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AN INVESTIGATION OF KARMARKAR’S ALGORITHM
FOR LINEAR PROGRAMMING

SUMMARY FINAL REPORT

1.0 INTRODUCTION

1.1 SCOPE

This report summarizes the research on potential extensions and applications of
the Karmarkar linear programming concept that was conducted by Decision-Science
Applications, Inc. (DSA) for the Office of Naval Research (ONR) under Contract
NO00014-85-C-0254. The DSA research effort was initiated, with corporate funds,
immediately after the publication of the original Karmarkar results, and has been
continued with support provided by the Office of Naval Research under the above
contract.

1.2 BACKGROUND AND OBJECTIVES

The testing and assessment of the Karmarkar algorithm by the mathematical
community has made it clear both that the algorithm has a great deal of promise, and -
that the Karmarkar methods will require substantial additional development if they are
to displace the simplex method as a standard technique for solving large-scale linear
programming problems. As a result, considerable attention is being given to the
development of more efficient methods for accomplishing the large matrix inversion
operation which accounts for the bulk of the computational effort within the Karmarkar
algorithm.

The present research effort has been focused somewhat differently on the
possibilities for synergy between the Karmarkar concepts and the iterative Lagrangian
optimization methods for large scale non-linear applications, which have been a DSA
specialty. One remarkable aspect of the Karmarkar algorithm is that it defines an
iterative computational approach for linear optimization that is similar in many ways to
the iterative methods that are used in large-scale non-linear optimization applications.
Thus, it seemed likely that the potential synergy between these two sets of optimization
concepts could lead to new developments that might be more broadly applicable in the
general field of mathematical optimization.

For this reason, the first objective of the DSA research effort has been to
identify and clarify the essential computational principles that underlie the Karmarkar
algorithm--with the objective of making them available as general purpose mathematical
tools that can be more widely applied to mathematical programming problems outside
the specific context of the Karmarkar algorithm.

The second objective of the DSA research has been to search for possible
alternatives to the Karmarkar linear programming algorithm that might preserve its main
computational advantages while avoiding entirely the computationally inefficient matrix
inversion process.

We believe that substantial progress has been made with regard to both of the
above objectives.
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1.3 SYNOPSIS OF PUBLISHABLE R'SEARCH FINDINGS

Analvsis of Computational Principles

The DSA research has shown that the Karmarkar algorithm is mathematically
equivalent to a simple steepest descent algorithm--in which "distance" is defined in terms
of a logarithmic distance metric defined over the original problem variables, and in
which the actual objective function is replaced by a surrogate objective function which
includes a penalty function that facilitates boundary avoidance.

These basic findings are reported in A Functional Analysis of the Karmarkar
Linear Programming Algorithm, George E. Pugh, DSA Report #676, March 31, 1986
(ref. 3.). This document, which is being transmitted with this final report, is also being
distributed to the attendees at the ONR Monterey Conference (February 20-21, 1986) on
the Karmarkar algorithm. It is expected that the main findings of the report will be
prepared for publication in a mathematical journal.

Non-Matrix Inversion Alternatives

The development of alternative versions of the Karmarkar algorithm that can
operate without matrix inversion appears to require two important departures from the
basic Karmarkar algorithm. First, the basic algorithm must be restructured into a form
that is less sensitive to inaccuracies in the calculated direction of steepest descent, so that
approximation methods can be used in place of an exact matrix inversion. Second,
computationally efficient and reliable methods for estimating the direction of steepest
descent without matrix inversion must be developed.

A promising approximation method which was developed for estimating the
direction of steepest descent without matrix inversion is described in another draft paper
by John Danskin, "A Geometric Algorithm for Approximate Steepest Ascent with Linear
Constraints,” which is included as Enclosure A to this report.

One very promising approach which was developed to reduce the requirement
for precision in the estimated direction of steepest descent is described in a draft paper
by John Danskin, "A Variant of Karmarkar’s Linear Programming Algorithm not
Requiring Projection onto the Null Space,” which is included as Enclosure B to this
report.

1.4 OTHER RESEARCH FINDINGS.

As is usually the case in any exploratory research effort, the publishable
material represents only a small percentage of the total effort, and some of the most
interesting findings have not yet reached a point of development that would justify
formal publication. The remainder of this report provides a broad overview of the
research effort, and outlines some of the new insights which will need to be pursued in
a continuation of the research effort.
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2.0 TECHNICAL PROBLEMS WITH THE KARMARKAR ALGORITHM

About two years ago, Narendra Karmarkar proposed a radical new method for
solving linear programming problems. The method involved the use of a projective
transformation to map the space in which the problem was originally defined onto a
simplex, in such a way that the current position point is mapped into the barycenter.

This method caused a sensation in the linear and non-linear programming
communities. It seemed to be extremely fast on some problems, but extremely slow on
others. There were difficult technical questions as to how to achieve feasibility and how
to efficiently carry out the unfamiliar matrix ii sersion that Karmarkar requires; and
questions as to the adequacy of the proof of convergence. But it is unquestionable that
Karmarkar's basic idea is one of great power.

The main difficulty with the algorithm has been with the calculation of a
direction of steepest descent within the simplex, which is required for each move. To
accomplish this, Karmarker projects the objective vector into the "null space” defined by
the constraints and the simplex equation. He accomplishes this projection algebraically
by inverting a matrix.

There are many difficulties in inverting large matrices. J.A. Tomlin in "An
Experimental Approach to Karmarkar’s Projective Method for Linear Programming,"
which is included as Enclosure C, writes of problems encountered with Karmarkar’s
matrices. Their "condition” worsens as the iteration proceeds; also, any known inversion
technique will decrease the sparsity of the matrix.

There are other problems. Computational inverses are always imperfect, and
the Karmarkar algorithm is sensitive to computational inaccuracies. Without an exact
inverse, the position vector will wander away from feasibility. Another difficulty is that
of achieving an initial feasible point in the form Karmarkar wants it, with all the
coordinates positive.

Finally, the Karmarkar proof of convergence hinges fundamentally on knowing
the value of the function at the optimum. Karmarkar dealt with this problem in his
original Bell Laboratory paper (ref. 1.) by using a rather awkward procedure to estimate
the optimum value as the algorithm progressed. But he offered no proof of convergence
for this procedure. In his revised paper in Combinatorica (ref. 2.), he solves the
problem by using a combined primal-dual problem definition in which the value of the
combined objective function at the solution point can be guaranteed to be zero. This
approach provides a nice solution for the proof of convergence at the expense of using a
much larger matrix in the computational process.
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3.0 QVERVIEW OF DSA RESEARCH EFFORT

31 SPECIFIC RESEARCH OBJECTIVES
The DSA effort focused on two major objectives.

The first objective was to develop an improved understanding of the practical
computational concepts that account for the performance of the Karmarkar algorithm--
so that the concepts could be effectively utilized in the field of mathematical
optimization outside the context of Karmarkar’s specific algorithm. This objective has
been essentially achieved, and the results are reported in DSA Report #676 (ref. 3).

The second objective was concerned with the development and study of
possible variants of the Karmarkar algorithm, with the objective of improving the speed
and reliability of the algorithm. This part of the DSA effort had several specific
objectives. These included the development of:

° Approximate computational methods for finding steepest ascent that could
be more efficient than matrix inversion, particularly because many such
methods preserve matrix sparseness.

] Alternative algorithms for utilizing the Karmarkar steepest descent
concept that are more tolerant of computational inaccuracy and departutes
from the precise null space than the original Karmarkar formulation.

° Alternative transformations of the original problem for accomplishing the
same functional objective as the Karmarkar projection, but that are
mathematically simpler and possibly computationall: 1ore efficient.

3.2 THE RESEARCH TEAM

To facilitate interactions between the new Karmarkar concepts and earlier
iterative techniques developed for non-linear programming problems, DSA brought
together a combination of theoretical and applied mathematical experience.

John M. Danskin, who is known for his extensive contributions to mathematical
optimization and game theory, has served as the theoretical mathematician for the
project. He was responsible for the original theoretical insights concerning the
Karmarkar algorithm that led DSA to initiate the project, and he has contributed a
substantial fraction of the theoretical concepts that have been investigated. In addition
to his theoretical contributions, Danskin has also developed numerous Fortran programs
on an IBM PC that he has used to test some of his theoretical concepts.

Most of the applied research for the project, including computer validation and
large-scale testing of algorithms, has been conducted by Fred Miercort, who has more
than 20 years of experience in applied mathematics and optimization methods. Miercort
was responsible for most of the initial testing of variants of the Karmarkar concept that
provided the foundation for a more theoretical functional understanding of the
algorithm,

The project was supervised by George F. Pugh, who has many years of
practical experience in solving very large non-linear optimization problems. In addition
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to his role as supervisor for the project, Pugh was also responsible for developing the
functional understanding of the algorithm as reflected in DSA Report #676 (ref. 3).
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4.0 MMARY OF RESEARCH BY JOHN M, DANSKIN

4.1 EARLY RESEARCH CONTRIBUTIONS

Because of the promise of the Karmarkar approach and the numerous problems
with the current Karmarkar formulation, Danskin began in November 1984 to seek
methods for avoiding the exact-inverse, destruction of sparseness, and feasibility
problems. He interested DSA in a joint research program on the topic, and continued
with his investigations. Danskin made a number of very important early contributions to
the research effort.

° He provided a detailed assessment and interpretation of the Karmarkar
concept that provided the foundation for much of the DSA effort.

° He suggested the use of the Lemke closest point principle as a way of
converting the calculation of a direction of steepest ascent into a
quadratic distance minimization problem.

° He developed a number of approximate methods for solving the quadratic
minimization problem, including a method of "maximum scoop” that has
performed as well as, or better than, any other method that was tested by
Miercort.

° He has explored several ways of utilizing primal-dual relationships to
restructure standard LP problems so as to avoid some of the theoretical
and computational problems of the Karmarkar approach.

4.2 PRESENT DANSKIN APPROACH

By June 1985, Danskin, after numerous excursions, arrived at a "balanced
reduction of deficits” approach which seems particularly promising. In this approach,
which is explained in sections 4 and 5 of Enclosure B, he uses the Karmarkar simplex
and projective transformations, but otherwise departs radically from Karmarkar.

The approach never requires a feasible point. It starts, instead, with an
arbitrary positive primal, dual pair (X,Y) which satisfies the "connecting equation”
C - X = B ' Y, but which is otherwise infeasible relative to many of the primal and dual
inequality requirements.

The magnitude of the infeasibilities, measured positively, are referred to as
"deficits." It may happen that the "deficits” corresponding to some of the inequalities are
negative. Additive "slack" variables, somewhat analogous to the slack variables of the
simplex method, are then introduced so as to make all the deficits positive and equal.

Starting with the deficits all equal, a new dummy variable, W, is introduced
which is equal to them. The algorithm then seeks to find a way down for all the
deficits which keeps them all approximately equal. On succeeding moves, any small
deviations from the equality balance are partially corrected in such a way that, as W
decreases towards zero, the deficits continue to remain within 25% of W. At no point is
extreme accuracy required.
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The method never requires a feasible point, and it obviates the need for an
accurate projection. In a certain technical sense, the method is "projecting," but not in
Karmarkar's sense.

The key to the success of such an approach, of course, lies in the availability of
a computationally efficient method for estimating a direction that will maintain an
approximate balance of the deficits during the convergence process. At the time the
paper in Enclosure B was written, Danskin was using a new geometric (rather than
algebraic) algorithm for steepest ascent, subject to equality constraints, which is included
here as Enclosure A.

This algorithm works by always having a rate of ascent greater than the
steepest constrained rate, and by gradually reducing the violations of the constraints.
When this steepest ascent method is applied to the balanced reduction algorithm,
directions are accepted as good even if the balanced reduction of constraints is violated
by some moderate amount such as 25%. The resulting error is corrected in the next
move.

More recently, Danskin has developed an approach which seems to perform
much more efficiently, which is based on the application of a game solution concept
which Danskin identifies as a "stack game.” Regardless of what method is used to
estimate a direction of balanced reduction, the method has the major advantage that it
requires no operations at all on the matrix other than row multiplications and, thus, it
completely preserves the sparsity of the matrix.

The two papers discussed above have been written under the current ONR
contract. The corresponding computer programs, with some of the more recent
techniques for estimating the move direction, have been used to solve linear
programming problems with several thousand non-zero entries on an IBM personal
computer--one that is not even equipped with hardware floating point capability.

4.3 A FAST POLYNOMIAL METHOD FOR REDUCING THE DEFICITS

Subsequent to the completion of the work on this contract Danskin has found a
new method for finding a direction which drives the deficits down at exactly the same
rate. The method takes at most q -~ 1 steps, where q is the number of constraints.
Each step requires pqe multiplications, where € is the density of the non-zero
elements. The method is an outgrowth of the approach given in section 2 of Enclosure
B, but differs in the methods of solution defined thereafter.

It has now been incorporated in a running LP routine which has been
developed on DSA’s and Danskin’s own time. An early version is included as
Enclosure D. At the time that this draft was written, Danskin had not yet discovered
that it is not necessary, in forming a direction for a move, to subtact off the projections
on all the previous directions. One need only subtract off the projection on the last
previous move. This discovery eliminated a factor of q/2, the required number of
multiplications, and is the basis for the possibility that the new method will be really
competit;ve in practice.
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44 OTHER DANSKIN RESEARCH

Danskin has recently begun work on the application of these concepts to
quadratic programming. He hopes to apply the balanced-reduction-of -deficits method
to provide an iterative method for the solution of large quadratic programming problems.
He has found a theorem which appears, after checking with leading experts, to be new,
on "pseudo-duality,” which makes it possible to convert a quadratic programming
problem with linear constraints into a form that can be addressed by methods very
similar to those outlined above.
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5.0 EXPLORATORY RESEARCH BY MIERCORT AND PUGH

This exploratory research has focused on four major topics.

5.1 SIMPLIFICATION OF KARMARKAR TRANSFORMATION

The transformation Karmarkar uses to map the original LP problem onto a
simplex would be linear except for his use of a denominator that makes the
transformation non-linear. The presence of the denominator seems to introduce many
complications into the algorithm. For example, it appears to be an important factor in
motivating Karmarkar to work with a complicated surrogate objective function.

From an analysis of the effects of the distance metric on the direction of the
Karmarkar moves, Pugh became convinced that Karmarkar’s denominator (which was
necessary for his proof of convergence) is not essential to the operation of the algorithm.
To test this conjecture, Miercort developed and tested a simplified algorithm which does
not use a surrogate objective function, and which omits the denominator from all
calculations.

Although no implementation of the full Karmarkar algorithm was available at
that time with which we could make direct comparisons, the operation of the simplified
algorithm seemed indistinguishable from what had been reported by other investigators
using the full Karmarkar transformation. About the same number of moves were
required to achieve convergence on comparable problems. The trade-off between the
number of moves and the size of a move was the same as reported by other
investigators, and the same types of problems were encountered with the matrix
inversions required to solve the steepest ascent sub-problem. We learned from the ONR
Monterey meeting that we had not been alone in this approach. One speaker there listed
more than a dozen similar "affine transformation” approaches.

Subsequent research (ref. 3) has shown that the omission of the surrogate
objective function does somewhat reduce the efficiency of the Karmarkar algorithm.
But the differences in the performance were too small to be apparent at that time
without a direct side-by-side comparison. The subsequent research has also suggested,
however, that the use of the simplified distance metric without the denominator may
actually be somewhat more efficient than the full Karmarkar distance metric.

5.2 A TEST BED TO INVESTIGATE COMPUTATIONAL ACCURACY
PROBLEMS

DSA’s experimental work with various forms of this simplified algorithm
focused on number of test problems, ranging from only a few variables to several
hundred. Tests were made using both sparse matrices, that are characteristic of most
commercial linear programming, and dense matrices that are common in game theory
optimization problems.

Since the basic Karmarkar approach involves an iterative computational
algorithm, one might reasonably expect that it would be self-correcting and tolerant of
computational inaccuracy. Indeed, Karmarkar himself, in his original paper, made just
such a claim. But the experience of all other investigators has been that very high
precision is required in the matrix inversion to avoid drifting away from the feasible
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null space in a succession of the prescribed Karmarkar moves. Moreover, such drift is
not self-correcting in the basic algorithm, and the difficulty becomes more severe as the
algorithm approaches the solution point.

To facilitate an investigation of problems in computational accuracy, the "test-
bed algorithm" was designed so that iterative approximate methods could be used
interchangeably with the more standard matrix inversion methods. Moreover, the test-
bed was so structured that the performance of each iterative method could be measured
relative to the more accurate matrix inversion results.

Two basic types of test problems were used in the analysis. With the
cooperation of KETRON Inc., a company that is very active in commercial linear
programming, several typical test problems have been obtained, ranging from about 10
to about 300 variables. Like most commercial linear programming problems, they tend
to be quite sparse. But they are also problems that include pitfalls that can be
troublesome for simple linear programming codes. The second basic type of problem
arises in the solution of game theory problems. We have concentrated particularly on the
so-called "cookie-cutter” game, whose matrix is generally quite dense. The formulation
of this game allows an easy selection of a wide variety of problems of varying size
whose solution is very non-trivial.

5.3 EVALUATION OF ALTERNATIVE ITERATIVE ALGORITHMS

We have since assessed the performance of a wide variety of iterative
algorithms. So far, none of the methods tested has performed well enough to be a
serious competitor to the matrix inversion method, except perhaps on problems much
larger than those we have used in the experimental work.

Almost all of the iterative methods that have been tested utilize versions of the
Lemke principle, which converts the steepest ascent problem into a quadratic distance
minimization problem. This method tries to find that linear combination of the
constraint vectors which most accurately approximates the objective function. The
vector coefficients that are produced in this way are analogous to the Lagrange
multipliers that are encountered in non-linear programming problems. As the algorithm
approaches the solution point, these variables converge to the values of the dual
variables.

The methods explored include:

1. Well-known heuristic methods, due to Hugh Everett, that are used to
adjust the Lagrange multipliers for non-linear programming problems;’

2. A simple steepest descent algorithm;

3. Various steepest descent algorithms, altered to include heuristic learning
mechanisms;

1 These heuristic methods simply raise a multiplier by some factor, 1+ a, if the constraint is violated in an
unconstrained Lagrange optimization, and lower it by a comparable factor, 1- 8, if the constraint is slack. The
factors, @ and @, by which a given multiplier is adjusted are arbitrarily increased when successive adjustments are
in the same direction and are is decreased when a reversal of direction occurs.
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4. A steepest quadratic descent algorithm developed by John Danskin, which
uses a curved (i.e., quadratic) trajectory to correct for the first order
changes in the direction of steepest descent; and

5. A "maximum scoop” minimization algorithm (also developed by Danskin),
which uses a steepest descent method, in the space of directions, to search
for a direction vector with the lowest trajectory minimum,

Most of these algorithms have also been tested on renormalized representations of the
linear programming problem (in which the units of the constraints and the activities
have been modified to provide a natural distance metric for defining a direction of
steepest descent).

We have not had the resources under this contract to test some of Danskin's
more recent direction-finding algorithms, such as the algorithm described in Enclosure
A or his newest algorithm, which has generated exceptionally good performance on an
IBM PC. This newest algorithm, which looks promising, utilizes a two-level scoop
method in combination with the "stack game" optimization concept.

With the possible exception of the most recent "double scoop” concept, none of
the above algorithms has yielded the uniformly reliable performance on all of the test
problems that would be desirable in a standardized optimization program. However, the
basic structure of the direction- finding problem is sufficiently predictable to justify the
expectation that a very satisfactory iterative method can be identified that can be
efficiently used in combination with an alternative formulation of the Karmarkar
algorithm, and that is less sensitive to inaccuracies in the direction-finding process.
Clearly, additional research on this topic is badly needed.

In this connection, we note that, as this report is being prepared, Danskin has
found a polynomial algorithm for an "exact way down" without matrix inversion. We
are, however, submitting this report before that algorithm, found on "own time,” has
been tested.

54 METHODS TO REDUCE VULNERABILITY TO COMPUTATIONAL
INACCURACIES

This section discusses some of our approaches intended to reduce the
vulnerability of the Karmarkar approach to computational inaccuracies.

Advance Solution of Equality Constraints. The difficulty of finding move
directions that can preserve feasibility is greatly exacerbated by the presence of equality
constraints. In commercial linear programming codes, it has become common practice to
eliminate the equality constraints by solving the equations in advance. When any
variables associated with equality constraints are eliminated, one may of course need to
introduce additional inequality constraints to confine the solution space to regions where
the eliminated variables have positive values.

From our preliminary tests, it appears that such a removal of the equality
constraints may be even more important for a Karmarkar type of algorithm than it is for
the standard simplex methodology. Thus it may be appropriate to begin by converting
any LP problem into a canonical form, from which the original equality constraints have
all been removed, before applying a Karmarkar-like optimization algorithm.
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(Of course, the Karmarkar methodology requires the introduction of slack
variables so that all inequalities are ultimately converted into equalities. However, the
slack type of inequalities are computationally less troublesome, because each one is
directly related to an inequality constraint--and the Karmarkar solution process takes
place in a feasible region where these constraints are not rigidly binding.)

Infeasibility Penalty Functions. The use of penalty functions that can be added

to the LP objective function, to encourage moves that tend to remove accumulated
feasibility errors, is one possible approach for minimizing the vulnerability of the
Karmarkar method to computational inaccuracies.

In this connection, we have examined two basic strategies. In one, the moves
alternate between those driven solely by the feasibility consideration and those driven
solely by the optimality objective. In the other, both considerations are combined in
each of the moves. Both methods seem to work, but neither has shown a clear
superiority.

A Primal-Dual Bootstrap Method. Experience with approximate solution

methods for the Karmarkar algorithm has shown that, in many cases, the dual variables
(that are a by-product of the solution of the steepest ascent sub-problem) seem to
converge much more rapidly toward a solution than do the primal variables. This
suggested an approach in which both the primal and dual representations of a problem
are simultaneously solved, so that the dual variables that are calculated for each
representation can be used (in what we have labeled a "bootstrap” move) to update the
primal variables for the other representation. This approach has proved to be
spectacularly successful in many cases. It not only moves rapidly toward optimality, but
also corrects most of the accumulated feasibility errors. But in other cases, the method
totally fails to converge.

We are trying to understand the reasons for the unpredictability of the method,
and to develop indicators that can be used to determine when 2 "bootstrap” move is
likely to be superior to a Karmarkar move.

Assessment of Alternatives. The alternatives noted above for maintaining exact
or approximate feasibility within the Karmarkar algorithm will ultimately have to be
evaluated in competition with techniques such as the Danskin reduction of deficits
method--techniques which do not require feasibility in the computation phase, and
which only approach feasibility in the final stages of the solution process.

Based on our work to date, we feel the advance solution of equality constraints
is the most promising we have tried. The use of a feasibility penalty function remains
an interesting option, while the boot-strap method appears to be fundamentally flawed.
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FUTURE RESEARCH OBJECTIVE

This section summarizes research objectives for the immediate future.

e Convergence Proof for Simplified Distance Metric. The analysis in Ref. 3

showed that the Karmarkar method is equivalent to 2 simple steepest
descent algorithm in which distance is measured in a logarithmic distance
metric defined over the original variables. The analysis suggests that
Karmarkar's convergence proof should be directly applicable to an
alternative algorithm which uses the Karmarkar surrogate objective
function in combination with the logarithmic distance metric--equivalent
to what would be obtained by omitting the Karmarkar denominator. That
this is so remains to be proved.

° Convergence Proof Without Surrogate Function. Computational

experience has shown that remarkably good performance, comparable to
the Karmarkar algorithm on most of our test problems, can be obtained
with a much simpler algorithm which ignores the surrogate objective and
uses a simpler distance metric--equivalent to omitting the denominator in
the Karmarkar transformation. However, we have as yet no formal proof
of convergence for this process.

. Performance Test of New Danskin Method. The new Danskin method is
still being debugged. As it is being programmed and tested, important
improvements in the method are being made. When these are complete,
the method will need to be tested against alternatives already available.

° Analvsis of "Bootstrap” Move., Theoretical analysis is needed to assess the
circumstances under which the "bootstrap"” move can be expected to be
successful, and to develop indicators that can be used during computation
to decide when such a move is appropriate.

° Improved Quadrati¢c Minimization, Additional work is badly needed on
the quadratic minimization sub-problem. We believe that this aspect of
the problem is crucial, particularly for very large problems,

. Quadratic Minimization Methods for Other Problems. The iterative

quadratic minimization methods that are being developed and tested for
use within the Karmarkar algorithm have a wide variety of potential
applications to other practical problems, such as regression analysis, the
optimization of electric power networks, and other quadratic
programming problems. Work is needed to assess the degree to which
such methods might be useful for large-scale problems in these areas.

° Application to Non-Linear Programming. The Karmarkar concept has
many features that are particularly attractive for non-linear programming

applications. Many of these applications--in game theory, economics, and
optimal control--now use either linear programming or Lagrange
multiplier optimization methods to soive an optimization sub-problem that
is later adjusted to match non-linear external conditions through an
external iterative loop. In such applications, the linear programming
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algorithm appears as a sub-routine that is called repeatedly during the
course of the overall optimization, i.e. "inside a DO loop."

In such a system, each successive sub-problem will typically differ only
slightly from the previous one. But the standard simplex methodology
benefits surprisingly little from the availability of an approximately
correct existing solution. For this reason, such systems are sometimes
designed to use iterative Lagrange multiplier methods rather than the
simplex methodology. But because of the iterative nature of the
Karmarkar approach, it should benefit from the availability of an
approximate solution in much the same way as the Lagrange multiplier
methods. Thus, if it provides a reliable method of solution, it might
reasonably be expected to displace the simplex method in many such
applications.
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ENCLOSURE A
A GEOMETRIC ALGORITHM FOR APPROXIMATE
STEEPEST ASCENT WITH LINEAR CONSTRAINTS

BY JOHN M. DANSKIN




ABSTRACT

The paper presents a new method tor approximating
to steepest ascent constrained by equalities, The time for
convergence to accuracy ¢ is for a given problem proportional
to log (1/¢) . but the proportionality constant in the estimate
given can be very large, The method also applies to the problem
of minimization of quadratic forms given as sums of squares of
linear forms in all of Euclidean space without boundaries,




5 1. Introduction

Consider the problem. stated for 2, »., v €RP.

Maximize 7.v (L. 1)
subject to
[yl =1, 2v=0. j=l....q. (1.2)
Denote the maximurm in (1. 1)-(1.2) by v . We will

replace this problem by an e-problem. in which we seek, for
a given positive ¢, either to be told that v< ¢ or else to be

provided with a y satisfying

gey 2 (l-¢elv (1. 3)

and
[v] = 1. |?:J.-y]<e. j= oo, q . (1. 4)
We present here an algorithm. geometric in nature. for producing

a solution to the e-problem. It has the disadvantage ot not being




exact, but the advantage that it will work on any matrix, and

without affecting its sparsity.

We have a convergence proot, but no speed estimate
in terms of p, q. and ¢ other than that, for a given problem,
the time required to achieve accuracy ¢ is proportional to
log (l/e) . We have tried crude predecessors of this method
on small problems with encouraging results, and are certain
that this will be much taster, We intend, betore this paper goes
to press, to have tested the method on large problems. Our
particular application is to a much-moditied version of the
Karmarkar linear programming algorithm, in which we can

do with rather large ¢,

We explain the idea behind the algorithm in §2 . It
comes down to tinding the closest point to the origin on a linear
manitold. In §3 we describe the algorithm itself. In ¥ we
analyze the algorithm and prove that it converges. In {5 we
note an application to the minimization ot a class of quadratic

forms.
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;
52, The idea of the algorithm
|
J
We may suppose that |a]| = 1. If all of the bj are
orthogonal to 2 . then obviously y =2 solves the problem., If
some of the bj are orthogonal to 3 and some are not, we
alter those which are by adding a vector §3. where §¢€ (0,¢/2);
this will not change any bjoy by as much as ¢/2 . So from now
on we assume that no bj is orthogonal to z. Put
j _ B .
x' = a.», , where .= /(2,5 . (2.1 )
it xieLe 8 %5 ) :
Then 2+%x) = | for all jo Now denote by # the linear manitold
of combinations
— : .
X = ,>>\ij' where ))..rzl. (2.2)

Then 2.x =1 forallxecg . Evidently £ does not pass through

the origin.

Suppose we know the point ¢ on ¢ closest to the origin.

Put

h=:l-c/cz. (2.3)



If h=0. then, for any y satistying (1.2).

_ 2 _ 2, Lcj _ c . _
2ey = (1/cT)cey = (1/cT) Z_‘ij oy = ZXJ _,j(bj-Y) =0

(2, 4)
where the )\3: are the coordinates of c. Hence in that case v =0.
Otherwise put

v=1|h|. v=(l/v)Jh, (2.5)
Since c is normal to any line in # . then ce(x-c) =0 for any
x €#. Hence cex= 2 on# ; in particular cex) = ¢© for any j.
Using this. we see that
hed =200 - (WP coxd = 1-1=0 (2. 6)
for all j. It follows that y satisties the constraints (1.2). Next
suppose that v' satisfies (1.2), Thenc.v' =0 . so that
t - 2 ! ' -
2ey' = (g2 -c/c)ey' = vvey (2.7)

This implies that y yields the unique maximum in the problem

(1. 1)-(1, 2),

c,

and that that maximum is v

The matter thus comes down to tinding the closest point
or a good approximation to it, That is what our algorithm does.
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§ 3, The algorithm

We suppose the routine has arrived at a A and
corresponding x satisfying (2,2) , It first tests to see
whether we have sufficient evidence to assure that v<e.

It does this by calculating

h

"

2 -x/x
with the x at hand rather than with c as at (2.3) . If
|[h| < e . then v<e and the routine terminates., If

|h] >¢, it torms

vy = h/|h|

and tests the inequalities in (1, 4) . with ¢ replaced by /2 if

the bj has been altered as at the beginning of §2 to assure

(3.1)

(3.2)

nonorthogonality with 2 , If all of those tests pass. it terminates,

Otherwise it prepares for a move,

That it is not necessary to test (1.3)., and that the

above |h| < : testis correct, is proved at Lemma D in §4 .




—n

The square ot the distance from x to the origin is

P 3 -
- j
Qr) = ) ijxi) . (3.3)
i=l j=1

The partials with respect to the )‘j are

s

Q) = 2xex) . j=1l....q . (3. 4)

The routine averages the QJ.()\). reverses the signs., and

forms the direction numbers

2xo(x -x)) , j=1,....q, (3.5)

in which x is the barycenter of the x) . It then calculates

q

e = 2] L(x-(i-xJ))Z]”?‘ (3. 6)
j=1
Because some of the tests have failed. >0 . It now forms
the direction cosines
gj=(1/c)2x-(;-xj)v. j=l....q (3.7)

in the A -space, moves to the bottom of the parabola in that

direction, and proceeds,




§4 . Analysis of the algorithm

The first task of this analysis is to examine the
meaning of the quantity ¢ in (3,7), which is the steepest
rate ot descent relative to the ) , as it relates to the

geometry of the x-space,

We will show that a large p guarantees a good move,
and a small o indicates that we are near the solution. These
facts, proved as Lemmas B and C, immediately yield the
convergence theorem, Lemma C may fairly be regarded as

difficult.

The second task, very much easier. is to establish
the facts about the tests involving the value which we used in
the algorithm, This we do in Lemma D, after quoting a

principle due to Lemke,
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Put
WJexoxd. j=l..q. (4.1)
and then
A=[\L('nJ)2]l/2 . (4, 2)

We suppose that A >0 ; otherwise the problem is trivial.

LEMMA A, Denote by ds and do the lengths of the same

infinitesimal segment on # , measured relative to the x-space and

A -space respectively, Then

ds
do < AL (4, 3)

PROOF, Fix on any )\0 and corresponding xo . Consider
an admigsible direction issuing in # from )\0 ., 1i,e., a unit vector

¢ with




Q
Y g =0. (4. 4)
SR
Move a distance g>0 from }\0 along g . The corresponding
distance relative to x is
{’ . jy2 q1/2
- J
s = ol ), () g2 1Y%, (4.5)
i=1 j=1
Using (4.4), we may replace the term xg in (4,5) by 1'3 .
Call the result (4,5)' . From the Schwarz inequality,
\q P2 (q D2 '
] ) ) -
[ ng‘”i) < L (‘Ui) , i=lL....p. (4, 6)
;=1 j=1
On putting this into (4.5)' and reversing the order of summation,
we get
s(g) < a0 . (4. 7)

which proves (4.3) . o

Now we will prove that a large ¢ guarantees a good move.

LEMMA B, If 5>0, amove inthe X-space direction

¢ given by (3.5) will yield a decrease of at least 02/452 in the

squared distance to the origin,
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PROOF. The directional derivative of Q in the direction

g+ relative to A,

49

e (4. 8)

(8]

We may rewrite this as

dQ  ds

g ° . (4.9)

By Lemma A, i,e, (4.3), this implies that the directional

derivative of Q in the x-direction corresponding to 7 satisfies

o
O

IN
'

o/ . (4,10)

[o R
w

-

Supposing that dQ/ds in that direction at x0 is exactly -~ ;. we

see that the formula for the squared distance along it is

Q =Q -'S+52 . (4,10
s o -
s being the distance in # relative to x. =~ Here the reader

should recall that the second directional derivative of the

squared-distance function Q. relative to x, in any direction,
is 2, The minimum of Q is attained at s = ;/2 . and its
value is Qo - :2/4 . Since {> z/4& . the lemma is proved. =
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We note an example where this estimate is exact.
Suppose p=q= 2, xl = (LD, x2 = (3,1), sothat £ is the
line y=1, Since x =(2.1), weget 4=,/2 . The direction

numbers (3, 3) are

2(x. )¢ ((2,D) - (L,LD) = 2(x, 1)+ (1.0) = 2x (4.12)

and -2x. So p= 2/2 x. and we get 02/4A2=x2.

The reader will in fact trivially verify that the estimate
2 . .
2 /4 AZ is exact whenever # is a line, However that is the only

such case. Note that (3, 6) may be rewritten as

-

C=2[L((X~C)'J,‘J )Z]l/z (4.13)
By the Schwarz inequality .
e < 2|x-c| . (4,14)

equality holding only if x-c is parallel to 1) 2x-x) tor every
j., i.e. 2 is aline, OCtherwise 5<2|»-cl2. i.e.

pz /41‘.2 < (x-c)2 . and the estimate is short,

Next we show that a small 5 implies that the solution is

nearby. We first need some notation.
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Identify a maximal linearly independent collection

of the ») ., and denote it by [,uk]k =1 Denote

the corresponding Kx p matrix by y . andput G=yguw
The K v K matrix ( is then positive definite. Dencte its

smallest eigenvalue by o .,

LEMMA C, The distance to the solution satisfies

|x-c| < pr/2a . (4, 15)

PROOQF. Suppose that x and ¢ correspond to A and A

Then we may write

u. (4. 16)

where _. = )\3: - lj . We could do this because the 4 sum to

zero, Now consider a j for which LJ does not lie in the basis

set [yk? K =1 . Then 1’ is some linear combination

K

v e e e

of the uk , which we may substitute into (4, 16). After doing

this for each such j, we have a representation
x-c=Lvu ' (4.17)

in which the coefficients no longer add to zero; we have not
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‘ k
altered x . By the choice of the w . this representation is
unique,
Put
) k
9k=2(x-C)-m . k=L,,.. K, (4,18)
Then, from (4,17),
K
< 1
3= 2 ) vawewS . k=LK . (4. 19)
k'=1
Now this may be rewritten as
3 =20V, (4,20)
where 3=1(3,,....35) and vy={v.... ivg) . Since o7
has the largest eigenvalue a’!. this implies that
1.,
vl ga ]9)/2 . (4,20
Now recall the alternate representation (4.13) for p. It tollows
from that that [3] < p.  Hence (4, 21) implies that
vl <po/2a . (4, 22)
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Now from (4,17). the Schwarz inequality, and the definition
(4.2), we get
[x-cl< |vla . (4.23)
The assertion (4,15) of the lemma now follows from (4, 22) and
(4,23) ., -
We are now ready to prove our convergence theorem,
CONVERGENCE THEOREM, Each move with x # ¢
produces a new point x' with
%24 (4, 24)

[x'-c| < x Ix-c¢c| .

where o is the smallest eigenvalue and ;2. where A is given

by (4,2). the trace of the matrix ().

PROOF, By (4.15) and Lemma B, the move decreases

the squared distance by at least

2 2 2 .
g3 x-o) Lo L 20 (x.0? (4.25)
2 2 4
a 42 il
(4.24) follows immediately from this and the inequality l-u<e %, g




That the process converges is obvious from this
theorem. But it gives no useful information on the speed
of convergence, That smallest eigenvalue a could indeed
be much smaller than the trace, On the other hand, quite a
few extreme estimates went into the derivation of (4,24). How

tast the algorithm converges must be tested by experience,

We now turn to the second task of this section. the
analysis of the tests involving the value, We have tirst to

quote a variant of a principle due to C, E. Lemke.

LEMKE'S CLOSEST-POINT PRINCIPLE FOR EQUALITY

CONSTRAINTS [Lemke [1]. 1961] . Consider the set B ot all

-
linear combinationgs % = ) . bj of the vectors bj . There

ed

are two possibilities, It may be that 7 ¢ B, in which case

2+y = 0 for all y satisfying (1.2) . Orelse z § B, In this case

there is a point b5(2) of B closest to z.,  Put
v=la-2(2)] . v=(Uv(z-8(2) . (4, 26)

Then v solves the problem (1.1)-(1,2). and the value is v *) .

*) Lemke's formulation had b,y < 0 instead of the equalities

we have at (1,2) ., His principle then requires the 4 to be nonnegative:

everything else is the same,




L6
The proof of this principle is trivial; one simply
writes out the formula for the squared distance in terms of
L and differentiates. But it does not seem to have been
noticed before Le mke,
LEMMA D, Forthe y of(3.2) , always
zevy = |h| 2 v. (4.27)
PROOQF, As to the equality, first observe that
x-h=1-x-x2/x2=l-l=0 {4, 28)
a calculation similar to (2, 6) , Hence
2ev = (U/]h])2sh = (1/|h]) (z-x/x2) ek = (1/|hD) % = [B] .  (4,29)

As to the inequality. it is evident that the linear manifold # is
a (proper) subset of Lemke's cone B, and so |h| a distance
|2 -5| with » ¢ B, The inequality thus follows from Lemke's

principle, =

So (L. 3) in fact holds always without the ¢, and the

test |h|< ¢ inthe algorithm is correct.
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§ 5. On minimization in a class of quadratic torms
The idea of this section derives from Lemke's principle.
which we now write out somewhat more explicitly, For ¢ R4
put
4
3 = o i = =
41(LJ) L vji;_lj ’ 1 1lcontp ’ (b.l)
j=1
and then
2Ly = 3L el (5.2)

the dot product being in RP, The principle savs that the problem
of steepest ascent is equivalent to the problem ot minimizing the

quadratic form 3(y) .

Now we may consider the transtormation 4+ 3 ot (5,1
as mapping the ''base gpace ' of the "Lagrange multipliers' onto

the cone B in the "image space' RP of the x. The difficulty in
trying to work in the base space is that there is no intrinsic

connections between the local (metric) geometries, Steepest

ascents, or even good ascents, do not correspond., For instance.

i
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in the original steepest-ascent problem (1, 1)-(1,2), multiplying
one of the bj 's through by, say. 2 . does not change the
problem at all, but it considerably affects the geometry of the
base space, It was only after considerable efforts to make
schemes based on the base space work that the author came to

the idea of the linear submanitold # of B, as a way of getting
at ''steepest feasible ascent'' in the image space directly, There
are intrinsic relationships between the natural metric x-geometry
and the metric ) -geometry of the parameters, as we showed
above in Lemmas A-C. That is why our algorithm should work

well for the steepest-ascent problem,

And now we come to out point, For the same reasons,
it should work well on the problem of minimizing any quadratic
form given as the sum of squares of linear torms. as is the 3(_)
of (5.1)-(5.2) . in all of R? without boundaries . regardless of
provenance, All one has to do is treat 1t as a steepest-ascent
problem, apply our algorithm to obtain a sutficiently good set
[)\j} ., and then put uj = B:h:» j=L....q . the sj being

1)
given by (2.1),

So we have turned Lemke's principle around,
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ENCLOSURE B
A VARIANT OF KARMARKAR’'S LINEAR PROGRAMMING
ALGORITHM NOT REQUIRING PROJECTION ONTO THE
NULL SPACE

BY JOHN M. DANSKIN



ABSTRACT

Recently, N, Karmarkar proposed to solve a linear
program by mapping the problem projectively into a simplex,
using further projective transformations to keep the current
iteration point at the barycenter of the simplex, He finds the
direction of steepest descent from that barycenter by projecting -
his objective vector onto the feasible (null) space. This method,
which requires the inversion of a matrix, has led to severe
difficulties of speed and accuracy in inverting the matrix, of
finding an initial point, and questions as to whether convergence

has in fact been proved,

The present paper uses Karmarkar's simplex, and his
projective transformations, but is otherwise very different from
his. The method, which involves bringing down a number of
'"deficits' in a ''balanced'' way, requires no projection onto any
null space, no matrix inversion, no operations affecting the

sparsity of the matrix, It has no problems with accuracy.

There is a classical, real-numier, proof of convergence,
not involving bounds based on the number of bits required to state

the problem, A FORTRAN program is being prepared for testing.



We do not offer a complexity-type estimate of the
speed of the algorithm, because we do not have one. We
do not know how many steps the ''inside'' steepest-ascent
algorithm requires to achieve given accuracy, because the
convergence estimate for that algorithm, given at (4.24) in
[1], contains quantities very difficult to estimate, What we
do have is a complete proof of the convergence of the whole
process, The speed of this algorithm can only be tested by

experience,

- -,



iy,

5 1.  Introduction

This paper presents a new version of Karmarkar's
approach [2, 3] to the solution of a linear program by mapping
the problem into a simplex and working thenceforth in the

simplex.

Our method has none of the feasibility or proof-of-
convergence problems that have arisen in Karmarkar's approach,
Furthermore, it has no projection onto the null space and no

matrix inversion,

It works by setting up a system ot ''deficits'' in the
satistfaction ot the conditions for a solution of an LP, including
the feasibility conditions. We introduce new variables,
analogous to the slack variables of the simplex method but not
really slack variables, so as to make the deficits all equal and
positive at the outset, Working then in Karmarkar's simplex,
we tind a direction in which the deficits all go down by guaranteed
amounts, in such a way that the ratio of the largest to the smallest

deticit never exceeds 5/3.



B

We find that direction by a new geometric method
for tinding approximate steepest-ascent subject to equality
constraints, developed [1] for the present purpose. The
constraints have to be met only very loosely: see (4.9) and
(4.10). The sparseness of the matrix is not atfected. While

some precision is important in setting up the linear manifold

£ on which the method of [1] works, there is no accumulation

ot errors., These are in fact selt-correcting, as we show in

A4,

At the time of this writing, the method has not been
tested. A FORTRAN program is in an advanced state of
preparation, and should be working by July. While the theory
presented in this paper is complete and ready tor refereeing,
it will not be submitted for publication until the method has been
tested against commercial fast simplex methods like Tomlin's
WHIZZARD, under proper conditions, and we have comparisons
to report. Meanwhile, this paper is to be regarded as a private
working document, for the author's use in preparing his program,
as documentation in proposals, and for those of his colleagues

who wish to read it.
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The organization is as tollows. 42 states the problem,
detines the defticits, and states our objectives, & 3 explains our
approach to the simplex, in rather more detail and with an
attitude rather different from Karmarkar's. He, for instance,
has only one simplex, and one ''potential tunction'' . We have
intinitely many simplexes, and infinitely many ''surrogate
functions' . The main result of that section is the estimate

(3.26) for the current deticit, given in the original space:

Karmarkar has given no such estimate. That estimate has on
its right hand side two quantities, an j that we have to prove
less than unity, and a ''geometric mean'' of the coordinates of
the current position point in the original space, which we have

to prove bounded.

In §4 we show how to move so as to get an improvement
while preserving the 5/3 ratio between the largest and smallest
deficits, a central aspect of our approach. In §5 we show that
the move of §4 yields a guaranteed gain, and estimate , at
(5.19) . In § 6 we prove, by contradiction, that the ''geometric
mean'' appearing in (3.26) is bounded, and thus, with the results
of §5 on w, complete the convergence prcof. The final 37

outlines our routine,
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§ 2. Statement of the problem

We consider the LP

p p
Maximize C*X = E C.X. subject to z Aijxi SBj j=l.....q
i=1 i=l (2.1)
and its dual
q
Minimize B«Y = i Bj Yj subject to z Aij YJ > Ci ci=loial,p
j=1 j=1 (2.2)

inwhich X>0, Y3 0 . The primal variable X is said to be

teasible if it satisties the inequalities in (2.1), and the dual variable

Y teasible if it satisfies the inequalities in (2.2}, It is trivial that
it X and Y are both feasible, then C+X < B+Y : and a necessary
and sufficient condition that the pair (X,Y) solve the problems (2,1)-

(2.2) is that C+«X = B.Y ,

The standard approach to (2.1)-(2.2) is, first, to tind
a teasible X, This, the ''first phase', requires the solution of
an auxiliary linear program., Then, in the ''second phasa'’,
keeping X always feasible, one seeks to increase C« X , In the
simplex method, one arrives eventually at a ''basic optimal

solution', in terms of a ''basis' , The test for optimality is




made in terms ot this basis: and the solution Y to the dual
problem is obtained automatically trom the operations needed

to solve the primal,

Our approach is wholly ditferent. We never have a
teasible X or Y. Rather. we have 2t any time sonte nonnegative
pair (X.Y), and associated with that pair a collection ot "'deticits",
amounts by which the inequalities in (2.1) and (2.2), and the
inequality C+X > B+Y , are violated. If none of them is
violated, then we have, by what was said above, a classical
solution., It several ot them are violated, we seek to bring the
violations. the deficits, down. For us., a solutionis a pair
(X,Y) for which none of the deficits exceeds some prescribed

small positive number. And we do not attempt to provide a

basis.

A bagic difficulty with any sch2me for reducing deticits
is that a move intended to reduce the deticits at hand may
introduce new ones, We get around this by arranging things so
that everything is always in deticit, We introduce new
nonnegative variables Ui' i=lL....p: V.. j=1l....q: and

W, and put




v —_— -
q
= - +U. +C- » i= e 00 v ’ 2.3
8 L Ainj i i i=1 p ( )
j=1
P
.= > A-.X- + V- = B- s '=110-l' ' (2.4
4 oo j it 1 )
i=1
P q
- * \ W‘ 5
A= _Lcixi + LBij + . (2.5)
i=1 j=1

At the outset we choose the Ui , Vj , and W are all positive

and equal. We from then on move in such a way that always

38 57
Ai,Aje[4,4

>
—
.

(2. 6)

That this can be accomplished, while driving A (generally) down,

is nontrivial, and a principal element of our method. See §4 .

So we are now operating in the space ot the (X,Y, U, V, W),

in the nonnegative orthant of R2p+2q tl Cur objective, given

a positive ¢ , is to tind a set (X,Y,U,V, W) for which (2, 5) is

satisfied and

D<Aac<ce . : (2.7

We are now ready to transfer the problem to the Karmarkar

simplex,




5?/2. and 50/2 , where

q
0 = 0 + Ul o+ i= :
5_1(§) = . E Ainjyj Ui“‘i Ciz, i=lL...,p: (3.5)
j=1
0 (R 0 0
= A X. . +V '.-B. ,'= » e 00 H o'
5J.(g) TR i Y3 2 0 1 q (3.5)
i=1
2) = - )C.X + ) B.Yy. +W-yu, (3.7
5 (=) ) X L ByY Sy )
i=1 i=1

For

78]

strictly interior to £, we put

5002) = 50 (2)/5g) L i=Lluu.,ps -%’(g) - 5?(g)/g(g) L i=l...q;
(3. 8)
5202 = 5%(2)/g(2)
where o(2) is the geometric mean tunction
g(z) = (g e, vz Y/ mFD (3.9)

The functions mio , '.rJOJ. , and wo are then homogeneous of degree

zero. Karmarkar calls them (their logarithms) "potential functions"

I prefer to call them ''surrogate functions'' .




§ 3. The problem on the simplex

Put m = 2p +2q +1 and write == (X,Y,U,V, W) | Choose

0 cr™ with Eg>0.k=1,....m, andsothatalltheAi,Aj,

and A of (2.3)-(2.5) are equal. For any = ¢ RT put

§m+l =z = 1/(1 +

/

1ig
i

) ’ (3.1)

~"13

0
k'"k

and then

~
il

"
N
111

k=1...,m, (3,2)

xQ

These tormulas define a transformation TO , called the Karmarkar

trangformation , of RT into the unit simplex
AN = = =
T §1+... + m+1 1 ?k_>_0, k l....,m+1 (3. 3)
. m *+1 . . .
in R . Its inverse, defined for ¢ =z >0, is
*m+1
(To)-l : = =2 =0 /e k=1 m (3.4)
—‘k ’\k —-k 3m+1 r + e 0 & ) . »

We will use the obvious notation Z = (x,y, u,v,w,z) . The

functions Agr Aj , and A transform under 10 into the functions 5?/2 '




The tra;nsformation TO has mapped the starting point

= ¢ RT into the barycenter —g of ¥ , all of whose components

are I/(m+1) . Moves, in Karmarkar's scheme, are made as
follows, Cne distinguishes some 2 interiorto ¥ , 1in some sense

better than = . One then applies the transformation

# 1 /E#
t’: gkz “__I(_L ’ k=1;o|cym+1v (3.10)

which maps ’# into £ . Karmarkar thinks of one simplex T,
P P

with one potential function (really an equivalence class) defined

on it, I prefer to think of replicas of £, so that the original

simplex, into which T0 maps, is EO , and the first of the

transformations t' maps % onto sl . Put =! = (To)'l(g#) .

1 .
Then the product transformation T = Tot# , mapping RT
into ZI , 1is given by the formulas (3,1)-(3,2) with Eo replaced

by 2! » and it maps 51 into the barycenter of El . In general

suppose that N> 1 and that we have defined a transformation

N-1 mapping RT into a replica ZN -1 of £, as a mapping

N -
of the type (3.1)-(3,2) with EO replaced by a = ! e R™ having

T

all its components positive, Suppose a distinguished g# interior

- N -
to ZN 1 is at hand, and that the inverse of 3# under T1 L is

":‘.N. Then EN has all its components positive, Now use (3, 10)

. . N . .
to define a mapping of T . onto a further replica ZN of T,

N'lt#.

and then put TN =T ™ then maps RT into ZN , and




N .
it is given by (3,1)-(3, 2) with :—:0 replaced by = . This
N
completes the inductive definition of the T ', except for the
precise specification of the distinguished point g# » which

we shall give below in § 7,

We will need an identity, based on the above detinitions,

1 . Since

. N N -
We defined = above to be the inverse of g# under T
N.l1

the inverse of T is gotten from (3, 4) by replacing the superscript

0 at both of its appearances by N-1, this means that
N
k

#_N-1
k Tk

i

= &
=

k=1,.,.,m, (3,11

111

Now suppose 2 ¢ ZN -1 and define £'¢ ZN by (3.10} . Cn

" N . #
writing ¢ = L;k/gk , wve get
N _, #_N-1,# #.  _N-1_ #
k =1...,m . (3.12)
Also evidently
N #
gle) = g(g)/agle) . (3.13)

It follows that




#
(e7)
:N - :N'lr 7(g') 72 k=1 3.14
Tk bk T ko Gk X g X F reeeem e (3.14)
>m+1

This is the required identity,

We now define 6?1/7. , 5?/2 , and GN/z to be the
transforms, in ZN , of Ay Aj' and A under TN . The
. N N N . .
functions &, 5J. , and § are given by (3,5)-(3.7) with the
superscripts 0 replaced by N, And we define the surrogate
functions 4:1:I , -4:;\1 , and IN by making the same replacements

in (3.8) .

We now apply the identity (3,14) to (3.8), with 0

replaced by N, It gives

4
N ., _ Na1,_, gtz g%
) (;) =45 (’:) X 7(g) X # . (3.15)
*m+1
From the definition (3. 8) with 0 replaced by N-1, we get
#
glz™)
cpN(g') = 7 X :pN-l(i_') . (3.16)
Em+l

This identity, which Karmarkar never stated explicitly because
he had only one potential function and one simplex (the ratio on

the right appears as the rather vaguely explained additive term



in his definition 6f the potential function, additive because

he works with the logarithm) , is the fundamental identity
of his whole construction, and the reason why it works, It
also explains why he needs the surrogate function cpN and

N
not some other function, say § .

Observe the following consequence, Suppose that

g,n EEN-I, §'=t#§,n'=t#n. Then
Nz 2N (
= . 3.17)
N

This is Karmarkar's ''invariant projective cross-ratio', to
which he alludes but never makes explicit. It means that
one can track the progress of the algorithm in any of the
replicas of £, in particular ZO , which we are about to

do. We note that (3,17) holds tor the @i\I and ci\r as well,

In what follows we suppose that at each stage N=0.1,...

we are able to find a distinguished g# € EN such that

AL PETA I (3.18)

we (0,1) being independent of N , Using this and the apparatus

developed above, we find at (3,26) an estimate for A(EN) + The



proof is close to Karmarkar's (incomplete) proof of convergence

for the case when the value is zero in his early manuscript {2] .

We said we would track the progress of the algorithm

inZ° ., So we put

g =T’z , N=0,L... . (3.19)

The gN are now in Zo , with gO:; .

Now (3, 18) and the invariant cross-ratio principle

(3,17) imply that

N-1

o T (t _‘)‘15) , (3.20)

where tﬁl-l denotes the mapping t# of (3,10) when it is from

ZN-l onto ZN . That is, the inequality (3,18) on ZN implies

the same inequality on ZN'I ) but applied to the predecessors.

+
Walking this back to 20 and recalling the definition of EN L as

the inverse of E# under TN, we get

0

p( 0

?N+1
S

) < wy (gN) . (3.21)

Thus we have tracked the action back to ZO . Now concatenate



the inequalities (3.21), with N replaced by 0,1,...,N-1.  We
get

2N <« V%%, N=o,1,... . (3.22)

We now have to determine what this means relative to the original
problem in R} this is what Karmarkar did not do in [2] .

We recall that go =zZ. From(3,7) and (3.8) ,

237 = i c,xd *) BJ.Y‘; + WO, (3.23)
9 i=1 j=1
\
which is equal to the original deficit A(EO) . Frora the
definitions of § , = and 2 , we have
N
al =) = 5°(gN)/zN , (3.24)
. . N . N .
in which z  is the last component of £ . From this and (3, 23),
we see that (3.22) translates into
N
N 20« M . (3. 25)

AlE ) < w x al=

We calculate the last factor in (3. 25) by substituting (3. 2) into

the definition (3,9). This gives us




N ,_0,_N N, 1/(m+1)
__N W A(-‘-‘. )[:.1 ® e ':‘-m)
A(: ) < [:0 :0 ]1/(m+1) .

l'cao L=

m

This is our desired estimate of the deficit at stage N .

In order to pass from (3,26) to a proof of convergence,
we have to solve two problems, The first is that of finding the

distinguished g# in (3.18) , while respecting the condition

N N
N N 38 5
5; 0 85 €[S 7]
corresponding to (2.6) . That we do in §4 below, That that
moves yields a guaranteed ¢ (0,1) is proved in §5 : see
(5.19) . The denominator in (3.26) gives us no trouble:

we could have chosen all the initial to exceed unity. So

_0
“k
the second, and final, problem is that of finding conditions
under which the ''geometric mean' term in the numerator is

bounded, We prove in §6 that this is so provided the set of

solutions of the original LP problem (2,1)-(2.2) is bounded.

(3.26)

(3.27)



8§4. The balanced reduction of deficits

We suppose ourselves at the barycenter at stage N,

and that the 5? , 5;\1 , & satisfy the ratio condition (3, 28),
Our objective is to move in such a way as to guarantee a

decrease in § and to preserve (3,27) .

The situation is substantially more complicated than it
is in Karmarkar's algorithm, He knows that there is a solution
somewhere in the simplex, and not as far as one unit away,
Hence there is at least a certain rate of decrease in the direction
towards the solution, and therefore at least that much in the

direction of steepest descent,

What we need is more than just the existence of a solution
somewhere in the simplex, We need not only a pull downward, but
a pull towards correcting the ratios when they begin to diverge, What
we need is to know the existence ot points which are well, but not too
well, down, and have all the deficits equal.

To do this , we go to the point '_‘-:N= (XN, YN, UN, VN. WN) € R:_n
at hand, find the largest deficit, and adjust the variables Ui ) Vj ,

and W corresponding to the other deficits upwards, so as to make

the deficits all equal, This gives us a point =* , whose image




—

in ZN we denote by £* , Now there are two possibilities. We

consider the easy one first,
That is the case when
N, . -
5 (%) < sle)/2 . (4.1)

In this case we move towards g* , either to the (approximate)
minimum of cpN(g) orto 2%, whichever comes first, In
this case the ratios will be brought back towards, perhaps all
the way to, unity. And there will be a guaranteed proportionate

decrease: see § 5,

The more difficult case is

sNiz9 s s (D) /2. (4.2)

We now drop the superscript N and write E.l ' 5j

éj(g) , 5(8) . Now , on the assumption that the original

, 5 for 5.(2),
problem has a solution, there is a point £**% in T with 5.1 , 5j .
and § all zero., Cornsider the line [ =%, g**] . There is

obviously on that line a point g%*% sgatisfying

By(g#H) = 5 (gH0) = 5(H) = 6 /2 (4,3)




for all i,j. It will be this unknown point we will try to aim

at, not the solution,
Consider the line segment 4 = [E,g***] . Denote

the length of £ by d, and derivatives along it by primes,

Then
6, - & +d(s) -6 =0, (4. 4)
Also,
ds' = <5 /2 . (4. 5)
On eliminating the d we get
81 = 8'(26;/8) - 1), (4. 6)
Similarly we derive
5; =8'(28,/5 - 1). (4.7)

So: we have proved that in the case (4,2) there exists

a direction respecting the p constraints (4.6), the q constraints



(4.7), and the simplex equation in (3, 3), and at the same time

bringing down 5 at a rate exceeding §/2 .

What we will do, knowing the above fact, is to set
in motion the steepest-ascent routine of [1] ,» asking for the
steepest ascent of -4 which respects the constraints (4, 6),
(4.7), and the simplex constraint. This routine, being
iterative and approximate, will never, except by remote chance,
ever achieve any of those equations exactly. But we do not need
exactness, except in the simplex constraint. At each step of the
iteration, we will ''plaster'’ the current direction vector y' onto
the simplex by subtracting, from each component, the average
of the components, and then renormalizing. We then test the

inequality
-8'' > |h|/2 , (4. 8)

in which §' is the rate corresponding to the plasteredy , andh
is given by (3.1) in (. This will assure that the plastered
vector is yielding more than half the maximum rate of descent
subject to the constraints; we explain this at the beginning of

§5. If (4.8) passes, we test the inequalities
51/8' €[25,/5 - 5/4,28,/8 - 3/4] (4.9)

and




53/5' € [zEJ./Z - 5/4,2?3./5' - 3/4] . (4. 10)

We will accept the candidate plastered direction if all these

inequalities are satisfied, Suppose an i is accepted with
81/6' = 26;/8 - a, (4.11)

where g€ [3/4,5/4] . Suppose one moves in the candidate
direction, with 8' = -s . Then éi = -s(Z-gi/g -a, 8o

that at a given distance d
5.(d) = 5, - 9d(25,/5 - a . (4.12)

Choose d* (which might be greater than the distance to the boundary)

so that sd* =5/2 . Then 5i(d*) = q5/2 , i.e.
5i(d*)/5(d*) = q . (4.13)

Since the ratio 5i(d)/ 5(d) is monotone, and since it lies in {3/4,5/4]
at bothd= 0 and d = 4% , it therefore lines on that interval for any
d € {0,d%*] . The same obviously goes tor'any j. It follows that the
ratio condition (3,27) will be respected by any move that does not

reduce 5 by more than half, o




§ 5. Estimation of the improvement on a_move

The purpose of this section is to estimate the
<. N
guaranteed proportionate reduction in ¢ (g) on a move of
one of the two types described in §4, and to discuss step

size,

We have first to discuss the effect of the ''plastering’
of the direction vector to the simplex, and the meaning of
the test (4, 8), both occurring in the ''ditficult' case (4. 2).
As to the plastering, for any positive ¢ the routine of 1]

will eventually produce a y' with |s| <e, where

Subtracting off s/(m+1) from each Yi gives us a vector
y' satisfying |v'" -y'| < e:/(m*Ll)l/2 . And the length of
v'" differs from unity by less than 3 eZ/Z(m-L ) ., So the
plastered y differs from y! by only about ¢/ (m +1)1/2 .
Hence the additional conditions (4.9)-(4,10) will certainly

eventually be met. The operation of plastering is therefore

almost free of charge,.

(5.1)



We now-come to the question of the meaning of the
test (4,8) . We need to have a relationship between the rate
of descent ) (we mean )\ >0) provided by the plastered y
ard the current value of 3 = GN(E) . Denote by )\O the
exact steepest rate of descent for the constrained problem,

We do this in three steps, We first relate A\ to the )' provided
by the unplastered vector y'. This is accomplished by (4, 8),
which tells us that ) > )\'/2 . We then relate ) to }\0 , and

finally AO to 5 .

As to the second relation, it is a characteristic of
the steepest ascent algorithm that always }' > )\0 . This we
proved at Lemma D in §4 of [1] . What happens in that
algorithm is that the current value comes down as the deviations

from the constraints decrease,

As to the final relation, recall that in this case there
exists a %% gatisfying (4.3) . & decreases by exactly 5/2
on the segment [ g_, g**%] . And the length of that segment is

less than

R =\/m/(m+1) R

(5.2)




the radius of Karmarkar's circumscribed sphere, So the rate
of descent on that segment exceeds 5 /2R Now the direction
of that segment satisfies by definition the constraints of the
steepest-ascent problem, It follows that \0>5/2R . We

therefore have
A>3 /4R, (5.3)
which is the relation we need,

That explains the test (4,8), in the case (4.2) . 1In
the other case (4,1), the direction we have chosen, the one
pointed straight towards =% , takes § down by at least 5 /2
in a distance less than R, The A for that direction therefore

exceeds 5 /2R . Hence (5.3) holds in that case as well, 3

The rest of this argument is simply a very-much-reworked,
simplified, and in some respects amplified, version of Karmarkar's
derivation of the corresponding estimate in [2] . In particular we go

1/4 of the way across the inscribed sphere,

We have first to write out the simple properties of the

geometric mean function g(g) of (3.9) in the direction of the move,.




Put

Then

where

We get

where

Se h(0) =0,

G(t) = g(Z +vyt) .
Gy = S one
mt+1

Yi
h(t) = L Ek(t)
k=1 ~
ht) = - k(t) ,
m+1 2
y
i 2
x=1 [ik(t”

and h(t) is strictly decreasing, Next,

2
G = S8 Ll ) .

(5.

(5.

4)

. 6)

. 8)

.9)



By the Schwarz inequality, the quantity in brackets is nonpositive,
and it can be zero only if vy, = wgk(t) forallk=1,...,m+l , 4
being some proportionality constant. Since the Yy Sum to zero
and the a_k(t) to unity, we would then have =0, so that all

the v, are zero, impossible because y is a unit vector. Hence
the quantity in brackets is in fact strictly negative, so that G(t)

is strictly concave,
Put
r=//m(m+1) . (5.10)
This is the radius of Karmarkar's inscribed sphere.

We need an estimate for h(t), on the interval [0, r/4] .

We agssume that m 2, Then

] 1 2
g, (t) > - — > I e (5. 11)
Tk mtl oy mlm D 3tm+D)
Hence
m+1l
9 2 2 9 2
k®) < 2 m+n? ) vE o= Fmen? (5, 12)
k=1




It follows that
0 < -hit) < %61 (m +1)% (5.13)

on [0,r/4] . This is the desired estimate,

ao) = Sl (5.14)

This is the objective function ©(g) , taken along the line, Then.

o) = - G—I(t— (A + -6;(%(2—)2 a(t) ] . (5.15)

~—

Using (5, 3) and (5.13), we estimate the second term in brackets:

5(2(t)) 5 4R\, 9r 2 9
0< - m + 1 h(t) < - m+1 h(t) < m+l X 16 (m+1) = 16
(5.16)
Hence
. A 1
& (t) < - 6 X G - (5.17)

Putting this together with the definition (5.14) and using (5. 3)

once again, we get




Llogam] < - 2 x5 = - ;@ - (5.18)
On integrating this across [0, r/4], we get
®(r/4) < l0)e™ /2%6m (5.19)
Hence we would have (3.18) and hence (3,26), with y-= e'7/256m ,

if we were to choose g# = £(r/4) . We have thus achieved the
desired guaranteed proportional reduction in the surrogate

function 3 . o

Move length . It would be absurd to make the above
choice of g# in computational practice, Karmarkar in [2], and
I here, chose it only to obtain the estimate (5,13) for h(t) and
hence the guarantee (5.16) . In fact the function &(t) of (5,14) ,
as the quotient of a linear function and a strictly concave function,
has a unique minimum on the line, which can be many small
sphere radii out. It is a trivial exercise, requiring very little
computation compared to that required in case (4.2) to obtain
the direction, to obtain an approximate minimum using a few
steps of a halving process, It is by such a halving process that

I propose to choose z# x),

*) {Footnote next page]




[Footnote to previous page]

*) Karmarkar had not, until I called his attention to
it in October 1984, yet noticed the unique minimum property
of ®(t) . Perhaps his use of the logarithmic version obscured

that property. He had been using a 'three-point test' .




§6. Convergence

The principal objective of this section is to prove

the following assertion.

LEMMA, If the set of clagsical solutions of the

original LP problem (2.1)-(2.2)

is nonempty and bounded,
then the ''geometric mean' term

_N SN 1/ (m+1) |
(—-1 '-oo’.‘im) (6u1)
appearing in the estimate (3, 26) is bounded.
PROOF, We will prove that if that term is unbounded,
then there exists an unbounded solution set for the original LP,
Suppose then that the quantity (6, 1) tends to infinity
on a subsequence of the N, Then it will eventually exceed unity
and therefore be less than the true geometric mean
_N _N.I/m . .
( D e =) . Since trivially
N _N
N, Nym_ EL e TR 6.2)
-—1 LAY —.m - m ’ .
t1 L
il R -




we may replace the tactor (6.1) in (3,.26) by S/m , where we

have written S = E{\I ta.. t ErI: Recalling the definition (2. 5),
we then have
3 'N g ‘N 'N N 0
o< -) x4 ) BYN + wh< 2y =" /m, (6. 3)
iti i
i=1 j=1

where we have written E'N’-: E.N/S and A= (E? ) ._._Y?q)-'l/(m ) .
Since always Ags Aj < (5/4)p , we get similar estimates from
(2. 3) and (2.4) , with an additional tactor 5/4 on the right
hand side, Because 4 < (0,1) and is constant, and because
everything else on the right hand side of (6. 3) is constant, the
term between inequality signs in (6. 3) tends to zero. This is
so also for the estimates obtained from (2. 3) and (2.4) . Since

'

N . c . m
= is on the unit simplex in R+ , a subsequence converges

to a limit =*, also on the simplex. We thus find that

q
K
LAY = Uy isber (6.4
j=1
from (2, 3) ,
i ALXE = VE, j=l..iq (6.5)
i=1

from (2.4), and




CeX# = BaY¥ + W (6. 6)

from (2,5) ; also

p

m q

(\ﬂ = = \ Xx  + z v+
L T L 3

= i 1 _]=1

P
\
) Us Ev; FoWE = 1, (6.7)
1 i= 1

i=1 j=1
Now suppose that the pair (X,Y) is a solution of the
criginal LP (2.1)-(2.2) . Filling in with slacks U, and VJ. , we

may write

A,_X. +V_:B,, .=1,¢.0' ’ 6.8
i ij 1 i- i 9 (6.8
i=1
q
z ALY, U= CL izl (6.9)
j=1

B.Y = C+X ., (6.10)

Now multiply the equations (6.8) by Y3 and add. Taking account

of (6,4), we get

Be¥# = XoUs + VeY¥* | (6.11)
Next, from (6.9) and (6.5), we get
CoeX#% = - VikeY - Us X% (6.12)




Putting these together with (6.6), we get
Wi+ XeUk + UJeX* + YeVE + VeYx = 0, (6,13)

Since W3 and all the dot products in (6,13) are nonnegative, then

they are all zero. Hence, in particular, from (6.11) and (6.12),
Te X% = BeY%* = 0 , (6.14)

Now it is not possible for all the Xi* and Y;‘*‘ to be zero,
If this were so, we would have all the U1 equal to zero from
(6.4) and all the VJ equal to zero from (6.5) . And we have

just proved that W* = 0, This would then contradict (6. 7).

So suppose that some of the X1 are nonzero, and

write

Xt X+txx, t>0. (6.15)

Then, by (6,8) and (6.5) ,

P .
<
L A, xt < B., j=1...,q9. (6.16)




Hence X' is primal-feasible. From (6.10) and (6. 14),
c.xt - cex=cCcoY , (6.17)

It follows that the pairs (Xt, Y) , t>0, torm an unbounded
solution set for (2.1)-{(2.2) . We make the corresponding
construction if it is that some of the in‘ are nonzero, The

lemma is proved,

£

The above proof by contradiction does not give any
indication of what the bound on that ''geometric mean' in (3. 26)
is. DBut it does in fact provide, by asserting that some bound
exists, a polynomial estimate of the number of steps of the

outside algorithm required for given accuracy.

We however do not have a polynomial estimate for the
number of arithmetic operations required to achieve given
accuracy. This is because the inside algorithm, the steepest-
ascent algorithm of [1] whose role is described in 34 above, has
an estimate, at (4.24), involving the eigenvalues of a matrix
depending on =, We do not even know that the whole series {EN}
converges (unless the solution is unique) . So we have no estimate

of the smallest eigenvalue g appearing there. All we know is that




that routine yields, in finitely many steps, any desired degree
of accuracy., So we will state the overall convergence result,
a consequence ot the estimate (4,24) in [1] and of the Lemma,

very simply as follows,

THECREM, The algorithm of this paper, which

incorporates the steepest-ascent algorithm of [1], will answer

to the objective set at (2.7) above in finitely many arithmetic

steps.

W]
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§7. The routine

This section is intended to provide a summary guide

to the practical execution of the program.

We suppose available the steepest-ascent algorithm
of [1], whose action is described there in §2,3 . In that
algorithm there is an objective vector 2 , defined in some
RK , and constraints bl’, also defined in RK , with
2=1,...,L . The original problem it is conc ‘rned with is
that of maximizing 7+y subject to the constraints lyl =1,
ptey=0, t=1,...,L. Suppose that maximum is v,
The routine finds an approximation to the solution of this

problem, in the following sense, Given ¢ positive, it

either states that v< ¢, or else produces a unit vector

L

V'ERK satisfying gey' > v and |3%ey'|< e, ¢=1,...,L,

The main routine is executed relative to strictly
positive vectors = = (X,Y,U,V,W) ¢ R™ = RPy R, RP(RY, r! .

It begins at a starting point EO = O,YO,UO,VO, Wo). dete rmined
as follows, x0 and y? are chosen arbitrarily, with all the x° and

Yo strictly positive. For instance one might choose them to be




all equal to unity. The Ui0 , V;.) , and wo are then chosen to

%,

be strictly positive and such that all the deficits A? = Ai(E
A? = AJ.(EO) , and AO = A(Eo) defined at (2, 3)-(2.5) are

strictly positive and equal, The routine is now ready for the

execution of step 0,

At the outset of step N, N >0, the routine is at a
N . .
point = , all of whose components are strictly positive, and

for which the deficits A].l_v = A.(EN) . AN = A (EN) » and

1 ) J
N
AL = A(EN) are all positive and satisfy (2. 6) . The problem
is to find a direction for a move on the corresponding simplex
EN . We now have to treat the two possibilities considered at

the beginning of §4 ,

We begin by finding the largest of the deficits A?I '

A;\I , & athand. Suppose its value is o . We then put

U= U + 8 -4, i=l,..,p: VE=V,_ +3 -4, j=h...,q
(7.1

At the point =* = (XN,YN, U, Vi, W) the deficits are now all

equal, Denote its image in ZN under TN by £%. (Recall that

N
T is given by (3.1)-(3.2) with Eo revlaced by EN. }  Now test




the inequality (4.1) . If it passes (which seems in general
unlikely) , we get an essentially free move. We take vy to
be the direction pointing to £* , i.e. y = (z%-=)/|g*- z],

and pass to the description of the '"Move on the simplex'’, below .

If (4.1) fails, we are still guaranteed a balanced
reduction, but at substantially greater cost. The algorithm
calls the steepest-ascent routine, operating in the space
RK = R'Zp t2q+2 of variables = = (x,y,u,v,w,2z) . The

objective vector 2 is now read off from (3.7), with 0 replaced

by N, as follows. We put

N N
Qk“ckxk s k=1,...,p: 2y = 'Bk-ka—p' k=ptl,...,ptq:
(7.2)
= = + + . = =

There are L = p+q+1 constraint vectors 2t , whose construction

requires some intermediate definitions, as follows. We first

2p+2q+2

define vectors c € R i=1l,...,p, read off from(3,5):

i h
= = : = - =pt +
¢ 0.k L....p: Ck-p Ai,k-ka- , k=ptl,...,ptq
i - i -9 .
¢ 0, k=ptq+tl,2p+2q+1l, except that Cp+q+i—Ui : (7.3)
1 - C, .

ch+Zq+2 i




j 2pt2q+2 .
Next we define vectors ) ¢ R“P 744 , j=1l,...,9, read off

from (3. 6):

- N .
J - = . = k=p+ . + +
dk Aijk s k=1,...,p: dk 0, k=p+l,...,2p1t2q+1 ,
(7. 4)
j :VO j =-B
except that d2p+q+j i d2p+2q+2 i
Next we define scalars
N, N ) N N
w, =27, /8 - 1,i=L...,p: wl =2 /6 -1, j3l,...,q9 .
1 1 J J
(7.5)
Finally we define
ph- 7, 4 =1 . b!“—d"'p- 1 7, b=p+l +
0 14,, y A sese P = K£_p y 1 P seee P Tq.
(7, 6)

These correspond to the constraints (4, 6)-(4,7); see the text following

those formulas, The final constraint vector has

+q+
bi qtl _ , k=1,..,,2pt+t2q+1 ; (7.

-1
—

it is the simplex constraint,

Each iteration of the steepest-ascent algorithm produces

a unit vector v', generally speaking not satisfying any of the
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constraints. We ''plaster' it to the simplex by subtracting,
from each component, the average of those components, and
then renormalizing, We denote the plastered unit vector by vy .

We first test the inequality (4. 8), which here reads
2'Y > |h|/2 » (7.8)

where h is the vector, used in the construction of y!', given
by (3.1) in {1] . We then make the tests corresponding to (4. 9)

and (4.10) of this paper. They are:

pley e ln,- /4,5 +1/4], 21=1,...,p;
(7.9

l'c ! - ! + = + +
by e [w, 1/4.14.(’_p 1/4) , t=p+l,...,p*q.

P
If any of these test fails, the steepest-ascent algorithm proceeds
to its next iteration. According to the theory (see 44, especially
following (4.7), eventually all the tests must pass, and we have
the desired direction for a move in the simplex, bringing down
p(g) = 5(2)/g(g) and respecting the requirement (3. 27) on the

condition that the move is of length not over 1/2 ,

SO 2 —__BA L -




The move on the simplex. Whether we are in case

(4.1) or (4,2), we now have a direction y of guaranteed
balanced reduction on the simplex., We seek the approximate
minimum for the function &(t) of (5.14) . We know from
(5.18) that this function is still decreasing when t =r/4.

So we set the initial left endpoint for the halving process at
a=r/4 . Astoa right endpoint, there is first the boundary.
Next, in the case (4,1) one cannot move too far beyond g* ,

precisely not beyond g** = §+ 2(g*-¢g) = E+ 2g* , without

VA" )

running a chance of violating the balance condition (3.27) . In

the case (4,2) one cannot move more than1/2 for the same

reason. If the effective upper stop is now still the boundary,

one uses a halving process, starting with left endpoint at

r/4 and right endpoint at the boundary, to find a point where

&d(t) > 0 , and puts b equal to that t. If in case (4.1) it is

z3% that is at the stop, we test the sign of &)(t) . If that is
negative, we put §#= g%* and pass to the projective transformation,
If it is negative, we put b = 2%*%* and pass to the halving process.

If in case (4.2) the upper stop is d/2, we proceed similarly,

At this point, if we have not found g# from either of

the two special cases noted above, we have a lower limit a = r/4,

and an upper limit b, for the minimum., We then begin the




halving process, testing the midpoint and at each step redefining
aorb., If in the unlikely event that we find a point where é)(t) =0,
the process stops . Supposing it does not stop that way, we run

it a few iterations, perhaps ten or twenty ; there is no reason

to seek high precision here,  Then either the = at the stop,

#

or the & corresponding to d = (a+b)/2 will be taken to be g,

The projective transformation . - This is very easily

executed, One simply uses (3,11), with N replaced by N+1 ,
to define EN+1 from =\ and §# . One is then ready to
execute step N+1 . The algorithm terminates when the criterion

(2.7) is met. .
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An Experimental Approach to Karmarkar's Projective Method
for Linear Programming

by
J.A. Tomlin

Iatroduction

A September 1984 article in Science [13] made breathless claims for
the speed and efficiency of a new linear programming (LP) algorithm devised
by N. Karmarkar [10]. Furthermore, claims were made that numerical resulcts
prove the new method up to 50 times fastar than the simplex method.
Unfortunately, no information on tha tast problem(s) or experimental
procedures were given. Only limited details of the naw implementation have
so far been discussed publicly.

At first sight, the prospects for such a new algorithm are not
bright. Thirty-five years of attempts to defeat the simplex mechod (2]
have met with uniform lack of success, the most recent beiag the Scolnik
and ellipsoid fiascos. This generally gloomy outlook is complicated by two
further factors implicit in Karmarkar's approach:

(1) Like the ellipsoid mechod, it takes the unpromising step of non-

linearizing a linear problen.
(2) At least initially, it makes the entirely false assumption that
any feasible LP constraint set possesses a strict faterior (i.e.,
a solution positive in every componentc). Qany real LPs are highly
degenerace (17).

it seems that the only way to evaluace chese conflicting viewpoincs is

to perform some compucational experiments on reasonably representative LP




models and extrapolate the reasults. This paper reports on the results of
such a set of experiments. The next section reviews the steps of the
algorithm as outlined in {10]. The following sections describe some
additional coustructive steps for getting started, the implementation,

experimental results and conclusious.

1. The Projective Algorithm
While some familiaricy with Karmarkar's paper is important, we include

the following brief outline of the projective algorithm as presented in
[10]:

The LP is assumed to be cast in the almost homagensous form:

Min z = crx (lra)

subject to
Ax = 0 , (1b)
Tx =1 , x>0 (le)

whers e is an a-vector of l's, A is o x a, and the minimum 2z 1is
assumed to be O. It is also assumed that there exists a solution to (1)
with the property that EJ >0 (§ =1, ees, 1)

Under these assumpcions, let D = diag (;1, vee, ;n) and employ a

projective transformation and its inverse, defined by:




1 v ——_— - j
1
{
{
D"lx DX' 4
x' - T -1 ’ = _r . (2) .
eD 'x e Dx' 1
The second of these transforms the LP on a simplex (l) into the fractiocmal
program oan a simplex in «x'-space: J
T !
Min z = CTDX (3a)
e Dx’
subject to
ADx' = 0O (3b)
and
T L ]
ex' =] ' >0 . (3¢)
Note that from the definitiomn of D, the point x 1in x—-space 1s mapped ‘
onto the poiat (l/a, ..., l/n) 4iam x'-space. The general idea is aow to
ignore the denominator in (3a), and take a “large” improving step away from
the canter of the simplex to a new point in x'-space. This is transformed
back iato x—-space and the result evaluated.
Specifically, the algorithm generates a sequence of points x(l),
x(Z), oo, x(‘), where le) >0(j =1, ..., n) as follows:
l. Define D = diag (xik), cen, xsk)). and:
AD
3 8 |com=
e
3
sk | V- A st



2.

Compute:

e, = L= 37(8a%) '8} De , %)

(i.e., project an "asceat” direction for problem (3) into the aull-

. spacs of its constraint matrix B).

Normalize °p and scale it by the radius of the largest sphere which

can be inscribed in the simplex (3¢) to produce the dirsction vector:

P& B (s)

‘cp[/n(n-l)

Take a "descent” step of length c to a new feasible point for (31:
x' N § e-a2p . (6)
n N
Project x' back into x-space to obtain the new point

(e+l) Dx'
x - —_—

eTDx' ) 7

If the new point satisfies the termination criterion, stop. Otherwise, set

k * k+1 and go to .

Py




It should be clear that the great majority of the work in each itera-

tion comes in step 2, which ensures feasibility of the new point.

2. Gecting Scarted

There are two details to be cleared up in obtaining a first feasible

interior—point solution to LP (1), PFirst of all, the problem must be

"homogenized.” LP prggigya are more commonly expressed in a canonical form

such as:

Min z = ch
subject to

Ax = b (8)

Karmarkar suggested scaling the variables by some plausible upper

bound (say ¢) on their sum, so that:

Ax = b = b/g (9)
5+ §n+1 =]
and then mul:iplying 5 by el =1 to obtain
({4,0] - 5e¥) % = 0 ' (10)

wa

2




el
where @ and x here are of dimension o+l. Since b is cormally much
denser than the columns of A explicit coastruction of (10) is to be
avoided if possible.
One acceptable macthod is to define 2 new variable corrassponding to the

right band side in (9) after scaling, and forcing this variable to be 1l:

AX = (b/0)E =0,
}
£ -1, (11) |

er; +;u+l-l'

The last two coastraints may be replaced by:

2

X
T= -

0x-§+xn+l-0

er;*£+; =2,

o+l

Scaling all the variables again by 1/2 we obtain:

-A - ba O— -0-
J -l tlx= |ol, (12)
e L 1 1
L - L
x>0
5




and a solucion to (§) may be recovered as x, = 20 ij (3 =1, «ou, 2).
5 Note that A s unaffected, but a single dense row is added.
Karmarkar also suggested che conscruction of an artificial column to
obtain a scarting incerior solution to (1). This iavolves adding a new

' columm (say d) and variable to (lb) and (lc) ==
Ax + dA = 0

erx + A= |

such that e/(a*l) 1is a feasible solution, and chen minimize A to zero

(or close to zero). Using the construccion (12):

A - b/s 0] d 0
<

ef - .6 -0l (13)
\

el ! p 1| L 1

and recaining the convention that A 4is a2 x a, a startiag solutiom of
e/(a=3) 1implies that d = b/g - Ae, & = -,

For these experiments we thought {t better co start with a differant

iaterior point. We already know that che variable §n+l corresponding to

the right hand side musc e 1/2 in a feasible solution —— quite discant

from 1/(a+3). Ia additionm, the slack value iq¢2 2ay be subscantial,
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since the value ¢ will rarely be known accurately. Finally, an inicial
value of 1/(a+3) for A\ gives the algorithm very lictle to “bitce” om,
since this is not very far from the target value of zero (or ¢) for even
moderate n.

We have used the starting solution:

; & - (J.l, ..-.n)

(14)

which gives the artificia) coefficient values:

d = ) 5.‘10

alo

- Ae
a
This has proved satisfactory ia practice.

3. Implementation

To initiate these experiments the author's LPMl Fortran LP code was
modified to give a test bed implementation (LPMK) of Karmarkar's algorithm
for sparse LP problems of moderate siza. (We had previously modified this
code to test Scolnik's approach [15]).

The matrix (A, -b/¢] has its non-zeros stored contiguously column=-
wise ia arrays IA(°+), A(+), specifying che row indices and values.
Another array LA(+) points to the beginning of each column. Slack
columns are stored for each L and G row in the conventional MPS format

(12], but no logical column is generated for an E (equalicy) row. All




free rows are dropped, except the designated cost row, which is stored as a
full vector. All of these arrays are constructed as the LP model is read
in MPS format. Nots, however, that bounds and ranges are not allowed.

The artificial columm i{s constructed immediately aftar input, but the
two dense rows (m+rl) and (mr2) are never stored explicitly.

As we have pointed out, the bulk of the work in the algorithm is the
calculation of a projected vector (4). It turms out that the calculation

(4) is equivalent to finding the residual of a least squares problem:

; = arg ain D¢ - Bryﬂz (15a)
y
T=

cp = Dc -8y ., (15b)

There are several zethods of computing this vector (see (6,7,3]). The
aathod chosen for this iaplementation is the popular cne of computing a

mactrix decomposition:

0> N
—

] (16)

-

QBT = r g ] . QDC - [
. 2
where R {is upper triangular, QTQ = I and B is laitially assumed of

full rank. ¢, oay then be computed via y = "L S, and (15b) or:

1

c ={1-3 3ty

3] De . (17)
P -

(Alcernative procedures will be discussed below.)
Ia our initial code, Q was computed as a product of Householdaer

cransforzacions:



PIPE. .

Q - H= cee azgl .

vhere

B = 1-g v W7
k
and
T

Bt

Each transformation Ek eliminates the elements (k+l), (k*2), ... of

T
2 Hl - I

Some attempt to exploit structure was aade by permuting BT in the

column k of B, °° 8

general form of Figure | (see Saunders (16]). Unfortunately, b {s
usually quite denss, and d often completely dense, and any QR decompo-
sition of BT results in a completely dense R as well as dense w(k) |
vectors to be stored for the Ek.

The calculations involved in computing the descent directioa in (17)

are simply routine sparse zatrix multiplication and forward and back sub-

stituction with R.

-4, Experimental Procedures

Table | displays the characteristics of l! test problems. The firstc
two are marely small text book models. GNET20 is a 20 node generalized
network (transportation) problem. STD23 is the "stagdard 23 row refinery
model™ used for many years as an illustracive model. AFIRQ, ADLITTLE,
SHARE2B, ISRAEL, BRANDY, E226, and BANDM are realistic models which have
been used quite extensively as test problems. Nocn.:ha: the non-zero count
includes cthe slack columns and right hand side, but not the two dense rows

and the artificisl column 4 {n (l3).

10
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Table 2 gives solution data for the models using Ketrom's MPSIII
system (12]. The :1@.: include initializacion, CONVERT, SETUP, solving via
WHIZARD and SOLUTION. The time quocad is for the entire job step on an IBM
3033/N. The number of “eta non-zeros” given refers to the number produced
by the final INVERT before the solution is prianted. The "Crashed” columns
are made basic by inspection in WHIZARD bef-re beginning the simplex itera-
tioas.

Two important parameters are needed for the projective algorithm:

(a) A convergence tolerance must be specified. The objective functions of
the test problems have been translated by their kanown optima so that
they assume their minima at zero (see (10]). All the problems except
ADLITTLE and ISRAEL have optimal values of order close to 103. Those
probleams had their objectives scaled by 10-'3 to bring them into chis
range, and the convergence criterion for the traunslated optima was
arbitrarily set to 1.0.'6 for all rums.

(b) The length of tne step a must be specified or computed. Karmarkar's
paper [10] implies that a should be some constant less than | (in
fact 0.25 is suggested as “safe”). Experiments using fixed values of
@ for two problems showed the number of i:era:ions required for con-
vergence to be inversely proportional to a (see Table 3). an
initial (constanc) setting of a = 0.9 seemed "safe,” and was
adopted.

Table 4 gives solution data for this version of the projective
aethod. Two factors other than iceration numbers and tizes are of particu-
lar interest. These are the number of non-zeros in the Q and R factors

and che approximate condition of BBT. which is cricical for the accuracy

il




wtlntgdue

of the projection step (4). The condition of R is approximated by taking

the ratio of the maximum diagonsl element and the minioum

legyl eyl
This ratio is squared to approximate r(!!r). In general the number of
non—-zeros in Q and R decreases throughout the run, while the condition
oumber increases monotounically.

These {nitisl results show three important treads:

(a) A not-unexpected detericration in the condition of R (and hence

BBT) as the algorithm progresses.

(b) A disappointingly large, but quite slowly growing, number of
iterations with problem size.
(¢) Cacastrophic Fill-In of Q and R.

Ill-conditioning of R 1is to be expected as diagonal elements of D
approach zero and hence B approaches column rank difficiency (especially
for degenerate models). A may also be row rank deficient initially, since
wve do not necessarily have a full set of unit columns. We must therefore
have a method of rejecting rows of A (columns of Br) for elimination in
(16). This may, of coursa, be done by means of a tolerance on acceptable

values of A value of 10-12 is used here for all elements of Q

Irii’.
and R. Some more sophisticated method is clearly desirable.
The ill-conditioning of R can sometimes be overcome sizply by

avoiding its use. M.A. Saunders suggested using the formula:

T|oO "
cp-Q[I-]QDc, (18)

12
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(whers the 0 diagonal matrix is of the row dimension of B), racher than
(15b) or (17), involving only the necessarily well-couditioned Q. Experi-
ment showed that this did indeed allow coavergence to tighter tolerances,

though (18) may require prohibitively more work if che aumber of non-zeros

in Q 4is much greater than in R and B.

5. Modified Step Length Calculation

The aumber of iterations, as we have observed, tends to be inversely
proportional to a. There is in fact no good reason CO restrict a to be
less than |, except for proving theoretical complexity results [l10]. What

we do require, from (6),1is that:

e o= wa —— . (19)
p, >0 ™

(k+1) < z(k). This may not happen

We would also like to guarantee that =z
in some circumstances. In particular it was observed that when some of the
problems were infeasible (due to iaput errors) and g was fixed (0 < 2 < 1)
the phase I objective function A oscillaced, and these cscillations did

not converge. This un=robust behavior suggest a look at the conditions

under which we expect z(k) to improve.
Defining
S¢S RN
uen j cjxj pj , vean 5 xj pj , (20)

we easily see from (la), (6) and (7) that

13




l -nap
(k+l) (k)
xj - xj [—1—:‘-—“1} , (21)
(k+l) z(k) - ey
2z . (22)

z(k+1)

Clearly is monotonic in @, but a decrease is not guaranteed. The

(k+1) < z(k)

four cases which do satisfy =z for soma range of a are:

u-vz(k)>0 and:

(L) v> 0= 0 < a< /v,
(1) v< O =» 0 < a,

(TR Y z(k) < Q0 and:

(14i) v> 0 =» 2 < 0,
(iv) v< 0O =» /v < a< 0.

The oscillaticus must be due to cases (1ii) or (iv) arising when we insist
that a be a positive constant.

The oscillating case may be avoided by setting a < O 1is cases (iii)
and (iv). Note that this has never been observed to happen in practice
unless a model is infeasible or the comstant o in (9) is chosen to be too
small.

The a calculation to be used in practice is then to specify a

mulciplier 0 < 2< 1 and in cases (1) and (11) above set:

14




(1) = a min (¢, L/v} (v > 0)
(23)

(14) a = 2 (v < 0)

2]
©

otherwise we simply put a = =@ {n case ({i1) or & = min {-T, l/v}
ian case (iv).
The problem of fill-in was left temporarily in abeyance and the set of
problens in Table 4 rerun with the revised step length calculation (23).
The number of iterations in Table 5 {s reduced by a factor of about 4
for the larger models. There does seeam to be some loss of accuracy ia that
there was difficuley in attaianing coavergence for problem SHARE2B. This

vas immediacely overcome by use of formula (13).

6. Reducing Fill-ia

The presance of the right hand side column b {in B, and of d in
phase I, almost guarantees complete fill-in of R (and of Q within the
envelope implied by an ordering such as seen in Figure !). This cata-
strophic £ill-in can be avoided by iaitially omitting the offending columns
from 3 (i.e., rows from BT) and using an “update” to compute the least
squares solution.

I£ B = [31 32], where 32 contains the "nascy” columns, the

procedure (s to fora the modified factorization

ol
w
— 3

and solve a aodified least squares problem to obtain:

15




9 » arguinlblcl - nylz .
y
wvhere D and ¢ are ba::i:ioncd conformably with B.
There are a number of ways of modifying this solution § to obtain
the solution to the full ptoblem (15) (see e.g., (3]). In its simplesc

form this updating requires us to calculate:

- T -
R ", £ =D, Bz

Fe3 2%2 y
y-y-t-RlFTv,
where v solves:
r .
(I +FF)vs=sg, (25)

Ignoring the work required in solving (25), this calculation is dominated
by a forward substitution using R for each row of Bg and a back
substicution for FTv. The assumption {s that the total work will be less
than cthat using QR when R becomes dense. Note that only the updated

soluticn ; for (15a) is obtained, not an updated factorization.

7. Modified Phase I

In addition to the above feature, another improvement was made, which
caﬁ reduce the number of iterations in phase I. Karmarkar has pointed out
[11] that A need not be non-negative and can be omitted from the step
length calculation (19). If the a chosen results in A < 0, oﬁe can

(k) x(k+1)

incerpolate between x and to find an x such that

16



A = 0. In our terms, using A for x(k) ia (21), and letting Py

correspond to the component of p for the arcificial column d, if

l=n apd
l = av

<o,
then reset a« to ll(npd).

8. Minimum Degree Ordering

Ouce care is taken to avoid fill-in in R (actually R) it makes
sense to use a more sophisticated ordering than that employed so far. The
method chosen was the "minimum degree” ordering of AT (see (4]), since

the oon=zero structure of LT, where PTAAIP = LLT, is che sama as the

non-zero structure of R when we compute QDAT

P = (gl

This ordering requires fiading the non-zero structure (not the values)
of AAT, that is {ts “adjacency matrix,” and :h@n applicatiocn of the
ainizum degree algorithm to this structure. We used the data structures
and procadures in (4] without modification and attained very satisfacr -y
resultcs. The only exception to use of this ordering was for problem
SHARE23, which turns out to have a natural “"block angular” ordering with
dense diagonal blocks above the linking rows. This structure is almost
ideal, and is used as it stands.

The non-trivial models in Table 5 were run again with the three
anhancezents in Sections 6-8, and the resylts are displayed in Table 6.

The ilaprovement is substantial, and the times for this subsec of models

begins to bear comparison wich the MPSIII times.

17




9. Use of Givens Rotations

Attespcing t0 build on this success and solve model E226 met immediate
difficulty. For larger problems, trying to perform the QR decomposition
using Householder transformations becomes impractical as the number of
incermediate and final non=-zeros becomes very large, as illustrated by
Heath (8]. The method of George and Heath (3] overcomes this by never
storing Q and using Givens rotations to eliminate rows of BT, building R
with a row-wise data structure.

Using the George and Heath technique we are able to make use of the
full pover of the minimum degree ordering and symbolic factorizationm pro-
cedures described by George and Liu [4]. The adjacency matrix is comn-
structed as before, and the minizmum degree ordering (of the columns of Ar)
is found. This is followed by a symbolic factorization which predic:s.
vhere all the non~zeros in R will be (assuming no cancellation). The data
structure for this (aildly pessimistic) estimate of the sparsity pattera of
2 {s set up once—and-for-sll, and used in all subsequent factorizations
(at least in this implementation). Noce that since Q is discarded, we
update the Dc vector simultaneously with the facrorization, computing:

q(Da’?

- .-
PR RN
-t a-

be] =3 g we] . (26)

Using this approach, we were able to run all the models in Table !,
with results as shown in Table 7 (omitting the first two models).
There are some differences in the data displayed. Since we work only

with R, obtaining cp directly as in (15b), the estimace of «(R), not

18




its square, is given. There is cow only one mumber for R non-zeros, as
computed in the symbolic factorization of AAT- (This does not include

diagonal non-zeros of R or those in the last two columms.) The size of
the step length a actually actained is also of interest (note that z =

0.99 1is used here).

10. Discussion of Computational Results

It i3 clear that the Givens—George-Heath approach has again resulted
in subsctantial improvement, and enabled the solution of the larger models
in tolerable = if not competitive =~ tinma.

The very bad performance on problem ISRAEL is due to the presence of
three very dense columns (as well as several dense rows) in the LP matrix.
This difficulty could be partly overcome by using an update to introduce
thess columns -— that is iucluding' them as "nasty” columms along with b
and d. The present implemencation does not allow this. However if these
dense columns are omitted from the matrix the number of non-zeros in
(symbolic) R drops to 4325, indicating that a two~ or three-fold iamprove-
ment may be possible. However, there must clearly be a point at which the
extra work in the updating approach begins to outweigh the savings in
sparsity of R. Note that the simplex method had no particular difficulty
with this problem.

The number of iterations appears to grow quice slowly with model
size. Karmarkar (1l] has claimed that the number of iceracions should be
0(log n). While we would not make so formal a claia, these results by no

means contradict ic.
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Aa encouraging sign is the relative sparsensess of R (except for
problem ISRAEL). The number of non-zeros is generally omly 2 or 3 times
the aumber of noan—zeros in the factors of the optimal basis. Given the
vulnerability of QR decomposition to fill-in, this speaks well of the
ainimum degree ordering. Since the method behaved well in the case of
block angular A (as should be expected) it suggests that ucested dissec~-
tion (4], or incomplete nested dissection might also be worth invastigatc—
ing.

The relative sparsity of the resulting R must not, however, be con-
fused with the amount of work required to obtain it via QR decomposition
of Br. Theorstical considerations, and our numerical results, indicate
that this can grow drastically with 1, even using a close to “"state of the

art” direct method (see (5] for later developments).

1. Finding "Exact” Optimum Data

In practice, one must ask how a usable optimum basic feasibla solution
to the LP (and its dual) should be extracted when the projective method 1is
deemed to have converged. One might hope to use the projective method to
"front—-end” the simplex method. As it happens, many MP systems contain a
procedure quite suitable in principle for this task. In all descendents of
MPS/360 (including MPSIII and MPSX/370) this is known as the BASIC proced-
ure. Benichou et al. give a general description of this method in section
2.7 of [1l] (see also (9,12]). Essentially, BASIC accepts a non-basic solu-
tion to a LP and transforms it into a basic solutiocn whose objective (phase
I or II) value is at least as good. This may be followed by che simplex

method to attain optimality.
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Experizments with the first (fixed &, Householder) version of the code
indicated that the projective method could provide a reasonably good starc-
ing solution, via BASIC, even with loose phase II couvergence criteria.
Thus Table 8 gives data on the BASIC and simplex steps required to optimize
SHARE2B vhen the projective mathod is stopped early and at terminatiom. It
is aoticeable cthat feasibility in the projective method deteriorates toward
the optimum, and early termination provides a satisfactory starting solu-
tion for BASIC. For larger problems, and with a loager step length (fewer
iterations) this deterioration is more marked, and it proved difficult co
get good starting solutions for BASIC. Indeed BASIC and subsequent simplex
iterations were sometimes at many as those required to solve the problem
without the projective method as a "front-end.” This suggests that an
additional iteration (or more) should be carried out at “convergence” to
enforce feasibility, or that perhaps some “composicte” steps should be per-
forued, which attempt to rastore feasibility as the optimum is approached.

This has not been attempted in this series of experiments.

l2. Conclusion

Foiloving an experimental trail beginning wich [10], we have been able
to implement a version of the projective method which solves realiscic LP
models in respectable, in not really competitive, times. This is not to
say that further improvements are not possible. Karmarkar has hinted [11]
that Bell Labs are experimenting with the use of incomplets Choleski
factorization of BBr to precondition a conjugate gradieant method (7] for
solving the least squares problems ac the core of this method. This

promisas to lead Zo some improvement over the direct QR methods to which

21




PV RN .

these experiments have b‘cn confined. An even more promising approach is
some preconditioned form of the LSQR algorizha [l14].

Even though more sophisticated schemes for solviag sparse least
squares problems may lead to markedly improved performance, it is difficult
to see how they can lead to 50 to 1 improvements over the simplex mechod
except in very special cases. As it happens, the model for which this
claim was made is reported to be a multicommodity flow problem [ll], which
is block~angular and has san ocherwise remarkably "friendly™ macrix.

Experience shows that it is not difficult to beat MPSX/370 (the chosen
yardstick) by a wide margin on embedded network models (of which the mulzi-
commodity problem is a special case). We have reported results (18] for a
model with about 5000 network rows and 700 “hard” rows whers exploi:acion_
of the network simplex method in MPSIII enabled us to solve it in about SV
aigutes of IBM 3033 time, when MPSX/370 — used naively — had failed to
terainate in over an hour. Other practitioners were able to tie a differ—
ent network optimizer in with MPSX/370 and solve the model in about 1l
minutes.

Finally, our observations may be summarized as follows:

(1) The number of iterations required by che projective method does

indeed grow slowly with model size.
(2) The work per iteration is substantial, and limited by the technol-
ogy for solving sparse least squares problgns (8].

(3) Vast improvements in speed over che simplex method only seem pos~
sible for special classes of problems, and these may be problems
for which greatly improved simplex technology is already avail-

able.
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Nane Constraints | Slacks | Columms | Non-Zaros Optimum g
HEXNUT 3 3 4 15 11.0 16.0
FEEDMIX 4 3 3 16 5.2857 | 16.0
GNET20 20 0 44 108 760.179 | 162
STD23 22 12 23 103 -45.53024] 163
AFIRO 27 19 32 110 -4964.75293| 163
ADLITTLE 56 41 97 461  |225494.94 163
SHARE23 96 83 79 801 -a15.73224| 163
ISRAEL 174 174 142 2276 |896644.8 16
BRANDY 220 54 249 2256 1518.51 16*
£226 223 190 282 2876 -18.7519 | 16°
BANDM 305 0 472 2612 158.628 16*

Table 1. Tast Problem Statistics
26




Nane "“"Crashed™ Cols. | Simplex Its. Eca. Non-Zeros | Time (Secs.)
HEXNUT 2 1 6 0.58
FEEDMIX 1 3 14 0.59
GNET20 19 20 69 0.72
STD23 10 6 72 0.52
AFIRO 18 4 52 0.53
ADLITTLE 18 80 266 1.02
SHARE2B 13 84 558 1.06
ISRAEL 1 166 1480 2.35
BRANDY 8s 168 1467 2.66
E226 50 350 1490 3.95
BANDM 114 253 2385 3.51

Table 2. MPSIII/WHIZARD Solution Results
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Izerations to Optimality
@ STD23 AFIRO
0.25 165 239
0.5 82 118
0.9 44 64
Table 3. Sensitivity to (Pixzed) «
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ON STEEZPEST ASCENT WITH EQUALITY CONSTRAINTS

by

John M, Danskin (Arlington Virginial

ABSTRACT

The paper gives an algorithm for finding steepest
ascent of a 'inear torm in RP . subject to q constraints.
in at most q -1 s‘eps. It requires ‘he storage ot a qxq

dense matrix, There is an application to linear programming,




§ I. Introduction

Our problem is ‘0o maximize zey subject to the

constraints

R (L. D

<

and

B.oey =0, jeT. (1.2)

IR

Here 1, v, and the bj are in Rp, 7 £0, and Jis a tinite
nonempty set of indices. We denote by © the set of v < RP

satisfying (1, 1-{1,2), We will also call such a , "admiss'ble’,

Our method in the general case is ‘o s=t up a 'inea-
manitold Z n RP and then to tind the point ¢ = ¢ <closas*t to

the origin.

We deal in 3§ 2 with a *rivial exceptional cas2, In
3 3 we construct the linear manitold 2 and expla‘n the signiticance

ofc, In §4 we show how to tind ¢ in tinitely :na1y steps. In




§ 5 we give the easy es‘imate for computation time, In %§5-8
we note an application to linear programming, In § 10 we

recall Lemke's closest-point principle {31 and the connection

of our method with it,

§ 2. The exceptional cage

We denote by Io the set of j € J tor which 2. bj =0 .
and write J'=7.7% | The exceptiona! case is the case 9.7,

all the bJ. are orthogonal to 7 . In that case the vector

satisties ‘he conditiona (1.1) and (1.2), and .. = Iz].
For any unit v' € RP whatever, we have z.v = 2lvevt <l

with equality holding only it y' = v . Hence . uniquely solves the

problem (1, 1)-(1,2), and the maximumis ) = [:].




3
$3. The general cass
Now '™ is aot empty. Suppose tirst that a!so 50 )
aot empty, The vectors .‘:j tor j ¢ J now generate a cone
B in RP . Using the Gram-Schmidt orthogonalization process.
. . \ ‘ 0
wa construct an orthogoaal basis (e e K tOF B~ . Put
Btz x. - i uade /el . jeIt (3. 1)
) ] - 7] Tk Tk Tk
kzK
Put
. s
S R -7t (3,2
(z.2Y)
J
We will suppos= trom now on *ha* 7' has q eclements. Denote
by 3 ‘he hyperplane in R? given by
} z. = L. 3.3
- J
jed!
The linear manifold # is ‘he image of § :n RP given by the
mapping
N
x = , X’ z : 3,4
Lo 3
j=J
e A [ ¥V [, -
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We note three cardinal properties ot Z . First.

This follows tfrom {3.2) and (3.4). Second,

[t suftices ‘o prove ‘that !-'i « v' = 0 tor the b} ot {3.1) and

any admissible ' . Bu‘ this ‘ollowi Hecause any admissible

. L . l . .
v' is by detinition normmal to the 5. tor i = J | which takes

care ot the tirs te-T n the ~ight s.de ot 13,1, As ‘o the

S s . 0

second it is by defim*ion n>rra' *5 the * tor j 2 J
]

hence norma! to BO . and hen-2 no-1ral *o 2a-h element

e, Ot the orthogonal bas's, The +h:-d p-ope -'y 19 that

This is so because a!l the _‘J', ot '3, 1) are orthogona! to 50

Now let c he the point on £ .:2s73s* to the origin.

£ has relative to c the tollowing tourth. obhvicus p-operty:

celx-c) = 0 torall x= £

Then



-y

e —

~———r

5
Now put
h=z-c/c2 . (3.9

It may be that h = 0, Then. since c c£ satisties (3,6,
2+ y'=0 for all admissible y' and there is no direction ot
cons*trained agcent at all,

Otherwise h £ 0. Then put

A= |h] . v=h/H (3.10)

Then (1. 1) is satisfied. As ‘o the constraints in (1,2) with j ¢ 50 ,
2 bj = 0 Dby *he detinition of J'o. and ’?J_ e 2 =0 Hy 3.7
As > the constraiats in (1,2) with j = J’l . we have

x'.'-h=xJo;-xJ-:/c2= l-1=0 S301D

by (3.5) and (3.8) . sn that, by the detinition ‘3,2) ,
Bleh=0. jed . (3.12)

But since the e, 10 (3.1 are orthogonal to both 3 and ¢ . (3.12)




6
implies that
. l
bJ.-h:O. jedJ . (3.13)
Hence all the conditions (1,2) are satistied, and y ¢ .
Now suppose y' is any admissible vector, Then c.,' = 0
by (3.6), so that
' 2 .
T eV ‘—‘(Z-C/C)'Y =}\'/.'{'. (3.14)
Hence v yields the unique maximum over =, and that max mum
is 1 . -

. . 0 . . .
The case in which J° i3 empty is somewha* simpler,

The suhtracted projections in (3.1} are now gone, ’:'i = A’:J. tor a'l

Jl

h

j = J, and the rest of the cons*ruction goes *h-ough as betore,

We now show how *o tind ¢, by an iter-ation with at

mos: Min (p,g-l; moves.




$ 4. Location ot the closest point ¢

e Y Y R e e s =

In what tollows we suppose that the number q ot

elements in 7' is at least 3, the cases q=1,2 being obviously

trivial, And we 233ume that p> 2.

The tirst basic element in our algorithm is steepest

descent in §. We recall what this is. For z € 3 put
P .
Qar = ) [ )z 12
izt je It

(4. 1)

This is *he distance-squared trom the point x =2 given by (3.4

to the origin in RP .  Q has the partials
2Qiz) j - (4 >
3z 2x s X S J 4.2
Form the direction numbers
- < i oo gt \
gz, = x.(x - %), j=71, (4.3
in which x is the ''barycenter"
ah A A




x . (4. 4)

If the gz, are all zero, x is already the closes’ point c .

J
Othe rwise the direction number vector gz indicates the direction
of steepest descent in §, and the distance-squared is in tact

strictly decreasing in that direction,

The second basic element in our algorithm is based

on a simple geometric observation, as follows. Suppose that

t is any 'ine lying in ¢ . Then the ooint x closest to the origin
y ying z

on 2 is also the point closest to c on that line.  Hence both the
origin and the clos2st point ¢ lie in the plane [ normalto?
at x . With this in mind, we will in our algorithm restrict

the suhsequent search to

The algorithm can be started anywhere. We stact it

. 0 . 0 - - 4]
at the point z 23 with zj =1l/q. j=zJ . The image ot z
ander (3.4) is x . If gz=0, x = c and we are through.

Otherwisa denote by gx the image of gz under (3.4 . Since

gz corresponds to a direction ot g‘rict descent, then also gx ¢ 0 ,
. . o N .

We normalize gx ‘o a unit direction vector gx . Now pais a

l -
line { through x in the direction gxo. Let x#! be the point

——— T AP 4 W W w M AW e % s mE e MNP MM mm . e e ew " ® "ES A cmwm - ———-—e - ™= -

“) The ¢ sign distinguishes *his point trom the "vertex"

xl deftined at (3,2) .,

" D T - - W W W W B BRI W w W WM pw A e mTT BN T S %W @ W W —— e == W .




-1
on I,l closest to the origin. Denote by the plane normal to
Ll fand *herz2fore :o gxo‘. at X'f[ . From the construction, x#l

has a naturil invecrse in g under (3.4) , We denote that inverga

v
.

by z

Now suppose that < n< Min “p,q -1} , and that we
have arrived at a point z" < 8 and corresponding point xt"c g
under (3, 4) . Suppos= that we have constructed directions
gxo. e gxn"' , each normal to all thosa pr=ceding it, and )
planes ,'20, ....3" ., normal r2spectively to the gxo, ce ,gx"l‘1 .

and all containing ¢ . Finally, we suppose that x#7 lies in

all those planes.

: . . . 1
Now -nastruct the direction aumbers 3z., jzJ .

Pl

from (4, 3) with x replaced by x4, [f these are all zary,

x#% = ¢ and we are finished. Otherwis2, gz correspoads *o
a direclion of strict decrease., Therstor2 its imaze gx inder
(3.4) is a'so nonzero, and corresponds ‘o a lirection of

strict decrease on 2 . Now we uneed to prove a technica! point.

Denote by S the space spanned by the vectors gxq, v gx:

Introduce into S a coordinate system, w.th origin 7 at 3?7 aad
. -1 n 0 -1
with axzs 27,,..,2Y oparalleltothe gx',.,.,6 g% . Now

let , bSe any unit vector in S with compoanents , ..., v, along

1

those axes. Consider the ray | issuing from x4? in the
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. . n
direction of y , with s measiring the distance from x¥ .
] n-1
Now *he vectors gx ,...,8X are orthogonal not only to
one another but also to the vectors x#%.: and ¢, whicha-e
themselves orthogona!, Hence the distance-squar~=d to the

origin from the point on | corresponding to s is

2 2

J

2

D° (8) = ¢ + (x#%-c)° + 82[1;12+... +L‘ZT

0

= (::‘an)2 + 92 . (4.5)

Hence the directional derivative of the distance -squarsd in the
direction y , at x* , is zers, This is the technical point

we needed.

Since the vector gx defined above is qonzero and

corrvesponds to a direction ot strict decrease for the distance-

sqiared, it does not lie in S, We now put

-1 -
(gx)' = gx - (gx.gxo)gxo - .. - fgxezx T gx! '

Since gx Aoes aot lie in S, (gx)' £ 0

We now normalize (gx)' to a unit direction vector

+1

gx" and pass a line L through x#" in the direction gx' .

-
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+1 .
Denote by x#nﬂ the point on ¢ n closest to the origin.

_n+l n+l (

Denote by the plane normal to £

+ '
at xﬂ‘nl . Let z"

and therefore to gx“)

+ ) n+l
! € § he the "natural inve rae'' of x# .

We sze that all the induction hypotheses made a‘ the

beginning of this general step with n > | are fulfilled. We
n+

agsumed that all the planes .'Il. ve e fIn contained ¢ . Now 31 L

. . . n .
does as we'l, by its construction. And, since x* layin

1 .
all the =',...,=" and rhe direction gx' of Cntl is orthogonal-
to all the normals gxo, s gx"l" to thos= planes, then also
+ . +
x4? ! lies in all the ,",I, ...,™ . Anditliesin " t by the
s tes +
definition of 7" L Sowe are ready to proceed to the nex*
step.
The dimension of £ cannot exceed q-! hecause there
2 0 q-1 ] .
we re only g-! vectors, X -X .....X -x » in the original
basis, And it cannot exseed p, Dbecaus2 Z is .m%edded in R?
Hence put
r = Min (D, g-l} . (4.7
The di mension of ¢ then does not exceed r .  Since w2 aid one

element to the orthonormal basis igxo. ... } oneach move, the
number 3f moves cannot exceed r , and the closest point c will

be raached exac:ly on the last move,. o

i







