness of the "optimal" u, unless, as in o n A
' Tl
our example, the input power is constrained and (u) is aessumed to be S _".:":;
AR RY L
- 7‘1“"::1.
Ry
|,
81 o -
A
t{ .f.
e . . - e a- . e E e A A TeT e . e PN . N
AT IEATAE NTAS AT Pyt PR N A LS NN UL NN BT "A"""-}‘ e rp ety _,\::-.i-._
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o composed of a number of sinusoids. We refer to [B, Chapter 6] for

)]

oL further comment.
5. One extension of "optimal" input selection would be to incorporate a
! measure of sensitivity to imprecisely known plant parameters. Such
;-: plant model imprecision is actually the motivation for identification
v procedures and the associated input selection. The example in Section
g 2 clearly indicates that the "optimal” input, by the various criteria,
'; is a function of the "unknown" plant parameters.
E:: 6. We note that in this example the sensitivity of the X\p;, design
. criterion is better than for the determinant criterion as is clear from
:‘\.: Figures 1 and 2. Further, for all three criteria the penalty for using : -
§ higher than optimal frequency appears less than that for using a lower ~E§'§:{
frequency than optimal, and the sensitivity for the Xp;, criterion in ‘!; J
. this example improves with increasing D.C. gain. This criterion is the :; :

one of prime interest for the convergence rate.

Finally, as discussed in [5], optimal input design questions are

:}.-' perhaps better posed in an adaptive estimation context than in an off-line
] identification situation. This is because, as the adaptive identifier
. learns more about the system, the input signals can be adjusted according
:.j to the relevant criterion. The insensitivity to imprecise knowledge of

system parameters is then clearly advantageous and of relevant concern.

-
. LN,
N o
4. CONCLUSIONS RN
¥ el
}- We have argued that, in the case of slow adaptation, the smallest ﬁ;&
.. eigenvalue and the condition number of the average information matrix g%
_ ,-'."""J-\'f
D determined by the regression vector should be considered as input design ;%:::
RN
. criteria in order to maximize the rate of exponential convergence. We have {'3&:
oY NOs Ny
gt
then performed this optimal input design in the simplest possible case, NI
- ,\', ',s.'r"
- which allows a complete description of all optimal solutions. One should :j:':}.::
v, e

’ 82
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that:

criterion for optimal” input design in

identification.

deserves much more attention.

"Nyuk, nyuk, nyuk" -~ Curly Howard
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be very careful in extrapolating the conclusions of this simple example to
more general situations, but we believe that the main merit of our note is

to draw attention to this problem because it follows from our analysis

1. The optimal inputs that result from our design criteria are quite

different from those obtasined using the classical D-optimality

parameter

2. 1In some adaptive control schemes it is presently being advocated to
concentrate the input signals in low frequency regimes in order that an
average signal positivity condition (related to strict positive
realness) is achieved. The results here indicate that this may cause
an attendant decrease in the level of persistence of excitation.

Given the practical importance of optimizing the rate of parameter

convergence, and given that this preliminary analysis points in a direction

opposite from presently prevailing ideas, we believe that this problem
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STABILITY THEORY FOR ADAPTIVE SYSTEMS:
METHOD OF AVERAGING AND PERSISTENCY

OF EXCITATION'
by
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Integrated Systems, Inc.  Australian National University e

101 University Ave. Research School of Physical Sciences ey
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ABSTRACT

A method of averaging is developed for the stability analysis of linear differential
equations with small time-varying coefficients which do not necessarily possess an
average value. The technique is then applied to determine the stability of a linear
equation which arises in the study of adaptive systems where the adaptive parameters are
slowly varying. The stability conditions are stated in the frequency-domain which shows
the relation between persistent excitation and unmodeled dynamics.
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1. INTRODUCTION

For a large class of adaptive feedback systems, as well as for some output error
h identification schemes, a stability analysis in the neighborhood of the desired behavior
3 leads to investigating the stability of the following linear system of differential- X

operator equations (see e.g., [1]-[3], [20])
. - .
. 6 = elf - $H(¥'O)) (1.1a) T
where 0(0) = 6, € IR?, € is a positive constant, f("), ¢(*) : R, = R? are regulated . El;?:.,‘_
and bounded, and H is a linear-time-invariant convolution operator with kemel h(f) ‘Eﬁ f.\,.\*" ?
and transfer function H(s), i.e., z
t 55: A

(Hu)() = [ h(e~t)u(t)dr (1.1b) ¢
0

; o

We consider the case when H(s) is strictly proper and exponentially stable, thus, h(r) {0‘ 2
:' is bounded by a decaying exponential. The strictly proper assumption is not necessary o -Cf.\:
: for analysis, but it is more often the case when (1.1) arises from dynamical systems. ~ :‘,’.::f.:’_':
! The same can be said for considering the general convolution (1.1b) and not just the :E‘.:;Z:E

case of rational H(s). ; )

The specific problem we consider is slow adaptation (small € > 0), and to :.'T_’:
determine sufficient conditions for which the map (£,8p) — 0 defined implicitly by N Z;:::SE?_-i
X (1.1), is exponentially stable, i.e., there are positive constants K, o such that - EE::E
¢ 2 ;;;_;
B < [Ke ™ Ifn)|dt + Ke™™| 6 | (1.2) PLRN
| When such a condition exists, it then follows that the adaptive systems from which : ;‘;‘E‘;
»

(1.1) arose is locally stable,

: Linearization and Local Stability N :“

aY N N . o . "\u

\ In (2], for example, system (1.1) is obtained as a result of linearization of the ‘:; E;?.:.;*
: adaptive system in the neighborhood of a ‘‘tuned’’ system, i.c., a system where the & é'"
\ adaptive parameters are set to a constant value 6+ € IR? and whose behavior is -;
4 . { \'-. LA LN

? deemed acceptable. Hence, in (1.1), 6(¢) is the vector of parameter errors between the e
b -

2
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g

*" > parameter estimate at time ¢ and the tuned value 6., ¢() is the regressor vector

- ! from the tuned system (e.g., filtered revisions of measured signals), and the scalar €

NG Y- is the magnitude of the adaptation gain which essentially controls the rate of

- . adaptation. The operator H depends on the actual system being controlled or

é‘: EE identified and also on the tuned parameter setting 6. 2
. - It is shown in [2,3] that if system (1.1) is exponentially stable, then the adaptive - '_
-} ot system is locally stable, ie., the adaptive system behavior will remain in a E}:'_:%
™ neighborhood of the desired behavior provided the initial parameter error 6(0) and ﬁ::‘_:l:’_
& \2 the effect of external disturbances are sufficiently small. Although the results in [2,3] '.'_:T:'i;

g were arrived at using input-output properties [16], the local stability property also 5
ZNEW follows from the results on ‘‘total’’ stability [4], [20). ',:;‘::

) O pa

2 . : R
N Unmodeled Dynamics and Slow Adaptation

g C In the ideal case there are a sufficient number of adaptive parameters (the number

.‘:; e p) such that the tuned parameter setting results in H(s) being strictly positive real

E: w (SPR), i.e., ReH( jw) 50,Yoe IR,. Under these conditions, we have the following K

25 results (see e.g., [5)-[8], [1]): (1) system (1.1) is stable, i.e., O(f) is bounded but not S

~ . necessarily constant; (2) if, in addition, ¢(r) is persistently exciting, then system (1.1) S
z-'__ is exponentially stable. The trouble starts when there are an insufficient number of :'::'_::
13 " parameters to obtain H(s) € SPR, as is the case in adaptive control when the plant fﬁtﬁ
N has unmodeled dynamics (see e.g., [2,7], [12]). §

N |

In this paper we will examine the stability of (1.1) when € is small, ¢(r) is

; e
: persistently exciting, and H(s) is not necessarily SPR but only exponentially stable. ZL‘E
-E: ;.: Riedle and Kokotovic [9) refer to this case as ‘‘slow adaptation’ and by using the f.::
o method of averaging described by Hale [10], they show that the stability of (1.1) is R
=N critically dependent on the spectrum of the excitation in relation to the frequency _,\
RN response H( jw). With the same assumptions, Astrom [11] uses averaging techniques :;I:_'.'f
j; \ to analyze the interaction between unmodeled dynamics and external inputs in the .‘__‘
I counter-example posed by Rohrs et al. [12]. Both these analyses require the ;
. ‘ assumption that ¢(r) is almost periodic and that H(s) is rational. In this case Riedle K

< and Kokotovic [9] show system (1.1) is exponentially stable if )
.I: . Co :} }.
;I Al ¥ [o(w)or(w)’ JReH( jm)} >0 (1.3) ,‘.:%'{-_
.? :: we N ;:c:. >
N O
¥
st ::j::
A 86 A




where 2 and {a(w), @ € 2} are, respectively, the Fourier exponents and
coefficients of ¢(r). Condition (1.2) can be considered as a signal dependent positivity
condition, but unlike the SPR condition ReH( jw) is not required to be positive at all
frequencies.

The main contribution of this paper is to extend the theory of averaging to
include the case when ¢(r) does not have a (generalized) Fourier series
representation, but is only known to be regulated and bounded. Thus, ¢(f) need not
be almost periodic nor even possess an average value. We also state stability
conditions in the frequency-domain in a form similar to (1.2). Moreover, H(s) need
not be rational. Analogous results can be stated for discrete-time systems, see, e.g.,
(13].

Averaging: Uses and Limitations

The averaging theory developed here, as well as averaging theory in general, has
its uses and limitations for adaptive system. In the first place, the theory requires slow
adaptation which can be counter-productive because performance can be below par for
the long period of time it takes for the parameters to adjust. Secondly, the averaging
results developed in the sequel concern linear time-varying systems only, so that
application of these results to the nonlinear adaptive system requires a linearization. In
this sense we can obtain information, including frequency domain information, about
the dynamical behavior of the adaptive system in the neighborhood of the tuned
system. Both stability and instability conditions are discussed. The results arising
from a combination of small gain theory and perturbation methods, e.g., (2, 3, 14, 15],
are restricted to stability results, and are far less quantitative.

Organization of Paper

The paper is organized as follows: Section 2 develops a method of averaging for
linear systems with sample averages. In Section 3 we apply the general results of
Section 2 to (1.1) and obtain conditions for stability and instability. In Section 4 these
are interpreted in terms of frequency domain stability conditions. In Section 5 we
provide a general discussion.
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Notation

The symbol || denotes both the vector norm as well as its induced matrix norm.
Similarly, Il-llp, p € [1,%0], denotes the Lp-norm of a vector or matrix function, i.e., for

Pe€ (1), HFl =( { | F(¢) Pde)YP, and ||FlL. = ess sup {| F(9) |: ¢+ > 0}. A, A)

denotes the i cigenvalue of matrix A and ©,(4) denotes the i singular value of
A, ie., o(A)=[A(A"A)]"2 An operator H is L,-stable if 3 constants &, b such
that IlHull,, < HMdl+b, ¥ ue L,. The smallest k is referred to as the L,-gain, and

is denoted by 'yp(H).

2. METHOD OF AVERAGING FOR LINEAR HOMOGENEOUS SYSTEMS

In this section we will consider the homogencous linear time-varying system

x = eA(nx 2.1)

Lemma 2.1:

Suppose in (2.1) that € is a real constant and A("): R, = R™" is regulated and
bounded. ThenV s, t € IR, the transition matrix F(s+1, s) of (2.1) is given by

F(s+t, s) = expletA(s)] + R(s, €1) 2.2)

where
_ M
Ags) = < [ Awar 2.3)

is referred to as the sample average value of A(f) on the interval s < ¢ < s+t, and
IRC, €Dl < (eTllAll)expetlAlL) = retilAll.) 24

Proof.

Using the Peano-Baker series representation for the transition matrix of (2.1)

gives: .

h by

" - T
F(s+t,5) = e [ Ander Y et [ AG) [A@) .. [ AGpdy ... dy
s k=2 s s Fj
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Using definitions (2.2)-(2.3) for R(s, €t) and A.(s), respectively, together with the
series expansion for exp(etA(s)) results in, a

s

R(s, €v) = gz[-(ed',(s))* 1! N

M h /]

+ et [AW)[AG) . [A@dr ... dr)
s s H)

A

2T Al , ¥ seR, 5
k=2 . f.s

(eTlAIL) exp(etiAll.) . R

RIC AN

since A (). < WAO)|L.. This proves (2.4). e
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Remarks:

il gn g
LR

1. Assuming that A(r) is regulated and bounded is sufficient for the existence
and uniqueness of solutions [17].

2. Observe that Lemma 2.2 is valid ¥ s,te R, and ¥ €€ R. In the
sequel we use Lemma 2.2 only for the case when € > 0 and €t is small.
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The stability properties of (2.1) can be established by application of Lemma 2.2 as
stated in Theorem 2.1 below. We first require:
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Definition:
The function p(-): R™”® — IR, defined by

k(M) = lim (f+aM) - 1)/ 2.5)

:'."’.l. b e :‘: »’a
RN AR .y

r:.':"u’ll ":"l ': iy

iy

is called the measure of the matrix M, where || is an induced matrix norm on
R™",

For any induced matrix norm and its corresponding measure, the, following
properties hold (see, e.g., [16]):
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Pl) -|M|<p-M) <ReAM) <pM) < [M|, ¥ Me R™
(P2) p(My+My) < pM)) + p(My), v M ,M; e R™"

(P3) The transition matrix F(s,t) of x = M(f)x satisfies,
! 14

exp(— [ W-M()lds) < IF@DI < exp(f WIM(s)lds)
T h 3

(P4) If the vector norm on R is |x] = (xPx)!2, P = P’ > 0, then
M| = max o (PY2MP172)
[

HOM) = 2 max A(PV2MP 24P 12\ P12
[

(2.6a)
(2.6b)

(2.6c)

(2.6d)

(2.6¢)

These properties, together with Lemma 2.2, yield the following stability result for

system (2.1).

Theorem 2.1:

Suppose A(?) in (2.1) is regulated and bounded with the sequence of sample

averages {Af(kT),Y ke Z,}. Then:
G) ¥ 3 T>0 and a >0 such that

MAT(D] < @ , VY keZ,

2.7

then 3 N >0 suchthat ¥ €T € (0,n) the zero solution of (2.1) is uv.as.

(i) ¥ 3 T>0 and o> 0 such that
M-AfkD] < & , Y ke Z,

(2.8)

then =23 >0 such that ¥ €T € (0M) the zero solution of (2.1) is

completely unstable.

Proof.
Combining (2.6c) with (2.2) gives,
lexp[-eT(~A(s)]] < IF(s+t, 5)-R(s,€1)| = lexplETA(s)]]

< explem@y(s)] . ¥ ste R,
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which implies,
IF(s+1, 5)| < expleti(A(s))] + rietm) 2.9
(F(s+1, s)| > expl-€Tp(AL(s))] — r(etm) (2.10)

where we have used (2.4) with Al = m.
We first prove part (i) by using condition (2.7) and inequality (2.9) with ©=T
and s = kT. This gives,
|F((k+1)T, kT)] < exp(—€Ta) + r(eTm) ,
We now establish that for all small €7 > 0, |[F((k+1)T, kT)| < 1, ie., the map

9(kT) — O((k+1)T) is a contraction. From the definition of r(*) in (2.4), it follows
that forany a> O thereisa 71 >0 such that

Yikel,

exp(-na) + r(nm) = 1 (2.11)
Hence, for all €T € (O,n7), thereisa B> 0 such that
exp(~€Ta) + r(eTm) = exp(—€TP) < 1 (2.12)

which shows the contraction property.
Now, for any 7,s€ R, with ¢t > s, there exists an integer £ > O such that
s+kT < t < s+(k+1)T. Thus,

|F(t,s+kT)F (s+kT, s+(k=1)T) ... F(s+T, s)}
IF(t,s+kT)lexp(-exTB)
< IF(t,s+kT)lexp(-€(e-s-T)B)
< exp(eT(m+B)exp(~e(t—s)B)
The last line follows from Property (2.6¢c), i.e.,

IF(1,5)|

IA

by kT > t—s-T

H
IF(es+kT) < exp( | pleA(n))dr)

S+kT
< exp(em(t-s-kT)) , by plA(Y)] < A < m o
< exp(emT) , byt—s—kT € (0,T)

-,
AR
XL
2l

A
/

S

XX
,‘::‘l‘(-jx

»
Y

Py |

P eE I
+~
VY

[,
h

VAN
0
SuN

KA
S
Pty

|
L

N W]
LA,
d H

Ji‘_.a

Al
1]
5
-4y
LA S
L‘n_.'ﬁ

L4
)

L4

A
)

L A

[ %
I

~

e P
e ‘.'.’
Sasie N

?'-.’,'-L"ﬁ
e am
"ér-f',"'f.’f "
o ;’S.') :y‘;‘a"
L ‘.'~;..

i
L A
o’
-.;5':"

1""'q
[4 II;:“-

£,

)

h Y

>
«*aala Y EY

»
'.'.{
e

»
-

.’\
7,

L
‘2
-..{

¢
-.:)
N

AR

o
LAY TR

AN

2
L

LT
T el AN
AR i
?g‘ Py P )
RSV §

e G
i s )
K
y 8y Ay A " LA
N P S N




Ay

"‘c .‘:.‘a

p N

a'es

I

-

P

A.a A

2

~8

AN

g

e e e
Lol -l s

This proves part (i) of Theorem 2.1. The proof of part (ii) follows from the above
analysis, but starting with inequality (2.10).
0

Using the same technique, but allowing A() (equivalently X,(-)) to possess a
uniform average, we obtain the following sharper result.

Theorem 2.2:
Suppose A(r) in (2.1) is regulated, bounded, and has a uniform average
Ae R™, je,
Tli_r’n- As) = A 2.13)
uniformly V s € IR. Under these conditions:
i) If 3 o>0 such that
ReMA) < -a (2.149)
then 3 ¢ >0 suchthat ¥ €€ (0,ep) the zero solution of (2.1) is u.a.s.
Gi) ¥ 3 a>0 suchthat ReA(d) # O and
max ReA(A) > 2.15)

then = € >0 such that ¥ €€ (0,y), the zero solution of (2.1) is
unstable.

Proof.

We first prove part (i). Assumption (2.13) means that ¥ & > 0,
3 T(S) > 0 such that

As)-A <8 , VselR, (2.16)
From (2.9). with JIA()IL. = m, we have

Fs+T,s) < exp[em(A_ + X;(s) ~A]+ (eTm)zcxp(eTm)
< expleT(u(A) + 8)] + (€Tm)%exp(eTm) ol
Since ReA(A) <0, there is a constant matrix P =P’ >0 which satisfies the
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Lyapunov equation,

AP+PA+2 =0 (2.18)

Now, choose as a norm on R”,
x| = (Px)'? 2.19)

From (2.6d) and using (2.18) we then have,
@A) = - 2 max A{P 2P + PAP1?)
e
= —-min A{P !} = -a (2.20)
[

Hence, (2.17) becomes,
IF(s + 1, 5)| < exp[- eT(e — 8)] + (ETM)?exp(eTM) 2.21)

By assumption (2.13) it is always possible to select T(3) in (2.16) such that & < a.
By inspection of (2.21), therc then exists € >0 such that Y €€ (0, gp),
Fis+T,5)<1, ¥ seR,, which completes the proof of part (i). Part (ii) can be
proven in an analogous manner starting with (2.10) and using (2.18) with A replaced
by —A. Note that here Re A(A) # 0 is required explicitly.

0

Discussion

The results in Theorem 2.9 and Theorem 2.2 generalize some results obtained by
averaging methods such as those described by Hale [10], or as obtained by Coppel
[18) using the notion of integral smallness. Theorem 2.2 is a classical result of
averaging theory, except that as stated it allows for functions which are not necessarily
almost periodic. The class of functions allowed in Theorem 2.2 -- regulated, bounded,
with a uniform average -- is not precisely characterized. Obviously it includes the
class of asymptotically almost periodic functions of the form

A() = Agl) + A (2.22)
where Ay(f) is almost periodic and A,(*) € LT, p € [1,5].

Theorem 2.1 considers a larger class of functions -- those without an average -- at
the expense of a weaker result: the stability-instability boundary is not as sharp as in
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Theorem 2.2,
An example of a function which satisfies the conditions of Theorem 2.1, but not
of Theorem 2.2 is:

A(t) = Ag+ (17 V2)A,(sin log r+cos log 1) (2.23)
where A;=A/>0,i=0,1 such that Ayg~A, > 0. This function does not have a
uniform average, as can be seen from >
i T A T :?;i
= i N [N IS - < s D
T ! A(Ddt = Ay + " [ 7 sin log(s+T) 7 Sin log s] (2.24) :_::-:’:_:_:
PR
However, it satisfies the conditions of Theorem 2.1 because from (2.23) e
e
sT ‘-‘}f':
% [A®Mdr > Ag~A;>0, ¥ seR, ¥ T>0. (2.25) -:~;-_§;§
s .te
NN

Condition (2.7), which is the basis for the u.a.s. property, has some interesting

interpretations. In the first place, since a>0 is a constant, conditions (2.10) '.-.'.';:l:;:\.
provides a uniform bound on the sequence of sample-average measures :;.i';f-'

-— r L
{M[AkD)], k€ Z,}. From the definition (2.5), the measure is dependent on the 2;;2::

underlying vector norm. Suppose we choose as the vector norm |x] = (X’Px)!'? with
P =P >0 a constant matrix. This was done in the proof of Theorem 2.2 where P
was given as the solution to (2.18). In general, however, we have from (2.6¢) that

WA = 3 max A{P~V2 (A7 (kTP + PA7(KD))P~12} (2.26)

Py
PO A
N,

Iy

*

If there is a constant matrix P = P’ > 0 such that

v %

CXAAAK
a- " l.' 1"

IR
. be
o e
'
. .
a L]

Vsl
00 Ny

[}
"c
S

> max A{A (DP + PAkD)} < -1 , ¥ keZ, (2.27)
[ ]

then (2.7) holds with the choice

N AN )
s
2y :. LAKY

» l_’L’L

s
1 &

Lo o R A

a = min A(P) (2.28)

'.'
o
A

Observe that (2.27) is not equivalent to
ReMA{kT)} <0 , Y keZ, (2.29)

This latter condition means there is a sequence of matrices {P(k) = P(k)’ > 0, ke z,}
which satisfy

i

A
, A
LA/
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—_ = KAALN
max A{A7RKP(K) + POAAT)} = -2 , Y keZ, (2.30) RS

4 : )\ J’.
S ™
Unfortunately, it makes no sense to choose a time-varying norm, e.g., x| = ’P(k)x)12, 5 - _
Hence, condition (2.27) provides a means to satisfy (2.7), provided that constant P ) :f-,.» ol

can be found. « WA

S
A simple sufficient condition for (2.20) is that WY v

max A{A(K) + A} < -209 , VY keZ, (2.31) AT
: R
where oy is a positive constant. Hence, we can take P = (1/og)! in (2.27) and thus . ;'_'.c:.f" t
(2.10) holds with @ = &y, We will discuss condition (2.31) further when we & ;;;3; ;
specialize Theorem 2.1 for adaptive systems in Section 4. b o
Theorem 2.1 also requires that €T >0 be sufficiently small, ie., that :','-_E :':23‘;

[ )
Bt
LYY

€T € (O.n). From the proof of Theorem 2.1 we can extract a value for 1 and also

“~
SR b AR A T
"*‘ﬁ.

state bounds on the exponential rates of growth or decay of the transition matrix Y, ;‘;:_‘f
F(t,x) forall ¢+ > 1. Specifically, we have: 7 Qe
. 19 ':: ::a )
o .-.:;. Y \
Corollary 2.1: o
e

If A(r) is regulated and bounded with JJAC)l. < m, then: . ?.;i 4
) 9
(i) Whenever (2.10) holds for some T >0, the zero solution of (2.1) is u.as. R
. rrdeg
¥ eTe (OM), ie, .- :.::::gz
IF,%)) < M exp( — €(t ~ T)B) (2.32) ]

where 1, M, and B satisfy: I R

exp( - na) + r(nm) = 1
M = exp(eT(m+B) > 1 7 f
exp(—€TP) = exp(-eTa) + H(€Tm) < 1 (2.33) o e
: T
(i) Whenever (2.11) holds for some T >0, the zero solution of (2.1) is :;.‘,-:3::5
unstable ¥ €T € (O,n), ie, ~ *:ﬂ:"
IF(,0) > M exp(e(t — 1)P) (2.34) o

o R

where 1, M, and P satisfy . o f\ %';:.r;'

A

exp(mMa) — r(nm) = 1 KA
p(no) ) " \.j’f"'ﬁ-

S F
;- "\'.\ )
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M= exp(-eT(m+B) < 1 (2.35) .«,.g

! exp(eTP) = exp(eTa) ~ r(€Tm) < 1 _ :
,. & ' [ f
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| 3. STABILITY OF LINEARIZED ADAPTIVE SYSTEM AN
\ s
3 R
‘ In this section we apply the results of Section 2 to the linearized adaptive system ;-;_j::j;:.
! ;Z::‘ (1.1) under slow adaptation, i.e.,, small € > 0. The first step is to transform (1.1) into 5_‘;2'.::.;'.;
= a form suitable for application of Theorem 2.1. This is accomplished by a time-scale arar
;W decomposition. That is, under slow adaptation the parameters 0(r) change much :.{.:.;:_\;_.
o) more slowly than the internal states of the dynamical system H. This suggests :::::::::f
RESENY

. approximating (1.1) by the system ,.:ﬁ:-:.};

. . RGN

6 = elf - ($HO)0) G.D) e

4 ':ﬁ for which Theorem 2.1 would apply, i.e., replace A(s) in (2.1) with —€(OH')(r). We ”i\
e start with the following intermediate result, developed in [20] and based on the 'i'.j;;lj%;:
i discrete-time formulation in {21]. _}’.‘;

) Lemma 3.1: :".:’\::
p ,":a ,\'ﬁ\:"\l‘-
b System (1.1) is equivalent to Cﬁ:_f_‘\":‘
b S
n 0 = e[f - RO + eW(£,0)) (3.2) ;5"3\-
.A o '
where R is the time varying matrix AN
' AN
5 R = (GHO)D) (3.3) o
- AN
and W(f,0) is the linear integral operator Rt "

W(0) = 4G,if - $H(®'0)) (3.3) 2

' :"\.‘:.'l'

with G, the linear integral operator whose kemel is, 33 N

“ vy

2T = {h(z -s(sMds , O0<t<t 3.5 'f" _
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Figure 3.1

Hence, for small € > 0, the operator eW(f,0) has little effect on system stability, and
0= €(f-RO) provides the dominating stabilizing force. We will prove this assertion in
Theorem 3.1 below.

If H(s) is rational, i.c., 3 A € R™ and b, c € R" such that

H(s) = c'(sT - Ay'b

then the decomposition (3.2) is essentially equivalent to the L-transformation in [9a,b],
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The decomposition of (1.1) into (3.2) is illustrated by the feedback system:
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which is also a Lyapunov transformation, i.e., both original and transformed systems
have identical (Lyapunov) stability properties, sec [24, p. 117]. In this case system

(3.1) is equivalently represented in state form as
¥ 8 = €0 - o)) , 6(0) =6, (.72)
; i = Az+b0°(1)0 . 20)=0 (3.7b)

778

Using the ‘‘L-transformation’’

” § = z-L(n® | (3.8a)

2 where L(r) satisfies

3 L = AL+ by'(9) (3.8b)

¥ gives

g 0 = e[ftr) - H(LMO + &)] (3.9a)
E = A% - eL(O[) - $()c’UADO + B)] (3.9b)

%
"..;.4’ J

Since 6(0) =6, and 2(0)=0 by definition (1.1), it follows that by assigning
L(0) = 0 we have'

!i R(@r) = (L) (3.10)
: k and hence, (3.92) becomes

Y .

: 0 = e[fir) — R(NO — d(r)c’E] (3.11)
.’ 5 Since §(0) =0 from (3.8) and Re A(A) <0 because H(s) is stable, it follows that
, E() = O(e). Thus, (3.11) is dominated for small € by © = €(f — R@). Consequently,
[ .E both the ‘‘L-transformation’’ and the operator decomposition (3.2) are qualitatively
S equivalent for small €.

L Using Lemma 3.1, we now state conditions for exponential stability of system
D,

(1.1), i.e., the map (6, /) = 6.

[ J
r¢‘l
r.w,

L J
Note that the choice of initial condition for L(0) is immaterial when discussing asymptotic stability properties, i.e.,
since A is stable, different initial conditions give rise 10 different exponentially fast decaying transients.
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; Theorem 3.1: N i
’ ) o
Assume that: a LA
(A1) 6 = —eR(1)0, R(:) = (PHY')(), is u.as. with transition matrix F(s,1) E _IE“E
overbounded by = >
g‘l‘ .
i Fao) < Mt | v ¢>150 (3.12) N
g (A 2) The impulse response k() of H satisfies E ’:'*_:t
N - i)
" h) < Ke®™ , vi>0 . (3.13) ;‘5-;}2
- o e
!' Under these conditions, =3 €g>0 such that VY €€ (0,&), system (1.1) is 3
N exponentially stable. Specifically, if RGAX
v -\‘: ‘:-.':-.
N e = min{w/ B, e} , pE) = 0 (3.14) T
“v \v’:y'-
" ' - 5&-."-: '
% 8. < M| 8y e + [ em(e)e PEXDfT)|de (3.15) " Sl
A ' 0 RSN
’J" - .:;'.:;\
'é where U
w3 :!.:f..l"f
. m(e) = M1 + elplEK/(a - eB)?) (3.16) T
- NN
£ pE) = B - eMIGIEK (ot - €B)? G.17) R
- AN (S
i Proot R
_ roof, N..
E: Using the decomposition from Lemma 3.1 gives the following expression for Ii;-.'.-_;;‘
2 (1.1): S
: RIS
: 0(r) = F(1,0)8 + e(W,f)(r) — e3(W,0)(r) (3.18) Tl
5 where W), W, are linear integral operators given by :: ':f:::;}_
- - -':'h_’."-
> Wy = F( +€4Gy) (3.19a) LT
‘ ¢ b N
y W, = FOG,0H¢ (3.19b) e
>
;5 and where F has kemel F(:,t). We first show that W, and W, are exp. stable N .j_:::s
5 integral operators. o v ;‘-‘:"
5 ‘:- :EE::E
y & S
’ A
: e
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: RSt
'l 0y
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For any integral operator W with kernel w{r,t) we have
[

Wu)(t) = l w(t,t)u(t)dt

4
= [ DD, n)lu(t)dr
0

Therefore, W js exp. stable iff 3 o > 0 such that
sup [e% (1)) < oo
t>1
Let the superscript notation (-)° denote exponential weighting, i.c., (x°)(r) = e%x(z).

Hence, (Wu)® =W where W° is the lincar integral operator with kemel
“Dw(1,1). Now, following pg. 119 of [16], let [|W]}, be defined by

W, = sup Iw(so)l ' (3.20)
t>1

Hence, W is exp. stable iff = ¢ >0 such that
WOl < e
Observe also that if G, and G, are linear integral operators then
I1G:Gally, < IGlIs1(G2) (3.21)

Applying these relations to (3.19) for some ¢ > 0 gives,

WS, < UFClLI1 + €lidllyy(G))

IWEls < WFSIIOIEN(GMH®)
Choose © =¢f} with € € (0,gp), € given by (3.14). Using (3.19)-(3.21) gives

Wi, < M

7(H°) < K/(o - €p)

%(G9) < 19l Ko - B)?

A

IA

A

Hence,
WS, < MI1+€ldl2 K/(a — B)*) = m(e)
WSll, < MOl K%(a ~ eB)® = [B ~ p(e)VVe

1A
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where m(e) and p(e) are defined in (3.16), (3.17). Going back to (3.18), we now
have,

!

() < MetP |6, |+ l[e'““'“”{em(e:)mr)l

+ [B-p(e)]i6(T)}dt 3.22)

The result (3.15)-(3.17) follows by directly applying the Bellman-Gronwall Lemma to
(3.22).
0

Discussion

Under slow adaptation, Theorem 3.1 shows that (1.1) is exponentially stable if
0 = -eR(1)® is u.a.s. Hence, we can apply Theorem 2.1, with A(r) replaced by
—€R(t), and arrive at stability condition (2.7), that is:

System (1.1) is exponentially stable for all small € >0if 3 T>0 such that

M[-R(k)] <0 , VY ikelZ, (3.23)
where R(k) is the K* sample average
(+1)T
Rk = = [ Rodr (3.24)
T kT

Using (2.27), condition (3.23) holds if there is a constant matrix P = P’ > 0 such that

% min A{R(P + PRI} >1 , Y ke Z, (3.25)

Moreover, a sufficient condition for (3.23) is that

min A; {R(k) +R(k)’} > g , Y ke Z, (3.26)

where @ is a positive constant. Comparing (3.26) to (3.25) reveals that P = (1/ap),
which means the interval contraction of ©(kT) — 6((k+1)T) is scaled uniformly, i.e.,
O’ (kT+T)O(kT+T) < 0°'(KT)B(kT). The scaling implications are discussed further in
Section 4 to follow.

.
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4. FREQUENCY-DOMAIN STABILITY CONDITIONS

In this section we reformulate condition (3.12) in the frequency domain. This
involves the Fourier transform H( jw) and an appropriately defined expression for the
spectrum of ¢(f). We show that (3.12) requires that ¢(r) have a persistent excitation
property, and that the dominant excitation be at those frequencies for which
Re H( jw) > 0.

The first requirement is that ¢(r) be restricted to those functions which have a
Fourier series representation on any finite interval. A known class of such functions is
defined as follows (see, e.g., [19]).

Definition:

A function f{*): R, - R” is a C§ function if it is regulated, bounded and
= a constant §>0 such that any two points f;,7,€ IR, where f) is
discontinuous are separated by at least an interval §, i.e., [)—t;] > 6.

Frequency-domain stability conditions for the stability of (3.1) can now be stated.

Theorem 4.1:
Assume in (1.1) that:
(A1)  jh()| < Ke™ ,¥

t > 0. 4.1
(A2) ¢ € C® with piece-wise Fourier series representation ¥ ke Z,:
o) ~ ¥ o™ , Y rekI,k+D) , T > 8 4.2)
we

where €, is the set of distinct Fourier exponents and o,(") the corresponding
Fourier coefficients. Let B(k) € IRP® be defined by’

B(k) = ¥ oy@)oYH-jw) , VY kel, 4.3)

[0 X 3 Q.

f Overbar {7} denotes complex conjugation.
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Under these conditions:
i) If 3T > & such that
RI-B()) < =200 (KlaT , ¥ ke Z, @4.4)
then = € >0 such that ¥ €€ (0,6), system (1.1) is exponentially
stable.
() X 3 T > & such that

HBK)) < 2102 KT , ¥ ke Z, 4.5)
then = €5 > O such that ¥ € € (0,6), system (1.1) is unstable.

Remarks:

1. The representation (4.2) for ¢(t) specifies the local frequency content over
t€ [KT, (k+1)T]. Such a representation -- if not given -- can always be found if
&) € & [17]; then (4.2) can be obtained via the Fourier series of the T-periodic
function: '

o) = ¢t +mT) te [(k~-m)T, (k—m+ 1)T]
YVkeN, Ymel

Notice ¢,(r) is well-defined on IR and has a Fouricr series representation:

ol ~ X oo )™ ; ¥ reR

meZ
where
g=o, , o,=2wmT
and hence
o) ~ zz (i, )™ . ¥ te kT (k+1)T] (4.6)
me

which is of the form (4.2).

2. The matrix B(k) can be equivalently expressed as the sample average value

of the T-periodic part of (1)), ie.,
!
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where w,(r) is the T-periodic part of H($,X?), i.c.,
]
v = [ h~0,(r)dt
= ¥ H(o)lw)e™ , ¥ireR 4.8)
®Ee

Proof.

To prove part (i), it follows from Lemma 3.1 and Theorem 3.1 that it is only
necessary to show that (4.4) implies

B-RK) <0 , VYikeZ,
where R(k) is given by (3.24). We start by defining
B(k) = R() - B(k)

with B(k) from (4.3). ‘ Using (4.8) gives
+1)T

Bk = kjr OOV (Dde

1

where

V) = (HOO ~ wuld

t t
{ h(t — D)ot ~ | k(s ~ DOLT)dT

<3

{

The last line follows from (4.6), i.c., ¢,(r) = ¢(r) for te [KT,(k+1)T). Using (4.1)
gives,

o
h(t = DO()r — [ h(s — T(1)dt

W@l < (2l Kroye™
from which it follows that
B < 208 KT , ¥ keZ, o
This together with inequality (2.6a) proves part (i). Part (ii) follows analogously by
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replacing R(k) with —R(k).
0
If ¢(r) is further restricted so that it has a uniform average, then we can sharpen
the stability-instability boundary. For example, if ¢(f) is almost periodic then a
Fourier series representation exists ¥V ¢ € IR,, and thus, it has an average [10). The
stability conditions for this case are stated as follows.

Theorem 4.2;
Suppose in (1.1) that ¢(r) is almost periodic with generalized Fourier series

o ~ ¥ a(@e” , Vv reR, 4.9)

we
where Q € IR are the distinct Fourier exponents and {o(w), ® € Q} are the Fourier
coefficients. Define the matrix B by

B = 3 o(w)t(w)H(-jo) (4.10)

. we
If ReA(B) # O then = g >0 suchthat ¥ € e (0,6), system (1.1)is:
(i) exponentially stable if Re A(B) <0 4.11)
(ii) unstable if max Re A(B) > 0 4.12)

Remark: The proof of Theorem 4.2 is entirely analogous to that of Theorem 4.1.
Theorem 4.2 is the result obtained in [9] when ¢(¢) is almost periodic. Theorem 4.1
is a generalization to ¢(-) € C%.

5. DISCUSSION OF RESULTS

(A) Effect of Transients on Sample Average

An informative interpretation of stability condition (4.4) is that the average energy
in the T-periodic part of (¢,/¢,")(r) must dominate (or overcome) the possibly
negative efforts of the transient terms. In other words, the period T must be
sufficiently larger than the dominant time constant of H, i.c., 7> 1/a. Note that the
term 2Jjol2 (K/a?) essentially arises from initial conditions or stored-energﬁ in‘ H at
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A t = kT. Obviously when ¢(r) has a uniform average it is always possible to select T

* D to be sufficiently large, e.g., as shown in the proof of Theorem 2.2.

< Using (2.27) condition (4.4) holds if there is a constant matrix P =P > 0 such

E g that ¥ ke Z,,

" min A{OM)] > 1 , VY kelZ, (5.1a)
[ ]

’ ' g where

2 0W) = 3 T HEOPX OHT)P) (5.1b)

L b we

o X(o) = ofo)F(w) = X o) (5.1¢)

é + (B) Relation to Persistent Excitation

A necessary condition for the existence of P which satisfies (5.1) is that for
some finite integer ¢ > (p-1)/2 and V ke Z,,

e~

7, : - .-' AR -‘.‘- [
SO NI
"2 % Al I e e, «* |

2.

: ::' rank[ak(o)’ ak(ml)r"r ak(mq > ak(ml)r--’ Ek(o)q)] =p (5-2) :

T .,
; If this were not the case then min AJOUP)) =0, ¥ ke Z, and ¥V P=P >0. N
iy $ {s

i Hence, Theorem 4.1 implicitly restricts ¢(-) € C§ to those functions whose (time- ::;:

1. varying) Fourier coefficients satisfy the rank condition above. This class of functions, Eﬁ

f. "‘ however, are precisely those which can be categorized as persistently exciting [1): ¥ ‘E:
“ LS

% " 525
Yy st

: - Definition: o
NS

§ k A function f{'): R, = R" is persistently exciting (PE) over an interval A if it ::_-‘;i

Y is regulated, bounded, and = constants h> 0 and P> 0 such that ‘{f-:j
o 2, 1 s+h "E:_.‘:.:
YR min Ml [fofyal > B , VseR, (5.3) P
0 : ' s A

o 23

i Denote such functions by f(*) € PE™(h,B). {f‘;
. .2 It follows from the definition that if ¢(-) € PEP(hB) N C¥ then the rank E',.'f'
195 condition (5.2) will hold for any T > h > 8, and thus, (5.1) may be satisfied for X
% some matrix P. The point to emphasize is that persistent excitation is not sufficient E-': ‘
30 o
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for stability, except in the case when H(s) is SPR [1). Thus, we can view (5.1) as a
signal dependent positivity condition. In general, the PE condition is necessary for
stability, but as seen from (4.5) in Theorem 4.1, even if it holds, the system can be
still be unstable.

(C) Parameter Scaling

The matrix P in (5.1) can be viewed as a scaling of the parameter vector. That
is, if (5.1) holds for some P, then for all small € > 0, 0= —€R(1)® is u.as. in the
sense that ©(r)’PO(r) — O exponentially fast as ¢ — oo, Thus, parameters will tend to
converge with different scalings. If for some given signal ¢(r), the determined
scaling matrix P gives unwanted responses, then the signal can be reshaped so as to
produce a more desirable scaling. The difficulty is in finding the matrix P. If (1)
is almost periodic then Theorem 4.3 holds, and we can take P as the solution to
PA+A’P = ~2I. When ¢(r) has a sample-average, there is no simple means to find
P.

If there is sufficient a priori knowledge about the effect of parameters on the
system, then this information will provide the desired scaling in the following sense.
It is always possible to prescale © and then select P = -% I where 0y is some

positive constant. With this choice, condition (5.1) becomes,

mnA{ ¥ H(-joRelX;ml} > & ., ¥ keZ, (5.4)
s e O,

This is equivalently expressed as,
min 4,{ ¥ Re[HGo)ReX @]} > 02 , ¥ ke Z, (5.5)
3

0E
which has a more informative interpretation in terms of the usual positivity conditions
on H. For example, a strictly proper transfer function H(s) is strictly positive real
(SPR) if it is exponentially stable and =3 constant p > 0 such that [16]:

Re[A(o)] > plHGo? , VY we R,

This condition must hold at every frequency, whereas (5.5) requires Re[l-?(i(o)] >0 at
those discrete frequencies in R, where the magnitude of the input spectrum is large.
Conversely, at those frequencies in R, where Re[ﬁ(iu))] <0, the magnitudé of the
input spectrum should be small. Since (5.5) will fail if ReH(jw) <0, ¥ © € R,, it
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follows that Reﬁ(i(n) > 0 at some frequencies, hence, the motivation to refer to (5.1)
as a positivity condition.

(D) Boundson ¢

The upper bound €p on the size of € >0 to insure stability can be extracted
from the proof of Theorem 4.1. Looking back over Theorem 3.1, Theorem 2.1 and
subsequent discussions we have,

€ = min{o/f, g, €} (5.6

where €; and g, satisfy

B - e;MIGIEK (o - g,B) = 0 5.7
exp(— €;Tag) + (e;Tag exp(e,Tog) = 1 (5.8)
Recall from the proof of Theorem 3.1 that o, o, B, M, and K are defined from:

k+1)T

ul-+ zjr @HO)d| < —ag , Y keZ, (5.9)

M = exp(eT(m + B) (5.10)

Kl < K exp(— o) (6.11)

exp(— €TB) = exp(— €T + (€Tog)’exp(eTag) (5.12)

(E) A Limitation Arising from Averaging

Suppose H(s) is SPR and (4.4) holds. Hence, system (1.1) is exponentially
stable for all small €> 0. Since (4.4) holds, it follows that ¢(r) is persistently
exciting. However, from other arguments (see, e.g., [1]) we know that under these
same conditions the zero solution of (3.1) is u.a.s. for all € > 0. Thus, Theorem 4.1 is
conservative in this case in regard to the limitations on €. However, when H(s) is
not SPR Theorem 4.1 is now applicable whereas the results in [1] do not apply. In
fact in this latter case when & gets too large then system (1.1), can be unstable, even
if (4.4) holds. For example, if in (1.1) () =sin(0.35z) and H(s) = 1/(s%+2s5+2)
then condition (4.4) is satisfied. The simulations in Fig 5.1 with 6(0) = l“sth that
the zero solution is u.a.s. for € = 4 but is completely unstable for € = 8.
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‘- Comparison with Averaging Analysis of Stochastic Recursive Algorithms - K:};

. N
“ Comparing our results with the ordinary differential equation approach (ODE), R X N
" used in the analysis of stochastic recursive algorithms, [22], {23] we notice the »

“ S
- following differences: L ‘
& RS
f,": (1) The ODE approach can deal with nonlinear recursions, whilst our analysis is LAt
- restricted to the linear case. It is possible to extend our results to the nonlinear case, :

j- but this would introduce more technicalities (see e.g., [20]) perhaps obscuring the main oA :"'
::: idea of *‘local averages.” 3
o g
"\. \-‘ ::‘.: :

' (2) In the ODE approach it is assumed that the adaptable gain (our €) converges _ -
Z:: to zero (and is not summable), whilst in the present contribution € is a small positive '5 ol
», A
a constant. N
: 3
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(3) The main difference lies in the condition imposed on the regressor vector Ky

W . . . s . s . S
;‘; sequence. Typically, the ODE approach relies on an ergodicity or mixing assumption " ;.’:.r.‘;.
A . . STy
2 to infer the existence of cesaro-mean along the sample paths ( = average). Our ' g:;l
o . . . AN
:%; conditions only involve finite sample path properties of the regressor vector and related . -3'.3-";: J
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X

quantities; this makes the concept of cesaro-mean or global average meaningless. In
this sense, the ODE approach is closer to [9a,b] where periodicity or almost periodicity
are invoked to guarantec the existence of averages. In a way, our conditions allows
for a second slow time scale, the slower time scale on which the nature of the
regressor vector is allowed to change.

(4) The present approach yields instability results as well, a point not touched ";’{' A
e
upon in the ODE approach. ';::_.‘_"
3 e
o p

6. CONCLUSION

‘g

We have presented a method of averaging for linear time varying systems,
allowing one to deal with general time motions, thus removing the classical restriction

LARAAF) YW R A ms A B A R g
Lrel |

23
gy

! of almost periodicity. -
b '
;El_:: This method can be applied to the nonlinear adaptive control problem after -
E; = linearizing the system in the neighborhood of the tuned solutions. Both (local) E
W stability and instability have been discussed. The conditions obtained to guarantee ;‘

[ }
)

local stability can be expressed in frequency domain terms.
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