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1. Introduction

The minimum requirement for the numerical evaluation of a flowfield is
an adequate combination of a physical description, discrete grid distribu-
tion and procedural algorithm. All three must allow for events throughout
the domain of interest. For realistic, complex flows this imposes varying
demands on each since the disturbance field is generally nonuniform and
frequently exhibits local concentrations where there are major changes in
state properties. It is natural to attempt adjustment of either the
physical description, the grid pattern and/or the algorithm itself so that
in some sense there is a match of the available numerical power to those
smaller subdomains and the specific kinds of behavior found there. Such
considerations also appear on a global scale when choices are made of in-
viscid or viscous descriptors, or of grid generation techniques, and of

methods that are specifically qualified for hyperbolic or other systems.

The CFD challenge is to devise ways in which appropriate subdivisions
of a global domain may be selected and if need be altered, and how the
resulting regions may be linked across their common interfaces during a
computation. Efficient and robust algorithms must be expected to reduce

both the computational speed and the memory requirements in proportion to

the reduction in grid nodes and the simplicity of the description. Ideally,

coarse grids and a minimum of physics are favored. Our focus is on pro-

cedures which will isolate and couple different portions of a complex domain

such that in each subdomain the evaluation will disclose the details of the

scale events to a sufficient and relevant accuracy.

2. Research Objectives and Tasks

The specific purpose of the research is to develop procedures which
will permit subdivision of the field and description, focus the computation
on those portions which require a more precise evaluation, and control the
coupling between the subdomains so as to maintain accuracy. Some problems
have clear regions in which the dominant physics allows pre-selection of
subdomains. We refer to this as a non-adaptive procedure in contrast to
an adaptive approach in which the evolving events guide and change the

choices for embedded regions.
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The program's initial effort began with a determination of interface
; constraints and necessary adjustments of the background Ni (finite volume,
| multiple grid) method. Thereafter, threshold and decision parameters were
developed for adaptation, and alternate algorithms have been corcidered in
order to generalize the allowable mesh topology, the specific ba.ic
; integrator, and the concept of embeddinc o. zonal subdivision of an overall
domain. Example evaluations have emphasized cascade and airfoil flowfields.
A brief summary of the last year's efforts is described in Sections 3, 4

and 5, and some details for several tasks are included in attached Appendices.

3. Nonadaptive Embedded Subdomains

In last year's annual report research was reported on an algorithm

which it is hoped will combine the best features of node~-based methods
¢ such as Ni's and multistage methods such as Jameson's. Work has continued
throughout this year, and good progress has been made in developing suitable
. damping and distribution operators. A detailed energy analysis was completed
which identified requirements for these operators, and eventually led to
suitable formulations for them. We refer the reader to Appendix A of last
vear's report for the basic outline of the algorithm. We have not included
details of the further developments of this year, butAinstead shoﬁ some
results. Figure 3-1 shows a grid and Mach number plot for a transonic flow
over a circular arc bump in a channel. The grid has an embedded region
around the body. The computed results are in reasonable agreement with
those of Dannenhoffer and Baron using Ni's method. Figure 3-2 shows
supersonic flow past a 4% bump in a channel. The Mach number plots
compare favorably with those of Ni for this problem. The basic algorithm
seems to now be working. As yvet we have not attemnted a multigrid

version which would significantly improve the rate of convergence.

However, we feel that it is now more important to attempt some calculations
with this algorithm for which previous algorithms had difficulty. As
discussed last year, this algorithm has been formulated without any
assumption of regularity of the mesh or the number of dimensions. We

have just started to try a calculation for a cylinder using the mesh shown
in Figure 3-3. It should be noted that this is a very severe test of any
algorithm for the Euler equations, and we might encounter significant

problems. However, we think it is important to see how irregular a mesh
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can really be handled in order to assess the feasibkility of a general grid

approach. The rurrent algorithm is written to be suitable for vector or
parallel processors.

Approach which has less technical risk and may prove to be more prac-
tical than the above is the zonal approach. The flowfield is divided into
different zones, and within each zone a standard algorithm of some typve may
be emploved. A zone could have an Euler method on a regular grid and an
adaptive method (within that zone), a Navier-Stokes method, or many other
of a variety of suitable approaches. The important feature is that the
zones communicate through the boundary data. Some thought has been given
this year as to how such a zonal method should be organized to be suitable
for multiprocessor architectures. A general strategy has been conceived,
but not yet developed in detail nor tested. This will be done during the
first six months of the next grant vear.

As part of the zonal approach, an idea for a more efficient Navier-Stokes
algorithm has been conceived. It is based upon the observation that Nav.ier-
Stokes approaches generally reguire very fine grid spacing normal to the
body when compared to the other two directions. This leads to a stiff set
of discrete equations, which then requires an implicit method for solution.
The standard approach is to use a fully implicit method which requires
approximate factorization (e.g. Beam-Warming). A more attractive approach
would be to use an implicit method only for the differences in the body
normal direction, and explicit approaches for the other two directions.
This algorithm would require a block tridiagonal inversion, but no
factorization. A stability analysis is given in Appendix A for a model
problem, and the results look very promising. We will pursue this further

in the next grant vear.

4. Adaptive Embedded Subdomains

The goal of the adaptive concept segment of the effort has been to
minimize computational work by appropriately locating, controlling aid
managing the embedded fine grid regions. The details involve procedures
which recognize flow features as they develop, decide on adeguate thresholds

for adaptation to be carried out, and modify the discreteness formulations

in order to proceed with irreqular and multiple embedded grids.
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During the first part of the last year the initial applications to two-
dimensional airfoils were completed. Those calculations included a sensi-
tivity study of the influence of different refinement parameters and their
rates of change as the basis for adaptation decisions. Primitive parameters
such as density, pressure, velocity and entropy were used as threshold
selectors on the basis of their first and second difference distributions
throughout the domain. Field evaluations for NACA 0012 and RAE 2822 1lifting
airfoils at transonic speeds indicated density first differences to be most
efficient ané therefore preferabie in defining subdomains with dominant
activity. This extension of the work to two-dimensional fields was reported
on in AIAA Paper 85-0484 and is included here as Appendix C.

The effort has continued with a further development of the algorithm
so as to introduce a capability for additional self evaluation. Previously
consideration was given to the type of feature expected and an arbitrary
but fixed number of adaptive levels. A new strategy scheme has been
developed which allows for automatic selection of the number of embedded
regions, in the multirle sense of sub-embedding as well as for distinct
features. A rule based system monitors the progress and measures the CFD
needs against such criteria as the changes in a global parameter of interest.
A number of test cases have been completed for airfoil configurations that
have been considered by the AGARD Working Group 07. Others are planned.

Some preliminary results are shown in Figures 4-1 throuch 4-4. The
initial and final grids (convergence decided five adaptations) for the
NACA 0012 airfoil at M=0.85 and 1.0° incidence [AGARD WG 07 Test Case 2]
appear in Figure 4-1. Those finest embedded regions which extend outward
from the uvper and lower surfaces indicate shock locations. The adaptation
process includes an allowance for growth of all embedded regions during the
final stages of an evaluation. Note that a non-zdapted grid which is
globally refined in order to attain the same feature resolution would
contain a factor of 25 times more nodes.

The surface Mach number distributions corresponding to the grids in
Figure 4-1 are snown in Figure 4-2. The Mach number contours in the field
and convergence histories for 1lift and drag coefficients are .n Ficure 4-3.

Lastly, results for M=0.95 are shown in Figure 4-4. Supersonic (M=1.2)
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cases with detached bow and trailing edge fishtail shocks also have been
completed. The algorithm is robust and accurate with virtually no dis-
cernible effect due to the sub-grid interfaces (see Figure 4-2). Generally,
an order of magnitude reduction in computing time is achieved by introducing
adaptation in place of global refinement.

A vectorized version of the adaptive code is currently being developed

and tested. The Cyber 205 at the NASA Langley Research Center is being
used for that purpose. The intent is to complete both globally refined
and adaptive solutions so as to provide precise comparisons as well as a
demonstration of the suitability for vectorization. 1In that regard the
data structure associated with the adaptation procedures appears to reduce
the benefits of vectorization only slightly. A paper is in preparation to
describe some of the above findings.

All of the above has continued the use of the Ni method as the basic
integrator for the algorithm. A separate study was undertaken to consider
the embedding technique with an alternative finite volume scheme [Jameson,
Schmidt and Turkel, AIAA 81-1259]. The motivation is a more efficient time
marching procedure, but the focus of the study is on the interface constraints
and the achievement of conservative, accurate and smooth solutions in the
presence of abrupt mesh scale changes. Figure 4-5 shows grids and Mach
number contours for coarse, embedded and globally fine cases of transonic
flow (M=0.675) past a typical channel bump (10%) configuration. To date
analysis reveals that second order accurate, conservative flux formulations
are not possible at interfaces. Smoothing also implies nonconservative
contributions. Three classes of interface formulations are suggested:
zeroth order accurate and fully conservative, first order accurate for
conserv.tive fluxes and nonconservative smoothing, and second order
accurate but fully nonconservative. The Mach number contours in Figure

4-5 illustrate the advantages of global refinement. The interface effects

are also apparent along the superimposed interface locus for the embedded

case. This work with the Jameson scheme is continuing. f

5. Jerusalem Meeting

A workshop was held in Jerusalem, Israel in December 1984 entitled "The

Impact of Supercomputers on the Next Decade of CFD." The participation of
y RS SRR Ny s."-..’ ~ '.:,z."'.',--','.'-_~.;_ :_:'__*.;_\:_:.:,:,'_..'__:.', <
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Professor Murman, one of the organizers of the workshop, was sponsored by
this grant. Professors Murman and Abarbanel have prepared a summary report
of the workshop which is attached as Appendix C. A number of important

issues relative to this grant were brought out at the workshop and are

- o w

recorded in Appendix C. Perhaps the most important are the observations
that current algorithms cannot simply be scaled up to 256 megaword machines.
They then will converge so slowly that the procedure will be impractical.

Embedded and adaptive mesh approaches look very favorable as a way to
proceed.
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Stability Analysis of a Semi-Implicit

Scheme for Hyperbolic Equations

Saul S. Abarbanel
Consider the 2-D linearized inviscid Burger's egquation:

u, =u_ +u
t b < b

We shall consider two finite-difference schemes: an explicit Runga-Kutta
three-stage scheme and a semi-implicit version of the same.

of both algorithms is analyzed.

1. Explicit Scheme

Using standard notation eq(l.l) has the following finite difference
representation which is second order accurate in space and first order

accurate temporally:

uo =
ik Jek
1 o} 0
.. =u,  + At(8_+ 6 .
ujlk Jek (X y)ujrk
2 0 1
= +
Uy x uj,k + At(éx 6y)uj,k
3 o 2
u” . =u, . +A(S + 8 )u!
I ST A B
un+1 - u3
ik ik
where
n n .
n _ _j+1,k j-1,k
855 x 24x
and
. _..n
§uP o dektl ” %5 k-l
y 3.k 24y
"Telescoping” the stages (1.3)-(1.5) we get the following expression for
n+l
uj,k 3
n+1 =u’ + [At(S6_+8 )+(At)2(6 +6 )2 + (At)3(6 +6 )3 u’
%3,k J.k x ¥y X y X Yy J.k
We Fourier decompose uglk in the usual manner: uglk = ﬁneljeelkcp .

Then the Fourier representation of (1.8) becomes:

AN+l
u

41 Bdhaghr
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The stability

(Appendix A)

(1.1)

(1.2)

(1.3)

(1.4)

{1.5)

(1.6)

(1.7

(1.8)

(1.8)

, . . . 2, , L3
= [l+l()‘x sinb +)\y sind ) - ()\x sin® +)\y sind) -1(>\xsm9 +>\y51n $) [u
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where kx = At/Ax and AY = At/Ay .

Define 2z = Axsine + Xysind); the amplification factor, G = Gn+1/Gn then
becomes:
G=1+ iz - z2 - iz3 = (1 - 22)(1 + iz) (1.9)
and therefore
2
lel?= @ -2 @+ 2h =1-22-2%+2° (1.10)

The Von Neumann stability requirement IGI £ 1, then leads to the following

inequality:
2% - z2 -1%20, (1.11)
leading to:
1/2
/!
(l—g—i] > 1.27202 (1.12)
Recall now that z = Xx sin 6+'Ay'sin ¢, and requirement (1.12) takes
the form
At LAt _ % 4% <1.2720 (1.13)
Ax Ay x y
or, upon rearranging
Ax . Ay
< ax . oy
At £ 1.2720 Ax + By (1.14)

The stability condition, (1.14), clearly shows that if in the calculation

we choose the time step accordingly, i.e.

Ax, . Ay.'k]

i.k J

1.2720
Ax . + Ay,
i,k YJ

{1.15)
x)
we may get very severe restriction if the mesh is highly stretched so that
somewhere in the field (Ay/Ax)j K’ Savy is very small.
1’
To overcome this difficulty without paying an inordinately high price

of two matrix inversions per stage we propose a semi~implicit algorithm.

2. Semi-Implicit Scheme

Using the previous notation, the semi-implicit 3-stage Runga-Kutta

algorithm takes the form:

0 _ .n
uj,k uj,k (2.1)
1 (0] (0]
(1 - Atéy)u; = u, + )
¥) 3,k uj’k Atdxuj,k (2.2)
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2 w9 satsul (2.3)

: 1 - AtS )u! =
) ( Y) ik J.K x Jj,k
)
‘ 3 o] 2 b
(1 - Atdy)uj,k = uj,k + Atéxuj,k (2.4)
+
un 1_ 3 (2.5) ;

jok Y5,k

Again "telescoping," and joined directly to Fourier space, the amplification

factor is found to be:

2.2 2 2 3.3
1- - + A i - 2iAn - i
. AL € Ao n xkygn+ iAE iAn-ir-¢ (2.6)
3
(L~ix n)
yn
| where £ = sin 8, n = sin¢; i.e. -1 £ £ n S 1. The Von Neumann stability

requirement leads to the following inequality:

2 2 2.2 2. 2 2 2 2 2 4 22 4
“x+y) T =(x"-y) +y (xT-y") + 2xy(xT-y") + (x ~y2)(x +xy +y)S0 (2.7

where X = AXE and y = Ayn ; i.e. =® < < ® |

We carry out the investigation of (2.7) by first considering the case

of y2 > x2. Divide (2.7) by y2 - x2 > 0 to get

2 4.

2
+ 2 2 4 2
- iX___E%_ - (y - x2)-y -2Xy ~ X - Xy -Y 0 (2.8)

2
Yy ~x

The worst case is that of xy < O.

let x*-x, y2>y, then the new x,y satisfy

xy > 0 and the inequality:

2
R R R T AR R (2.9) :
v© - x .

Note that in (2.9) it does not matter (with y2 > x2 and xy > 0) whether x .

and y are both negative or positive. We shall, therefore, consider the .

x >0, y >0 case. We rewrite (2.9) slightly: N

_y-x 2 _ 2 G322 4« _y-x 2_ 4 S
v+ x + x 2y~ + 2xy X Xy y - ;:j; + X X

S -1+ x2--x4 0 (2.10) )

The inequality (2.10) is always satisfied. Therefore, we have shown that

(2.7) is satisfied when y2 > x2 for all -« <x,y < ® , Notice also,

directly from (2.7) that when y = *x the inequality is satisfied (if y=-x

we have the equality). Therefore, (2.7) is satisfied for all y2 > 2, !

|x[/ly| <.
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Next we consider the case x >‘y2. We see from (2.7) that now the worst
case is that of xy > 0. Again x and y can both be either negative or positive

without changing the left hand side of (2.7). We shall use x > y; x > 0,

y > 0. Divide (2.7) x2 - y2 > 0:

L xtp?

3 (x2-y2) + y2 + 2xy + x4 + x2y2 + y4 o (2.11)

2
X - Y

Since x > y, take y = fx, (0 < 8 < 1). 1Inequality (2.11) becomes:

—if§+ 287 + 28 - 1)x® + 8%+ 8%+ x? S 0
or, with w = x2 ’
fo,® = @*+ 824 nw? + @287+ 28- 1w - T2 <o (2.12)

The smallest w, for all 0 < B < 1, that solves (ij) =0 is w= 4/3 forB8= 1/2.

This is the stability criterion. Thus we have

Axlgl < (4732

and so the stability condition becomes At/Ax = Ax < 2/V3, or

At £ 1.1547 [Wi“ A

. 2.13
]Ik lek) ( )

Notice that now we have a conditional stability that does not depend on

the mesh stretching. This condition is still superior to (1.15) even when
Ax, . = . - < o. min p :
xj’k ij,i everywhere, because then (1.15) yields At 0.636 (j,k xj,k)
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ABSTRACT

An adapted grid technique for accurate
and efficient solutions of the steady, two-
dimensional PEuler equations is presented.
Enbedded meshes, which are coupled to a
fixed global wmesh via a nmultiple-grid
technique, are enmployed. The effect of
choosing various adaptation strategies 1is
examined. Solutions are presented for
isolated lifting airfoils in subcritical as
well as transonic flow. The supersonic flow
over a circular-arc cascade with a complex
shock structure is also presented. 1In all
cases, the adapted solution achieved the
same Aaccuracy as yglobal refinement, but
required a factor of between S and 7 less
computer time and between 3 and 8 less

storage.
INTRODUCTION

The numerical solution of the two-
dimensional Euler equations is typically
carried out by discretizing the flow field
and then solving a coupled set of equations
for each node. This technique suffers from
the introduction of errors due to the
discrete approximation of the continuous
governing equations. These errors are
related to the local mesh spacing and the

’vlocal solution smoothness.

To obtain more accurate results, one
can decrease the mesh spacing. But since
the domain size is fixed, this results in
more required grid points, with the
associated increase in computational work
and required storage. It has been noted by
many prior researchers (1) that for the
Euler equations applied to problems of
interest, much of the flow field is smooth,
resulting in small errors. There are
however isolated areas in the flow fileld
where the solution is not smooth, resulting
in appreciably larger errors. Thus, it is
an efficient strategy to refine the mesh
only where necessary.

4 Research Assistant, Member AIAA
** Professor, Associate Fellow AIAA
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Unfortunately, one does not in general
know a priori where these unsmooth regions
are, and thus it often takes a few trials
and errors to put the dense mesh where it is
really reguired. To circunmvent this
problem, adaptive grid techniques have been
developed to search for regions of high
errors, and then refine the mesh there.
Thus, the solution and the grid evolve
simultaneocusly.

There are currently two methods for
adapting grids. The first (and most
popular) 4is the grid point redistridbution
scheme which has been reviewed extensively
by Thompson [ll. 1In this technigue, there
is a fixed number of grid points which move
around, congregating in regions of interest.
It 1s reasonably easy to program, since at
every iteration (or at least every few
iterations), some statistic of the flow
field 1is sensed (for example entropy
gradient), and the grid points move either
by an attraction model or by using a Poisson
equation grid generator. Redistribution
however has a few drawbacks. First, since
there ia a fixed number of grid points,
moving them toward flow features deprives
other flow ‘'regions of adegquate resolution.
Thus, one could say that the solution
becomes both good uniformly and at the same
time wuniformly bad. Second, due to
topological restrictions, grid lines which
properly congregate near a shock at an
airfoil surface must propagate out into the
flow field, often to the far field Dboundary
where the increased resolution is
unnecessary. Thompson also points out that
excessive grid skewing and stretching can
occur, producing inherent inaccuracies.

The second grid adaptation technique
involves locally embedding sub-grids in
regions of interest. This results 1in an
increase in the number of grid points, and
hence an increase in required computational
resources. Also, artificial internal
boundaries are created in the flow field;
care must be taken to ensure that the
solution will smoothly transfer across such
an interface, while maintaining conservation
and stability. Since global grid points are
never moved, the accuracy is not reduced
awvay from flow features as in redistribution
methods.
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Berger and Jareson [2] have used local
grid embedding for the two-dimensional Euler
equations. In their approach, the flow
features are detected and "best-fit*”
rectangles are superimposed over the glcbal
grid. This results in a2 mesh interface
across which it is very difficult to enforce
conservation. In addition, determination of
the Dbest-fit rectangle requires complex
clustering algorithms.

An alternative embedded mesh procedure
has been proposed by Dannenhoffer and Baron
[33. 1In this approach, irregularly shaped
embedded regions which are topologically
connected to the global grid are used. This
results in both a simpler embedded mesh
interface as well as a simpler embedding
scheme which doesn’t require clustering.

In reference €31, the authors
discussed their technique for the
one-dimensional Euler equation and
two-dimensional Burgers equation. The

extension of their technique to the
two-dimensional Euler egquations is presented
here.

This paper first discusses the overall
adaptation strategy. The governing
egquations are presented and the embedded
mesh algorithm 1is described. Included in
that section are discussions of the embedded
mesh interface as well as the adapted
smoothing algorithm employed. Appropriate
choices for a refinement parameter are
discussed in the next sectlon. Computed
results for the Euler flow over airfoils and
a model problem with complicated shock
topology complete the discussion.

ADAPTIVE SOLUTION ALGORITHM

The basic approach of the adapted
solution procedure described here is to use
a fixed global grid and then embed
irregularly shaped grids where necessary.
This is accomplished by solving initially
only on the global grid. Wnen
quasi-convergence is reached, a refinement
parameter 1is computed at each node and any
cells which are connected to nodes where the
refinement parameter is above some threshold
are divided. The program then reintegrates
on the new grid (global and embedded,
coupled by a multiple-grid scheme). After a
prespecified number of adaptations
(typically 2), the program iterates to the
final converged solution.

The integration of the governing
equation 1s performed using Ni‘s multiple-
grid algorithm £43. This scheme is composed
of two parts -- a finite-volume form of a
standard single-step, Lax-Wendroff
integration applied on a fine mesh, and a
coarse grid accelerator which operates on
residuals transported from the fine mesh
solver, In both parts, a “change*® is
computed at the center of each cell and then
transferred to the adjacent nodes Dby means
of “distribution formulae*.
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The use of irregularly shaped embedded
regions introduces a Dbookkeeping problem
which must be addressed. Since Ni’s schene
is cell-based, each cell can be integrated
independently which is an important
consideration in the choice of this method.
Cells communicate with each other only
through the variables at the shared nodes
from the previous explicit pseudo-time step.
A data structure which 1is Dbased on that
property was first introduced by Usad and
Murman (5], a variation of which is used in
the current program.

GOVERNING EQUATIONS

The unsteady, two-dimensional Euler
equations in conservation law form are given
by

M..&-2 (1
wvhere
P ou v
B A R el BECEY
E puho pvho
and

E+p ., vy B, 1 (,2,,2
he* 5 "y 1 * (u v ]

In equation (1), p is the density, u and v
are the velocity components in the x- and y-
directions, E is the total internal energy
per unit volume, p is the pressure, h 1is
the total enthalpy, and vy is the ratio of
specific heats.

TIME MARCHING PROCEDURE

Basic Scheme

Consider the fine mesh cell shown in
figure 1. To calculate the "change” in the
dependent variables at the center of this
cell, the divergence theorem is applied to
the governing equations, giving

ot (= = = o=
ov = % ( F,-F, +F, -F ) (2)

where F denotes the contravariant flux
through each given face, At denotes the
pseudo-time step, and oV the cell volume.
The contravariant fluxes are computed by
trapezoidal integration along each cell
face, based on the dependent variables at
the corner nodes. Egquation (2) is called
the cell flux balance.

ne
nw

sw se

Figure 1. Typical computational cell.
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The distribution formulae serve to
transfer the “change” (AU) from the center
of the cell to the four corner nodes. The
formulae are derived from a second-order-
accurate Taylor series expansion of U (with
respect to time), and are given by

1 At at
U -;(AUI“AF:EAG] (3)
i 2T
wvhere
oF .2
AF = 30 AU and AG Y] au (¢4)

are the unsteady fluxes based upon the
Jacobians of F and G evaluated at the center
of the cell. The first term in equation (3)
(AU) 4is the first-order-change-in-time for
the Taylor series expansion while the last
two terms represent a second-order-change-~
in-time which is necessary for stability.
The latter terms bias the distribution of
the “"change” 1in the windward direction,
which 1is similar to the stabilizing effects
of upwind differencing [61.

To accelerate solution convergence, Ni
introduced a multiple-grid algorithm (4]
which propagates the fine grid changes at
coarse grid speeds. The coarse grid is
generated by eliminating every other fine
grid 1line. The coarse grid acceleration is
accomplished Dby transporting the changes
previously calculated from the fine meshes
to the center of a coarse grid cell and then
distributing that change to the coarse grid
nodes by use of the distribution formulae
(3).

Boundary Conditions

For the problems considered 1in this
paper, there are two types of Dboundary
conditions. The first 1is a solid wall
boundary condition where “no flow through
the surface" is enforced. If one views the
solid wall as a streamline, then the effect
of a pseudo-cell just inside the body can be
considered. By combining the effects of the
distribution formulae (3) on each side of
the wall, one finds that the boundary
condition reduces to doubling the Dboundary
changes predicted by the interior cell, and
cancelling the normal velocity component.

The other boundary condition type is a
far field condition. For an airfoil
calculation, the far field is composed of a
uniform flow plus the effect of a vortex,
whose satrength 1is set based upon an
approximate 11ft coefficient. For the
cascade problem, the free stream is assumed
to be simply a uniform flow both upstream
and downstream, ’

The boundary conditions are applied at
far field nodes by using a characteristic
analysis in the local streaswise direction;
the characteristic variables which enter the
domain remain unchanged, while for those
exiting, it 4is assumed that the changes in

DO R TN VI
O e  ey “

the characteristic variables are predicted
correctly by the interior schene.

Embedded Mesh Interface

The embedded grid is composed of cells
wvhich were formed by dividing a global (or
previously divided) cell. Locally, this
appears exactly like the fine and coarse
grid cells wused in the multiple-grid
algorithm.

Using a multiple~-grid accelerator to
couple the global and embedded mexshes was
first suggested by Brandt [7])] and was
implemented by Brown for the full potential
equation [B8]1. HWith this technique, waves
propagate through the embedded regions at
coarse grid speeds. Usad has shown that
this coupling results in convergence rates
which are as fast as coarse-grid-alone
solutions [9). This is significant when one
considers the coi..- :quences of simply
coupling global and embedded regions at the
interface [2]. In the latter technique,
wave propagation is restricted to the
embedded (fine) grid speed, resulting in
slower convergence rates.

Points at the edge of the embedded
domain must be caiefully treated in order to
maintain global conservation and
computational stability. Consider the
embedded mesh interface shown in figure 2.
In the present scheme, nodes 2, 5, and 9 are
considered part of the fine domain. Thus
the flux balance and distribution formulae
can be applied as usual to cells B, C, D,
and E. Although the changes in the
dependent variables are computed at nodes 2,
S, and 9 due to cells B and E, the changes
must not be applied when operating on the
embedded mesh level. Instead, they must be
stored and applied only after the (explicit)
flux balance has been performed on cell A.

Since cell A is a fine cell on the
global grid level, the appropriate
integration consists of a flux balance and
distribution. Each of these steps must be
modified due to the presence of node S. The
flux balance now consists of the sum of the
fluxes through five faces (1-2, 2-5, 5-9,
9-8, and 8-1). This can be easily
incorporated into the trapezoidal
integration. Since the fluxes “hrough the
interface (for example 2-5) cancel in the
adjoining cells (for example A and B), the
scheme maintains globa'! conservation.

Figure 2. Detail of embedded mesh.
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The distribution formulae given by
equation (3) remain valid for cell A.
However, the change at the center of the
cell must also be distributed to node S.
This 1s accomplished by averaging the
distribution to nodes 2 and 9, or in general

1 at
S0, = § ( au + 4% aF )
and (5)

su, = 3 oV 5 &5 40 )

R

[

Coarse cell BCDE is treated the sanme
as any other coarse cell interior to the
embedded region. This yields an apparent
inconsistency at nodes 2, 5, and 9 due to
the absence of a coarse cell underlying cell
A. At convergence however, the residuals
transferred to BCDE do vanish as do the
inconsistencies.

Adapted Smoothing

As with most solutions of the Euler
equations, artificial viscosity 1is needed to
damp out spurious oscillatory solutions and
to capture shocks. Different levels of
artificial viscosity are needed for these
two purposes. Jameson [10] uses fourth
order smoothing over the whole flow field to
damp out spurious oscillations, with second
order smoothing blended in near shocks to
capture them. This blending has the effect
of putting the lower order smoothing only
where it is needed.

An alternative way of using the proper
smoothing only where needed is to use second
order smoothing globally, but to vary the
smoothing coefficient so that only the
required amount is used locally. Typically,
the coefficient 1is related to the second
difference of density or pressure,

For illustrative
following will be developed in one
dimension, with its extension to two
dimensions being straightforward.

purposes, the

The =moothing at any point i is given
by

anooth1 = My (ui_1-2u1+ui*1) (6)

where u is the parameter being smoothed and
] is the spatially varying smoothing
csefficient (which includes the appropriate
geonetric parameters).

To vary the smoothing coefficient from
node to node, a second difference of density
is used in the current program. This takes
the form

191-1’291*°1+1J]
M 1+ 8 (7)
t° 7 [ (P1-2*2r1*Py )
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Here n 1s the level of background smoothing
needed to control spurious oscillations and
§ is the factor by which the smoothing has
to be increased (above the background level)
near shocks. Typical values are n=0.025 and
§=50.

A desirable characteristic of any
smoothing scheme is that it be conservative,
i.e., the sum of the smoothing terms over
the whole domain vanishes. If u is a
constant in (6), the contributions 3! the
interior nodes in fact do cancel, leaving
only boundary contributions. If however u
varies, this is not ¢true. To circumvené
this problem, one can use an averaging of
the smoothing coefficients, giving

snoothi = + (ui_1+u1) * (ui-l-ui)
(8)
T (HgtHg ) M tugtugy)

Thus, the sum of the smoothing over
all 1 results in the cancellation of the
contributions of all the interior intervals,
leaving only the boundary terms, or

N-1
ifztsmoothi) = + (u1 +u2 ) * (u1 -u, )

(9
= ey ytey) * (uy_y-uy?

This leaves two possibilities. First,
cne can accept the amount of non-
conservation near the boundary and allow the
creation of mass (or momentum); the
resulting error is not serious. In
practice, a more serious problem with this
approach is that the smoothing operator
looks convective (rather than diffusive)
near the boundary. This is not an
acceptable numerical wmodel for a smoothing
operator. The other approach (and the one
adopted here) is simply not to smooth normal
to the ends of the domain. As long as
snoothing is not required there (and
numerical experiments show that it is not),
this is a valid approach.

A spatially varying smoothing
coefficient can also cause the smoothing
term to look convective within the flow
field. This occurs if u, is allowed to vary
too rapidly within the field. It can easily
happen near
difference of density can change rapidly
from point to point. It 1is reasonable
therefore to require a smooth distribution
of M., which regquires smoothing the
smoothing coefficient. This can be
accomplished by calculating u at every
point, and then smoothing the vaiues before
use 1in the smoothing step. Unfortunately,
this requires three sweeps through all the
computational nodes, which is expensive.
Therefore, in the present technique, a
special smoothing coefficient equation

shocks where the second-
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is added tuv the set of equations being
solved, where n 1is the iteration count and
 § is the desired smoothing coefficient
csuputed from equation (7). In equation
(10), o governs the rate of convergence for
M;, which must be faster than the rate of
canvetqence of the Euler equations. The
parameter B in (10) governs the smoothness
of ;. This equation assumes that u does
not “vary much from the previous 1te§qtion,
and thus using the prior values for the
diffusive terms does not cause significant
errors. Typical values are a=0.1 and f=l.

COMPUTED RESULTS

The computed results are presented in
two sections. In the first, various
refinement parameters are examined, and
appropriate choices for the two-dimensional
Euler equations are discussed. The second
section compares adapted solutions with
solutions computed with global refinement.
Here, global refinement refers to the
process of subdividing every cell in the
domain. These comparisons are made with
respect to both accuracy and efficiency.

Feature tec n

Adaptation requires that the program
be able to sense where and when refinement
is required. For the Fuler equations there
are many values which might be sensed for
this purpose. For example, one may use
first or second differences, or even the
truncation error. Those operators can be
applied to such primitive values as density
or energy, or to derived quantities such as
the entropy.

In choosing an appropriate refinement
parameter, one must consider the kinds of
features which are to sensed and things
about them which are different than the
background flow. For example, if one is
searching for shocks, 1t 4s clear that a
change in density, pressure, and entropy is
generated across the shock, but that there
is nc change in mass. Similarly, if one was
looking for the slip line behind an airfoil,
it may be useful to use density or entropy.,
but not static pressure since it 1is
continuous across the slip line.

In addition to chuosing which variable
to sense, one must also select a way of
measuring how it varies, Typically first or
second differences might be examined. Here,
the undivided differences were chosen
instead of the gradient or Laplacian of the
chosen variable since it is important that
the measure react to prior adaptation. For
example, if one used the entropy gradient as
a measure near a shock, adaptation would
seem to have the wrong effect, since after
adaptation, the gradient would increase,
indicating a need for more adaptation, etc.

On the other hand, if the first difference
of density were used, then the refinement
parameter would not increase as a result of
prior adaptation.

Figure 3 shows the effect of choosing
different refinement parameters during
actual computations. The embedded grids
were computed for an RAE 2822 airfoil at
Mach number 0.75 and angle of attack 3.0
degrees. This case has a shock on the upper
surface at about 7?5 percent chord. In each
of the cases, there are two seguential
adaptations, with the threshold selected
automatically as described below.

Figure 3a shows the grid resulting
from using the first difference of density
as the refinement parameter. In this case,
double embedding was automatically generated
around the stagnation point, the shock, and
the trailing edge. In addition, double
embedding followed the expansion fan
generated at the leading edge. The
remainder of the airfoill surface is singly
embedded, except on the lower surface near
the trailing edge.

Figure 3b shows the grid resulting
from wusing the first difference of pressure
as the refinement parameter. The grid 1is
very similar to that i{n figure 3a, except
that there is 1less adaptation near the
trailing edge and in the near wake region.
This is due to the fact that pressure is
continuous across the slip line emanating
froa the trailing edge, whereas the density
has a jump.

In figure 3c, the first difference of
velocity served as the refinement parameter.
Here again, the pattern of adaptation is
very similar to the previous two examples.
The main difference is that the extent of
the adaptation behind the airfoil is
slightly larger than either of the other
two.

The first difference of entropy is
used as the refinement parameter in figure
3d. 1t can be seen that the adaptation very
faithfully follows the entropy gradient set
up in the wake, even out to the far field
boundary. Since one must control the
increase in required computational
resources, this results in fewer points
being available for other parts of the
field, with the lower surface of the airfoil
being almost completely ignored. Also, the
adaptation region around the shock is rather
small, resulting in an appreciable strength
shock passing through the edge of the
embedded region.

The computed 1l1ift and drag
coefficients for each of these cases were
all within 1.4 percent of each other,
indicating that the adaptations were equally
good from the standpoint of accuracy. One
can see from the figures that the normalized
CPU times to convergence ranged from 4.5 to
7.1. However, these times were not directly
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related to the number of nodes for each
case, due to the varying number of
iterations required to reach convergence.
From these cases as well as others which the
authors have reviewed, it appears that the
adaptations which completely surround flow
features (shocks, leading and trailing
edges) perform the best.

Figures 3e through 3h show the effect
of using the second difference of density,
pressure, velocity, and entropy
respectively. In each case, the edge of the
enbedded region proves to be relatively
ragged. There are voids in the embedded
region as well as islands of adaptation, as
easily evidenced in figure 3f. This results
in convergence difficulties in the solver.
Conseguently, all of the cases using second
differences resulted in unacceptably 1long
computation times due to such topological
problems. :

Based on these findings, as well as on
the accuracies and computation times for all
these methods, it appears that the first
difference of density is the best refinement
parameter, especially for transonic airfoils
with shocks, stagnation regions, and slip
lines.

In addition to
appropriate refinenent parameter, it is
necessary to determine a threshold;
adaptation 1s performed around any nodes
whose refinement parameter exceeds this
threshold. This is a classical
signal-to-noise discriminator.

selecting an

Figure 4 shows the distribution of
refinement parameter arbitrarily plotted
versus node number for the airfoil
calculation previously discussed. The
refinement parameter for this case 1is the
first difference of density, normalized by
the average first difference over the whole
domain. There are four levels of possible
threshold shown.

Choosing A as the threshold results in
very few cells being adapted.
Alternatively, choosing D results in almost
all the cells bDeing adapted, yielding an
almost global embedding, which is a very
ineffective strategy. It appears from
figure 4 that an appropriate threshold value
would be either B or C.

This data is presented again in figure
S which 1s the cumulative distribution
function corresponding to figure 4. On the
abscissa are the possible values of the
threshold and on the ordinate is the
fraction of points whose refinement
paraneter exceeds the selected threshold.

There is a knee 1in the figure near
point C. For a slight decrease in the
threshold value, the fraction of points
which would be newly 1included in the
adaptation would rise rapidly (a large

“, = 0 e I q. ﬂ-. " .“.- Sl -‘I-..q-‘q:‘.\\
D R N I R TG R, 3G vy vy S S AT P Xt

slope). This corresponds to the decrease in
the threshold below the value of noise 1in
figure 4. If on the other hand there is a
slight increase in the threshold. there are
very few nodes which would no longer decome
adapted. Therefore, the “knee“ in figure 5
is used to automatically set the thresnhold.

One must however include guards into
this algoriths. For example it seens
foolish to choose a thresho'A va ue which 1is
leas than the average refi.ecaent parameter.
It 1s also important to ensure that too much
adaptation 1s not done since that increases
the required computational resources. This
results 1in constraining the possible values
of threshold by the cross-hatched 1lines in
figure 5.
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A sensitivity study was conducted to
ascertain the importance of the parameters
used for the automatic threshold
determination. Figure 6 (a, b, and c¢) shows
the effect of choosing the threshold at
levels A, B, and C respectively. It can be
seen that the extent of the embedded region
increases as the threshold value decreases.
However, the computed 11f¢ and drag
coefficients show a slight degradation from
Cto B (about 1 percent) and a larger
degradation from C to A (about 5 percent).
This is consistent with the previous comment
that the adaptation is best when it
completely surrounds the flow features of
interest.

Adaptation Effectiveness

To determine the effectiveness of an
adaptive grid scheme, one must consider its
accuracy and efficiency as compared with
standard techniques. Adaptation
effectiveness can be measured in two ways;
the first 1is with respect to required CPU
time and the second is with respect to
required computer storage. Adaptation
accuracy can be measured by comparing
solutions computed with adapted refinement
with those based upon globally refined
grids.

Figure 7 shows the computed accuracy
versus efficiency for three different
airfoils (to be discussed below). The
accuracy is measured Dby the difference
between the computed lift coefficient and a
reference 1lift coefficient (figures 7a and
7¢) or the difference between the computed
drag coefficient and a reference value
(figures 7b and 74). The efficiency is
measured either by the required CPU time
normalized by the time required for the base
solution (figures 7a and 7b), or by the
nunber of nodes similarly normalized
(figures 7c and 7d). In each figure, for
each airfoil (symbol), there are two lines.
The so0lid line refers to adapted refinement
and the dotted 1line refers to global
refinement.

The first airfoil is the NACA 0012 at
Mach number 0.40 and zero degrees angle of
attack. For this case, which is denoted by
squares, the reference values of lift and
drag coefficients are both zero. It should
be noted that all the solutions yielded zerp
1ift, and this is shown as an error of 10
(the assumed accuracy of the calculation).
The drag coefficients for the solution with
one global and one adapted refinement were
identical, as were the drags calculated for
two global and two adapted refinements.

The second case (denoted Dby circles)
is again for the NACA 0012, but this time at
Mach number 0.63 and 2.0 degrees angle of
attack. For this case, the reference lift
coefficient is 0.3297 and the reference drag
coefficient 1is zero. 1t can again be seen
that the lift and drag coefficients are the

same if global or adag.ed refinement is
used.

a)

b)

Figure 6.

Threshold set at C.

Effect of choice of threshold.
First difference of density.
RAE 2822, Mach=0.75, a=3.0 deg.

- v v

F R LS

(R RIII .

IR LS

LR



D NACA 0012 M_e.40 a=0. deg
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Figure 7. Comparison of accuracy vs.
efficiency for global and adapted embedding.

The third case (denoted by triangles) | S OSSR SOTO s, .
is the RAE 2822 airfoil at Mach number 0.75 : : X : :
and 3 degrees angle of attack. The pressure
coefficient distribution for this airfoil ! : : : : :
(fiqure 8) shows a shock at about 75 percent ............ e SSRETITITRVPLTPRESOPPIPPRIPRARY, :
chord on the upper surface, as do the Mach : . : :
number contours for the same case (figure :
9). The three 1lines in figure 8 are the : : : :
computed solutions without refinement, with 0.254- : A P~ 4
global refinement, and with adapted : : ) : :
refinenent; the global and adapted
refinements are so close that they virtually

. appear as one line on the plot. For this ]
case, the reference 1lift coefficient is
1.076 and the reference drag coefficient 1is
0.0424, The anomaly in drag coefficient for : : : : :
the b"e Ie!h 13 due co A trﬁdQ'Off between -0.754 ............. -. ............... - ........ . ............ -
shock location (and strength) change and : :
total pressure loss due to smoothing.
Again, the error in the 1ift and drag :
coefficients are the same for global and - - : A T
adapted refinement. : ; ;

et “qlobal
refinement

For these cases, figure 7 demonstrates -1.75 v — . .

that adaptive refinement yielded the same 0. .2 .4 .6 .8 1.

accuracy as global refinement, but required x/chord

only 12 to 33 percent as much resources. Figure B. Pressure coefficient for

Alternatively, one notes that for a given non-embedded, global-embedded, and

resource allocation, the adapted solutions adapted-erbedded runs.

yielded considerably more accurate RAE 2822 Mach=0.75, a=3.0 deg.

solutions.
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The final test case is for the
supersonic flow over an B-percent-thick,
circular-arc, unstaggered cascade at a free
stream Mach number of l.4. In this case,
there is a complex shock pattern which forms
fron the intersection and eventual
coalescence of the leading and trailing edge
shocks. It can be seen that the adaptation
method used here resolves the detailed shock
interaction (figure 10a). 1f grid
refinement by redistribution had been used,
the case would have yielded significant
topological difficulties. As before, the
refinement parameter is the first difference

of density, with the threshold chosen
automatically.
Figure 10b shows that for the Dbase

shock intersection, reflection,

grid, the
nissed whereas

and eventual coalescence is

for either tne global (figure 10c) or
adapted refinement (figure 104), these
phenomena are obtained in detail. For this

case, the adapted solution ran 4.8 times
faster and required one third the storage of
the comparable globally refined solution.

LONCLUSIONS

e An adapted grid strategy which uses the
enbedded mesh procedure described herein
yields solutions with the same accuracy
as a globally refined mesh case but only
requires between 12 and 33 percent of
the resources - for all cases tried to
date.

e Various refinement parameters have been
examined to deduce that the first
difference of density is the most
effective for two dimensional Euler
solutions with shocks.

® A thresholding algorithm has Deen
developed which automatically sets
thresholds in order to detect and
:solnte features from the background

ield.
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e An adaptive smoothing algorithm has been
developed, which is conservative, small
in smooth regions, and primarily
diffusive rather than convective.

e The adaptation strategy presented here

is extendable to three-dimensions, with
even larger anticipated savings.

ACKNOWLEDGEMENTS

This work was supported Dby the Air
Force Office of Scientific Research under

grant AFQOSR-82-0136, Dr. J.D. Hilson
technical monitor.
T] Ferepmees il R
l"'-':'::-—] —ilh
st 11[7;..-;3 ﬁ T —.—o—-o—od
il

b) Mach number contours
Base grid Time = 1.00
M *1.4
e
c) Mach number contours

Two global refinements. Time = 6.27

M =1.4
— N
a) Mach number contours

Two adapted refinements. Time = 1.31

Figure 10.
Solution for supersonic circular arc cascade.

10




€11

€22

L33

4]

£s53

£6l

€7l

€8l

€9l

€102

‘e "0 e e

AU R R P PRI
‘.. ., - ,_{L-‘Al-.’»’_ﬂv‘

BEFERENCES

Thompson JR, "Review On the State of the
Art of Adaptive GCrids”, AIAA-84-1606,
June 1984.

Berger MJ and Jameson A, “Automatic
Adaptive Grid Refinement for the Euler
Equations*, DOE/ER/03077-202, October
1983.

Dannenhoffer JF and Baron JR, “"Adaptive
Procedure for Steady State Solution of
Hyperbolic Equations*®, AIAA-84-0005,
January 1984.

Ni RH, “A Multiple-Grid Scheme for
Solving the Euler Equations™, AIAAJ, Vol
20, No 11, November 1982, pp 1565-1571.

Usad WJ and Murman EM, "Embedded Mesh
Solution of the Euler Equation Using a
Multiple-Grid Method”, AIAA-83-1946-CP,
July 1983.

Jameson A, "Iterative Solution of
Transonic Flows over Airfoils and Wings,
Including Flows at Mach 1°, Comm on Pure

and Applied Math, Vol 23, May 1974, pp
283-309.

Brandt A, "Multi-Level Adaptive
Solutions to Boundary-Value Problems”,
Math, of Comp., Vol 31, No 138, April
1977, pp 333-390.

Brown JJ, “"A Multigrid Mesh-Embedding
Technique for Three-Dimensional
Transonic Potential Flow Analysis”®,
AIAA-82-0107, January 1982.

Usab KJ, "Embedded Mesh Solutions of the
Euler Equation Using a Multiple-Grid
Method®”, Ph.D. Thesis, Massachusetts
Institute of Technology, January 1984.

Jameson A, “"Solution of the Euler
Equations for Two Dimensional Transonic
Flow by a Multigrid Method™, MAE Report
1613, Princeton University, June 1983.

11

...

T
o e e r #

SO R KA

AN

. ey e s ®
b PLP LR R S




Appendix C
IMPACT OF SUPERCOMPUTERS ON
THE NEXT DECADE OF
COMPUTATIONAL FLUID DYNAMICS
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COMPUTATIORAL FLUID DYNAMICS

Zarll M. Murman
Saul §. Abarbanel
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Int>xoduction

A small croup of D ressarchers f£rom the United States and Israel
gathered in Jerusalem during December 1984 2t a2 workshop entitled "“The
. Impact of Supercomputers on the Next Decade of Computational Fluid
Jal Dvnamics." The background of the workshop attendees ranged from D
code developers to arplied mathematicians to computer experts. During
the workshop the participants presented and discussed results of their

current research. They then engaged in discussion of the workshcp

Aoty 4 Yoty

theme. This article attempts to summarize their cbsexvations and
speculations on what the imoact of supercomputers will be on CID curing

the next decade. Tirst, however, we briefly summerize the papers in

()
el e

these proceedings ané the cuvrent status cf 5.

T™ne Present

Supercomputers and FD have affected every aspect c¢f fiuicd

NS hA

Gvnamics to some decree during the past decade. Pernaps the area

which has experienced the most Eramatic impact Is the fielé of a+tached

Zlow aerodvnamics, tyciczl of Gesign point confitions for transpor:s
aircrzft, In this situztion the Ziuid flow is well beshaved by &esicn.

Sevarated and unsteady Zlow are avoided. The turbulent IZliow mogels

a ]
Ll SE N RV Sl ¥ §

applicable to attached boundary lavexs are accectavlie (though nc:t

periect). There zre no chemical reactions cr zhase change

11
n
1
&
.J
4]
[19]

rlace. The bicgest challenges lie in solving £he nonlinear invisczid

flow eguations (primarily transonrnic) and dealing with the corolex

AP

geometry. During the past decade, the capadbility of the computers and

a2lgerithms has developed encrmousliv in this one particular sudbdisci-

tline. 1In manv instances thev are as much utilized as wind tunnel

R AR

testing, although by no means surplementing zherm.
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Tn most ctner fields c¢f science and encineering, many cf the mo

Gifficult fluid &vnamic phenomena which are etsent in attacned Ilow

aerodvnamics are cf paramount impcrtanfe. Ior examrle, Turbemachin

are dominated by three-dimensional visccus and unsteady chenomena wi

zffect heat transfer and verformance. In many devices
and chemical processes, multicompenent chemical reactione ané turbu

rixing must be modeled. High perfcrmance aircrait and heliccpters

etrongly influenced by vortical ané unsteady effects. Low drag bodies

are dominated bv the prediction of transition. Separated, uns:teady
wakes cf automobiles influence their fuel consumption anéd handling

capabilities. 1In large scale geornhysical fluid dynamics, coriolis

forces and stratification effects are dominant. These lead to multirle
+ime scale wave pnenomenz. Unstable stratifijcation produces turbulent,
puovant mixing. Turbulent Ilow is dresent in v;-.ual‘v every situation,
vet can only be adequately modeled for the simplest cf Zlows like

+<+ached boundary lavers and jets. This.does nct exhaust the list, but
:hé point made here is quite cleax:; only the tié'of +the iceberc has
been seen by the progress made in attached flow aerodynamics. The
piggest challenges are vet to come. The papers in the proceedings cive
one assessment of where the field stands in this respect.
The Papers

FPerrbach's pzper cives a comprehensive overview cf the current per-

foxmance of supercomputers ané wvhat is on the horizon., This field is
now very active following a dcrmant period in the 70's. The basic
message is that computer speed and main memery will bq:h increase by

about two orders cof macnitude in the next decade. ERiso, all future

supercomputers will be a combination cf vestor (oipeline) ané peral

lel

(multiprocesscy) architecctures, Zigerithms will have to adazt to and

explolt these zrchitecturzl features to achieve the statel machine

verformance. Thompkins' paper demcnstrates that supercomputing doe

s
not necessaxily have to be done on supercomouters Z+ makes an inter-
esting case Zcr the need cf perscnai-sizel supercomouters with speeds

about one crder cf magnitude siower +than the mainirames, but with com-

parable memories. The idea of using nigher level lLanguages fer multi-

nigherx quag
Trocessor az-rliceztions is introduced by Thomdhins. Navier-3tokes

results are also presented for turbomachine cascades, illustrating

state of the art for CFD applied to these flows, The paver by Jame

SOL,

Leicher, ané Dawson demonstrates one way Thzt the current cenexation cf

: " ';l w\‘im'
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sented, the experience cf these autheres usl
cf supercomruters 1S recoraed, Vecstoriiati

is explzined. The need for cood crarghicel
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bases turns out to be mandatory. £ similar messegse is given in the
paper by Murman, Rizzi and Powell, whnich compares Two lnaepenaently ob-

zined soluticns for leading edce vertex flowe for celte wings. Tnls
vaper also illustrates that this class cf comcressitle flows is
relatively unexrlored compared to shock wave cominated Iflowe

Severzl papers present new &l

precsible or compressible Navier-st

of these ecuztions will become more Irecuent

computers, this is an Impcrtanct fox

Walters and Dwover inztroduces

azlcerithm for the Euler ecuaticns., NMclorme

for the comcressible Ravier-Stokes eguation

to the algerithm of Walters and Dwover.

ccelereting the

convergence

cr Navier-Stokes
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firnize element

angé Tresents &

subseguent interr
Zexr

methods

supercompute

Stokes (PNS) eguations. Erancét and Te'asan
¢rid alcoritnms for cuasi-elliztic svstens
gorroximations to the havier-Stokes and rel
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vergence

peint

fer

e e
Tuorkel :

and <he incomr-

Tulier

Sinzce the soluzicn

- with the nigher power
the future. The taper by

ck oresen algorithm

=S a new
s wvhich nas some similari<ies
Zor

resgents mMetnocs

le Kavier-Stokes sguaziocons
ntxy To cducts ané the

wvnich arise Zrom Eiscreze

<he

Ternaos no rreilem iz more central to Ziuid mechanics than the
rrecdiction cf transiztion aznd tTuxrbulent Iflows. Three tapers dezl with
*nis topic. Brachet, Mes:tczlfe, Orscac and Riley rresent nev resul:s
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the Navier-Stokes ecuaticne., Numerlicel EXNIEYILIMENLTS EUCL &S tThese can

lead +o0 new tnecretical underszandinc cf ineteXllizy cof rectaticnel

grezter detalil. These twO Tapers DOiINt out tne capapilities and shor:i-

comings cf current turbulence modele. The impertance o having accurate

zlgerithms is stressed by both authores.

Papers by Sulem ancé by Michelsen illustrate how numericel resul:s

can be used to understand the nature of the sclutions to pertial
Cifferential eguations. The use of spectrzl methods for problems which

rezuire high accuracy is receiving increased interesti. The presenta-

T L 00 § SN,

tions by Abarbanel and Gottlie:, and Gottlieb and Tadmor consider some

: basic issues regarding the resoluzicn cf extreme gradients by spectral
methods. The paper by Browning and Kreiss illustrates that many fluid
prcblems with multiple time and lencth scales are exceedingly Eiffjculs
to compute, even with "unlimited" computer power. It is important to
understand that the powerZul new supercomputers will only yield useful
the mathematicel and numerical analvsis feormulation is care-

fully cdone. The peper by Sever is znother illustreztion of this,

The

Turing the next decade supercomputer vower will increase dramaticali~

ly. The directly adcéresseble hign speed memory capacityv will increase

o2

by about two orders ci magnitude, from 2 millicn werds to 256 milliion
words. Processor speed will increase an crdéer cf magnitude frcm about

100 MFLOPS to 1000 MFLOPS, cr perneps more., I+t is likely <that the

ccrresponding parameters oI smaller computers will increase dyv simlilar

facteors, Historxy nhas shown that whenever an imporTant carameter i q
1
varied by an order of magnitude, new &lcscoveries are made The &iffi- !

culty is to have some feelinc as +o what these ciscoveries might be,

Tne particizants realized, of course, that Zcrecasting The Zuture is

interestinc to note, however, tha:t éurinc the canel discussion alimest
everyvone subscribed to the idea that the nev sudercomputers will nos
orly zllow tackling sigger proolems, but will zlso lezd to 2 betier
understanding cf the rhyvsics of some complex Trcokblems such as turbulence,

vortical flows, ané chemically reacting flows.
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bv the attendees concerning four cuestions which were oeosel Dy the

Imzoacs+ of Sunercomruters on 5D

In the fielé of aerodinamics, thne rreliminary desigr c¢f transpor:
aircraft will crimarilv be ¢one oo supercomsuters. The modeling and
compuiing capability will be basicelly in rlace. Unlike earlier rre-
dictions that computers will make wind turnels obsoclete, few peorle
subscribe to that viewpoint now., What is more likely to harpen is that
the use ¢f wincé tunnels by researchers and design encineers will change.
Less and less of the exrloratory decsign will be done by tests as the
precdictive methods become more reliarle. Tnis has already hagrened in
severzal instances with the curren:t generatiocn of computers. The next
generation will provide enough resoliution anéd speed thet a realistic
model cof an actual cruising transvort aircreft can be computed.

The capability to model "cIf-cecsign" or "unclean" aerxodvnamic Ilows
will increase. These are Zlows wnich are separated, unsteady, vorcex
dominated, and the like. Such Zlows are cf great mporiance for
maneuvers of high perfcrmance aircrzft or for emergency situations fer
transgort aircreft. The loads developed in these regimes often
determine the reguired strencth ¢ the air £+ comoconents. The same
Phenomena olten dominate rotary wing and rotating machinerv zerc-
@vnamics. Capacity cof computers znd zlgorishms up O now has not been
adeguate to suzpert & Irontal assault cn this class cf mretlems. The
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Trhis is because little tTheory nas ever been Gevelcped for thern.
The complexity ¢f orczlems which the researcher and the encineer
will be Gealing with will crow in some Drcocriicn to the new comoutexr

power, This will have & number ¢ impacts cn the dailv 1ife cf the

Zluids mechanician, >Prcrlems under investicaticn will have many lencth

c¢f Brachet, Metcelie, Crszag, anéd Riley. ILaw methods ¢f analivzing and
rresenting results will nave to emerge in crxder to dezl with <his.
Grazrhicel output is crucizl, and mavbe artificizl intelligence <trpes

b4 *e-dnolocv will nelo oux.
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the accuracy or fidelity ¢f & comruteé result. Uo TO now, it has
cenerally been possible to compare ccrmputed results with theory feor
limiting conditions. For examzle, a tvanscnic wing celculeation can be
compared with linear wing theory for low Mach numbers, or & Navier-

Stokes solution can be compared with a laminar bouncdary laver. But as

the computations move into more nonlinear flows, the past theoretical
framework will become less and less acrlicable. Comparison with ey-

reriment is an essential, and independent computations cf the same
v rroblem by different researchers vill be necessary. Perhaps a renewed

interest in theory will result £rom this need.

Impact of Supercomouters on Basic Sciences

As one participant stated, the great masters of fluid mechanics in
the past solved a2ll the linear prodiems and left us with only the non-
linear ones. Since most fluid mechanic proolems are ncnlinear, we can
speculate that the ability to model highly nonlinear prcblems with
powerful computers will lead to many new discoveries. Another partici-
pant thouéht that the impact cf supercomputers will inZliuence the basic
'way we think about chysical problems. New infoxmation will be dis-

covered Irom numerical experiments and rrovide insignt Zor modelinsg.

o

i this sense, computational-experiments are akin to laboratory experi-

=]

ents which have provided insicht and ideas throughout the history ci

th

iluid mechanics and cther scientific éiscirlines.
In the past, computationzl methods have made a major impact on our

abilityv to compute and understand poctentizl flows and inviscid Zlows

Gominated nv shockwaves. One can conclude thati <he classes of Ziows
are well understood both from the phvsical and &l gorithmic points ol
view. A&lthough the ability to anzlyze shock dominated flows has been a
mzjor step forwaré in fluié mechanics, much is left to be dcne. TFor
exarmcle, only limited (D studies have been done Zor vortical flows,
and 1°ttle is understood about the alceoritnm reguirements for inviscid
rc:aiional flows. Many studies have been done fcxr twe-dimensional
serarated Iflows, but only limited studies feor three-Zimensional
secarated fiows. thouch efZicient elgoritnms for steady flows are
under develorment, indications are <hazt the flows these algerithms are
to be aprlied to may be unsteady in neture. See Zur examrle Thompkins

or Murman, Rizzi and Powell.

Pernars no area is more temsting to speculate on than the field cof

\'9"' ~~%,c~\.o f\(' Iy
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new egquations. In the past adecade, comrutational moasls ang lLaboratory

experiments have opened & nevw look a%t turbulence. The idee of coroanized
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Cr coherent structure has
have shown that solutions to Zzirly simzle Crnamicel systems have
chaotic behavior. &An interesting cuestion which was pesed is "Wnat
will be the resolution cf the speculation that there is both determinism
and chaos in nonlinear ecuations?" Comput onal experiments could .
provide a framework for helring to answer this cgues<tion.

Another area which will probably be strongly influenced by mere
powerful computational aprroaches is the courling of chemical reactions
and heat release to fluid flow problems. EIven fairly "simple" reactions

involve many species with many time sczles of reactions. In +the past,

comruters simply were not liaxge enouch to tackle many of these rroblems.
Rate constants are alwavs an uncertzin factor in such calculations.
Perhaps bpeing eble to model the experimentzl conditions under which the

ate constants are measureé will lead o more accurate measurements of
their values.

One issue on which there was guite a diZference oI crinion is the
degree to which modeling will be reguired orior to computing. On the
one hend, many sarticigants fel:t that the +ime wa2s upon us to tackilie
the full three-d&imensionzl Kavier-Stokes eguaticns, Dossibly aédding
models only Icr subgrid scale turbulence. Cihers Zelt Zhat the past
rracoice of selecting simplifies sets c¢f eguations such as inviscid eox

parabclized viscous will still be prudent. It
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level of modeling will zlways be reguired as comouter cgpabilizy wil
never be big enouch to solve z compiex rTroblem from first rrinciples.

In Zact, for most problems this is unnecessary. The cuestion is,

will the <type of modelin s=rcoriate Zox the future be éifferent Zrom

Q
™
"
%

that used in the past when ccoputer memery, speed, and accessibilliity

were more limited?

"Imzact of Supercomputers on Zicorithme and Lancuaces

An impertant issue recariinc azlgorithms arises from ithe multi-

crocessor ané vector axchitectures cf supercomputers., 2algerishms which

cznnot be efficiently used con these architectures will be ¢f limized
utiZity. Many fluicd mechanic rrckhliems are solved uesinc time dependent

integration rrocedures Zcr inisizl boundarv value »roblems. 30th
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zlgorishme are easieY tO vesiorize tharn mnl

usually invclve recursive sters lr the matrix inversicr.. However, the

3

paper bv Steger and Euning demonstrates an effective vectcriczation
strategy for simultaneous inversicrn cf & large number cf tridiaconal
matrices aprlicable to approximate factorication methods. Ixplicic
zlgcrithms are also easier te adart to multicrocessor architectures as
the solution domain can be subdiwvided withcut introducing éifficuliies
in the algoritnm. The paper by CJameson, Leicher and Dawscn Yeporis a
stratég} and results which illustrate this. <TIfective strategies for
adarting implicit algoritnms for multiprocessor architectures neeé to
be found also. Participants generally agreeé that the rezl vavoff is
for algorxitnms which can work effectively on tens or hunéreés of
parallel processors, not just twe, four, or eich:.

It is clear that zlgoritnm developers must be cognizant of the
advantages and constraints which non-vVon Neumann architectures will
rtlace on supercomputing. The paper by Thompkins is an indicator of
what will come. In addition to <he conceptual changes in algerithms
due to multiprocesscrs and vector processors, efficiency limitztions
arise in the speed at which main meméry can be accessed from various
processors or the speed zt which &azta can be exchanged between drc-
cessors. The personal-sizé supercomputer repcrted dy Theomphins invelves

Two processors (a scalar host and an at:tached vector). Movement ¢ the

[e]}

ata must be carefully managed to avoid notilenecks. In the fuzure
eglgoxithm develoément must take into consideraztion not only traditional
numerical analysis, but zlso computer science aspects..

Another algorithm issue arises from the shear size cf the main
memory cf supercomputers. Problems with very Zine meshes will be
possible. With the excertion c¢f multigrid zlgorithms for ellirzic

eguations, the asymptotic convergence rzte (spectral radius) of

f
"

iterative methods is dependent on +he number cf mesh peoints. Recent
estimations done by researchers at NASE Langley indicate that the =—ime
recuired to reach convergence Ior ithree-dimensionzl Navier-Stokes
cuations on & 256 megaword machine is excessive tTO the pcint of being
unrealistic. This indéicaztes a rezl need for Zinéinc zlgerithms whic
nave asymztotic convergence rates which are either mesh independent cx
vary (at werst) slowly with the number c¢f ¢riéd peints. Such alcorithms

must woxrk Zcr prorzlems with widely varving lengin and time scales, not

-

a
just model rrxcblems cr model eguations (see Szmeson et zl).
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lanquages that will make it easier =o cocnetruct e sclution azzroach for

2o gy

& new problem, as well as make it easier to utilite The new zZchitecture.
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The general strategy feor sclving a rrez

)

commor.. A grid is generated, discreticzeticn ¢ ezatial derivatives and
boundary conditions is done, an iteratiorn cr time 1lntecration method ig
selected, and various outpuits are reguired. IT was suggestel that
assembling these tools and manipulazinc them for embedaed suddoma’ns
and the like would lend itself to & hicher, and therefcre simrler,

. language. TFORTRAN is the lancuage cf the TD community to éate. The
paper by Thompkins introduces some higher level constructs for managing
the soluticn process in a multiprocessor environmentz,

2nother area in which algorithm innovation mav be recuired is in
preprocessing (¢grid generation) ané post-Trocessing (date base analvsis).
The papers by Steger and Buning andé Murman, Rizzi and Powell indicate
that graohical analvsis is imperative, but other wavs cf manipulating
the data bases would be aesirable. Mavbe knovledge base programs
("expert svstems”) will be helpful in Zinding the important Zeatures in
2 given sclution. Or perhaps pattern recognition azrcroaches will be
reeded. A

-

Impact on Sunsvstems

The workshop attendees Icr the most par:t rerresented users cf

stpercemputers, and not hardware specialists, However, with the large

Gzta bases which will be cenerzted, the darzicipants felt that severzl
cZ the surporting subsvstems rmight well be inzdeguazte TO Watcth the

power ¢f the high speed oroce Pariticipants who have had expexi~
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nunber one reguirement Zcr analyzing resulis. ks éiscusse

some new crazhics algorithms may well need to dbe devised
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complicated Zlow fields., But powerful trocegsing ané cravhiceal disrlay
czpabilities are also recuirel. £As the Tedey bV Thempkins »cints out,
2 researcner will tyoicelly spendé much ¢ nis cr hexy time periorming

graphical analysis which reguires & rrocesscr a2bout an order ¢ mac-

are reguired to ccastruct the out
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€ifferent comtinetions of the dependent variz-les than those which are

tored in the data base. Many researchers currently think that the

plot files will be creazteld on the supercomruter 1iself fcr these
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veasons. However, super cgrachical Trccesscors, vhich coulé be much

0

nezper anc therefcre more avallztle Tc the users, shoulid be develcped.

Tvriczally, eloorithms for creating the grarnical cdate bese are easily

Pl

rectorized and coulé be Gone con ayrya” Crocesscrs attached TO mMOsSt Tro-
cessors. Thnese could lead to vary Toweriul and inexpensive graphics
workstations. Fortunately the technclogy is develcring rarzidly for
medium to high resolution color disclay devices with interactive
capability.

Most o©f the attendees at the werkshop fall in the catecory cf
"remote" users. They are not loceated &t tne same site as the super-
computer. There was significant concern that remcte cormunications
will be a real bottleneck. Regulaer cdiasl-up cavability is barely
adecuate at rresent for editing files or transmitiing smell output
files to remote users. t certainly would be impossible to 4o inter-
active graphics processing from a remote site or to transmit the
entire data base ‘for onsite analvsis using even dedicated &ata lines
currently available. The best w.y to communicate with remote facili-
ties at present is to transmit magnetic tapes via express mail
services. This inevitadlyv leads to deiays and slow turnaround., The
impact ¢f supercompuiers on iesearchers who are not ce-located with

= -

the machines will be minor if high bzndwidth communications are not

The impact of supercomputers on the next decade ¢ computational

fluié dynamics will be substantizl. ¥ith processcr speeds and high

speed memcry increasing by two orders ci magnit
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take place. The cifficuvley lies in accurately Zorecasting wnat those
changes will be. The atove éiscussiorn rresents the thiniiing of one
croup of active (D ressarchers,., Terhars thelr viewpoints will sexve
o help others to become aware o, ané think about, These changes as

they take rlace. The next decade nas zliready started, Twenty vears

ago!
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List of Papers to Appear in PROGRTES AND SUPERCOMPUTING
IN COMPUTATIONAL FLUID DYKAMICS, to be published by
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Earll M. Murman
Saul S. Abarbanel

Sidney Fernbach

W. T. Thompkins

Antony Jameson
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Joseph L. Steger
Pieter G. Buning

Earll M. Murman
Arthur Rizzi
Kenneth G. Powell

Robert W. Walters
Douglas L. Dwoyer

Robert W. McCormack

Eli Turkel

R. Glowinski
Moshe Israeli
Achi Brandt
Shlomo Ta'asan
Marc E. Brachet-
Ralph W. Metcalfe
Steven A. Orszag
James J. Riley
Joel H. Ferziger

Micha Wolfshtein

P, L. Sulem

"The Impact of Supercomputers on the Next Decade
of Computational Fluié Dynamics"

"Current Status of Supercomputers and What Is Yet
to Come"

"Experience with a Personal Size Supercomputer =
Implications for Algorithm Development"

"Remarks on the Development of a Multiblock Three-~
Dimensional Euler Code for Out of Core and Multi-

processor Calculations"

"Developments in the Simulation of Compressible
Inviscid and Viscous Flow on Supercomputers"

"High Resolution Solutions of the Euler Equations
for Vortex Flows"

"an Efficient Iteration Strategy for the Solution
of the Euler Eguations

"Numerical Methods for the Navier-Stokes Eguations"

“Algorithms for the Euler and Navier-Stokes
Eguations for Supercomputers”

"Viscous Flow Simulation by Finite Element Methods
and Related Numerical Technigues"

"Marching Iterative Methods for the Parabolized
and Thin Laver Navier-Stokes Equations™

"Multigrid Solutions to Quesi-Elliptic Schemes”

"Secondary Instability of Free Shear Flows"

"Turbulent Flow Simulation - Future Needs"”

"Numerical Calculation of the Reynolds Stress and
Turbulent Heat Fluxes"

"Numerical Investigation of Analvticity Properties
of Hvdrodynamic Ecuations Using Spectral Methods"
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Daniel Michelson
Saul Abarbanel
David Gottlieb

David Gottlieb
Eitan Tadmor

G. Browning
Heinz-0Otto Kreiss

Michael Sever

"Order and Disorder in the Kuramoto-Sivashinsky
Equation"

"Information Content in Spectral Calculations:
"Recovering Pointwise Values of Discontinuous Data
Within Spectral Accuracy"

"Numerical Problems Connected With Weather
Prediction"

"Order of Dissipation Near Rarefaction Centers"
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