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1. Introduction

The minimum requirement for the numerical evaluation of a flowfield is

an adequate combination of a physical description, discrete grid distribu-

tion and procedural algorithm. All three must allow for events throughout

the domain of interest. For realistic, complex flows this imposes varying

demands on each since the disturbance field is generally nonuniform and

frequently exhibits local concentrations where there are major changes in

state properties. It is natural to attempt adjustment of either the

physical description, the grid pattern and/or the algorithm itself so that

in some sense there is a match of the available numerical power to those

smaller subdomains and the specific kinds of behavior found there. Such

considerations also appear on a global scale when choices are made of in-

viscid or viscous descriptors, or of grid generation techniques, and of

methods that are specifically qualified for hyperbolic or other systems.

The CFD challenge is to devise ways in which appropriate subdivisions

of a global domain may be selected and if need be altered, and how the

resulting regions may be linked across their coimmon interfaces during a

computation. Efficient and robust algorithms must be expected to reduce

both the computational speed and the memory requirements in proportion to

the reduction in grid nodes and the simplicity of the description. Ideally,

coarse grids and a minimum of physics are favored. our focus is on pro-

cedures which will isolate and couple different portions of a complex domain

* such that in each subdomain the evaluation will disclose the details of the

scale events to a sufficient and relevant accuracy.

2. Research Objectives and Tasks

The specific purpose of the research is to develop procedures which

will permit subdivision of the field and description, focus the computation

on those portions which require a more precise evaluation, and control the

coupling between the subdomains so as to maintain accuracy. Some problems

have clear regions in which the dominant physics allows pre-selection of

subdomains. We refer to this as a non-adaptive procedure in contrast to

* an adaptive approach in which the evolving events guide and change the

choices for embedded regions.



The program's initial effort began with a determination of interface

constraints and necessary adjustments of the background Ni (finite volume,

multiple grid) method. Thereafter, threshold and decision parameters were

developed for adaptation, and alternate algorithms have been considered in

order to generalize the allowable mesh topolocy, the specific ba-ic

integrator, and the concept of embedding o: zonal subdivision of an overall

domain. Example evaluations have emphasized cascade and airfoil flowfields.

A brief summary of the last year's efforts is described in Sections 3, 4

and 5, and some details for several tasks are included in attached Appendices.

3. Nonadaptive Embedded Subdomains

In last year's annual report research was reported on an algorithm

which it is hoped will combine the best features of node-based methods

such as Ni's and multistage methods such as Jameson's. Work has continued

throughout this year, and good progress has been made in developing suitable

damping and distribution operators. A detailed energy analysis was completed

which identified requirements for these operators, and eventually led to

suitable formulations for them. We refer the reader to Appendix A of last

year's report for the basic outline of the algorithm. We have not included

details of the further developments of this year, but instead show some

results. Figure 3-1 shows a grid and Mach number plot for a transonic flow

over a circular arc bump in a channel. The grid has an embedded region

around the body. The computed results are in reasonable agreement with

those of Dannenhoffer and Baron using Ni's method. Figure 3-2 shows

supersonic flow past a 4% bump in a channel. The Mach number plots

compare favorably with those of Ni for this problem. The basic algorithm

seems to now be working. As yet we have not atternted a multigrid

version which would significantly improve the rate of convergence.

However, we feel that it is now more important to attempt some calculations

with this algorithm for which previous algorithms had difficulty. As

discussed last year, this algorithm has been formulated without any

assumption of regularity of the mesh or the number of dimensions. We

have just started to try a calculation for a cylinder using the mesh shown

in Figure 3-3. It should be noted that this is a very severe test of any

algorithm for the Euler equations, and we might encounter significant

problems. However, we think it is important to see how irregular a mesh

S V
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can really be handled in order to assess the feasibility of a general arid

approach. The 2urrent algorithm is written to be suitable for vector or

parallel processors.

Approach which has less technical risk and may prove to be more prac-

tical than the above is the zonal approach. The flowfield is divided into

different zones, and within each zone a standard algorithm of some type may

be employed. A zone could have an Euler method on a regular grid and an

adaptive method (within that zone), a Navier-Stokes method, or many other

of a variety of suitable approaches. The important feature is that the

zones communicate through the boundary data. Some thought has been given

this year as to how such a zonal method should be organized to be suitable

for multiprocessor architectures. A general strategy has been conceived,

but not yet developed in detail nor tested. This will be done during the

first six months of the next grant year.

As part of the zonal approach, an idea for a more efficient Navier-Stokes

algorithm has been conceived. It is based upon the observation that Navier-

Stokes approaches generally require very fine grid spacing normal to the

body when compared to the other two directions. This leads to a stiff set

of discrete equations, which then requires an implicit method for solution.

The standard approach is to use a fully implicit method which requires

approximate factorization (e.g. Beam-Warming). A more attractive approach

would be to use an implicit method only for the differences in the body

normal direction, and explicit approaches for the other two directions.

This algorithm would require a block tridiagonal inversion, but no

factorization. A stability analysis is given in Appendix A for a model

problem, and the results look very promising. We will pursue this further

in the next grant year.

4. Adaptive Embedded Subdomains

The goal of the adaptive concept segment of the effort has been to

minimize computational work by appropriately locating, controlling aUd

managing the embedded fine grid regions. The details involve procedures

which recognize flow features as they develop, decide on adequate thresholds

for adaptation to be carried out, and modify the discreteness formulations

in order to proceed with irregular and multiple embedded grids.



During the first part of the last year the initial applications to two-

dimensional airfoils were completed. Those calculations included a sensi-

* tivity study of the influence of different refinement parameters and their

, rates of change as the basis for adaptation decisions. Primitive parameters

such as density, pressure, velocity and entropy were used as threshold

selectors on the basis of their first and second difference distributions

throughout the domain. Field evaluations for NACA 0012 and RAE 2822 lifting

airfoils at transonic speeds indicated density first differences to be most

efficient and therefore preferable in defining subdomains with dominant

activity. This extension of the work to two-dimensional fields was reported

on in AIAA Paper 85-0484 and is included here as Appendix C.

The effort has continued with a further development of the algorithm

so as to introduce a capability for additional self evaluation. Previously

consideration was given to the type of feature expected and an arbitrary

* but fixed number of adaptive levels. A new strategy scheme has been

developed which allows for automatic selection of the number of embedded

regions, in the multiple sense of sub-embedding as well as for distinct

features. A rule based system monitors the progress and measures the CFD

needs against such criteria as the changes in a global parameter of interest.

A number of test cases have been completed for airfoil configurations that

have been considered by the AGARD Working Group 07. Others are planned.

Some preliminary results are shown in Figures 4-1 through 4-4. The

initial and final grids (convergence decided five adaptations) for the

NACA 0012 airfoil at M= 0.85 and 1.00 incidence [ASARD WG 07 Test Case 2]

appear in Figure 4-1. Those finest embedded regions which extend outward

from the upper and lower surfaces indicate shock locations. The adaptation

process includes an allowance for arowth of all embedded regions during the

. final stages of an evaluation. Note that a non-adapted grid which is

globally refined in order to attain the same feature resolution would

contain a factor of 25 times more nodes.

The surface Mach number distributions corresponding to the grids in
Figure 4-1 are shown in Fiaure 4-2. The Mach number contours in the field

and convergence histories for lift and drag coefficients are _n Figure 4-3.

Lastly, results for M= 0.95 are shown in Figure 4-4. Supersonic (M= 1.2)

J%
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cases with detached bow and trailing edge fishtail shocks also have been

completed. The algorithm is robust and accurate with virtually no dis-

cernible effect due to the sub-grid interfaces (see Figure 4-2). Generally,

an order of magnitude reduction in computing time is achieved by introducing

adaptation in place of global refinement.

A vectorized version of the adaptive code is currently being developed

and tested. The Cyber 205 at the NASA Langley Research Center is being

used for that purpose. The intent is to complete both globally refined

and adaptive solutions so as to provide precise comparisons as well as a

demonstration of the suitability for vectorization. In that regard the

data structure associated with the adaptation procedures appears to reduce

the benefits of vectorization only slightly. A paper is in preparation to

describe some of the above findings.

All of the above has continued the use of the Ni method as the basic

integrator for the algorithm. A separate study was undertaken to consider

the embedding technique with an alternative finite volume scheme [Jameson,

Schmidt and Turkel, AIAA 81-1259]. The motivation is a more efficient time

marching procedure, but the focus of the study is on the interface constraints

and the achievement of conservative, accurate and smooth solutions in the

presence of abrupt mesh scale changes. Figure 4-5 shows grids and Mach

number contours for coarse, embedded and globally fine cases of transonic

flow (M= 0.675) past a typical channel bump (10%) configuration. To date

analysis reveals that second order accurate, conservative flux formulations

are not possible at interfaces. Smoothing also implies nonconservative

contributions. Three classes of interface formulations are suggested:

zeroth order accurate and fully conservative, first order accurate for

conserv _tive fluxes and nonconservative smoothing, and second order

accurate but fully nonconservative. The Mach number contours in Figure

4-5 illustrate the advantages of global refinement. The interface effects

are also apparent along the superimposed interface locus forthe embedded

case. This work with the Jameson scheme is continuing.

5. Jerusalem Meeting

A workshop was held in Jerusalem, Israel in December 1984 entitled "The

Impact of Supercomputers on the Next Decade of CFD." The participation of

. . . .. . .
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Professor Murman, one of the organizers of the workshop, was sponsored by

this grant. Professors Murman and Abarbanel have prepared a summary report

of the workshop which is attached as Appendix C. A number of important

issues relative to this grant were brought out at the workshop and are

recorded in Appendix C. Perhaps the most important are the observations

that current algorithms cannot simply be scaled up to 256 megaword machines.

They then will converge so slowly that the procedure will be impractical.

Embedded and adaptive mesh approaches look very favorable as a way to

proceed.
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8. Interactions
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A-i (Appendix )

Stability Analysis of a Semi-Implicit

Scheme for Hyperbolic Equations

Saul S. Abarbanel

Consider the 2-D linearized inviscid Burger's equation:

ut=u x+ u y(1.1)u ux y

We shall consider two finite-difference schemes: an explicit Runga-Kutta

three-stage scheme and a semi-implicit version of the same. The stability

of both algorithms is analyzed.

1. Explicit Scheme

Using standard notation eq(l.l) has the following finite difference

representation which is second order accurate in space and first order

accurate temporally:
0 n

u = (1.2)
j,k j,k

u 1 =u t +6) (1.3)
jlk m j,k x y jlk

u2 = u 0  + At(6 + 6) 1(1.4)
j,k j,k X y j,k

u 3  = U + At( + 6 )U 2  (1.5)
j,k ik X y j,k

n+l 3
Uk j,k

where

n n
u n j+l,k U j-l,k (1.7)

x j,k 2Ax

and

n n

U - lUj,k+1 Uj,kl (1.8)
yU k = - 2 Ay

"Telescoping" the stages (1.3)-(1.5) we get the following expression for
n+1u j, k :

n+l n + + (At) +)(6 + 6 ) 3 u(nuj~ = uj~ +At(x+ (6 + (At) u ) 33 18

lk ik y x y x y j j,k
n n ^ n ije ik4

We Fourier decompose u in the usual manner: u. u e ej,k ,

Then the Fourier representation of (1.8) becomes:

n+l 2(li sienS-- +i X sine +X sin) - x sine +X sinf)2- x ssin +2 ysin4 u7y x y

I..



p A-2

where X = At/Ax and X = At/Ayx y

Define z = X sin e + y sin4 ; the amplification factor, G = ni/u then

becomes :

2 3 2G = 1 + iz - z -iz = ( - z) (i + iz) (1.9)

and therefore

IG 12 = (1 - z 2 ) 2 ( + z 2 )  1 - z2- z + z (1.10)

The Von Neumann stability requirement IGI 1 1, then leads to the following

inequality:

4 -z 2 (1.11)

leading to:

z + 2 1/2 1.27202 (1.12)

Recall now that z X x sin e+ Xv sin 4, and requirement (1.12) takesx y

the form

A t = + y < 1.2720 (1.13)

Ax Ay x

or, upon rearranging

At < 1.2720 Ax Ay (1.14)
Ax + Ay

The stability condition, (1.14), clearly shows that if in the calculation

we choose the time step accordingly, i.e.

At < min 1.2720 j,k " Aj,k (1.15)- k[ Ax j, k + Ay j, k

we may get very severe restriction if the mesh is highly stretched so that

somewhere in the field (Ay/Ax) k, say, is very small.

To overcome this difficulty without paying an inordinately high price

of two matrix inversions per stage we propose a semi-implicit algorithm.

2. Semi-Implicit Scheme

Using the previous notation, the semi-implicit 3-stage Runga-Kutta

algorithm takes the form:

0 n
uj k u0 (2.1)j,k 3 u,k

P.1 0o

(i - At6y)u = u + At6u (2.2)j,k jk x j,k

o.4
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2 0 1(i-At6 )u 2 = U.j + At6 u 1(2.3)
y j,k 3,k x j,k

3 0 2
y j,k j,k x j,k

n+1 = u 3  (2.5)
j,k ,k

Again "telescoping," and joined directly to Fourier space, the amplification

factor is found to be:
22 l2 2 33l

2 -_ 2 2 i - 2iX - ix 3 3
G- = xy x x (2.6)

(1 - iX nI)
y

where C = sin e, =sin ; i.e. -1 - T - 1. The Von Neumann stability

requirement leads to the following inequality:
2 2 2 22 22 2 2 2 <

-(x+y)2 (x2 -y) +y 2(x 2_y2) + 2xy(x2_y2) + (x2 y) (x 4+x y +y) 0 (2.7)

where x = X and y X ; i.e. -- < < 0
x y

We carry out the investigation of (2.7) by first considering the case
2 2 2 2

of y > x 2 . Divide (2.7) by y - x > 0 to get

2 2 x) -y2_ 2xy - x - x y - y - 0 (2.8)
y -x

The worst case is that of xy < 0. Let x--x, y-y, then the new x,y satisfy

xy > 0 and the inequality:

(y- X) 2 2 2 4 22 4<
2 2 y +x + 2xy - x xy -y - (2.9)

y -x
y2 2

Note that in (2.9) it does not matter (with y > x and xy > 0) whether x

and y are both negative or positive. We shall, therefore, consider the

x > 0, y > 0 case. We rewrite (2.9) slightly:

- + 2 -2y 2 
+ r 4  2 . 4 < y- +~xY- X + x 2- 2 + 2xy - x4 - x2 y 2- y 4 < - x + x 2- x4

y +x y+ x

- l+x 2 _ x4  0 (2.10)

The inequality (2.10) is always satisfied. Therefore, we have shown that
2 x

(2.7) is satisfied when y > for all -- <x,y < . Notice also,

directly from (2.7) that when y = ±x the inequality is satisfied (if y=-x
y2 2

we have the equality). Therefore, (2.7) is satisfied for all y > x 2

IjIIyI <-

-, . , * - **-: *- - -, ,.. - . .- - , . . . . . . .- . . - . ..- .- .. . . . . .._



A-4

2 2

Next we consider the case x > y We see from (2.7) that now the worst

4 case is that of xy > 0. Again x and y can both be either negative or positive

without changing the left hand side of (2.7). We shall use x > y; x > 0,
2 2

y > 0. Divide (2.7) x - y > 0:

(x +y) 22 y2 4 2y2 y4<
2 2 - (x 2y ) + y + 2xy + x + x y + y 4 0 (2.11)

x - y

Since x > y, take y = 8x, (0 < < 1). Inequality (2.11) becomes:

1 + 2 2 4 2 4<-+ (2 + 28- 1)x + (4 + + 1)x4 _0

2or, with w= x

4 2 2 2 1w-+B 0/(wj8) ( +82+l)w + (26 +2-)w (2.12)
J 1-8

The smallest w, for all 0 < 8 < 1, that solves (w.8) 0 is w = 4/3 for 8= 1/2.

This is the stability criterion. Thus we have

S (4/3)1/2

and so the stability condition becomes At/Ax X X < 2//3, or
x

At < 1.1547 m AX (2.13)
13,k j,k)

Notice that now we have a conditional stability that does not depend on

the mesh stretching. This condition is still superior to (1.15) even when

A xk = Ayj, everywhere, because then (1.15) yields At - 0.636 nun Axj,k)
W4u

f

9.
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&BSTRAU. Unfortunately, one does not in general
know a pror where these unsmooth regions

An adapted grid technique for accurate are, and thus it often takes a few trials
and efficient solutions of the steady, two- and errors to put the dense mesh where it is
dimensional Euler equations is presented. really required. To circumvent this
Embedded meshes, which are coupled to a problem, adaptive grid techniques have been
fixed global mesh via a multiple-grid developed to search for regions of high
technique, are employed. The effect of errors, and then refine the mesh there.
choosing various adaptation strategies is Thus, the solution and the grid evolve
examined. Solutions are presented for simultaneously.
isolated lifting airfoils In subcritical as
well as transonic flow. The supersonic flow There are currently two methods for
over a circular-arc cascade with a complex adapting grids. The first tand most
shock structure is also presented. In all popular) is the grid point redistribution
cases, the adapted solution achieved the scheme which has been reviewed extensively
same accuracy as global refinement, but by Thompson E13. In this technique, there
required a factor of between 5 and 7 less is a fixed number of grid points which move
computer time and between 3 and 8 less around, congregating in regions of interest.
storage. It is reasonably easy to program, since at

O-.TO every iteration (or at least every few
iterations), some statistic of the flow

The numerical solution of the two- field is sensed (for example entropy
* dimensional Euler equations is typically gradient), and the grid points move either

carried out by discretizinq the flow field by an attraction model or by using a Poisson
and then solving a coupled set of equations equation grid generator. Redistribution
for each node. This technique suffers from however has a few drawbacks. First, since
the introduction of errors due to the there ia a fixed number of grid points,
discrete approximation of the continuous moving them toward flow features deprives
governing equations. These errors are other flow regions of adequate resolution.
related to the local mesh spacing and the Thus, one could say that the solution
local solution smoothness. becomes both good uniformly and at the same

time uniformly bad. Second, due to
topological restrictions, grid lines whichTo obtain more accurate results, one properly congregate near a shock at an

can decrease the mesh spacing. But since airfoil surface must propagate out into the
the domain size is fixed, this results in flow field, often to the far field boundarymore required grid points, with the where the increased resolution is
associated increase in computational work unnecessary. Thompson also points out that
and required storage. It has been noted by excessive grid skewing and stretching canmany prior researchers E13 that for the occur, producing inherent inaccuracies.
Euler equations applied to problems of
interest, much of the flow field is smooth,
resulting in small errors. There are The second grid adaptation technique
however isolated areas in the flow field involves locally embedding sub-grids in

* where the solution is not smooth, resulting regions of interest. This results in an
In appreciably larger errors. Thus, it is increase in the number of grid points, and
an efficient strategy to refine the mesh hence an increase in required computationalonly where necessary. resources. Also, artificial internalboundaries are created in the flow field;

care must be taken to ensure that thesolution will smoothly transfer across such
- Research Assistant, Member AIAA an interface, while maintaining conservation
AA Professor, Associate Fellow AIAA and stability. Since global grid points are

never moved, the accuracy is not reduced
CAoPYAbhIaAmvmsallle of Atronsolic sad away from flow features as in redistribution

AS"IStW, . INC.. IVIS. l dghlts restved. methods.
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Berger and Jameson t2J have used local The use of irregularly shaped embedded
grid embedding for the two-dimensional Euler
equations. In their approach, the flow regions iroduces a bookeeping problem
features are detected and "best-fit" which must be addressed. Since Ni's scheme

rectangles are superimposed over the global is cell-based, each cell can be integrated

grid. This results in a mesh interface independently which is an important

across which it is very difficult to enforce consideration in the choice of this method.
conservation. In addition, determination of Cells communicate with each other only

through the variables at the shared nodes
the best-fit rectangle requires complex from the previous explicit pseudo-time step.
clustering algorithms. A data structure which is based on that

property was first introduced by Usab and
An alternative embedded mesh procedure Murman [53, a variation of which is used in

has been proposed by Dannenhoffer and Baron the current program.
[33. In this approach, irregularly shaped
embedded regions which are topologically GOVERNING EQUATIONS

I connected to the global grid are used. This
results in both a simpler embedded mesh The unsteady, two-dimensional Euler
interface as well as a simpler embedding equations in conservation law form are given
scheme which doesn't require clustering, by

In reference [33, the authors aU 8 _F C3 G

discussed their technique for the at ax Sy
one-dimensional Euler equation and where
two-dimensional Burgers equation. The
extension of their technique to the rP1rp 1rpv 1
two-dimensional Euler equations is presented P Pu F - uusp G puv
here. pv puv pv+p

E puh o  pvho

This paper first discusses the overall
adaptation strategy. The governing and

. equations are presented and the embedded how E+p P + (22)

. mesh algorithm is described. Included in p Y-1 p 2 uv2
that section are discussions of the embedded
mesh interface as well as the adapted In equation (1), p is the density, u and v
smoothing algorithm employed. Appropriate are the velocity components in the x- and y-
choices for a refinement parameter are directions, E is the total internal energy
discussed in the next section. Computed direct e is the l er enrg
results for the Euler flow over airfoils and per unit volume0 p is the pressure, h is
a model problem with complicated shock the total enthalpy, and y is the ratio of

topology complete the discussion. specific heats.

ADAPTIVE SOLUTION ALGORI-HM I MARCHING PROCDURE

Basic Scheme
The basic approach of the adapted

solution procedure described here is to usea fixed global grid and then embed Consider the fine mesh cell shown in
aIrredloa figure 1. To calculate the "change" in the
irregularly shaped grids where necessary, dependent variables at the center of this
This is accomplished by solving initially cell, the divergence theorem is applied to
only on the global grid. When the governing equations, giving
quasi-convergence is reached, a refinement
parameter is computed at each node and any - n -

cells which are connected to nodes where the bU = -V - Fk + P - F (2)
refinement parameter is above some threshold
are divided. The program then reintegrates
on the new grid (global and embedded, where F denotes the contravariant flux
coupled by a multiple-grid scheme). After a through each given face, At denotes the
prespecified number of adaptations pseudo-time step, and 6V the cell volume.
(typically 2), the program iterates to the The contravariant fluxes are computed by
final converged solution. trapezoidal integration along each cell

face, based on the dependent variables at

The integration of the governing the corner nodes. Equation (2) is called
equation is performed using Ni's multiple- the cell flux balance.

grid algorithm [43. This scheme is composed ne
of two parts -- a finite-volume form of a nw
standard single-step, Lax-'endroff F
integration applied on a fine mesh, and a e
coarse grid accelerator which operates on
residuals transported from the fine mesh
solver. In both parts, a "change" is

computed at the center of each cell and then sw 11 Tse
transferred to the adjacent nodes by means
of "distribution formulae". Figure 1. Typical computational cell.

%. .A........................ ...... ........ .....
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The distribution formulae serve to the characteristic variables are predicted
transfer the "change" (AU) from the center correctly by the interior scheme.
of the cell to the four corner nodes. The
formulae are derived from a second-order- Embedded Mesh Interface
accurate Taylor series expansion of U (with
respect to time), and are given by The embedded grid is composed of cells

At At ) which were formed by dividing a global (or
SU AU AF AG (3) previously divided) cell. Locally, this

Ax y appears exactly like the fine and coarse

grid cells used in the multiple-grid

where algorithm.
F = 1- U and &G A AU (4) Using a multiple-grid accelerator to

F-au ad A au couple the global and embedded mexhes was

first suggested by Brandt E73 and was
are the unsteady fluxes based upon the implemented by Brown for the full potential

Jacobians of F and G evaluated at the center equation [83. With this technique, waves
of the cell. The first term in equation (3) propagate through the embedded regions at
tAU) is the first-order-change-in-time for coarse grid speeds. Usab has shown that
the Taylor series expansion while the last this coupling results in convergence rates
two terms represent a second-order-change- which are as fast as coarse-grid-alone
in-time which is necessary for stability, solutions C93. This is significant when one
The latter terms bias the distribution of considers the cos.- quences of simply
the "change" in the windward direction, coupling global and embedded regions at the
which is similar to the stabilizing effects interface E23. In the latter technique,
of upwind differencing E63. wave propagation is restricted to the

embedded (fine) grid speed, resulting in

To accelerate solution convergence, Ni slower convergence rates.

introduced a multiple-grid algorithm C43
which propagates the fine grid changes at Points at the edge of the embedded
coarse grid speeds. The coarse grid is domain must be caLefully treated in order to
generated by eliminating every other fine maintain global conservation and
grid line. The coarse grid acceleration is computational stability. Consider the
accomplished by transporting the changes embedded mesh interface shown in figure 2.
previously calculated from the fine meshes In the present scheme, nodes 2, 5, and 9 are
to the center of a coarse grid cell and then considered part of the fine domain. Thus

distributing that change to the coarse grid the flux balance and distribution formulae
nodes by use of the distribution formulae can be applied as usual to cells B, C, D,
(3). and E. Although the changes in the

dependent variables are computed at nodes 2,
Boundary Conditions 5, and 9 due to cells B and E, the changes

must not be applied when operating on the

For the problems considered in this embedded mesh level. Instead, they must be
paper, there are two types of boundary stored and applied only after the (explicit)
conditions. The first is a solid wall flux balance has been performed on cell A.
boundary condition where "no flow through
the surface" is enforced. If one views the Since cell A is a fine cell on the
solid wall as a streamline, then the effect global grid level, the appropriate
of a pseudo-cell just inside the body can be integration consists of a flux balance and
considered. By combining the effects of the distribution. Each of these steps must be
distribution formulae (3) on each side of modified due to the presence of node 5. The
the wall, one finds that the boundary flux balance now consists of the sum of the
condition reduces to doubling the boundary fluxes through five faces (1-2, 2-5, 5-9,
changes predicted by the interior cell, and 9-8, and 8-1). This can be easily
cancelling the normal velocity component. incorporated into the trapezoidal

integration. Since the fluxes ':hrough the
The other boundary condition type is a interface (for example 2-5) cancel in the

far field condition. For an airfoil adjoining cells (for example A and B), the
calculation, the far field is composed of a scheme maintains global conservation.
uniform flow plus the effect of a vortex,
whose strength is set based upon an 10
approximate lift coefficient. For the-Q __---4
cascade problem, the free stream is assumed S4
to be simply a uniform flow both upstream E D
and downstream. 6 1 7

The boundary conditions are applied at B C
far field nodes by using a characteristic
analysis in the local streamwise direction; 2 31
the characteristic variables which enter the

* domain remain unchanged, while for those
" exiting, it is assumed that the changes in Figure 2. Detail of embedded mesh.

* 3



The distribution formulae given by Here q is the level of backg-ound smoothing
equation (3) remain valid for cell A. needed to control spurious oscillations and
However, the change at the center of the & is the factor by which the smoothing has
cell must also be distributed to node 5. to be increased (above the background level)
This is accomplished by averaging the near shocks. Typical values are n-0.025 and
distribution to nodes 2 and 9. or in general 1-50.

SU AU + At A" A desirable characteristic of anyAx smoothing scheme is that it be conservative,
and (5) i.e., the sum of the smoothing terms over

1U AU At AG the whole domain vanishes. If P is a
WUA - AUconstant in (6), the contributions f the

interior nodes in fact do cancel, leaving
only boundary contributions. If however M
varies, this is not true. To circumvent
this problem, one can use an averaging ofCoarse cell BCDE is treated the same the smoothing coefficients, giving

as any other coarse cell interior to the
embedded region. This yields an apparent smoothI U + (Iiai +ti) (ui1l-u )
inconsistency at nodes 2, 5, and 9 due to ()
the absence of a coarse cell underlying cell
A. At convergence however, the residuals - (pj+pi+l) A (uf-uj+ I )
transferred to BCDE do vanish as do the
inconsistencies.

Adapted Smoothing Thus, the sum of the smoothing over
all i results in the cancellation of the

As with most solutions of the Euler contributions of all the interior intervals,
equations, artificial viscosity Is needed to leaving only the boundary terms, or
damp out spurious oscillatory solutions and
to capture shocks. Different levels of -
artificial viscosity are needed for these Z (smoothi) - + (P + )  U1 -u2
two purposes. Jameson r103 uses fourth 12 (9)
order smoothing over the whole flow field to _ I +PI.N) A (UNluN)
damp out spurious oscillations, with second
order smoothing blended in near shocks to
capture them. This blending has the effect
of putting the lower order smoothing only This leaves two possibilities. First,
where it is needed. one can accept the amount of non-

conservation near the boundary and allow the
An alternative way of using the proper creation of mass (or momentum); the

smoothing only where needed is to use second resulting error is not serious. In
order smoothing globally, but to vary the practice, a more serious problem with this
smoothing coefficient so that only the approach is that the smoothing operator
required amount is used locally. Typically, looks convective (rather than diffusive)
the coefficient is related to the second near the boundary. This is not an
difference of density or pressure. acceptable numerical model for a smoothing

operator. The other approach (and the one
adopted here) is simply not to smooth normalFor illustrative purposes, the to the ends of the domiin. As long as

following will be developed in one smoothing is not required there (and
dimension, with its extension to two numerical experiments show that it is not),
dimensions being straightforward, this is a valid approach.

The smoothing at any point i is given ArbyA spatially varying smoothing .
coefficient can also cause the smoothing

smooth Pi (u 2u +U (6) term to look convective within the flow
i-- I i+ field. This occurs if Pa is allowed to vary

too rapidly within the field. It can easily
where u is the parameter being smoothed and happen near shocks where the second

is the spatially varying smoothing difference of density can change rapidly
c~efficient (which Includes the appropriate from point to point. It is reasonabletherefore to require a smooth distributiongeometric parameters). of i, which requires smoothing the

smoothing coefficient. This can be %
To vary the smoothing coefficient from accomplished by calculating i at every .'

node to node, a second difference of density point, and then smoothing the values before
is used in the current program. This takes use in the smoothing step. Unfortunately,
the form this requires three sweeps through all the

computational nodes, which is expensive.
[ i i- Pi.0i+ll Therefore, in the present technique, a

n 1 + ah (7) special smoothing coefficient equation

4
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% n+ n n n) n nOn the other hand, If the first difference
1 ~ n~ 1A n I VI1 + is(i_-21I+ +) of density were Used, then the refinement

"1 I~i) ~ ~ " 'j(10) parameter would not Increase an a result of
prior adaptation.

is added to the set of equations being
solved, vhere n Is the Iteration count and

W is the desired smoothing coefficient Figure 3 shows the effect of choosing
caputed from equation (7). In equation different refinement parameters during
(10), aL governs the rate of convergence for actual computations. The embedded grids
p which must be faster than the rate of wr coptdfor an RAE 2822 airfoil at
c~nvergence of the Euler equations. The Mach number 0.75 and angle of attack 3.0
parameter 0 In (10) governs the smoothness degrees. This Case has a shock on the upper

1% of J~.This equation assumes that ja doe& surface at about 75 percent chord. In each
not var mcfrmtepeiu eation, of the cases, there are two sequential

Uand thus using the prior values for the adaptations, with the threshold selected
diffusive terms does not cause significant automatically as described below.
errors. Typical values are c~a0.1 and 0-1.

Figure 3a shows the grid resulting
_O_ RESULT from using the first difference of density

as the refinement parameter. In this case,
double embedding was automatically generated

The computed results are presented in around the stagnation point, the shock, and
two sections. In the first, various the trailing edge. In addition, double
refinement parameters are examined, and embedding followed the expansion fan
appropriate choices for the two-dimensional generated at the leading edge. The
Euler equations are discussed. The second remainder of the airfoil surface Is singly
section compares adapted solutions with embedded, except on the lower surface near
solutions computed with global refinement, the trailing edge.
Here, global refinement refers to the
process of subdividing every cell In the
domain. These comparisons are made with Figure 3b shows the grid resulting
respect to both accuracy and efficiency. from using the first difference of pressureas the refinement parameter. The grid is
Feature Detection very similar to that in figure 3a, except

Featre etecionthat there Is less adaptation near the
trailing edge and in the near wake region.

Adaptation requires that the program This is due to the fact that pressure is
be able to sense where and when refinement continuous across the slip line emanating
Is required. For the Euler equations there from the trailing edge, whereas the density

q.are nmy values which might be sensed for has a jump.
this purpose. For example, one may use
first or second differences, or even the In figure 3c, the first difference of
truncation error. Those operators can be Velocity served as the refinement parameter.
applied to such primitive values as density Here again, the pattern of adaptation is
or energy, or to derived quantities such as very similar to the previous two examples.
the entropy. The main difference is that the extent of

the adaptation behind the airfoil is
In choosing an appropriate refinement slightly larger than either of the other

* parameter, one must consider the kinds of two.
features which are to sensed and things
about them which are different than the The first difference of entropy is
background flow. For example, If one is used as the refinement parameter in figure
searching for shocks, It is clear that a 3d. It can be seen that the adaptation very
change In density, pressure, and entropy is faithfully follows the entropy gradient set

*generated across the shock, but that there up in the wake, even out to the far field
Is no change In mass. Similarly, If one was boundary. Since one must control the
looking for the slip line behind an airfoil, increase in required computational
it may be useful to use density or entropy, resources, this results In fewer points

*but not static pressure since It is being available for other parts of the
continuous across the slip line, field, with the lower surface of the airfoil

being almost completely ignored. Also, the
In ddiionto hooingwhih vrialeadaptation region around the shock Is ratherIn ddiionto h~isin whch ariblesmall, resulting in an appreciable strength

to sense, one Must also select a way Of shock passing through the edge of the
measuring how It varies. Typically first or embedded region.
second differences might be examined. Here,

(the undivided differences were chosen
Instead of the gradient or Laplacian of the The computed lift and drag
chosen variable since It is important that coefficients for each of these cases were
the measure react to prior adaptation. For all within 1.4 percent of each other,
example, If one used the entropy gradient as indicating that the adaptations were equally
a measure near a shock, adaptation would good from the standpoint of accuracy. One
seen to have the wrong effect, since after can see from the figures that the normalized
adaptation, the gradient would increase, CPU times to convergence ranged from 4.5 to
Indicating a need for more adaptation, etc. 7.1. However, these times were not directly

5



a) First difference of density. e) Second difference of density.
Nodes u1601, Time *4.5

*b) First difference of pressure. f) Second difference Of pressure.
Nodes :1581. Time *7.1

c) First difference of velocity. g) Second difference of velocity.
*Nodes -1641. Time u4.8

d) First difference of entropy. h) Second difference Of entropy.
Nodes *1976, Time a 6.3

Figure 3.
Effect of choice of refinement parameter.

RAE 2822, Mach-O.75, oLu3.0 deg.
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related to the number of nodes for each slope). This corresponds to the decrease In
case, due to the varying number Of the threshold belowi the value of noise in
Iterations required to reach convergence. figure 4. If on the other hand there is a
From these cases as well as others which the slight Increase In the threshold. there are
authors have reviewed, It appears that the very few nodes which would no longer b~ecome
adaptations which completely surround fl 1w adapted. Therefore, the 'knee" in figure 5
features (shocks, leading and trailing is used to automatically set the threshold.I edges) perform the best.

One must however include guards Into
Figjures 3e through 3h show the effect this algorithm. For example it seems

of using the second difference of density, foolish to choose a threshOlA va .ie which is
pressure, velocity, and entropy less than the average ref l.itsent parameter.
respectively. In each case, the edge of the It Is also important to ensure that too much
embedded region proves to be relatively adaptation Is not done since that Increases
ragged. There are voids In the embedded the required computational resources. This
region as well as Islands of adaptation, as results In constraining the possible values
easily evidenced in figure 3f. This results of threshold by the cross-hatched lines In
In convergence difficulties in the solver. figure 5.
Consequently, all of the cases using second
differences resulted in unacceptably long
computation times due to such topological
problems.

Based on these findings, as well as on 16.
the accuracies and computation times for all ++
these methods, it appears that the first 4+ +
difference of density is the best refinement +
parameter, especially for transonic airfoils +.
with shocks, stagnation regions, and slip +
lines. +

In addition to selecting an 8.+ + +
appropriate refinement parameter, It is +
necessary to determine a threshold; s ~___
adaptation is performed around any nodes
whose refinement parameter exceeds this "T
threshold. This is a classical ~
signal-to-noise discriminator.

Figure 4 shows the distribution of 0....._
refinement parameter arbitrarily plotted node number
versus node number for the airf oilFiue4
calculation previously discussed. The Dsrbtoofigrenmt 4.aetr
refinement parameter for this case Is the Ditbuonfrenmntpaee.
first difference of density, normalized by
the average first difference over the whole
domain. There are four levels of possible
threshold shown.

Choosing A as the threshold results in
very few cells being adapted.
Alternatively, choosing D results in almost....... ................ ....
all the cells being adapted, yielding an
almost global embedding, which is a very
ineffective strategy. It appears from 0
figure 4 that an appropriate threshold value . ...... .... ......... ......................
would be either A or C.0

This data Is presented again in figure-
5 which is the cumulative distribution
function corresponding to figure 4. On the .- , ,

Z ~abscissa are the possible values of the . atmtclydtrie

fraction of points whose refinement
parameter exceeds the selected threshold. .CA

0. -

There Is a knee in the figure near 1 . threshold 4.
point C. For a slight decrease in the
threshold value, the fraction of points Figure 5.
which would be newly Included In the Cumulative distribution of refinement

% adaptation would rise rapidly (a large parameter.
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A sensitivity study was conducted to
ascertain the importance of the parameters
used for the automatic threshold

Fdetermination. Figure 6 (a, b, and c) shows
the effect of choosing the threshold at
levels A, B, and C respectively. It can be

s meen that the extent of the embedded region
increases as the threshold value decreases.
However, the computed lift and drag
coefficients show a slight degradation from
C to B (about I percent) and a larger
degradation from C to A (about 5 percent).
This Is consistent with the previous comment
that the adaptation is best when it
completely surrounds the flow features of
interest.

Adption.2 Effectivenes a) Threshold set at A.

To determine the effectiveness of an
adaptive grid scheme, one must consider its
accuracy and efficiency as compared with
standard techniques. Adaptation
effectiveness can be measured In two ways;
the first is with respect to required CPU
time and the second is with respect to
required computer storage. Adaptation
accuracy can be measured by comparing
solutions computed with adapted refinement
with those based upon globalIly refined
grids.

Figure 7 shows the computed accuracy
versus efficiency for three different
airfoils (to be discussed below). The
accuracy is measured by the difference
between the computed lift coefficient and a
reference lift coefficient (figures 7a and
70) or the difference between the computed
drag coefficient and a reference value b) Threshold set at B.
(figures 7b and 7d). The efficiency is
measured either by the required CPU time
normalized by the time required for the base
solution (figures 7a and 7b), or by the
number of nodes similarly normalized
(figures 7c and 7d). In each figure, for
each airfoil (symbol), there are two lines.
The solid line refers to adapted refinement
and the dotted line refers to global
refinement.

The first airfoil Is the NACA 0012 at
Mach number 0.40 and zero degrees angle of

* attack. For this case, which is denoted by
squares, the reference values of lift and
drag coefficients are both zero. It should
be noted that all the solutions yielded zer2
lift, and this Is shown as an error of 10
(the assumed accuracy of the calculation).
The drag coefficients for the solution with
one global and one adapted refinement were
Identical, as were the drags calculated for c) Threshold set at C.
two global and two adapted refinements.

The second case (denoted by circles)
is again for the NACA 0012. but this time at
Mach number 0.63 and 2.0 degrees angle of Figure 6. Effect of choice of threshold.
attack. For this case, the reference lift First difference of density.

*coefficient is 0.3297 and the reference drag RAE 2822, Mach=0.75, m-3.0 deg.
coefficient is zero. It can again be seen
that the lift and drag coefficients are the
same if global or adapt ed refinement is
used.
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RACA 0012 M -. 40 a-0. deg
0 NACA 0012 ft-.63 a-2. deq

0. PRAE 2822 M."-.75 0-3 deg

-4. --.... .. . ... 4. s e - . . . . . . . . . . .

0. 10. CPU time 30. 40. 0. 4. Soge 12. 1:6.

a) Lift coefficient vs. CPU time. c) Lift coefficient vs. storage.

2. -2.

-2.8 -2.8 ""

B. B3

-3.6 -3.6"
0. 10. CPU time 30. 40. 0. 4. Storage 12. 16.

b) Drag coefficient vs. CPU time. d) Drag coefficient vs. storage.

Figure 7. Comparison of accuracy vs.
efficiency for global and adapted embedding.

The third case (denoted by triangles) Cp ................................. .......
is the RAE 2822 airfoil at Mach number 0.75and 3 degrees angle of attack. The pressure
coefficient distribution for this airfoil
(fure 8) shows a shock at about 75 percent .
chord on the upper surface, as do the 0ach

number contours for the same case (figure
9). The three lines in figure 8 are the
computed solutions without refinement, with 0.25.
global refinement, and with adapted
refinement; the global and adapted
refinements are so close that they virtually
appear as one line on the plot. For this... ...... ........
case, the reference lift coefficient is adapted refinement refineaent
1.076 and the reference drag coefficient Is
0.0424. The anomaly in drag coefficient for
the base mesh is due to a trade-off between -0.75
shock location (and strength) change and
total pressure loss due to smoothing. fineme
Again, the error in the lift and drag
coefficients are the same for global and .
adapted refinement.

For these cases, figure 7 demonstrates -1.75
that adaptive refinement yielded the same 0. .2 .4 .6 .8 1.
accuracy as global refinement, but required x/chord
only 12 to 33 percent as much resources. Figure 8. Pressure coefficient for
Alternatively, one notes that for a given non-embedded, global-embedded, and
resource allocation, the adapted solutions adapted-embedded runs.
yielded considerably more accurate RAE 2822 Mach-0.75, a-3.0 deg.
solutions.

9
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, " sonic line a An adaptive smoothing algorithm has been

/ developed, which is conservative, small
in smooth regions, and primarily
diffusive rather than convective.

e The adaptation strategy presented here
eis extendable to three-dimensions, with

p even larger anticipated savings.
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Figure 9. Mach number contours.
RAE 2822 Mach-0.75, mw3.0 deg.

The final test case is for the
supersonic flow over an 8-percent-thick,
circular-arc, unstaggered cascade at a free
stream Mach number of 1.4. In this case, ~jI
there is a complex shock pattern which forms II I1 .Hl Hi I
from the intersection and eventual ___liN

coalescence of the leading and trailing edge
shocks. It can be seen that the adaptation _____ "-"__.
method used here resolves the detailed shock __-____ ___ ..T__________"....
interaction (figure l0a). If grid -. '-* -
refinement by redistribution had been used, -"
the case would have yielded significant
topological difficulties. As before, the a) adapted grid.

refinement parameter is the first difference
of density, with the threshold chosen
automatically.

Figure 10b shows that for the base MI.4
grid, the shock intersection, ref2ection,
and eventual coalescence is missed whereas
for either tne global (figure 10c) or
adapted refinement (figure lOd), these b) Mach number contours
phenomena are obtained in detail. For this Base grid Time = 1.00
case, the adapted solution ran 4.8 times
faster and required one third the storage of
the comparable globally refined solution.

CONJCLUSIONS M,-l .4

o An adapted grid strategy which uses the
embedded mesh procedure described herein
yields solutions with the same accuracy
as a globally refined mesh case but only T ) oac r nmet. cTurs
requires between 12 and 33 percent of r T
the resources for all cases tried to
date.

* Various refinement parameters have been
examined to deduce that the first M.-1.4
difference of density is the most A---- ON/j
effective for two dimensional Euler
solutions with shocks.

d) Mach number contours
9 A thresholding algorithm has been Two adapted refinements. Time - 1.31

developed which automatically sets
thresholds in order to detect and
isolate features from the background Figure 10.

field. Solution for supersonic circular arc cascade.

10
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IMPACT OF S:PERZO:UTEPS ON THX 1_."T D'EC-AD CT

CO!-,2UTATI ONAL FLUID DYIA..:: CS

"arll M. Murman

Saul S. Abarbane!

Introduction

A small group of C'D researchers from the United States and Israel

cathered in Jerusalem during December 1984 at a workshop entitled "The

Impact of Supercomputers on the Next Decade of Computational Fluid

Dynamics." The background of the workshop attendees ranged from 1D

code developers to applied mathematicians to comnuter experts. During

the workshop the participants presented and discussed results of their

current research. They then engaged in discussion of the work shop

theme. This article attemp.ts to summarize their observations and

speculations on what the impcat of superc omputers will be on -D during

the next decade. First, however, we briefly su--narize the papers in

these proceedings and the current status of 2Z

The Present

Supercommuters and =D have affected every aspect cf fluid

dynamics to some degree during the past decade. Perhaps the area

which has exnerienced the most dramatic imnact is the field of attached

flow aerodynamics, tvical of desicn point conditions for transncrz-

aircraft. In this situation the fluid flow is well behaved by design.

Separated and unsteady flow are avoided. The turbulent flow models
applicable to attached boundary lavers are acceptable (though not

perfect). There are no chemical reactions or =hase chances taking

-lace. The biggest challenges lie in solving the nonlinear inviscid

flow equations (=rimariyv transonic) and dealing with the complex

geometry. During the past decade, the cana'ii-v of the con..outers and

algcrithms has developed encrmousl.y in this one particular subdiscf-

=line. In nanv instances they are as much utilized as winA tunnel

testing, althouah by no mea.s supplementing then.

%
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in most other fields of science and enr:.neering, nany cf the '*rnre

difficult fluid d&nanic phenomena which are absent Jr, at:ached flow

aerodynamics are of pararount imcrtance. For exartle, turbemacnines

are dominated by three-dimensional viCous and unsteady chenomena which

affect heat transfer and performance. :n nanv devices for Fronulsion

and chemical processes, multicomDcnent chemical reactions and turbulent

mixing must be modeled. High performance aircraft and helicopters are

strongly influenced by vortical and unsteady effects. Low drag bodies

are dominated by the prediction of transition. Separated, unsteady

wakes of automobiles influence their fuel consunction and handling

capabilities. In larce scale oeophvsical fluid dynamics, coricis

forces and stratification effects are dominant. These lead to multil2e

time scale wave phenomena. Unstable stratification produces turbulent,

buoyant mixing. Turbulent flow is present in virtually every situation,

yet can only be adequately modeled for the simplest of flows like

attached boundary layers and jets. This does not exhaust the list, but

the point made here is quite clear; only the tip of the iceberg has

been seen by the progress made in attached flow aerodynamics. The

biggest challenges are yet to come. The papers in the proceedings cive

one assessment of where the field stands in this respect.

The Pavers

Fernbach's paper gives a comprehensive overview of the current per-

form.ance of supercomputers and what is on the horizon. This field is

now very active following a dcormant period in the 70's. The basic

message is that computer speed and main memory will both increase by

about two orders of macnitude in the next decade. ;lso, all future

supercomputers will be a combination of vector (pipeline) and parallel

(multinrocesscr) architectures. Alocrithms will have to adact to and

exploit these architectural features to achieve the stated machine

performance.. Thompkins' paper demonstrates -hat supercomouting does

not necessarily have to be done on supercomputers. :t makes an inter-

esting case for the need cf personal-sized supercomputers with speeds

about one order of mac.itude slower than the mainframes, but with com-

parable memories. The idea of using hi~her level languages for multi-

processor applications is introduced by Thompkins. I;avier-Stokes

results are also presented for turbomachine cascades, illustrating the

state of the art for CD applied to these flows. The zaper by Jameson,

Leicher, and Dawson demonstrates one way that the current ceneration cf

q ', h%: / ,, ,¢,, ;, • .',v.•. .';:,•' ' .. " ." ¢ ., ;:,.
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The Daoer b, Steaer andc EsuinrZ rovldes an. o''re f c:rre'.t

2.ssues regarding the computatto:. c- ' r szu ez:a-

fl1ows. in additztcn to a nur.bDer of.. . ,~s~fiz arc- 1re-

sented, the experience of these authorsn uQ.........enerat _Jn

of suoercom ters -'s recorded. Vetrz:o.c: al gr:z'-z

is exolIained. The need for cood ararnizal otroesn of large data

bases turns out to be mandatorv. ;- st-milar iressaoe is oi'er. in the

paper by MuaRizzi. and Po-well, whizh ccmzoares two ineoenbernzav o-w

tained solutions for leadina erre vorte:- f-o-ws, fo7r delta wiors. Tnis

zaner also illust:rates that t-i class of cxzressin_-le flows is

relatively runexo lored compared to shock wave dominateC flow.s.

Several papers present new a_!acr_4thms for the Euler and the incor-

uressjnle or comoressible Navier---tokes ecuatrons. Since the solution

o: these ecuations will become more frecuent with the hicher nower

connuters, this is an irmoortanz toti'c for the future. The na-Der b%,

Walters and Dwover itoouces an uow_ nz oifferencing line relaxation

alcorithm for t:he Euler ecuations. M~c~ormack roresents a new. alcorithm

for the comressible Naviez-Stokes e=-uations which has some simil1arities

to the alaorithm of Walters and Dwover. Tu _rkej. =resenzs methods for

accelerating -the convergence to a st-eady state solut:ion of the le

or 1Navier-Stokes ecuat=ions b,, usin g =reconditiona to alter the time

con~sistency of the ecuation set. The taoce bv owsza acoresses

-ni.:e ele-ment methods for the i mrssheavier-Stokes ecuattons

and rresentzs a nu=,oer7 of results conrer-:tn=o entr-y to aourts and the

sifbseauent in~ternal -flow. Remar',zs are also included on fi4nit:e ele-ment

methods for comrehe N~iavier-Stokes ecuatroins a-nd aou=lications on

suoerccmuers.Ical cives an alcrith-n -for -the zoaraboliZed Navier-

Stokes (PNS) ecuations. Brand= an.: Ta'asan =resent the latest mu 1 ~i-

grid alcoritmns for cuasi-ellizt_:=-ic sylstem.s which arise from discret:e

at:=~rxnnatnions to the Navier-Stzoles and rel'.ateC4 ecuaticns. Th e

amoo.=rtance of alcrith-ms, su=h as rum-4ci met-O'ds, which have cor:-_

vercence rates (spectral radizus) indenendent of t-he --=-.ber of mesh

pointsi w-ill be mentioned later.

!Perhacs no orrenZS more central to flui-d mechaznics tham the

=r edlction of transiti:Aon. and tu=rbulent flowsc. Three =a-oers deal with

tho4s tozic. Brachet,-Met calf e, Orszac and PLlev =rsent new results

for isaiiyof free shear flows based _non direct cof'~s0

%
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the *.i..._er-zL e::eri-nts Su-:. as these can
lead to new thecretlca unders:and.nc of of atacn__

flows. Ferioer's rarjer cives a co.--renenr._v'e overvie: of current and

future arcroacnes to tur ent fo- c=-u-ions usin;7 direct simula-

tcns cf the :Navier-Stokes equatcns, aroe ed-:_" simulation, and

-urbulence mroeis. ,;fshteil considers the .ato toric in much

greater detail. Tnese two papers point Out the capabilities and short-

corrnos cf current zurbulence codels. The inz crtance of havinc accurate

alcrithms is stressed by both authors.

Papers by Sulem and by lichelson irlustrate how numerical results

can be used to understand the nature of the solutions to partial

differential evuations. The use of spectral methods for problems which

require high accuracy is receiving increased interest. The presenta-

tions by Abarbanel and Gottlieb, and Gottlieb and Tadnmor consider some

basic issues regarding the resolution of extreme gradients by spectral

methods. The paper by Browning and Kreiss illustrates that many fluid

problems with multiole time and lencth scales are exceedinaly difficult

to compute, even with "unlimited" comp-uter power. It is imoor-ant to

understand that the powerful new supercomputers will only yield useful

results if the mathematical and numerical analysis formulation is care-

fully done. The paper by Sever is another illustration of this.

The Nex:t Decade

During the next decade sunercomu:er power v_'1 increase dramatical-

ly. The d-ectly adoressabile high speed memory capacity will increase

by about two orders cf magritude, from 2 million words to 256 million

words. Processor speed will increase an order cf mari:ude from about

100 .!.+_LOPS to 1000 .FLOPS, or perhaps more. _t is likely -hat the
corresponding parameters of smaller computers win. increase by similar

factors. History has shown that whenever an .pctant tarameter is

varied by an order of magnitude, new discoveries are made. The diffi-

culty is to have some feelinc as to what those discoveries might be.

The Pa-ticizants realized, of course, that fcrecas-ing the future as

never an exact science, and one shoulcd =roceed cau-tious.v. _:t is

. interestinc to note, however, t-at durinc ne _canel discussion amost

everyone subscribed to the idea that the ne. suoercomouters "- - - now t

only allow tackling bigger problems, but will also lead to a better

understanding of the physics of some complex probie.:.s such as turbulence,

vortical flows, and chemically reacting flows.

~%



:n the remamnder cf :Zs art_^e, .e sun-,arize the efee_-Is exz:resse

by the attendees concernz4nc four questions which were Losed Dv the

panel.

Imnart of Sunercorruters on 'D

In the field of aerod&'n;ar.ics, the rellninar.' design of transoor-t

aircraft will primaril'y be done on superconcLuters. The modeling and

om~uting capability will be basically in -:ace. Unlike earlie r pre-

dictions that commuters will make wind tunnels obsolete, few neonle

subscribe to that viewooint no%.-. What is more likely to hanpen is that

the use of wind tunnels by researchers and desian encineerswill chanae.

Less and less of the ex-tiorator' design will be done by tests as the

predictive methods become more reliable. This has already happened in

several instances with the current aeneration of computers. The next

generation will provide enough resolution and speed that a realistic

model of an actual cruising transoort aircraft can be computed.

The capability to model "off-design" or "unclean" aerodynarnic flows

will increase. These are flows which are separated, unsteady, vortex

dominated, and the like. Such flows are cf great importance for

maneuvers of hich Derfc_-mance aircraft or for emercencv situations for

transport aircraft. The loads developed in these recimes often

deteamine the recuired strenc-th cf the aircraft components. The same

phenomena often dominate rota--v wing and rotating machine:D aero-

dvn arics. Caaci-y cf comuers and alacrithns u- to now has not been

adecuate to sumoort a frontal assa-ult on this class of .robl--.. The

-Davoff for analysis of ,'nstead-, separated, vorical flows will be much

creater than for the clean flows reoreserntinz cruise aerocdvnar.cs.

...is is because lit=ie theorv, has ever been developed for them.

The complexit% cf prcble.s which tne researcher and the engineer

will be dealing ith w crow n some oromortion to tine new commuter

power. This will have a nu tber cf im.macts on the dal"y life of the

fluids mechanician. _rblems un-er investication will have m.vany lencth

and time scales. cnavsis of results will be more thalleninc. t

will be harder to understa-nd the solution due to the nzmber cf inter-

acting -hysical phenomena present. This is illustrated by the =anmer

of Brachet, Metcalfe, Crszag, and Riley. !e;,w methods cf analyzing and

presenting results will have to e-nerae in order to deal w ith this.

Graphical outmut is crucial, and maybe artificial intellicence t.es

of technolocv will helm out.

* ... . ,..,%-,, ,,* q ,'"., .: '", . ;'''", .. ... >.....,".k ".".''",. :. '', .. 4,<. ... > ' '.,, """',,q..
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One difficulty which can be fcrese er is the trczle-_ of verifvInc

the accuracy or fidelity of a conuted result. Up to ncow, it has

generally been possible to co.pare ccmpuzed results w--h theory for

limiting conditions. For exanmZe, a t:anscnic wuinc calculation can be

compared with linear wing theory for low !'ach nu-.ers, or a avier-

Stokes solution can be compared with a lar.inar boundar," layer. But as

the computations move into more nonlinear flows, the past theoretical

framework will become less and less applicable. Comparison with ex-

periment is an essential, and independent computations of the same

problem by different researchers will be necessary. Perhaps a renewed

interest in theory will result from this need.

Inoact of Suoercomouters on Basic Sciences

As one participant stated, the great masters of fluid mechanics in

the past solved all the linear problems and left us with only the non-

linear ones. Since most fluid mechanic problems are nonlinear, we can

speculate that the ability to model highly nonlinear problems with

powerful computers will lead to many new discoveries. Another partici-

pant thought that the impact cf suPercomputers will influence the basic

way we think about zhvsical troblems. New information will be dis-

covered from numerical experiments and provide insight for modeling.

In this sense, computational experiments are akin to laboratory experi-

ments which have provided insiaht and ideas throughout the history cf

fluid mechanics and other scientific disci=Iines.

In the past, computational methods have mrade a ma-cr impact on our

Sability to compu-te and understand potential flows and inviscid flows

dominated by shockwaves. One can conclude that the classes of flows

are well understood both from the physical and alcrith ic points of

view. Although the ability to analyze shock dorinated flows has been a

major step forward in fluid mechanics, much is left to be done. For

exanple, only li-ited =D studies have been done for vortical flows,

and 1!ttle is understood about the alcorithm requirements for inviscid

rotational flows. many studies have been done for zwo-d._mensional

separated flows, but on2y limited studies for three-dimensional

separated flows. Although efficient algorithmas for steady flows are

under development, indications are that the flows these algorithms are

to be applied to may be unsteady in nature. See fur example Thomphins

or Murman, Rizzi and Powell.

Perhaps no area is more tempting to speculate on than the field cf
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tu.len ce. Tis i S an are a In whichr trc:ress has Deen reIam ve v Etar-

nant since Reynolds Jntroduced all the unknovnh without introducing any

new equations. In the )as- decade, co =utatzona! models and :abcrato:-

experiments have opened a new look at turnulence. Tne idea of crganized

or coherent structure has eneraed. On the czner nant, rathemszicians

have shown that solutions to fairly sim7le d.n arcal systems have

chaotic behavior. An interesting cuestion w:nih was posed is "...hat

will be the resolution of the speculation that there is both determinism

and chaos in nonlinear equations?" Cornutational experiments could

provide a framework for helping to answer this cuestion.

Another area which will Probably be stronqly influenced by more

powerful computational approaches is the couzling of chemical reactions

and heat release to fluid flow problems. Even fairly "simple" reactions

involve many species with many time scales of reactions. In the past,

computers simply were not large enough to tackle many of these problems.

Rate constants are alwayq an uncertain factor in such calculations.

Perhaps being able to model the experimental conditions under which the

rate constants are measured will lead to more accurate measurements of

their values.

One issue on which there was cuite a difference of ocinion is the
decree to which modeling wi l be recuired prior to computing. On the

one hand, many particitants felt that the time was upon us to tackle

the full three-dEimernsiona! Navier-Stokes equations, possibly adding

models only for subarid sc -Ie turbulence. Ctners felt that the .ast

oractice of selecting sirple sets cf ecuations such as n,-iscid or

carabolized viscous will still be prudent. it is likely that some

level of modeling will always be required as computer capability will

never be big enough to solve a complex problem from first rrinciples.

* In fact, for most .roblems this is unnecessary. The cuestion is,

will the type of modeling a=prcpriate for the future be differen= from

-hat used in the past when c-=nuer memory, speed, and accessib.lit-

were more limi=ed?

innact of Sunercomouters on Alccrithms and 1ancuaces

An important issue recarding alcorithms arises from the multi-

crocessor and vector architec=ures cf supercomputers. Aeaorithms which

cannot be efficiently used on these architectures will be cf limited

utility. Many fluid mechanic problems are solved using time dependent

integration procedures for initial boundary value .oroblems. Both

6A, %



extlcit and impli ci4t xethods are 7-r cenera, e>7c_-

aigor4thms are easier to vect-crze tha-. -i ,i::t ones. The :atter

usually involve recursive steps i.. the matrix inversion. However, tne

paper b, ' Steger and Buning demonstrates an effective vec-crization

strategy for simultaneous inversion Cf a larce number cf -ridiaconal

matrices applicable to approximane factorization methods. E:xlicit

algcrit-s are also easier to adapz to multiProcessor arcr.itectures as

the solution domain can be subdivided without introducing difficulties

in the algorithm. The paper by Oameson, Leicher and Dawson reports a

4 strateg3 and results which i"ustrate this. Effective strategies for

adapting implicit algorithms for multiprocessor architectures need to

be found also. Participants generally agreed that the real Payoff is

for alqorithns which can work effectively on tens or hundreds of

parallel processors, not just two, four, or eight.

-t is clear that algorithm developers must be cognizant of the

advantages and constraints which non-Von Neumann architectures will

place on supercomputing. The paper by Thompins is an indicator of

what will come. In addition to the conceptual changes in algorithms

due to multiprocessors and vector processors, efficiency limitations

arise in the speed at which main memo-n_ can be accessed from various

processors or the speed at which data can be exchanged between pro-

cessors. The personal-size supercomputer reported by Thomnpkins involves

-wo processors (a scalar host and an attached vector). Movement of the

data must be carefully managed to avoid bottlenecks. In the future

% Iaiori4z-.m development must take into consideration not on1v -radiniornal

numerical analysis, but also computer science aspects.

Another algorithm issue arises from the shear size of the main
memory cf supercomputers. Problems with very fine meshes will be

possible. With the exception of multigrid alaorithms for ellip--ic

equations, the asymptotic convergence rate (spectral radius) of

iterative methods is dependent on the n-umber cf resh points. Recent

estimations done by researchers at NASA Leancley indicate ha= the time

reauired to reach convergence for three-dimensional Navier-Szokes

ecuations on a 256 me=aword machine is excessive to the pcint of being

unrealistic. This indicates a real need for finding algorithms which

have asymptotic convergence rates which are eLther mesh independent or

vary (at worst) slowly with the n=.ber cf grid points. Such alcorithms

must work fcr problems w'ith widely va_ing length and time scales, not

just model =roblems or model ecuations (see Cameson et a!).
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There was considerable 'iscussion cn tnE nee: fcr :no. or *eve

languages that wi'11 make it easier -_o ccnstruzt a solution arahfor

a new problem, as well as make it easier to uti:ze the new =c._tectur.

The general strategy for scIving a prczien :Z" :7L -'E More cr less

common. A grid is generated, diszretizaicn cf atzal derivatives and

boundary conditions is done, an iteration or time intearation method is

selected, and various outputs are required. was suggested that

assembling these tools and manipula-ing ther for embedded subdcmea'ns

and the like would lend itself to a hicher, and therefore simler,

language. FORTRAN is the language cf the FD co-,unity to date. The

paper by Thomphins introduces some higher level constructs for manaaing

the solution process in a multiprocessor environment.

Another area in which alaorithm innovation ma-v be recuired is in

preprocessing (grid generation) and post-processing (data base aalysis).

The papers by Steger and Buning and Muman, Rizi and Powell indicate

that graphical analysis is imperative, but other ways of manipulating

the data bases would be desirable. Maybe knowledge base procrams

("expert systems") will be heltful in finding the important features in

a given solution. Or perhaps pattern recognition approaches will be

needed.

!rzact on Subs'stems

The workshop, attendees for the most -Dart recresented users of

supercorpuzers, and no: hardware specialists. however, with -he larce

data bases which wi:l be cenerated, the parti~zzants felt --hat several

of the suporting subsystems richt well be inadecuate to match tne

power of the high speed processors. .articitants who have had experi-

ence with supercomputers felt that s=rong graphics capaility is a

number one reauirement for analyvinq results. As discussed above,

some new craphics aagorith-,s mavy well need to be devised to arnalyze

complicated flow fields. But nowerful processing and craphica! diszlay

caabilities are also recuired-. As the paper by Thor,,ins points out,

a researcher will typically spend much cf his cr her time perfc-.ning

graphical analysis whic- requires a rrocessor about an order of mac-

nitude smaller than the supercomputer. A larce n-mber of operations

are recuire- to ccnstru-ct he ou-put cuantities which -- =callv are

different corminations of the denendent variables than those which are

stored in the data base. Mazny researchers currently think that the
plot files will be created on the supercomputer itself for these

e. e '% %



reasons. However, sut'er craica" rcescr, . .cou-o- d be much

cheaper and therefore more availae to te users, sn-.Id be develoDed.

-".'ically, alcorithms for creatinT the cra.ic-l data base are easily

veczorized and could be done on arra: processcrs attacned to most pro-

cessors. Tnese could lead to very' p:owerful and inex:,enslve craphics

workstations. Fortunately the technology is develozng ranidly for

medium to high resolution color disz lay devices wi.t', interactive
capability.

Most of the attendees at the wcrkshop fall in the catecory" of

"remote" users. They are not located at the same site as the super-

computer. There was significant concern that remote co=,.unications

will be a real bottleneck. Regular dial-up caDability is barely

adequate at present for editing files or transmittinc small output

files to remote users. It certainly would be i-possible to do inter-

active graphics processing from a remote site or to transmit the

entire data base -for onsite analysis using even dedicated data lines

currently available. The best , to communicate with remote facili- "

ties at present is to transmit ma-netic tapes via exress mail

services. This inevitably leads to delays and slow turnaround. The

im.act of supercomputers on researchers who are not co-located with

the machines will be minor If high zandvwidth communications are not

available.

Conclusions

The imtact of supercomputers on the next decade cf conputational

fluid dynamics will be substantial. .ith processor speeds and high

speed memory increasing by two orders of macnitude, many chances will

take tlace. The difficulty lies in accurately forecastinc what those

changes will be. The above discussion =resents the thir:ing of one
group of active =D researchers. Perhaps their viewooin-s -ill serve a,

to helt others to become aware of, and thinh: about, these changes as

they take place. The next decade has already started, twenty veart

aco! ..
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