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ABSTRACT

Free surface flows of a liquid poured from a container are calculated

numerically for various configurations of the lip. The flow is assumed to be

steady, two dimensional and irrotational, the liquid is treated as inviscid

and incompressible, and gravity is taken into account. It is shown that there

are flows which follow along the under side of the lip or spout, as in the

well-known "teapot effect*-, which was treated previously without including

gravity. Some of the results are applicable also to flows over weirs, and

spillways.
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SIGNIFICANCE AND EXPLANATION

The flow of a liquid poured from a container is a free bounrdary flow

driven by gravity, and it has proved difficult to determine such flows

analytically. Therefore we have developed a method to calculate them

numerically.

3 Two calculated pouring flows from a thin-walled vessel are shown in

Figures 1 and 2. The flow in Figure 1 is that desired when pouring a beverage

like tea, while the flow in Figure 2 is the undesirable one which occurs in

the "teapot effect".

Flows which run along a wall are desirable when pouring beer to avoid

excess foam, and when pouring acid to avoid splashing. All these flows are

like the calculated flow shown in Figure 3, which also represents the flow in

a spillway.

INSPECTED-

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.



POURING FLOWS

Jean-Marc Vanden-Broeck*,I and Joseph B. 
Keller**# 2

1. Introduction

The flow of a liquid poured from a container is a free boundary flow driven by gravity, and it has

proved difficult to determine such flows analytically. Therefore we have developed a method to

calculate them numerically when the flow is steady, two dimensional and irrotational, and the fluid

is inviscid and incompressible. We have used it before to calculate flows over weirs [1], and now we

shall adapt it to the calculation of flows over lips or spouts of various shapes. Some of our results

are applicable also to weirs and spillways.

Two calculated pouring flows from a thin-walled vessel are shown in Figures I and 2. In both

cases the angle P between the vessel wall and the horizontal is 0 = v/3. The flow in Figure I is

that desired when pouring a beverage like tea, while the flow in Figure 2 is the undesirable one

which occurs in the "teapot effect". It was analyzed previously without taking account of gravity

[2], and the present calculation shows that such a flow can occur also when gravity is taken into
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Figure 1. Liquid pouring 
over a thin wall, 

or flowing over 
a thin weir.

The wall slopes 
at the angle a from the horizontal. 

The flow

shown here, which has two 
free streamlines, was calculated 

for

n 1/3 by the first method 
in Section 5.
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Figure 2. The undesirable "teapot effect" flow over the same thin wall

or weir as in Figure 1. The flow shown has one free streamline.

It was calculated for 8 = w/3 by the second method in Section

5. The x,y coordinates are shown with their origin at C,

the end of the wall. The points I and J are at infinity

on opposite sides of the wall.
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account.

A flow like that in Figure 1, but with r = r/2, was calculated in [1] to describe the flow over

a thin vertical weir in a deep channel. In the same way, the flow in Figure 1 applies to a thin weir

sloping at the angle r - w/3 in a deep channel. Flows for other slopes can be calculated by the

present method.

Flows which run along a wall are desirable when pouring beer to avoid excess foam, and when

pouring acid to avoid splashing. But then the flow must run along the inner wall of the receiving

container, rather than along the outer wall of the pouring container. In chemical laboratories to

avoid splashing, liquids are often poured onto stirring rods which they run along. All these flows

are like the calculated flow shown in Figure 3, which also represents the flow in a spillway. For it

the angle between the two walls is 1 = 37r/4 and the Froude number F = U(gH)-' I/2 is F - 1.3.

Similar flows can be calculated for any F > 1 and for any value of 1 satisfying 0 < 13 <r.
Another example, shown in Figure 4 for P = ir/4 and F = 1.3, represents the undesirable flow over

a lip which has its sides meeting at the angle P. Goh and Tuck [3] have calculated the desirable

flow from a spout consisting of two horizontal plates.
In Section 2 we shall formulate the problem for the flow shown in Figure 4 for any F > 1

and ft < , and we shall present the analytical solution of this problem for F = oo and show how

to obtain the asymptotic form of the solution for F > 1. In Section 4 we describe our numerical

results, which yield the free streamlines shown in Figures 3 and 4. In Section 5 we indicate how to

modify the method presented in Section 2 in order to treat the flows shown in Figures 1 and 2.

2. Formulation

Let us consider the flow in the region of the z-plane shown in Figure 4. The horizontal bottom IC is
2a streamline on which we require that the stream function k = 0. The wall CJ, which slopes at an

angle ft from the horizontal, is part of the same streamline. We choose cartesian coordinates with

the y-axis along the horizontal wall IC and the x-axis directed vertically downwards. The origin is

at the corner C and gravity acts in the positive x direction. As x --+ +0o, the flow approaches the

thin jet flow of Keller and Weitz [4] and Keller and Geer [5]. As p --- -oo, the flow approaches a
uniform stream with a constant velocity U in the p-direction. The free surface IJ is a streamline

on which ( ,y) = UH. Here H is the depth of the fluid at y = -0o.

Let the complex potential be f = V + io. Without loss of generality we choose p = 0 at the

corner C. On the free surface IJ where the pressure is constant, the Bernoulli equation yields

U2) - = 2 +gH. (2.1)

-4-
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Figure 4. The "teapot effect" flow over a wedge-shaped lip of angle 8.

The points I and J are at infinity on opposite sides of

the wedge. The flow along the horizontal wall has thickness

H and velocity U at I. The x,y coordinates have their

origin at C, the vertex of the wedge, with x increasing in

the downward direction and y increasing horizontally to the

right. The streamline shown was computed by the method of

Section 2 with F = 1.3 and 8 = 7/4. The broken line is

computed from the asymptotic solution (3.6).
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We choose H as the unit of length and U as the unit of velocity. Then (2.1) becomes

2 2
(Vip) 2 _ 2 = 1 on , =1. (2.2)

Here F is the Froude number defined by

F = U/(gH)1 1 2. (2.3)

We shall restrict our attention to supercritical flows, for which F > 1. The plane of the complex

potential f = W + ik is shown in Figure 5a.

Let the complex velocity be C = u - iv, where u and v are the z and y components of the

velocity. For F - 1 6 0 (i.e., g 6 0), the velocity C increases like fl/3 as p . 00 [4]. Thus we have

~ f l/3as W* +0o, F- ' #0. (2.4)

At = -o the flow is supercritical and is characterized by the presence of exponentially decreasing

terms in C. Thus C has the form

C -i[1 + Ae""f] as W -. -0o. (2.5)

Here A is a constant to be found as part of the solution and )L is the smallest positive root of

irA - F- 2 tan irA = 0. (2.6)

Near C, where there is a corner of angle/3, the flow has the corner behavior

as f_ 0. (2-7)

The problem is to find C as an analytic function of f = W + ib in the strip 0 < < 1, satisfying

6(2.2), (2.4), (2.5), (2.7) and the kinematic conditions

U=0 on ?k =0, '<0, (2.8)

u=-vtan3 on t=0, V>0. (2.9)

We define the new variable t by the relation

2 I (2.10)
X 1 -i

-7-
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The transformation (2.10) maps the flow domain into the interior of the unit circle in the t-plane

so that the walls go onto the real diameter and the free surface goes onto that portion of the

circumference lying in the upper half of the t plane. (See Figure 5b).

We define the function fl(t) by the relation

_ = -i(-t)O/'-'[-, n(1 - t)J1/ 3[-In 2c]' / 13  + (1 + t) 2 "fl(t)]. (2.11)

Here e is a real constant between 0 and 1/2. We shall choose c = 0.2. It can be checked easily that

the expression (2.11) satisfies the conditions (2.4), (2.5) and (2.7). The function l(t) is analytic

for Itl < 1 and continuous for Itl _< 1. The kinematic conditions (2.8) and(2.9) imply that the

expansion of fl(t) in powers of t has real coefficients.

With this expansion inserted, (2.11) becomes

'20

"C = -i(-t)e/*-[- inc(1 - t)-/3[ In 2c] - 113 1 + (1 + t)2 1 E anti (2.12)
n=O

For given values of F and #, the unknown coefficients an have to be determined to make (2.12)

satisfy the Bernoulli condition (2.2).

We use the notation t = Itle, so that points on the free surface are given by t = eU, 0 < a < r.

We find it convenient to eliminate z from (2.2) by differentiating it with respect to a. This yields

- ] - 0. Now on the circular arc jp = In(cot j). Differentiating this relation and using

the identity

z .O _ 1 (2.13)

we obtain

a 1 2(.)
a - 2 sin a [f(a)]2 + [j(a)]2  (2.14)

_= _ 1 i(a) (2.15)
- -a 2a a [t (a)]2 + [ (a)]2 2.5

Here ((a) = fi(a) - if(a) denotes the value of C on the free surface. Upon inserting (2.14) into the

differentiated form of the constant pressure condition, we obtain

ti (a)to(a) + O(a)O'(ff) + F2 (a) =0 (2.16)2 sin a [ti(a)]2 + (i3(a)]i

We now set t = eU in (2.12) to get ((a) and substitute that expression into (2.16). We will

use the resulting equation to get the unknown coefficients a,. To do so, we truncate the infinite

-9-
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Figure 5b. The image of the strip 0 < *, < 1 in the t plane is the

semicircle shown here with I, J and C identified.
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series in (2.12) after N terms. We find the N coefficients a., n = 0,..., N- 1 by collocation. Thus

we introduce the N mesh points
4"

yi= - '! I  1,. .. , N. (2.17)

By using (2.12) we obtain (w!) and d (o 1)l/d in terms of the coefficients a.. Substituting these

expressions into (2.16) at the points cr, we obtain N nonlinear algebraic equations for the N

unknown a.. This system is solved by Newton's method.

When the coefficients a. are known for a given F, the values of I(c) and (o) on the free

surface are obtained by integrating (2.14) and (2.15):

1/- (o.~)[ (,(o. 2 + (o.)2)]_,'d24

9(a) = io - i(a)Esino'(fi(o9 + i(a)')]'da

Here 10 and to are the values of x and y at Vp = 0, t = 1. These values are obtained by integrating

Oz/Otk and Oy/,P along the equipotential W = 0 from ip = 0 (i.e., from the origin) to = 1.

3. Free streamline solutions

Before describing our numerical results we shall show that the problem has an explicit solution

when F = oo. When F = oo, the Bernoulli condition (2.2) reduces to

I¢1= I on L=1. (3.1)

Then (2.4) must be replaced by the requirement that C remains bounded as i --. +o.

It can be checked easily that

--- -d(-tl - -  (3.2)

satisfies this requirement and also satisfies the conditions (3.1), (2.7)-(2.9). Therefore (3.2) is the

solution of the problem for F = oo. Now we eliminate t between (2.10) and (3.2) and use the

identity (2.13). Then we obtain after integration

z=i tanh !(3.3)

This is the representation of the solution with z given as a function off. For 0 = 0, (3.3) reduces

to

z i- ta -(!-)Id = - ncoth

0 4 4
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This is the solution derived by Keller [2]. [See his equation (10).]

A solution for F large can be obtained by considering (3.2) as the first term of an inner

expansion of C(t, F) in powers of F- 2 . This expansion is to be matched to an outer expansion

with(2.5) as leading term as W --* -oo and to another with leading term (2.4) as W -* +oo.

By using (3.2) and (2.10) we find that

C -1+U -1e2 as -0o. (3.4)

Relation (2.6) shows that A -. 1/2 as F o o0. Therefore matching (2.5) with (3.4) yields

A - 1 as F- oo. (3.5)

As o - +o, the solution is described by the classical thin jet theory [5]. If 6 denotes the thickness

of the jet, we have ICI - 1/. Let us write the equation of the free surface of the jet as y = y(x).

Then 6 = z cos3+ y(z) sin P- ICV1. Substituting these expressions into (2.2) and solving for y(x)

yields

= y(x) ~ -z cotfi + ;; (F 2 +2+ 2x)(
n (3.6)

Relation (3.6) is valid for all F provided that z > F 2. An easy calculation with (2.2), (2.13) and

(3.6) shows that the first term in (3.6) (i.e., , z cot 1) yields (2.4).

The solution (3.2) gives the following expression for the shape of the free surface.
I

Y -- z cot# + an- as ip - +o (3.7)

Therefore (3.7) matches with the leading term in (3.6) for F large.

We have shown that (3.2) matches with (2.4) and (2.5) as p -- +oo and Vp -. -oo respectively.

By continuing each expansion to higher order in F -2 and matching, we catn obtin ftrther terms

in the expansions. Together they will represent the flow everywhere for F large.

4. Numerical results

The numerical procedure described in Section 2 was used to compute solutions for various values of

F and P3. Solutions for P < 7r/2 illustrate the teapot effect whereas solutions for 13 > ir/2 represent

flows in a spillway. Typical profiles with F = 1.3 for P = 3r/4 and 1 = r/4 are shown in Figures

*3 and 4 respectively. The broken line corresponds to the asymptotic solution (3.5) for x larg7.

Computed profiles for other values of F and 3 are qualit Ltively similar to these two. We were able

to find solutions for all the values of F > I which we tried.

For F < 1, (2.6) has purely imaginary roots and then (2.5) corresponds to a train of small

amplitude waves at infinity. Although we did not compute them, we expect that there are solutions

for F < I with such wavetrains at infinity.

-12-



5. Pouring flows and weir flows

We now consider flows with two free surfaces over a thin wall in water of infinite depth. (See Figure

1.) The flow in Figure 1 with arbitrary wall slope 0 is a generalization of the flow with / = 7/2

calculated by Vanden-Broeck and Keller [I]. Solutions for arbitrary / can be obtained by using the

procedure described in Section 3 of their paper with their equation (3.8) replaced by

" -e'(f-0)(1 + t)2*/P[-Inc(1 + t2 )]1/3 exp(' Ut) (5.1)
n=O

For/3 = r/2, (5.1) reduces to their equation (3.8). A computed profile obtained by using (5.1)

with/3 = ir/3 is shown in Figure 1. Similar results obtained with different values of P indicate

that there is a unique flow with two free surfaces for each value of /f in 0 < # ! r/2. However the

analysis presented in the previous sections suggests that there are in addition solutions with one

free surface.

In order to compute these extra solutions we consider the flow configuration shown in Figure

2. We choose t = 0 on the wall ICJ and V = 0 at the point C. Let Q be the value of 0 on the

free surface. We introduce dimensionless variables such that Q = g = 1. In these variables, the

;" " Bernoulli equation yields

(V -)2 -2z=O on V'=1. (5.2)

The complex potential plane is shown in Figure 5a. By using the transformation (2.10) as before,

we map the flow domain into the interior of the unit circle in the t-plane shown in Figure 5b. It

can be shown that the following expression is a suitable expansion for the complex velocity:

( e'( -0)(l+ t)!t-'[-inc(l + t)]' 13 exp ( EUxt') (5.3)

Here c is an arbitrary constant between 0 and 0.5. As before we choose c = 0.2. The coefficients U,

are determined by the collocation procedure of Section 2 with the parameter F in (2.16) replaced

by 1. A typical profile for = w/3 is shown in Figure 2.
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