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}bﬂ (5; Preface

.:,r't_

ﬁﬁ, The purpose of this study was to determine the feasibility of using
(X)

A%

RN

5* Fast Fourier Transforms (FFT) to solve Boundary Value Problems (BVP).

LRy

¢

365 Since many Boundary Value Problems are solved using some type of Finite
Qaﬁ Difference Method, it was felt that a comparison between these two

g '*‘

3

methods might provide an insight into the usefulness of the Fast Fourier

ot Transform in solving BVP.

,Qf The one dimensional BVP was studied to help provide a basis for
.94
N
%h. understanding the two dimensional BV?. The two dimensional BVP was
!‘.
ot
W)
‘J” studied using only a simple case where the boundary conditions were zero,
EX-, but could be easily extended to non-homogeneous boundary conditions.
W
o) The understanding and insight of the FFT I gained these last twelve
i qii weeks has been extraordinary. My thanks to Dr. N. Pagano of the Air

2
-
P

Force Weapons Lab for sponsoring this thesis. I would like to acknowledge

S A

Dr. Kaplan for his never ending support, even when the prospects of

D
h
¥
QX getting the one and two dimensional FFT computer codes working was some-
P M
ﬁﬁ: times questionable. I would also like to thank Cpt. Ric Routh and
4
e
J . . . , .
ﬁﬂ Cpt. Jim Helton who provided greater understanding and appreciation for
¢
X
v the FFTs. And finally, I must thank my wife, Jeanine, and my children,
§§ Jennifer, Greg, and Derek, who supported and sustained me through this
v . R
. period. .
«52 t'Accesqion Far
b | NTIC T
”;- Todd R. Jones cU i
’, T

LY 4 o

AR AN TR Nt

Lo Lt e PY 04 e .. . N
«.H@%K&Nhﬁnhk?ﬁﬂdtﬁ'.ﬁJ- L R A T SCAG A Y




s
o
A
i
Ae!!!
.;g*ﬁl
EA
i';l‘_
?ﬁ‘ dg; Table of Contents
:"..
Qq Page
)
"
_,'.: Preface . . . . . . . . . 4 e e v e e e e e e e e e e e e e e ii
A
by List Of FigQUIes . . . . v v ¢ v o o o« o o o o o o« o« o s o « o = v
o0 .
’::,; List of Tables . . . . . v v ¢« v o o & o o & o o e e e e e e e vi
K
X
l,." AbSEIact . . . . L L . L e e e e e e e e e e e e e e e e e e vii
Pt
NG
s I. INErodUCLion . . & v 4 4 e e e e e e e e e e e e e e e 1
:.;. Background . . . . . . e 4 e e e e e e e e e e e e 1
"y PUIPOSE . . . & & v ¢« o o o o o o = o o o« o o o« o o 2
W SCOPE . v v v v v v e e e e e e e e e e e e e e e e 3
“&' Plan of Development . . . « .+ « o « & o & o & « o o o 3
L
: II. ThEOLY . . v v 4 v v v o o o o s e e e e e e e e e e . 4
2l
4
iﬁ} Fourier Series . . . « ¢ ¢ ¢« v o« o « o o o o 0 o < . 4
P Discrete Fourier Series . . . . . . . ¢« v & &+ « « o« = 5
Discrete Fourier Transform . . . . . . . . . . . . . 6
0 Sampling and Aliasing . . .« . & « « v 4 4 44 e e e s 9
e Fast Fourier Transform . . . . . . . . . . + « « « = 10
"
0
2&{ III. Poisson's Eguation in One-Dimension . . . . . . . . . . . 12
(e
ek Analytical Solution . . . . . « « . ¢ ¢ e 4 4 e e e 12
) Numerical Approximation . . . . . . . . . . . <« « . . 13
v Finite Difference Method . . . . . . . . . . . . 14
;’;‘, Fast Fourier Transform ., . . . . . . . . . . . . 15
) )
] Computer Analysis . . . . « o « ¢« ¢ ¢ ¢« o« v o 4 e e . 17
:‘. FPT Algorithm . . . . « ¢ ¢« ¢ ¢ v o ¢« o o o o o = 17
‘gq Exact Solution . . . . . . . . . . . o . 0. . . 19
4
Nodal PointsS . . ¢ & v ¢« v o ¢ « o 4 o 4 « o o 19
4 Average ELTOr . . « « o o o « o o« o o « o o o o » 19
A Comparison of Approximations to
ﬁﬁ Exact SOlutions . . . . ¢ ¢ « & & o 4 4 o4 e e o4 . 20
A Computational TimeS . . . . .+ « & « & « « « o « =« 20
L
1v. Poisson's Equation in Two-Dimension . . . . . . . . . . . 27
F_
:% Analytical Solution . . . . . . . . . 4 . ¢ 4 e 4 e . 28
q% Numerical Solution ., . . . . . . . « ¢ ¢« & &« « o« o 29
&a Finite Difference Method . . . . . . . . . . . . 29
“n Fast Fourier Transform . . . . . . . . . . . « . 30
el "n
.‘ ‘}ﬂ}v
t“ »rr
o,
¥y,
i
L iii
v‘v,’

-

d . v : A ) i ‘ \ s ¢ Of N b O\ ! ~»'*- B RN “ %
L T e I Ottt At E ROl Attty AT




Computer Analysis . . . . ¢ v « + v ¢ ¢ v 4 e . .

FFT Algorithm . . . . . . ¢« ¢ ¢ v 4 « v o« o &
Exact Solution . . . . . . . ¢ . ¢ 4 . e e W
Nodal Points . . ¢« . « & ¢ 4 ¢ v 4 4 . e . .
Average Brror . . . ¢ ¢ ¢ ¢ ¢+ ¢ ¢ o o o o o
Comparison of Approximations to Exact

Solutions . . . . ¢ 4t h 4t e e e e e e
Computational Time . . . . . ¢« ¢« ¢« ¢ & « « =«

V. Conclusions and Recommendations . . . . . . . . . . .

Conclusions . . . ¢ v o+ 4 e v v e e e e e e e e
Recommendations . . . +« ¢ ¢ ¢ c 4 e e 4 e e o o

Appendix A: Computer Codes . . . . . . . + & « ¢ v ¢ o o o

Appendix B: Tables of Data . . . . . . . . . + . « ¢ ¢ « + .

Appendix C: Analytical Solution to the Two Dimensional BVP .

Appendix D: Solution to the Two Dimensional FFT BVP . . . .

Appendix E: Mathematical Explanation of the Two Dimensional
Complex FFT . . . + & v v v ¢« v 4 o v o« e o o &

it
¢
& b; .p
N \3}
K]
o
‘
)
t
‘.
b
A
)
)
4
t
»
)
L
* Bibliography .
]
Vita . . . . .
3
4
'
4
[
¢
[l
t]
?
L,
rae,
4
‘,ﬂ“'

iv

I oy J 140, U0 T RO o oy oy Uy N oy N By By v By T S T AR ST AT R SN Sy I
5, S, 0 A L G R e S e R RS T, AL LR RAGRRAYL AN

AT

Rt

A

.

°r
\

Page

31
31
32
32
33

33
33

38

38
40

42

54

61

65

67

69

71




W T OwWWwETTw A il b PRSI RRITRITRATTRETR TEN R TF T gNers-aia7Te T8 ETTRTRwARE TR AR TR
gil¥at’

Yot
R
W O
" 'bs?‘ List of Figures
Rl -
Ao .
Hay Figure Page
X
Ok 1. Function U(t) on the Interval (0< t itN) e e e e e e e e e 7
i"* ;

B 2. General Solution to Equation (3.8) with
R 4 Interior Nodes . . . . . . . . « & ¢ o o ¢ 4 v 4 o 4w o« 14
T Wl

P
by 2 3. Case One, Average Error Comparison Between FDM,
b‘ FFT Methods and the Analytical Solution . . . . . . . . . . 21
-."% :

v

4. Case Two, Average Error Comparison Between FDM,

ity FFT Methods and the Analytical Solution . . . . . . . . . . 22
[} |.l
det
ﬁhﬁ 5. Case Three, Average Error Comparison Between FDM,
»b" FFT Methods and the Analytical Solution . . . . . . . . . . 23
kY

” 6. Case Four, Average Error Comparison Between FDM,

ity FFT Methods and the Analytical Solution . . . . . . . . . . 24
gjs

:¢; 7. Comparison of Algorithm Computational Times for the

- Thomas Method, GE Method and the FFT Method . . . . . . . . 25
R -

i‘, 8. Comparison of Total Computer Time for the Thomas

Vel Method, GE Method and the FFT Method . . . . . . . . . . . 26
()i

!

N}
r*f 9. 2-D BVP with 6 Interior Nodes . . . . . . . . « « . « « « . 27
B &.""

’ Fy
gﬁﬁ 10. 2-D Solution to Equation (4.6) with 6 Interior Nodes . . . 30
Y 11. Average Error Comparison Between FDM, FFT Method and

kb the Analytical Solution in Two Dimensions . . . . . . . . . 34
\:':.'
f*‘ 12. Comparison of Algorithm Computational Times for the GE

{{h and FFT Methods in Two Dimensions . . . . . . . . . . . . . 35
i 13. Comparison of Total Computer Time for the GE and
N
&ﬂ\ FFT Methods in Two Dimensions . . . . .« & « « « « & « « - . 36
2%
-20d
ey
2
q
L

~
¥ .

fi
BLX>
o
k) "’
05
‘J' »

':t iy

‘.':g

[ v

.

» A

. R W . . o e - T ; - -nr
tsb’ l’ lqm"v.‘ ‘ AP j‘}.‘!':"h‘,t' B .u W ?':.!.\ ,.n .h.,.n ‘lp‘!d'.h., b ).\ » h..

» ¢




‘:‘l

LN

th

o

)

s .

A @?? List of Tables

G,g_;“ X il

¢

'y Tabl

b able Page

o

)

PN I. Values of F(x) vs x in Case 3 for the

kﬁ One Dimensional BVP . . . . . . . . « ¢« & v o v ¢ & o « 19
BN

g II. Exact Solution to 2-D Poisson's Equation at

o 6 Interior NOdeS . . « « « « & o o« o o ¢ o v o o o o o . 28

BN

3 IIT. Average Error for the One Dimensional Poisson

LY )

f::.: Equation with F(x)=40 and U(0)=U(10)=0 . . . . . . . . . 54
1)

. Iv. Average Error for the One Dimensional Poisson

&8 Equation with F(x)=x and U(0)=U(10)=0 . . . . . . . . . . 55

N

o

.} V. Average Error for the One Dimensional Poisson

" Equation with F(x)=40 and U(0)=2 and U(10)=8 . . . . . . 56

Ko

- VI. Average Error for the One Dimensional Poisson

%i Equation with F(x)=x and U(0)=2 and U(10)=8 . . . . . . . 57
'.".'I‘

x  VII. Computing Time in Seconds for the One Dimensional

8 . Poisson Equation . . . . « ¢ & ¢ 4 ¢ 4 v e 4 e e e e e 68

Ao Ei'

o VIII. Total Computer Time Used in Computing the

%d One Dimensional Poisson Equation . . . . . . . . . . . . 58

S

K)

ﬂa IX. Average Error for the Two Dimensional Poisson

%“ Equation with F(x)=2 and all Boundary Conditions Equal

o £O ZELO v v v v e e e e e e e e e e e e e e e e e e e 59

N . ,

j$ X. Computing Times in Seconds for the Two Dimensional

?ﬂ Poisson Equation . . . . . .« 4 4+ 4 e e e et e e e . 60

0

ﬁk XI. Total Computer Time in Seconds for the Two Dimensional

v Poisson EqQuation . . . . . ¢ ¢ i 4 s 4 e e e e e e e 4 s 60

J‘Q' vi

R R AR AL DAL St v DA



- AFIT/GNE/ENP/86M-8
Abstract

The purpose of this study was to determine the feasibility of using
Fast Fourier Transforms (FFT) to solve Boundary Value Problems (BVP) and
K then compare the results to those of the Finite Difference Method (FDM).
4 Variations of Poisson's one and two dimensional equations were used as a

o vehicle to develop the FFT method. For the one dimensional BVP, both

-

homogeneous and non-homogeneous Dirichlet boundary conditions were con-

e

sidered. In the one dimensional BVP the inhomogeneous function, F(x),

I

was also varied. The two dimensional BVP, only one inhomogeneous function,
F(x,y)., and homogeneous boundary conditions were used. The one dimensional
model was used as a basis for developing the two dimensional model.

iﬁ; The analytical solution of each problem was compared to the numerical
solution of the FDM and the FFT method at varying mesh sizes. The compu-

) tational time of the FDM and the FFT method were also compared.

The results indicate that the FFT is extremely efficient in the two
dimensional BVP because of the computer storage space required and the

computational time needed to solve the FFTs. The accuracy of the FFT

PR

compares favorably to the FDM and, as the mesh size decreases, becomes

) more accurate than the FDM.

vii
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FEASIBILITY AND COMPARISON INVESTIGATION OF THE USE

'
I\ )
::ﬁ. OF THE FAST FOURIER TRANSFORM AND FINITE DIFFERENCE
B
o~
S5¢ METHOD FOR NUMERICAL SOLUTION OF BOUNDARY VALUE PROBLEMS
1y b\
N
- I. Introduction
o dbicboddied bl
1,‘)-,‘\.
B
‘a1
Pt Background
r.,-_;‘, Many science and engineering problems require the solution of one or
..-:l'ﬁ
-;,-'; more Boundary Value Problems (BVP). Many of these BVPs cannot be solved
AN
s, analytically because of irregular boundary conditions or complex geome-
X -
:'g: tries. The most common method of solving these type of BVPs is by means
!
"_,-.
I,s'i of the Finite Difference Method (FDM). 1In this method the derivatives of
Sy
w the partial differential equation are approximated by use of Taylor series
e i . i . ;
v expansion, which reduces it to a set of algebraic equations that can be
o
W
y solved by simultaneous equations. The solution of these simultaneous
)
) equations may be found with the aid of a computer by using direct matrix
o : : ‘ , ‘ ‘ )
:’t inversion techniques which require N3 operations, where N is the number
N
:g.l' of simultaneous equations (14:6). Hence, other methods which require
a0
\)
\‘ \. . . .
y fewer operations have been developed to solve sets of simultaneous linear
:3 equations. These methods include both direct and iterative techniques
N
&
L and in each case decrease the computational time (3:111; 6:417).
Y
Wy
? One of the techniques used to solve BVPs involve using Discrete
N e
:‘: Fourier Transforms (DFT). The computational time for a DFT is only on
4
:g the order N2, but to solve a one dimensional BVP it becomes N3. When the
0}“
! G?'
) o
e
ol
g..ll
Ap
i:n’( 1
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B )
\‘l
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Fast Fourier Transform (FFT) algorithm is applied to the DFT the computa-
tional time is decreased to an order of NLOG,N operations, which equates

to 4NLOG,N + 4N to solve the same one dimensional BVP (1:8; 11:215).

This decrease in computational time greatly enhances the use of FFTs

over direct FDMs such as Gauss Elimination. The use of the DFT in conjunc-
tion with the FFT will be referred to as the FFT method throughout the
rema:inder of this study, since the DFT takes advantage of the FFT algorithm

for increasing its computational speed.

Purpose

This thesis topic stems from an article in the May 1984 Physics
Today (5), which mentioned the use of FFTs to solve BVPs in two and three
dimensions. For a three dimensional BVP with a grid or mesh of 100x100x100,
the matrix becomes very large, namely 105x 10%. This size matrix,
according to the article, can easily be solved using FFT techniques
(5:56). A closer investigation of this method revealed a lack of published
information concerning the FFT technique. It was found that the FFT
method was faster and required less computer space than conventional FDMs
for <wo ind three dimensions (5:547; 13:710). In the information that
was published only BVPs with homogeneous boundary conditions were solved.
There is an obvious lack of information on the feasibility of using FFTs
to solve BVPs in one, two, and three dimensions. Additionally, there is
no known published information concerning the use of FFTs to solve BVPs
with boundary conditions other than zero.

This study investigated the feasibility of using FFTs to solve BVPs
and compared this method with the Gauss Elimination method in terms of

both computational speed and accuracy.
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Scope

The study will consider only the problem of the one and two dimensional
Poisson's Equation, with Dirichlet Boundary Conditions. Both zero and
nonzero boundary conditions will be analyzed. In each dimension the
Poisson's equation will be solved analytically, and numerically using
Gauss Elimination and FFTs. The accuracy of the Gauss Elimination method
and the FFT method will be compared to the analytical solution. The compu-
tational time of the Gauss Elimination and the FFT method will then be

compared.

Plan of Development

The initial approach was to develop a FFT computer program to solve
a one dimensional Poisson Equation with boundary conditions equal to
zero. A Gauss Elimination (GE) program was then developed to solve the
same one dimensional Poisson Equation witih boundary conditions egual to
zero. These two programs were then expanded to accept a two dimensional
Poisson equation with boundary conditions equal to zero. Modifications
were then made to account for boundary conditions other than zero.

The accuracy of the numerical solutions were then compared to the
analytical solutions, and computational times of the GE method were com-
pared to the computational times of FFT method. Finally, limitations on
the FFT method and feasibility of possible directions of further research

were discussed.
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II. Theorx

In order to understand the use of FFTs to solve boundary value
problems, it is necessary to understand some theory about the Fourier

Series and the Discrete Fourier Transform.

Fourier Series

Any function expanded as a series of eigenfunctions 1s defined as a
Fourier Series, where the interval of orthogonality is (0< x <27)
(17:65). Because the series is periodic any 271 length can be used. If
the interval (0< x <21) is replaced by (-L< x <L) , then the Fourier

Series can be defined as

8

U(x) = a /2 +
fo)
n

w ~

[ancos(nnx/L) + bnsin(nnx/L)] (2.1)
1

The coefficients ao, an and bn are

L

ao = 1/LfU(x)dx (2.2)
-L
L

a = 1/L‘/ﬁU(x)cos(nnx/L)dx n=1,2,3. . . (2.3)
-L
L

bn = I/LfU(x)sin(mrx/L)dx n=1,2,3. . . (2.4)
-L

This same series can be moved along any interval (-L< x <L) or from
(0< x <2L) as long as the interval remains 2w (7:283). Thus the Fourier

coefficients can be rewritten as
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li:.{‘h
‘:\:‘:r
Py b L
g
W) . a_ = 2/LfU(x)dx (2.5)
R o
o

‘2’;\“1‘1
M L
s a = 2/LfU(x)cos(n1Tx/L)dx n=1,2,3. . . (2.6)
!‘., .. 5
SN L
L ISC
:,.‘ bn = 2/L/U(x)sin(nﬂx/L)dx n=1,2,3. . . (2.7)
%

S
Dt o
&“J: )

. Discrete Fourier Series
)!"I
-‘0'0:0
;:g' ' The Fourier Series can also be expressed as a discrete finite series.
it
A
:.3'2.' The derivation will not be shown here, but can be found in Numerical
.,' “ Analysis books by Richard W. Hamming (7), or by Robert Vichnevetsky (16).
R y‘ LY

A
‘_(:, There are three orthogonality relationships, though, that aid in the
-
o
,5. RS derivation of the Discrete Fourier Series and understanding of the Discrete
g Fourier Transform (7:284).

§7~|

Ay

ur:

o 2N-1 0 k#m
L Y cos{(2m/L)k(Lp/2N)}cos{(2n/L)m(Lp/2M)} = { N k=mg0

, p=0 2N  k=m=0 (2.8)
Ty
Wik
Wy
b 2N-1
) .
N Y cos{(2m/L)k(Lp/2N)}sin{(2n/L)m(Lp/2n)} = O (2.9)
O.QII =0
3‘1‘!‘ p=
_;‘3 2N-1 0 k#m
Gy Y sin{(2m/L)k(Lp/2N)}sin{(2n/L)m(Lp/2N)} = { N k=mz0
e p=0 28 k=m=0  (2.10)
i
ia L

o

‘f._" Based on these orthogonality relationships the Discrete Fourier Series can
.*';
<l be defined as
1
ultd
g
1) l

)
)
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N-1
U(x) = a /2 + ] {a cos(k2nx/L) + b, sin(k2nx/L)} (2.11)
k=1
where
2N-1
a = I/N z U(x)cos(21kx/L) (2.12)
k=0
2N-1
b = l/n z U(x)sin(2mkx/L) (2.13)
k=0

The coefficients a, and bk are also called the Discrete Fourier
Transforms (16:50). To see why this is true it is necessary to review

the Fourier Integral, then relate the Integral to the Discrete Fourier

Transform.

Discrete Fourier Transform

For the purposes of this study the Fourier Integral will not be
derived, but only stated. Several books contain the derivation of this
Integral, which include E.C. Titchmarch's book on Fourier Integrals (15).

The Fourier Integral is defined as

@
U(w) =./.U(t)e'iWt at (2.14-a)
-~
then -
u(e) = 1/2n/U(w)eth dw (2.14-b)
-
where w = 27f . The function U(w) is called the Fourier Transform of

U(t), and U(t) is the inverse Fourier Transform of U(w). Equation (2.14-a)

"
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Figure 1. Function U(t) on the Interval (0< t §tN)

and (2.14-b), also known as the Fourier Integral Theorem, can then be
discretized to obtain the Discrete Fourier Transform.

Let U(t) be defined as some function between the interval (0< t itN)
as outlined in Figure 1. One can then determine the Discrete Fourier
Transform of U(t), which is defined as U(w).

If one allows U(t) to be discrete for every U(t, ), where

k
k=0,1,2. . . N , and applies the Fourier Integral Theorem, while letting
"FT" be defined as a "Fourier Transform," the following is obtained.

o

F{u(e)} = uw) = ./-ume'“"t dt (2.15)

-

In equation (2.15) w is defined as the frequency w=2n/T , and T is

defined as the length from 0 to tN. Because U(t)=0 for t<0 then
~-iwt
U(w) = /U(t)e dt (2.16)

By letting U(t)=0 for t>tN, then
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U(w) = _/rb(t)e'IWt at (2.17)

ty

U(w) = fU(t)e-J'Wt at (2.18-a)
o]
N-1 —iwt:k

U(w) ~ ) u(t, e At (2.18-b)
k=0

where tN=NA t=T , since N is defined as the number of intervals between

zero and tN and At is defined as the interval. This means At=T/N and

t, =kAt=kT/N , then

®

o) = J ue e TN gy (2.19-a)
k=0
N -iw(kT/N)
U(w) = T/N E Ut Je (2.19-b)
k=1

Since w=2¢/T , then w=mAw=m2y/T , where m=1,2,3. . . .N , which

leads to
N-1 -i(2ym/T) (KT/N)
Ulmaw) = T/N u(e, e n (2.20-a)
k=0
N-1 .
U(mAw) = T/N z U(tk)e-lznmk/n (2.20-b)
k=0
~,
N
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U(mAw) = U(w ) = (T)FT{u(t )} (2.20-c)
& " )
™

where the Discrete Fourier Transform is defined as

N-1
-i21km/N
Utw ) = FT{u(t )} = 1/N ] UCt e (2.21-a)

k=0

If one lets "FT !" be defined as the Inverse Discrete Fourier Transform,

then

(e, ) = FT0 {u(w )} = ] uw) (2.21-b)

The Discrete Fourier Transform in equation (2.21-a) is called the complex

form of the DFT. The DFT can also be expressed in terms of sines and

‘i’ cosines by using EBuler's identity, el]x = cos(jx) + isin(jx) , and 1is
defined as
N-1
Uw ) = a_/2 + kzl [a cos(2mkm/N) + b sin(2mkm/N)] (2.22)

It is obvious, then, from equation (2.11) that ao, ak and b, are the same

k

Fourier coefficients. Thus, these Fourier coefficients are also called

the Discrete Fourier Transforms (16:50).

Sampling and Aliasing
There are two terms that are synonymous with DFTs that need an
explanation. Since the DFT is not continuous, a discrete finite number

of points must be determined at which the DFT will be calculated. These

-

“
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# . equidistant points are called the "sample” over which the DFT is evaluated.
vt A
wAEON
ﬁ’ For example, U(t), in Figure 1, is being "sampled" over the interval
L
R ‘.0 =
$q. tk tl, t2’ t3. - e tN .
B
a,; The other term that needs explanation is aliasing. If At, in
l'.
byt
Figure 1, is too large, the Fourier coefficients of the higher frequencies
-
i
}. will fold into the coefficients of the lower frequencies. For example,
hy
.b?' 1f a sample of eight pcints 1s taken over an interval, the coefficient of
%
the first harmonic will be equal to the coefficient of the seventh harmonic;
3‘3‘.
{ 5 the coefficient of the second harmonic will be equal to the coefficient of
Yo
:{:, the sixth harmonic; and the coefficient of the third and fifth harmonic
LN
N will be equal. To avoid this problem of aliasing the Nyquist sampling
\
A
bt rate is used. This formula is 1/ At=2f . Simply stated, this says if
&
):3 At < 1/2f , then aliasing will occur; if t > 1/2f then aliasing will
@ not occur (1:85). (The f is defined as the highest frequency component

of the Fourier transform.)

SRa

- e
- o

e
L Fast Fourier Transform
s&g The Fast Fourier Transform (FFT) algorithm takes advantage of the

symmetry of the trigonometric functions in the Discrete Fourier Transform

P

o tn
¥

L%
E g

(DFT). The regrouping of the equations in calculating the DFT reduces

< L]

e the number of computational operations. The Discrete Fourier Transform

g

. »

;j requires on the order of N3 operations to solve a one dimensional BVP,

>

-~ where N is defined as the number of discrete data points. The Fast
A '0‘ ) . .
5 ] Fourier Transform algorithm is on the order of 4NLOG,N + 4N operations to
3rf solve the same BVP. The FFT requires on the order of NLOG,N operations,
l" {
W

J
i but in calculating a one or two dimensional BVP the number of computations
Y -

Ao,
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must include calculations of the FFT,

the calculations of the inverse

FFT, and any computations conducted while the function is transformed.

Additionally, any modifications to the FFT algorithm

deletions of

the real or imaginary components of a complex array) add additional

calculations (11l:215). The theory behind the FFT algorithm will not be

discussed in this study. E. Oran Brigham's book on FFTs (1) contains

both an intuitive and theoretical development of the algorithm and is

recommended to the reader who wishes to gain an indepth understanding on

how and why the FFT algorithm works.
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ﬁq? III. Poisson's Equation in One-Dimension
24y in
i The first problem examined in this study is Poisson's equation in

one dimension. The general form of the equation is

d2U0(x)
__dxz -F(x) (3.1)
where U(x) 1s the unknown function to be determined and F(x) is a known

function. Both homogeneous and non homogeneous boundary conditions are
examined along with different values of F(x). The boundary conditions and

the function F(x) are separated into four distinct cases.

T

; Case 1 U(0)=0 U(L)=0 F(x) = 40
L Case 2 U(0)=0 U(L)=0 F(x) = x
; Case 3 U(0)=2 U(L)=8 F(x) = 40
a Case 4 U(0)=2 U(L)=8 F(x) = x

Analytical Solution

The general solution to equation (3.1) for F(x) 40 1is found by

)

direct integration and takes the form

U(x) = -20x?2 + Ax + B (3.2)

for case one and case three. Applying the boundary conditions in case

one, equation (3.2) becomes

U(x) = -20x2 + 200x (3.3)

and applying the boundary conditions in case three, equation (3.2) becomes

U(x) = -20x2 + 200.6x + 2 (3.4)

I
s
‘-'»~

12




- The general solution to equation (3.1) for F(x) = x 1in case two and four
S
ol

1s also found by direct integration and takes the form

U(X) = —== +Cx + D (3.5)

By applying the boundary conditions in case two, equation (3.5) becomes

{3.6)

and applying the boundary conditions in case four, the equation becomes

-x3 259x
Uix) = ==+ 15

+ 2 (3.7)

Equations (3.3), (3.4), (3.6), and (3.7) are the analytical solutions
to the one dimensional Poisson equation (3.1).

®

Numerical Approximation

This same equation (3.1) can be solved using numerical approxima-
tions. Two different techniques were examined, the FDM and the FFT
method. Both methods involve the subdividing of the region concerned into
N nodes, or mesh points, and solving a set of simultaneous equations for
each value of N. The FDM can solve the simultaneous equations using
different techniques 1including Gauss Elimination, Tridiagonal, or Iterative
Methods. The FFT method uses the FFT algorithm, which solves the trigo-
nometric equations using symmetry of the sine and cosine terms.

In general, the accuracy of the solution is dependent upon the
number of nodal points chosen: the finer the mesh, the larger the number

of nodes, and the greater the accuracy.
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; A Figure 2. General Solution to Equation (3.8) with 4 Interior Nodes
[\
o
'I
“kﬂ rinite Difference Method. The FDM, as mentioned in the Introduction,
i approximates the derivatives of the differential equation by use of a
o
0
bﬂf truncated Taylor Series expansion. The derivation can be found in many
o
5\ texts which include C.F. Gerald and P.O. Wheatiey (6), and Clark and

Hansen (3). By using the Taylor Series expansion a central difference

o approximation can be applied to equation (3.1) to get
A PSY
7508
© o -2 e

d * d2u(x) §2U(x) _ Uy k ¥ k-1 . _E(xh ) (3.8)
2 dx2 hxz = hxz = X :
SO
R
¥
O
e where x=khx . The hx is defined as the distance between nodal points,
(> ")
O N is defined as the total number of interior nodes, and k=1,2,3. . .N

;g (14:6). Equation (3.8) can be reduced to matrix notation

2

~

L]

Au = -F (3.9)

.'::-,"
f}& where "A" is defined as the coefficient matrix which is tridiagonal, "u"
s
o’ ) .
AONA is a column matrix of unknowns, and "F" is a known column vector (see
&r} Figure 2). This matrix equation can then be solved by either the Tri-
:kg diagonal method (Thomas method) or the Gauss Elimination Method.
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Fast Fourier Transform Method. The FDM takes advantage of a poly-

nomial interpolation, whereas, the FFT method takes advantage of a
trigonometric interpolation (16:89). In the FFT method, h=L/(N+l) ,
where L is defined as the length of the region of concern, N is the
number of sample points and h is defined as the length of each sampled
interval. It follows, that xn=nh , where n=0,1,2,3. . .N+1 and is
defined as the set of grid points in which the solution of equation (3.1)
is to be approximated. By inspection the BVP must be an odd function,

since at both boundary conditions the value is zero or a constant. The

equation
N
U(x) = § b sin(kyx/L) k = 1,2,3. . .N (3.10)
k=1
can be used to approximate the solution to equation (3.1). It follows

from equation (2.11) and (2.13), and using the orthogonality relationship

of equation (2.10) that
b = 2/(N+1} § U sin(knx/L) (3.11)

By taking the second derivative of U(x), equation (3.10), with respect

to x the following is found.

d2U(x)
dx2

bk(kn/L)zsin(knx/L) (3.12)

1
ne~12

By substituting the right side of equation (3.12) into equation (3.1),

15
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one gets the following results.

w1z

- b (kn/L)?sin(knx/L) = -F(x)
k
k=1
By discretizing x to X where n=1,2,3. . .N
becomes
N
Y b (km/L)2?sin(kmx /L) = F(x ) = -f
kll k n n n

Now, one can solve for bk using the orthogonality relationship, equation

(2.10), to obtain

N
b, = 2/(N+1)(L/km)2 ) £ sin(kmx /L)
K n=1 n n

where

FT(f ) = £ = 2/(N+1) f sin(kmx /L)
n n n

3
i~

Solve for Un by discretizing U(x) such that

b si L
ks:.n(k'n‘xn/ )

(e}
=/
1
n~2

The specific sequence used to solve for each nodal value of Un using the

FFT method is thus:

1. Compute the FT(fn), equation (3.16), by using the FFT algorithm.

2. Compute each value of bk by dividing the eigenvalue of U{x) by

the FT(fn). See equation (3.15).

16
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then equation (3.13)

(3.14)

(3.15)

(3.16)

(3.17)
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3. Compute the nodal value of Un by using the inverse FFT algorithm,

equation (3.17).

Computer Analysis

FORTRAN codes were developed to solve the one dimensional Poisson's
equation using the FDM and the FFT method. The codes take advantage of
subroutines found in the International Mathematical and Statistical
L:braries, Inc. library, more commonly called the IMSL library, and were
run on the Harris 800 main frame computer. A listing of the codes using
the FFT method are in Appendix A. The FDM used both the Thomas method
and the Gauss Elimination method. The Thomas method was programed in
FORTRAN using the algorithm found in Clark and Hensen, page 47. The
Gauss Elimination method was programed in FORTRAN using the IMSL routine
LEQIF.

FFT Algorithm. The IMSL subroutine used throughout this study of
the FFT was FFTCC. The FFT algorithm requires a complex value input and
provides a complex value output. Additionally it computes the transforms
over a 2L interval. Because of these peculiarities it was necessary to
modify the computer code to compute the FFT for the one dimensional
Poisson's equation. Equation (3.1) is described only over an interval
of L. In order to have the FFTCC subroutine operate properly over this

interval it was necessary to input the function over a 2L interval, then

only accept one half of the interval in the output as the solution. For
example, in case one the function, F(x)=40 , is a rectangular function
over the interval 0< x <L . Since equation (3.1) is described ty a sine

function, which is odd, it was necessary to input F(x)=40 from 0< x <L

17
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and F(x)=-40 from I< x <2L . On output, only the REAL value of the
complex ouput was accepted from O0< x <L . 1In the FFTCC subroutine the
first coefficient is only ao. In electrical engineering terms this is
referred to as the DC component. This component must be eliminated when
solving the one dimensional Poisson's equation since the solution is only
a series of sine terms. Hence, in the main FFT program it was necessary

to sum for b, from n=2 to N rather than n=1 to N.
N
b = 2 [2/(N+1)] [L/(kw)]?2 fnsin(knxn/L) (3.18)

Equation (3.18) eliminates the DC component and allows the FFTCC subroutine
to approximate the one dimensional Poisson's equation.

The four cases outlined on page 12 vary not only the function F(x),
but also the boundary conditions. Two of the four cases used boundary
conditions other than zero. 1In applying non-zero boundary conditions to
the FDM the non-zero boundary is absorbed into the F(x) function. This
process applies similarly to the FFT method. On input the function F(x)
must be adjusted at the endpoint to account for the non-zero boundary
condition. For example, in case three, over an interval from 0< x <L ,
the values of F(x) would be as listed in Table I.

By programirg the input values of F(x) in this manner the desired
results are achieved. This process seems logical, as one examines a
delta function, such as F(0)=2 , in normal space, the value becomes a
constant in Fourier space and bounds the equation that is transformed.
When the inverse transform is conducted this constant returns to a delta
function adjusted somewhat by the computation conducted in step two of

the FFT method.
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TABLE I

Values of F(x) vs x in Case 3
for the One-Dimensional BVP

Value of x Value of F(x)

40
40
40
40

O w oA NO

Exact Solution. Particular solutions to equation (3.1) were found

by letting L=10 and solving for x at values of 2, 4, 6, and 8. The
table of these results can be found in Appendix B. These results were
then compared to the numerical solution using the FDM and the FFT method
at the same values of x, 2, 4, 6, and 8.

Nodal Points. Each case of boundary conditions, as described on
page 12, was computed using four different mesh sizes. The mesh size
was decreased in each of the four cases, thus resulting in a better
approximation to the analytical solution. The interior nodal mesh points
used were 4, 9, 49, and 99. Appendix B contains the results of these
computations.

Average Error. The accuracy of the approximations was determined

using an average percent error, or relative error (6:42). For the one

dimensional case the average percent error was defined as

<E> = Exact Solution - Numerical Solution x 100 (3.19)
Exact Solution

19
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2? ~ Comparison of Approximations to Exact Solutions. The plots of the
O A _—_ —_—
')
B A average percent error for each set of interior nodes are found in
7&5 Figures 3-6. In each of the four cases, as outlined on page 12, the FDM
e
N
:J solution was found to be the same as the analytical solution. Consequently,
\‘-:
", the only error differences reflected on Figures 3-6 are in the FFT method.
(%)
b- In all cases, as the number of interior nodes increase the average percent
)
?\ error in the FFT method decreases. The computations for each ncdal point
M)
&t
N for the FDMs and the FFT method are in Appendix B, Tables III-VI.
‘}: Computational Time. In order to calculate N interior nodal points
n'l‘
VH using the FFT method it is necessary to calculate the Fourier Transform
b of 2N+2 points. This is due to the interval having to be sampled over
L
:{- the entire 2L period as described in the paragraph on the FFT algorithm.
lj A comparison of computing times is found in Figure 7. It is important
A
@ to keep in mind that the FFT times reflect 2N+2 calculations while the
A%
;ﬁ FDMs are only N calculations. The Thomas method, or tridiagonal method,
. 4
N\ proves to be the most efficient method in the one dimensional problem.
s
¥
i The FFT method becomes more efficient as the number of nodal points are
‘V increased as compared to the Gauss Elimination (GE) metnod. This is due
.‘\-
:; to the 4NLOG,N + 4N calculations required for the FFT method in one dimen-
,
Al
y sion, while the GE method requires N? calculations. Figure 8 is a
: . . 3 . .
L4 comparison of the total computer time, which includes loading of arrays
K*o
"4
Lo for input and writing the solutions to a file on output. The computation
times for the algorithm and the computation times for the total computer
I: program are listed in Appendix B, Tables VII and VIII respectively. f
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o
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:s& tgf IV. Poisson's Equation in Two Dimensions
H -~ ’ —— — ———————————

( The second problem examined in this study is Poisson's equation in

q{
%t‘ two dimensions. The form of the equation is

Vau(x,y) = -2 {(4.1)

A with boundary conditions

L
e U(o,y) 0 (4.2-a)

0]

1]

e u(s,y) 0 (4.2-b)

il
o

3 U(x,0) (4.2-c)

g} U(x,6)

1]
o

(4.2-4)

- where U(x,y) is the unknown function to be determined. This BVP is
described by equations (4.1) and (4.2) as a rectangle with dimensions of

w ii’ 8 in the x-direction and 6 in the y-direction (see Figure 9).

¥ (0,6) Uu=20

11 12 13 Y

o3 Uu=20 (810) X

K . Figure 9. 2-D BVP with 6 Interior Nodes
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NS s TABLE II
at} -
‘F.\ _..‘n
A Exact Solution to 2-D Poisson's Equation
‘ at 6 Interior Nodes
-
's:,
N
Y
2 Nodal Point Exact Solution
DN
4.18250
. U11 82
s
L . 85
';? U12 5.956
N a. 0
: ~ Uiy 1825
4. 0
) 021 1825
O
w 8] 5.95685
:n'::: 22
!. \,
P . 0
’ﬂ* 023 4.1825
nde
Y
5$i Analytical Solution
...
-aﬁ o Equation (4.1) can be solved using variable substitution, separation
. of variables, and Fourier Series techniques. The complete solution to
»;f‘ this BVP can be found in Appendix C. The solution to equation (4.1),
'.3"‘-,
b after applying the boundary conditions in equation (4.2) is
Ph' U(x,y) = (8x - x2 - 512/73)
e
K-
.l
e 0
o ) {sinh{(2n-1)ny/8}+sinh[(2n-1)n(6-y)/81}
v2n-1)3sinh({3{(2n-1)n/4]}
» n=1
LR
3 sin{(2n-1)7x/8]) (4.3)
"0
-
f“‘ The exact solutions for U(x,y) at the 6 interior nodes shown in Figure 9
;i}‘ are found by solving equation (4.3) at each nodal point. A simple BASIC
fdﬁ program was written to solve for these nodal points. The solutions con-
"
i verged to the fifth decimal place after only six terms were summed. A
\ DN
'\j s summary of the exact solutions are in Table II.
N
e
\J
"
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~ e Numerical Solution
5 ASN
esi "
k) . . . . .
R The equation (4.1) can also be found using numerical approximations
fi; as outlined in Chapter II. The mesh is superimposed over the rectangle
H‘“¢.
'{“ as shown in Figure 9. There are n equally spaced nodes in the x-direction,
Y
L with a mesh-size of hx' and m equally spaced nodes in the y-direction,
. with a mesh-size of hy' The total number of interior nodes is equal to
aly
iy
S m x n, which is equal to N. The size of hK and h will dictate the numbter
oy 3 Y
A"'
o of n and m points, hence, the number of simultaneous equations necessary
;ﬂ; to be solved. The accuracy of the solution in general is dependent on
)
iﬁ the value of n and m as in the one dimensional problem.
' . .
E Finite Differa=nce Method. By allowing hx=hy and representing them
a &
-
r s by h, the solution with FDM, using central difference approximations, can
':y be simplified. Equation (4.1) can be approximated by
fxf
2 2
Y ° g ° J 2 =0 (4.4 l
T hz " h2 ° = -4) !
o X Y
oY |
fih .
Pr o since h =h =h , then
i X y
n
P e l/h2{U -2U U. u -2U +U +2 =0 t4.5)
b kY kY e kY
WAl
3
3,
s

which can be simplified to

4U. 1 +2=0 (4.6)

A 1/h2 U
MU Yok ek Y 1ok 4k

Equation (4.6) is a matrix equation which can be solved directly by the

Gauss Elimination method. Figure 10 is an example of equation (4.6)
with 6 interior nodes (3 nodes in the x-direction and 2 nodes in the

i . y-direction).
. 29
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Figure 10. 2-D Solution to Equation (4.6) with 6 Interior Nodes |
!

Fast Fourier Transform Method

The solution to equation (4.1) using the FFT method is quite similar
to the method described in Chapter III for the one dimensional problem
o0
‘i& except an additional dimension is added. By allowing U(x,y) and
Fix,y)=2 to be extended as odd, 2L-periodic functions in both x and vy,
then equation (4.1) can be solved using numerical approximations in three
steps (16:151). The derivation of each of these steps can be found in
Appendix D. The first step 1s to compute the coefficients, ij, by the
use of the Fast Fourier transformation of
M N
= 2 51n(3nmAx/xmax) z sxn(knnAy/ymax)fmn
=1 n=l
(4.7)
where x is the maximum value of x in the x-direction and y is the
max max
maximum value of y in the y-direction. The value, fmn' is defined as the

discrete value of F(x,y), where hx=xmax/(M+1), the mesh size in the
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x-direction, and hy:ymax/(N+1) , the mesh size in the y-direction.
M 1s defined as the number of mesh points in the x-direction and N is

defined as the number of mesh points in the y-direction. The second step

is to compute the coefficients, Cjk' by applying
_F.
jk
c., = - (4.8)
- 2 2
jk tCam/x )2+« (km/y 2]

The final step is to compute the nodal values of the function U(x,y) by

applying the inverse FFT from

Z cjks1n(JHX/xmax)51n(kny/ymax) {4.9)

Computer Analysis

The FORTRAN code for the FFT two dimencsional problem is listed in
Appendix A, and uses the IMSL Routine FFTCC. The Gauss Elimination codes
were developed using the IMSL Routine LEQT1F. Because of the straight
forward nature of the LEQTI1F subroutine the FORTRAN codes for the GE
method are not iisted i1n an appendix.

FFT Algorithm. There are three important points that must be con-
sidered when applying the two dimensional FFT algorithm. The first two
points are the same as outlined in Chapter III under the FFT Algorithm

subheading. First, the sampled interval must be extended over 2L to

account for the FFTCC subroutine that makes computations over a 2L interval.

Second, the DC component must again be removed, as in the one dimensional

problem, prior to applying step two (solving for Cjk coefficients). This
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is accomplished by starting to sum at j=2 and k=2 rather than j=1 and

k=1 . Finally, care must be taken as to which FFT algorithm 1s imple-
mented. Ideally, an algorithm that computes sine FFTs and inverse sine
FFTs would be desired. The author used the IMSL routine FFTCC, for the
two dimensional problem, which computes the FFT of a complex array in one
dimension. This was necessary because a sine FFT that computed both the
s31nce TFT and the :inverse sine FFT was not avaiiable. The FFTCC subroutine
uses a complex kernel, which means that both the real and the imaginary
part of the function is computed. 1In order to compute the two dimensional
FFT of a sine function it was necessary to write a subroutine to compute
the two dimensional FFT and eliminate the real portion of each computation.
Appendix E contains a mathematical explanation as to the reasoning behind
this computation. With the cosine terms removed the transform becomes a
double sine series as shown by equations (4.7) and (4.8). The number of
computations required to calculate the two dimensional FFT then becomes
8NLOG,N + 10N (11:217).

Exact Solution. The exact solution to equation (4.1) was found at

six points as 1llustrated in Figure 9. The value of each nodal point is

listed in Table II. These exact solutions were then compared to the solu-

tions obtained from using the FDM (Gauss Elimination) and the FFT method.
Nodal Points. Equation (4.1) was solved numerically with three

increasingly larger number of nodal points. The first mesh size included

35 interior nodes, which resulted in the hx and hY being equal to 1.0.

The next mesh size included 165 interior nodes, which resulted in the hx

and hy being equal to 0.5. The final mesh size included 713 interior nodes,

32




Ll 2. TN O T W IrT vt W T WO O T T e T S TR TR TN TONTUR MU A TER TN EA W A A aerRETme s "Rrm "8 " 8 - -

v which resulted in the hx and hy being equal to 0.25. Appendix B contains

|L\‘h‘
L4
the results of these computations.
Average Error. The accuracy of the approximations was determined
using the same average percent error equation as discussed in Chapter III.
f&) <E> = Exact Solution - Numerical Solution x 100 (3.19)
:$;~ Exact Solution
-t-\.:
! _: N
K L]
. Comparison of Approximations to Exact Solutions. The plots of the
o average percent error to each set of interior nodes are found in Figure 11.
1)
B :-‘:-.’ . . .
B As the number of interior nodes increases the accuracy of the FFT method
o
\
;—_ increases. Note, that the accuracy of the FDM decreases as the number of
¢ i nodes increases. This decrease in accuracy is due to roundoff error
‘ 3
)
b Y ‘\'

(6:38). Table IX, Appendix B, contains the values of the analytical

P

solutions as compared to the GE and FFT methods.

-, Computational Time. The comparison of the computational speed between

:{f the GE method and the FFT method can be found in Tables X and XI, Appen-
l dix B. Table X contains the values of the algorithm computational time

3
1 a¥
ﬂw required to compute either the GE or the FFT. Table XI contains the

o
\“‘ values of the total computer time used to run each program. Figures 12
/!
bt and 13 provide a graphic illustration of the computational times.

3
33? Figure 12 is the comparison of the algorithm computations, whereas

~L.‘

» \.‘-
:5: Figure 13 is the comparison of the total computer time. It is obvious
- s
’ that the N? operations required for GE method really become significant |

|

g% o] 3
:}2 when the interior nodes are increased to 165, as compared to the FFT,

29
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Figure 11. Average Error Comparison Between the FDM,
FFT Method, and the Analytical Solution in
Two Dimensions
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Figure 12. Comparison of Algorithm Computational Times
for the GE and FFT Methods in the Two
Dimensional BVP
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Not only does the computational time increase for the GE method,
but the computer storage space increases dramatically. For example, to
compute the 713 interior nodes for the GE method, it requires a matrix
713x713 plus two one dimensional matrices of 713. This equates to over
500,000 memory storage locations (10). On the other hand, to compute the
same 713 interior nodes using the FFT method, it requires two 75x82
matrices, one 120x160 matrix, one 160 matrix, and one complex 120x160
matrix. This equates to just over 50,000 storage locations. (The FFT
matrices are computing 4x713 interior nodes, because the FFT method
requires a 2L interval in both the x-direction and the y-direction.)
This large storage requirement, in addition to the computational time,

detract from the efficiency of the GE method and enhance the FFT method.
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V. Conclusions and Recommendations

Conclusions

The results from the one dimensional problem show that the Thomas
method (Tridiagonal Method) is the most efficient of the methods examined
because it provides the exact solution, and the computational time
requires cnly 8N operations (3:48). The FFT method, though faster than
the GE method as the value of N increases, cannot provide the exact solu-
tion. The GE method, as does the Thomas method, provides the exact
solution with only 4 nodal points. This means small memory storage
requirements, and small computer time usage in the one dimensional BVP.
The exact solution using the FDM is because the FDM is based on a poly-
nomial approximation, whereas the FFT is based on a trigonometric
approximation.

The power of the FFT method is not realized until the Poisson's
equation is analyzed in two dimensions. The Thomas method cannot be
utilized in the two dimensional problem, because a tridiagonal cannot be
formed in two dimensions when the matrix is full (5:56). The Thomas
method is used in the Hockney method for two dimensions, where the two
dimensional problem is broken down into a one dimensional FFT and a one
dimensional Tridiagonal (8:95; 16:151). Additionally the Thomas method
can be used in two dimensions if the matrix is sparsely populated (5:56).
In the case of a fully populated matrix the comparison of direct numeri-

cal methods is narrowed to only the GE method and the FFT method.

The average percent error of the FFT method in the two dimensional

BVP decreases as the number of nodal points is increased, as shown in
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Figure 11. The average percent error of the GE method increases with

P
E

PN

increased nodal points due to roundoff error (6:38). The best percent
error with the GE method is 0.27% at 35 nodal points, whereas the best
percent error with the FFT method is 0.92% at 713 nodal points. One would
reason then that the Ge method is more efficient since it provides greater
accuracy with less nodal points. This is true, but when a larger set of
nodal points are required, which is often the case in engineering, the
value of the GE method is greatly reduced. This is apparent when the com-
putational times and the computer storage requirements of the GE method

are compared to the FFT method (see Figures 12 and 13). The FFT method

is 3 times faster with 35 nodal points than the GE method, 55 times faster
with 165 nodal points, and 1175 times faster with 713 nodal points (see
Tables X and XI, Appendix B). Additionally, the computer storage require-
“ ment for the GE method is 10 times greater than the FFT method as discussed
in Chapter IV. Hence, not only is the FFT method faster than the GE
method, but it requires less computer memory. The FFT method seems to
provide the most efficient two dimensional method of solving Poisson's
equation numerically with full matrices. The ADI method is faster than
the FFT in two dimensions, but is only good for sparse matrices (5:56).

If the two dimensional BVP is expanded to three dimensions, then the

X XN

efficiency of the FFT method could prove to be even greater.
In the one dimensional problem four cases were considered that varied

both the value of F(x) and the boundary conditions. One question of great

concern is whether or not the FFT method can accept boundary conditions

RN

other than zero (13:697; 16:89). This study found that the FFT method can

\
)
3
3
)
)

E be used with other than zero boundary conditions in the BVP. This procedure
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oy . was discussed in Chapter III under the Fast Fourier Transform Method.
bt R

s The two dimensional Poisson equation was only studied with boundary con-

ditions equal to zero. It is logical to assume that non-zero boundary

j& conditions can be applied to the two dimensional BVP and solved using the
s ,
Bl same methods employed in the zero boundary condition problem. The diffi-
145 o]
holy culty associated with this would be to describe the input function as

)
' _: was discussed in Chapter III. The same procedure would be used as was
<
fﬁ; . 4 . .

¢ done in the one dimensional problem, except the function would be expanded

(RN . .

‘W to two dimensions.

rhe

'

X (3

o4 Recommendations

oy

if This study has only touched the surface on how the FFT method can be [

;t- used to solve BVPs. Only boundary conditions of zero and constants were
.;-: |
if} used in this study to establish a basis for the validity of this method.

s ﬁif

. g The FFT method needs to be expanded to non-zero boundary conditions in

e

i;- two dimensions. (J. Rosser, from the University of Wisconsin, has done
A

LM

;?; some work in the area (12:38).) And, then expanded to three dimensions

rf as mentioned by Fox and Otto (5:56). Additionally, there has been limited
A

f" work in the use of Neumann boundary conditions (12:41; 13:707). Additional
Iy

; research needs to be done on how extensive FFTs can be used in conjunction

A with Neumann conditions. In this study and in all the references found on
\j-

::: the FFT method, the only equation studied was the Poisson equation. Hence,
‘s
.-

. i
*{- there is a question as to the ability of this FFT method to provide numer-
(f;; ical solutions for equations other than elliptic equations. Research
s

“»

o
:?? needs to be done to determine the limitations of FFTs on solving BVP
Y
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A with parabolic and hyperbolic equations. Another recommendation is to

O develop a FORTRAN code that will compute the sine FFT and the inverse sine
S FFT, thus increasing the efficiency of the FFT algorithm. The power of

E the FFT is extraordinary and needs to be examined extensively beyond the

scope of this study.

q;.
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fots Appendix A: Computer Codes

25008
X « %
i:‘ This Appendix contains the 1listing of the FORTRAN
e
?“* programs used in the one and two dimensional cases for

computing the FFT. All  FFT FORTRAN programs were run on

ﬁ{ the Harris 800 computer, using the IMSL routine FFTCC.
i
hﬁ, The following are the titles of <the programs in
[ o
. Appendix A and their function.
!;::‘
0o)
ooy TITLE FUNCTION
zf‘ FFT Compute one dimensional Poisson
f.ﬁ equation with F(x)=40 and Boundary
!Q{ Conditions equal to zero using the FFT
” algorithm,
ii’ NFFT Compute one dimensional Poisson
- equation with F(x)=40 and Boundary
- Conditions U(0)=2 and U(10)=8 using the
. FFT algorithm.
o
i
: FFT2 Compute one dimensional Poisson
o equation with F(x)=40 and Boundary
Ay Conditions equal to zero using the FFT
'uj algorithm.
' \,)
p NFFT2 Compute one dimensional Poisson
3yl
' equation with F(x)=40 and Boundary
b = Conditions U(0)=2 and U(10)=8 using the
}@ FFT algorithm,
T
1$\7 FFT2D1 Compute the two dimensional Poisson
KoY equation with F(x,y)=2 and Boundary
. Conditions equal to zero using the FFT
I algorithm,
L%
boss
e
oy >
R &
L
0.."
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*PROGRAM NAME FFT F(X) = 40 (REC FUNCTION)
*AUTHOR TODD R JONES
*DATE 14 OCT 1985
KRR KRR KRR KRR R KRR R KRR KRR R R R R R R Rk Rk R R Rk Rk Rk kkkkxX
*THIS PROGRAM WILL PROVIDE A NUMERICAL SOLUTION TO A *
*ONE DIMENSIONAL BVP USING FFT. THE BOUNDARIES MUST BE *
*ZERO AT BOTH ENDS. THE FUNCTION F(X) MUST BE KNOWN AND*
*PLACED IN THE PROGRAM. THE FFT SUBROUTINE IS AN IMSL *
*SUBROUTINE CALLED FFTCC AND WILL TRANSFORM 300 VALUES *
*QF N. *x
AR R KRR R KRR KRR KRB R R R KRR R R R KRR KRRk Rk Kk Rk
*
*® DECLARATION OF VARIABLES
x

INTEGER N,IWK(1050)

REAL WK(1050),L(300)

COMPLEX A(300)

PI = 4.%ATAN(1.)

* INPUT NUMBER OF POINTS TO BE TRANSFORMED

PRINT*,'ENTER NUMBER OF DATA POINTS TO BE TRANSFORMED'
READ*,N

* INPUT FUNTION DESCRIPTION F(X)

A(l) = (0,0)
A(N/2) = (0,0)
A(N) = (0,0)
A(2) = (40,0)
A(N/2+1) = (-40,0)
DO 10 I = 3,N/2-1
A(I) = A(2)
10 CONTINUE
DO 20 I = N/2+1,N-1
A(I) = A(N/2+1)
20 CONTINUE

* START TIMER
*
CALL BTIME
DO 30 I = 1,N
A(I) = CONJG(A(I))
30 CONTINUE
x

* USE FFT SUBROUTINE FFTCC
3
CALL FFTCC(A,N,IWK,WK)
DO 40 I = I,N
A(I) = CONJG(A(I))*2/N
40  CONTINUE
DO 50 I = 2,N
ACI) = ((10/((I-1)%PI))**2)*A(I)
50  CONTINUE
43
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CALL FFTCC(A,N,IWK,WK)
CALL ETIME

*%k%k%xk%x%x SQTOP TIMER ***¥%%x*x

*
*
*

60

100

70

PRINT VALUES OF U(N)

OPEN(1,FILE='DATIFT1')
DO 60 I = 1,N
L(I) = REAL(A(I))
CONTINUE
DO 70 I = 1,N/2
WRITE (1,100) L(I)
FORMAT(' ',F8.3)
CONTINUE
CLOSE (1)
END
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*PROGRAM NAME NFFT  F(X) = 40 (REC FUNCTION)

*AUTHOR TODD JONES

*DATE 1 NOV 1985

EEERKEERKKRKKERK KR ERERX R R KR KR REXRRRE R XXX SRk kX Rk XKk Rk E TR XKk XK
*THIS PROGRAM WILL PROVIDE A NUMERICAL SOLUTION TO A *

*ONE DIMENSIONAL BVP USING FFT. THE BOUNDARIES MUST BE  *
*U(0)=2, AND U(10)=8, THE FUNCTION F(X) MUST BE KNOWN AND*
*PLACED IN THE PROGRAM. THE FFT SUBROUTINE IS AN IMSL  *
*SUBROUTINE CALLED FFTCC AND WILL TRANSFORM 300 VALUES  *
*OF N. *
KRR ERERRERE kR kR kR kk bk kb Rk kR kk k¥ hk kb k ke kkkk
*
*  DECLARATION OF VARTABLES
*x

INTEGER N,IWK(1050)

REAL WK(1050),L(300)

COMPLEX A(300)

PI = 4.*ATAN(1.)

*

INPUT NUMBER OF POINTS TO BE TRANSFORMED

PRINT*, 'ENTER NUMBER OF DATA POINTS TO BE TRANSFORMED'
READ*,N

*

INPUT FUNCTION DESCRIPTION F(X)

A(l) = (2.0,0)

A(2) = (40.0,0)

A(N/2) = (8.0,0)

A(N/2+1) = (-2.0,0)

A(N/2+2) = (-40.0,0)

A(N) = (-8.0,0)

DO 10 I = 3,N/2-1
A(I) = A(2)

10 CONTINUE
DO 20 I = N/2+2,N-1
A(I) = A(N/2+2)
20 CONTINUE
x

* START TIMER
*
CALL BTIME
DO 30 I = 1,N
A(I) = CONJG(A(I))
30 CONTINUE
*

* USE FFT SUBROUTINE FFTCC
*
CALL FFTCC(A,N,IWK,WK)
DO 40 I = 1,N
A(I) = CONJG(A(I))*2/N
40 CONTINUE
po 50 I = 2,N
ACI) = ((10/((I-1)*PI))**2)*A(I)
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X 50 CONTINUE
> CALL FFTCC(A,N,IWK,WK)
CALL ETIME
T a *k%xkk%%x STOP TIMER ****x¥*x%xx%
=, %
"
- * PRINT VALUES OF U(N)
) *
X OPEN(1,FILE="DATINFT1"')
DO 60 I = 1,N
L(I) = REAL(A(I))
PRINT*,I,"' ',L(I)
60 CONTINUE
DO 70 I = 1,N/2
WRITE(1,100) L(I)
100 FORMAT(' ',F8.3)
70 CONTINUE
CLOSE (1)
END
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*PROGRAM NAME FFT2 F(X) = X (RAMP FUNCTION)
*AUTHOR TODD R JONES
*DATE 14 OCT 1985

EERRRE KRR R KRR R E KRR AR KRRk k KRRk ke kkkk kKRR K%K

*THIS PROGRAM WILL PROVIDE A NUMERICAL SOLUTION TO A *
*ONE DIMENSIONAL BVP USING FFT. THE BOUNDARIES MUST BE *
*ZERO AT BOTH ENDS. THE FUNCTION F(X) MUST BE KNOWN AND*
*PLACED IN THE PROGRAM. THE FFT SUBROUTINE IS AN IMSL *
*SUBROUTINE CALLED FFTCC AND WILL TRANSFORM 300 VALUES *

*0OF N. *
EERRR KRR KRR R AR KRR KRR KRR KRR R R E R Rk KR KRRk R K
*

*  DECLARATION OF VARTABLES
*
INTEGER N,IWK(1050)
REAL WK(1050),L(300)
COMPLEX A(300)
PI = &4, *ATAN(1.)
3
* INPUT NUMBER OF POINTS TO BE TRANSFORMED
*
PRINT*, '"ENTER NUMBER OF DATA POINTS TO BE TRANSFORMED'
READ*, N
*
* INPUT FUNTION DESCRIPTION F(X)
*
A(0) = (0,0)
A(l) = -10
A(N/2) = (0,0)
A(N) = (0,0)
DO 10 I = 2,N/2-1
A(I) = A(I-1) + 20./N
10  CONTINUE
DO 20 I = N/2+1,N-1
ACT) = A(I-1) + 20./N
20 CONTINUE
*
* START TIMER
%
CALL BTIME
DO 30 I = 1,N
A(I) = CONJG(A(I))
30 CONTINUE
b 3
* USE FFT SUBROUTINE FFTCC
*
CALL FFTCC(A,N,IWK,WK)
DO 40 I = 1,N
A(I) = CONJG(A(I))*2/N
40  CONTINUE
DO SO0 I = 2,N
A(I) = ((10/((I-1)*PI))**2)*A(I)
50  CONTINUE

CALL FFTCC(A,N,IWK,WK)
47

.---q,.- e ta A

.‘.O. () ) .u

AN ER N e A R A N S R SRR W
W, .!‘\'I‘-‘i AL % !.l.c } ﬁi\h‘i\'h‘:\'ﬁl' ‘:h{f:‘(ﬁikﬁh’.\'n'ﬁiu.{:‘{:‘{ .




i}\
'Sty

KU AN SO o
A

-, ! N e e LT N e L L
; A - - ; N
o ) " A, .i 07 l,' . ’\ \‘\v\i <, “. L

CALL ETIME
xxxkekk® STOP TIMER **k*kxkkkk

*
* PRINT VALUES OF U(N)
*
DO 100 I = 1,N
L(I) = REAL(A(I))
PRINT*,L(I)
100 CONTINUE
END

Y > D
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*PROGRAM NAME NFFT2 F(X) = X (RAMP FUNCTION)
*AUTHOR TODD JONES

*DATE 6 NOV 1985

REkERERERERE KRR AR A KR KKK KRR ERRE KRR RERRER kR KK kRkrkkkkkkkkk¥kk
*THIS PROGRAM WILL PROVIDE A NUMERICAL SOLUTION TO A *

*ONE DIMENSIONAL BVP USING FFT. THE BOUNDARIES MUST BE *
*U(0)=2, AND U(10)=8. THE FUNCTION F(X) MUST BE KNOWN AND*
*PLACED IN THE PROGRAM. THE FFT SUBROUTINE IS AN IMSL *
*SUBROUTINE CALLED FFTCC AND WILL TRANSFORM 300 VALUES *
*OF N. *
EEEREREKERE R AR KRR R R R KRR KRR RERREE R R xRk R kR kR Ek kxR EEXX
*
*  DECLARATION OF VARIABLES
X

INTEGER N,IWK(1050)

REAL WK(1050),L(300)

COMPLEX A(300)

PI = 4.*ATAN(1.)

*

INPUT NUMBER OF POINTS TO BE TRANSFORMED

PRINT*,'ENTER NUMBER OF DATA POINTS TO BE TRANSFORMED'
READ*,N

PRINT*, 'ENTER VALUE FOR STEP INCREMENT "Z"'

READ*,2

PRINT*, 'ENTER VALUE FOR A(N/2+1)'

READ*,A(N/2+2)

*

INPUT FUNTION DESCRIPTION F(X)

A(l) = (2.0,0)
A(N/2) = (8.0,0)
A(N) = (-2.0,0)
A(N/2+41) = (-8.0,0)
DO 10 I = 2,N/2-1
A(I) = A(I-1) + 2
10 CONTINUE
DO 20 I = N/2+2,N-1
A(I) = A(I-1) + 2
20 CONTINUE
*

* START TIMER
%*
CALL BTIME
DO 30 I = 1,N
A(I) = CONJG(A(I))
30  CONTINUE
3

* USE FFT SUBROUTINE FFTCC
¥
CALL FFTCC(A,N,IWK,WK)
DO 40 I = 1,N
A(I) = CONJG(A(I))*2/N
40  CONTINUE
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"y DO SO I = 2,N
B B ACL) = ((10/((I-1)*P1))**2)*A(I)
- 50 CONTINUE
a CALL FFTCC(A,N,IWK,WK)
", CALL ETIME
ﬁ *kxkxxxx%x STOP TIMER kkkkkkkkk
) *
.E_ * PRINT VALUES OF U(N)
) *
" po 100 I = 1,N
8 L(I) = REAL(A(I))
. PRINT*,1,' ',L(I)
23 100 CONTINUE
' OPEN (1,FILE="DATINF2')
: DO 60 I = 1,N/2
K WRITE(1,200) L(I)
R 200  FORMAT(' ',F8.4)
e 60 CONTINUE
ok CLOSE (1)
e END
;
-
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i
Wt s *PROGRAM NAME FFT2Dl F(X,Y)= 2 (REC FUNCTION)
gy *AUTHOR TODD JONES
. *DATE 23 OCT 85
e EREEREERE R KRR R RERE LR KRR KRR KRR R R Rk FEX Xk
e *THIS PROGRAM WILL PROVIDE A NUMERICAL SOLUTION TO A TWO (2)
g *DIMENSIONAL BVP (POISSON EQUATION) USING FFTs. THE
YN *BOUNDARIES MUST BE ZERO ON ALL SIDES. THE FFT
e *SUBROUTINE IS AN IMSL SUBROUTINE CALLED FFTCC.
i AEERRRRERE R R R R AR R R KRR ARk Kk k kR kk kR k kR kR kkxE
*
. * DECLARATION OF VARIABLES
RN x
i INTEGER IWK(75,82),N,IA,IJ0B
B REAL RWK(75,82),L(120,160)
COMPLEX A(120,160), CWK(160)
sl COMMON IWK,RWK,CWK,L,A
v . PI = 4.0 * ATAN(1.)
‘§§ : INPUT NUMBER OF POINTS TO BE TRANSFORMED
T
V3 PRINT*, 'ENTER NO, OF POINTS TO BE TRANSFORMED-X DIR'
P READ*,N1
2 PRINT*, '"ENTER NO., OF POINTS TO BE TRANSFORMED-Y DIR'
< READ*,N2
27 IAl = N1
b3 & , IA2 = N2
- * ENTER COMPLEX ARRAY F(X)
7, *
"'i': *k%x%xk QUADRANT I **%xx
e DO 10 I = 2,N1/2
et DO 10 J = 2,N2/2
‘1 A(I,J) = (2.0,0.0)
i 10  CONTINUE
{? LEE R 2 QUADRANT IT #*%%%kx%
oy DO 15 I = N1/2+1,N1-1
e DO 15 J = 2,N2/2
Do A(I,J) = (-2.0,0.0)
15  CONTINUE
: *xkk% QUADRANT III *%*%%x%x
ey DO 20 I = 2,N1/2
W DO 20 J = N2/2+1,N2-1
"l A(I,J) = (-2.0,0.0)
L 20  CONTINUE
i LR R X 2 ] QUADRANT IV *%xx%xx
1556 DO 25 I = N1/2+1,N1-1
o DO 25 J = N2/241,N2-1
o A(I,J) = (2.0,0.0)
L 25  CONTINUE
Bk *
- * START TIMER
.‘:;1 i{\'. *
“Eﬁ CALL BTIME
g *
o 51
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3 o * SET IJOB
"’ :.‘_-.' F3
- IJOB = -1
" x
o * USE IMSL ROUTINE FFT3D

t 3
N
by CALL TWODIM(A,IAl,IA2,N1,N2,IJOB,IWK,RWK,CWK)
'™ DO 30 I = 2,NIl
] DO 30 J = 2,N2
A(L,J) = (4*A(1,J))/((PI*(J-1)/X)**2+(PI*(I-1)/Y)**2)

~ 30 CONTINUE
- IJOB = +1
L+ CALL TWODIM(A,IA1,IA2,N1,N2,IJOB,IWK,RWK,CWK)

b CALL ETIME
*kxkkkxk¥x STOP TIMER *%*%%x%x%xx*x
I DO 35 I = 1,N1

y DO 35 J = 1,N2
R L(I,J) = REAL(A(I,J))

" 35  CONTINUE
. *

[

, * PRINT VALUES OF NODAL POINTS TO A FILE

x

1 OPEN(1,FILE="'DFT2D1')
o DO 40 I = 1,N1/2
o DO 40 J = 1,N2/2
k. WRITE(1,100) I,J,L(I,J)

() 100  FORMAT(' ',14,I4,F8.3)
' 40  CONTINUE _ |
W . CLOSE (1) |
:; * PRINT ARRAYS TO SCREEN

ot *

, DO 45 I = 1,N1/2
3 DO 45 J = 1,N2/2
Ry PRINT 200,1,J,L(I,J)

! 200 FORMAT(' ',I4,14,F8.3)

1 45 CONTINUE

el END
EEREREEERKEEKEREREER KRRk R R KRR kR R KR A KA kk ke kX Rk kX
:" ERREEEE R R KRR AR R AR R R KRR KRR R KRR KRR KRR KRRk R KRRk kAR KE

» EXEEELREXEEEER KL KK SUBROUTINE TWODIM **%%kkkkkkkkkkkkkkrkkk¥

: EEEEEXEXEEEEERREEE LR R KRR RS R R ER R R RE R KRR R Rk kR kR kR R LR kR XXX
K, ERREEEEEREREERERR R AR AR R R LA RRR AR REEREREER KR RKERRRREE KRR KRR
i SUBROUTINE TWODIM(A,IAl1,IA2,N1,N2,1JOB,IWK,RWK,CWK)

. INTEGER IA1,IA2,N1,N2,IJ0B,IWK(1)

v. REAL RWK(1)

: COMPLEX A(IA1,IA2),CWK(1)

. INTEGER I,J,K,L,M,N |
) REAL R12 |
e COMPLEX Cl12 |
- * |
A : DETERMINE TRANSFORM OR INVERSE TRANSFORM
ag IF(IJOB.GT.0) GO TO 10
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*

* INVERSE TRANSFORM
*
DO 15 I = 1,Nl
DO 15 J = 1,N2
A(I,J) = CONJG(A(I,J))
15 CONTINUE
*

* TRANSFORM SECOND SUBSCRIPT
*
10 DO 20 L = 1,Nl
DO 25 M = 1,N2
CWK(M) = A(L,Y)
25 CONTINUE
CALL FFTCC(CWK,N2,IWK,RWK)
DO 30 J = 1,N2
A(L,J) = AIMAG(CWK(J))
30 CONTINUE
20  CONTINUE
E

* TRANSFORM FIRST SUBSCRIPT
x
DO 35 J = 1,N2/2
DO 40 K = 1,N1
CWK(K) = A(K,J)
40 CONTINUE
CALL FFTCC(CWK,N1,IWK,RWK)
DO 45 L = 1,N1
A(L,J) = AIMAG(CWK(L))
45 CONTINUE
35  CONTINUE
*

* INVERSE TRANSFORM
*

IF (1JOB.GT.0) GO TO 55

R12 = N1*N2

C12 = CMPLX(R12,0.0)

DO SO I = 1,Nl

DO 50 J = 1,N2

A(I,J) = CONJG(A(I,J))/C12

50 CONTINUE

55 RETURN
END

L]
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by il Appendix B: Tables of Data
o o
0, This Appendix contains the tables of data collected
P .
;: from the one dimensional and the two dimesional Poisson's
.
Q? equation to include Average Errors and Computational Times,
“i %
Jﬁ Table III
k‘ Average Error for the One Dimensional Poisson Zgquation
o with F(x)=40 and U(0)=U(10)=0
d 4-Interior Nodes _
Analytical FDM FFT Average Error (2
X U(x) U(x) U(x) FDM FFT
2 320 320 371.97 0 16.24
4 480 480 468.98 0 2.30
6 480 480 445,84 0 7.12
o 8 320 360 302,58 0 5.44 |
'i Total Average Error 0 7.77
P,
5 9-Interior Nodes __
e ‘H' Analytical FDM FFT Average Error (2)
X U(x) U(x) U(x) FDM FFT
%Q 2 320 320 360.71 0 12.72
-, 4 480 480 483.90 0 0.81
hQ 6 480 480 468.87 0 2.32
s 8 320 320 315.64 0 1.36
= Total Average Error 0 4.30
 4 49-Interior Nodes _
Analytical FDM FFT Average Error (Z_)'H
X U(x) U(x) U(x) FDM FFT
2 320 320 331,32 0 3.54
4 480 480 482,85 0 0.59
6 480 480 479.08 0 0.19
Ao 8 320 320 320,02 0 0.006
%. Total Average Error 0 1.08
iE: 99-Interior Nodes
e Analytical| FDM FFT Average Error (%)
— X U(x) U(x) U(x) F DM FFT
2 320 320 316.35 0 1.14
4 480 480 479.19 0 0.17
6 480 480 481,23 0 0.25
8 320 320 322,47 0 0.77
Total Average Error 0 0.58
v, wT
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Table IV

Average Error for One Dimensional Poisson's Equation
with F(x)=x and U(0)=U(10)=0

4-Tnterior Nodes

Analytical FDM FFT Average Error ()]
X U(x) U(x) U(x) FDM FFT
2 32 32 37.78 0 18,06
4 56 56 64.54 0 15.25
6 64 64 72.12 0 12,68
8 48 48 52.58 0 9.54
Total Average Error 0 13.88
9-Interior Nodes _ _
Analytical FDM FFT Average Error (2)]
X U(x) U(x) U(x) FDM FFT
2 32 32 34,97 0 9,28
4 56 56 60.66 0] 8.32
6 64 64 68.55 0 7.11
8 48 48 50.65 0 5.52
Total Average Error 0 71.56
49-Interior Nodes -
Analytical FDM FFT Average Error (%)
X U(x) U(x) U(x) FDM FFT
2 32 32 32.60 0 1.87
4 56 56 56.98 0 1.75
6 64 64 64.98 0 1.53
8 48 48 48.58 0 1.21
Total Average Error 0 1.59
99-Interior Nodes —
Analytical FDM FFT Average Error (%)
X U(x) U(x) U(x) FDM FFT
2 32 32 32.3 0 0.94
4 56 56 56.49 0 0.87
6 64 64 64.49 0 0.76
8 48 48 48,29 0 0.60
Total Average Error 0 0.78
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Table V

Average Error for One Dimensional Poisson's Equation

with F(x)=40 and U(0)=2 and U(10)=8

4-Interior Nodes

Analytical FDM FFT Average Error (2)]
X U(x) U(x) U(x) FDM FFT
2 323.2 323.2 349.56 0 0.40
4 484,.8 484 .8 441,31 0 9.01
6 485.6 485,6 373,51 0 7.44
8 326.8 326,8 152.10 0 53.45
Total Average Error 0 17.57
9-Interior Nodes —
Analytical FDM FFT Average Error ()]
X U(x) U(x) U(x) FDM FFT
2 323.2 323.2 352.78 0 9.15
4 484.8 484,8 478.75 0 1.25
6 485.6 485,6 444,76 0 8.41
8 326.8 326.8 250,86 0 23.23
Total Average Error 0 10,51
49-Interior Nodes .
Analytical FDM FFT Average Error (%)
X U(x) U(x) U(x) FDM FFT
2 323.2 323.2 305.35 0 5.52
4 484.8 484 .8 474 .55 0 2.11
6 485.6 485.6 483.75 0 0.38
8 326.8 326.8 332,95 0 1.88
Total Average Error 0 2.47
99-Interior Nodes T
Analytical FDM FFT Average Error § E_
X U(x) U(x) U(x) FDM FFT
2 323.2 323.2 312,89 0 3.19
4 484 .8 484 .8 477,49 0 1.50
6 485.6 485,06 482.09 0 0.72
8 326.8 326,.8 326.69 0 0.03
Total Average Error 0 1.36
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Table VI

Average Error for One Dimensional Poisson's Equation
with F(x)=x and U(0)=2 and U(10)=8

4-Interior Nodes

Analytical FDM FFT Average Error (ZTT
X U(x) U(x) U(x) FDM FFT
2 35.2 35.2 42.46 0 20,62
4 60.4 60.4 62.98 0 4,27
6 69.6 69.6 70.56 0 1.38
8 54,8 54,8 59.64 D 8.83
Total Average Error 0 8.77
9-Interior Nodes
Analytical FDM FFT Average Error Cz—r
X U(x) U(x) U(x) FDM FFT
2 35.2 35.2 34.56 0 1.81
4 60.4 60.4 63.78 0 5.59
6 69.6 69.6 66.07 0 5.07
8 54,8 54.8 ! 57.52 0 4.46
Total Average Error 0 4.23
49-Interior Nodes
Analytical FDM FFT Average Error (7
X U(x) U(x) U(x) F DM FFT
2 35.2 35.2 35.63 0 1.22
4 60.4 60.4 59.92 0 0.79
6 69.6 69.6 68.05 0 2.22
8 54.8 54.8 54.53 0 0.49
Total Average Error 0 1.18
99-Interior Nodes _
Analytical FDM FFT Average Error ()
X U(x) U{x) U(x) FDM FFT
2 35.2 35.2 35,08 0 0.34
4 60.4 60.4 60,39 0 0.01
6 69.6 69.6 68.10 0 2.15
8 54.8 54.8 54.03 0 1,40
Total Average Error 0 0,97
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Number of]| Computational Time (Seconds)
Nodes Thomas GE FFT
4 0.031 0.032 0.036
9 0.038 0.043 0.046
49 0.087 0.246 0.140
® 99 0.164 0.814 0.266
computing time is only the time used

Table VII

Computing Time in Seconds for th
One Dimensional Poisson Equation

Number of] Computational Time (Seconds)
Nodes Thomas GE FFT
4 0.001 0,002 0.005
9 0.001 0.007 0.010
49 0.004 0.153 0.056
99 0.008 0.639 0.114
Table VIII

Total Computer Time used in Computin
the One Dimensional Poisson Equation

computer to compute the particular algorithm.

2The total computer time includes the time used by the

computer to run the entire computer program.
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Table IX

Average Error for the Two Dimensional Poisson Equation
with F(x)=2 and all Boundary Conditions equal to Zero

35-INTERIOR NODES

Nodal Analytical FDM FFT Ave Error (%)
Points U(x,v) U(x,y) U(x,y) FDM FFT
Ull 4,8125 4,794 4,742 0.38 1.46
U12 4,8125 4,794 4,756 0.38 1.17
U21 5.9568 5.960 6.111 0.05 2.58
U22 5.9368 5.960 6.126 0.05 2.84
U3l 4.8125 4,794 4,625 0.38 3.89
U32 4.8125 4,794 4,972 0.38 3.31
Total Average Error| 0.27 2.54
165-INTERIOR NODES _
Nodal Analytical FDM FFT Ave Error (2)
Points U(x,vy) U(x,y) U(x,y) FDM FFT
Uil 4.8125 4,856 4,705 0.90 9.19
U12 4.8125 4,856 4.808 0.90 0.09
U21 5.9568 6.026 5.999 1.16 0.71
u22 5.9568 6.026 6.136 1.16 3.00
U3l 4.8125 4,856 4,731 0.90 1.69
U32 4.8125 4.856 4.836 0.90 0.48
Total Average Error{ 0.98 2.36
713-INTERIOR NODES _
Nodal Analytical FDM FFT Ave Error (%)
Points U(x,v) U(x,y) U(x,y) FDM FFT
Uil 4,8125 4,872 4,771 1.23 0.86
U12 4.8125 4,872 4.801 1.23 0.23
Uu21 5.9568 6.043 6.036 1.44 1.32
U22 5.9568 6,043 6.074 1.44 1.96
U3l 4,8125 4,872 4,770 1.23 0.88
U32 4,8125 4.872 4,799 1.23 0.28
Total Average Error] 1.30 0.92

LN Y

59

------------

------

Rt A T e
SR ANAR LG o

-
'\L\




prn
ol e Table X
) Computing Times in Seconds for t
R Two Dimensional Poisson Equation
o
b D’~ -
f:& Number Computational Time (Sec)
of Nodes GE FFT
3 35 0.302 0.116
s 165 26.801 0.490
R 713 35min 4.393sec 1.790
| -."‘
(7
. Table XI
3:-.‘
S
o Total Computer Time in Seconds for
2 the Two Dimensional Poisson Equation
~
% L]
Fﬁ Number Computational Time (Sec)
Wiy of Nodes GE FFT
" 35 0.381 0.234
. 165 27.134 0.876
ey . 713 35min_15.25sec 3.310
a ©
% 3The computing time represents only the time used by
w 8
s the computer to compute the particular algorithm.
b;l
;
) aThe total computer time includes the time used by the
;\ computer to run the entire computer program.
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o f{: Appendix C: Analytical Solutjion to the 2-D BVP

O The solution to the BVP described by equation (4.1) and (4.2) is
solved by using a variable substitution and the Fourier Series method (4).

. By making a variable substitution
a4
ot U(x,y) = V(x,y) - x2 + 8x (C.1-a)

~7 tnen

o 32y 32 _
WA ax: ~ ax: (C.1-b)

a2 dy2  dy2 (C.1-c)

therefore
e 720

< so that

Vv - 2 (C.2)

NS Vv (C.3)

' -
W
o

By making the variable substitution in the boundary conditions

‘.).'I
s

5 ‘l‘l‘l‘:

-
=)

e ]
wletal e’ s

s e
& _¢_3

u(o,y) = V(0,y) =0 (C.4-a)

z)

e

(C.4-b)

[}
o

U(8,y) = V(8,y) - 64 + 64

}f"
ars

(C.4-¢c)

#
o

U(x,0) = V(x,0) - x2 + 8x

o
!f%hﬁﬁf

i

f

(C.4-d)

"
o

U(x,6) = V(x,6) - x2 + Bx

=

=

A

therefore

A

£
.

+h 61
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V(0,y) =0 (C.5-a)
S v(8,y) = 0 (C.5-b)
V(x,0) = x? - 8x (C.5-¢c)
V(x,6) = x2 - 8x (C.5-4d)

_’-)". By using separation of variables, equation (C.3) leads to a Sturm-Liouville
. problem that can be solved using the Fourier series. The solution takes

o the form

sin(nyx/8)

\ of Ansinh(nnY/8)+aninh[(nn/B)(6-Y)] ‘

! 1 sinh{(3nqt/4) i
[ (C.6) i

This can be verified by referring to Churchill and Brown, page 136 (2:136).
s The coefficients An and Bn can be solved by applying boundary conditions

c from equation (C.5).

0]
a & 4

4

PR R
B
.’l‘..
]
]

o]
. V(x,y) 2 B sin(nmx/8) = x? + 8x (C.7-a)
n=1

g Vix,y)
1l Sl n

x?2 + 8x (C.7-b)

€K
z A sin(nnx/8)
=1 n

' AN Thus, An=Bn and can be solved as follows.

x 8
O An = 2/8/(x2—8x)sin(nnx/8)dx (C.8-a)
0

8 8
A - 1/4fxzsin(nnx/8)dx - fosin(nnx/e)dx (C.8-b)
0 0




v AT
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A
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NRELEE
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o,

r")- "
N An
A
n
An

1/4 | -(8x2/nu)cos(nAx/8)+128x/(n?7w72)sin{(nnx/8)

8
+ 1024/(n3x3)cos(nmix/8) - 2 |-(8x/nw)cos{(nnx/8)
0
8
+64/(n21r2)sin(nnyx/8) (C.8-c)
0
= 1/4[—512(-l)n/(nn)+1024(-1)“/(n3n3) - 1024/(n373))
n
- 2[-(64/nm)(-1) ] (C.8-4d)
= Bn = 256/(n373)((-1)"-1] (C.8-¢)

By substituting An and Bn into equation (C.6) the following is obtained.

©

Vix,y

n @
- 256[(-1) -1} Z {sinh(nmy/8)+sinh{(nn/8)(6-y)}]

niy? no1 sinh(3nnw/4) i

sin(nny/8) (C.9) i

Equation (4.1) is solved by making the variable substitution from equation [

(C.9) into equation (C.l-a).

U(x,y) = (8x - x2 - 512/713)

6.9

E N Y 3 B J
LR n LY Um 5t

f {sinh{(2n-1)ny/8]+sinh[(2n-1)7(6-y)/8]}
L (2n-1)3sinh[3(2n-1)m/4]

sin[(2n-1)wx/8) (C.10)
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Equation (C.10) was solved by programing the equation into BASIC and
running the program on a Z150 PC. It was found that the solution at
specific nodal points converged after six iterations to the fifth decimal

place. The specific nodal point solutions can be found in Table II.
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Appendix D: Solution to the 2-D FFT BVP

The solution to equation (4.1) using the FFT method is simply an
extension of the one dimensional problem descr.bed in Chapter III. By
allowing U(x,y) and F(x,y) to be extended as odd, 2-periodic functions in
both x and y, the general form of equation (4.1) is

T2U(X,y) = -F(x,v (D.1)

and can be represented by the Fourier series

M-1 N-1
F = F i j 3 i .
(x,y) 42 2 jksm(Jnx/xmax)SLn(kny/ymax) (D.2)
j=1 k=1
and
M-1 N-1
Hoent le kgl CJKSln(J"x/xmax)Sln(k"y/ymax) (D-3)

where CJk is defined as the coefficient of the Fourier series and the
mesh size h =x /(M+1) and h =y /(N+1) (17:149). The boundary

X max Yy ‘max
conditions in equation (D.l) are zero on all boundaries, as are the
boundary conditions of equation (4.1). Now, by taking the second deriva-

tives of U(x,y) with respect to x and then y the following is obtained.

M-1 N-1
d2U(x,y) . L .
——5;;—1L-= - jzl kzl CypIM/x, L )2 sin(Ime/x ) sin(kmy/y )
(D.4)
320(x,y) Mil N-1 ]
—-—4 = - 2 i i i
dy? R Cjk(k"/ymax) SLn(JWX/xmax) sin(k Y/ymax)

(D.5)
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By substituting equations (D.4) and (D.5) into equation (D.l1) the following

is obtained

M-1 N-1
. 2 , o .
z Caym/x )2+ (km/y 2] Cjksm(Jnx/xmax) sin(kmy/y ..}

1 k=1

|
n o~

3

= -~F(x,vy) (D.6)

Solving for C
1k

-ij
C. = ; (D.7)
- 2
ik [(J"/xmax) * (k"/ymax)zl

The ij is computed using the Fourier orthogonality relationship, equation

(2.10), and since

M-1 N-1
2 ij51n(Jﬂx/xmax)SLn(kny/ymax) (D.2)

1 k=1

F(x,y) =

ne-31

and since, h =x /{M+1) and h =y /(N+1) , then
X max y ~max

4(hxh ) M-1 N-1

y : . .

ij (% " ) z 2 F(x,y)51n(m]nx/xmax)51n(nkﬂy/ymax)
max max m=1 n=1

(D.8)
By using equations (D.8), (D.7), and (D.3) the nodal points at any value
of U(x,y) can be found and are the three step method discussed in

Chapter 1V,

02
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Appendix E: Mathematical Explanation

95 the 2-D Complex FFT

To show that only the imaginary portion of the FFT array must be
used for the FFTCC IMSL routine, the following mathematical computation

is presented. The FFTCC routine computes the FFT using the form

12n(kn/N
- z A e m( /N) (E.1)
To compute the two dimensional FFT it is necessary to develop two trans-
forms similar to equation (E.1) using different notation to distinguish

between the FFT in the x-direction and the FFT in the y-direction. These

(1) (2)

two equations are A and A and defined as follows.
N2-1 .
A(1) - z A e12n(kn/N2) (E.2)
mk mn
n=0
and
N1-1 . .
al2) . 7 oA e12T(Im/ND) (E.3)
jk mk
m=0

where N2 is defined as the number of transformed points in the x-direction

A(1)

and N1 is defined as the number of transforms in the y-direction. mk

is defined as the Fourier Transform of Amn and A;i)

Fourier Transform of A;i)

solve for A(z)
jk

is defined as the
and the double Fourier Transform of Amn' To
, one can substitute equation (E.2) into equation (E.3) and

obtain
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o N1 . .
LA Al(2) | ) o2M(kn/N2) ) _i2m(3m/N1) (E.4)

e
n=0
PO Using Euler's identity

1-1 | N2-1
= ) Y A l[cos(2mkn/N2) + isin(2mkn/N2)]
=0 n=0 ™

! [cos(27jm/N1} + isin(2mjim/N1)] (E.5)

By multiplying out equation (E.S5), the following is obtained.

2
z Amn[cos(ann/NZ)cos(2njm/N1)

pﬁp + isin(2mkn/N2)cos(2mjm/N1) + isin(2m7jm/N1)cos(2nkn/N2)
[} a... &

ML - sin(2mkn/N2)sin(2mjm/N1)] (E.6)

W Note that the only term required to compute the double Fourier sine

! transform is the last line of equation (E.6), -sin(2nkn/N2)sin(2mjm/N1).
Gy It is obvious that the first three cosine and sine terms of equation

" (E.6) can be eliminated by deleting the real portion of the FFT each

time it is computed in the FORTRAN program FFI2Dl (See Appendix B).
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