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1. Introduction

Pseudospectral methods have been used extensively in simulations of fluid

flows (see, e.g., Orszag and Patera, 1983; Marcus, 1984; Riley and Metcalfe,

1979). The dependent variables are expanded in terms of a complete set of

orthogonal functions defined in the computational domain. Either a Galerkin

method or a collocation method can be employed to solve the governing partial

differential equations. The basic numerical analysis of spectral methods has

been reviewed in a monograph by Gottlieb and Orszag (1977). The advantage of

the pseudospectral method over methods using locally supported basis functions,

such as finite difference or finite element methods, is the Last convergence

of the expansions, which results in a numerical scheme with very small dissipa-

tive and dispersive errors for solving partial differential equations. Appli-

cation of the method to a compressible flow problem with shock waves has been

studied in one-dimensional problems by Gottlieb et al. (1981) and Taylor et al.

(1981). They demonstrated that a pseudospectral method can be used to capture

shock waves in the flow field if an appropriate filtering technique is used to

stabilize the computations and filter out the Gibb's oscillations.

With the developments to date, the pseudospectral method seems to offer

the opportunity for a scheme superior to the finite difference method. Several

problems need to be resolved, however, before a practical code can be con-

structed. Methods for filtering the Gibb's phenomenon associated with the

shock wave must be studied, and the accuracy of the results after filtering

must be critically examined. The application of pseudospectral methods to

flows around a complex geometrical shape such as an airfoil has not been fully

demonstrated. In particular, any geometrical singularity, e.g., the trailing

edge of an airfoil, may cause difficulty for a global expansion method such as

the pseudospectral method. The efficiency of pseudospectral computations as

compared to those using a finite difference method must also be examined. To

approach a steady state through time-marching calculations, a computational

method allowing large time steps is preferred. An implicit pseudospectral

scheme may be a good candidate for achieving this goal. A numerical analysis

of an implicit scheme would give some insight into the efficiency of such a

scheme.

These are the issues that are addressed in this report. Here, we present

the results of our efforts to construct a hybrid scheme for computing

J

TR-325/04-85 .



-2-

transonic flows around an airfoil. This hybrid scheme consists of a Fourier

expansion in one direction and a finite difference scheme in the other

direction. The application of various types of filters is examined through

* numerical experimentation. This work parallels a recent systematic study by

Hussaini et al. (1985a) on the effects of various filters on the accuracy of

Euler equation solutions using a Fourier method for one-dimensional problems.

The efficiency of our pseudospectral computations as compared to those using a

finite volume scheme is discussed. We also report the results of our attempt

to construct a numerical scheme using spectral expansions in both directions.

Finally, we present a numerical analysis of a Richardson iteration scheme for

an implicit scheme. The analysis is supported by numerical experiments using

a simple one-dimensional wave equation.

TR-325/04-85
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2. Governing Equations and Basic Approach

The equations governing inviscid, compressible flows are the Euler equa-

tions. For computing flows around an object with an arbitrary geometrical

shape, a body-fitted computational coordinate system is used. If (x, y)

represents a Cartesian physical coordinate and (X, Y) represents the computa-

tional space, then these equations can be written in strong conservation form

by using contravariant velocities as follows:

()+ (F) + = 0 (2.1)at ax
where rP PU rPV

= puU + yyP/yMp PuV - y P/)M (

PvI F = pvU _ Xyp); G -pVV + Xp/) 22

(U) = ( _xy) (u) ; H [(-l)P + El/p ; (2.3)

E=P + Y(Y-1) M 2  P 2 + V2
2 2O

p is the density of the gas; P is the pressure; (u, v) are the Cartesian

components of the gas velocity; (U, V) are the unscaled contravariant velocity

components associated with the curvilinear coordinates; J is the Jacobian of

the transformation; E is the total energy; H is the specific total enthalpy;

M is the freestream Mach number; and y is the ratio between specific heat

capacities. P, p and the Cartesian velocity components (u, v) are nondimension-

alized by their freestream values; E and H are nondimensionalized by the free-

stream internal energy CvT,. The momentum equations as written in the above

form compute the evolution of the Cartesian momentum components. Weak solutions

with shock waves are allowed by the above equations, and entropy increases

across the shock waves. The boundary conditions for these equations are the

nonpermeable conditions on the solid surfaces and the assumption that distur-

bances generated by the airfoil are radiated to infinity with no reflection at

the boundary of the computational domain. For steady-state calculations, it is

hoped that the solution will be insensitive to the initial conditions specified.

TR-325/04-85
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The basic approach for applying the pseudospectral method to flows around

an airfoil is described here. The exterior of an airfoil is mapped to the

interior of a circle using a conformal mapping. Polar coordinates are used in

the mapped plane. In the circumferential direction, we expand all variables in

Fourier series because of the periodicity of the flow. In the radial direction,

a Chebyshev polynomial expansion for all variables seems to be the natural

choice because of its extensive use in other fluid mechanics calculations in a

nonperiodic domain. In addition to the Chebyshev expansion, we have studied

the polynomial subtraction method described by Gottlieb and Orszag (1977) and

Roache (1978). In the numerical solution of a hyperbolic partial differential

equation, the spatial discretization of the differential operators is accom-

plished by spectral expansions. Finite difference time discretization is used

to advance the solution. Because of their convenience and computational effi-

ciency, explicit time-stepping schemes are investigated first. Various methods

for accelerating the convergence of the solution to a steady state are imple-

mented. We also give an analysis of the implicit iterative schemes suggested

by Gottlieb and Orszag (1977) by use of a simple one-dimensional model problem

to explore the numerical properties of an implicit scheme.

S.
TRI
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3. Hybrid Scheme

When a conformal mapping is applied to map the exterior of an airfoil to

the interior of a circle, a shock wave, which must be perpendicular to the

airfoil surface for a transonic condition, will roughly align with a radial

coordinate line in the mapped circle plane. Thus, it is reasonable to examine

the capabilities of a pseudospectral method in resolving a shock wave by using

a hybrid scheme that uses a Fourier series in the circumferential direction

and a finite difference scheme in the radial direction. The use of the hybrid

scheme allows the question of resolving a shock wave to be isolated from pos-

sible difficulties that may arise using Chebyshev series expansions. Techni-

ques for filtering Gibb's ripples can also be studied. For these reasons, we

have attempted to construct the hybrid scheme.

3.1 Spatial and Temporal Discretizations
- 4.

The fluxes F and G in Equation (2.1) are computed in the physical space.

Since all grid points are defined at equal intervals in the transformed space,

the derivatives of the fluxes along the circumferential direction are evaluated

by taking finite Fourier transforms of the fluxes, and inverse transforms are

applied after the results are multiplied by the wave number. In the radial

direction, a second-order central difference scheme is used to evaluate all

derivatives. The resulting spatially discretized system is a system of

ordinary differential equations in time.

Following Jameson et al. (1981), we use a four-stage Runge-Kutta scheme

to advance the flow variables q at the grid points. This time-stepping scheme

given by the following procedure:

M(L) *(0) 1 1((-l)q = q +5- R 1 , 4 (3.1)

-(0) 1(n) -(n+l) -(4)
q q ;q q (3.2)

where R is the residue evaluated by using q

The procedure requires only one level of memory for all variables and is

exactly a fourth-order Runge-Kutta scheme for a linear equation. For a

nonlinear equation, the procedure does not have the high-order time accuracyS
of the true Runge-Kutta scheme. However, we have chosen this scheme mainly

* TR-325/04-85
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for the stability and not for the time accuracy. This simplified four-stage

scheme serves our purpose veil. For a one-dimensional simple wave equation,

the scheme is stable for a CFL number of 2.8/n for a Fourier pseudospectral

method as opposed to 2.8 for a finite difference method. For the hybrid

scheme, the geometric average of the time step given by the finite difference

scheme in the radial direction and that given by the spectral scheme in the

circumferential direction is used. To avoid the severe constraint on the time

step imposed by the small grid size near the trailing edge, we use a constant

CFL number throughout the entire flow field. Thus, the time step at each grid

point depends on the local grid size. The solution develops in a warped time

domain. Again, the solution will not be time accurate. Only the steady-state

solution is meaningful.

3.2 Boundary Conditions

It is well known that, for a hyperbolic system, one should take note of

various characteristic variables preserved on the corresponding character

istics. Only the characteristic variables carried by the outgoing character-

istics can be computed from the interior solution of the governing equations.

The characteristic variables on the incoming characteristics must be replaced

by the appropriate boundary conditions. Based on this principle, the following

method of treating the boundary conditions is given.

There are four characteristics crossing the computational boundary. Two

correspond to the acoustic waves with wave speed (V n+ c), where V nis the

velocity component normal to the computational boundary. The other two are

the vorticity mode and entropy mode, both with wave speed V n' Let (V ,t V n) be

the flow speeds along and normal to the solid boundary, respectively. Then,

* the outgoing waves and the corresponding characteristic variables are

PC )~oC Vnc on -c

V on V = 0 (3.3)
sc n

P + yt420c 2  on V =0

where the subscript c denotes the variables computed from the interior algo-

rithm. These characteristic variables are linearized with respect to the flow

variables at the previous time step.

TR-325/04-85
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By using the boundary condition Vn a 0 together with the characteristic

* variables from Equation (3.3), the conservations of characteristic variables

along the characteristic line give the following equations for the flow

variables on the boundary points:

oP - n = c - nc

1

c 2M2 °  (3.4)

• V ffiV

V =0
n

Other flow variables, such as pu, pv, E and H, can be recovered from the

results obtained above.

On the far-field boundary, flows are only slightly perturbed from the

freestream condition. The Riemann invariants are used to compute the flow

variables on the boundary. For the Riemann invariant on the outgoing charac-

teristics, extrapolation from the interior points is used, while the free-

stream value is used for the Riemann invariant on the incoming characteristics.

After the normal velocity and the speed of sound are computed, the velocity

tangential to the boundary is computed by the freestream value and the per-

turbed value based on the far-field solution of a circulation around the air-

foil. The rest of the flow variables are computed by the isentropic relations.

We have attempted other boundary treatments using a full characteristic set

similar to that applied at the outer boundary. The results of computations do

not seem to change substantially.

3.3 Convergence Acceleration

The stability criterion for the numerical scheme described is approxi-

mately 2.8/n. For a steady-state computation, this requires excessive

computing time. To increase the time step of the computation, the residue-

smoothing technique developed by Jameson and Baker (1983) is applied to the

scheme as discussed below.

* TR-325/04-85
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Let the time change of the flow variables be R. For steady-state computa-

tions, it is desirable to drive R to zero. Let L be a nonsingular linear

operator and R be defined as

LR R or RmL 1 R . (3.5)

If R can be driven to zero by advancing in time, using R as the time change of

the flow variables, it automatically ensures that R becomes zero. Now, R is a

residue defined by a pseudospectral spatial expansion of the variables, then

vanishing R still ensures spectral accuracy of the scheme even if L is not a

spectral operator. The choice of L is to improve the stability of the numeri-

cal scheme. It has been shown by Jameson and Baker that the following

operator serves the purpose:

L - (1 - 6 2 ) (1 - E) (3.6)

where 6 and 6 are finite difference operators in the transformed coordinates

(X, Y). To understand the reason for improved stability for a pseudospectral

scheme, a simple one-dimensional wave equation is considered:

t + Cox - 0 •0(.7)

The residue-smoothing process as described is equivalent, to the lowest order,

to adding an additional term to the original simple wave equation and convert-

ing it to the following equation:

2
+ Cx - E(Ax) -0 (3.8)

The dispersion relation for this equation can be given as

W c (3.9)
k 1 + k2(Ax) 2

where w is the frequency and k is the wave number. By increasing the para-

meter C, the wave speed for the high-wave-number component is substantially

reduced. This reduction in wave speed for the dangerous short waves contri-

butes to the increase in the time step size. Equation (3.8) is the linearized

form of a model equation for long dispersive waves proposed by Benjamin et al.

TR-325/04-85
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(1972). They pointed out the numerical advantage of using this equation over

• the Kortweg-de-Vries equation. Other means of manipulating the dispersion

relation to gain stability have been suggested (see Gottlieb and Turkel, 1980,

for example). However, these methods do not preserve the original conserva-

tion laws as their limit in steady state.

* In principle, the method described above can be stable for any desired

time step if a large enough C is chosen. In practice, the approach to

steady state can be delayed if a large e is chosen. We take C - 1.5, and

the CFL can be increased 50% from its original value. Beyond this value, it

* does not seem to help the approach to steady state.

3.4 Filter and Artificial Viscosity

The above scheme by itself is unstable due to the buildup of high-frequency

* components of error. In the finite difference scheme, a form of artificial

viscosity has been suggested by Jameson et al. (1981) for incorporation into a

central difference scheme. Sakell (1984) has chosen second-order and fourth-

order viscosity in his study of pseudospectral schemes. It is well known that

* the use of artificial viscosity will broaden the shock thickness. The objec-

tive of using a pseudospectral method to better resolve the shock wave is thus

defeated. Furthermore, we have experimented with the artificial viscosity

using the form given by Jameson et al. (1981). We have found that the amount

• suggested by Jameson et al. is not sufficient to control the Gibb's phenomena,

and the amotnt must be increased to obtain a stable calculation. This increase

further broadens the shock wave to an unacceptable level. For this reason, we

have decided to use the artificial viscosity in Jameson's form only in the

* radial direction, along which a finite difference discretization has been

used. In the circumferential direction, another kind of filter must be used.

We have conducted a systematic experiment with various types of filters

for pseudospectral transonic calculations. Our experience is summarized here.

High Wave-Number Cutoff

After advancing a time step, the flow variables are expanded into Fourier

series. The coefficients of the highest 10% wave numbers are set to zero. It

* is found that the time marching cannot be stablized. The intermediate solu-

tions also show that the shock resolution has deteriorated. The method is

TR-325/04-85
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equivalent to adding artificial viscosity terms of even order to the conserva-

tion equations. Other filters in wave-number space have similar properties

and do not stabilize the solution. Similar conclusions were obtained be

Hussaini et al. (1985). A point worth mentioning is that the solution in the

present scheme is advanced in the physical space as opposed to advancing the

Fourier coefficients in time. Filtering in the spectral space requires

additional finite Fourier transforms of all flow variables. The operation

count of the computation is substantially increased.

Derivative Filtering

As will be discussed later (Section 3.5), the residue of the pseudospectral

scheme does not decrease monotonically during time marching for steady-state

computations. One of the reasons is the Gibb's error in evaluating spectrally

the derivatives of the fluxes. Consider a step function in physical space.

The derivatives are zero everywhere. By using finite Fourier transforms to

evaluate the derivatives, a large error is committed near the discontinuity.

We have attempted to filter the derivatives of the fluxes in the spectral

space when forming residue in the hope of obtaining a better estimate. The

* -. numerical experiments show that this type of filtering cannot stabilize the

computations.

One-sided Schumann Filter

Another form of filtering is to average the flow variables around the grid

point. In one dimension, this takes the following form:

q. 0.25 (qi+l + 2qi + qi- )  (3.10)

To avoid smearing shock waves, the sonic points at the shock are located on

each coordinate line around the airfoil. The following one-sided averaging is

applied on each side of the shock wave.

qi 0.5 (qi + qi+ ) (3.11)

This filter has been suggested by Gottlieb et al. (1981). If applied at each

time step, it is equivalent to a first-order-accurate second-order artificial

viscosity. We have applied this filtering once every L time steps, just often

TR-325/04-85
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enough to damp the instability. It is believed that this application of the

* filter reduces the error. This filter has been found to be the most effective

in stabilizing the calculations. The amount of artificial viscosity is

roughly of the order of

(Ax)2 3.12)

4(LA)

Assuming that LAt is of 0(l) as in the present investigation, the artificial

viscosity is of the order of (Ax) 2in contrast to (6)3 for the form suggested

* by Jameson et al. (1981). As has been discussed, the form of artificial vis-

cosity suggested by Jameson et al. is not sufficient to stabilize the pseudo-

spectral computation. It seems that a lower order filter such as the present

one is required. The advantage of the present filter is that the sharpness of

* the shock wave can be maintained.

3.5 Computed Results

Test calculations were performed for the flow around a Karman-Trefftz

* airfoil. An analytic transformation that maps the interior of a circle in the

computational space to the exterior of an airfoil in the physical space Z

is given as follows:

Z_ (I+L ) + (0-) (3.13)

with

1 = ( - )I/2 (3.14)

where 4o = ( o, ro) is the coordinate of the center of the circle in the

C plane. For the present example, 4o s (-0.1, 0). At the trailing edge, this

transformation is singular. In the present investigation, the trailing edge

* is placed at the half grid between grid points to avoid the singularity. The

coordinates of the grid points in the physical space are computed from the

transformation, and the transformation matrices are computed at each grid

point using exactly the same algorithm for the evaluation of flux derivatives.

* These matrices are stored to save computational time. Figure 1 shows the

computational grid around the airfoil.

* TR-325/04-85
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The computations start from an incompressible velocity field determined by

the conformal mapping. The density and pressure fields are given by the isen-

tropic relations. The lift and drag coefficients are computed by integrating

the pressure around the airfoil. To be consistent with the pseudospectral

numerical scheme, the integrals have been performed by using a Fourier series

expansion of the surface pressure as follows:

F P n ds = - Y, ¥0 P x Y=Ot] dX (3.15)

Let
-P YX W ¥0 x

ILU (3.16)

P xx[ , 0 - f y

Then the force F = (F x, F ) is simply the coefficients a and a of thex y ox oy

Fourier expansion for f and f .x y

A transonic case with a freestream Mach number of 0.63 and an angle of

attack of 2 degrees is computed. The computations are done on both a 64x16

grid and a 32x16 grid. Figure 2 shows the initial distribution of the pressure

coefficient on the denser grid, and Figure 3 shows the solution after 2400 time

steps. The pressure distribution essentially remains constant after 1800 time

steps. Figure 4 shows the results of a computation using the finite volume

code FL053 with the same grid density. Notice that a weak shock wave appears

on the pseudospectral calculation. The same case is computed on a 32x16 grid,

and the results are shown in Figure 5. The results indicate that, although

the 32x16 grid gives the gross features of the pressure distribution, the

solution is not accurate enough. The drag count for the spectral calculations

seems to be too large for this low supercritical case, which may be due to the

error introduced by the filtering.

A supercritical case with a freestream Mach number of 0.7 and an angle of

C%- attack of 2 degrees has also been computed on the 64x16 grid. Figures 6

through 8 show the pressure distributions after 0, 800, and 2400 time steps,

respectively. The solution seems to reach a steady state in 1600 time steps.

This is approximately equivalent to the 500 time steps required in the finite

volume computation if we take into account the ratio of r between the

TR-325/04-85
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time steps for the two methods to satisfy the stability requirements. The

* shock wave is resolved in one grid. Figure 9 shows the isomach lines in thq

flow field. Figures 10 and 11 show the results from a finite volume calcula-

tion on the same grid. The shock resolution is not as good as in the spectral

calculation. We have performed a finite difference calculation with a central

* difference scheme in the circumferential direction. By using the same filter

as in the pseudospectral calculation, we intend to determine whether the shock

resolution is the result of the particular filter or the result of pseudospec-

tral discretization. The finite difference calculation diverges, which seems

* to indicate the merit of the spectral scheme. Figure 12 shows the results of

a 32x16 computation using the hybrid scheme. Again, it gives the correct

gross features of the flow field, while the finite volume scheme on the same

grid gives unacceptable results with a smeared shock wave.

* The results of the computations can be summarized as follows:

(1) The shock wave can be resolved within one grid using the hybrid scheme,

while it takes three to four grids for the finite volume code. The

* best upwind finite difference codes (Anderson et al., 1985; Yee,

private communication, 1985) can resolve a shock wave within two grids.

(2) The accuracy in the smooth flow region seems to be deteriorated by the

* filter being used. The expansion on the lower surface is probably not

accurate enough, and the drag count is too high.

(3) The residue in computations does not decrease with time. The residue

* decreases first and then starts to diverge. At this point, the

Schumann filter is applied, and the residue resumes its decreasing

trend. The computation is a slowly divergent one stabilized by

periodic filtering. Hence, it is very difficult to decide the

* steady-state solution. In fact, for supercritical cases, the

variation of the number of supersonic points is used as an indicator

for steady state.

*(4) The computations with the pseudospectral scheme require more time

steps to reach a steady state due to the smaller time steps required

by the CFL restriction. To compute the supercritical lifting case

T-32 5/04-8 5
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presented in the present report, 1800 time steps are required as

opposed to 500 time steps for the finite volume scheme with the same

number of grid points. The ratio is roughly v as indicated by the

stability analysis. The additional number of time steps can be

justified only if the pseudospectral calculations can reduce the

number of grid points by a factor of 4. Another possibility, which

was not investigated here, is to use a multigrid method in conjunction

with the pseudospectral method to reduce the number of work cycle6

These examples show that the pseudospectral method may not be competitive

with the finite difference methods for steady-state problems with shock waves.

The ability of the pseudospectral calculations to resolve a shock wave in one

grid does not justify the excessive computing time required. Spectral accuracy

is destroyed by the existence of discontinuity. Since the Gibb's error is a

systematic error, one would hope that the spectral accuracy can be restored by

a proper filtering technique. The filters examined in the present work fail

to accomplish this purpose.
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4. Development of a Fully Spectral Method

* In this section, we describe the results of an effort to extend the method

to include a spectral expansion in the radial direction in the computational

space. If successful, the scheme will be a fully spectral scheme with high

accuracy in both directions.

*• Chebyshev polynomial expansions have been extensively used in the simula-

tions of incompressible viscous flows (see, e.g., Orszag and Patera, 1983;

Marcus, 1984). Application of the Chebyshev method to compressible flows using

the full potential equation has been investigated by Streett (1983). Hussaini

* et al. (1985b) used this method in conjunction with a shock-fitting method to

study the interactions between a shock wave and a hot spot. They have shown

that the Chebyshev method is highly accurate in that case. The application of

the method to a steady-state compressible flow using a shock-capturing, Euler

* equation, time-marching technique has been investigated by Gottlieb et al.

(1984). It seems to be a natural choice for developing a fully spectral scheme.

A polynomial subtraction Fourier method has been suggested by Gottlieb and

Orszag (1977). Roache (1978) studied the accuracy of the method in conjunction

* with the degree of the polynomial used. Orszag and Patera (1983) used the

method for simulations of incompressible viscous flows. We shall investigate

the possible application of the method to the present case.

* 4.1 Fourier Chebyshev Method

In the unit circle computational plane, the dependent variables are

expanded into a finite Fourier series in the circumferential direction and a

Chebyshev series in the radial direction. In the radial direction, the compu-

*tational domain (E, 1) is divided into (N+l) unequal Chebyshev collocation

points. In the present work, the collocation method is used.

Derivatives of Fluxes

* The fluxes are computed at the grid points. The radial derivatives of the

fluxes are computed by a finite Chebyshev expansion of these data. Due to the

nature of the transformation, the fluxes are singular at the center of the

circle. The singularity behaves as follows:

(F, G) K/Y (4.1)

* TR-325/04-85
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where K is the strength of the singularity. Although the far-field boundary is

chosen at a finite distance Y = 0.02, substantial errors are committed in the

spectral evaluations of the derivatives of fluxes due to the inability of the

finite series to sufficiently resolve the singularity if 17 or fewer grid

points are used. As a result, ripples occur in the evaluated derivatives.

These ripples are not confined to the far field but also propagate to the near

field. To reduce these ripples, we have subtracted a singular function from

the radial flux vectors as follows:

G - (4.2)

where K is determined by the fluxes at the first two points in the far field.

The reduced fluxes G' are expanded in Chebyshev series. The spatial deriva-

tives of G are obtained by the combination of the derivatives of G' and the

singular term. This method has proven to eliminate the ripples in the

evaluation of derivatives by Chebyshev series. However, the process increases

the computational overhead.

Stability and Convergence to Steady State

The following formula defines the Chebyshev collocation points for an

N-term series:

( 1 - Cs +c j = 1, . .. , N+l (4.3)
.1 2 N 0+c

These points are close together near the boundary with spacing of O(N-)2

The stability requirement is
At O[ M (4.4)

N2(U+C)

where the characteristic velocity is (U+C). The computational time required

to reach a steady state is increased by a factor of N as compared to that

using an equally spaced Fourier method. This is in contrast to the incompres-

sible viscous simulations, where the characteristic velocity approaches zero

on the boundary. The time steps can maintain a reasonable value even with a

highly stretched grid, like the Chebyshev collocation grid in that case.

The residue-averaging technique and the use of local time steps, as

described in the previous section for the hybrid scheme, fail to improve the
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convergence. To understand the performance of the Chebyshev method in a comn-

pressible flow, particularly with the boundary conditions, we have tested a

wave propagation problem in one dimension. The Euler equations are solved in

one dimension with a smoothed pressure discontinuity, isothermal and no flow

as initial conditions. The pressure difference across the wave is 2. We are

interested in the time step size and the effects of boundary conditions on the

stability of the computations. Figure 13 shows the results of computation

using 33 grid points. In order to maintain stability, the time step is so

small that it takes 4800 time steps for the pressure wave to propagate across

half the computational domain. The boundary treatment does produce shock

0 reflection on the solid boundary. The main conclusion obtained here is that

unless an acceleration scheme can be found to drive effectively the solution

to steady state, the Chebyshev explicit method is not suitable for steady-

state calculations. Since the use of a local time step and residue averaging

fails to stabilize the calculations, an implicit method may be the solution to

the problem. This is the reason we have decided to investigate an implicit

iterative scheme, as described in Section 5.

4.2 Polynomial Subtraction Method

To circumvent the difficulty of the Chebyshev method as discussed above,

we have experimented with a polynomial subtraction Fourier method.

Let G be the flux vector. The computational space (c, 1) is divided into

N equally spaced grids. Consider a reduced flux vector G' defined as

4 ~4.4
G G K/Y - P (Y) (4.5)

m

where K is the strength of the singularity at Y - 0 as defined in the previous

section and P. is a polynomial of mth degree. One can construct a polynomial

P. in such a way that G' is periodic at the boundaries up to the (m-l)th

derivatives at its boundaries. The derivatives of the flux vector G can be

reconstructed by using the Fourier spectral method on G' and analytical

expressions for the other two terms.
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Accuracy of the Method

Since the method only eliminates the discontinuity of G up to the (m-l)th

order, the resulting Fourier series converges as N-(mnl). For example, if a
third-order polynomial is used, the first discontinuity at the boundaries is

the third derivative. The resulting Fourier method is fourth-order accurate.

This estimation is based on the assumption that the 'jumps' of the derivatives

of G at the boundaries are known exactly. In the present problem, these

p 'jumps' must be evaluated by approximate means. The error committed in the

evaluation of the jumps must be consistent with the order of the polynomial

being used.

Construction of Polynomial Pm

In order to construct Pmthe jumps in the derivatives of the flux vector

G up to the (m-l)th order at both ends of the finite domain are required.

Since G is known only at the discrete points, the evaluation of these deriva-

tives can only be achieved by using a finite difference method. The truncation

error in this process will also affect the accuracy of the method. For example,

when a second-order one-sided differencing is used to evaluate the end point

derivatives, the jump in the first-order derivative of the reduced flux G, at

the boundary is of 0(Ax 2). Since the 0(0) jump in the first-order derivative

results in 0(N_ ) convergence in the Fourier series, the resulting polynomial

subtraction method is of 0(N-4 ). Hence, it is consistent to use a second-order-

accurate evaluation of the jump in conjunction with the use of a third-order

polynomial.

Computational Experiments

We have experimented with the method using a third-order polynomial. A

computation with the same supercritical case computed earlier using the hybrid

scheme is carried out. The time step for the 'full spectral' calculations is

half that for the hybrid scheme. The computations produce similar results to

the hybrid scheme, with computational time more than double that of the hybrid

scheme. We have decided that the method is not competitive with a hybrid

scheme with twice the number of grid points in the radial direction.
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5. Implicit Pseudospectral Method

* There are two reasons why we would like to examine an implicit method.

First, as discussed in the previous sections, there are several problems in

using explicit schemes for pseudospectral Euler equation calculations. One of

the most difficult problems with these schemes is the small time steps required

3* by the stability criteria. The Chebyshev method, in particular, requires

extremely small time steps. An implicit method may free us from this con-

straint. The other reason is to construct an implicit method for time-accurate

unsteady calculations. Consider the flow around an airfoil. The grid size

*• near the leading and trailing edges is extremely small. For an unsteady

calculation, one cannot use the local time step as described in Section 3. An

implicit method is essential in this case to avoid excessive computing time.

Table I summarizes the performance of various pseudospectral schemes for

*O the wave equation

u + u = 0 . (5.1)t X

4
It can be seen that an operation count of 0(N is required for all implicit

• methods if a direct inversion method is used. Since the pseudospectral method

gives a full matrix operation on the variables at grid points, a sparse matrix

technique for inverting the operator is not applicable.

We shall examine an iterative implicit method that uses a finite

difference operator as an approximate operator for the spectral operator for

the iteration. If there exists a stable and convergent iterative scheme, the

work required for such a scheme will be

SW = MN2 log N (5.2)

where N is the number of modes and M is the number of iterations per time step.

Here, we have assumed that NAt - 0(l) for time accuracy, and for each itera-

tion the operation count is roughly that required by an explicit scheme, i.e.,

the overhead on inverting an approximate operator is neglected. Therefore,

the Chebyshev implicit iterative method will have better performance than the

explicit method if M is much less than 0(N). For a steady-state calculation

where it is possible to have NAt >> 1, the method can also improve the

performance of a Fourier scheme.

* TR-325/04-85
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Table 1. Estimated Performance of Various Pseudospectral Schemes

Spectral Time Accuracy Work to Reach

Method Discretization O(Atk) Stability t - T

Fourier Leap Frog 2 127N log N

Fourier Crank-Nicolson 2 Stable N 4/3

Fourier Forward Euler i C/N N log N

4

Fourier Backward Euler 1 Stable N 4/3

Fourier 2-step Runge-Kutta 2 C/N1 /3  2 log N

Fourier 3-step Runge-Kutta 3 V2,/3N log N
71

Fourier 4-step Runge-Kutta 4 2 7 2T-N 2 log N

" Chebyshev Leap Frog 2 Unstable

."- N3

Chebyshev Adams-Bashforth 2 4/N N- log N

Chebyshev Crank-Nicolson 2 Stable N 4/3

Chebyshev Backward Euler 1 Stable N 4/3

30J
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We shall examine a Richardson iteration scheme in this section. Two

-* problems regarding the iterative scheme are addressed here: What is the best

way to construct a scheme that will converge quickly at each time step? Is

the time-stepping scheme stable if only a finite number of iterations at each

time step are carried out? These problems are addressed through the numerical

*analysis of a simple wave equation and numerical experiments to substantiate

the theory.

5.1 Richardson Iteration

* Consider the simple wave equation

au au(53

In finite dimensional space, we approximate the above equation by the

following backward Euler pseudospectral scheme:

(In+l u (5.4)

* where n denotes the time level, A represents the spectral approximation of the

operator a/ax, and un+l is obtained by inverting (I + At A) and operating
n

the results on the known quantity u The algebraic equation, in a simple

form, can be written as

Lu - f (5.5)

where (I + At A) (5.6)

-n+1u = u (5.7)

f = un (5.8)

Let L be an approximate operator to L that can be inverted easily. Then an
ap

iterative scheme is suggested as

L ap(U -u ) -a(Lum - f) (5.9)

or U -(I - L) u + 0L-f (5.10)

ap m ap

where a is a parameter that can be adjusted to enhance the convergence. The

iteration will converge if

K H I- QL1 L < 1  • (5.11)
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Let B be the central finite difference approximation of 3/ax. We choose

L (I + At B) (5.12)ap

as an approximate operator to L. The original backward Euler time-step

pseudospectral scheme can be solved by the following iterative scheme:

(I + At B) um+1 M aun + (1 - a) u + At (B - A) u • (5.13)in m

5.2 Convergence of Richardson Iteration

The convergence property of the Richardson iteration scheme presented above

is examined here. In particular, we shall attempt to derive an expression for

the optimum parameter a in terms of the spectral properties of the operators

L and L
ap

Let Em = um - u. Then, from Equation (5.10),

11 m+lH1 <max ({1-COsl, Il-asl) IlEmlI (5.14)

where s and S are the bounds of the operator L -1L defined on a smooth test
ap

function x as

0< s < l i< ; N+ . (5.15)

Optimum convergence is given by

a = 2 (5.16)
opt s + S

and the corresponding convergence rate is given by

K a S < 1 (5.17)
opt S +s

The bounds s and S must be estimated. Let D L-L and
ap

DDTz - XZ (5.18)

where
lizil - 1

Then <I /2  (5.19)

- mn

1/2 (5.20)
S >Rx max (5.20)
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From Equation (5.18), it is easy to show that

L LZ - L LT Z .(5.21)
ap ap

Hence

,X (LZ, LZ) (5.22)
(*Z ap ap Z

Using the definitions given by Equations (5.6) and (5.12), we have

1 1 + At [(A+AT)z, Z] + At2(AZ, AZ )) (.3
(1 + At L(B+BT)Z, Z, + &t2 (Bz, BZ)1

For the Fourier method and central difference scheme,

T
40A . -A (5.24)

B T -B (5.25)

and

1 + t2(AZ, AZ) (.6

1 + At2(BZ, BZ)

Assume that sharp bounds exist:

b b2 N2 < (BZx BZ mx) < 11B11 2

2 2 2 (5.27)
(AZax'AZ mx ) < aN < IAIl

Then E [l + (aN At)21/
- I + (bN At)2(.8

For the Fourier method, Gottlieb and Orszag (1977) show that

(AZ, AZ) > (HZ, BZ) Z (5.29)

Since B is an approximation of A,

*AZ. mi2BZmi
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-24-

and
s 1 , (5.30)

then

S a/b as NAt >> 1 . (5.31)

Since Gottlieb and Orszag (1977) show that the maximum eigenvalue of A is it

times the maximum eigenvalue of B, then the scheme will not converge for

a - 1. From Equations (5.16) and (5.17), we have

* 2(b/a) (5.32)
lopt l + b/a

1 - b/aK * (5.33)
opt 1 + b/a

Note that the optimum convergence is independent of N in the limit Nat >> 1.

Similar conclusions can be obtained for the Chebyshev method.

The following numerical experiments have been conducted to test the above

theory for convergence of the iteration scheme. The Chebyshev collocation

method is used.

A smoothed step function is chosen as an initial condition. An arbitrary

parameter a is chosen. Two computations are made with different time step

sizes, At and At From the convergence rate, one can compute the bounds S

and S2. By using Equation (5.28), the parameters a and b can be computed.

They are then substituted into Equations (5.28), (5.16) and (5.17) to obtain

the theoretically computed optimum parameter aop t and convergence rate Kop t '

These are given for various numbers of modes and different CFL numbers in the

right-hand columns of Table 2. To verify the theoretical results, a is varied

for fixed N and NAt until optimal convergence is achieved. The experimentally

obtained aOp t and Kop t are also given in the same table. The theoretical values

show good agreement to the experimental values. The optimal convergence rate

Ko pt varies with the CFL number for fixed N but is almost independent of N for

NAt - 2 as concluded above. However, slow convergence for high CFL numbers does

not imply higher computational costs, since fewer time steps are required to

reach a specific time. The gain in computational effort will be addressed later.
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Table 2. Numerical Results for Convergence of Iteration
(Chebyschev Method)

I I
Numerical Experiments [ Theoretical Values

Number of I
Modes, N I CFL = NAt oopt Kopt Ipt Kopt

* 16 0.4 0.80 0.27 0.86 0.28

16 0.8 0.70 0.38 0.74 0.38

16 1.0 0.65 0.43 0.69 0.43

* 16 2.0 0.40 0.59 0.51 0.63

32 0.4 0.70 0.34 0.74 0.37

32 0.8 0.60 0.43 0.57 0.43

• 32 1.0 0.50 0.47 0.51 0.47

32 2.0 0.30 0.67 0.36 0.68

64 0.4 0.60 0.37 0.57 0.38

• 64 0.8 0.50 0.47 0.41 0.52

64 1.0 0.40 0.54 0.36 0.57

64 2.0 0.27 0.69 0.27 0.69
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5.3 Finite Iteration Stability

The above section addressed the question of convergence at each time

step. Here, we examine the stability of the time-stepping scheme with finite

Richardson iterations.

Consider again Equation (5.5) and the iterative implicit scheme,

Equation (5.10). For a finite M-step iteration, the time stepping is

M-1
H t2 KLl (5.34)

m00

where u is the initial guess for the iteration and

K - I - L- L . (5.35)ap

Since

. M-1

I: K Kin (IM- K) - I (1 A (5.36)

M-0

and L K'L-l LK'L 1  (537)

ap ap

Equation (5.34) can be written as

uM =L-lf + KM (u ° - L- f) . (5.38)

The factor in the parentheses is simply the error of the initial guess u0

and is denoted by cO so that

uM = u + KM • (5.39)

Let us first choose an extreme example of u0  0. Equation (5.38) can then

be written as

u n G un (5.40)

where

G - (I K) L 1 (5.41)

For stability, we must have

[G I . (5.42)
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This implies that

- IIKIIM < in(L) - 1 (5.43)

where Pmin (L) is the spectral radius of L. The estimates for the spectral

radius (Gottlieb and Orszag, 1977) are

Pmin(L) - 1I CN 1/2 Chebyshev
CN- 1  Fourier

with

&= 0(N
-  .

Since, for large NAt, IIKII is independent of N as discussed in the previous

section, Equation (5.43) implies that

H O(log N) (5.45)

for convergence.

Next, consider that the initial guess at each time step is given by the

solution predicted by a forward Euler step
• n

00 u = (I - tA) u . (5.46)

It can be shown that the amplification factor is given by

G - JKM&2A2 + 1) L- 1 (5.47)

The stability criterion now gives

M Pmin (L) -
(

H1KII < (5.48)
t -2 minW(L) max(A 2 L- I )

But

p (A 2 cl O(N ) Chebyshev

max 0(N) Fourier

4The stability requires

' O(log N) Chebyshev
M > 0(I) Fourier . (5.50)
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These examples show that the Richardson implicit method can improve the

Chebyshev method in terms of computational efficiency.

Numerical experiments have been carried out to substantiate these analyses.

The Fourier method is applied to solve the simple wave equation with the

periodic initial condition in (0, 1):

1 Ix-l/21 < 1/4

u(x, 0) = 0 Ix-l/21 > 1/4 (5.51)

The initial condition is smoothed by averaging the u value of the neighboring

points twice using

u i  (ui+ 1 + 2ui + u_ 1 ) . (5.52)

The optimal iteration parameters aop t are chosen according to the results

given in the previous section. For each time step, the iteration is terminated

by the condition

Iu +1 - u l I I lu m - uel (5.53)

where u is the solution given by the forward Euler step and a is the tolerance

parameter. Table 3 summarizes the results of the numerical experiments for

the Fourier method. The implicit iterative scheme is stable for large CFL

numbers as compared to the explicit method. However, the computational time

can be larger than that using an explicit scheme due to the large number of

iterations required for each time step. For the Fourier method, the iterative

scheme does not offer any advantages over an explicit scheme.

We now turn to the Chebyshev method. Table 4 summarizes the numerical

results. The performance of the explicit scheme is very poor, as can be seen

from the table. For 64 modes, the method diverges even with a CFL number of

0.0125. The improvement in both accuracy and efficiency with an iterative

implicit scheme is very much evident. Savings by a factor of 8 can be seen

for a 32 mode calculation. For 64 modes, the iterative implicit method is

stable for a CFL number of 1.0.

TR-325/04-85

"4~ ~ %



S

-29-

Table 3. Fourier Iterative Implicit Method

- ~ L2 Error I
N I CFL Norm I CPU/T

SI ell I

16 0.4 0.54-1 1.4

_ 16 1.0 0.51-1 1.2

16" 0.1 0.55-1 1.3

32 0.4 0.27-1 6.1

32 1.0 0.30-1 I11.0

I 32* I 0.1 I0.28-1 I 5.9 I

64 0.4 0.13-1 35.0

64 1.0 0.19-1 61.0

64* 0.1 0.15-1 26.0

*Explicit Leap-Frog Scheme

Table 4. Chebyshev Iterative Implicit Method

I [L 2 Error I7
I I Norm I

I N I CFL I Hell I CPU/T II I
16 0.4 0.33-1 2.1

16 1.0 0.27-1 1.6

16" 0.1 0.33-1 3.9

32 0.4 0.17-1 15.0

32 1.0 0.14-1 I10.0

32* 0.05 0.51-1 31.0

32* 0.02 0.36-1 77.0

64 0.4 0.74-2 130.0

I 64 1.0 0.98-2 88.0

64* 0.0125 0.10-7 400.0

*Explicit Second-Order Adams-Bashforth Scheme
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6. Summary and Conclusions

The present investigation attempts to construct a pseudospectral scheme

that is highly accurate and competitive in computational efficiency with

existing finite difference or finite volume methods. Instead of examining

simple model problems, we have examined realistic flows around a

two-dimensional airfoil. The exterior of an airfoil is mapped to the interior

of a circle by a conformal mapping. We have attempted to address several

questions in applying the pseudospectral method to transonic flows with shock

waves. First, a hybrid scheme based on a combined spectral-finite difference

method is attempted. Various means of filtering Gibb's error are examined for

their effects on numerical stability. Then, we attempt to construct a full

spectral scheme using spectral discretization in both spatial dimensions.

Finally, we have studied the convergence and stability of an iterative

pseudospectral scheme, which could circumvent some of the problems in the

construction of a full spectral scheme.

The following conclusions are made based on the results of our study:

(1) A hybrid scheme using spectral decomposition in the direction along

the airfoil surface and a finite difference scheme in the other

direction is capable of resolving shock waves in one grid.

(2) Several filters have been studied. A low-pass filter in the spectral

space is not able to stabilize the computation without seriously

affecting the shock resolution. An algebraic filter that averages the

Vf low variables around a grid point is capable of stabilizing the

computations and maintaining the sharpness of the shock wave.

(3) The filter being used is stronger than the nonlinear artificial

viscosity expression given by Jameson et al. (1981) except near the

shock wave. Hence, the solution in the area away from the shock wave

is contaminated. The drag count is substantially higher than that in

a finite volume calculation. However, because of its ability in

resolving a shock wave, a hybrid scheme calculation with a coarse grid

can provide useful information.
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(4) The time step for an explicit hybrid scheme is smaller than that for a

* finite volume calculation, and it takes a substantially larger number

of time steps to achieve a steady-state solution. An implicit scheme

or a multigrid technique may be required to reduce the computational

costs of spectral calculations.

(5) The residue of the scheme constructed in the present investigation

does not decrease with time. The number of supersonic points in the

flow field is taken as an indicator of convergence. Attempts to find

* another form of error norm have not been successful.

(6) An explicit full spectral scheme with a Chebyshev polynomial expansion

requires excessive computing time and is not competitive with a finite

* volume calculation using a dense grid. A polynomial subtraction

Fourier method also does not show much promise as a superior method to

the finite volume method.

*(7) A Richardson iterative spectral implicit scheme has been analyzed for

a simple wave equation. The analyses and the accompanying numerical

experiments show that there exits an optimum convergence rate for the

iteration. In order for the computations to be stable for a finite

* iteration scheme, a certain minimum number of iterations is required

for each time step. As a result, the Fourier implicit iterative

scheme does not offer any savings in computational cost for a steady-

state problem. Using a Chebyshev method, savings by a factor of N in

* operation count can be achieved by using an iterative implicit method

rather than an explicit one.

3105R
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Figure 1. Computational Grid (64x16) Around a Karman-Trefftz Airfoil
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CD 0.020)
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* Figure 11. Finite Volume Calculation-Isomach Lines in Flow Field on
64x16 Grid (Me,- 0.7; a 2 degrees)
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