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I. OVRIEW AND SUIWAI

f undamental to this sork is the development of a costinuum

formulation that can accurately account or the effects or

interlaminar shear and interlaminar normal stress variation

thru-the-thickness of a laminate. aurthermore, emphasi isplacement,

particularly on tapered-tiste d airfoil geometries which can be

analytically represented as an assemblage of thin to moderately thick

cinite elements. Io achieve solution efficiencies, the elementsis
nevelopel in this work are of the triangular/quadrilateral plate type

olins thers oftesesrequiremens anfod coideinga vaiabed
lar psdai caeso .ty nted htte oehssoeuiu

alternatives, three suitable continuum ormulations have beentations

aeveloped and are herein denoted as tbe (i) liigher Order Displacement,

(ii) Noditied-Kirchhoff and (iii) Bybrid Stress formulations, '

respectively. he former to eformulations have been incorporated in a

computer code an the varous elements have been tested on the basis

of correlations with known analytical, numerical, and experimental"'."" ,

solutions. Numerous tests have been performedL for linear static ana , -. .

linear dynamic cases, It is noted that the code has some unique

features, e.g., it can assemble elements having an unequal number of
degrees of freedom at its nodes, it treats arbitrary ply orientations.%-...""

and it performs integration on a layer-by-layer basis through the rw".

laminate. Kerein a layer refers to either a lamina or to a sub-set of :-

laminae having equal ply orientations. The latter feature is ,--..,

essential in developing a fully nonlinear capability., II_--

% %
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Significant efforts have also been devoted to developing a

suitable large displacement formulation. Due to the requirement that

46 interlaminar stresses be accurately represented, a total Lagrangian

formulation is utilized and is based upon the complete Green's strain

tensor. A geometric and large-aisplacement stiffness formulation has ,

been implemented in the computer code based upon a form of the

nonlinear strain-nodal displacement relationships suitable for each of ,

the elements under development.

An extensive literature survey has been performed to identify

analytically tractable methods of treating damage accumulation in

composites. Since emphasis in this work is on the development of

C incremental response solutions, the computational approach must have

the capability to (i) predict and differentiate between relevant
.'...

failure modes, (ii) modify constitutive equations appropriately and

(iii) perform equilibrium iterations to assure stress redistribution

based upon the extent of damage. Use of "piecewise smooth" failure

criteria based on various types of damage provides a good basis for

incrementally tracking aamage. Ibis approach has been incorporated in

the computer code. Note that integration for an element is performed

on a layer-by-layer basis which allows for damage effects to be,.-

characterized at the layer level. It is noteworthy that variation in

strain energy can be calculated as damage accumulates an that it may ..

be possible to go further to predict useful strain energy release rate

values. Thus it may be possible to make use of energy in addition to -W-

maximum stress criteria to characterize damage.

Eperimental *ata of the type required to substantiate damage

predictions has been assembled to the extent possible. Analysis/test

Y*% '.

-. '.

% ..



3-4

correlations have been performed for selected laminates. It is noted

B that useful experimental data is quite limited.

Technical progress in this program has been substan -illy on

schedule with regard to developing continuua formulations and a

suitable finite element code. It has not been possible, however, to

complete the damage characterization efforts. Work will continue

under an extension to this contract with the intent of fully

implementing damage characterization in the nonlinear transient

analysis.

% %
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II. SUNARY BY TASK , .'-

This section presents technical highlights of the research

efforts to date for each of the three tasks. Details of cue 4

analytical formulation are presented in the Appendices.-2 '

11.1. TASK I: Nonlinear Displacement Formulation for Composite Media

II.1.1 Continuum Formulation ,.-.-

Two variational principles, the principle of Minimum Potential

Energy and the Principle of Modified Complementary Energy, are

generally used to develop two distinctly different finite element

models, the assumed displacement model and the hybrid stress model

respectively. These models incorporate the eftects of transverse

shear and normal deformations whose contributions are recognized as ,

essential for accurate laminate analysis 11-101. In tbe present work,

emphasis has been placed on developing displacement based models.

Within the displacement formulation, element stiffness matrices 4F % 1P.

are determined for each element, these matrices are then assembled to

represent the final system of equations and a solution procedure for

the unknown nodal displacements is provided. Coordinate

transformations to describe ply orientations of a composite media are

taken into account. The in-plane stresses are calculated from

constitutive relations of orthotropic continuu, whereas transverse

shear and normal stresses are calculated from equilibrium

a.5

-. . ,.,,

.. .

i '" % " " ". ,, "''..,'._ ' .. ', , %.,,'%.-.-.- ' . .- -',".., ".'. ..-.... .-. ...... ,.. . .. . ...



considerations. Finite element models have been tested for linear

static, dynamic and buckling analysis. The test problems and the .-. .,_ .

results are presented in Section 11.1.4. The finite element models -JN

are herein brietly discussed.

A. igber.Order Displacement Formulation

The thru-the-thickness effects can be incorporated into an

analysis by choosing a displacement field that eliminates two major

shortcomings of the classical plate theory; namely normals remain

normal and in-plane displacements are linear thru the thickness.

These shortcomings are eliminated by prescribing independently the

reference surface displacements and rotations of the normal and

including higher order terms for in-plane displacements. This is

accomplished by the following variation

u(x,y,z) = Uo(x,y) + Z:x(X,y) + Z2,y
= • ,., .:

v(x,y,z) = Vo(X,y) + z',(x,y) + Zy(X~y)

w(x,y,z) = Wo(X,y)

The neutral surface displacements are represented by u, v and w , .. ''p |
0 0 0

the rotation about y-axis is denoted by and the rotation about the
2

x-axis is y. The coefficients of z , i.e., * and o , are
x y

contributions from transverse deformations [5,b].

The elements developed are designated as the quadrilateral higher

order oisplacement (QKD) models. QHD40 is an eight-noded element with

seven degrees of freedom (three midsurtace displacements, two

rotations and two higher order terms for in-plane displacements) per

corner node and three degrees of treedom (transverse miasurtace

displacement and two rotations) per mid-side node. Element QHD28 is

, _.. ,, , ,. . , .. .V V V-. . . ."." ",



6 '"

a simplified version of QMD40 where the mid-side nodes are eliminated.

It should be noted that when the two higher order terms for in-plane

displacements at each corner node are omitted, QHD28 red,-es to the

widely used four-noded bilinear plate element (QBD20). 
V,;

The transverse shear and normal stresses of QHD40 display a cubic I,,

variation thru-the-thickness. The displacement field, nodal degrees

of freedom and the resulting stress fields are stated in Appendix IA.

B. 14odiied-Kirchhoff Formulation

The Kirchhoft-Love assumption for normals to the reference ,' ,

C.surface is relaxed by incorporating shear rotations as additional ,

degrees of freedom in the formulation [101. Thus the assumed

displacement field allows the transverse shear deformations but

neglects the transverse normal deformations. The rotations y and y are

incorporated in the displacement variation as follows

w(xy) = Wo (Xy)

u(x,y,z) Uo(X,y) -z( + Yx)

v(x,y,z) = Vo (X,y) - z + Yy)

.,y

The transverse displacement w(x,y) is chosen such that it will

guarantee plausible stress f ields which will characterize the ,- ,.

transverse effects accurately.

Ihis approach is implemented in the formulation of an eight-node

quadrilateral element with 32 degrees of freedom- QD32, a six-node

triangular element with 27 *.o.t.- TD27 and a seven-node triangular

t .o o
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element with 27 a.o.f.- TD27M. The stress fields obtained for these

elements represents a quadratic thru the thickness variation for the ,- %.6M

*transverse shear stresses and a cubic variation for the transverse

normal stress. The respective displacement fields, nodal degrees of

freedom and stress fields are given in Appendix 1B.

" - ".. -- - '

11.1.2. Large Displacement Formulation

Inclusion of geometrically nonlinear effects in the formulation

must be based upon both the geometry to be analyzed and upon the type

of stress prediction capabilities desired. The classical approach to

thin plate analysis has been to use the Kirchhoff-Love assumptions in
".'.. '%

conjunction with the nonlinear von Karman relations (11,121. As

previously indicated, the Kirchhoft-Love assumptions are relaxed in -J..

this work to allow for a more accurate definition ot '

interlaminar-shear and interlaminar-normal stress variations. These

stresses can vary substantially through-the-thickness for the

geometries of interest, i.e., thin to moderately thick plate type

structures. Furthermore, the requirement that these stresses be

accurately determined means that the nonlinear portion of the

strain-aisplacement relationship must contain all significant .

coordinate displacements. The complete Green's strain tensor is

utilized in this work, theretore, to account for all significant

contributions to the interlaminar stress field. 'With respect to

fixed Cartesian coordinates, x, y, and z, the strain tensor has the

form

~ ..

.*-..- .. ... , Sr~... ..................................... r -:. :
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x 3 x 2 a)x avZx

Y a..U + v +[.Lu a u+ a v + ww L
Yxy TY ay a' x 3Y a+----+---

where u, v and V represent displacements in the x,y,z coordinate

directions, respectively. Note that the other strain components are
--. .;.

obtained by a suitable permutation. In small-displacement analysis,

the quadratic terms are neglected to give simply the linear strain

approximation. _

Based on the GreeA's strain tensor, the strain to nodal point

displacement relationship can be specified for elements under

development. It takes the form

where I-1 is the vector of strain components, JAI the vector of

nodal point displacements and [B] a function of derivatives of the

element shape functions. The quadratic terms in the strain tensor

result in 1B) being a function of displacement state and, therefore,

an incremental equilibrium formulation is required. The incremental .'i

strain-nodal displacement relationship takes the form

{6 = ([Bo1 + BLI) ,...

where 16e l and ISAI represent incremental strains and nodal

displacements, respectively, [BI and [BLI are the small and large

oisplacement contributions to the incremental strains. Based on the

incremental equilibrium equations, the displacement formulation gives

-..,<.,.. .- ,-.-.;. :.-./. . -._-/ ... -. .....-.-........ ,- ... ,,.. ..... ,. . .. . . ..-. ..- . . .. , ,, . .. ... . ... :.L"o



9A.

the force-di splacement rela tionshi ps !|

f 8 T(Ko] f [D8 0] dVv i

e ] = f ([ B° ] T [D][BL] + [BLIT[DI[BL] + [B LIT[DI [B 01dV

V

where [DJ is an elasticity matrix obtaine simply trom the

constitutive equations and integration is over the volume V of the

element. LK I is denoted the small-displacement stiffness matrix and

1 L is denoted the large-displacement stiffness matrix. Since

response is also a function ot stress state, the geometrical stiffness 
q'q

matrix [KG ] is required and is obtained from

[KGI ; s [: (LIT(a }dv

where It} is the vector of stress components.

Inertial effects are analytically treated as a mass matrix [M]

which is a function o density and the element shape tunctions (see

Appendix II). These matrix torms are required in tormulating

static/dynamic response solutions and the incremental equilibrium .,'

equations have the general to-.. ..% -'.

q:. -- -. -..
.u' + [Ko] + (K I KG] (u} ( {6F}

where the mass and stiflness matrices represent an assembly of the

elemental matrices previously discussed, fsul n 16u1rpesn h

incremental displacements and accelerations for the mathematical model ___

and ISFI represents the vector o incrementally applied forces.

In developing a geometrically nonlinear formulation, the effort I
is largely in defining the incremental strain-nodal aisplacement

.V V' 77 >:., ,' .. ,'..• ..'. .. ,.
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relationship. Having developed this relationship for a particular

elenent, stiffness matrices are readily developed as the preceding

equations indicate. These relationships are presented '.ppenaix

III. The form of these equations is the same for all e.ements.

11.1.3. Computer Implementation

A computer code has been developed for the purpose of
-- * a.

implementing the various continuum formulations. At present, the code

performs the following fundamental calculations:

element stiffness matrix (linear, nonlinear, geometric)

generation

element mass matrix generation

assembly of equilibrium equations

decomposition and solution of equilibrium equations

equilibrium iteration for incremental solutions

fundamental frequency and mode shape calculation
•- .:

elastic buckling calculation

A characteristic of the elements under development is that node

points can have different numbers of degrees of freedom, i.e.,

typically mi-side nodes have fewer degrees of freedom than corner

nodes. The code has been fashioned to handle this condition. All of %

the integration is performed on a layer-by-layer basis thru the

thickness of the laminate. This approach is fundamental to developing . .-

the capability to allow for inelastic material behavior and, U4.%

ultimately, to the inclusion of damage mechanisms in the formulation.

'0 % .,

1221- .4""



Since solution of the equilibrium equations is a vital component

in the overall solution strategy, it is appropriate to discuss the

numerical methodology used in solving these equations. The intent is

to obtain a higher ordered variation of the transverse shear and

normal stresses ( y and a than can be obtained v ae

equilibrium equations. The solution procedure can be thought of as

described below. Assume that the in-plane stresses (a ay, a ) .". '
y X

. .-

within each layer of a particular element have been determined at

selected locations, i.e., through solution of the constitutive -

equations. In the code as presently written, these locations are

specified as the element centroid and element nodal points. The

equilibrium equations (in the absence of body forces) have the

indicial form .'

aijlj 0

from which it follows that the thru-the-thickness shear stress

variation can be written in numerical form tor the ith layer as

-CYzi : -( xxx + ' *xyIyZi m l
and

' YZ i (xy, x + -YyY)i Zi"

here, the left-band-side represents the change in stress from the

lower to the upper surface of the ithlayer and AZ is the thickness of

th
the i layer at a particular location. The derivatives with respect -

to x and y in the expressions above are readily computed; this is

because in-plane stresses within a layer are related to element :r'q

displacements through derivatives of element shape functions in

conjunction with a material definition.

For an n layered laminate, n equations can be written in terss c.!

•7, I7

- .. ' -S ~ ,, *,.,.'S-



12 N
both the unknovn shear stresses at layer interfaces and the shear

stresses at the laminate surfaces. Assuming the laminate has

shear-iree surfaces, the equations above give n equations in n-I

unknovns, so that, the equation set is over-aetermined, equations

have. th matrix fore below
%

1 !Ia\';

-11 V z 
.

-Z 'IZ

n x (n-) (n-) x I (n x )

where z - + AZ and az represents the shear stress

acting at the interface of the j-Ith and jth layer. A similar

* equation set is obtained by replacing cxzj with 0 yzj and I.z i with rvzi,

These equations are solved by utilizing a least-squares

orthonormalization procedure £13). Due to the'simplicity of the terms

in the coefficient matrix, a concise closed-form solution, is obtained.

Having determined the transverse shear stresses, the transverse . .

normal stress variation is determined through the numerical form of

the third equilibrium equation for the ith layer

(zz i x z , x + y z y ) i  Zi  - I .

16 As before, the left-hand-side represents the change in stress through N:

the ith layer. Appropriate polynomial functions are utilized to

describe the a and a in-plane variation. These functions are

-- - - - -- ,'--#'.-'; -, ''- ' - "
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differentiated to obtain the right-hand-side of the equations above.

Again the equation set is overdetermined because the normal tractions

are known at the laminate surfaces. Solving for zz proceeds,

therefore, in identically the same manner as discussed in calculating

axz and ayz . Parenthetically, Inclusion of body forces a.. later date

* can be accomplished with little difficulty.

It should be emphasized that, the successful application of

ligher Order Displacement type elements, i.e., for particularly thin

• geometries is to utilize reduced numerical integration where as this

is not necessary for the Modified Kirchhoff formulation. This

approximation technique brings along the choice of implementing it

C overall or selectively to the strain energy components. For the QRD •

formulation, only the transverse shear components are integrated with

reduced order L14-161. An undesirable aspect of this approach is that

the reduced integration order may affect the physical behavior of the

element by introducing spurious zero energy modes. It is desirable to

have only rigid body modes since there does not yet seem to be a

generally accepted method of controlling the additional modes.

11.1.4. Analytical Verification V.

As noted, elements formulated on the basis of independent

transverse displacements and rotations, require reduced quadrature for

good performance. For QlD4O, 3x3 Gaussian quadrature along with the

2x2 quadrature for the transverse shear components is eLployed. QHD28

and QKD20 formulations are similarly integrated with 2x2 ann lxi

Gaussian quadratures. Manipulation of quadrature rules may produce

spurious zero energy modes in addition to the required rigid body

..4 %.
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modes, thus detracting from overall element performance. [16,17). A

spectral (eigenvalue) test has been conducted with and without full

quadrature to observe the zero energy modes of the QHD " ments. The

quadrature order, the number of zero eigenvalues and tn. ;orresponding

number of spurious zero energy modes for the QRD40, QID28, and QHD20

elements are listed in Table 1. The spurious mode shapes associated

with the QiD28 element are illustrated in Figure 1. Since the QRID40

formulation does not exhibit spurious modes, it can be utilized in

modelling complex geometries without concern for controlling such

behavior.

It is also noteworthy to observe the effect of reduced

integration on the representation of the generalized forces. In

order to illustrate the effect, the forces associated with the

transverse displacement of a corner node are sketched in Fig. 2 tor

QHD28 with and without reduced integration respectively.

In the examples that follow, performance of the QhD formulation N.

is demonstrated by comparing results to those obtained by classical

plate theory (CPT), by elasticity and by other finite element

formulations for linear static dynamic and buckling analyses.

Limited results are also presented for the QD and ID formulations.

The latter results are simply presented for comparison because it is

apparent that the QhD formulation always gives the best results. It

woula seem, therefore, that the higher order nisplacement formulation W

is the better approach. The orthotropic material properties used

throughout are tabulated in Table 2. Geometries studied include

cylindrical bending of a plate as well as bending of simply supported

%..
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square and rectangular plates. Various ply layups are considered and .

loading is that of a sinusoidally and uniformly distributed pressure.

4 Cylindrical bending is modelled as a strip of twenty elements. For

the simply supported plates, symmetry considerations allow that only a

quadrant of the plate need be modelled. Fineness of tb ..h is

* varied to demonstrate solution convergence. Additionally, distorted

meshes are considered to demonstrate modelling considerations. For

the examples involving symmetric layups, the quadratic terms ot QRD40 .4-.:,

* are restrained; so that, 32 degree of freedom elements are utilized to

obtain these solutions. Ihis is allowable in these particular cases

because the quadratic terms do not significantly affect the results.

This is not true in the first example considered. I--

Static Response Calculations -.

Cylindrical Bendin&- Bidirectional (0 /90) Sine Load, Material 11

Fibers run parallel to the plane of curvature in the lover layer

and are rotated 900 in the upper layer of the plate. Layers are of .

equal thickness which is true in the subsequent example problems as

well. The elasticity solution obtained by Pagano 191 gives a nearly

quadratic z variation in u, where U is the normalized in-plane

displacement of the laminate. In this instance, inclusion of the z2

terms in the finite element modelling should affect the results. This

is demonstrated in Figures 3 to 5. Results demonstrate differences

obtained with and without quadratic terms. The difference is greatest

for the lower aspect ratios, e.g., for S - 4 a difference of 12Z is

obtained. In Figure 4, the calculated normalized in-plane stress .1 ...
v.a.ato imvariation is presented for an aspect ratio of 4. Note that maximum

variation is presented for an aspect ratio ot 4. Note that maximum

* .***.' . . .-*°
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ID.

stresses differ by some 36% when computed with and without the z

terms, respectively. The effect of including quadratic terms in the

finite element solution is, therefore, much more pronounced when

stresses as opposed to displacements are considered. t .-e 5

amonstrates this effect on stress computation as a function of aspec

ratio. Note that calculated quantities are normalized in this example %-.

and in those that follow as in the cited references.

Cylindrical Bending-Symmetric (0 /90 /0) Sine Load, Material 11 .Z

For this geometry, tibers are parallel to the plane of curvature

C in the outer layers and rotated 90* in the middle layer. Calculated

stresses are compared to the elasticity solution of Pagano [91.

Figures 6 and 7 present the normalized transverse shear stress
%

variation at the simply supported boundary. Figures 8 and 9 present

the normalized in-plane stress variation at the center of the bent

surface.

Simply Supported Square Plate (0 /90 /0) Sine Load, Material II

Fibers in the outer layers of the laminate run parallel to the x

axis while those in the middle layer run parallel to the y axis, where

the origin of coordinates is located at a corner of the plate and in

the mid-plane (see Figure 10). This coordinate system is consistent

with examples that tallow as well. Consider the plate as having

planar dimensions a x a and total thickness h. Solutions have been 'r

generated for aspect ratios S 4 4 to 100, where S = a/h. Iransverse

shear stress variation a at (x,y) coordinates (0,a/2) and in-plane
xz

- .:",?r+ ,:" -,:.'++..":..' ':." .". , .',+ :-:." ,,,-',:. "- ". "+ .,."., " ".. ", .-".- ".. -.,. +-,. -.- +' ,'."...'- " .- '. "+,,". '. . . ,,... ,=',., +.. .."-+" .". X



shear stress variation ax at coordinates (0,0) are presented in

figures 10 and 11 for an aspect ratio of 4. Note that the comparison

is between the present finite element results and those obtained va 

elasticity (181 and CPT". Calculated short-transverse nc stress

* variation azzis presented in Figures 12 and 13. These stresses are

normalized as azz-Ozz/100 at the center of the plate ann as a -0 I'' -
zz zz,"-"..

at the edge of the plate. nesults are compared to those obtained by

*elasticity over a range of aspect ratios in table 3. Similar results "
are given in Vable 3.1 for the QD formulation and in Table 3.2 or the.

TD formulation . Convergence characteristics are demonstrated by"

ipresenting results obtained using 2x2, 3x3, and 6x6 meshes. The finer
mesh gives better agreement, but the coarser mesh gives very

reasonable correlation also. .,.;. "

0 he effects of distorting the mesh have also been considered to a.:_,

limited extent. CPesults have been obtaine- or the relatively coarse

meshes shown in Figure 14. Calculated stresses and displacements are

presenteds as a function of aspect ratio and compared to the elasticity

solutins in T'able 4. As expected, the values are not as accurately,,-.

determined as are those obtained via the regular meshes. Distortion

of the mesh has a much more dramatic effect upon te calculated by

transvere sheaer stresses than upon the calculated in-plane stresses

and fisplacements. Since the transverse stresses are based on

,%" .% %equilibritm considerations, i t seems the mesh must be refined enough

to reasonably approximate equilibriu. This is especially apparent in

com paring results obtained for mesh A to those obtaine or mesh C,

In each of these cases, elements having a taper ratio o 2 to I areted

%
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utilized. Mesh C gives significantly improved transverse stresses,

however, because the mesh is tine enough to better represent the

loading distribution.

* Simply Supported Rectangular Plate(O /90 /0) Sine Loan, Material II

Orthotropic layers have the same orientation as in the previous T1d" .

example. The plate has dimensions a x b, where b is three times a. ..

• Solutions have been obtained for aspect ratios (S - a/h) ranging from

4 to 100. Transverse shear stress variation jyz at coordinates (a/2,O)

is given in Figure 15 for an aspect ratio S - 4. Comparison is made

to both elasticity and CPT solutions. A full range of results are

presented in Table 5 and compared to those obtained via elasticity

118] and to those obtained by Reday [191 in a recent finite element -,.-

* formulation. Correlation with elasticity is quite good, particularly

for aspect ratios of 10 and above, and appear to be more accurate than

those obtained with the alternate finite element solution. Results % %

obtained using the QD and TD elements are poor (not presented herein)

compared to those obtained using the QHD element. Thus the QD and TD

elements are quite sensitive to element distortion and not suitable

Cfor general analysis purposes.

Simply Supported Square Plate (0 /90 /90 /0) Sine Load, Material II

The laminate geometry consists of outer layers with fibers

parallel to the x axis and inner layers with fibers parallel to the y

axis. The plate has planar dimension a x a and total thickness b. ..

Stress and displacement results are presented in Table 6 for aspect

ratios ranging from 4 to 100. Similar results are given in Table 6.1

,',

_ .1%

% % .
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based on the QD formulation and in Table 6.2 based on the TD

formulation. Results are compared to both elasticity and to other

finite element results. Again, the computed values are in excellent

agreement with elasticity [201 for moderately thick to - n geometries "-.-

and are more accurate than, the compared to numerical i ,its*

Solutions also have been obtained for the present geometry on th.

basis of reduced vs. full integration. This comparison is

demonstrated in Figures 16 and 17 by giving percent error in *.. *%**-:

calculated values vs. aspect ratio. It is apparent that reduced

integration is particularly needed to minimize errors in calculated

transverse stresses and, furthermore, solution validity over a vide *..

range of laminate geometries is demonstrated.

Fundanental Frequency CaZ.u"ations

To assess the effects of finite element formulations, aspect

ratio, support conditions and the lamina stacking sequences on the

fundamental natural frequencies of composite plates, the problems ',

listed in lable 7 are considered [211. r,

The non-aimensionalized fundamental frequency for the cross-ply

laminate of Problem 1 versus aspect ratios is given in Table 8. As ,

can be seen, all three elements preaict frequencies that are in

excellent agreement with the closed form solutions obtained by Reddy

[221.

The effects of higher order terms in the displacement based

finite element formulations are investigated for Problem 2. here, the

performances of QIiD40 and QHD28 (with higher order terms locked) are

compared to elements STPDI and STPD3 of [231 with linear and cubic

variations through the thickness respectively. The results are b

",.

pI.- -
::-?..



summarized in Table 9. the normalized fundamental frequencies of

Problem 3 are displayed in Figure 18. Hote that the

non-dimensionalized fundamental frequency increases as the angle of

orientation is increased for both symmetric and antisy :ic .

angle-ply square plates. This observation is in excellent agreement

with Reddy,s 1221 antisymmetric laminate. In Figure 19, a decrease in

the fundamental frequency is observed as the angle of orientation is

increased for the angle-ply, cantilever, rectangular and square plates

of Problem 4. The difference between Figures 18 and 19 are attributed

primarily to the different support conditions.

Further investigations, Problem 5, of angle-ply laminates are

stumarized in table 10. The stacking sequences of reference [241 are

used to illustrate their effects on the fundamental frequency

calculations. The numbers within parenthesis are calculated by

Crawley L24, 25).

Shown in Figure 20 is the variation of the non-dimensionalized

fundamental frequency for cylindrical bending problem, as calculated

via the QD formulation and the classical plate theory. For comparison

purposes, the frequencies are normalized with respect to the classical 9 -.-

plate theory results.

Transient Response CaZculations

Element performance has been evaluated with respect to predicting . -

linear-transient response. Both displacements and stresses have been low'

determined ±or a variety of laminated plate geometries subjected to

instantaneously applied pressure loading. These results have been

compared to those obtained via both CPI and a shear deformable theory

% ...
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(SD ) [261. lypical results are presented in Figures 21 ana 22 tor a

(0/90) square plate. In this example, the plate is quite thick in

that it has an aspect ratio ot 5.

Buckling Calculations

0 ELlemeut pertormance has also been verified for linear elastic

buckling calculations. As an example, critical buckling load is

plotted vs. the k1/E2 ratio for anti-symtmetric (0/90) an %-

(0/90/0/W0/90) cross ply composite plates in Figure 23. Results

agree well with those obtained by Noor L271 and with other shear

aetormable theories. Gooa results have also been obtained tor other 9..'

boundary conditions and stacking sequences.

11.2. TASK 11: Incorporate Dawage Mechanismis into bynamic Response

0 Formulation

.\% .'. .,

The literature survey [2b-631 pertormed has been quite helpful in

.%'

terms ot aelineating the viable approaches to includinr caage

mechanisms in the analysis. Relevant tailure mooes cr interest
. , -.. 4

include those listed below

Wi tiber tracture

(ii) tiber-matrix oebonaing

(iii) matrix cracking (parallel and transverse to tibers) .'- -

(iv) aelamination

(v) buckling (possibly at layer or sub-laminate level)

Several smooth failure criteria, e.g., L64-671 have been developed in

recent years to represent the tailure o composites. 1hese criteria,

to varying degrees, can predict "failure'" but co not identity a

* 9 * -,,.',.... . . . .
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particular mode of failure. In performing incremental "damage"

analysis, it is essential to both predict failure and to characterize -

it, e.g., do fibers rupture, does delamination occur, etc. The

computational approach must, therefore, differentiate between viable

failure modes and appropriately alter the constitutive equations on

an incremental basis. Ihis can be accomplished by impementing a

piecewise smooth failure criteria, e.g., [28] in the finite element

formulation. The general failure criteria is then comprised of m

separate inequalities of the form

Fj ({c}) 1 ; j 1 l,2 ,...,m

at the layer level within each element. These criteria should . ?

differentiate between (i) tensile and compressive tiber failure, (ii),b. -

tensile and compressive matrix failure and (iii) aelamination at

layer interfaces due to either maximum stress or buckling

considerations. •

As progressive damage occurs throughout incremental loading

(whether it be static or dynamic), it is essential that violation of - .

failure criteria inequalities be reflected in modification of the

material properties. Ibis can be achieved by including damage state

variables 1471 in the constitutive equations to reflect "stiffness

reduction." These equatics can be represented as

{Q} [D fyJ{ .} 
,,, , %j

where ID] represents the material matrix and [y ] contains the damage

state variables. The latter provide the basis for changing the Dij _.

~ ?'p( f. '% .~. -. ~ ~ .* -- .,-*- ... ". -.."'-..--
,"6 4d...
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terns based upon the extent to which the failure criteria are

* violated.

In conjunction with the above it is essential to perform
r'V.

equilibrium iterations within each analysis increment. This is

* required to assure that stress redistribution is properly accounted

for as damage progresses.

T he failure criteria currently implemented in the incremental

* analysis are primarily due to Hashin [28], Lee J29J, Greszczuk [311

and Hahn 39] Layer stresses are defined as shown in Figure 24 and V

the criteria are summarized as follows:

C Fiber Failure

1. Tension
The simplest criterion for tensile failure of a composite is the

maximum stress criteria. The failure occurs if:

0 > F
SL- FN

However, this is a drastic approximation, since the fibers vary
significantly in their strength. Lee proposes that in addition checking "'.
this criterion, the fibers fail if

2 2 >

(aLT + aLZ) - FS

where OFS s the fiber shear strength. The criterion proposed by Hashin ' 1%

for the tensile fiber failure is

2 2
(a +Ra

2. Compression FS
For compressive loads applied along the fiber directions the proposed

failure mechanism is analogous to the buckling of a column. The critical
fiber buckling stress in the shear mode is given by Greszczuk and Hahn as

a "G
CIS r(1-k) ..

where Gr is the resin modulus, and k is the fiber volume fraction ratio.

s..

r V. %

k% ~
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Matrix Failure: 
." -. N

1. Tension
The composite tensile strength transverse to the tibers is not

expected to deviate significantly from "e matrix tensile strength.
The compressive criterion used are as follows

Lee OT > N o (o + oTZ) > MS

12 + 1 2 + 1 2 2Hashin (T+OZ +-.(T GTZ+ (LT +
0MN 'MS OFS

where (aT +0z ) > 0

2. Compression
Under compression, failure may occur by shearing along a surface

through the matrix parallel to the fiber axis. The criterion proposed by
Hashin is

S L 2 1 2 1 2
(a2-----2 (+ (TZ-o.TaZ) +

(G2 02)2I (02L+ =2Z =I £

0 FS LZ

where Jlic is the compressive matrix strength.

DelamLnation:

Lee proposes that delamination occurs it either
0Z0  . o (aLZ2  2, 

":

aOz >0 Da.Oz>_or + -),:..,:,..;:-
where a- and C_ are the through-the-thickness tensile and shear strength -.

respectively. et another form used to identity delamination is as follows

2 2 _2 2LT 2 1

2 -DN DS

Iuj.-,-.
°. -,,

. , -



W. ~fur X NS W_. WU r.. W2 FJUIWXU.~WXV V W V ' W -. 1 XW F _- Vrr. .wv I ~

23

Dcnage Prediction Calcutations A

The damage histories for selected composite laminates subjected

to both in-plane and bending loads have been determined. Mote that

the loads are statically applied. Results are sunarized below.

Uniaxial Tension

The one element plate model of Figure25 is employed for the
uniaxial tension analysis of angle-ply laminates. The laminate
consisted of twenty-four layers of T300/5208 graDhite epoxy. The .
assumed material and the strength properties of T300/5208 are - .

• given in Table 11. The first and the last ply failure curves as a
function of lamina orientation angle are shown in Figures 26 and 27. *

As expected the first and the last ply failures for uniaxial
laminates of (0/0/01 of Figure.-26 occur simultaneously where as
for angles greater than 30, they are quite separated. The [0/90/0]
layup of Figure 27 shows that for 1060, 750 and 90* laminates,
the initial and final failures coincide where as for angles less
than 60*, they are easily distinguished. Table 12 displays an alter'
nate view of the damage progression where initial failure occurred
at the second load increment and the final failure at the fourth .-.

increment. The column headings of Table 12; TF, CF, TM, CM and DL
denote Tensile. Fiber Failure, Compressive Fiber Failure, Tensile

• Matrix Failure, Compressive Matrix Failure and Delamination
respectively. Thus one can easily identify the failure mode
within a ply for a given load increment.

Four-point Bending

The bending prbbler ot Figure 28 is modelled with four elements.
The material and strength properties are as listed in Table 11. The

laminate is unidirectional and consists of twenty four layers. In

the bending problem, the critical aspect ratio is defined as S=a /T
Deldmination is observed for aspect ratios less than the critica fn Ne
middle of the laminae as the load is increased. Additional matrix and
fiber failure accompany delamination as shown in Table 13. The inter-
action curve of Figure Z9 reveals that the final failure occurs after
twenty percent load increase over the initial failure load. It should be

noted that for aspect ratios less than the critical, the percent
increase of the final failure to that of initial failure load is
constant; thus if one reduces the shear strength by the same percentage,
the final failure load for the corresponding aspect ratio ends up on
the interaction curve. This phenomenon is illustrated by the dash-lines
of Figure 29. When the aspect ratios are higher than the critical, the
fiber failure at the outermost laminae vroceeds rapidly toward the
center and within four percent of the initial load, ultimate laminate

failure occurs. A typical damage progression is displayed in Table 14
for an aspect ratio of 100.

%__ _ _ _
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While not presented herein, some work has been performed to

relate change in strain energy to anage progression. It is hoped

that this work can be extended to calculating strain energy release

rate as a function of the extent of the delaminated region.

11.3.3 TASK III: Correlation of Formulated kesponse Model with

Experimental Data
.- .oo .

Some quantitative data relating to the impact damage of composite

specimens has been assembled [68-75]. It will be utilized along with

any additional data obtained to perform analysis/test correlations.

* * %..

Since the nonlinear formulation including damage effects is not

complete, the only use of test data has been of that in (43J and

discussed in the previous section. .

'. * .I'

• . .. *.+
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6

Table 1. Spurious Zero Energy Modes of the QHO Family

Number of Zero Number of SpuriousQuadrature Order Ei genval ues Modes.--.

3x3 with 2x2
QHD40 for transverse 6 0 ,

shear terms

2x2 with Ix.
QHD28 for transverse 9 3

shear terms

2x2 with Ixi
QHD20 for transverse 8 2

shear terms

-- -

* .. %

A...
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TABLE 2

Material Properties used in the sample problems

r Ib-sec'MATERIAL Ej/E 2  G12/E2  G2 3 /Els yecn

_ _ _ _ __ _ _ _ _in4

1 40 0.60 0.5 0.25 .7124x10"

I I 25 0. 50 0. 2 0.25 .7124xl 0 "

111 11.6 0.41 0.14 0.25 .1425x1 - ' 3

IV 2 5 ... 0 .25 7 124 x 10 "-4 :

0

0%
.N, %

C

'.q .

0** 4.

" . % , " r % " ," . ,', - " , " . ,', , '. , o . ,. , ,'£ , , . e L , t', ,e ~ ~l' .' ,_, L .' .- ,. a '. ... ., ,. .. j . .- ,- ,. ,.. ... .. .. .- , .. % -... , . , . . ... . . ., • . . . . .- ... .. ' . -4
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* TABLE 3.1

x y xy xz
$ A c- (0, 0, h (0, 1, 0) (2 , 0)

2 2
4 FEN (3x3 Mesh) .399 .562 .0513 .372 .304

FEN (6x6 Mesh) .392 .543 .0463 .357 .280

Elasticity .755 .556 .0505 .282 .217

FEN (3x3 Mesh) .514 .246 .0299 .406 .175

10 FEM (6x6 Mesh) .502 .270 .0284 .387 .142

Elasticity .590 .288 .0289 .357 .123
C%

1EM (3x3 Mesh) .547 .157 .0245 .418 .141

20 FEN (6x6 Mesh .533 .186 .0234 .398 .107

Elasticity .552 .210 .0234 .385 ! .0938

FEM (3x3 Mesh) .558 .128 .0227 .423 .130

50 FEN (6x6 Mesh) .543 .159 .0219 .402 .0961 41.V

Elasticity .541 .185 .0216 .393 .0842

FEM (3x3 Mesh) .559 .123 .0225 .423 .128

100 FEN (6x6 Mesh) .544 .155 .0216 .403 .0944 % ,

Elasticity .539 .181 .0213 .395 .0828

CPT .539 .180 .0213 .395 .0823

N.

II

Z. ..
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TABLE 8

Nondimensionalized Fundamental Frequencies of Simply Supported,

Square, Cross-ply Plate of Problem 1. "

a2

w" ww E2

Aspect Finite Element Solution Closed Form
Ratio Solution

QHD28 QH040 Q032 Reference [4]

2 5.860 5.525 5.824 5.500 ,

4 9.780 9.757 9.706 9.359

10 15.440 15.340 15.276 15.145

20 17.850 17.719 17.628 17.665

c25 18.246 18.103 18.006 18.093

100 18.964 18.805 18.704 18.733

MV-S
...% %'r

N

.5..'
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TABLE 10

Nondimensional ized Fundamental Frequency '.

of Cantilever, Angle Ply Plates of Problem 5

*w ( w VTif~

Lamina Stacking Sequence

Aspect Ratio [±455 ;45] s [02, ±30 [0, ±45, 90] a'a/

2 1.17 1.21.64

51.43 2.79 2.47

101.53 3.0 2.73

020 1.60 3.31 2.82 &

24 1.62 3.32 2.83

4144 1.68 3.35 2.86
(1.64) (3.35) (2.85)
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Table 11 Material Properties

Elastic Constants

Uniaxial Tension Four-point Bending

E1 (GPa) 138 190

* E2 (GPa) 10.6 11

E (GPa) 10.6 11 ..

G (GPa) 6.4 7.2
*12 .472"

G13 (GPa) 6.4 7.2

G 23 (GPa) 6.4 7.2

V0.3 .38

V 13  0.3 .38

V 2 3  0.3 .38

St:r engths...---'..

*FN (MPa) 1500 (1500)* 1502 (1502) - ,

0 FS (MPa) 68 67.5

a (MPa) 40 (246) 41 (250) .

*MS (MPa) 68 67.5

0DN (MPa) 40 41

(0DS (MPa) 68 67.5 ' .

*Terms in parenthesis are the compressive strength.

:.,.... .

• .1

ie-
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Table 12 Damage Accumulation of a 
2 4-ply,

[30/90/-30] laminate under
uniaxial load.

.or%

* PLY TF CF TM CM DL
1 0 0 0 0
2 0 0 o o
3 0 0 2 0 0
4 0 0 2 0 0
5 4 0 0 0 0
6 4 0 0 0 0 .. -
7 4 0 0 00 0 .J, .

8 4 000 0 .A .
(9 00 a 0 0

10 0 0 2 0 0
11 0 0 2 0 0
12 0 0 2 0 0
13 0 0 2 0 0
14 0 0 2 0 0
15 0 0 2 0 01 6 0 0 o 0 0 V" VI
17 4 0 0 0 0%
18 4 0 0 0 0
19 4 0 0 0 0
20 4 0 0 0 0
21 0 0 2 0 0
22 0 0 2 0 0
23 0 0 2 0 0
24 0 0 2 0 0

- .. 4

.. .:

-.. *:J1 00•
or--

.' . 9
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Table 13 Damage Progression of a 24-ply laminate

with Aspect Ratio S-8 under the four-

point bending load. PII/P 6 1.20.

PLY TF CF TH CH DL
2 0 0 0 0 03 a. 0 0 0 0
4 0 0 0 0 0 L .-

5 0 0 0 0 06 0 0 0 0 0

7 0 0 o 0 11 u' '

0 0 0 10 109 0 0 0 9 8

10 0 0 0 7 611 0 0 0 6 6 - :
12 0 0 0 6 6
13 6 0 6 6 6
14 6 0 6 6 6
15 6 0 6 6 6
16 7 0 6 7 7
17 7 0 7 8 8
18 8 0 89 9
19 10 0 9 10 10

20 00o110 021 0 0 0 0 0
22 0 0 0 0 0
23 0 0 0 0 0
24 0 0 0 0 0

tO %

a,"-.%-

*% .5 5

U..-4

C,,

-a.. .- .%
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Table 14 Damage Progression of a 24-ply laminate with%
Aspect Ratio S-100 under the four-point bending

*load. P 14 /P 13' 1.04.

*%

1 0 13 0 0 0
2 0 13 0 0 0 .,
3 0 13 00 0

c4 0 13 00 0
5 014 0 0 0

7 0 14 0 0 0
6 0 14 0 0 0
8 0 14 00 0N
9 0 14 0 0 0 %

10 0 0 0 0 0
12 0 0 0 0 0

14 14 0 14 0 0
19 14 0 13 0 0
20 14 0 13 0 0

21 13 0 13 0 0
*22 13 0130 0

23 13 0 13 0 0
24 13 0 0 0 0

- N .: 0-1

k-%

P . . J%.

cX

.% 

.%. %*

6d./3 .

P,,.i
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APPENDIX IA - HIGHER ORDER DISPLACEMENT MODELS

* QHD40

NODAL DEGREES OF FREEDOM:

0 Corner Nodes - {uo Vo wo ipx Py Ox Oy}T

Mid-side Nodes- {w0 tpx y} T

* ODISPLACEMENT FIELD:

u = u0 + Zpx + Z
2 X

C V = Vo + Zpy + Z20y

w 0

where; -: ; .

Uo Vo, : {I x y xyT }

WOO X~~P ly X2 X yy2 Xly Xy3}T{l

• STRESS FIELD:

i. From constitutive relations - ai. Cijij (orthotropic mat.)'% %

Sxx f(z, x, y')
C"

- yy = f(z2 , x2 , yl)

O = f(z2 , X2, y2) le

ii. From equilibrium considerations - aij,j = 0

Gxz = f(z x, y)

oyz f(z3, x, y)

a zz = f(z3)

it'

.. rv.

Z.n-



QH028 .

* NODAL DEGREES OF FREEDOM:

fu0 vo wo x 'p3 ox oy}

DISPLACEMENT FIELD:

* 0 +ZlPx + Z0

V =v + Zljpy + Z2 ~

w = w 0

where;

U 0 9 vos Woo -. y x, ,xy y

STRESS FIELD:

i. From constitutive relations - ci Cijeij (orthotropic'mat.)

=f(Z 2, x, y)

Cy f(Z2, x, y) .-

Oxy = f(Z2, X, y)

Cii. From constitutive considerations - ij,j =0

G = f(Z3)

=f(z 3)

az constant

rY



APPENDIX IB - MODIFIED KIRCHHOFF FORMULATION 7_

QD32 • •"

NODAL DEGREES OF FREEDOM:

aw awT* Corner Nodes IWO voW - -- Yx yy}

aw}T : "2

Mid-Side Nodes {W _ *.,

DISPLACEMENT FIELD:

w = f(x, y)

0 U = U0 - Z + YX

o - - , "

where;

Ux' Y : {I x y xy}T

Y 2 XY2 X3 2 X2 y3 ' y 3 3 y xy*
w={ix y x xy y x xayxya y x xyxy y" xyxy1}{g}- "

STRESS FIELD:

i. From constitutive relations - i = Cijij (orthotropic mat.)

xx= f(z, x', y') -:

=yy f(z, x', y2 )

axy f(z, x , y2)

ii. From equilibrium considerations - j= 0

xz f(z2, X2, Y2)

Gy z = f(z2 , x', y
2)

Gzz 0 f(z3 , x, y)

. .'- * ~ 4,,..' q: -fA', L' '._' _ t. " t".,, ',."": €'" " ..,'"'..,;"'.-;''," "-. ",,"£- ' -' .



CTJ2____7 TD27M

% .

NODAL DEGREES OF FREEDOM
;w w T, :w W,-v

fU 0 Vo W x  YX Yy} Corner Nodes fuo vo w - xy
{w ,w}T T"T

Mid-side Nodes {W}T

{w} 2 W- ;.-W.
Center Node {w x __

DISPLACEMENT FIELD
_.m ,_,

w f(x, y)

u uo  z - + Yx)

* ~v o z + Y) .1 --

where;
u0 1 x y x y}T }

w : x 1yx xy y2 x xy xy y3 x4 x3y xly xy3 yi,1{}

STRESS FIELD

i. From constitutive relations - i = Cijij (orthotropic mat.)

=x = f(z, x , y 2)

Uyy = f(z, x2, y2)

xy = f(z, X-2 , y2)

ii. From equilibrium considerations - (ijtij 0 .

= f(z2, x, y)

Gyz = f(z , X, y)

azz =f(z
3 )

,-.5:,-
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APPENDIX II - MASS MATRIX FORMULATION .

*• The mass matrix for elements under development is easily arrived at

by considering kinetic energy in the form

T fP(L2 + + w+)d2

V

p .

where u, v and w represent displacements, p is the mass density and the

dot superscript denotes velocity. Defining velocities in terms of element

* shape functions gives

T = ' [*]T  p{Nu}[N u] + {Nv}[Nv ] + {Nw}[Nw] dV {

V
C,-

which is the classical form

1.T

T AJM.{AJ

The element mass matrix [M] is, therefore, specified as

[M] = P{Nu}fNu} + {Nvl{Nv} + {Nw}{Nw} dV

Note that the shape functions [Ni] involve distance from the mid-plane ,..*%

of the element to a layer denoted by Z and, therefore, the mass matrix
C definition provided not only represents mid-plane inertial effects but

also rotatory inertia as well.

.%, ;w-;

t k,'-4



APPENDIX inI - LARGE DISPLACEMENT FORMULATION

*Based on Green's Strain Tensor, the following procedure is utilized

to obtain the large displacement and the geometric stiffness matrices.

Let N be shape functions relating displacements at any point in the

element {6} to nodal displacements {A1 such that

Also let (Ni *1T denote those shape functions associated with the it

* displacement field (i - u,v,w) and ",J" denotes the differentiation with

respect to the jth coordinate, i.e., where x, x, x. y and X3 =Z.

Then, the strain c~ given by
C = ir/u\2 (~\~ (~wZl

can be written as

t~~} T J+ {N 1T .{ , + {N~ J Nw

*Similarly,, the shear strain c can be represented by

T T. N.-.T

(NVX} TT ++{ ( g}~{Nugyi + '~qj ,{Uy} JV'X v'

+ {Nwx)T{N,y4f {40

The strain field in indicial notation is expressed by

{Cij) '1[[Ni'i +{}T] + +{T[Nk i}TNk,j]A1 -

7 .
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Then the incremental representation becomes

J) T T{t + (ATT
([} Ni.j + +N , 6 T[ Nk,i}T{Nk ,j ] { },

+ (A) [{Nk,i{Nk,jh] }%

But the second term can be expressed as

T[{Nk,j}T{Nk,i }]  f6A}

Thus combining terms

j :i ,} __ [[{Ni ,jT+ {Nj,i}T]{6A} + {AIT [{Nk,i }T(Nk j }  +{Nk,j T(Nk,i}] {6A}] O .

Let z

( B ] = r N l , T + {N , .I T ] x

{A}T[Mx3 -

{AThen T

16ATjl = IB{6A} + [BL){N 

,{TM

where [Bo] is the linear component and [BL ] is the large displacement component ...
Having the definitions for [Bo) and [BL), the small and large displacement '. ,
matrices [K] and (KL) are represented as

L. Ko] f ( Bo)T[D)[Bo~dV - - * 1 ;il

(KL] = * { B( 1 ]TED)CBO] * (BL]T[hB + B°lTo]BL] }dV I
.T

[A} [bxp10-T



The geometric stiffness matrix is also derived from (BLJ and it has the

following form

(KG]-f (Qxx[Mxx] + yyy + +,zz[Mz( , + + 4 xy[Mxyj + axz[Mxz]

+ oyZMy IM ) dV

Where the a's are the stress components and again integration is on a
layer by layer basis. h

L., . *'. ;.* 4'
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