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INTRODUCTION
v Optical methods for signal processing have long been touted as playing an
important role in the future: they will enable complex operations to be performed on
large arrays of data at a very rapid rate. This prediction is based on the inherent
- capability of optical systems to operate on two-dimensional (2-D) data planes and on the
ability of spherical lenses to perform the Fourier transform. However, the promise of
optical methods to rapidly perform signal-processing tasks remains unfulfilled, with
L d certain notable exceptions (e.g., processing synthetic aperture radar and stellar speckie
interferometry data). The-e are several reasons for this, but the most salient are the
limitations of available 2-D input/output devices (spatial light modulators and detector
\ 4 arrays), the fact that the optical phase of the processed signal cannot be directly
detected, and the sensitivity of coherent optical systems to mechanical disturbances and
speckle noise.
- In contrast to the situation for 2-D optical hardware, signal processor technology
for temporal (1-D) signals is quite advanced in capability and flexibility, and thus
presents the interesting prospect of applying these 1-D devices to 2-D signal processing
had if a suitable dimensional transformation can be employed. In effect, this would allow
the rapid parallel processing capability to be "traded off" for more precise, flexible, and
noise-immune 1-D serial processing in a hybrid system. Several dimensional
g transformations are available for deriving 1-D signals from 2-D data and reconstructing
processed 2-D outputs. the most familiar being the television raster. But another
algorithm, the Radon transform, has some very nice mathematical properties that make 1t
4 an excellent candidate for application to signal processing. These properties were derived
by an Austrian mathematician, Johann Radon. early in this century, and the transform
bearing his name has become well-known in recent vears as the mathematical basis tor
- medical computed tomography. In the Radon transform. 1-D signals are derived f{rom
2-D input data by "projection,” i.e., integration along sets of parallel lines. The 2-D
'_.'.'E_:’_ o
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t signal can be regenerated by ‘“smearing" and summing appropriately filtered 1-D
Y

ie projections back over the 2-D space. The mathematical properties of the transform

enable 2-D signal-processing operations based on the Fourier transform and/or

convolution operations to be performed by means of 1-D operations on the projections.

Such operations include: generation of complex Fourier transform, Hartley transform.

Wigner distribution function, general 2-D filtering and correlation. bandwidth

¢

compression. spectrum analysis, and cepstrum analysis.

)

\ v

I 4

~ THEORETICAL INVESTIGATION OF THE RADON TRANSFORM

~ APPLIED TO SIGNAL PROCESSING

-

" In his original development of the mathematical theory of the transform. Johann

-

- Radon proved two theorems that have been the basis for application of the Radon

:j transform to signal processing: the central-slice (or projection-slice) theorem and the

i - filter theorem. They demonstrate that 2-D Fourier transforms and convoluticns can be

:: performed by 1-D operations on the projection data. To illustrate mathematically, a

- projection of a 2-D function f(r) is commonly defined by a linear space-variant integral

L]

! - transformation:

> w (oo

K R.If(r)] = A(p.¢) = J J d’r f(r) 8(p - r-m). (1)

:3' -00J ~00

! -

. where R, denotes the Radon transform operator. As s customary, we denote scalar

:: variables and vestors by normal-face and bold-face characters. respectively. The

:.' projection Ag is a function of two variables: the radial spatial dimension p and the

i -

b azimuth angle ¢.  However, all of the operations we consider operate on p alone. and

f: therefore we can consider the projections g to be 1-D functions of p parameterized by

. the azimuth angle ¢ The central-slice theorem states that the Fourier transform of the

' -

- 2-D function ffr) is obtained by performing 1-D Fourier transforms of cach projection

o
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-
and displaying the outputs at the proper radial azimuths:
-
F UMDY 5 =gy = F1 Ni(pd)] = Afv.9). (2)
; The geometry of the Radon transform and the central-slice theorem are shown in Figure
-
1 of Ref. 1. The filter theorem demonstrates that the 1-D convolution of the
projections of two functions at the same azimuth is identical to the projection of the
2-D convolution, i.e.,
»
R,[f(r) ** g(r)] = R,[f(r)] * R,[g(r)], 3
v
where * and ** denote 1-D and 2-D convolution respectively. It is easy to see that
the same result holds for correlation operations as well. The processed 2-D function
may be reconstructed using any of several algorithms to perform the inverse Radon
w
transform.?
Our analysis of 2-D operations susceptible to solution in Radon space has primarily
. exploited these two theorems. We have investigated those useful signal-processing
L
operations that can be decomposed into a sequence of Fourier transforms. convolutions.
and other achievable 1-D and 2-D operations such as addition. pointwise multiplication.
) and taking logarithms. Such operations include Fourier analysis (computation of both
-
the power spectrum and complex transform), the Hartley transform. image filtering and
correlation, bandwidth compression, generation of the Woodward ambiguity function and
the Wigner distribution function, some spectrum estimation algorithms (periodograms,
-
Blackman-Tukey analysis, and Yule-Walker autoregressive models). and the cepstrum.
Work by other authors has established’ that the Radon transform can be uscful for
. pattern recognition through calculation of image moments and the Hough transform
w
3
v
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CONSTRUCTION OF A PRACTICAL SYSTEM FOR 2-D SPECTRAL
N ANALYSIS AND IMAGE FILTERING
The hybrid system constructed to perform signal processing in Radon space consists

of an optical scanner (to generate the Radon transform data)., 1-D signal processors. and

- a computer-controlled CRT display. The optical Radon transformer uses a laser source,
a Bragg-cell scanner, and anamorphic optics to project a line-of-light onto a 2-D
reflective or transmissive object. By collecting the light reflected or transmitted by the

v object onto a detector, a signal proportional to the line integral of the reflectance or
transmittance is generated. The line-of-light is scanned parallel to itself by the Bragg
cell to produce a temporal signal proportional to the line-integral projection for one

v azimuth angle. After one projection is generated, the azimuth angle is changed by an
image-rotating prism. Thus, the Radon projections are generated as a sequence of
temporal electronic signals. For obvious reasons, the optical Radon transformer is called

d a flving-line scanner, and is shown schematically in Figure 2 of Ref. 1. Though we
had originally planned to demonstrate Radon transformation at video rates (30 frames/s),
we are limited by the rotation rate of the stepper motor for the image rotator to about §

hd frames/s. This is by no means a fundamental limit for signal processing in Radon
space--optical systems have been built to rotate images at 75 frames/s with excellent
stability and image quality.

- After derivation of the projection data. signal processing can be performed by [-D
clectronic or hybrid devices. For the demonstration of 2-D spectrum analvsis and
Fourier transformation, we implemented the chirp transform algorithm with surface

> acoustic wave dispersive filters to produce the 1-D transform of the temporal input data
within 30 us. The time-bandwidth product of the Fourier transformer 1s only 50, but
again this is by no means a fundamental limitation. Filtering of the 1-D signals was

“ performed by applying the projection signal to one port of a monolithic SAW convolver.

4
-
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-
A fast ECL function generator was constructed to store the filter function to be applied
- to the other port of the SAW convolver.
To construct the 2-D Fourier transform signal, the 1-D processed signal was
displayed in the proper polar format on a computer-controlled CRT. The results
- obtained with the system are available in Ref. 4, which is available in the Appendix.
It had been our intention to design and construct a custom SAW filter to perform
the filtering operation for image reconstruction from projections. However. the
capabilities of the available photolithographic facilities were not adequate for the task.
-
and instead we utilized the SAW convolver for the filtering operation. The ECL K
function generator was built to store the filter function. Recognizable reconstructions Ty
N
S
. were derived of input scenes at approximately 5 frames/s. but were not of useful quality DT,
hd R
for two reasons. The signal-to-noise ratio of the output from the SAW convolver was ' 4
not adequate, and the original image rotator used to perform the inverse Radon . :fi:f]
Y
transform exhibited too much runout. The results obtained are to be published shortly. IR
v ba
=3
)
d
{
PROOF-OF-PRINCIPLE EXPERIMENTS FOR :
OTHER PROCESSING OPERATIONS
v wi
Both computer simulations and demonstrations in hardware were performed for a :
number of the 2-D processing operations listed above. including Fourier spectrum
aly > e Hartley trans . data compress . AN
analysis. complex Fourier transformation. the artley transform ompression ==
-1
generation of  the  Wigner  distribution  function.  power  spectrum  estimation’ :
(periodograms.  the Blackman-Tukey algorithm. and the Yule-Walker autoregressive o :
]
v model). and the cepstrum.  Most of these results have been reported cither in the open i
\‘l; N "‘|
Wterature' -7 or by presentation at technical meetings.  Papers dealing with the S
remaining operations are in preparation.
L
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FEASIBILITY OF USING THE RADON TRANSFORM

FOR 3-D DATA PROCESSING J_L

1

An architecture for a 3-D 1image processor was developed prior to  the
commencement of the contract period, and so the work in this program concentrated on
investigatior. of materials for rapid storage and retrieval of the data arrays. The
proposed technique utilizes wavelength-multiplexed storage in alkali-halide crystals. A
theoretical examination of data-storage mechanisms in the crystals was made to describe
the conditions for a linear relationship between exposure intensity (or exposure time)
and hole depth. The two data-storage mechanisms are photochemical holeburning (PIIB)
and nonphotochemical holeburning (NPHB). It was discovered that PHB materials do
exhibit the necessary linear relationship, but NPHB materials do not. The results were

reported in Ref. 9.
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Application of the Radon transform to optical production of the
Wigner distribution function

Roger L. Easton, Jr. Abstract. The Wigner distribution function (WDF), a simultaneous coordinate
Anthony J. Ticknor and frequency representation of a signal, has properties usefui in pattern
Harrison H. Barrett recognition. Because the WDF is computationally demanding, its use is not
Optical Sciences Center usually appropriats in digital processing. Optical schemes have been developed
. .- University of Arizona to compute the WDF for one-dimensional (1-D) signals, often using acousto-
Tucson, Arizona 85721 optic signal transducers. Some recent work has demonstrated the computation

of two-dimensional (2-D) slices of the four-dimensional (4-D) WDF of a 2-D
input transparency. In this latter case, the required 2-0 Fourier transformation
is performed by coherent optics. We demonstrate that computation of the WDF
of real 2-D signals is susceptible to Radon transform solution. The 2-D opera-
tion is reduced to a series of 1-D operations on the line-integral projections. The
required projection data are produced optically, and the Fourier transformation
is performed by efficient 1-D processors (surface acoustic wave filters) by
means of the chirp-transform algorithm. The resuitant output gives 1-D slices
through the 4-D WDF nearly in real time, and the computation is not restricted
to coherently illuminated transparencies. This approach may be useful in dis-
tinguishing patterns with known texture direction. The optical setup is easily
modified to produce the cross-Wigner distribution function, a special case of the
compiex, or windowed, spectrogram.

Kaywords: optical pattern recognition; optical data procassing: Wigner distribution func-
tion; Radon transform; surface acoustic wave signal processing.

Optical Engineering 23(6). 738-744 (November/December 1984).
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- 1. INTRODUCTION -% —m

The Wigner distribution function (W DF) was introduced in 1932asa 2)
phase space representation in quantum mechanics.! Because it de- s

scribes a signal simultaneously in Fourier reciprocal variabies, it has K oemimurqy

potential applications in the recognition of nonstationary pat-

terns.?-3 The WDF of a 1-D input function of f(x) is a 2-D function

and 1s commonly defined as where 1, and r" are 2-D coordinate vectors and u is a 2-D spatial s
frequency vector. If W (x,u) s evaluated at zero frequency and a N
e change of variables 15 performed, the WDF becomes an autocon-
_ . X X\ Cmukae volution. Thus, the WDF may be interpreted as a generalized auto-
Wilxgu) = / f( a )P( )e dx convolution at nonzero frequency.*
—ao ' Several authors’~" have reviewed the properties of the WDF,

including some aspects that make 1t suitable for impiementation by
optical processing. Most importantly. the WDF of any real or com-
plex function s real (though not always positive), since it is the
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APPLICATION OF THE RADON TRANSFORM TO OPTICAL PRODUCTION OF THE WIGNER DISTRIBUTION FUNCTION

Fourier transform of {[xg + (x"" )]f*[xy — (x/2)], which is Hermi-
tian with respect to x’. Inaddition, the region of support of W(xy.u)
1s identical to that of f(x) in both the coordinate and frequency
domains.

In computing the WDF, the major bottleneck is the Fourier
transformation. In the case of a 1-D (2-D) input signal, a full 1-D
(2-D) Fourier transform must be performed for each value of the [-D
(2-D) coordinate. Were this to be done digitally in the case of a |-D
discrete signal of n samples. it would require n muiltiplications to
produce the product function. A total of nlog,n multiplications is
needed to compute the subsequent fast Founer transtorm, giving a
total of n + nlog,n multiplications per point. This sequence must be
evaluated at each sample in the sequence [corresponding to each
value of x in Eq. (1)], giving a total of n{n + nlog,n] = nzlogzn
multiplications to compute a |-D discrete WDF. Fora 2-D nXn
array. similar reasoning demonstrates thata total of n°[n® + nzlogzn:]
= Zn‘logzn multiplications is required. The motivation to find opti-
cal processing algonthms 1s quite apparent, especially in the applica-
tion of feature detection or recognition, due to the large quantity of
output data.

Several schemes have been developed to generate the 2-D WDF
of 1-D signals.”~? Recent work by Bamler and Gliinder'® has demon-
strated computation of 2-D slices of the 4-D WDF of a reai-valued
2-D input transparency. The product function was produced opti-
cally by an autocollimating telescope, and the Fourier transforma-
tion was performed by a lens. By scanning over the coordinates of the
input transparency, all 2-D slices of the complete 4-D WDF can be
found.

Computation of Fourier transforms is also susceptibie to solution
by the Radon transform.!' - !4 Data of dimension m, where m=2, are
reduced to 1-D by integration over m — | dimensions. A 1-D Fou-
nier transform of the projection data yields one line through the
origin of the m-D Fourier transform. Varying the projection angle
allows building up the complete Fourier transform. This procedure is
casily adapted to computation of the WDF and offers advantages in
certain applications.

2. RADON TRANSFORM

The Radon transform has received much attention in the scientific
community since the invention of x-ray computed tomography (CT)
in the [960s. It has been used in the fields of astronomy, geology. and
nuclear magnetic reasonance.!! Recently, it has been adapted to
feature extraction in optical data processing.'S In (917 Johann
Radon published'® the mathematics of the transform, in which he
proved that a 2-D mathematical function can be reconstructed from
the complete set of its line-integral projections. The basic mathemat-
ical analysis of the Radon transform is straightforward and has been
considered by several authors,''-'2 so we shall only touch briefly on
the main points relevant to 2-D Fourier analysis.

The 1-D line-integral projection A(p.¢) of a 2-D function f(r)
along azimuth direction & (relative to the x-axis) i1s defined as

0 20
Alp.o) = / / d?rf(n)é(p — r-d) . 3)
—20 —ot

The projection A may be regarded as a [-D function of p, param-
etnized by . The {-D delta function in the integrand reduces the area
integral to a line integral along a line normal to fi and at a distance p
from the origin (Fig. 1). The set [A(p.#)] for all azimuth angles ¢
constitutes the Radon transform of f(r). As will be demonstrated, the
WDF of a 2-D function f(x) may be computed by performing opera-
tions on the line-integral projections of an easily derived 2-D func-
tion, reducing the 2-D computation of the Fourier transforms for
each value of the coordinate vector x to a series of {-D operations.
This can be seen if a |-D Fourier transform of a line-integrai
projection is performed:

. o
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A(p, )

Aly, ) ~

r.—‘
s
Fig. 1. Geometry of the Radon transform. (Top} Derivation of one projec- : *-_
tion A(p. ¢) by line-integral projection. Line integrals are evaluated aiong the s
azimuth direction (¢ + (r/ 2)] to vield the projection along azimuth direction E&
(#). The unit vector i defines the azimuth (¢). (Bottom) Centrai-slice theo- -
rem: the 1-O Fourier transform of a line-integral projection yields one line s
through the 2-D Fourier transform of the original 2-D function. A
o
7 AR
p=v [A(p.#)] = A(v.0)] _'—:n‘
g;.s,_ 1
0 0 k] . h:: ;
= / dpe™2Twp / / d°r f(né(p — ra) :":
A ‘d Al
—o0 —00 —30 RS\
AN
20 20 Ter
. T
= / / d*r f(rye=2mvr B
—o0 —an » .
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F(p)p___ av (4) N
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where lowercase letters denote functions in coordinate space and
uppercase letters denote the Fourier transforms, and p is the 2-D ZERO-ORDER
spaual frequency vector. This result shows that the 1-D Fourier BLOCKING FILTER L
transtorm of the line-integral projection A(p.@) of the 2-D function ‘ \ .
fuey vields one line through the origin of the 2-D Fourier transform of _~ ~. L
trevcFig. D). This is the central-slice or projection-slice theorem. The 8RAGG CELL ‘ " . T A
advantage of using the Radon transform approach to 2-D Fourier SCANNER . \
transformation results from the ability to do the Fourier transforma- C\ \\ i
uon in one dimension once the projections are available. There are ,\\\:—\j
several etficient 1-D processors available to perform the Fourier . \‘J
transformauion, including acousto-optic cells, chargecoupled device
{CCD) transversal filters, and surface acoustic wave (SAW) disper-
sive delay lines. The system constructed uses SAW delay lines in the
chirp-transform algonithm, as will be discussed shortly.

3. FLYING LINE SCANNER

To use the Radon transform to compute Fourier transforms, it is first
necessary to produce the line-integral projection of the 2-D function.
This is easily done optically using a device we call a flying line scanner
(Fig. 2.), which projects a line of light onto the input transparency.
The azimuth of the line of light can be selected by an image rotator,
e.g.. a dove prism. The light transmitted through the transparency is
proportional to the line integral of the intensity transmission along
that line. Anacousto-optic scanner allows the line of light to be swept
perpendicuiar to itself [i.e., varying p in A(p.#). Eqg. (3)]. The light
transmitted is collected by the photomultiplier tube (PMT), whose
output current in time is proportional to A(p.¢). Rotation of the
dove prism varies the angle ¢ and allows the entire set [A(p,¢)] to be

LASER

IMAGE E
INPUT ROTATOR .

PLANE

PMT (<~
p f(r)

Ap, ¢)

Fig. 2. Flying line scanner. Collimated He-Ne laser light is focused onto the

collected.

4. SAW CHIRP FOURIER TRANSFORM

Bragg ceil by a cylindrical lens. The zero-order diffraction is blocked by the
filter, and the first-order beam passes through to the image rotator The
relay optics images the line of light onto the transparency f( 7). Application
of a linear FM signal to the Bragg cell scans the line of light across the
transparency. The trensmitted light is collected by the ph sitiplier tube.

e ¥

e
.
P
PR

For a particular szimuth angie ¢ selected by the image rotator, the PMT
output signal in time is proportional to the line-integral projection A(p.#).

P, s Ty
EY

The SAW filter is an acoustoclectric device that can be designed to
have one of a wide variety of impulse responses. It consists of a
piczoelectric crystal substrate upon which is deposited a pair of
conductive interdigital transducers ( Fig. 3). A rf signal applied to one
transducer produces a rf field between the fingers of the transducer.
This field distorts the crystal piezoelectrically, and these displace-
ments travel along the crystal surface at the sound velocity. When the
acoustic wave reaches the second transducer, an electric field is
piezoelectrically induced in the conductor. The resulting electric
signal is the convolution of the input signal and the filter’s impulse
response. By appropriate design of the interdigital transducers, the
desired response may be obtained.!’

To perform Fourier transformation, three filters with linear FM

_- INPUT TRANSDUCER

o TRAVELING SURFACE wavE r
r

impuise responses are required for the chirp-transform algorithm. o
The impulse response of a linear FM fiiter 1s ; G )
N
h(1) = eilwn=atit = eiant eZtat? . (5) ’ ‘ JU”’U\T‘.‘
JUTPUT TRANSDUCER — - ij -
MPYLSE
RESPONSE
where ay is the frequency at t = 0 and a is the “chirp rate.”
If We 1gnore the constant frcqufncz' . 3 signal fi(1) apphc# toa Fig. 3. Layout of a simple surface acoustic wave filter. An impuise ap-
filter of impulse response h(t) = ¢“'o" will produce an output signal plied to one transducer produces a traveling acoustic wave on the surface
fo‘ t): of the piezoelectric substrate. The frequency of the wave is determined by
the spacing of the fingers in the interdigital transducer and the amplitude
. by the amount of finger overiap. The acoustic wave is sampled by the
f () = f() et output transducer. The overall filter impuise response is the convolution
° ! of the responses of the two transducers. For linear chirp filtars, the
response to an impuisive input is a signal varying linearty in frequency
over time.
-] n
y [ 23
= / drf(ryeat = 0% (6) obtain B
—a0 x®
fo([) = elafz / dr En(r) cmr-] e " ltart (7 E
where * denotes convolution. Expanding the exponential factor, we —o0 .
[ 3
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APPLICATION OF THE RADON TRANSFORM TO OPTICAL PRODUCTION OF THE WIGNER DISTRIBUTION FUNCTION

o)

PMT

r 1
| IMPULSE | veRe
|GENERATOR

| AGut, '#)I

Z AXIS

- IMAGE ROTATION
+ IMAGING OPTICS

Fig. 4. Fourier spectrum anaslysis by means of the Radon transform. The
line of light produced by the ﬂving line scanner (Fig. 2) passes through the
input transparency f(x,y} = {{T). The light collected by the PMT pro-
duces a timae signai proportional to the Imo-mtognl projection A(t.$). This
signal is muitiplied by an upchirp (h(t) = o*'“ ] and convoived with a
downchirp [h(t) = o""'z] The output is demodulated. giving a signal
proportional to the magnitude of the 1-D Fourier transform of A(t.4). This
is displayed on a CRT and integrated on the output piane (photographic
film) to give the 2-D Fourier power spectrum.

Identifying t as v a produces the equation

%0
fo(() = (o<% v ) = emt2 / [fi(f) ea#]c—zﬂvrdr
’ —a0
= !2 ? ] jat?

The Fourier transform is thus obtained in three steps:

(1) £(t) is multiplied by e—tat? (premultiplication).
(2) Thls product is convolved with a ﬁlter of impulse response elat®,
(3) The resultant is multiplied by e 'at’ (postmuluplication).

If only the modulus is required, the postmultiplication can be
deleted. Of course, in actuality, the filters have finite time windows of
width T, which affect the limits on the integrals in Eqgs. (6) through
(8). and overall have the effect of convoliving the result with a
sinc(t; T) function. In practice, the premuitiply and postmultiply
chirps are produced by applying an impuise input at the appropriate
time to SAW filters whose impulse response is the appropriate chirp.

A Fourier transformer with this algorithm was constructed using
dispersive filters from Andersen Labs (models DS-120-10-20-251A
and -251B). The time dispersion of both models is 20 us, and the
bandwidth is 10 MHz. The chirp slopes of the two models are of
opposite sign. The time-bandwidth product of the system (and hence
the number of resolvabie spots in the transform) is only 50, but with
more sophisticated filters the time-bandwidth product could be
boosted to 2000 or more. if required.

A 2-D Fourier spectrum analyzer was constructed using the flying
line scanner to produce the projection and the SAW filters to take the
transform (Fig. 4.). The transformed signal is demodulated and
applied to the z-axis of a CRT. For cach projection, this gives one
line through the 2-D Fourier transform. For each new azimuth, a
new line is wnitten on the CRT and displayed on the output piane at
the proper orientation by the image-rotating dove prism. Resuits of
the Founer analysis of a test pattern are shown in Fig. 5. Taking the

Fig. 5. Spectrum analysis by mesns of the Radon transform. (a) input
function. (b) Output obtained from apparatus of Fig. 4. The fundamaental
spatial frequencies of the fine gratings and three orders from the coarse
grating are visible.

line-integral projection data requires 10 us, and the transform data
are read out less than 20 us later, so 1t is feasible to perform the full
2-D spectrum analysis at video rates if the image rotation rate is 900
rpm, requiring a prism rotation rate of 450 rpm.

5. RADON IMPLEMENTATION OF THE 4-D WDF

To compute the 4-D WDF of a 2-D real function t(r), it 1s necessary
to form the product functiontfr, + (r' 2} tfr; — (r' 2)] = m(ry.r)
for all values of ¢ and then Fourter transform over r'. We can apply
the Radon transform to this computation in the following manner.
First, we take line-integral projections of the product function

Alp.ry. @) -//dzr’m(ro.r')é(p - ra . 9

The geometry of the projection is shown in Fig. 6. Taking the 1-D
Fourier transform of A(p.ry.®) yields [by the central-shce theorem.
Eq.(4)] one line through the 2-D slice of the WDF evaluated at r,. Bv
rotating the azimuth &, we can build up the 2-Dslice inexact analogy
to the 2-D spectrum analyzer. By sampling over the two coordinate
dimensions, the complete 4-D WDF can be computed. The geometry
for the Radon transform caiculation of one line through the WDF 15
shown in Fig. 7
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Fig. 8. Line-integrai projections of the Wigner distribution function. The
integration is made over the linep = r' A,

Fig. 8. Mybrid system to generate the WDF of a resl input t{ 7). The line of
light from the ftying line scanner passes through the beam splitter onto
the transparency centered at ’o +(7/2). The light transmitted is re-
focused omo the _transparency by the lens-mirror system, but is now

ad at 'o +(7/2). The output is reflected by the beam splitter onto

Mo

B

Fig. 7. Orientation of one output line of the WDF. Consider a line-integral
projection of the product function at an angie ¢ to the x-axis at 8 point
(24.0). The line of the WDF s0 obtained is oriented in 4-D WDF output
space as shown, where the y-coordinate axis has been ignored.

To produce the line-integral projection of the product function.
the technique used by Bamier and Giiinder'® was adapted as pictured
in Fig. 8. The input transparency is placed in the flying line scanner
with the optic axis passing through the point r, of the transparency.
The transmutted light is collected by a lens, focused on a mirror, and
reimaged by the lens back on the transparency. The doubly transmut-
ted light is reflected out of the system by a beam splitter, collected.
and detected by the PMT. The PMT output current 1s proportional
to the line integral of m(ry.r'). As the flying line 1s scanned across the
transparency, the temporal signal out of the PMT is proportional to
the integral of m(r,,r) for different values of ¢. The signal is Fourier
transformed, yielding one line through the WDF. Other values of r,
may be interrogated either by moving the transparency relative to the
optic axis or by tilting the mirror. Using a galvanometer scanner,

~
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the PMT. The PMT output is Fourier transformed by the SAW fiiter as
betfore and yields one line through the WOF of t(T).

mirror tilting may be done quite rapidly. Resuits are shown in Fig. 9.

This method offers an advantage over that of Bamler and Gliinder
in some applications. Since the Fourier transformation is not optical,
coherent illumination is not required if an appropriate scanning
technique is used.

6. COMPUTATION OF THE CROSS-WIGNER
DISTRIBUTION FUNCTION AND ITS RELATION TO
THE SLIDING-WINDOW SPECTRUM

The sliding-window spectrum of a function f(r) windowed by a
function g(r) is defined as'0:

k2 0
Seg(r’w) = / / f(r - ;)g
— - -

From Eg. (2). we can define a cross-Wigner distnibution function
(CWDF) 10 be

'(r - -:;)e":""“" d*r (10)

Wlru) = /

By changing variables in Eq. (1l)toq = r

(rn

€
r. ! . ;e
/ f -3- (r - %}c”"’“‘" der

2. we obtain

20

Wiglrw) =2 / / fir + @g*(r — @ ¢ -™u dq?  (12)
= -]

Assuming a symmetric window function {g(r) =
Eq. (10), we find

g(—r)] and using
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Fig. 9. 1-D slices through the 4-0 WOF of two 2-0D objects. In each case. the upper trace is the signai from the PMT, representing A(p.#) (Eq. (5)). The
lower trace is the output of the chirp Fourier transformer. Since there was no postmuitiply chirp, the magnitude of the transform modulates the carrier
frequency. in(a) and (b). the abjectis a grating of 25% duty cycie (25% opaque, 75% transparent) in a circular aperture. The enveiope of the upper trace is
due to the line-integrai projection of the circular aperture. in (ai, the grating is positioned with the optic axis centered on an opaque grating line (defining 'r'o
in Eq. (2}]). The components of the product function exactly "‘overiay, ' and the WOF at this coordinate is dominated by the fundamental frequency of the
grating. in (b), the object has been shifted (varying 'r'o) s0 that an opaque grating line of one shifted function "‘overlays ' the transparent region in the other
shifted function. Hence the WDF is dominated by a frequency twice that of the fundamental of the grating. In (c) and (d). the object is a Fresnei zone plate,
and the coordinate displacement is normai to the scanning line. Shifting one zone piate relative to the other resuits in a linear moire whose spatiai frequency

increases linearly with increased shift.

k-] 20
Wfg(r,u) =2 / / flq+ng*q—-rn e~2m(2u)rq 424
-0 —a
= ZS,"(ZI’.ZU) . (13)

Thus, by computing the CWDF of a function using a symmetric
window, we can find a scaled version of the sliding-window spec-
trum. This is useful in some pattern-recognition applications where
the local frequency spectrum is of value.!8

Evaluation of the CWDF is also possibie using the Radon trans-
form. The setup is shown in Fig. 10. It is similar to the system for
finding the WDF except that the reflecting telescope arrangement
has been replaced with a second lens and transparency to supply the

window function. As before, one line through the spectrum is calcu-
lated at a time. In cases of directional texture, this will result in a
reduced throughput of insignificant data. Results for an Air Force
three-bar chart are shown in Fig. 1.

7. CONCLUSIONS

We have demonstrated a hybrid optical analog electronics processor
that can rapidly compute 1-D lines through the Wigner distribution
function and cross-Wigner distribution function of reai-valued 2-D
inputs. In certain pattern-recognition applications, such as recogni-
tion and classification of scenes with directional texture, this tech-
nique offers advantages over digital processors in speed and over
other optical processors in output configuration.
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Fig. 10. Setup to compute the crou-annof distribution function. The
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The Fourier transform with respect to 1 gives the CWDF.
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le introduction and definitions .:::
3

A. History, development

B. Basic theory
1. forward Radon transform, projections
2. central-slice theorem
3. filter theorem
4, inverse Radon transform

C. Application to optical signal processing

1. Optical Radon transformer

2. 1-D processor technologies
a. electronic systems
b. charge-transfer devices
¢c. acousto-electric devices
d. acousto-optics (AQ)

3. Optical implementation of filtered back-projection

(P Applications

A. Operations on 2-D Signals
1. Fourier transformation
a. power spectrum
b. complex transforms
- c. Hartley transform
2. filtering and correlation
3. pattern recognition
a. image moments
b. Hough transform
4. image coding and bandwidth compression
S. spectrum estimation
6. linear, space-variant operations
7. bilinear and nonlinear operations

B. Operations on 3-D signals o
1. 3-D spatial and 2-D spatial + 1-D temporal data
2. 2-D spatial + 1-D spectral data -
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1. Introduction and Definitions

o fe G G L TR S L S et T LT

X Traditionaily, the motivation for processing signals by optical means is due primarily to
two factors. The first is the ability of coherent optical systems using spherical elements to

perform the Fourier transform, while the second is the inherent capability of optical

systems to operate on two-dimensional (2-D) data planes. For 2-D signals (e.g. images),
optical processing is of obvious utility, but even if the signals to be processed are one-
dimensional (1-0), optical techniques may allow parallel processing of several channeis.
The increased system throughput thus obtained may make optical processing attractive
relative to more precise (but as yet slower) digital electronic technologies.

The main thrust of research in optical signal processing has been directed at applying

either or both of the capabilities of rapid Fourier transformation and parallelism. However,

there are problems restricting the utility of optical processing that are well-known to those
working in the field and which diminish its attractiveness relative to digital electronic
processing. Primary among these are the limitations of available 2-D input/output devices

{spatial light modulators and detector arrays), and (for coherent systems) speckle noise.

. These limitations are responsible for restricting the use of opticai processing to a few j' T
applications in which they are not significant (e.g. off-iine synthetic aperture radar e
processing). In marked contrast to the situation for 2-0O hardware, signai-processor ¥ _3
technology for temporal (1-D) signals is quite advanced in capability and flexibility, and :

SN

hence it may be profitable to apply that 1-D technology to 2-D operations, if possible. In - :
DN

effect, this would allow a trade-off between rapid parallel processing and precise serial _'_,‘_,,4
processing in a hybrid system. Several algorithms are avaiiabie to derive 1-D signals from j' 1
.‘1

a 2-0 input and reconstruct the 2-D processed signal. A familiar exampie of such an :: 1
. . .'ﬁl"1

operation is the television raster, which creates a 1-D temporal signal from 2-D imagery by . -
scanning and rederives the 2-0 image by stacking segments of the temporal signai {Rhodes, : j
ST
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1981b). The raster transduction was used in optical signal processing by Thumnas (1966) to -
RN
; generate a 2-D array from a long 1-D temporal signal to use as input to a 2-0 optical :
D - processor. Several other dimensional transduction operations were considered by Barteit 79 ,1
—
- '. . J
}:. and Lohmann (1981). One that is becoming more familiar can be called a tomographic : 1
g transformation, where a 1-D data set is derived from a 2-D signal by integration along sets R
i ™) of parallel lines. The relation between these two sets of data has some nice mathematical R
r. : j-.‘
o properties that make the transformation potentially very useful in both analog and digital o
:'._ signal processing. S )
bi 4..'1
. - l.A. History and Development s 4
g | -
= The mathematical basis for the tomographic transformation was derived in 1917 by ',-':i §
: ;ohann Radon, an Austrian mathematician. Radon proved that the complete set of 1-D . ]
. ..
h - orojections of continuous 2-D or 3-D functions with compact support contain all of the h}
[::~ information in the original function. The projections are derived by integration of the 2-D )
o o . . ‘ 4 ) -
. function over sets of parallel lines, or by integration of the 3-D function over paraliel .
o L
! - planes. The derivation of the 1-D projections from the function is the forward Radon @'1
: transform. Radon also derived expressions for reconstruction of the function from its p
"3
( -
r.. projections--the inverse Radon transform. Generalization of the theory has made it . j
o T
g - applicable to functions of higher dimensionality (John, 1955). Another development was [‘v j
-:ﬁ made by Cormack (1963, 1964), who formulated the mathematical expansion of projections
v
" into circular hamonics, i.e. a discrete angular Fourier series representation of the e
» _'. .‘-- 1
i - projection data. F:

Radon was primarily interested in using projections to find solutions of Poisson's

differential equation in electrostatics, but his work has been appiied to a myriad of

R0 oh a0 S0 I
LT '
S
e

L3

scientific disciplines since the 1950s, including crystallography, radio astronomy, geophvsics, Fo ™

nuclear magnetic resonance, radiative scattering, and diagnostic radioiogy. This explosion
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. 5t interest is evident by the number of publications on the subject, especially in the last 15 1
~ - . . . . H . ) J
. years or so. For a good discussion of applications and an extensive bibliography, see Deans o
. N
‘ » {1983). No doubt the application of the Radon transform most familiar to the lay public is 3 N]

»
.
'

.
r
PP LTy

in diagnostic radiology. The new fields of x-ray computed tomography (CT), emission

computed tomography (ECT), and magnetic resonance imaging (MR1), which enable imaging S

l' of cross-sectional slices of the body of a patient from sets of projection data, have 3
: receiv>d much attention in the popular press. Indeed, the medical application of Radon's

theory is the source of its now familiar name; *tomography’ is derived from the Greek word
P for slice. Each of these new medical wonders owes its existence to Johann Radon and the ﬁ
. subsequent researchers who generalized and applied the mathematical theory.

In each of the appiications listed above, Radon's mathematical theory is used to soive

LT T

an inverse problem, where the source function is mathematically reconstructed from the

q
: > .
'n'j’ ., .
P SR

projection data. Of course, the complete infinite set of projections is never collected, ]

making it impossibie to uniquely reconstruct the source function; onily some ‘best’ estimate

may be found. We shalil not overly concern ourselves here with such niceties, as they are

T » JEENY 2 XN L.V : W .

somewhat removed from the purpose at hand and have been considered at length elsewhere

‘Rowland, 1979) (Barrett and Swindell, 1981) . Rather, we wish to ir. ‘estigate the use of

! - the Radon transform as a dime- -ional transducer in signal processing. The discrete nature
of the data set will still be of some concern to us, mainly due to nonuniform sampling of
Cartesian space by the transformation, but our main purpose is the identification of signal
i - processing operations that are possible and profitable to perform via a tomographic

,

’ transformation. For some of these, the processed 1-D data alone :nay be sufficient for the
' rask at hand, but often it will be desirable to reconstruct the processed 2-D signal from the
i - processed projections and so some consideration will be given to optical methods of

‘; generating the inverse Radon transform.

,

| v

e U . . . . o . Tt i e A P
NI RO N DSy S % PR NP S ecabmadh PP VPO DT U ST Y. PU. V5. PE. (5. v 6. U, S PR NP SN O )




NN T T Y W T T W T W T T VT T T TR T T T EroBach s e et Syt iar tian At gl Sall Aek St el ek Sl ull Baiied I A

MW TR R IR TR o N S R P PP U SO P T T Iy

l.B. Basic Theory

in the literature, there are several extensive mathematical developments of the theory
of the Radon transform, e.g. Helgason (1980), Deans (1983), and Barrett (1984) .
Consequently, we shail keeo our discussion brief and emphasize applicability ratner than
completeness or mathematical rigor. Also, we shail generally restrict our treatment to the
2-D problem, with occasional remarks about application to 3-0 when warranted.
1.B.1. Forward Radon Transform, Projections

Given a 2-D function f(r) = f(x,y) (as is common, we shall denote vectors by boldface
characters), a single projection along an azimuth angle ¢ can be derived by integration
along all lines at azimuth ¢ + n/2. The one-dimensional function thus generated has as
independent variable the perpendicular distance of the integration line from the origin.
This distance is the magnitude of the vector p, where p = (p,$) in polar coordinates. It is

also useful to dafine a unit vector A = o = (1 = [COS5 9§, Sin $] (n.b. square brackets
1°

Pl

denote Cartesian coordinates and parentheses denote polar coordinates). Naturally, for
each set of integration lines at different angles relative to the x-axis, a different
projection is derived. A common notation for a projection is A(p,9), implying that A is a
2-D function. But since all operations on the projection will act on the spatial coordinate
p alone, we can consider the projection to be a 1-D function parametrized by the azimuth
angle 9. Depending on one's mathematical preference, A(p,$) can be defined in a number
of equivalent ways. For example, we can consider a projection to be obptained by
integration over lines parallel to the y'-axis in a system of coordinates [x',y'] rotated at
angle p relative to the original [x,y] axes. However, there are distinct advantages
obtamned by defining a projection as a 2-D integral transform whose kernel is a 1-0 Dirac

delta function which selects the projection azimuth, as shown in Figure 1. Consider a
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s projection aziinuth - defined by the polar unit vectorn = '1,p). we wish to determune the ]

E value of the projection coordinate p that will be influenced by a point in the 2-0 function “j

. _.

. located at r = {;r;,3) = [rcos 8, rsin 9]. As is apparent from Figure 1, r must be located {
F«

on the line normal to A at a perpendicular distance from the origin defined by .i

R

- - 4

pP=rcos(d8=-%)=(rcos?dcos ¢ +rsindsind)=r"°n. 1) j

Hence, muitiplying f(r) by 6(p - r * ) collapses the area integral to a set >f line integrals **-J

for the azimuth defined by A, giving

r
Apo) = |

| =

t-

J{ dir f(r) 8(p-r*n).

-~

The transformation has mapped the Cartesian coordinates [x,y] to a new system (p,¢),
which is called Radon space. We have a choice about the limits on the new coordinates. |f
we consider p to Le pipolar {~= < p =) then A(p,$) = XA (-p,»+7T). wWe may theretore iimit
b to the region (0 < » < 7). If we require p to be positive, then $ runs over 7 radians.

The former choice is usuaily preferred, since it simplifies the mathematical development. A

'
‘m 'n lala

plot of the Radon transform in (p,¢) space (Figure 2) is termed a sinogram, since a point in

]

Cartesian space maps :0 a sinusoid in Radon space. From eg. (2), it is easy to see that the

Radon transform is linear and space-variant. It is often convenient to express the

a

projection operation in operator notation, e.g. R, [f(r)] = A(p,$), where the subscript ,

ITFEUTRIN |

denotes that the function being transformed is two-dimensional. ;:
SN

The projection operation described by eq. (2) can be easily extended to functions of :-‘."A f"_\'

PRI |

. A

higher dimensionality (Barrett, 1984). For example, a 1-D projection of a 3-D function can "R
B

be obtained by integration over parallel 2-D pianes. Hence the 1-D Dirac delta function in

aq. ‘2) now reduces the volume integral to a pianar integral. The transform collapses the

- :
£, : :
I AN

3-0 function f{x,y,z) to a set of 1-D projections e.g. x(p,$,3) ) parametrized by the two

|

_a’ 2’174 a0 a

e
a0
P

P o

e am

":
Lol i,

Lo - . . - . . - . . i . N - PR Lo . .. N -
e et et et atat et atafat it auatla e ialatiata ata lulat el la s L VN L S FULN A




i T R A A G AR

W
*
¥|

R
doa e e
« . .

“r
B

.

»

-7 -

[
¢

angles Jefining the unit normal to the planes of integration.
1.B.2. Central-Slice Theorem -

Now that the forward Radon transtorm has been defined, w~e need to investigate its %=

¢

v

properties that may be useful for signal processing. Foremost of these is the centrai-slice

2 s
2y

theorem, which relates the Fourier transform of a 2-D function to the 1-D Fourier

-

S
o
LR
.
.

transtorms of its projections. The theorem arises because the kernel of the Radon |
transform is a Dirac deita function of the scalar product of the conjugate variabies r ana p,

as the kernel of the Fourier transform is a function of the scaiar product of conjugate

-

variables r and p. As is customary, we define the Fourier transform of a 2-0 function f(r)
as
[~ 1" |
FLokn)sRe = | i etimiery, 3) i
-~ T
where =, is the 1-D Fourier transform operator from coordinate r = {x,y] to spatiai
frequency p = g,n]. [n this notation, functions denoted by a lower-case character are
5
the coordinate-space representation (e.g. f(r)), while the corresponding frequency-space =
representation is signified by the upper-case character {e.3. F(p)). (f we perform the 1-0
Fourier transform of the projection defined bv eq. (2), we obtain
.
(= '
) )
Foape] 2 a0, = f dp A(p,9) e =TIPY, 4]
) o
Substitution of eq. (2) into eq. (4) vields
Av,s, = [ dp|J dir f(r) 8(p - r e n)i e~ 2PV, 5
] - \ =) -~ J
Exchanging the order of integration, we obtain -
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ra © =Y
Av,d) = i { d?r f(r) l[ dpS(p-r° r?) e 2TipV
[ e
e
dtr f(r) e=2%ifiver, 6)

)

Comparing eq. (6) and eq. (3), we can identify the relation between A(v,$) and F(p):

A(“A)‘—'F(O)‘p A = F(Av). (7)

So the 1-D Fourier transform of a Radon projection at azimuth angle ¢ relative to the x-
axis yields one line through the origin of the 2-D Fourier transform of the function f(r).
This line (central slice) in Fourier space is oriented at the same azimuth angle ¢, but
relative to the g-axis (Figure 1). The central-slice theorem can be represented in operator
notation by:

}: = }x R, '8}

It is important to note that the 2-D frequency-space representation generated via the
Radon-Fourier transform has a sampiing de;nsity in Cartesian space that falls off as v ™!
(Figure 3). This sampling nonuniformity must be compensated whenever a Cartesian-space
representation is derived from a Radon-space representation, e.g. for display of the 2-0D
Fourier transform, or (as will be shown) when reconstructing the 2-D source function via
the inverse Radon transform. Also note that the duality of coordinate- and Fourier-space
representations ensures that a dual to the central-slice theorem exists. That is, the inverse
Fourier transform of a projection in Fourier space is a centrai-slice of the coordinate space
representation of the 2-D function.

A theorem similar in nature to central ~slice relates parallel projections weighted by a

phase factor to parailel, rather than meridional, lines of the 2-D Fourier transform (Farhat

ottt gt

PR -
N PR .
vl'. e te s T e e
AL

1
B

[ AT
A A Ay Syt




T T T T W e Y T T U T Y T T TR T T T TN LY T T T T T AT T T WU T T N U LY WS YL L e L s
jalte A e v "

.
&N

-0 - -._-. T

et al., 1983). |f a weighted projec:ion is defined as 3 :ﬂ
- ':i:_

q(xn,) = [ dy f(x,y) e2TiNgy (9) e

j bt 1‘:"'

the 1-D Fourier transform of the weighted slice is found to be: :,:;j::
| dxa(xn,) e2mEX o [ J dx dy f(x,y) e2TH(Ex * 1Y) o

J~m ] - ) -® !!-‘

= Q(EN,) - (10)

Systems for optically generating and processing weighted projections have been proposed
(Cmitro et al., 1983), but are substantiaily more complicated than comparable systems for !—..
central slices. .“_§;
1.8.3. Filter Theorem -
Another very useful attribute of the Radon transform may be derived easily via the ﬁ.

central-slice theorem. Consider the convolution of two 2-D functions f(r) and g(r).

operator notation, we can take the 2-0 Fourier transform of the convolution:

Fafnrant = £ 01 x F la0]

Eg. (11) can be rewritten using the operator notation for the central-slice theorem [eq.

8)], giving:

:T'z[f°gl

LR [fg)

Using

(11) L0

= Fr il x FiR el B

= F. ¢ )]l x Fhg (P0)] = A (v,0) x Ag (v.9) . (12) ol

where the subscripts f and g are used to denote which function is being projected at the '_‘.
common azimuth angle p. Applying the inverse 1-D Fourier transform operator to eqg. (12)
yields:
?1-‘jx“1[f'gl=R1[f'El=Af’g [L

3
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v e

where the common coordinate variables have been suppressed. In words, this shows that -
the projection of a 2-D convolution of two functions is the 1-D convolution of the

projections of the functions. From this conclusion, it is just a very short conceptual hop to

A

v o
the realization that the same relationship holds for 2-D correlations. Thus, we now have e

the mathematical capability of deriving the projection of a 2-D filtering or correlation

operation simply by performing 1-D filtering or correlation of the projections of the original '.j } jf

- . . . o . e
functions. This is a very powerful resuit and holds much promise for application to optical —

processing.

l.B.4. Inverse Radon Transform

L J

Since most of the research into the Radon transform has been directed at the solution O
of inverse problems, there has been a plethora of publications devoted to the inverse Radon : -
transform. Therefore we shall limit our mathematical discussion to a straightforward ’:’.: T
- ‘ . . B
derivation of the inverse transform, with some comments made about algorithms appropriate ===
to optical reconstruction methods. Readers interested in an in-depth mathematical ‘.:.'.; -

Jevelopment should consult some of the other literature, notably Rowland (1979), Deans
< W
{1983), and Barrett (1984). - e
The inverse Radon transform is most easily derived by applying the central-slice
theorem to the polar form of the inverse 2-D Fourier transform: ’_--.‘-;i

- '- s
D

", =
F R = Ko = | 9% ) do o F(p) e*2mi0cr 1) SR

JIER | 0 .

Invoking the central-slice theorem [eq. (7)], we set p = Av, p = v, 8, = ¢, and Fla) = ' .
- e
F(Ry) = A{v,») in eq. {14), yielding: e
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)= do dv |v] A(v,e) e*2Tivacr
Iy ) -
{N
|| (F A - (1)

This is one form of the inverse Radon transform. In words, it reconstructs a 2-D function
f(r) from a complete set of projections A(p,9) by the following steps:
1) 1-D Fourier transform i (p,$), yielding A(v,$);

(2) muitiply by |v] ;

(3) inverse 1-D Fourier transform the product [|v| A(v,)];
(4) smear this 1-D function perpendicular to the line defined by p = r * a;
(5) sum over all angles ¢.

Step 4 generates a 2-D function from the 1-D projections and is referred to as *back-
projection’ since it is the complementary operation to projection. Step 2 is a filtering
operation in Fourier space to correct for the sampling nonuniformity of the transformation
from Cartesian to Radon space mentioned previously.

It is instructive to rearrange the steps to obtain another recipe for the inverse
transform. Back-projection and summation (steps 4 and 5) may be performed first to
Zenerate a 2-D unfiitered summation image (sometimes called a 'layergram®). The point
spread function of the layergram has been shown to be p(r) = |r|™} (Peters, 1974}, wnich
implies a transfer function %, (|r|™ | = le|~*. This distortion may be corrected by
filtering in 2-0D with transfer function |p |, an operation commonly known as °rho-filtering®
(often, albeit imprecisely, the 1-D filter lu& in step 2 is also referred to as a rho-filter).
In reality of course, the noise dominant at high spatial frequencies requires either fiiter o

be rolled-off, or "apodized.® Since our ratignale for signal processing in Radon space was

. - “« T et . . . - - . . ..".-" ‘.‘.- . o . - ‘. . .
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t0 avoid unnecessary 2-D operations, we shall not consider implementations >f the
alternative recipe. Interested readers should consuit Barrett and Swindell . 1977, 1981) or
Barrett (1984).
we can also express the inverse Radon transform in operator notation (Barrett, 1984),

expanding the operator R,"! into the sequences:

Ry =8, £, v F,
- £t lol £us, )

where 3, is the operator notation for back-projection.
The inverse Radon transform algorithm [eq. (15)] can be recast into a more concise
form by invoking the filter theorem of Fourier transforms to create a convolution of

functions instead of a product of their Fourier transforms. That is,

Sl

F U] Aol 1 =hio) * Aipo), 17) =
where h(p) = _7;" [ {91 ] is the filter function in the coordinate space representation. S
_ - 1 , , N
Lighthill (1962) showed that h(p) = f‘ Y |v| ] = . where the singularity at the <
origin requires that it be interpreted as a generalized function which has a Dirac delta : ._Lj
function at the origin. A realizable interpretation is {Gmitro et al., 1980)
1 Pe
h(p) = lim [ 5t el e 18) =
e~0 1 . * L
\~ =1 | Ce e
e | S
Note that h(p) is bipolar. We can now represent the inverse Radon transform in one
rem
equation, with the important proviso that the true nature of the filter function be L
recognized: C e
" - S
1 | o 1 , Fu
= - A 19)
f(e) T J dé LX(D,M 5: p=r"h VT
]
Y
- S e el e L
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The operations required o implement this algorithm for the inverse Radon transforn are the
source of its common name, filtered back-projection. Integration of the convolution
product by parts yields other possible expressions for filtered back-projection (Barrett,

1984):

T
. 1 Moy * 1] ,
f(r) = 377 P de LX (P, d) > (20)

T
1 Lot
= = [ de (A"(p,#) *In [pi1l  _

27 ro"“ (21)
Ja
1 [w " a2
* o | de {-Etx(p,o) In lpll}pﬂ.a ' (22)
?

where P [/ dx] denotes the Cauchy principal value of the integral, and the primes (e.g.
\''P.¢) ) represent derivatives of the function with respect to p. Each representation of

the inverse Radon transform [eq. (19-22)] requires a bipolar filter function, a fact having

important consequences for optical implementation. Which representation is optimum
depends strongly on the limitations of the signal and available hardware. For instance, the

dynamic range of the 1-D filter function In p| in eas. (21-22) is much less than that of

-p~? or P{p~!], thus reducing the dynamic range required of the 1-D convoiver at the cost

- of increased noise inherent in taking the second derivative of the projection.

Ol

An alternative deveiopment of the reconstruction problem was made independently by

Lo 4
[

¢

Cormack. Though not as straightforward in application as filtered back-projection, we shall

o
.

discuss it briefly because it can potentially be implemented by optical methods Ein-Gal,

P———

1974) (Hansen and Coodman, 1978). Cormack's development is based on the periodicity In

»

angle of every physically realizable object, i.e. f(r,8} = f(r,3 + i7;. Asa resuit, f(r,9) can

he expanded in a discrete Fourier series of angular basis functions, which are cailed circular
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harmonics:
F(r,9) = Z fq (r) ein® 23]
n=E-o
where
f, (r) = L { de f(r,3) e"in®, (24)
n 2w ) ’ \

Commack expanded the projections A(p,$) in the same manner and derived the space-variant
transformation between these two representations. The transformation can be made space-
invariant via a Mellin transform (Casasent and Psaltis, 1977), and can then be processed by
optical methods (Hofer, 1979) (Hansen, 1981a, 1981b). However, the Cormack
reconstruction algorithm is not directly applicable to our task at hand, so we shall not
consider it further.
1.C. Application to Optical Signal Processing

To summarize the mathematical deveiopment, we have demonstrated that the classic
2-D signal-processing operations of Fourier transformation and convolution (filtering) can
be performed via the equivalent 1-D operations on the Radon projections, producing central
slices of the 2-D Fourier transform or projections of the 2-D convoiution. Of course, there
are opti.ai nethods available for performing these 2-D operations as well. Coherent
computation of the of the 2-D Fourier transform has always been the basis of optical signal
orocessing, but limitations of speckie noise and performance of available spatiai lignt
modulztors have generally restricted application to static film transparencies in liquid
gates. By placing the input in the front focal plane of the transform lens, the correct
magnitude and phase of the 2-D Fourier transform are produced in the back focal plane

‘limited by lens aberrations). However, the phase of the transform is coded in the relative
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pnases of the conerent wavefront at the various locations in the Fourier plane. Preserving

this phase information requires a very precise and stable optical configuration, and square~

-

<l law detection necessitates heterodyne techniques to decode it. Optical

h—:‘ .

r:.t convolution/correlation can be performed by spatial filtering in the Fourier plane or by a

o joint transform arrangement (Weaver and Coodman, 1966) (Rau, 1966). Problems still
v

abound, however. The stability and positioning requirements are stricter yet, generation of
a true complex (magnitude and phase) spatial filter is nontrivial, and deriving the phase of a
compiex convolution remains difficult. Incoherent optics avoids the speckle nouise probiems,
and architectures are available for performing Fourier transformation and convolution
{Rogers, 1977) (Monahan et al., 1977), but representation of negative quantities requires a
bias or two signal channels.

On the other hand, the corresponding 1-D operations of Fourier transforination and
convolution can be performed readily and rapidly by devices based on electronics, acoustic
interactions, or charge transfer. By constructing optical systems to perform the
dimensional transduction to and from Radon space, we can utilize these technologies to
“perform the corresponding 2-D operation. By so doing, we may be able to loogsen the
constraints on signal input format and system stability, at the cost of some processing
parallelism. The resulting hybrid systems can emphasize the strengths and minimize the
wearnesses of each technology. |If the optical dimensional transducers and the 1-D
processors are fast enough, we may still be able to perform the complete 2-0 processing
operation at a usefully rapid rate, e.g. 30 frames/second.

1.C.1. Optical Radon Transformer
The forward Radon transform [eq. (2)] is generated by integrating the input function

f(¢) along the set of lines perpendicular to the azimuth . This can be done optically in

several ways, depending on the format of the input data and the type of signal processor to
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) e
he used. Radon projections can be generated as temporal data by scanning the input i
function with a line of light (usually from a laser) and integrating the resuitant intensity on . ::
. ,-‘:‘
a detector. This method is suitable for transmissive or reflective input data. At one Fﬁd;
+
instant, the detector signal is proportional to the line integral of input transmittance or .
-l
reflectance. Sweeping the line of light perpendicular to itself generates a temporal signal o
——
proportional to one line-integral projection. The azimuth of the scan can be optically ﬂ 1

rotated (e.g. by a dove prism) to sequentially derive the complete set of projection data.

For obvious reasons, this optical Radon transformer is called a flying-line scanner, and is

shown schematically in Figure 4 (Easton et al., 1984). Since the light transmitted or
reflected by the 2-D input is integrated on the detector, speckle noise is irrelevant, and a
laser can be usefully employed as a light source. Indeed, the coherence of the laser
hecomes an advantage, as it allows the use of a fast acousto-optic beam deflector, ar a
slower and cheaper holographic deflector {*hologon scanner®). The technology of optical
scanners and image rotators permits a system to be built capable of performing Radon
transforms at video rates with video resoiution (30 frames/sec, 500x500 points). This

would require scanning 500 azimuth angles with 500 resolvable data points per scan every

30 mS. Acousto-optic Bragg-ceil scanners capable of resolving more than 1000 points per

10 uS scan have been reported (Cottlieb et al,, 1983). To preserve the phase of the

projection, the temporal center of the flying line scan must intersect the image rotation

axis each time, i.a. the optical rotation axis of the prism must not wobble. Scanning a full

projection set in 30 mS requires an image rotation rate-of 180°/30 mS = 900 KPM, implying

o

RO

a prism rotation rate of 450 RPM. Such systems have been constructed and demonstrated

"Cmitro and Gindi, 1985). Indeed, much higher rotation rates have been reported while

Y- L
f.

preserving holographic image quality {Stetson and Elkins, 1977). Radon transformers based

.
vt

on the flying-line scanner are most useful for 2-D signals on transparencies (e.g. movies)
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or for real reflective scenes.

Projection data can aiso be generated by ‘coliapsing® an image of the 2-D signal onto
a linear array or imaging detector with anamorphic optics (Figure 5). The anamorphic
optical element can be a cylindrical lens (Gindi and Gmitro, 1984), or a coherent optical
fiber bundle (Farhat et al., 1983). Alternatively, if an N-eiement 1-D linear array
detector can be obtained with an aspect ratio of N:1, anamorphic imaging is unnecessary.
An array detector sampies the projection, making this arrangement especiaily useful if the
data is to be processed digitally. An image rotator is still required and hence the
projections are again generated sequentially. This type of system is adaptable to naturally
illuminated scenes or to self-luminous signals, as from a CRT,
1.C.2. 1-D Signal Processor Technologies

As was demonstrated in egs. {19-22), the inverse Radon transformation cequires
convoiution of the projection data with a bipolar 1-D filter function. Therefore we shail
now shift gears somewhat to investigate the types and capabilities of availablie 1-D signal
processors. These will be lumped into four categories: electronic devices (both digital and
analog), charge-transfer devices (mainly CCDs), acousto-electric devices :primarily those
pased on surface acoustic waves, or SAWs), and acousto-optics (AOQ). In the first case, the
Radon transform allows direct application to 2-D probiems of the very technologies that
optical methods are supposedly competing against on the signal-processing battlefield.
l1.C.2.a. Electronic Systems

Electronic systems (analog and digital) for processing temporal signais are no Joubt
tamiliar to the reader. They can be as simple as an RC filter or as complex as a digtal
supercomputer. The accuracy, precision, stability, and flexibility of electronics are
products of many decades of theoretical and engineering effort, with the result that

electronic systems are generally preferred for signal-processing applications. This is the
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zarget 1t which progoneats of optical signal processing must aim, but it 1s moving ahead all
the time. New materials, such as GaAs, and new fabrication technologies, such as x-ray
lithography, promise further improvements in packing density, speed, and cost of eiectronic
Jevices. Even the traditional advantage of parallelism offered by optical processing is
fading, as new algorithms and chip architectures are adding parallel capability to the
electronic world.

Electronic signal processing is generally divided into analog and digitai domains, each
having its own advantages and disadvantages. Analog processing represents signal
amplitudes by proportional voltages that can be added, subtracted, and divided. Some
nonlinear operations (e.g. thresholding) are easily performed as well. Analog processing
~ith active and passive components can be fast, with bandwidths reported to = 2 GHz for
silicon devices and up to 20 GHz for GaAs (Bierman, 1985). ‘Aore complicated operations
_e.g. muitiplication, root finding) are possible with special analog modules, but operation is
much siower and supject to severe limitations in !inearity, stability, and precision. For
some appiications, the restrictions can be eased by using the analog voitage signal to
modulate a radio-frequency (RF) carrier. RF devices capable of several useful operations
are available, including muitiplication, phase shifting, and phase detection. Though still
limited in linearity and stability, these devices can be profitably used for analog signal
processing.

The advantages of digital systems are well xnown--probably too weil known to the
optical processing community. But they have their limitations too, lack of speed and large
power consumption being two of the most important. Sampling limits system bandwidth and
subjects the samopled signal to aliasing. A/D and D/A conversions may have to trade speed
for precision and dynamic range. Clock rates are limited to =300 MHz for silicon-based

fogic. However, improvements are being made continuously. For instance, the increased
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mobility of zailium arsenid2 :harge carriers allows ciock rates up to several GrHz with lower
power consumption  Bierman, 1985;. Cenerally tne limited disadvantages of dig'tal
processing have been more than offset by its innerent noise immunity and linearity. An
unlimited variety of signal-processing operations are amenable to solution by digital means,
and new special-purpose hardware promises to increase speeds dramatically. The very-
high-speed integrated circuit {VHSIC) program of the Department of Defense is stimulating
the design and production of new devices, such as the Westinghouse complex arithmetic
vector processor, which can pe-form a 1024-point 16-pit compiex Fourier transform in
130 yS, compute one point of a 256-element 16-bit correiation in 6 uS, and multiply a 64x64
16-bit matrix by a 64-element vector in 35 uS (Marr, 1982). Digital parallel operation is
becoming more economical as design costs drop and fabrication vields increase, but cost is
still a significant limitation for such devices and is likely to remain so.
1.C.2.b. Charge-Transfer Devices

Charge-transter devices can store and manipulate packets of electronic charge using
two structurally different circuit technologies. The older “bucket-brigade® device is a
series of MOS transistors and capacitors, where the charge is moved between capacitors by
aiternate switching of the transistors. These have been largely superseded by charge-
coupled devices (CCDs), where minority charge carriers are stored under closely-spaced
electrodes. Charges are moved to detectors at the edges of the arrav by sequential puising
of the electrodes. The most familiar use of CCD devices has been as 1-D and 2-0 optical
Jetector arrays, where the amount of charge in a detector cell is proportional to the photon
flux. H vever, it is also possible to use them as signal processors, where the sampled data
values are denoted by the varving amounts of charge . Bv moving, summing, and detecting
the charge packets .n various ~avs, a variety of processing operations can be performed.

The resulting devices are an interesting “wbrid of ana'og and digital qualities, since tne
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ampiitude of each discrete sample is a continuous variable. CCDs can obviously be used Js
detay lines, with applications to signal time and bandwidth compression. Tapped deiay lines
and fixed-transversal filters can be constructed by spacing nondestructive charye detectors
along the charge pathway and summing the tapped signals (Buss et al., 1973) (Beynon and
Lamb, 1980). With variable weights, the filter is programmable. Multiplying adjacent
tapped signals from two CCD delay lines and summing the products allows computation of a
discrete convolution. * The useful dynamic range of these CCD devices is limited by the
quantum noise floor and the saturation level, with typical specifications of 60-79 dB ‘30 dg
for the convoiver). The bandwidth of the CCD devices is determined by the analog

electronics and the sampling clock rate, ranging from a few Hz to 5 MHz.

By combining the CCD devices described above, a wide variety of 1-D signal-

orocessing operations is possible. The utility of fixed and programmable CCD transversai h :
filters and of the CCD convolver for signal processing is obvious. Using two or three filters , :
w~ith linear FM (or chirp) impulse responses, the chirp z-transform algorithm can oe \
implemented (Rabiner et al., 1969). This aigorithm will be discussed in some detail later. E;‘i

CCD spectrum analyzers using the chirp z-transform algorithm have been demonstrated

'
oy

NN o )

which are capable of computing a 512-poiat z-transform at a 5 MHz sampling rate.

KA

-’ | o ". "."

1.C.2.c. Acousto-Electric Devices

Piezoelectric materiais distort when placed in an eiectric field, and also they generate

PG ey

a field when mechanically stressed. By applying a modulated RF electric fieid to a

piezoelectric medium, a corresponding acoustic distortion is generated which can be
processed and detected. This acoustic wave propagates in the medium at a characteristic
velocity vg = 1073 c. Thus, the acoustic wavelengths are much shorter than the

2iectromagnetic wavelengths, allowing signal processing devices that are many waveiengths

long to be constructed in small packages. Components based on acoustic waves in Hulk .
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materials, sucn 1s The juartz ascillator and eiay iine, nave heen Jgsed “or —aIny vears.
More recently, however, much attention has been paid to using dCoustic waves on the
surtace of a medium  surface acoustic waves or 3AWs; due to their accessibility. Once a
~ave has been generated on the surface of a medium, it can be sampled at any point in its
journey along the surface. A diagram of a simple SAW device is shown in Figure o, A pair
of conductive transducers is deposited on the surface of the piezoelectric crystalline
medium. The input signal {often on a carrier) is appiied to the input transducer, consisting
ot a set of interleaved *fingers' connected to buss bars. The fieid distorts the medium
piezoelectrically, and the acoustic wave travels along the surface of the crystal to a similar
transducer where it generates an electric RF signai.

If we think of the SAW device in Figure 6 as a delay line, the sampling of the acoustic
wave by the output transducer is a tapping and summing operation performed in paralle! for
many points in the acoustic wava. Hence, the SAw device is another exampi= of a
transversal filter, ‘Variation of the spacing and overlap of the transducer fingers produces
different impulse responses, allowing a wide variety of operations to be performed. The
utility of SAW filters is such that several design procedures have been deveioped L‘Aatthews,
19777 (Gerard, 1978), and the filters themselves are manufactured by standard
photolithographic techniques {Smith, 1978). SAW bandpass filters are available for center
carrier) frequencies from 10 iHz to 2 GHz and bandwidths from <o kHz up to >0% ot
center frequency [Morgan, 1985). The noise-limited dynamic range s typically 70 dB,
comparable to that available from CCDs. Indeed, it is interesting that CCDs and SAW
devices are so complementary, offering similar signal processing capability over a wide
range Of input frequencies . Roberts, 19775,

Linear FM, or curp, SAW fiiters are easily made and have found wide application to

radar systems Xlauder 2t ai., 1960) (Gerard et al., 1973). Mvore recently, thev nave been
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amployed in spectrum analyzers and Fourier transtonmers (Jack and Paige, 1973) \Jack et
al., 1980). The transducers are designed such that the impuise response of the filter is a
signal of linearly increasing or decreasing frequency. SAW interdigital chirp filters are
limited to bandwidths of about 500 MHz, dispersion times of 50 uS, and effective time-
bandwidth products of about 1000 (Morgan, 1985). Frequency dispersion can also be
achieved by spacing acoustic reflectors on the substrate. These so-called reflective array
compressors (RACs) have been reported with bandwidths to 180 MHz, dispersion times to
90 uS, and time-bandwidth products of 16,200 (Gerard, et al., 1977).

Other useful SAW signal processors can be made by utilizing the nonlinear response of
the substrate to severe distortions. If strong acoustic signals are applied to each end of a
substrate, the two waves will interact nonlinearly to generate higher harmonics. The
second harmonic of the carrier frequency contains infornation about the product of the two
signal amplitudes. Integration of the second harmonic frequency over the subsirate by an

area electrode produces a temporal signal proportionai to the convoliution of the input

) S

signals. Since second hammonic generation is inefficient, the convolution signai will be

|

=]
weak, typically 80 dB below the input signal levels. Even so, noise-limited dynamic ranges e ‘j
of 60 dB, and spurious-signai-limited dynamic ranges of 30 dB have been reported . Ash, SN
-
1978). Acoustic convolvers are available commercially with time~-bandwidth products Pou 1

s

approaching 2000 (Morgan, 1985).

leCe2.d. Acousto-optics

Acousto-optic processors are reviewed in detail elsewhere in this volume, so we shall
discuss their capabilities only briefly. As mentioned above, an RF electromagnetic wave
can be transformed into an acoustic wave in a medium via the piezoelectric effect. The : "
variation in material density modulates the refractive index, producing a phase grating fm'"‘.

which can diffract tight. Devicas based on the interaction of sound and light have long
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been used in signal processing as efficient 1-D spatial light modulators and beam deflectors
(Xorpel, 1981). Developments in materials and architectures in the !ast 15 years or so have
led to new applications for bulk A-O devices in signai processing, including time-integrating i;
and space-integrating correlators/convoivers (Berg et al., 1979) {Rhodes, 1981a,
{Abramovitz et al., 1983), Fourier transformers (Lee et al., 1982) (Pancott and Reeve, "'h~
- 19857, and generation of 1-D time-frequency representations {e.g. the Woodward ambiguity Q
g
function) {Athale et al., 1983) (Casasent, 1983). The interaction of light and surface
acoustic waves has also been applied to various signal processing operations (Das and Ayub,

L « 1982) (Casseday et al., 1983). Indeed, AO devices and SAW devices are inherently E
compatible, for the obvious reason that the processing mechanism is so similar. Limits on |
carrier frequency, bandwidth, and dispersion time are comparable for both types. AO

Y » materials support carrier frequencies in the range of (1 MHz v, &1 GHz), with i
bandwidths of up to 500 MHz, interaction times of up to 80 S, and time-bandwidth
products greater than 10,000 (Berg et al., 1979).
v 1.C.3. Optical Implementation of the Inverse Radon Transform f
Having discussed the technologies available for 1-D signal processing, we are now
ready to describe methods for reconstructing the 2-D processed signal from the 1-D
(™ projections. Two mathematical algorithms for reconstruction have aiready been Jdiscussed: ;f_
filtered back-projection and circular harmonic expansion. As stated, the latter is more ;:[
complicated to impiement and not as appropriate for signal processing applications, and so
- will not be considered further here. Interested readers should consuit the work of Hansen f__
and Coodman (1978), Hofer (1979), Hofer and Kupka (1979), and Hansen {1981a, 1981b).
In our mathematical development of filtered back-projection, we stated that 1-D
- < filtering can be performed before back-projection, or 2-D fiitering afterwards. Optical :.
reconstruction systems have been built which filter in 2-D (Peters, 1974), but again we are .
- .
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more concerned with application of 1-D technologies to the problem. Sevaral hvbrid ;
optical systems have been proposed or built to impiement 1-D filtered back-projection, iand
we shall give a brief overview of those systems here. Readers desiring more detail should E‘t
consult the original papers or the review articles by Barrett and Swindeli {1977) and Gmitro -
et al. (1980). To lessen problems associated with coherent noise, these systems used
incoherent illumination. However, it is essential to recall that the filtered projection is ;
bipolar, requiring that any reconstruction scheme preserve sign information. Because of
this constraint, systems based on incocherent optics must place the projection signal on a
bias or employ two signal channeis. Neither of these alternatives is desirable; biased B

sl

signals reduce the contrast of the reconstruction, and dual-channel systems are subject to

differential signal errors. .

After 1-D filtering, the algorithms of egs. (19-22) require two more steps: back-

R |

projection and summation. Back-projection, i.e. generation of a 2-D function from a 1-U
projection by ‘smearing® perpendicular to the projection azimuth, has been demonstrated by :
anamorphic optics. The projection is written on the face of a 1-D display device (e.3. a g‘
CRT or LED array) located one focal length from a cylindrical lens, and imaged onto an o
integrating 2-D detector or display device. As this operation is performed for each
projection, the reconstructed image is built-up at the output piane. Any integrating 2-D ii.L
detector can be used for summation of the back-projections {e.g. photographic film, video

camera, or human eye if the system is fast enough).

The hybrid optical-electronic reconstruction schemes have differed greatly in detaii "
and degree of success. The system of Duinker et al. (1978) was mostly based on analog
electronics, with only filtering performed opticaily. The projections were displayed in
sequence on a CRT and imaged onto two area-weighted optical masks representing the ‘
positive and negative parts of tne filter function. The images of the projections were
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swept across the filter masks by e'ectronic deflection, and the integrated transmitted
signals electronically subtracted to obtain the bipoiar temporal filtered signals. Back-
projection and summation were performed electronically. Edhoim et al. (1973) stored the
Radon projections on film in sinogram format A(p,9). A filtered, biased sinogram was
generated by sandwiching a positive image of A{p,$) and a negative image of
A(p,d) * h_(p), where h_{p) represents the negative part of the filter function in eq. (18).
Back-projection was performed for each line of the sinogram by a cylindrical lens, with
sunmation on a suitably rotated piece of photographic film. Despite the dynamic range
limitation inherent in the use of a bias, this system produced some good recoastructions.

Probabiy the most successful incoherent optical reconstruction systems synthesized the
required filter function by OTF synthesis. This method is based on the fact that the OTF is
the autocorrelation of the pupil function (Lohmann, 1977) (Rhodes, 1977) /Rhodes and
Lohmann, 1978) (Stoner, 1978). Two pupil functions are calculated for which the
difference of the autocorrelations is the Fourier transform of the regquired filter point
spread function. An infinite number of pairs of pupil functions are theoretically possible,
with the optimum choice determined by system requirements such as light throughput or
noise considerations. Since the required positive part of the filter psf is a deita function
[eq. {18)], a clear pupil in the positive channel is appropriate. Two negative-channel
pupils successfully demonstrated are the so-called Ronchi pupil (Barrett, Greivenkamp et
al., 1979), and a logarithmic phase piate (Barrett, Chiu et al., 1979). The envelope of the
point spread function of either pupil falls off as 1/p?, as required. Optical reconstruction
systems based on OTF synthesis include the drum processor (Gordon, 1977, (Cmitro et al.,
1980), the loop processor [Greivenkamp et af., 1981}, and a hybrid digzitai-optical system
‘Grmutro et al., 1980). An example of image reconstruction with the loop processor is

shown in Figure 7.
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A reconstruction system that is most appiicable to tomographic signal processing tasks
was proposed recently by Gmitro and Gindi (1985). It is capable of performing a 500 x 50U
point reconstruction of projection data at video rates. The system, depicted in Figure 3,
impiements the algorithm of eq. (19). Filtering is performed by a space-integrating
acousto-optic convoiver, as shown in Figure 9, though a SAW convolver couid be used as
suggested in section {.C.2.c. The projection data are stored in a fast digital :nemory and
read out line-by-line to a fast D/A converter. The analog signal modulates an RF carrier
and is then impressed on a Bragg ceil. The diffracted light is Fourier transformed by a lens
and filtered by a spatial binary transmission mask. The diffracted light is retransformed,
collected by the detector, and demodulated. The filtered projection is displayed on a CRT
and back-projected by a cylindrical lens. Azimuth selection for the back-projection is
accomplished by an image-rotating prism, and the 2-D image is coilected by a video camera
and displayed on a conventional CKT. The image data are read out rapidly enough for
operation at video rates (30 reconstructed frames/second). The design goal is to process
projections at video rates with a dynamic range of 12 bits, implying a signal-to-noise atio

of about 4000. Preliminary resuits are presented in Figure 10.
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I1. Applications
i1.A. Operations on 2-D signals

As was evident from our mathematical development, the application of the Radon

.:ﬂ'

- . '
FERNUIN L. . St
“‘_‘A._:.A‘A-AA_‘A_A_.A_A_'J_A‘.‘.LA'-‘ JRCIY S

transform to signal processing primarily exploits the central-slice and fiiter theorems, which

e
D

allow operations based on Fourier transforms and/or convolutions to be performed on the

'
'
¥

Catate e s he ek i

1-D projections. Useful operations of this type include the Fourier transform and its
relative, the Hartley transform, 2-D filtering, some pattern-recognition algorithms,

bandwidth compression, and spectrum estimation. Some of these operations require the

'

flexibility of digitali operation but are included to indicate the scope of application of Radon L ¥
methods. Since application of projection operations to signal processing is a fieid that has }

yet to be fuily plowed, much of our treatment will deal with feasibiiity rather than actual

®
N

resuits.

IleAal. Fourier Transformation -

]

Py

U

e e
)

Since it is a signal-processing staple, and also because of its close relationship to the

.
e

Radon transform via the central-slice theorem, it seems natural to commence our discussion

o

of applications with 2-D Fourier transformation. After having been generated by one of j
the systems described in section 1.C.1., each projection is Fourier transformed and the j
result is displayed in the polar format required by the central~siice theorem. To perform :;j
the 1-D Fourier transform, we introduce the chirp transform aigorithm, which is derived by i
decomposing the Fourier kernel: '."-;f:;

Y

. v . v
e 2mivt _ e""('a')2 x e~im(8U)? o ety - 8t (25)

)

“ .
¢

The three complex exponentials are quadratic phase terms or linear FM signals, i.e. the

'

instantaneous frequency of each varies linearly with time. Such signals are commonly

called chirps by the radar community. The factor 3, with dimensions of temporai o
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Trequency, nas oeen ntroduced to rationalize the units of the exponent. A 1-D temporal

Fourier transform can now be written:

r‘
Fiv) = 1 dt f(t) e"2Tivt
]

“ .3

=e'i"(j§')z [ dt [-[f(t) e-im(BOY? | e‘”(% - 3y°

J o
="M ([f(t) @TITBLT) @ @MiTBUY (26)
(v = 3%

Thus, by employing three temporal chirp signals (one with positive exponential term, or
upchirp, and two with negative terms, or downchirps), the Fourier transform of f(t) can be
impiemented in three steps:

(1) multiplication of f(t) by a downchirp;

12} convolution of the product in a filter with an upchirp impulse response;

(3) multiplication by a downchirp.
The resulting temporal signal is a scaled version of the Fourier transform, where the
frequency is related to the output temporal coordinate by v = 8%t. The pre- and
postmultiplication chirp signals can be generated by applying impulsive inputs to filters with
upchirp impulse responses. Note that this analysis has assumed that the chirp signals are
complex and of infinite length., If only the power spectrum is required, the
postmultiplication in step 3 can be eliminated. Because of the order of operations, this
algorithm is usually referred to as the M~C-M chirp transform, for mulitiply-convoive-
multiply. The duality of multipiication and convolution in coordinate and Fourier space
imply that the operations can be exchanged to produce a second arrangement for chirp

transforms, the C-M-C transform (Jack et al., 1980). It has the disadvantage of requiring

three filters even if only the power spectrum is required. For sampled data, Fourier
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transformation is equivalent to evaluation of the z-transtorm on the unit circle. The

comparable implementation using sampied chirps is therefore cailed the chirp z-transtform

L

{Rabiner et al., 1969).
It is instructive to reconsider coherent optical Fourier transformation in light of the

chirp transform algorithm. Propagation of light in the Fresnel region can be described as

“w=
WIS ria) o aaa 2 ads PN PRI TN & L

convolution of the wavefront with a quadratic-phase impulse response, and the action of a

sphericai lens on a wavefront is multiplication by a quadratic phase, so the common 2-f
coherent Fourier transformer is a version of the C-M-C chirp algorithm. An optical version
of M=C-M is also possible {Whitehouse, 1977).

The chirp Fourier or z-transform can be implemented for real 1-D data (as wouid be o g
obtained from a flying~line scanner) using the technologies described previousiy, but the
analysis differs somewhat from that given in egs. 25-26. A basic temporal signal filter has ﬁ
a reai, finite-length impulse response, often modulating a carrier. For example, the impuise

response of a SAW chirp filter is of the form

2
he(t) = A(t) cos[w,: % “-‘-] (27

where A(t) is the apodizing function of the filter, w, is the initial carrier frequency, and 2
is the "chirp rate’, or rate of change of the instantaneous frequency. For SAW filters, the
carrier frequency w, is in the RF region (=15 - 300 MHz). The frequency of h,.t) rises
with time, so this function is again cailed an upchirp. Using these realizable filters, the
chirp Fourter transform may still be implemented, but the phase of the transform is now

determined relative to the phase of the carrier (Jack and Paige, 1978). The recipe for the

chirp transtorm becomes:

Badv Su

ST e

1) premultiplication by a downchirp;

12) convolution (filtering) with an upchirp; 1
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3) postmultiply by two upchnirps separately, with phase difference of 7/2;
4) low=-pass filter both signals from step 3.

The complex transform is thus generated as two parts simuitaneously. The signal derived
from the in-phase chirp of step 3 is the real part of the complex Fourier transform, or
cosine transform. The quadrature signal yields the sine transform, or imaginary part of the
Fourier transform. Note that the sign of the slope of the postmuitipiication chirp differs
for the realizable algorithm relative to that for complex chirps. This is due to double-
sideband multiplication of the carrier-borne signals, which yields signals at the sum and
difference frequencies of the carriers. By selecting the difference frequency sideband with
the low=-pass fiiter, the operation is equivalent to postmuitiplication by a chirp of the
opposite sign. The output temporal signal maps linearly to frequency with constant of
proportionality a. Since the real chirp signals are apodized by A(t), their time-bandwidth
product (TBW) is finite, thus limiting the frequency resolution of the transformer. The
maximum system TBW is one~fourth the TBW of the convoiution chirp (Ash, 1978). It should
be noted that the SAW chirp transform algorithm can also be implemented for complex input
data by premuitiplying the imaginary part of the input signal by a chirp in quadrature to the
real-part premuitipiication chirp (Jack and Paige, 1978). Using surface acoustic wave
reflective array compressive filters, a system capable of transfarming signals 60 uS long
with A0 MHz bandwidth was demonstrated by Gerard et al. (1977). SAW chirp Fourier
transformers are faster and require less power and bulk than all-digital systems, but are
less accurate.

The chirp Fourier transform algorithm can be implemented with AO devices as well.
Hotz :1984) and Pancott and Reeve (1985) have demonstrated M-C-M transforms using

space-integrating architectures incorporating two Bragg cells. The 1-D input is multiplied

vy an eiectronically-generated chirp signal in an RF mixer, and the product applied to one
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3ragg ceil. The «Ist diffraction order s seiected and imaged on the second dgragg ceil,
which is driven by the same electronic chirp signal. The -1st diffraction order emerging
from the second cell is selected, integrated on a detector, and demodulated. Hotz reports
a system bandwidth of 25 MHz for a signal duration of 5 uS, limited by the capabilities of
the AO cells and by problems with generating the proper postmuitiplication chirp slope.
Such a system has similar mechanicai stability requirements as other coherent optical
systems, but are readily appiicable to signal processing in Radon space.
ll.Acl.a. 2-D Power Spectra

Ticknor et al. (1984) demonstrated production of 2-0 power spectra via the rRadon
transform and the SAW chirp Fourier transform., Their system is diagrammed in Figure 11,
The Radon projection of a 2-D transparency f(r) is generated by a Bragg-ceil-driven
flying-line scanner. Une projection is derived in 10 S, Premultiplication by the SAW chirp
is performed in an RF mixer. This product signal is applied to the convoiution chirp filter,
whose output is the Fourier transform on an RF carrier. Since the phase of the Fourier
transform is not required, the output of the convolution fiiter is detected incoherently with
a diode, producing a unipolar signal proportional to the squared-modulus of the Fourier
transform. The SAW filters used had time dispersions of 10 MHz and bandwidths of 20 uS.
Power spectra were generated by the system within 28 uS after commencement of the
flying-line scan. The spectra were 20 uS long with 50 resoivable frequencies. By the
central-siice theorem, the detected signal must be displayed in a polar format to generate
one line through the 2-D power spectrum. However, as the 2-D spectrum is buiit up, the
polar raster oversamples the low spatial frequencies, producing a displayed time-averaged
intensity that is too bright in the center. Mathematicaily, this problem is due to the
sampling nonuniformity of the Radon transform, and is corrected by rho-filtering, i1.e. the

central slices of the power spectrum are muitiplied by |vy in an RF-mixer betore detection.
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Arter one transform slice has been displayed, the prism is rotated and a new projection

L generated. The power spectrum of that projection is displayed at the new azimuth on the
‘B - CRT. Integration of the result can be done on film, or by eye if the system is fast enough.
\ System speeds up to 5 frames/sec. have been demonstrated, limited by the rotation rate of
the stepper motor driving the image rotator in the flying~line scanner. Results for a 2-D

function are shown in Figure 12.

li.A.1.b. 2-D Complex Fourier Transforms

The same group (Easton et al., 1985b) added a post-multiplication chirp to their system
to generate the complex Fourier transform, as diagrammed in Figure 13. The time delay of
the post-multiplication chirp is derived from a digital delay generator {1 ns resolution). To
obtain more precise time delay, the phase of the postmuitipiication chirp can be varied with
a continuously adjustable RF phase shifter. The postmultiplication itself occurs in an RF
phase comparator, which generates voltages proportional to the in-phase and quadrature
products of two input signals. The in-phase term s the cosine transform, and the
quadrature term is the sine transform. Performance of the complex SAW chirp transformer
is shown in Figure 14.

Rho-fiitering of the complex transform before display is somewhat more difficult than
for the power spectrum, The frequency ot the demodulated signai is too low for
muitiplication in RF mixers, and 0o nigh tor anatog muitiphiers. An integrated-circuit
balanced modulator was used instead. The two nipolar compiex Fourier transform signais

were then biased up before application to the z-axis of the CRT. Resuits are shown in

Figure 15.
Since the phase of the transform is derived from the time Jitferences ot the projection
uj w signal relative to the chirps, the coherence of the scanner beam s immateriai. This method . 1
~ry

S is therefore applicable to reflective scenes as well as to transparencies. An exampie ot
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compiex Fourier transformation of a reflective scene s shown in Figure 1b. )

Another 2-D processing situation where Ragon space fourier transformation may prove T

very useful 1s with spatial light modulators whose image quality is rejatively poor. F’ |
Recently, there has been much interest in applying an inexpensive liquid crystal television S
receiver to optical processing operations {Liu et al., 1985) (McEwan et al., 1985). The poor L :::
L
ohase uniformity of the LCTV limits its utility for coherent operations, though various means Fs 1
;.-_ have been suggested for improvement. Again, this is not a problem when used as input for R
- v
: a flying-line scanner {Easton et al,, 1985a), 3ome results in that application are shown in N
- _ e 1
bl - Figure 17, e
= Y
- 4
. Farhat et al. (1983) aiso demonstrated 2-D complex Fourier transforms via Radon Y
& )
t.- space operations, but utilized a 2-channel incoherent optical correfator to generate the ]
b
- ) ) . =Y
1-0D transforms. A 2-D complex signal was displayed on a CRT in two colors, e.3. reai part 3
.
in red, imaginary part in green. The image was rotated bv a dove prism, spectraily filtered :
- . -'*
to separate channels, and collapsed to 1-D by two coherent optical fiber pundles. The reai 4
o

—

and imaginary 1-0D signals were correlated incoherently with a fixed cosine and sine
reference mask, respectively, The 1-D correlator outputs represented the real and
imaginary parts of the 1-D Fourier transform, which were then be detected and displayed in

the polar raster. The system is fast, but also suffers from the familiar limitations on

bandwidth and dvnamic range common to other geometrical-optics incoherent correlators

‘Rogers, 1977).

- ;.
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ll.A.1.c. Hartley Transforms b
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A 2-0D operation that is receiving some attention in the signal processing community is
the Hartley transtorm (Bracewell, 1983} (Bracewell et al., 1985). For a 2-0 function f(r},

the Hartley transform s detined as:
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Hip) = ' d%r f(r) cas2Trep) \28)
r: J —» ." - h

L where cas(x) = cos(x) + sin(x). The kernel ot the Hartley transform is again a function of e »
. the scalar product of conjugate variables and is in fact the difference of the real and

imaginary parts of the Fourier kernel. Being purely real, the Hartley transform may be

preferred over the Fourier transform for digital computation, since the storage requirements
could be haived. Being a linear combination of the real and imaginary parts ot the 2-0U
Fourier transform, and hence of the 1-D Fourier transform of the Radon projections, the

Hartley transform is easily implemented in Radon space. By subtraction of the real and

imaginary outputs of the SAW chirp transformer with a simple difference amplifier, the 1-D L ‘ R
centrai slices of the Hartley transform are generat:d. They are displayed in the same .o
fasnion as the Fourier transform, ﬁj
Ii.A.2. Filtering and Correlations ) -

The filter theorem demonstrates that a projection of a 2-0O convolution {correlation} s

the convolution (correiation) of the corresponding projections of the 2-U functions. Since

devices or systems exist to perform 1-0D convolutions SAW devices, CCD convolvers, and
AQ convolution systems), it is feasible to perform the 2-D operations in Radon space
‘Cmitro et al., 1983). with a fast 1-D SAW convolver, such an operation can be performed

at video rates. A svstem capable of video-rate 2-0 convolution or filtering is depicted n

; 4'"."1“'11*

Figure 18, The projections of the filter function may be generated as needed from a 2-0 LY
ST

image or stored in digital memory and read out through a fast O/A converter. A simulation .__.;
ot 2-D high-pass fiitering is shown in Figure 19, where the projections were generated -9
- 9

optically, the 1-D convolutions and rho-filtering performed in a digital computer, and the :
. . v.
back-projection again performed opticaily. - -y
o
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It the projections of the rilter runction are stored in an addressanle digitai memory, as

suggested above, we have the capability to aiter the impulse response of the 2-0D filter bv

updating its digitaily stored 1-D projections. This could be useful If fiitering a noise signai -

which varies aver time and would enable the application of 1-D adaptive filtering methods

to 2-0 situations. For exampie, consider a signal corrupted by noise. An adaptive filter

acts on noise in a reference channel icorrelated in some unknown way with the noise in the

signal channel) to maximize the output signal-to-noise ratio. This is accomplishea by

adjusting the filter's impuise response to minimize an appropriate error signal. The fiiter

parameters are derived from correlations between the signais in the input and reference ‘f_

channels--operations that can be legitimately performed on the Radon projections of 2-D

signais. In 1-D, the technique has been successfully applied to a number of problems, e.3.

telephone echo cancellation (Gritton and Lin, 1984), electrocardiography, and antenna I

sidelobe interference [Widrow et al., 1975). To the knowledge ot the authors, there is only

one demonstrated example of 2-0 adaptive filtering. Tao and weinhaus 1985) appiied

\3‘,"“‘ ’

adaptive noise cancellation techniques to removal of periodic signal-dependent noise in
digital imagery. By filtering the Radon projections with 1-D updatable stored functions in

a 1-D convolver, these adaptive aigorithms can be mpiemented while avoiding :he

o

iimltatxpns of available 2-D hardware.
I1.A.3. Pattern Recognition

Some very useful pattern recognition operations can be profitablv perrormed n Radon
space. e have aireadv demonstrated generation of the 2-D Fourter power spectrum. *
Gindi and Gmitro [ 1984) have used optical methods to rapidly extract integrated teatures
ot the power spectrum from the Radon projections. They have aiso demonstrateq the
feasibriity of avaluating a set of invariant moments, deriving the Hough transtorm. anuy ~

rinding the convex nuil of 4 2-2 mnput by operations on the Radon projections.  dince the
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first three operations are probably of most interest, we shall briefly discuss each. R

11.A.3.a. Fourier Spectrum Features A

w Optical computation of features in the Fourier power spectrum has been feasible for e )
some years and has been applied to some industrial uses (Casasent, 1981), The wedge-ring

R

detector was developed for use in a coherent processor to compute the energy in the power B

| spectrum in discrete segments of magnitude and orientation of spatial frequency. By
manipulation of the 1-D power spectra in various ways, the same kind of Fourier feature
extraction can be performed. Integration of the power spectra of adjacent projections
- produces information equivalent to that from the wedge segments. Sampling the 1-D
spectra and integrating over projections generates information from discrete spatial
frequency intervals, corresponding to the annular segments of the wedge-ring detector.
v Results from a computer simulation by Gindi and Gmitro (1984) are shown in Figure 20.
I11.A.3.b. Image Moments

Two decades ago, Hu (1962) described a system of linear combinations of image
v moments that are invariant to translation, rotation, and scale change. Later, Maitra (1979)
modified the system to include invariance to relative image contrast. Six combinations of

ten image moments Mpq are required, where:

dx dy xP y9 f(x,y) . (29)

The ten necessary image moments are mMy,, My,, My, My, My,, Myy, My,, My, My, and my,.
Gindi and Cmitro (1984) demonstrated that the ten moments can be computed from four

projections spaced r/4 radians apart. The ten image moments and the linear combinations

can be rapidly computed by digital means from opticaily-generated projections.
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E 11.A.3.c. Hough Transform .
g The Hough transiorm was developed as a technique to speed detection of straignt line ':

hd segments in digital imagery. tdges of the object are mapped by the Hough transform to a LR

parameter space, wherein peaks indicate the presence of straight lines in the object.

Deans (1981) described the ciose similarity between the Hough and Radon transforms. For
binary pictures, in fact, they are identical. Eichmann and Dong (1983) have proposed a

coherent system to generate the Hough transform, while Gindi and Gmitro (1984)

demonstrated that 1-D filtering of Radon projections can be used to edge-enhance a 2-0

oy
- image and derive the Hough transform simultaneously. Their digital simulations of the !‘J
B

computation of the Hough transform are shown in Figure 20. '_-f. j

.
P

Il.A.4. Image Coding and Bandwidth Compression

The potential of x-ray tomography in medical applications led to investigation of the

-, v
S R
A L

collected data required to obtain good image quality (Rowland, 1979). In turn, this nas led

P ]

to application of the tomographic transformation to reduce image storage and transmission
requirements while maintaining image quality (Mersereau and Oppenheim, 1974). Since oniy Pt 'j
1-D compression operations are required after the projections are collected, rapid coding is '

possibie. To date, the work has been aimed at digital compression of the 1-U projections.

‘Lv‘L - e

7

Smith and Barrett (1983) truncated and quantized the Fourier components of each

PR

projection of a scene to reduce the data from 8 bits/pixel to 1.1 bits/pixel while retaining

good image quality. As they point out, the approach works very well with rectilinear A

e e
B I e Y )

scenes, since significant Fourier components will predominate in a limited number of
projections. Fraser et al. (1985) investigated the effect of gross reduction of the number
of projections used, as well as quantization effects of various spatial frequency ranges.
Using 256x256 8-bit images, they obtained good image quality with as few as 0.36

bits/pixel.
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11.A.5. Spectrum Estimation

In temporal signal processing, the estimation of frequencies of a signal buried in

v e

oy = =,

uncorrelated noise is a classic problem (Robinson, 1982). Averaging and modeling F‘
techniques have been developed appropriate for distinguishing various types of signals (Kay

! and Marpie, 1981). Most are based on Fourier transform and/or correlation operations and

are hence adaptablie to operation in Radon space for 2-D signals. Traditional methods
incorporating averaging operations, such as the periodogram and the Blackman-Tukey
spectrum estimate, are most useful for detecting the presence of sinusoidal signals. To :".~“_:
compute the periodogram, windowed segments of the 1-D input are sampled and padded !:
with zeros. The size of the data window determines the frequency resolution of the

periodogram. The power spectra of the segments are computed and averaged. Since the

noise is uncorrelated, the signal spectrum should dominate in the periodogram. This .,.,-
approach has become popular since the invention of the FFT aigorithm. 2-0 periodograms
are used in a similar manner for spatial signals (Dudgeon and Mersereau, 1984). For 2-D

signals, optical processing techniques can be used to estimate the spectrum. I[ndeed, one of §f
the success stories of optical processing, Labeyrie stellar speckie interferometry, generates

a form of 2-D periodogram where the signal segmentation is over time rather than over

space. Computation of the traditional periodogram is readily adaptable to Radon space
implementation. The projections of a noisy signal are computed and segmented. The

individual segments are padded with zeros and Fourier transformed. The power spectra of

the segments of the projection are averaged to derive an estimate of the power spectrum of o
that one projection. The same procedure is carried out for each projection to generate the
2-0 power spectrum astimate.
The Blackman-Tukey aigorithm derives a spectral estimate via the wWiener-Khintchine ._“-
theorem, i.e. the power spectrum of a stochastic signal is the Fourier transform of its )
._“;‘
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autocorrelation. For a sampled 1-0 signal, the autocorreiation is computed for a number of . L
allowed lags (shifts) and Fourier transformed. For a 2-U signal, the calculation of the 2-D _'j .

autocorrelation makes this approach computationally expensive. However, once the
projections have been derived, this approach can be performed in 1-D rapidly and cheapty.

8y the filter theorem, the projection of the autocorrelation is the autocorrelation of the

projections. The 1-D autocorrelation of each projection can be rapidly computed, Fourier

transformed, and displayed in sinogram or poiar format to give an estimate of the 2-D
power spectrum,

Il.A.6. Linear, Space-Variant Operations

In recent years, a considerable amount of effort has been directed at developing
opticali methods of implementing space-variant operations, in order to broaden the ST
applicability of optical processing. For a review of this work, see Coodman (1981). It is ——

natural, therefore, for us to investigate the application of the Radon transform to such

operations. e will see that Radon-space impiementation of general space-variant ;:“-f.:-:
- . . . o . B
operations, though theoretically possibie, usually offers little if any advantage over direct -

processing. For some special cases, however, the Radon approach can be very useful.

A general linear, space-variant operation on a 2-D function f(r) may be expressed as a

- o Fo
superposition integral: —~—

= (" B

8(r) = | i a*r' f(r'y h(r;r'y, 30) RN,

J =l ~-m . ;."-i.'

- Ve
where the kernel h(r;r') can be regarded as a space-variant impuise response. Since the A

i A

superposition kernel is a function of both the input and output coordinates, and is therefore SRR

Mo

© Lt

4-D, we cannot derive unique 1-D projections of h(r;r') in the manner described by eq. 2. AR

< [

Ve could derive a generalized projection An(p,#;p',%') of h(r;r') by integration over the

. RN
. . e e L. . . .y . T A T ) e VI
N TN S0 TV 6, PP, VRPN T U VIE U0 /0 YU TP DT D00 TEE WA WO TRF WP LT woU WOg i G s L ST D, Yy v, Dy, W e TP UTSID T T UAF 0V WPy A dand




CARTAYTEEEENWTYT T T YO WYV Y Y YT T HERR LY A% TyTEY V¥ VW

- 40 -

.nput and output variables and examine the relationship between Apoand iy that velds \5.
Ve have already seen some cases, 2.g. the Fourier and Hartley transtorms, wnere the close
xinship of the space-variant integral kernel and the rRadon kernel ailow the operations to de
directly performed in this manner. But for the general space-variant operation, we will
instead consider an aiternative treatment made by Bamier and Hofer-Alfeis (1982). They
proved that 2-D space-variant operations can be considered to be a special case of 4-D
space-invariant convolution, i.e.

g(r) = g'(nr'=0) = (f(rr') **** n(r;r') ][, 31
where f'(r;r') = f(r) 5(r + r'), and the operator ****® denotes 4-D convoiution. Deriving
f'(e;r") involves sampling a 4-D smeared version of f(r), and so is somewhat akin to back-
projection. Bamler and Hofer-Alfeis proposed a means of implementing the 4-D
convolution optically via sequential 2-D convolutions for the case of a bandlimited space-
variant impulse response. By extension of the filter theorem [eq. {13)] to 4-0, the
convolution can theoretically be performed via 1-D convolutions in Radon space once the
projections of the 4-D functions have been derived. The 4-D generalization of the
projection operation {eg. (2)] is obtained in analogous fashion to the 3-D case /Section
l.8.1.), i.e. the 1-D projection of a 4-D function is generated by integration over the 3-0
volume normal to the 4-0D unit vector de_fining the azimuth of the projection. Three angies

.a,3,y/ are required to specify this unit normal. For clarity, we respecify the arguments

.r;r') of the 4-D functions by the notation (r_j, where the subscript denotes the

dimensionafity of the space. Similarly, we define the 4-D volume element d*r = dlr dir', L 2R
The 1-D projection of the 4-0 nput function f'(r )} 1s therefore:
rﬂ (Q [O -]
NI RERIES ’ d'r f'lre, 5P - 1y * ] . 32 .
v-
) =0 2w ~BD] ~® e ————y
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Note that the definition of f'{r,) = f(r) &(r + r') allows some simplification of this

expression by evaluating the integral over d*r’'. However, the projection of the kernel h(ry,

{
-

oy TR N D

cannot be so simplified, in general. Extending the filter theorem [eg. (13)] to 4-U, we

have

g'(r) =R A (pa,8,y)] = R, (A p(p,a,B,Y) ® Ap(P.a,B,Y)], (33)

where R, ™! is the 4-U inverse Radon transform. The desired output g(r) of the 2-D space-
variant operation is obtained by evaluation of g'(r,) = g'(r;r') at the 2-D plane defined by

r' = 1. Since each 1-D convolution influences every point in the 4-0 convolution {and

hence every point in the 2-D output plane) via back-projection, there are no computational
shortcuts--only nonessential 4-D output. In Radon terms, mapping the 2-D input function

to 4-0 space and performing a 4-D space-invariant convolution avoids the necessity of

operating on one projection of the 2-D input f(r) with multiple generalized projections of

the 4-0 kernel h(r;r') to obtain one projection of the 2-D output g(r). However,
performing the forward and inverse Radon transforms of 4-D functions are very intensive

computational processes which would require special-purpose hardware if they are to be

performed rapidly and economically. To illustrate the scope of the problem, consider that

the forward transform requires the caiculation of a volume integral for each point in each )
o & ;

projection. For a 300 x 300 input f(r), the general space-variant kernel h(r;r') has 500° = =

£.25 x 10'° data points. Calculation of each of 50U* projections reguires 300 volume

‘_'::. integrails over 300° points. The difficulties of performing the 4~D back-projection are

similarly prodigious. As will be discussed, Barrett (1981) proposed a hybrid 3-0 Radon- -’"1
-]

space signal processor that could be adapted to these 4-D applications, but the addition of 1
9

one more dimension significantly complicates the data storage and manipulation ~d

requirements. Hence, performing the generai space-variant operation in Radon space via

the 4-0 convoiution algorithm has no obvious advantage over direct digital processing at
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this time.
I1.A.7. Bilinear and Nonlinear Operations

For 1-D signals, a number of processing algorithms have been developed that operate
on the signal in a multilinear or noniinear manner for such purposes as voice pattern
recognition and echo deconvolution. Examples include coordinate-frequency
representations {(e.g. sliding-window spectrum, Woodward ambiguity function, Wigner
distribution function (WDF)), triple correlation (Lohmann and wirnitzer, 1984), and the
cepstrum (Chiiders et al., 1977), The success of these aigorithms for certain 1-D signal-
processing tasks has stimulated research into 2-D analogs, but these are usually
computationally intensive and hence not often implemented digitaily. In some cases,
optical processing has been profitably applied, notably for coherent optical computation of
the wigner distribution function of 2-D data (Bamler and Clﬁnder, 1943). Those operations
based on Fourier transforms (e.g. WDF) or on nonlinear point processing (e.g. cepstrum)
may be implemented in Radon space. Using a fast optical Kadon transformer and 1~
analog or fast digital processing, the 2-D operation may be performed profitably. An
exampie of such an operation is coordinate-frequency representation of 2-D functions.

A simultaneous representation of the coordinate and frequency distribution of the
energy in a nonstationary signal has proven useful in a number of applications, e.g. radar
signal processing (Woodward, 1953) and speech processing (Oppenheim, 1970). Such a
representation is intended to give a picture of the *local® frequency spectrum of the signal,
i.e. the frequency content of the signal arising from a particular region of coordinate
space. Cbviously, such a picture requires twice as many dimensions in the representation
space as in the signal space. Several such representations have been proposed. The most
direct path to a local spectrum is the complex spectrogram (CS), or sliding-window

spectrum, where a constant window function is shifted over the signal to specify the region
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}
to be Fourier analyzed, i.e. for a 1-0 signal f(t), the complex spectrogram ng is defineqa 1

as: ',‘.. ) "1
Sgg (tiv) = |[ dr' f(t) g* (¢ - ye~2MIVY, (34)
] =-m

This representation is easily computed by coherent optics but the output is affected as
much by the window g(t) as by the input f(t). This potential problem can be alleviated by

using a self-windowed representation, such as the Wigner distribution function {WOF),

—
)

4

L.

i‘i

- 9

»

which is commonly defined as: T
.—-—-i,

T

L
We(t;v) = ‘[ dt' f(t + -tz-) £ (¢ - 32-) e 2mivt! ‘:j
J - R,
o4
F v e ¢ ] 0
= t‘.\,l f(t + -2-) fo(t- -2‘)J, (35) _‘::
where t~'7lis the 1-D Fourier operator transforming coordinate t' to frequency v. This
)
representation was introduced by wigner (1932) and introduced into optics by Bastiaans
(1978). Another closely related function is the Woodward ambiguity function (AF), which is 5 ‘

defined as:

Afvit) =J dt f(t » =) £ (t - %) gT2mivt

2 " _]
bl - ' v 7 .‘-
, t _® t ) o
= f N !f([ A -2-) to{t- E')Jv 3o R
1 tev L N
e
% < It is refated to the WDF through a double Fourier transform. Several optical methods for :j
P —
: computing these representations for 1-D functions have been introduced (Barteit et al., - j
P -
t 1980) i Brenner and Lohmann, 1982) (Eichmann and Dong, 1982) (Athale et ai., 1982). j
- Sl
h - Generation ot such representations for 2-0D functions presents another probiem, since “4
E. the resuitant is a function of four variables. Ceneraily, 2-D slices of the 4-D y
o
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representation are produced. Real input functions are assumed, elimunating the need for
conjugating the shifted function. In addition, the computation of the bilinear product
- . . . . . . . . . . - <
n function is expensive if done digitaily, increasing the motivation for optical processing., Of
the representations listed, the WDF is most readily computed opticaily, since the Fourier

transform of the product function is over the shifted coordinate variable . Optically, the

- . . & 3
! product function is generated by passing coherent light twice through a transparency of the .
. P
w signal, either by reflecting an image of the transparency onto itseif, by overlaying copies - j
p‘k T,
b {Bamier and Glunder, 1983), or by imaging onto a copy (Conner and Li, 1985). The bilinear R
.. - - Y
it o . . o .
k- product function is then Fourier transformed to generate one slice, We(Fgid)e Shifting the e
" position of the input functions generates 2-D slices for different values of r,. 1

Cod

8 Computation of the WDF can also be performed in Radon space by taking projections of "
’

- A " , o , ba

the optically derived bilinear product and Fourier transforming in 1-0. Easton et ai. {198+)

demonstrated generation of 1-D central slices of the squared modulus of the 4-D wUF and

R I 4
PLEF A SR

later used the 1-D SAW complex Fourier transformer to produce bipoiar 2-0 slices of the
4-D WDF of a 2-D real function. An example is shown in Figure 21.

11.B. Operations on 3-D Signals

L o . .

2

Earlier, we stated that we would emphasize processing of 2-D signals via a

Yoo e

T
¢
Y,' . -y S

= o, .

tomographic transform. However, it may be even more profitable to use the Radon

3

purely spatial data, and 2-D spatial data with a third dimension {e.g. time or spectrum).

. o
[:- transform to reduce 3-D probiems to 1-0 operations, since digital data manipulation is even o

t.- more time-consuming in that case. Two kinds of 3-D problems wiil be discussed: 3-D j
i L ' 3 _]

We shall briefly describe the required operations, and suggest potential applications.

o

el A__ e

.
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e
do
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e

t1.B.1. 3-D Spatial and 2-D Spatial + 1-D Temporal Signals

L
(-,
| € :

HES

t In Section i.8.1. we described the decomposition of a 3-D function into a set of 1-0

PR

projections by integration over parallel planes. The projection operation 1s :dentical to eq.
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2%, except that the delta function reduces the volume integral to a set of planar integrais. :

Civen a 3-D function f(x,y,z), we wish to integrate the function over a set of planes Lo

iy

l w . ~ , N o |
] normal to the 3-D unit vector n. Two angles are required to define the normal to a plane, S
. . . Ty

commoniy the azimuth 9 and the colatitude 3. The dispiacement of the parallel plane from |

]

T

the origin is again defined as p, so that A = p/p. The 3-D projection operation can then be r

-
expressed:

ro = «
{ -~
l ( [ d'r f(r) 5(p - r*n) . i37)

) ~ad -@l‘ -
The 3-D version of the central-slice theorem states that the 1-D Fourier transform of a

projection of a 3-D function yieids one line through the origin of the 3-D Fourier

transform,

-
l The 3-O back-projection operation is again very similar to the 2-0D case, but now the
- 1-D function is smeared over the original projection plane normai to A. Repeating this for
all directions i generates a 3-D summation image b(r)., !n the filtering step, however,

there is a significant qualitative difference between the 2-D and the 3-D cases. Recall

that in 2-D, the Fourier space filter for the 1-D projection is H(v) = |v|, and the b

coordinate space counterpart is h(p) = ‘iwl_p" which falls off slowiy with p. The
corresponding filter for the inverse 3-D Radon transform is H(g) = erc‘; where g is the
magnitude of the 3-D spatial frequency vector (§,n,§) {Barrett, 1981). The coordinate

space filter is easily found, since multiplication by -(2723?) in the frequency domain

' “

) corresponds to taking the Laplacian in the space domain (Gaskill, 1978). The expression for
the inverse 3-D Radon transform is therefore:

y f(r) = = 73 (b(r)] 38)

' b 2n .

- ~here b(r) is the 3-D summation image. Filtering for the 3-0 inverse transform is

WAL Y T | Bt i nliisondinstondin . el

Ly St . . RN - NI T e e o
Samband adnd o nd o b e ol odtsndond ol et e et he a b ead n e o = oottt it




N W e e
ANt asel A o- i hn ae s sed- e ae ot sin ok aen gme g ol i ana abd oMLl AN VA aAS Al UL SBAL AN AL ant ol Al N Lol aod e aivhuafii sl atth i at ki BRI AP AR .

- i
!. - 40 - »,i

e therefore a local operation, in contrast with the 2-D case.

f.'_ darrett 1981, proposed a hybrid 3-D Radon-space signal processor composed of an " Q
' \d optical system to derive the projections, digital storage, 1-D signal processing, and opticai [;u:
back-projection. The input function was assumed to be a coilection of 2-D image frames, 1

1.e. a movie film, where each frame is assumed to be a 'slice” through the 3-D object. All
l L of the 3-D versions of the operations described in section 1.A. could be performed by this
system, including 3-0 Fourier transformation and convolution. Such a system should be

capaole of performing 3-D complex Fourier transforms on 500° data points in less than 4

:
p

hours. A digital system common at the time (PDP 11/34 + array processor) would have

required two days.

Such a system can also be applied to 2-D spatial + 1-0 temporal signals {e.g. movies)

‘ - for joint spatiai/temporal filtering. A possible application would be to stellar speckie
interferometry, allowing the averaging filter impuise response to vary temporaily. Such
) operations are feasible by digital means, but are expensive and time~consuming.
! - 11.8.2. 2-D Spatial + 1-D Spectral Data
Optical detection and display systems are best-suited to 2-U data formats. In white-
light images, a third dimension of information has been encoded in the spectrum of each
- hd image point. The Radon transform provides a mechanism by which we may use 2-D
detectors, signal processors, and display devices to manipulate the spectral data while
retaining the ability to regenerate the iinage. For example, if we have a white light 2-0
. image, we can derive the set of 1-D projections of that image as described in section
(.C.1. The 1-D projections can be spectrally dispersed in the orthogonal dimension,
allowing 2-D filtering to be performed on the joint spatial/spectral projection. The 2-O

‘ il filtered signal can be "inversely dispersed®, to rederive spectrally-filtered 1-0 projections,

and a 2-D filtered image then reconstructed via the inverse Kadon transtorm. Such 4
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svstem could De usea for spectrai matched riltered imaging [Lohmann and Maul, 1981) Yy, 1
19843 or imaging spectroscopy.
‘ - -
- . 1
[ Ill. Summary and Conclusions g }
| R
)
' we have discussed the reduction of 2-D signal processing operations to 1-D operations B
| ‘l
: K
E via the Radon transform for the purpose of gaining flexibility, precision, and mechanicai
- ‘ . . s
advantages over direct optical signal processing. This technique is most readily applicable _——
to operations based on Fourier transforms and convolution. Several optical systems were 1
]
T4
discussed that are capable of performing the forward and inverse dimensional i
< ;
transformations, and a number of applications were considered, some aiready demonstrated
and some postulated. The authors believe that many of the fruits of this technique have
yet to be harvested, and we encourage workers in signal processing to investigate the
4' -
utility of projection operations in their own applications.
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Two-dimensional complex Fourier transform via the

Radon transform

Roger L. Easton, Jr., A. J. Ticknor, and H. H. Barrett

A hybrid system has been constructed to perform the complex Fourier transtorm ot real 2-D data. The
svstem is based on the Radon transform. i.e., operations are performed vn 1-D projections of the data. The
projections are derived opticaily from transmissive or reflective objects, and the complex Fourier transtform is
performed with SAW filters via the chirp transform algorithm. The real and imaginarv parts of the 2-D
transform are produced in two bipolar output channels.

I.  Introduction

The utility of the 2-D Fourier transform as a tool for
signal processing is well known. [ts computation is
usually performed digitally or by coherent optics.
Other techniques have been demonstrated to compute
the 2-D transform using incoherent illumination.!-?
Each of these methods has inherent advantages and
disadvantages. Digital computation on a general pur-
pose computer is precise but slow, even with the FFT
algorithm. In addition, it can suffer from aliasing
problems if the data are inadequately sampled. The
use of special purpose hardware, such as array proces-
sors, can speed the process considerably, but digital
techniques cannot as yet approach video rates (30
frames/sec) with large arrays. Optical methods to
compute the Fourier transform have been developed,
but each has disadvantages limiting its utility. We
have constructed a system capable of performing com-
plex Fourier transforms of 2-D input data at video
rates. The system is based on the Radon transform
and the chirp Fourier transform. An optical scanner
produces 1-D projections of the input data, which are
Fourier transformed in 1-D by a surface acoustic wave
chirp transformer. The real and imaginary parts of
the transform are produced simultaneously in separate
channels. A single projection isderived in 10 usec, and
the complex transform is produced <30 usec after
commencement of the scan. By the central slice theo-
rem, these 1-D transforms are equivalent to lines

The authors are with University of Anizona. Optical Sciences
'enter. Tucson, Arizona <3721
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through the 2-D transform. When the transtorms are
plotted in polar format on CRT screens, the real and
imagination parts of the 2-D Fourier transform of the
object are displayed. The system can be used with
either transmissive or reflective input data. and the
illumination may be incoherent. We have previously
reported on the application of this system to computa-
tion of power spectra,' but results of 2-D complex
transformation are given here for the first time.

0. Optical Fourier Transformation

Fourier transformation by coherent optics has been
the basis of optical processing for many vears and
found use even before invention of the laser. Coherent
optical systems can compute the squared modulus of
the Fourier transform virtually instantaneously but
are limited in performance by speckle noise and by the
available input transducers (spatial light modulators).
Using the proper optical configuration. it is easv to
show that the correct amplitude and phase of the
transform are produced at the output plane tlimited by
aberrations in the transform lens), but the necessityv of
square-law detection makes separation of the ampli-
tude and phase components of the transtorm (or, near-
ly equivalently, of the real and imaginary parts) diffi-
cult.

A considerable body of work has been done on pro-
duction of the Fourier transform by incoherent optics
with the aim of gaining significant advantages over
coherent optics in output noise and flexibility of inputs
while retaining the speed advantage over digital com-
putation. Katy!' used a temporally incoherent source
in the coherent optics format with appropriate disper-
sion correction. The requirement for spatial coher-
ence remains, and derivation of the complex transform
is difficult. Other systems use geometric shadow-
casting to image the input on a reference mask of
known spatial frequency and phase. The integrated

15 Novemper 1985 / Vol. 24, No. 22 / APPLIED OPTI!ICS g7
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light at one position in the output plane is proportional
to the Fourier coefficient at one spatial frequency.
The technique of Mertz,- later refined by Richardson,3
produced the reference masks via the moire pattern
created by two Fresnel zone plates. By sequential
replacement of the second zone plate with one with
spatial frequencies in quadrature. Richardson was able
to compute the cosine and sine transforms separately
giving the real and imaginary parts of the Fourier
transtorm. This implementation can be analvzed as
the chirp algorithm for Fourier transtformation, which
decomposes the correlation with the Fourier kernel
into multiplication and convolution with quadratic
phase factors as described later in this paper. Leiferet
al.* used a stored reference mask with a limited range
of spatial frequency and orientation in a shadow-cast-
ing correlator for alphabetic character recognition. In
all these systems, the shift required for correlation of
the input with the reference spatial frequency mask is
accomplished by optical parallax, and no physical
movement is required. The maximum spatial fre-
quency response of these systems is limited by vignett-
ing of the reference masks and by diffraction (since
geometric optics is assumed). The vignetting problem
may be solved by using a moving correlator at the
expense of slower calculation and increased complex-
itv. Even here, the scanning need not be physical
motion if an imaging detector is used.” However, the
geometric optics assumption severely limits the spatia.
frequency response of these incoherent correlation
systems to arrays of 100 X 100 pixels or so. In addi-
tion, the spurious terms present in the outptt plane
decrease contrast and reduce output dynamic range.

Other authors have investigatea different avenues
to Fourier transform computation. Recent work by
Tai and Aleksoff’ has demonstrated production of
complex transforms of incoherently illuminated data
by selection of the proper output term from a grating
interferometer. This approach is limited to 1-D data,
however. Xuet al.” have produced the complex trans-
form of incoherently illuminated 2-D data occupying
one-half of the input plane. A symmetric object is
svnthesized by reflection through the origin and pro-
cessed through two illumination channels polarized
orthogonally. The system performs well, but the re-
striction on input format limits its utility. George and
Wang? also have performed Fourier cosine transforma-
tion of transmissive or retlective objects in incoherent
light by svnthesis of a symmetric object followed by an
achromatic optical Fourier transtorm. A double im-
age of the input is produced interferometrically, and
the output of the vptical svstem is the cosine transform
on a bias. Adjustment of the interferometer allows
separate generation of the sine transform. The output
signal is detected with a photodiode array for later
digital manipulation. The bias could be subtracted
electronically or interferometricallv. Thev report svs-
tem response to 20 cyclessmm, and their results agree
very well with calculations. This svstem has the po-
tential disadvantage of nonsimultaneous generation of
the cosine and sine transtorms.

3818 APPLIED OPTICS Joi 24 No 22 - 15 November 1985
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Glaser et al.? have implemented the chirp transform
algorithm optically to produce the complex transform.
A holographic filter is used to perform the convolution
with the quadratic phase factor, thus requiring a tem-
porally quasi-coherent source. Spatial coherence is
not required. The optical output is a spatial carrier
modulated by the complex transform. from which the
real and imaginary parts may, in principle. be derived
by digital demodulation at the cost of temporal pro-
cessing capacity.

ll. Radon-Fourier Transtormer

All the 2-D Fourier transforming svstems discussed
above are restricted in utility by limitations on speed.
format of input and/or output, space-bandwidth prod-
uct, or dynamic range. Many of these systems have
proven useful in some applications, but none truly tills
the need for rapid calculation of the complex 2-D Fou-
rier transform with large space-bandwidth product.
Using a different principle, we have constructed a svs-
tem which can potentially compute complex Fourier
transforms of large arrays at videorates. The complex
transform is generated as cosine and sine transforms.
i.e., the real and imaginary parts of the transform.
The two outputs are obtained simultaneously. Opera-
tion is based on the Radon transform.!! which decom-
poses a function of M-dimensions into the complete set
of 1-D projections by integration over M — 1 dimen-
sions. For the 2.-D case, projections are obtained bv
integration over sets of parallel lines. The primarv
theorem of the Radon transform states that a function
can be reconstructed from the complete set of its pro-
jections and serves as the operating principle of medi-
cal computed tomography. The Radon transform has
also been shown to be useful in general signal process-
ing, including pattern recognition,!*!% image filter-
ing,'*15 bandwidth compression,'*" computation of
the Wigner distribution function.'? and Fourier spec-
trum analysis.!0-19.20

The utility of the Radon transform for signal pro-
cessing is due to the central-slice, or projection-siice.
theorem, which states that the 1-D Fourier transform
of a 1-D Radon projection vields one line through the
2-D Fourier transform of the 2-D function. The 1-D
transform passes through the origin of 2-D Fourier
space, and its orientation is determined bv the orienta-
tion of the lines of integration. Since svstems exist
that can rapidly compute 1-D Fourier transtorms ie.g..
CCD. SAW. or AO), adopting the Radon franstorm
approach makes possible rapid computation of the 2-D
Fourier transform.

The svstem for producing the Radon transtorm of
the 2-D data has bheen discussed previouslv.- **-
Suffice 1t to sav that the projections ot the 2-D distr-
bution of intensity transmission tof a transparencyi or
reflectance 1for retlective vbjects) wre derived by pro-
jecting a line ot light on the input plane and integrating
the light transmitted or retlected with a detector  The

output of the detector s proportional to the line inte-
gral of transmission or retlectance. Sweeping the line
of light perpendicular to 1tself across the input data
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produces a temporal signal proportional to one line-
integral projection. Rotation of the azimuth of sweep
with a prism allows production of the complete Radon
transform as a sequence of 1-D temporal signals out of
the detector. For obvious reasons, this optical system
is termed a flying-line scanner.

From the central-slice theorem mentioned above,
the 1-D transform of a projection is one line through a
polar plot of the 2-D transform. Farhat et al.>! have
adapted both coherent optical transformation and
shadow-casting correlation to perform the 1-D Fourier
transformation of Radon-transformed data. Theirin-
coherent transformer produces full complex trans-
forms of complex input data by using two-color chan-
nels. We have taken a different tack, disposing of
optical Fourier transformation altogether, and instead
implementing the chirp Fourier transform algorithm
with surface acoustic wave filters. The chirp trans-
form results from a decomposition of the Fourier ker-
nel:

2
expi{—2xivt) = {exp[-ir(é) } b d lexp[—iar(Bt)z?

x {exp [it (é - dt)z]}. m

Thus the Fourier transform may be written

* v

Flv) = [ ) f(¢) exp(—2xivt)dt = exp[—ir(E)z]

x f "Ity exp{—ix(8t)} X exp [ir (é - ac)z] dt

= [exp[~ix(88)]
x (If(e) expl{—ix(8t)7} » explix(BOZDH , 0, @

where * denotes convolution. The complex exponen-
tials are linear FM signals, i.e., the frequency varies
linearly with time, and have been named chirps by the
radar community. They are also called quadratic
phase factors for obvious reasons. The instantaneous
frequency of the positive complex quadratic phase
term exp[+ix(3t)?] at time ¢, is

1

de g,
—x;;lu-:,‘)"" 3’
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temporal frequency related to the output temporal
coordinate via v = g%. If only the modulus of the
transform is required, the third step can be deleted.
This analysis assumes that the chirps are complex and
of infinite length.

One way to obtain the chirp impulse responses nec-
essary to implement the transform is via surface acous-
tic wave (SAW) chirp filters.>*-2* A SAW filter con-
sists of a piezoelectric crystalline substrate on which
two aluminum interdigital transducers (IDTs) have
been deposited. When a signal is applied to the input
IDT, the electric field across transducer fingers of op-
posite polarity generates a deformation of the crystal
surface via the piezoelectric effect. The deformation
travels along the crystal surface as a sound wave. At
the output IDT, an electronic signal is regenerated
from the sound wave by the inverse piezoelectric inter-
action. By proper design of the separations and over-
laps of the fingers in the [DTs, any of a wide variety of
impulse responses can be generated. For a chirp filter,
the separations of the fingers are varied to obtain an
impulse response h(t) whose frequency increases or
decreases from some initial carrier frequency wy at rate
a, 1.e., of the form

2
h(t) = coa[(wot + “—é-)] .

Again, the instantaneous frequency of the chirp at
time ¢, is

1 d at? wy t at, at,
- + = =yt — -
"o2x dt (wot 2 )lu-z,,) 2r Al

14

As before, the positive term is called an unchirp. Real-
istically, the filter must have a finite temporal re-
sponse, so the cosine function must be windowed by a
function with compact support, e.g., a Rect function or
a Hamming window. For chirp Fourier transforma-
tion, the premultiplication and postmultiplication
chirps can be generated by applying an impulse input
to SAW chirp filters of the proper sign (i.e., upchirp or
downchirp). The convolution is performed by apply-
ing the signal to a similar filter. Itisimportant to note
that the SAW chirp filter impulse response is a real
function of the form A(t) cos(wt £ at?), not the com-

CAnA A And ik Ak anh 2 st Aok Sl onl oSl Ta. o i g

" S .
N
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! [ AN

1
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P

o plex exponential seen above. The function A(t) is an
L . . . apodization of the chirp, necessitated by the finite
which increases with ¢,. Hence, itis called anupchirp,  output signal length, and w is the initial angular fre-
while the negative exponential is a downshirp. Using  quency of the chirp. The chirp transform algorithm e
the three chirps, Fourier transformation can bebroken  may still be implemented,? but the steps now become e
down into the following steps: , (1) premultiplication by a downchirp N
« {1) multiplication of the signal by exp(—ir32t2), a e
downchirp; Rect [ = 2} x cos (w t - a_t_') . X
{2) convolution of the product with an upchirp, .2 - 2 e
exp(+ir32td); el
{3) multiplication of the filtered signal by a down- (2) filter this signal with impulse response -
i chirp, exp(—iw32t?), r o
: The parameter =37 in the chirp signal is called the htt) = Rect [;— - 5} X cos (w.r + —__,—) :
< chirp rate and is the same for all three chirps. The ' o~
temporal output signal is a scaled version of the Fouri- {3) postmultiply the filtered signal by two up- =
er transform of the temporal input signal with the  chirps separately: o
15 November 1985 / Vol. 24, No. 22 / APPLIED OPTICS 3819 Z:j:.
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= Rect(t r,,t - %) X Sin(u+t + Szt_) )

(4) low-pass filter both outputs of step (3). The

terms r. and - represent the temporal width of the

upchirp and downchirp, respectively, and are also

called the time dispersions of the chirps. Similarly, w+

and w_ are the initial angular frequency of the upchirp
and downchirp.

The output temporal frequency is related to the

temporal position in the output signal by the relation

3)

Since the carrier frequencies in SAW filters are in
the rf regime (w =~ 15-300 MHz), multiplications can
be performed in rf mixers. Thediscrepancy in the sign
of the two postmultiplication SAW chirps relative to
that in the complex chirp algorithm given above results
from rf double-sideband mixer multiplication. Such
mixers yield product terms as modulations on carriers
at the sum and difference frequencies of the original
carriers. That is, given two signals A(¢) and B(¢) mod-
ulating carriers at angular frequencies w, and w;, re-
spectively, the action of the rf mixer is to produce an
output:

v® (W, = w_+ at)/2x.

A(e) coslw, t) X B(t) coslw, t) = [“‘i)zfiﬁl

X leos[(w, + wy)t] + cos[{w, = wplt]l. (4)

The low-pass filter selects the difference frequency
term, and so the sign of the postmultiplication chirp
must be the same as that of the convolution filter to
obtain demodulation. The signal postmultiplied by
the cosine upchirp is the real part of the transform,
while that multiplied by the sine upchirp is the imagi-
nary part of the transform.

For maximum time-bandwidth product in the out-
put signal, the requirements on the chirps are that the
time dispersions of the premultiplication and the con-
volution chirp be related by r_ = r./2, and that the
bandwidth of the convolution chirp be twice that of the
multiplication chirps.?® The two outputs are propor-
tional, respectively, to the real and imaginary parts of
the Fourier transform within a time window (r,./2 < ¢
< r.). The corresponding spectral window spans
temporal frequencies

ar,
(I"I = 2.4 ) )

The rectangular finite-length window of the convolu-
tion filter has the effect of convolving the spectral
components with a sinc function, which limits the
number of resolvable frequencies in the spectrum to

3820 APPLIED OPTICS / Vol. 24, No. 22 / 15 November 1985
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Fig. 1. Schematic of the 1-D SAW complex Fourier transformer.
The temporal signal f(¢) from the photomultiplier in the flying-line
scanner is proportional to one projection. The impulse response of
the SAW filters is h.(¢). The microcomputer controller sends a
trigger signal to the digital delay generator, which in turn produces a
l-nsec pulse that is applied to the downchirp SAW filter. The
resulting impulse-response signal h..(t) is muitiplied by the incom-
ing projection signal in a rf mixer. The product signal is applied to
the upchirp SAW filter, and the output goes to the signal-input port
of the rf phase comparator. After a delay of 14 usec {1-nsec resolu-
tion), the digital delay generator outputs a second l-nsec pulse,
which is applied to the postmultiplication SAW filter. An rf phase
shifter at the SAW filter output allows fine adjustment of the post-
multiplication timing. Thissignal is applied to the reference port of
the phase comparator. After low pass filtering, the in-phase /
output of the phase comparator is proportional to the real part of the
Fourier transform F(v) (i.e., cosine transform) of the input signal
f(t). Similarly, the output of the quadrature port Q of the phase
comparator is proportional to the imginary part of F(»), (i.e., sine
transform).

one-fourth of the time-bandwidth product of the con-
volution filter.23 SAW chirp filters with other window
functions (e.g., Hamming) are available if smaller side-
lobes are desired in the output signal. If only the
squared-modulus of the Fourier transform is required.
square-law envelope detection can be substituted for
steps (3) and (4). This is the algorithm we have used
previously to perform 2-D spectrum analysis in Radon
space.10

The complex transform algorithm was implemented
as shown in Fig. { using SAW chirp filters from Ander-
sen Laboratories (models DS-120-10-20-251A and
-252A), which have bandwidths of 10 MHz, maximum
time dispersions of 20 usec, and a resulting time-band-
width product of 200. The chirp rate a = 27 X 10
MHz/20 usec = = X 1012 Hz2. The filter windows were
unweighted. A flying-line scan, producing one Radon
projection, is made in 10 usec and is svnchronized with
the signal driving the premultiplication impulse gener-
ator so that the center of the scan is mixed with the
center of the premultiplication downchirp. This
time-gates the premultiplication signal for a maximum
gystem time-bandwidth product. After filtering in
the upchirp SAW, the signal is coherentlv demodulat-
ed by the postmultiplication upchirp. To obtain 40
dB of rejection of the signal from one channel of the
transform from the other channel, the time of the
premultiplication chirp impulse must be synchronized
to the postmultiplication impulse to an accuracy of
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better than 100 psec.22 The timing interval between
impulse inputs to the premultiplication and postmul-
tiplication chirps is the value ¢’ in step (3). A digital
delay generator is used to provide the impulse to the
postmultiplication chirp filter with temporal resolu-
tion of 1 nsec. More precise timing is provided by
shifting the phase of the postmultiplication chirp with
a continuously adjustable rf hybrid phase shifter. The
demodulation is accomplished in an rf phase compara-
tor, a four-port device which produces in-phase and
quadrature mixed signals from an input signal and
reference. It may be thought of as a combination of a
signal splitter, a quadrature hybrid, and two double-
sideband mixers. The filtered signal is split and
mixed with in-phase and quadrature components of

IR

B! N

Fig.2. Performance of the SAW chirp complex Fourier transform-
er Ineach of the four cases shown, the top trace is the signal from
the flying-line scanner. i.e.. a single projection of the 2-D input. The
second and third traces are the cosine transform and sine transform,
respectively, produced by the SAW chirp transtormer. The traces
on the right-hand side are 2 computer simulation of the same signal.
The ubject was a grating of 25% duty cvcle in a circular aperture. In
the first case, the grating was centered in the aperture creating a
symmetric signal whose Fourier transform is purely real. [n the
other three cases, the grating was transiated relative to the circular
aperture giving an asymmetric signal with a compiex transtorm.
Each horizontal division 1n the oscilloscope traces represents 5 usec,

the postmultiplication chirp. After low-pass filtering
in each channel, the in-phase signal is the bipolar
cosine transform, and the quadrature signal is the bi-
polar sine transform (each within the frequency win-
dow and convolved with the sinc function due to the
finite convolution window as described above).

Using the SAW filters described, the chirp trans-
former resolves fifty temporal frequencies in the win-
dow (|»| < 2.5 MHz). When the output of the flying-
line scanner is applied to the SAW chirp Fourier
transformer, the spatial frequency scaling depends on
the scanning speed. Typically, we scan a 25-mm aper-
ture in 10 usec, giving a spatial frequency range of +1
cycle/mm with fifty resolvable points. By scanning a
10-mm aperture in the same time, the spatial frequen-
cy response is £2.5 cycles/mm. This by no means is
the limit of a SAW chirp filter or optical scanner tech-
nology. Using reflective-array SAW chirp filters
{RACs), transformers capable of resolving 3600 points
within a 60-usec output window have been reported.2s
Were we to use this chirp transformer and scan a 30-
mm diam aperture in 30 usec, we would obtain 900
resolvable points in a spatial frequency range of +15
cycles/mm. '

The performance of the complex Fourier transform-
er for a 1-D signal is demonstrated in Fig. 2, where the
output is compared to a computer simulation. A grat-
ing (75% clear, 25% opaque) was placed in a circular
aperture of 20-mm diameter in the flying-line scanner.
The azimuth of scan was oriented so that the line of
integration was parallel to the grating lines. The grat-
ing was mounted on a translation stage so that it could
be shifted within the circular aperture. Four cases are
shown for both the actual and computed outputs. In
each example, the top trace is the output of the flying-
line scanner, i.e., the Radon transform of the object for
one azimuth. The second and third traces are the
cosine and sine transform outputs of the complex Fou-
rier transformer, i.e., one line through the 2-D real part
and imaginary part, respectively, of the Fourier trans-
form of the original object, via the central-slice theo-
rem. The scanning time is 10 usec, and the two trans-
forms have been output within 30 usec after the
beginning of the flying-line scan. In the first case, the
grating is centered in the aperture resulting in a sym-
metric input to the Fourier transformer. The Fourier
transform of a symmetric object is purely real. and
hence the sine transform vanishes, as shown. Also
note that the cosine transform is bipolar and symmet-
ric. Inthe succeeding three cases, the grating is trans-
lated in the aperture, resulting in an asvmme=tric input
to the complex transformer and a nonvanishing bipo-
lar and antisymmetric sine transform. The actual
transformer output agrees very well with the computer
simulations.

To produce the complex 2-D Fourier transform. the
central slice theorem says that it is merely necessary to
display the 1-D transforms of the projections in the
proper polar format. However, for discrete uniform
sampling along both the azimuthal and radial axes, the

indicating that the complete transform is computed within 30 usec. Fourier space will be densely sampled near the origin ;‘-:.‘-
N
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Fig. 3. Two-dimensional complex Fourier transforms of a circular
aperture. The object was a single circular aperture of 1.0-mm
diameter, as shown at top. The letters denote the origin of coordi-
nates (i.e., the optical axis) for each case. The display was biased up,
so that zero amplitude is the brightness level shown in the imaginary
part of (A). The brightest areas represent the most positive ampli-
tude of the transform, and the darkest areas represent the most
negative amplitude. (A) With the aperture centered at the origin,
the transform is purely real. (B), (C) The aperture was transiated
from the optic axis by ~1.4 and 2.4 diameters, respectively, produc-
ing fringes due to the constant phase term.

and sparsely sampled at the high spatial frequencies.
The function so obtained is equivalent to [F(p)]/4,
where p is the 2-D frequency vector and F(p) is the 2-D
Fourier transform of the 2-D input function f(r) =
f(x,y). The radial spatial frequency vector p is always
non-negative, but we can also consider a radial fre-
quency vector v, which is bipolar. To counter the 1/9
weighting, it is necessary to multiply the Fourier trans-
former output by |v| before display. This V-shaped
function is produced electronically by passing a ramp
function through an absolute-value amplifier. Since
the SNR of the Fourier transformer generally de-
creases with increasing frequency, the V function is
rolled off by current-limiting the output of the V gen-
erator. Forasignal onanrf carrier, (i.e., the generated
magnitude of the Fourier transform that is output by
the convolution chirp filter), the multiplication by |v|
is easily done in a rf mixer.! Multiplication of the
coherently demodulated signal is somewhat more dif-
ficult in the frequency range of interest (up to 2.5
MHz), which is higher than most analog multiplier
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Fig. 4. Two-dimensional complex Fourier transforms of a grating
in a circular aperture. The spatial frequency of the grating was 1.5
cycles/mm, with a duty cycle of 80% and the aperture diameter was 6
mm. (A) Cosine tranaform with the object centered on the optical
axis as shown. The transform is even, and the Airy patterns of the
circular aperture at the +1 orders of the grating are cleariy seen. (B)
Cosine transform after translating the object by one-half of a grating
cycle. The linear phase term resulting from the translation has
inverted the phase of the Airy patterns. (C), (D) Sine transform of
the object after translation by +one-fourth of a grating cycle, respec-
tively, relative to (A). The transforms are odd. and the Airy pat-
terns at the *1 orders are out of phase. (E), (F) The aperture
diameter was reduced to 2.5 mm, and the center was translated
relative the optic axis by a sufficient distance (2 mm) so that several
cycles of the linear phase are visible within the central disk of the
Airy pattern. (E) is the real part of the transform and iseven. (F)is
the imaginary part and is odd. Note that the translation was in
different directions in the two cases, so that the fringe direction
differs.

modules can handle and not high enough for rf mixers.
In their stead, we employed the Motorola balanced
modulator-demodulator integrated circuit (MC1496)
to multiply the transformer output by|v|. The bipolar
signal can then be applied to the z axis of a CRT in one
of two ways: the signal can be thresholded at ground
to display the complex transformation in four parts
(positive and negative real and positive and negative
imaginary). or the bipolar signal can be biased up to
display the complete real or imaginary transform at
one time. Since the 1-D cosine and sine transform
signals are available simultaneously, they can be dis-
played simultaneously on separate CRTs.

To display the transform in the polar format, we
have used the same system reported previously.!® The
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,'-' Fig.5. Two-dimensional compiex Fourier transforms of two circu-
- lar apertures. The diameter of the apertures was 1 mm with their
i centers separated by 5 mm, as shown at top. Again the letters
.o denote the position of the optical axis in each case. (A) Cosine
9 transform with the optic axis centered on the object’s axis of symme-

try. Note the phase change as a fringe passes-from the central lobe
N of the Airy disk to the first ring. The faint fringes in the imaginary
(.. part of the transform are due to wobble in the image rotating prism.
{B) The optic axis was located 1 mm above the symmetry axis
. producing fringes perpendicular to those from the double aperture.
. The cosine transform is even, and the sine transform is odd. (C) The
v optic axis was located on the symmetry axis but displaced from the
center of symmetry by 1 mm multiplying the fringes by a linear

W phase term of lower frequency.

iy scan azimuth is rotated by an image-rotation prism via

W a stepper motor resolving 200 steps. The maxzimum
A angular resolution in the transform is /100 rad. A
&~ bipolar ramp function is generated and weighted in
- two channels by the sine and cosine value of the azi-

- muth angle of the scan. The resulting outputs are

applied to the x and y deflections of the CRT scanning
spot, which produces a line scan across the screen at
the appropriate angle. After completion of the scan,
. values of the sine and cosine of the new angle are read
' out of a lookup table for the next scan. The scanning

T spot is timed to reach the center of the screen when the
zero-frequency output of the Fourier transformer is
- applied to the z axis of the CRT. The complete 2-D
o < transform can now be generated in ~0.1-sec, limited by
Y the rotation rate of the stepper motor. Toallow trans-
formation at video rates, the azimuth of the Radon
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Fig.6. Two-dimensional compiex transforms of a reflective object.
A beam splitter was introduced into the flying-line scanner to direct
the reflected line onto the detector. Fourier transformation and
display were performed as before. The object was a grating in a
circular aperture of 6-mm diameter, as in Fig. 4. The main features
of the transform are easily seen, i.e., the location and phase of the
Airy patterns on the first orders of the grating spectrum. The
signal-to-noise is less than in the transmissive case due to the lower
reflectance and lower modulation in reflectance. The real and
imaginary parts of the Fourier transform of the object centered on
the optical axis are shown in (A). Since the object is symmetric in
this case, the imaginary part of the transform vanishes. (B) The
object was transiated by one-half of a grating cycle.

transform would have to be rotated at 30 Hz, corre-
sponding to an easily obtainable prism rotation rate of
7.5 Hz = 450 rpm. Indeed much higher rates have
been reported with excellent image quality.26
Complex transforms obtained with this system at a
rate of 2.5 frames/sec are presented in Figs. 3—6. In
each case, the positive part of the Fourier transform is
presented; i.e., areas of the transform with amplitude
greater than zero are bright, while those areas with
amplitude less than zero are dark. Note the difference
in the usual presentation of the squared magnitude of
the Fourier transform, where areas with amplitude
both greater than or less than zero are bright, and the
zero-crossings are dark. In Fig. 3, the object was a
circular aperture 1.5 mm in diameter. In the first case.
the aperture was centered in the flying-line scanner
resulting in a symmetric object. The Fourier trans-
form is purely real, and the cosine transform is the
well-known Airy pattern. If the aperture is translated
in the scanner so that the object is no longer symmet-
ric, a linear phase term in the transform appears as
fringes in the output: the greater the shift, the larger
the frequency of the linear phase. In Fig. 4, the object

15 November 1985 / Vol. 24. No. 22 / APPLIED OPTICS 3823
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was a circular aperture over a transparent grating
whose Fourier transform is the Airy pattern of the
circular aperture on the 1 orders of the grating.
Each transform was obtained for a different shift of the
grating in the aperture resulting in different phasing of
the Airy patterns. In Fig. 5, the object was a pair of
circular apertures, each 1 mm in diameter with the
centers separated by 5mm. The first case is the cosine
transform of the centered pair. Note the phase shift in
the fringes on different rings of the Airy pattern. The
other cases are cosine and sine transforms of the pair
with the optical axis positioned 1 mm above the center
line through the apertures and with the axis located 1
mm along the center line.

Figure 6 demonstrates the capability of this system
to compute the complex Fourier transform in reflec-
tion. A beam splitter was inserted into the system
ahead of the object to direct the reflection of the flying
line onto the photomultiplier. The object was identi-
caltothatin Fig.4. Since the overall reflectance isless
than the transmittance, and since the modulation in
reflectance is less as well, the SNR of the reflective
transforms is lower than that in the transmissive case.
However, the capability of performing complex reflec-
tive transforms with this system is clearly demonstrat-
ed. .

IV. Conclusions

We have demonstrated a hybrid system to produce
the complex 2-D Fourier transform in nearly real time.
The transform is presented as real and imaginary parts
(i.e., cosine and sine transforms) in separate output
channels. Transmissive or reflective functions can be
transformed in this manner.

The authors would like to thank Stanley R. Deans,
H. Harold Szu, and Adolf W. Lohmann who provided
helpful comments.

This work was supported by the Air Force Office of
Scientific Research under grant 84-0188.
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USING SAW FILTERS TO PROCESS TWO-DIMENSIONAL DATA BY MEANS OF THE RADON TRANSFORM

Roger L. Easton, Jr., Harrison H. Barrett, and Anthony J. Ticknmor

Optical Sciences Center
University of Arizona
Tucson, Arizona 85721

Abstract

It is well known that many mathematical opera-
tions on data sets of dimension two or higher may
be performed by reducing the data to one-dimen-
sional projections by means of the Radon transform.
This is the governing principle of medical computed
tomography. In this paper, we describe a system
that performs the Radon transform of two-dimen-
sional images and uses SAW devices to perform the
data processing. Two processing operations are dem-
onstrated: Fourier transformation of the data by
means of the chirp transform, and convolution of the
data with a stored filter function by means of a
SAW correlator. After processing, a custom SAW
filter and an optical system are used to recon-
struct the processed image in two dimensions. The
resolution of the processor is currently limited by
the 3SAW devices (50 points for the chirp trans-
former, 300 for the convolver), but better davices
are available. This system is capable of performing
two-dimensional Fourier transforms at video rates
(30 frames/s), which is much faster than current
digital systems. An extension of the system to pro-
cess three-dimensional data is described.

Introduction

The Radon transform has received much atten-
tion in the scientific community since the invention
>f x-ray computed tomography (CT) in the 1960's. It
nas found applicacion in such diverse disciplines as
astronomy, nuclear mnagnetic resonance, and geophy-
3ics. The mathematics of the transform were der-
ived and published by Johana Radem in 1917 (1),
4here he proved that a mathematical fuymection can be
reconstructed from the complete set of {ts line-in-
regral projections. In the case of CT, measured x-
czay transmissions are simply related to the lipe in-
-egral of the x-ray absorption coefficient. By
taking an adequately sampled set of one-dimensional
jata, 3 two-dimensional map of the x-ray absorption
zoefficient can be reconstrucred, usually by Jdigital
neans.

the Radon transform from a
lnstead of having one-dimen-

4de propose to use
iifferent perspective.

sional projections inhetrent in the data collection,
+e use zhe ladon transform 2o mnake two-dimensional
jata susceptible to processing by fast one-dimen-

one-dimensional
one. Many
performed by

sional devices.
Jrocessors exist;
c4o-dimensional

jeveral types of
the SAW filter is but
operations can De
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means of the Radoa transform, e.z., spectral ama-
lysis, coanvolution, and Fourier filtering. Such
operations can be performed digitally, of course,

but the process may be time-consuming and the pro-
cessor expensive. By operating on the one-dimen-
sional projection {nstead, it is possible that the
processor may be significantly faster and/or cheaper
than {ts digital counterpart. Consider Fourier
filtering of a two-dimensional image, for example.
Three steps are required: Fourifer transformation,
filter multiplication, and inverse transformation.
This operation may be performed digitally, by coher-
ent optics, or with one-dimensional SAW filters by
means of the Radomn transform. The invention of the
fast Fourier transform (FFT) algorithm and the array
processor have dramatically speeded up digital Four-
ier transform calculations, but the process is still
slow. A typical stand-alone minicomputer, the DEC
11/34, requires approximately 10 minutes to Fourier
transform a 512 x 512 8-bit array. Adding an array
processor speeds this by an order of magnitude at
significancly increased cost. The Cray-l, one of the
fastest digital computers ever, still requires about
1l second to perform a two-dimensional Fourier
transform and is very expensive. Coherent optics
can perform Fourier transforms easily, cheaply, and
at the speed of light, but the output is aoisy, and
there are still no fully satisfactory spatial light
modulators to allow analysis of rapidly time-vary-
ing inputs. Ve propose to perform two-dimensional
Fourier transforms by operating on one-dimensional
projections with 3AW chirp filters. The resulting
processor should be inexpensive rejative to the diz-
ftal system, but more importantly, it should De
fast: we envision operation at video rates.

Theory

Machematical analysis of the Radon transform
is scraightforward and has been treated in several
references (2,)); We shall touch briefly on *he main
points relevant to the application at hand,
two-dimensional Fourier analysis and filtering.

.8y

A one-dimensional projection A (%,p} >f a “wo-
dimensional function f(r: taken along azimuth Jirec-

tion ? (relative to the x axis; is jefined as
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The one-dimensional delta function reduces the ares
integral to a line integral along a line at an angle
% to the x axis and at a distance p from the origin
(Figure 1). The set {A(4,p)l for all azimuth angles ¢
is the Radomn transform of f(r).

By taking the one-dimensionsl Fourier traasform
of a line-integral projection, an i{mportant resulc is
obtained:

Fa(e,pl)l = ACe,v)

r. -
- J1 dp exp(~-27ivp) J[ [ d’c £(x)&(p - pn)

d*r £(r) exp(-27idv'r) = F(p)l-. ,

f f-
} -- p=av

]

where capital letters denote Fourier transforms of
the corresponding lower-case functions. This {s the
central-slice theorem. In words, the one-dimen-
sional Fourier ctranaform of a projection l‘(p)
yields one line through the origin of the two-dimen-
sional Fourier transform of the original function
£(r) (Figure Ll).

Mv.o)

Figure . - jeomerry of the Radon :ransform. (a)
Jerivation 7f Jne projection r(%,p) by line integrals
aiong azimuth angle 9. \b) Central slice theorem:
the one-dimensional Fourier transform of a line-in-
regral projection yields one line through the two-
jimensional Fourier :transform of the original two-
iimensional function.

3y similar, though more involved reasoning, it
:an e shown that the original function £(r) may be
reconstructed from the projection data by mneans of
»he inverse Radon :ransform

L4 -
£(r) = J do[ UIN|ACs,v)] exp(2riveeq) (3)

Again in words, the original function £(r) may be
reconstructed from the projections [A{9,p)] by: (1)
taking the one-dimensional Fourier traasform of
2(9,p); (2) muleiplying by the one-dimensional filter
[v] (v-filtering); (3) taking the inverse one-dimen-
sional Fourier transform; (4) samearing the function
back over the original projection direction (this
creates a two-dimensional function from the one-
dimensional function and is called back projection);
and (5) integrating over ¥ (summation).

If we multiply the one-dimensional Fourier
transform data A(¢,v) by another filter function as
well, the reconstructed function {s a Fourier-fil-
terad version of f(r).

Other expressions (and hence other procedures
for taking the inverse Radon transform exist and are
given in Reference 3.

In addition, it can be shown that by convolving
line-integral projections from two two-dimensional
images, and reconstructing by the procedure of Eg.
(3), the resulting two-dimensional {mage is the con-
volution of the two input images.

Experiment

We constructed a system using the Radon trans-
form to perform two-dimensional spectral analysis
using SAW chirp filters. The apparatus is dia-
grammed in Figure 3. The Radon transform of the
{nput transparency is derived by scanning it with a
line of HeNe laser light The light transmitted
through the transparency is collected on a photo-
multiplier tube (PMT). At ome instant of time, the
output of the PMT is proportional to the line integ-
ral of the intemsity transmission of the transpar-
ency along the line of light, By scanning the line
perpendicular to itself, the time signal from the
PMT is proportional to the line-integral projection
along one azimuth, Rotating the direction of scan
allows derivation of the complete set of line-inte-
gral projections--the Radon transform. For obvious
reasons, this device is called a flying-line scanner
(FLS).

Recalling the central-slice theorem, we &know
that the one~dimensional Fourier transform of one
projection yields one line through the two-dimen-
sional transform of the original function. 3y using
SAW filters in the chirp Fourier transforwm algorithm
(4,5,6), the Fourier transform »f each projection is
taken as the projection data are derived. We used
SAW dispersive filters for the chirps ‘Andersen Labs
models DS-120~10-20-25lA and =252A). The :ine
jispersion of each is 20 us and the bdandwidth is 1D
MHz. The time-bandwidth product 'TBW) of the entire
system is only 50, but filters exist that :cou:id
boost this o0 100Q or morte.

in -his demonstration, osniy the mnodulus >f =he
Fourier transform is computed, but ve plan 0o util-
ize a third chirp fiiter to perform the post-qulti-
plication and derive the phase information.
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Figure 2 - Diagram of a two-dimensional spectrum
analyzer uysing SAW devices. The projections [i(%,p)]
are derived by the flying-line scanner. The one-
dimensional Fourier transforms of the projections
are produced by the SAW chirp filters. The Fourier
transform signal modulates the CRT trace. The
proper azimuth for display is selected by the image
rotator.

To complete the two-dimensional spectral ana-
lysis, it i{s necessary to display the transforms of
the projections at the proper orientations. After
detection and amplification, the transform of the
projection is applied to the z axis of a CRT whose
trace is imaged on a photographic film. As the
azimuth of scan of the FLS {s rotated, the {mage of
the CRT trace is rotated at the same rate, building
up the two-dimensional Fourier spectrum modulus on
the film. A vesult from this experiment (s shown in
Tigure 3. The input transparency consisted of three
gratings oriented at various angles: two fine
crossed gratings overlaid with a- section of coarse
grating. la the Fourier transform built up from the
arojection data, the fundamental frequency of the
fine gratings and several orders of the coarse grat-
ing are visible. This spectrum was built up siowly,

but by rapid rotation of the scan direction, we
axpect to perform two-dimensional spectral analysis
at video rates (30 frames/s) or faster.

T{gure 3 - Results of two-dimensional spectral ana-
lysis using 3SAW devices.

‘a) lnput transparency consisting of three gracings.
‘5) Tdo-dimensional spectrum, showing the fundamen-
cal srder of the {ine gratings and several orders of
the coarser grating.

Extending this system to allow complete Four-
ier filtering is straightforward and is diagrammed
{n Figure 4. The Fourier transforms of the projec-
tion data are multiplied by a filter functionm, which
can be clocked ocut of ROM or produced by a function
generator. The filtered transforms are then applied
to an inverse Radon. transformer using the procedure
of Eq. (3). The |v|-filter multiplication is to be
done using a custom SAW filter that is presencly
being comstructed in the University of Arizona
Microelectronics Laboratory. The inverse one~dimen-
sional Fourier transformation will be done by means
of the chirp-transform algorithm and the output
applied to the z axis of a CRT. To perform the
back-projection (smearing), a cylindrical lens is
used to collimate the image in one dimension. The
integration over azimuth angle is carried out as
before by rotating the image on the recording film.

FWRIER
FILTER
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w-‘m‘c’lml e

Figure 4 - Block diagram of a two-dimensicnal
system to do Fourfer filtering. The signal is fil-
tered in the frequency domain and transformed back
to the space domain by the SAW chirp-transform
algorithm. The cylindrical lens performs the back-
projection (creates a two-dimensional function -u*
of a one-dimensional functiom), and the proper azim-
uth is selected by the image rotator.

As mentioned previously, another operation sus-
ceptible to Radon transform analysis is the convoiu-
tion of *wo two-dimensional functions. The neces-
sary apparatus is diagrammed in Figure 3. 3oth
inputs may be projection data from flying-iine
scanners, but it is often useful to convolve a two-
dimensional function with a scored filter function.
This function may be stored in ROM, clocked out to a
fast J/A converter, and used to modulate a carrier.
The resulting signal is applied o one input of 3
SAW convolver. The projection data from the FLS
modulate the carrier and are applied to the »>ther
input of the convolver. The filter function may bYe
varied with azimuth angle by clocking a different
function out of R0M for each azimuth.

Reconstruction of the two-dimensional convolu-
tion also follows the procedure of Eq. 3\ The
function is  vl-filtered in the :ustom 3AW Jevice,
demodulated, and bYiased up to allow display »>f bSipo-
lar output. This signal modulates :he IRT and s
back-projected and integrated over the azimuth as
before.
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Figure 5 - Block diagram of a system to perform
two-dimensional convolution with a SAW comvolver,
The convolution may be performed between two two-
d{mensional inputs or between a two-dimensjonal
input and a stored filter function. The SAW con-
volver output is /v|-filtered by a custom SAW
filter.

Extension to Three-Dimensional Data

The time-consuming nature of three-dimensional
Jata processing is even more extreme than for two-
dimensional data. Performing a (512) FFT on a mjin-
icomputer with array processor and fast disk memory
nay take two days or more. By applying the prinei-
ples of the Radon transform, we expect to speed uyp
the computation considerably.

In the three-dimensional case, the Radon trans-
form consists of the complete set of one-dimen-
sional integrals taken over planes of the three-
dimensional function. The three-dimensional cen-
=ral-slice theorem states that the one-dimensional
Fourier transform of a planar projection yields one
line through the three-dimensional Fourier transform
of the three-dimensional function (3).

As an example, consider three-dimensional spec-
tral analysis of a function stored as frames of a
novie film (512 images, each 512 x 512 pixels, say).
“e can use 3AW chirp filters to compute the three-
iimensional Fourier ctransform. A block diagram is
shown in Figure 5. The data manipulation {s consid-
erably more complicated than the two-dimensional
case, since the Radon transform projections are now
parameterized by two angles. But LDy using a digital
video f{rame store and a flying-line scanner, we :zan
build up the entire Radon transform, sampled at 512
azimuth angles, Jith 512 passes of the movie film.
The digital frame store is then read out through a
fast D/A o the 3AW chirp-transformer. The projec-
tion transforms mnodulate the CRT as before, and are
imaged onto film. We build up the 512 frames of the
transform one at a time by selecting only that part
2f the projection transform rvelevant to the frame
at hand. After reading out the video frame store
12 imes, the complete three-dimensional transforo
is built up. With present video storage technology,
he operation is envisioned %o rake .7 seconds per
frame, otr less than & hours for the complete sect.
This s an {morovement of an oarder of magnitude
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Figure 6 -~ Block diagram of a three-dimensional
spectrum analyzer,

over the digital computer example above. The appli-
cation of three-dimensional processing is discussed
further in Reference 7.

Conclusions

We have demonstrated the ability of onme-dimen-
sional processing devices, such as SAW filters, to
perform certain two-dimensional processing opera-
tions by means of the Radon transform. It is aoti-
cipated that this will allow these operations to be
performed much more rapidly than {s now possible
with digital techniques.

We would like to :hank Dr., Paul Carr of Rome
Air Development Center, Hanscom Field, Massachu-
setts, for the loan of the SAW correlator. “his
research was sponsored by the Air Force Office of
Scientific Research, contract number AFOSR-82-0249.
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Two-dimensional Radon-Fourier transformer

Abstract. The well-known central-slice, or projection-slice, theorem states that
the Radon transform can be used to reduce a two-dimensional Fourier trans-
form to a series of one-dimensional Fourier transforms. In this paper we
describe a practical system for implementing this theorem. The Radon trans-
form is carried out with a rotating prism and a flying-line scanner, whiie the
one-dimensional Fourier transforms are performed with surface acoustic wave
filters. Both real and imaginary parts of the complex Fourier transform can be
obtained. A method of displaying the two-dimensional Fourier transforms is
described, and representative transforms are shown. Application of this
approach to Labeyrie speckle interferometry is demonstrated.

Subject terms: optical computing; Radon transform; Fourier transform. speckle
interferometry.
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1. INTRODUCTION

The two-dimensional Radon transform reduces a 2-D functiontoa
series of 1-D functions by integrating over a series of lines. Although
this tran<f~rm is best known in connection with image reconstruc-
tion froun projections, as in medical computed tomography, it is also
useful in general signal-processing or image-processing applications.
Many operations that can be performed on a 2-D function can also
be done by performing [-D operations on the projections. Recent
work has demonstrated the usefulness of this approach in calculating
Fourier transforms ' * and Wigner distribution functions,’ as well as
in pattern recognition,*’ image filtering.,*” and bandwidth
compression.*

That these operations are possible in the |-D Radon domainisa
consequence of the celebrated central-slice, or projection-slice.
theorem. This theorem states that if a !-D projection of a 2-D
function is formed by integrating over a set of parallel lines, the 1-D
Fourier transform of the projection is one line through the 2-D
Fourer transform of the function itself (see Fig. 1). This line passes
through the origin of the 2-D Fourier space (hence the term central
slice). By varying the orientation of the lines of integration, the whole
2-D Fourier space can be mapped out in a polar format.

In this paper we describe in detail a practical system for perform-
ing 2-D Founer transforms in the Radon domain. Special attention
1s given to the electronics for displaying the 2-D Fourier transforms,
and several representative transforms are shown. As an illustration
of this approach, we demonstrate that the Radon transform can be
used to process data from astronomical speckle interferometry.

Invited Paper OP-111 received June | 1. 1984: accepted for publication July 30, 1984;
received by Managing Editor Sept. 24, 1984
@ 1985 Society of Photo-Opucal Instr on E s,
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2. PRODUCING AND TRANSFORMING THE ONE-
DIMENSIONAL DATA

In this section we describe the subsystems for producing the Radon
transform and the 1-D Fourier transforms. Since these subsystems
have been described previously,' ~? only a brief review is given here.

Assume that the 2-D function to be transformed is in the form of a
photographic transparency or print. The projection data Ap(p) are
derived from the input function f(x.,y) by scanning a line of light
perpendicular to itself across the function at an angle ¢ (see Fig. ).
The perpendicuiar distance of the line from the origin is p. and the
line is uniquely specified by the variables p and ¢. The light transmit-
ted or reflected by the object is detected by a photomultiplier tube
(PMT). The signal out of the PMT is then proportional to the line
integral of the object transmittance or reflectance along the line
(p. ®). As the line is scanned by means of an acousto-optic deflector,
the variable p changes. and one scan produces one projection A 4 (p).
A rotating prism in the system changes the orientation of the line.
which is always scanned perpendicular to itself, and provides other
projections in the data set. In this way the entire data set, sampled in
¢ but continuous in p, can be formed. This system is referred toas a
flying-line scanner.! =3

The 1-D Fourier transforms A,(v) are formed by a surface
acoustic wave (SAW) chirp transformer?-? in which the input signal
(the projection) is premultiplied by a chirp produced by impulsing a
SAW device. The resulting signal is filtered (convolved) by a second
SAW chirp filter in which the chirp rate 1s equal and opposite to that
of the premultiply signal. The signal out of this second filter 1s
coherently detected with a third chirp as a reference. In-phase and
quadrature outputs of the coherent detector give, respectively, the
real and imaginary parts of the complex Fourier transform. If onlv
the modulus of the transform s desired, the third chirp can be
omitted and incoherent detection used.

By the central-slice theorem, A 4(p) is also the 2-D Fourier trans-
form of f(x.y) evaluated at polar coordinates (p,®) 1n the 2-D
Founer space, where p =|y|.

3. DISPLAYING THE TRANSFORM

A simple way todisplay the 1-D Fourier transforms is in the so-called
“sinogram" format, in which the radial frequency variable p is piot-
ted honizontally and the azimuthal variable ¢ 1s plotted vertically.
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TWO-DIMENSIONAL RADON-FOURIER TRANSFORMER

This representation is certainly legitimate and useful in some applica-
tions,.? but it is often desirable to present the data in polar format.
This not only makes the transform more recognizable to someone
not familiar with sinograms but aiso presents the data in a form that
can be further processed in cascaded systems. A system to accom-
plish this polar display has been designed, built, and operated and is
described in this section.

For now. assume that only the modulus of the 2-D transform is to
be displayed. The rf signal from the SAW chirp transformer is
detected incoherently, forming a signal proportionai to the squared
magnitude of the Fourier transform, which is then used to intensity-

a)

Fig. 1. (a) Geometry of the Radan transform and (b) illustration of the
centrai-slice theorem.

modulate a spot on a CRT display that is being scanned 1n a polar
raster (Fig. 2). The polar angle of the raster is the same as the angle o
that specifies the orientation of the line of light in the flving-line
scanner, while the radial vanable on the raster corresponds to the
frequency p. The time-averaged intensity on the screen represents the
2-D Fourier transtorm in a direct format and 1s equivalent to the
intensity distribution in the Fourier plane of a coherent optical
transformer with the same input function.

To maintain synchronism between the polar raster and the tlving-
line scanner, a stepper motor is used to control the rotation of the
prism in the scanner. Each step of the stepper motor changes the
orientation of the scanning line by 7 100 rad. A free-running circuit
operates the stepper motor from about [, 2 to 1000 steps per second.
Each time a step occurs. a short transistor-transistor logic (TTL)
pulse is sent to a Commodore 64 computer. Upon receiving this
pulse, the computer updates an index register to indicate the new
angle, sends bytes representing the sine and cosine of the new angle to
two digital-to-analog converters, and finally sends a short TTL pulse
to a third output port to signal the rest of the system to generate a new
line of data.

The start-of-line pulse from the computer starts a scan in the
flying-line scanner. triggers the impuise generator for the premultiply
chirp. and triggers a delay circuit whose output after the proper delay
isa 30 us pulse used to control the display. The delay is adjusted such
that the Fourier transform data are centered within the 30 us pulse.
During this pulse, a bipolar ramp function is generated. passing
through zero at the same time the zero-frequency component of the
Fourier transform is available. This ramp function is multiplied by
the sine and cosine values, and the results of these multiplications are
used to control the x and y deflections of a spot on a CRT display.
This causes the spot to travel across the screen at a constant speed at
anangle equal to the scan angle ¢, reaching the center of the screen at
a time corresponding to the zero-frequency output ume of the
Fourier transformer.

If the signal coming out of the SAW transformer were simplv
detected and used to intensity-modulate the CRT. the screen would
display the desired output except for one probiem. As the entire
output is built up, the radial scanning pattern fills the space near the
center much more densely than near the edges. The resulting time-
averaged intensty distribution would appear as F(p) umes | o.
where p is the 2-D frequency vector, p is its magmtude. and F(p) s
the 2-D Fourier transform of the input function f(x . v). (Recall that p
is also the magnitude of the 1-D frequency v, but v can be bipolar.
while p is always nonnegative.) {n order to eliminate the | p weight-
ing, it is necessary to multiply the signal before detecionbyviv - This
1saccomplished in the foilowing manner. The ramp function driving
the multipliers is used as the input to an absolute-value amphfier.
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Fig. 3. 2-D Fourier transform of a square-wave grating in a small circular
aperture.

Fig. 4. 2-D Fourier transform of two crossed gratings making an angle of

The output of this amplifier is a V-shaped function that is the desired
multiplier.

Because the signal-to-noise ratio is generally decreasing with
increasing frequency, it is also desirable to roll off or apodize the V
function at higher frequencies. This is easily accomplished by current-
limiting the output of the V generator. The signal resulting from
muitiplying the output of the convolving filter by the apodized V
function is square-law detected and used to intensity-modulate the
spot on the CRT. The resulting display from one scanisa line in 2-D
Founer space. filtered by pand the apodizing function. As ail angles
are traced out, an entire disk of Fourier space is built up on the
screen.

It is straightforward to extend this system to a CRT display of
complex Fourer transforms. The coherent detector in the chirp
transformer provides bipolar signals proportional to the real and
imaginary parts of the complex transform. These signals can be
separated further into four nonnegative signals, namely, the positive-
real, negative-real, positive-imaginary, and negative-imaginary
components. each of which can be used to intensity-modulatea CRT
display. Either four separate CRTs can be used, or a single display
can be used sequentially for the four components. Alternatively,
analog electronic modules are available to convert the real and
imaginary parts to modulus and phase, which can be displayed with
the system described above.

4. RESULTS

Several examples of 2-D Fourier transforms produced on the
Radon-Fourier transformer are shown in Figs. 3 through 7.

Figure 3 shows the transform of a square-wave grating witha duty
cycle of about 0.7; the | and +2 orders are seen. The aperture of the
grating s a small circular iris, and the rings of the Airy disk are visible
in the £ 1 orders. The effects of the angular sampling can be seen in
the 2 orders since only four or five sweeps of the flying-line scanner
intersect these orders.

Figure 4 shows the transform of two overlapping orthogonal
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Fig. 8. 2-D Fourier transform of two crossed gratings making an angie of
spproximately 48°.

Fig. 8. 2-D Fourier transform of a computer-generated hologram with sn
snnular impuise response.

Fig. 7. 2-D Fourier transform of a double pinhole.

square-wave gratings. Again, the duty cycle of the gratngs is about
0.7. The product orders resulting from the convolution ot the two
individual grating spectra are clearly seen. Figure 5 1s similar except
that the angle between the gratings is approximately 45°.

Figure 6 shows the transform of a computer-generated hologram
that has an annular impulse response.

Figure 7 is the transform of a double pinhole. The two notches are
due to limited dynamic range in the rf mixers, a problem that can be
solved with better mixers.

With the SAW filters we actually used, the time-bandwidth pro-
ductin the 1-D transforms was only about 50, so the results shown in
these figures have relatively low resolution, containing roughly 2000
resolvable spots. However, this is by no means a fundamental limita-
tion; SAW filters are commerciaily available that will provide 6000
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Fig. 8. Speckie interferogram of a simulated binary star. The original
speckie patterns were produced on a computer, but this figure was pro-
duced by the Radon-Fourier transformer.

spots in a 1-D Fourier transform, or almost 30 million in a 2-D
transform.

For our experiments, the time required to produce a complete
2-D Fourier transform was about 0.3 s, but again this is not a
fundamental limitation; rather it is a limitation on how rapidly the
prism in the flying-line scanner could be rotated. It is easily possible
to rotate a prism at 450 rpm, which would yield 2-D transforms at
video rates, and even | ms per transform appears feasible.

5. SPECKLE INTERFEROMETRY

Astronomical speckle interferometry is an ingenious technique
invented by Labeyrie to obtain diffraction-limited resolution from a
telescope in spite of phase perturbations by the atmosphere. ' In this
technique, a series of photographic exposures is made, with each
exposure time being short compared to the scintillation time of the
atmosphere. Each image is Fourier transformed, either digitally or
optically, the sum of the squared moduli of the Fourier transforms is
accumulated. One final Fourier transform then yields the autocorre-
lation of the object with diffraction-limited resolution.

Since this method involves a large number of Fourier transforms,
itis natural to consider the use of the Radon transform to reduce the
2-D Fourier transforms to 1-D. Indeed. in some infrared applica-
tions, {-D projections of speckle patterns are observed directly by use
of a scanning slit in the image plane.''-2

To demonstrate the use of our Radon-Fourier transformer in
speckle interferometry, we simulated a series of 20 speckle patterns
on a digital computer. Each speckle pattern consisted of 50 pairs of
cllipses of random size and ellipticity but with constant spacing
between members of the same pair. The resulting configuration of
ellipses was intended to represent the speckle pattern that would be
produced by a binary star. The 20 speckle patterns were photo-
graphed on 35 mm transparency film, and after development the film
strip was pulled through the input plane of the Radon-Fourier
transformer. The modulus of the 2-D Founer transform was dis-
played 0a a CRT as described above, and a camera with an open
shutter was used to accumulate the sum of the Fourier moduli. The
resulting image, Fig. 8. clearly shows the fringe pattern characteristic
of a double star. One further 2-D Fourier transform, also carried out
with the Radon-Fourer transformer. yielded the autocorrelation of
the doubie star, as shown in Fig. 9.

Fig. 9. Fourier transform of Fig. 8, which is the autocorrelation function
of the simulated binary star.

6. CONCLUSIONS

We have shown that the Radon transform is a convenient and rapid
vehicle for the calculation of 2-D Fourier transforms. The particular
system described here, which is based on a flying-line scanner and a
SAW chirp Fourier transformer, has a number of advantages over
coherent optical Fourier transformers. It does not require that the
function to be transformed be in the form of a transparency: it works
also when the function is recorded as a photographic print or is a
natural reflecting scene. Although it uses a laser as a convenient
source, its operation does not depend on the coherence of the source.
Furthermore, the full complex Fourier transform is available. some-
thing that is very difficult to obtain with coherent optical techniques.
The system is also extremely fast. With presently available SAW
filters, a system similar to the one described here could be built that
would produce a 500 X500 (500 points across the diameter of the
Fourier plane and 500 angies in the range 0 to =) 2-D transform in
1/30 s and a 5000 X 5000 transform in a few seconds.
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Radon transform and bandwidth compression
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A bandwidth-compression scheme for two-dimensional data is presented that incorporates the Radon transform. TN
There are three advantages to this approach: only one-dimensional operations are required. the dynamic range ri
requirements of the compression are reduced by a filtering step associated with the inverse Radon transform. and ‘:
the technique is readily adaptive to the data structure. A rectilinear object is compressed to demonstrate the aigo- O
rithm. e
Introduction (1) The entire coding process can be performed with

The Radon transform!-3 is best known as the theoretical
backbone of computed tomography, the technique that
produces cross-sectional maps of x-ray attenuation.
This transform entails projecting a two-dimensional
slice of an object’s x-ray attenuation coefficient along
a given direction in the plane of the slice, forming a
one-dimensional data set for each projection direction.
Thus the two spatial dimensions of the slice are trans-
formed into one spatial and one angular dimension in
Radon space. This reduction of spatial dimension can
be used to reduce two-dimensional operations on a
two-dimensional object to a set of one-dimensional
operations on one-dimensional objects, with each
member of the set corresponding to a projection angle.
In particular, as a consequence of the central-slice
theorem, the Radon transform makes the two-dimen-
sional Fourier tiansform of a two-dimensional function
readily accessible without two-dimensional operations’
actually having to be performed. Thus the motivation
exists for exploring the use of the Radon transform in
areas outside clinical tomography.4® A particularly
direct application is to bandwidth compression.®

Compressing the data necessary to represent an
image (with minimum image degradation) is important
for two reasons: storage requirements are reduced, and
transmission bandwidth requirements are reduced. If
we define the data set to be an image of N X N pixels
with each pixel corresponding to M gray levels, com-
pression can be imposed in the spatial domain or in a
transform domain. Spatial compression consists of
reducing (quantizing) the number of gray levels per
pixel and/or reducing the number of pixels in the image
(i.e., reducing the radiometric and spatial redundancy,
respectively). Transform compression consists of
transforming the image (e.g., Fourier, Hadamard, Haar)
and then quantizing and/or eliminating the coefficients
of the transformed image.” To reconstruct the image,
the inverse transform of the compressed coefficients is
taken.

The Radon transform lends itself to Fourier-trans-
form compression for three reasons:

0146-9592/83/070395-03$1.00/0

state-of-the-art one-dimensional devices.

(2) The large dynamic range typical of the compo-
nents of the Fourier transform is significantly reduced
by the filtering operation.

(3) One line through the center of the two-dimen-
sional Fourier transform can be examined at a time and
adaptively compressed.

Theory
Radon Transform

The Radon transform and its inverse®-3 are central to
the compression technique. Given a two-dimensional
function f(r), where r is the spatial-position vector (x.
¥), the set of one-dimensional projections of f along a
given direction ¢ can be written as

Aolp) = fj‘_: f(r)oip — r-n)d’r, (1)

where 8(p — r - n) is a one-dimensional Dirac delta
function restricting the integration of f to a line (with
normal n) located a distance p from the origin. Thus.
for each projection direction ¢, a one-dimensional
function A,(p) is constructed. Theset of all \,(p) (—=
<p <=, 05 ¢ = 7)constitutes the Radon transform
of f(x,y).

Performing the one-dimensional Fourier transform
on Eq. (1) and using the sifting property of the delta
function results in

A, = f N fir) exp(=2mivr-n)d2r = Fip)|,2.n.
(2)

where v is the frequency-variable conjugate to p. p is the
frequency-variable conjugate to r, and F(p) is the two-
dimensional Fourier transform of /(r), evaluated along
the line p = nv, where n in the frequency domain is
parallel to n in the spatial domain. This is the cen-
tral-slice theorem.

By writing f(r) in terms of its inverse Fourier trans-
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form in polar-coordinate form and using Eq. (2), we can
write the inverse Radon transform as

flr) = j;' do [J‘_: dut|v] A ()] exp(27ivp) )

(3

If one looks at the bracketed term in Eq. (3), the fol-
lowing operations are evident: The one-dimensional
Fourier transform of each Radon projection \,(v) is
multiplied by the frequency filter |¢|; then the inverse
one-dimensional Fourier transform is applied to this
product and evaluated at p = n - r. This is the
backprojection step. The integral over ¢ is the sum-
mation of the backprojections to produce f(r).

Compression Scheme

From the central-slice theorem of Eq. (2), access to a line
passing through the center of the two-dimensional
Fourier transform is immediately available by the
one-dimensional Fourier transform of a given Radon
projection. This suggests that an adaptive trans-
form-compression scheme can be applied to one line of
the two-dimensional Fourier transform at a time. In
fact, the compression step can be advantageously ap-
plied to the filtered line, i.e., |y| A,(v) of Eq. (3). The
filtered and compressed line is then stored or trans-
mitted. To reconstruct the image, the inverse Fourier
transform is applied to each previously compressed line,
the result is backprojected, and the backprojections are
summed to produce the final image.

The compression is accomplished by thresholding
and quantizing the components of each Fourier line,
Because the projection A4(p) is real, its Fourier trans-
form A,(») is hermitian (i.e., the real part is even; the
imaginary part is odd), so that only the positive half (»
> 0) of each Fourier line need be transmitted or stored.
The thresholding that we apply is to truncate each line
past some cutoff frequency C,, which is variable from
line to line (i.e., depends on ¢). The value of C, is found

from
Co T
f |v|A(p){dv = S, (—SZ—) , (4)
0 Somu
where
Sosﬁ' o] A, (0)|dv, 5)

S .smax 18 the largest value of S, for0 < ¢ < 7, and T is
a parameter that controls the degree of truncation.
Note that the line corresponding to Symax is never
truncated and that, as T — 0, C, — « for all lines (limit
of no truncation). This method of choosing C, is not,
of cgurse, fundamental; other algorithms may be de-
rived.

After truncating the line, we quantize the components
by dividing the full dynamic range (positive to negative)
specific to the line into a series of uniform, discrete
ranges. Actually, two dynamic ranges exist, one each
for the real and imaginary parts. The component that
falls within a particular range is assigned the constant
value for that range.

The advantages of the Radon approach are now dis-
cussed.

From an implementation point of view, hardware
devices for carrying out one-dimensional operations are
well developed. The operations for each projection at
the compression end involve a one-dimensional Fourier
transform, multiplication by a linear filter, thresholding,
quantizing, and coding for transmission or storage. At
the receiving end, only a one-dimensional inverse
Fourier transform is required, followed by the
backprojection operation.

The dynamic range of a line through the center of a
two-dimensional Fourier transform is large. To
quantize such a range efficiently, a variable quantizer
would be required. Multiplying by the |v| filter, how-
ever, reduces the dynamic range of the line (near |»| =
0, where the components are usually largest), simpli-
fying the requirements of the quantizer.

The third advantage is related to the image-depen-
dent adaptability of the compression scheme. An
image with relatively sharp, straight edges, oriented in
particular directions, will exhibit a transform with the
energy distributed along conjugate directions, de-
pending on the symmetry of the original image. Be-
cause the Radon transform handles one Fourier-
transform line at a time, each filtered line can be ad-
aptively compressed to take advantage of the structure
in the two-dimensional Fourier-transform plane.

Fig. 1. (a) Reconstruction from Radon projections without
thresholding and nominal 8-bit quantization (8 bits/pixel),
(b) truncation of 48% of components with 3-bit quantization
(1.6 bits/pixel), (c) truncation of 66% of components with 3-bit
quantization (1.1 bits/pixel), (d) truncation of 48% of com-
ponents with two-bit quantization (1.1 bits/pixel).
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Fig. 2. Truncated and quantized Fourier components of Fig.
1(d).

Illustrative Example

To demonstrate the method, the object illustrated in
Fig. 1(a) is compressed. The region to be compressed
is a circle with a radius of 64 pixels, yielding an area of
12,868 pixels. The rectilinear nature of the figure is
useful in demonstrating the variable compression with
projection angle.

The object is viewed by a TV camera through an
image rotator. The one-dimensional Radon projection
A,(p) of the object is obtained (at the angle ¢ defined
by the image rotator) by summing the camera output
along a horizontal raster line, giving the digital equiv-
alent of the line integral of the object along the line.
This summation is performed for each of 128 raster lines
to yield a 128-element projection. We then rotate the
image rotator through a small angle (1.8 deg) and find
the next projection, until a total of 100 projections, each
with 128 elements, has been taken.

Each projection is Fourier transformed, yielding a line
through the center of the two-dimensional transform
of the original object. This line is then filtered [mul-
tiplied by |v|; see Eq. (3)] and compressed by thresh-
olding and uniformly quantizing the components, as
described above. The object is reconstructed by taking
the one-dimensional inverse Fourier transform of the
filtered and compressed line, backprojecting, and
summing over all projection angles. Figure 1(a) illus-
trates the reconstruction from the Radon-transformed
original object without thresholding or quantizing to
provide a control case.

The measure of the compression in bits per pixel (the
bit rate) is determined by counting the total number of
bits required to store or transmit the image (including
any overhead) divided by the number of pixels in the
image. Figure 1(a) has approximately 8.0 bits/pixel
because there are 100 angles times 128 Fourier compo-
nents per angle, times 8 bits per Fourier component,
divided by 12,868 pixels.

Three different compressions of Fig. 1{a) are now

. Le el PO S

— v TSy
" WO W T T W VT

) R I . P S S

demonstrated. Figure 1(b) represents thresholding
with T = 0.3 and quantization of the Fourier compo-
nent’s full range to eight gray levels (3 bits). The
thresholding eliminates 48% of the Fourier components.
The overall bit rate is 1.6 bits/pixel. Figure l(c) has T
= 0.8, eliminating 66% of the components, again with
eight gray levels per component, giving a bit rate of 1.1
bits/pixel. To investigate a coarser quantization, Fig.
1(d) represents the same thresholding as in Fig. 1(b) but
with four gray levels per component, giving a bit rate of
1.1 bits/pixel. Figure 2 is a representation of the
truncated and quantized components that produce Fig.
1(d). The adaptive nature of the compression is evident
for this type of object. Note that an overhead of ap-
proximately 0.1 bit/pixel is incurred independently of
the amount of compression, to keep track of the number
of components truncated per line and the scale factors
relating the dynamic range (both real and imaginary)
of each line to the maximum dynamic range. This
overhead is included in the resuits.

Summary

We have shown that the Radon transform can be used
to advantage in bandwidth compression for several
reasons. First, a line passing through the center of the
two-dimensional Fourier transform of the object is at-
tainable by a one-dimensional operation that can be
carried out by existing fast devices. Second, the dy-
namic range of this line is reduced in a filtering opera-
tion required by the inverse Radon transform. This
reduction enhances compression performance (i.e.,
quantization error is reduced). Finally, each line in
Fourier space is obtained independently, so the com-
pression can be adapted to the amount of structure in
that line. The technique was demonstrated on a rec-
tilinear object, and a bit rate of 1.6 bits/pixel was
achieved with good fidelity.

This research was sponsored by the U.S. Air Force
Office of Scientific Research under grant AFOSR-82-
0249.
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