FISSION TRACK ASSAY FOR FISSIONABLE NUCLIDES IN TISSUE
Final Comprehensive Summary Report for Phases I and II of the Fission Track Assay for Fissile Nuclides in Tissue

A. S. Paschoa  R. S. Burdett
J. M. Smith  F. H. Williams
F. W. Bruenger  C. L. Buckwell
University of Utah
College of Medicine
Salt Lake City, UT 84112

15 September 1985

Technical Report

CONTRACT No. DNA 001-82-C-0100

Approved for public release; distribution is unlimited.

THIS WORK WAS SPONSORED BY THE DEFENSE NUCLEAR AGENCY
UNDER RDT&E RMSS CODE B350084466 U99QMXMK00030 H2590D.

Prepared for
Director
DEFENSE NUCLEAR AGENCY
Washington, DC 20305-1000
DISTRIBUTION LIST UPDATE

This mailer is provided to enable DNA to maintain current distribution lists for reports. We would appreciate your providing the requested information.

☐ Add the individual listed to your distribution list.

☐ Delete the cited organization/individual

☐ Change of address.

NAME: ____________________________________________

ORGANIZATION: ______________________________________

<table>
<thead>
<tr>
<th>OLD ADDRESS</th>
<th>CURRENT ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TELEPHONE NUMBER: ( )

SUBJECT AREA(s) OF INTEREST:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DNA OR OTHER GOVERNMENT CONTRACT NUMBER: ______________________________________

CERTIFICATION OF NEED-TO-KNOW BY GOVERNMENT SPONSOR (if other than DNA):

SPONSORING ORGANIZATION: _____________________________________________________

CONTRACTING OFFICER OR REPRESENTATIVE: _______________________________________

SIGNATURE: _________________________________________________________________
FiSSION TRACK ASSAY FOR FISSILE NUCLIDES IN TISSUE
Final Comprehensive Summary Report for Phases I and II of the Fission Track Assay for Fissile

Paschoa, A.S.; Smith, J.M.; Bruenger, F.W.; Burdett, R.S.; Williams, F.H.; and Buckwell, C.L.

Abstract

Fundamental techniques for a Fission Track Assay for Fissile Nuclides in Tissue have been developed under contract No. DNA TR-85-313. All of the scientific goals have been reached within the time allotted by the funded project. Accomplishments can be summarized as follows:

- Pu and U have been chemically separated from each other and from bulk contaminants frequently encountered in ashed tissue specimens.

- The preparation of sample-detector assemblies has been standardized and conditions for neutron irradiation, subsequent track etching and quantification have been established.
11. TITLE (Continued)

Nuclides in Tissue

19. ABSTRACT (Continued)

c. Program controlled procedures have been developed to eliminate erroneous interpretations of fission track images and to guarantee the statistical validity of the track quantitation.

d. The background due to external contamination with uranium has been reduced to acceptable levels.

e. A survey of Pu-distributions in livers, kidneys, spleens and lungs and skeletons of experimental animals has been performed.

f. Reproducibility and accuracy of the assay have been tested on small beef liver samples tagged with 1.0 and 0.1 fCl $^{239}$Pu and on dry, $^{239}$Pu-containing liver powder obtained from the National Bureau of Standards.

The Pu distribution and average concentration of six livers of humans from Southern Utah and Northern Utah have been determined and the results were compared with those obtained from the same organs by $\beta$-spectrometric methods.

Presently, the lower limit of the $^{239}$Pu quantitation using a reported thermal neutron fluence of $5 \times 10^{17}$ n/cm$^2$ is approximately 1 fg or less than $10^{-16}$ Ci. Thus, Pu resulting from 1/10,000 of the maximum permissible whole body burden of $^{239}$Pu could be quantitated in a 100 mg bone specimen, assuming a uniform skeletal deposit of $^{239}$Pu.
CONVERSION TABLES

Conversion factors for U.S. Customary to metric (SI) units of measurement.

<table>
<thead>
<tr>
<th>Multiply</th>
<th>————→</th>
<th>by</th>
<th>————→</th>
<th>To get</th>
</tr>
</thead>
<tbody>
<tr>
<td>To get</td>
<td>————→</td>
<td>by</td>
<td>————→</td>
<td>Divide</td>
</tr>
<tr>
<td>barn</td>
<td></td>
<td></td>
<td></td>
<td>meter$^2$(m$^2$)</td>
</tr>
<tr>
<td>Curie</td>
<td>1.000,000 x E - 28</td>
<td></td>
<td></td>
<td>*giga becquerel (GBq)</td>
</tr>
<tr>
<td>micron</td>
<td>3.700,000 x E + 1</td>
<td></td>
<td></td>
<td>meter (m)</td>
</tr>
<tr>
<td></td>
<td>1.000,000 x E - 6</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*The becquerel (Bq) is the SI unit of radioactivity; 1 Bq = 1 event/sec.*
# TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Conversion Table</td>
<td>iii</td>
</tr>
<tr>
<td>Table of Contents</td>
<td>iv</td>
</tr>
<tr>
<td>List of Illustrations</td>
<td>v</td>
</tr>
<tr>
<td>List of Tables</td>
<td>vi</td>
</tr>
<tr>
<td>1 Introduction</td>
<td>1</td>
</tr>
<tr>
<td>2 Phase I: Development of Fission Track Assay</td>
<td>2</td>
</tr>
<tr>
<td>3 Phase II: Comparison of Fission Track Counting Techniques with Standard Radiochemical Assay (1 year)</td>
<td>20</td>
</tr>
<tr>
<td>4 Conclusions</td>
<td>27</td>
</tr>
<tr>
<td>5 List of References</td>
<td>28</td>
</tr>
<tr>
<td>Figure</td>
<td>Description</td>
</tr>
<tr>
<td>--------</td>
<td>-------------------------------------------------------</td>
</tr>
<tr>
<td>1</td>
<td>Flow diagram for sample analysis</td>
</tr>
<tr>
<td>2</td>
<td>Elution spectra for Pu and U.</td>
</tr>
<tr>
<td>3</td>
<td>Fission track image</td>
</tr>
<tr>
<td>4</td>
<td>Dependence of bulk etch rate on neutron fluence</td>
</tr>
<tr>
<td>5</td>
<td>Fission track enhancement</td>
</tr>
<tr>
<td>6</td>
<td>Geometric model of track generation probability</td>
</tr>
<tr>
<td>7</td>
<td>Plot of track density vs. Pu concentration</td>
</tr>
<tr>
<td>Table</td>
<td>Description</td>
</tr>
<tr>
<td>-------</td>
<td>-----------------------------------------------------------------------------</td>
</tr>
<tr>
<td>1</td>
<td>Recovery of Pu from resin</td>
</tr>
<tr>
<td>2</td>
<td>Relative concentrations of Pu in various organs</td>
</tr>
<tr>
<td>3</td>
<td>Fission track analysis of human liver specimens from Southern Utah</td>
</tr>
<tr>
<td>4</td>
<td>Fission track analysis of human liver specimens from Northern Utah</td>
</tr>
</tbody>
</table>
SECTION 1

INTRODUCTION

During the first phase of development of the "Fission Track Assay for Fissile Nuclides in Tissue", fundamental techniques had to be established that could later be used to quantitate the presence of fissile nuclides in small samples of biological tissue such as surgical and autopsy tissue blocks or biopsy specimens. During Phase II results obtained during the first phase had to be applied to actual small tissue samples and the distribution of Pu in certain target organs had to be established.

Since irradiation with thermal neutrons produces a high fission yield from $^{239}\text{Pu}$, $^{233}\text{U}$ and $^{235}\text{U}$, these two elements had to be separated prior to neutron bombardment. The main emphasis was directed toward quantitation of $^{239}\text{Pu}$. However, the possibility of determining $^{233}\text{U}$ and $^{235}\text{U}$ introduced into the specimen with natural uranium or from manmade sources was required as well.

Some groundwork for developing highly sensitive fission track assays for $^{239}\text{Pu}$ was done by Larsen and Oldham (La75), who later abandoned that project because of interference by natural uranium, a ubiquitous contaminant even in the higher grade reagents used. With the present project, work on that subject was resumed, and the basis for a workable fission track assay of $^{239}\text{Pu}$ and $^{235/233}\text{U}$ in tissue was provided.
SECTION 2

PHASE I: DEVELOPMENT OF THE FISSION TRACK ASSAY

GOAL

The goal was to develop a quantitative assay for fissile Pu that could be applied to the analysis of soft and hard tissue blocks. The desired lower limit of detection was less than 1 fCi. At the end of this Phase, the feasibility of the proposed assay had to be demonstrated and a protocol for routine analysis had to be available.

ACHIEVEMENT

In spite of many technical difficulties arising primarily from contamination of the applied reagents with uranium, that task has been successfully completed. Progress of theoretical and practical work on Phase I has been documented in a summary report (Sept. 1984).

In addition, work performed during Phase I as sponsored by DNA resulted in two publications in the open literature (Sm84, Wi83).

AREAS OF RESEARCH

The basic technique for determining femtogram quantities of fissile nuclides by fission track methods seems straightforward. It consists of the chemical separation of the respective fissile nuclides in massless form (i.e., no measurable self-absorption), their deposition on a suitable substrate and preparation of a substrate-detector assembly. The assembly is then irradiated with a known fluence of thermal neutrons, followed by chemical etching of the resulting tracks on the detector and their quantitation. In reality, this procedure is very difficult to execute.

Our efforts to provide a workable method proceeded simultaneously in four different, but mutually dependent, areas of research:

1. a chemical study during which the chemical separation and quantitative recovery of the fissile nuclides in essentially massless form was developed;
2. a technical study concerned with minimizing the background due to the ubiquitous presence of uranium in the reagents used and in the environment;
3. a technical study of the preparation of source-detector assemblies; and
4. a physical and engineering study of all aspects of fission track detection
   and quantitation.

ISOLATION OF NUCLIDES

Development of the isolation procedure was carried out initially under
normal laboratory conditions, applying techniques of professional cleanliness.
Nanogram quantities of the nuclides Pu and U which could be quantitated con-
veniently by scintillation counting were used in these early experiments. Two
methods were available for the separation of Pu and U from other mineral con-
taminants, liquid-liquid extraction and ion exchange chromatography. Of these
two, ion exchange chromatography is clearly superior for the quantitative
separation and recovery of femtogram quantities of the nuclides from bulk
contaminants and from each other. The method is based on the formation of
strong, negatively charged chlorocomplexes of Pu(IV) and U(VI) at high HCl
concentrations. Both elements are adsorbed on a strongly basic anion exchange
resin while other mineral contaminants pass through. After washing, the Pu
chlorocomplex is destroyed with HBr of density $\rho = 1.5$ and the Pu is eluted,
leaving U on the column. Uranium is then eluted with 0.1 N HCl. The column
effluent is reduced in volume to a few microliters and readied for transfer to
a suitable substrate. A flow chart of the separation is shown in Figure 1.

Optimum conditions with respect to resin type, column size, acid concen-
tration, washing time, flow rate and valence stabilization were determined
experimentally. The interference caused by the presence of high phosphate
concentrations—as introduced with skeletal tissue—was studied. Formation of
neutral or positively charged Pu-phosphate complexes which are not adsorbed by
the resin was avoided by increasing the HCl concentration during the sorption
process. The increase in $[H^+]$ converts phosphate ions into undissociated, and
therefore nonreactive, phosphoric acid. Leakage of $^{239}\text{Pu}$ or $^{233}\text{U}$ during the
sorption phase was 2% or less. At the level of $1 \times 10^{-9}$ Ci of applied
activity, the $^{239}\text{Pu}$ or $^{233}\text{U}$ recovery was $\geq 95\%$. The recovery at lower levels
of activity was explored using $^{237}\text{Pu}$, whose specific activity is approximately
2 $\times 10^5$ times greater than that of $^{239}\text{Pu}$. However, full use of the higher
specific activity could not be made because of contamination of this prepara-
tion with $^{239}\text{Pu}$. The recovery of Pu decreased successively when the number of
Pu atoms applied was less than $1 \times 10^{10}$, as demonstrated by the data in
Figure 1. Flow diagram for the preparation of samples, the chromatographic separation of Pu and U from bulk contaminants, the fission track development and data analysis.
Table 1. A search for a suitable isotopic tracer to monitor the recovery of $^{239}\text{Pu}$ at levels below the limit of detection through conventional chemical methods was unsuccessful. However, Zr(IV) showed a sorption-desorption behavior identical to that of Pu(IV) under the conditions applied. Therefore, $^{95}\text{Zr}$ has been used until now as a conditional tracer for Pu recovery. The $^{95}\text{Zr}$ obtained by the laboratory had been separated from fission products and tended to increase the background in the fission track analysis. A source of $^{88}\text{Zr}$ prepared from $^{88}\text{Sr}$ has been found, but no purchases have yet been made because of the high cost. Figure 2 shows the elution spectra of Pu and U and corresponding elution of the conditional tracer.

Figure 2. Elution spectra of Pu and U obtained under present experimental conditions of anion exchange chromatography. For comparison, the elution spectrum of $^{95}\text{Zr}$, which has been proposed as a conditional tracer for Pu, also is shown.
Table 1. Recovery of Pu from resin. Influence of number of Pu atoms.

<table>
<thead>
<tr>
<th>APPLIED</th>
<th>RECOVERY</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Uncapped Resin</td>
</tr>
<tr>
<td>$4 \times 10^{11}$ atoms</td>
<td>95%</td>
</tr>
<tr>
<td>$4 \times 10^{10}$ atoms</td>
<td>87%</td>
</tr>
<tr>
<td>$4 \times 10^{9}$ atoms</td>
<td>83%</td>
</tr>
<tr>
<td>$4 \times 10^{8}$ atoms</td>
<td>64%</td>
</tr>
</tbody>
</table>

The possible mechanisms leading to losses at very small quantities of $^{239}$Pu were investigated by extrapolating theoretically the data obtained experimentally at the level of approximately $1 \times 10^{-9}$ g of Pu to the level of $1 \times 10^{-15}$ g or lower. Mechanisms of the following reactions were studied.

A) Disproportionation reactions among Pu species.

Since only Pu(IV) forms a strong negatively-charged chlorocomplex that is adsorbed and retained by the resin, the three principal reactions among the various species of uncomplexed Pu and their corresponding rate equations have been studied:

1. Pu(III) + Pu(V) $\rightleftharpoons$ 2 Pu(IV)
2. Pu(III) + Pu(VI) $\rightleftharpoons$ Pu(IV) + Pu(V)
3. Pu(IV) + Pu(VI) $\rightleftharpoons$ 2 Pu(V)

An assessment of the time scale for this type of reaction can be obtained by considering pure Pu(IV) at $t = 0$.

It follows that the rate of disappearance of Pu(IV) is

$$\frac{d[IV]}{dt} = 2 \left[ -K_{-1}[IV]^2 + K_1[III][V] \right] - K_{-2}[IV][V] + K_2[III][VI] + K_{-3}[V]^2 - K_3[IV][VI]$$

(1)
In this equation, the Roman numerals stand for the Pu concentrations present in those valence states, and $K_i$, $K_{-i}$ ($i = 1$ to 3) are the respective rate constants for the forward and backward reactions. These rate constants have the following values.

\[
\begin{align*}
K_1 &= 4.4 \times 10^{-2} \ [H^+] \\
K_2 &= 2.7 \\
K_3 &= 1.2 \times 10^{-7} \ [H^+]^{-3}
\end{align*}
\]

\[
\begin{align*}
K_{-1} &= 3.0 \times 10^{-5} \ [H^+]^{-3} \\
K_{-2} &= 3.4 \\
K_{-3} &= 2.3 \times 10^{-3} \ [H^+]
\end{align*}
\]

For $[H^+] = 10$ M, this gives:

\[
\begin{align*}
K_1 &= 0.44 \\
K_2 &= 2.7 \\
K_3 &= 1.2 \times 10^{-2}
\end{align*}
\]

The time to reach the vicinity of the inflection point, where the decomposition of Pu(IV) is greatly accelerated, is obtained by approximating the first part of the complex reaction above with the second order reaction as follows:

\[
\begin{align*}
d[IV] = 2k_1 \ [IV] \\
\frac{d[IV]}{dt} &= -2k_1 \ [IV]^2
\end{align*}
\]

which yields

\[
t = \frac{[IV]_o - [IV]}{[IV][IV]_o} \cdot \frac{1}{2k_1}
\]

The conclusion of this investigation was that, due to the second order nature of the reactions among the Pu species, the half-life of Pu(IV) is proportional to the inverse of the concentration. For trace amounts on the order of $10^{-15}$ M (as expected in our experiments), the half-life is very long compared with the few hours duration of the experiment. Thus an appropriate holding oxidant added to the sample before application to the resin will provide the required initial conditions for essentially complete oxidation to Pu(IV). Two oxidants were considered, NaClO and Cl₂ (gas), both of which provided $\frac{Pu(III)}{Pu(IV)}$ ratios of the order of $10^{-4}$ to $10^{-5}$. 
at the concentration that was used. Of these two, Cl₂ (gas) was chosen because of the lower probability of uranium contamination. A more detailed treatment of A) was included as an appendix to our progress report for the period of 1 April 1983 to 30 June 1983 (Sm83).

B) Conditions leading to possible losses of Pu or U during the anion exchange separation.

1. Resin capacity and adsorption isotherms.

Trace amounts of ionic species are considered to bind to synthetic ion exchangers with linear binding isotherms, assuming binding to the average site in the resin. This linearity implies that the distribution coefficient for the anionic species A⁻ (such as the chlorocomplexes of Pu or U) remains constant regardless of the tracer load. However, our experiments, summarized in Table 1, have shown decreasing recoveries as the Pu load decreased below the level of 1 x 10¹⁰ atoms. The quoted assumption of linear binding isotherms has been made only for resin loads that are 3 to 5 orders of magnitude larger than applied in the present case. We assumed that there are some adsorption sites whose affinity for A⁻ is higher than average and that their number is insignificantly small under normal loading conditions, but becomes significant for the trace levels anticipated in our experiments. Since nothing is known about the nature of these postulated sites, we have to make the following assumptions:

a. The high affinity site has the same chemical properties as the average adsorption site, but the local concentration of adsorptive groups is much higher.

b. The relative order of affinities toward the individual average adsorption site for different ions is unchanged at the high affinity site.

Thus by pretreating the exchanger with an ionic species, i, known to have a distribution coefficient Dᵢ larger than Dₚᵤ or Dₚᵤ under elution conditions, one should cover all of these sites. With all of the high affinity sites blocked, linear isotherms should be observed at extremely low resin loads.
Accordingly, prior to sample loading, high affinity sites were capped with Cd**, excess Cd (bound to the average site) was eluted, and the previous recoveries of Pu were restored, as indicated by results presented in Table 1.

2. Influence of phosphates on adsorption of Pu and U.

During loading of actual samples at strongly elevated HCl concentrations (12.5 M), phosphates are primarily present as $H_3PO_4$ or $H_2PO_4^-$ with the more basic phosphates present at insignificant levels. At the level of $C_2$ present in the sample, one can assume that all of the Pu is present in the Pu(IV) valence state. Even under these assumptions, the number of different Pu complexes theoretically can be quite large. In view of the relatively large column capacity, the only mechanism for Pu-leakage should be the formation of uncharged or positively charged complexes. In principal, the fractions of such species can be calculated for a given set of conditions. Unfortunately, a satisfactory numerical analysis requires knowledge of the stability constants of complexes with higher coordination numbers and these are largely unknown. However, it can be shown that the fraction of positive and neutral Pu-species is independent of the initial concentration of Pu. Accordingly, experimental results obtained at $10^{-13}$ M concentration are also predicted at concentrations of $10^{-18}$ M. Since experimental data indicated that the Pu retention at high HCl concentration was good, it is implied that the negatively charged species predominate. Thus results obtained at "high" Pu concentrations will also hold at much lower Pu values, provided the HCl/phosphate ratio remains high.

Again, more detailed information was given in our progress report for the period of 1 April 1983 to 30 June 1983 (Sm83).

REDUCTION OF BACKGROUND

The buildup of natural uranium, which contains about 0.7% fissile $^{235}$U, will cause serious interference with the Pu-fission track analysis. Unlike $\alpha$-spectrometry, etched fission tracks provide no information on the parent nuclide. Uranium is ubiquitously distributed through the environment, and probably poses the most serious threat to the success of the project. For
actual sample analysis, the source of contamination can be divided into two groups:

a. Introduction of uranium with chemical reagents or by dissolution from laboratory ware, especially glass. This type of U-accumulation was reduced by using only very small quantities of reagent of highest purity and by using either quartz or special plastic laboratory ware. However, a number of chemical reagents were not available at the desired level of purity. In some cases, even the highest level of purity (ultra-pure) did not meet the extremely rigid requirements with respect to uranium contamination, especially some of the acids. In these cases, reagents were either synthesized under clean-room conditions or otherwise prepared from purified gaseous feedstocks that had a sufficiently low level of U-contamination. For example, hydrobromic acid was catalytically prepared from \( \text{H}_2 \) and \( \text{Br}_2 \), \( \text{Cl}_2 \)-gas was used as a holding oxidant, and \( \text{N}_2\text{O}_4 \) gas together with \( \text{O}_2 \) was applied in the oxidation of residual organic contaminants.

The quantity of resin used for the ion exchange separation was reduced from 250 mg dry resin to 125 mg; therefore, the amount of reagents could be reduced to about one half the original quantity. A secondary water purification system that uses source water of 15-17 megaohm resistivity prefiltered through a filter of 1 \( \mu \text{m} \) pore size has been added. The source water is passed again through activated charcoal, an additional ion-exchange cartridge and a final filter of 0.2 \( \mu \text{m} \) pore size. The final resistivity of this water is between 19.5 and 20.5 megaohm.

b. All developmental work, especially the work performed with \( ^{239}\text{Pu} \) or \( ^{233}\text{U} \) at levels of activity between \( 10^{-9} \) and \( 10^{-11} \) Ci had been done under conditions of normal laboratory practice. As work shifted to much lower levels of activity, established procedures were carried out in a clean-room. Contamination from airborne particles in the clean-room is minimized by maintaining positive pressure of air filtered through a HEPA-system (0.5 \( \mu \text{m} \) pore size, 99.5% efficiency) using a special, limited access room. Personnel working in this area are required to wear a complete set of special, dustfree clothing including shoe-covers, cap and face mask and non-powdered gloves. The clean-room is equipped with a fume hood used for chemical procedures and other work that requires sample manipulation. The fume hood also houses a small furnace with a quartz-lined chamber for
ashing of actual tissue samples. Final preparation steps of source-detector assemblies, such as volume reduction of column effluents and plating and drying of samples, are carried out in a secondary enclosure within the clean-room that--with respect to the room--is also under positive pressure of air filtered through a secondary HEPA-filter of 0.2 \( \mu \text{m} \) pore size. Incomplete data on the overall efficiency of the clean-room indicate that conditions for maintaining sufficiently low levels of background are adequate. However, this is a potential problem area which will require constant vigilance.

PREPARATION OF SOURCE-DETECTOR ASSEMBLIES

After column chromatography, Pu is contained in approximately 5 ml of concentrated HBr and U in the same volume of 0.1 N HCl. Deposition of the nuclides on suitable substrates requires evaporation of the acid and wet ashing of possible residues in strongly oxidizing media to remove traces of organic material. Oxidation previously had been carried out with a mixture of HNO\(_3\) and HClO\(_4\). This has now been replaced by low temperature ashing in a stream of filtered O\(_2\) and N\(_2\)O\(_4\) gas. Insoluble impurities would destroy the uniform distribution of fissile nuclides (and consequently of the fission tracks) on the detector, which would make counting of fission tracks difficult. In addition, these impurities cause flaking which interferes with the quantitative recovery.

Initially, two methods of deposition onto a support base were considered: electrodeposition on Pt-discs and manual transfer to polycarbonate or quartz slides. Electrodeposition from a dimethylsulfoxide-HCl medium onto polished Pt-discs was successful, but even the highest purity Pt available produced too high a U background, and neutron activation of the Pt through the \(^{194}\text{Pt} (n,\gamma)\), \(^{195}\text{Pt}\) and other reactions required long cooling times. The preferred method is to transfer the dissolved nuclide directly onto polycarbonate or quartz supports (slides). Uniform dispersion over a well-defined area can be achieved by slow evaporation of the droplets on support slides coated with an albumin, gelatin, or other liquid adsorbing layer. A developed fission track image of a section of such a droplet is shown in Figure 3.
FISSION TRACK DETECTION AND QUANTITATION

Irradiation of source-detector assemblies with thermal neutrons is carried out at the MIT Research Reactor. The reactor yields a high quality (high cadmium ratio) thermal neutron flux of $8 \times 10^{12}$ n/cm$^2$·sec. The thermal neutrons then induce fission in the fissile nuclides $^{233}$U, $^{235}$U, and $^{239}$Pu in the sample. Etching of the latent fission tracks for appropriate times with 6.25 N KOH at 70°C produces visible fission tracks which can be quantitated. The etching also produces fission tracks derived from contamination with natural uranium and shallow pitmarks induced from (n, a) and neutron knock-on

Figure 3. The figure shows part of the perimeter of the fission track image of a droplet of Pu as obtained after column chromatography.
reactions. If low concentrations of fissile nuclides in the sample require high neutron fluences, the increasing number of fission tracks from natural uranium and the surface pitmarks from \((n, \alpha)\) and neutron knock-on produce a background that could strongly interfere with the quantitation of \(^{239}\text{Pu}\) originated fissions in the sample. Also, impingement of neutrons damages the detector surface such that etching removes a certain thickness, and as a result, the track detection efficiency is diminished. This removal is proportional to the fluence, and its magnitude is expressed by the Bulk-Etch Rate in units of \(\mu\text{m/min versus fluence}\). Figure 4 shows the experimentally determined Bulk Etch Rate for the range of \(10^{15}\) to \(10^{18} \text{n/cm}^2\). Since the Bulk Etch Rate increases with increasing fluence, the etching time is decreased from 12 minutes at \(1 \times 10^{16} \text{n/cm}^2\) to 6 minutes at \(5 \times 10^{17} \text{n/cm}^2\).

Interference due to damage of the surface by \(\alpha\)-impingement was minimized by contrast enhancement of the fission tracks with a dye. Simultaneously, the influence of the shallow surface damage was reduced considerably by wetting and filling the pitmarks with an agent having a refractive index close to that of the polycarbonate detector during viewing. The effect of this procedure on fission track images generated at increasing fluences is shown in Figure 5.

Most experiments were limited to neutron fluences of up to \(10^{17} \text{n/cm}^2\) but fluences of \(5 \times 10^{17} \text{n/cm}^2\) which require 17.5 hours of irradiation time are possible. Higher fluences can be justified only in exceptional cases because of cost and background interference.

Theoretical Aspects and Practical Studies of Track Detection

The following subjects were studied regarding track detection and quantitation.

1. Review of theoretical aspects of fission track detection.

Since, due to the conservation of momentum two fragments per fission are emitted in opposite directions, one fragment per fission produced from a source in which all of the fissile atoms are at the interface between the source and the detector will produce a detectable track. Such ideal conditions are approximated in electrodeposited sources of low activity. However, for reasons given earlier, electrodeposition from actual column effluents was not possible. Actual deposits of fissile atoms are
Figure 4. Dependence of the Bulk Etch Rate on neutron fluence. Bulk Etch Rate is a measure of detector matrix destroyed during neutron irradiation and removed from the detector surface during the etching procedure. The Etch Rate is expressed in μm removed/min of etching time.

approximately uniformly distributed throughout the source matrix, so the probability \( p(x) \) that a fission fragment of range \( R \) originating at a distance \( x \) below the surface will cross the plane interface between the source matrix and the detector can be expressed by

\[
p(\theta, x) = \frac{2 \Omega(\theta, x)}{4\pi}
\]

where \( \Omega(\theta, x) \) is the solid angle associated with the fission fragments emitted from a point at a distance \( x \) from the interface, which enter the detector at angles equal to or less than \( \theta \), as illustrated by Figure 6.
TRACK ENHANCEMENT AND BACKGROUND SUPPRESSION

DETECTORS TREATED (n,a) DAMAGE MINIMIZED

DETECTORS NOT TREATED (n,a) DAMAGE INCREASING WITH FLUENCE

FLUENCE
3×10^{15} n

FLUENCE
2×10^{16} n

FLUENCE
1×10^{17} n

Figure 5. The figure shows the patterns of increasing background features as the neutron fluence is elevated. The reduction of the background and contrast enhancement of the etched fission tracks are clearly visible.

Assuming isotropic emission of fission fragments the angle $\theta_o$ corresponds to the maximum solid angle $\Omega(\theta_o, x)$ that geometrically limits the number of fission fragments entering the detector.

Thus, integrating $p(\theta, x)$ from 0 to $\theta_o$,

$$ p(x) = \frac{\int_{\Omega} \int_{\theta=0}^{\theta_o} R^2 \sin \theta \, d\theta \, d\phi}{2\pi R^2} $$
\[ \cos \theta_0 = \frac{x}{R} \]  \hspace{1cm} (5)

where, \( \cos \theta_0 = \frac{x}{R} \) as shown in Figure 6.

The number of theoretically possible tracks \( N_T \) registered per square micron in a detector with 100% efficiency can then be expressed as

\[ N_T = N_f \int_0^R p(x) \, dx \]

\[ = \frac{N_f R}{2} \]  \hspace{1cm} (6)

where \( N_f \) is the number of fissions induced per cubic micron originating from any point \( x < R \).

Figure 6. Geometric model used to determine the probability that a track of range \( R \) originating at a distance \( x < R \) below the detector surface will reach the detector.
The observed track density $TD$ is related to the theoretical $N_f$ by the equation

$$TD = \varepsilon \frac{N_f R}{2}$$

(7)

where $\varepsilon$ is the detection efficiency.

Substituting $N_f$ given by equation (6) into equation (7), the latter becomes

$$TD = \varepsilon \frac{\sigma_f \phi}{2}$$

(8)

The quantity $N_f$ is related to the number of fissile atoms per unit volume $n$ by the expression

$$N_f = n \sigma_f \phi$$

(9)

where $\sigma_f$ is the fission cross-section of the fissile nuclide for thermal neutrons, and $\phi$ is the thermal neutron fluence which is given by

$$\phi = \int_0^t \zeta(t) dt$$

(10)

where $\zeta(t)$ is the time dependent thermal neutron flux at a fixed position in the reactor.

Substituting equation (9) into equation (8), the observed track density can be conveniently expressed as

$$TD = \varepsilon \frac{\sigma_f \phi R}{2} n = kn$$

(11)

Thus, the observed track density is directly proportional to the number of fissile atoms per unit volume of the sample matrix. The proportionality factor $k$ which appears in equation (8) can easily be determined by using known quantities of the nuclide in source matrices prepared under the same conditions as the actual sample and irradiated with the same neutron fluence.

2. Human visual track quantitation.

For low track densities, quantitation can be performed by visually counting the tracks per unit area using a microscope. A sufficiently large number of fields have to be counted to obtain statistically valid
data to compensate for nonuniform track density distribution, and the total area must be known. Similarly, fields of known area can be photographed, and the number of tracks and average track density evaluated from the prints made from these photographs.

3. Instrumental detection.

Human visual track counting is labor intensive. The laboratory is equipped with a Quantimet (QTM) 720 Image Analyzer (Cambridge-Imanco, Monsey, N.Y.), which can be used for automatic detection and counting of etched fission tracks.

The system includes an automatic scanning stage and is linked to a PDP 11/03 minicomputer (Digital Equipment Corp.) by way of high speed interfaces, permitting feature analysis and a statistical analysis of the data. Details regarding the automatic fission track counting techniques have been described in our quarterly report for the period of 1 October 1982 - 31 December 1982 (Sm83).


It is important to select neutron fluences that produce a range of track densities which increases proportionally with the concentration of the nuclide in the source matrix. The range of linearity was determined by two methods:

a. From detectors exposed to a mixture of fission fragments and \( ^{252}\)Cf. No neutron irradiation was used.

b. From detectors prepared by \( n \) irradiation of a series of 12 plastic wires containing \( ^{239} \)Pu concentrations ranging from \( 1 \times 10^{14} \) to \( 5 \times 10^{11} \) atoms of \( ^{239} \)Pu/g of substrate at neutron fluences that ranged from \( 5 \times 10^{15} \) to \( 1 \times 10^{17} \) n/cm\(^2\). Figure 7 shows the result of one of these experiments, corresponding to a fluence of \( 5 \times 10^{15} \) n/cm\(^2\). This demonstrates a linear response of the QTM-720 at average track densities up to \( 3 \times 10^{3} \) tracks/mm\(^2\). A more convenient track density for the QTM was in the range from 100 to 700 tracks/mm\(^2\).
Figure 7. The average track density (tracks/mm$^2$) as determined by instrumental track counting with the QTM is plotted against the Pu concentration of the source matrix. Linearity of track detection efficiency exists over a concentration range of at least one order of magnitude. Data obtained at a fluence of $5 \times 10^{15}$ n/cm$^2$. 

\[ a = 0.23 \pm 0.03 \] 
\[ b = 0.45 \pm 0.02 \] 
\[ n = 1 \] 
\[ r = 0.953 \]
SECTION 3

PHASE II: COMPARISON OF FISSION TRACK COUNTING TECHNIQUES WITH STANDARD RADIOCHEMICAL ASSAY (1 YEAR)

GOAL

The laboratory began work on Phase II of the Fission Track Project on 1 July 1984. The goal of Phase II is: a) to adapt the methods and procedures devised in Phase I to the analysis of actual tissue specimens; b) to address the potential problem of heterogeneity of the Pu-distribution in those organs that are considered main targets for future analysis, i.e., liver, lung, bone and possibly kidney and spleen.

ACHIEVEMENT. Present Status

Our experimental efforts during this phase have been directed toward three areas: a) the transition from single experiments to routine techniques with well established but rigidly controlled protocols; b) an extensive survey of the distribution of Pu and U in those organs for which future analysis of surgical or biopsy tissue blocks is anticipated; and c) the processing of actual tissue specimens that are likely to contain Pu and/or U embedded in an inert tissue matrix which is neither well defined nor uniform.

a. Adaptation to routine procedures requires that the sample can be processed and analyzed for Pu and U with a reasonable degree of reproducibility and accuracy through rigid quality control and dust-free working conditions. These requirements were easily met with respect to chemical separation, preparation or procurement of ultra-clean reagents and working conditions which avoid contamination of reagents and specimen with environmental uranium. Initial difficulties in maintaining uniformity in shape, thickness and homogeneity of the source-substrate assemblies that must be irradiated have been overcome. The fraction of unreadable fission track images is now less than 2% of the processed sources. Thus, the method presently applied is suitable for routine operations.

b. Within the body, Pu and U are transported via the bloodstream and distributed in certain target organs in well established proportions. It is accepted that the final deposition after a secondary distribution is independent of the initial mode of entry into the body, be it by inhalation, puncture wound or intestinal absorption or by direct introduction
into the bloodstream by injection. Only the rates at which deposition in the target organ occurs are different, varying with the route of exposure and the chemical form and inert matrix of the contaminant. However, the distribution within the final target organ may not be uniform, although it is our experience that the uniformity in the distribution increases as the level of radioactivity decreases. To investigate the uniformity of the final distribution of Pu within the target organs projected for future fission track analysis, liver, kidney, spleen, lung and bone specimens obtained from experiments with canines were used. Small random samples were taken as follows: 5 or 6 specimens from each liver, 4 from each kidney pair, spleen and lung. These tissues were analyzed radiochemically; the results were expressed as the concentration of the nuclide found in each random sample divided by the average concentration of all samples taken from the same animal. Since the distribution may vary with the age at time of exposure and with the time after exposure, the survey was performed on animals with a human age equivalent of 18 to 23 years at time of exposure and of 45 years or older. Also, the time after exposure was varied from times less than 1 year to more than 10 years. A summary of these data is presented in Table 2. Included in the table are the number of organs analyzed, the age in months of the experimental animals at the time of exposure (for which the human age equivalents are given above), the time from exposure to death and the range of concentration ratios of individual organ samples \( C_i \) to the mean concentration in the respective organ \( \bar{C} \). A fractional standard deviation for all \( C_i/\bar{C} \) values of each group was calculated.

With this survey, a sufficiently large number of specimens can be used to estimate statistically the expected degree of variation within individual organs. The weight of individual tissue specimens analyzed ranged from about 1g to 2.9g, somewhat larger than samples expected from surgical or autopsy tissue blocks for future fission track analysis. However, variations associated with a future scaling down to one fifth are not expected to be vastly different. This view is corroborated by the results shown later in this report.
Table 2. Relative Concentration of Pu in Various Organs. (Concentration in individual samples/average concentration in whole organ).

<table>
<thead>
<tr>
<th>Organ</th>
<th>Number of Organs Analyzed</th>
<th>Average Age at Exposure (months)</th>
<th>Average Time from Exposure to Death (months)</th>
<th>Range of ( \frac{Ci}{C} )</th>
<th>Fractional Standard Deviation for all ( \frac{Ci}{C} ) Data</th>
</tr>
</thead>
<tbody>
<tr>
<td>Liver</td>
<td>6</td>
<td>18*</td>
<td>( 4 \pm 4.6 ) (7-363 d)</td>
<td>0.88</td>
<td>1.26</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>18</td>
<td>( 114 \pm 22 )</td>
<td>0.42</td>
<td>1.38</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>60**</td>
<td>( 46 \pm 9.2 )</td>
<td>0.76</td>
<td>1.38</td>
</tr>
<tr>
<td>Kidney</td>
<td>6</td>
<td>18</td>
<td>( 4 \pm 4.6 ) (7-363 d)</td>
<td>0.68</td>
<td>1.21</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>18</td>
<td>( 134 \pm 22 )</td>
<td>0.28</td>
<td>1.52</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>60</td>
<td>( 46 \pm 9.2 )</td>
<td>0.34</td>
<td>1.22</td>
</tr>
<tr>
<td>Spleen</td>
<td>6</td>
<td>18</td>
<td>( 4 \pm 4.6 ) (7-363 d)</td>
<td>0.92</td>
<td>1.07</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>18</td>
<td>( 134 \pm 20 )</td>
<td>0.39</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>13</td>
<td>60</td>
<td>( 48 \pm 17 )</td>
<td>0.72</td>
<td>1.45</td>
</tr>
<tr>
<td>Lung</td>
<td>6</td>
<td>18</td>
<td>( 4 \pm 4.6 ) (7-363 d)</td>
<td>0.68</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>9</td>
<td>18</td>
<td>( 129 \pm 18 )</td>
<td>0.38</td>
<td>1.86</td>
</tr>
<tr>
<td></td>
<td>15</td>
<td>60</td>
<td>( 46 \pm 9.2 )</td>
<td>0.68</td>
<td>1.19</td>
</tr>
</tbody>
</table>

* Average age of an 18 month old beagle is equivalent to a human age of 18-23 years

** Average age of a sixty month old beagle is equivalent to a human age of 45 years or more.

A similar survey was performed with 30 Pu-contaminated skeletons. Each skeletal member was analyzed and the relative concentration of Pu in each bone (i.e., fractional activity of Pu in each bone divided by its respective fractional skeletal mass) was calculated. The relative concentration within the skeleton varied by a factor of about four, but the difference among the same bones was less than 0.2. Bones most likely to be considered for tissue block fission track analysis, such as lumbar vertebrae, humeri, femora, ulnae and pelves, were further sectioned into 3
(for the lumbar) to 8 (for the humerus and femur) sections and analyzed radiochemically. Again, the relative concentrations within each set of sections differed by a factor of 4.5, but the difference among corresponding sections was less than 2 in bones with a high biological turnover rate and about 0.3 for biologically less active bones such as the ulna. For the iliac crest (pelvis), proposed in the original contract as the most likely candidate for surgical biopsy, the difference was 0.35. Thus, as long as specific bone sections are analyzed by the fission track method, presently estimated variations due to local differences in the Pu(U) concentration are well within acceptable limits.

This initial survey indicates that distributional differences in the nuclide concentrations are probably not an impediment to future application of the fission track assay. However, a confirmation of these estimates by the new and much more sensitive fission track method is essential and is provided below.

c. Appropriate steps have been taken to conduct an actual comparison of fission track determined concentrations of Pu in small tissue sections with those determined by analysis of large tissue specimens.

Three series of experiments have been conducted to test the reproducibility and accuracy of the assay with actual tissue samples. In the first series, 12 pieces of beef liver (each with about 1 g of tissue) were taken. Four of these were tagged with 0.1 fCi and four with 1 fCi of $^{239}$Pu. The specimens were dried, ashed and analyzed by the fission track method. Fission tracks obtained with the untagged liver sections were subtracted as background from the tagged specimen. The recovery for 0.1 fCi sections was 86.2% ± 2.8%; that for the 1 fCi samples was 88.9% ± 2.0% with an overall recovery of 87.5% ± 2.6%. In addition, six samples of Pu-tagged dry liver powder having a nominal activity of 0.03 pCi $^{239}$Pu/g were analyzed, two by the conventional $\alpha$-spectrometric method and four by the fission track assay. The average activity determined by $\alpha$-spectrometry was 0.032 pCi/g. Using the NBS value of 0.03 pCi/g as the actual concentration, the recovery by the fission track method was 87.2% ± 3.3%. These results show that accurate Pu-determinations can be made with the fission track method, provided the level of exogenous uranium contamination is controlled by the use of ultrapure reagents and a clean environment.
Since an earlier attempt to analyze small aliquots of HNO$_3$-ashed large tissue digests that had been prepared under normal laboratory conditions had failed because of the high content of uranium (see Progress Report for the period of 1 July - 31 Sept. 1984), random samples of gram quantities of tissue have been taken before wet ashing from tissues received by our environmental laboratory. The original store consisted of 212 such specimens, with 18 bone sections, 93 liver, 51 lung, 46 kidney, and 4 heart specimens for this analysis. A number of these tissues have been analyzed by the fission track assay and compared with the data obtained by $\alpha$-spectrometry on large quantities of tissue.

The Pu-content of six livers (25 samples total) was determined. The respective results are shown in Tables 3 and 4. Variations in Pu concentration of individual samples were no larger than those observed in the preparations shown in Table 2. A comparison with the Pu data obtained on the same tissue by $\alpha$-spectrometric analysis of the whole tissue (several hundred grams/organ) showed good agreement between the two methods.

An abstract of a scientific paper on this subject was submitted to DNA and cleared for presentation at the International Conference on Nuclear Analytical Technology in Karlsruhe, Germany (Br85). The presentation was given to a large audience. From ensuing discussions it can be concluded that there is great interest in application and further development of this method.
Table 3. Fission track analysis of human liver specimens (Southern Utah – Fluence $1 \times 10^{17}$ neutrons/cm²).

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Weight (g)</th>
<th>Gross Tracks</th>
<th>Net Tracks (sample)</th>
<th>$fCi Pu$ (sample) (g)</th>
<th>$fCi Pu$ (g)</th>
<th>$^{239+240}_{\text{Pu}}$ (fCi/g) *</th>
</tr>
</thead>
<tbody>
<tr>
<td>83 S5</td>
<td>a</td>
<td>1.24</td>
<td>1064</td>
<td>744</td>
<td>0.632</td>
<td>0.51</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>1.01</td>
<td>942</td>
<td>622</td>
<td>0.528</td>
<td>0.52</td>
</tr>
<tr>
<td></td>
<td>c</td>
<td>1.03</td>
<td>817</td>
<td>497</td>
<td>0.422</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>0.82</td>
<td>736</td>
<td>416</td>
<td>0.333</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>0.46</strong></td>
<td><strong>0.47</strong></td>
</tr>
<tr>
<td>83 S6</td>
<td>a</td>
<td>1.32</td>
<td>1816</td>
<td>1496</td>
<td>1.27</td>
<td>0.98</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>0.80</td>
<td>1333</td>
<td>1013</td>
<td>0.86</td>
<td>1.07</td>
</tr>
<tr>
<td></td>
<td>c</td>
<td>1.02</td>
<td>1439</td>
<td>1119</td>
<td>0.95</td>
<td>0.93</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>0.88</td>
<td>1427</td>
<td>1107</td>
<td>0.83</td>
<td>0.94</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>0.98</strong></td>
<td>1.20</td>
</tr>
<tr>
<td>83 S7</td>
<td>a</td>
<td>0.91</td>
<td>779</td>
<td>459</td>
<td>0.39</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>b</td>
<td>1.27</td>
<td>862</td>
<td>542</td>
<td>0.46</td>
<td>0.36</td>
</tr>
<tr>
<td></td>
<td>c</td>
<td>1.07</td>
<td>885</td>
<td>565</td>
<td>0.48</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td>d</td>
<td>0.89</td>
<td>744</td>
<td>424</td>
<td>0.36</td>
<td>0.41</td>
</tr>
<tr>
<td></td>
<td>e</td>
<td>0.94</td>
<td>838</td>
<td>518</td>
<td>0.44</td>
<td>0.47</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><strong>0.42</strong></td>
<td><strong>0.38</strong></td>
</tr>
<tr>
<td>Std 1 fCi</td>
<td>a</td>
<td>1164</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(3100 fission)</td>
<td>b</td>
<td>1191</td>
<td><strong>= 38% efficiency</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c</td>
<td>1179</td>
<td></td>
<td></td>
<td><strong>1178</strong></td>
<td></td>
</tr>
</tbody>
</table>

**HKG Determination**

1 HKG each with 2 sample columns except for last (83 S7 c,d,e) which had 3 sample columns. HKG = 5 ml HBr run through column and treated like actual sample.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>(a+b)</th>
<th>(c+d)</th>
<th>(a+b)</th>
<th>(c+d)</th>
<th>(a+b)</th>
<th>(c+d+e)</th>
<th>$\bar{X}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>83 S5</td>
<td>294</td>
<td>331</td>
<td>327</td>
<td>302</td>
<td>318</td>
<td>346</td>
<td><strong>320</strong></td>
</tr>
</tbody>
</table>

*239+240Pu in whole organ as determined by \(\alpha\)-spectrometry.
Table 4. Fission track analysis of human liver specimens (Northern Utah - Fluence $5 \times 10^{17}$ neutrons/cm$^2$).

<table>
<thead>
<tr>
<th>Sample</th>
<th>Weight (g)</th>
<th>Gross Tracks</th>
<th>Net Tracks (sample)</th>
<th>fCi Pu (g)</th>
<th>fCi Pu (sample)</th>
<th>239+240Pu (fCi/g) *</th>
<th>( \bar{X} )</th>
</tr>
</thead>
<tbody>
<tr>
<td>83 N25</td>
<td>a 1.36</td>
<td>7319</td>
<td>5845</td>
<td>1.07</td>
<td>0.79</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b 0.94</td>
<td>6127</td>
<td>4653</td>
<td>0.86</td>
<td>0.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c 1.20</td>
<td>6500</td>
<td>5026</td>
<td>0.92</td>
<td>0.77</td>
<td>0.82</td>
<td>0.85</td>
</tr>
<tr>
<td>83 N22</td>
<td>a 1.17</td>
<td>3192</td>
<td>1718</td>
<td>0.32</td>
<td>0.27</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b 1.21</td>
<td>2054</td>
<td>1580</td>
<td>0.29</td>
<td>0.24</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c 0.91</td>
<td>3009</td>
<td>1535</td>
<td>0.28</td>
<td>0.31</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>d 0.95</td>
<td>2663</td>
<td>1189</td>
<td>0.22</td>
<td>0.23</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>e 1.06</td>
<td>3146</td>
<td>1672</td>
<td>0.31</td>
<td>0.39</td>
<td>0.27</td>
<td>0.25</td>
</tr>
<tr>
<td>83 N23</td>
<td>a 0.84</td>
<td>5312</td>
<td>3838</td>
<td>0.76</td>
<td>0.84</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b 0.92</td>
<td>6529</td>
<td>5055</td>
<td>0.93</td>
<td>1.01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c 0.97</td>
<td>6376</td>
<td>4802</td>
<td>0.88</td>
<td>0.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>d 1.13</td>
<td>7252</td>
<td>5778</td>
<td>1.06</td>
<td>0.94</td>
<td>0.92</td>
<td>0.96</td>
</tr>
<tr>
<td>Std 1 fCi</td>
<td>a</td>
<td>5502</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>b 5496</td>
<td>5440 average = 35.1% efficiency</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>c 5321</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

**HKG Determinations**

One HKG each with the following groups of columns.

<table>
<thead>
<tr>
<th>83 N22</th>
<th>(a+b)</th>
<th>1486</th>
<th>1496</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(c+d+e)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>83 N23</td>
<td>(a+b)</td>
<td>1464</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(c+d)</td>
<td>1456</td>
<td></td>
</tr>
<tr>
<td>83 N25</td>
<td>(a+b+c)</td>
<td>1469</td>
<td></td>
</tr>
</tbody>
</table>

\( \bar{X} = \frac{1470}{3} \)

*239+240Pu as determined by \( \alpha \)-spectrometry.
SECTION 4

CONCLUSIONS

The basic problems associated with the development of the Fission Track Assay project have been solved. A workable procedure has been developed and the feasibility of the method has been demonstrated. However, constant vigilance with respect to maintaining acceptable background levels is in order. Future work will show if the method can be applied to the routine analysis of actual tissue specimens.

Based on the success of the previous two years, the principal investigator and his coworkers feel confident that the practical applications of the newly developed assay as proposed under the mission-oriented Phase III will be equally successful, and will help its funding agency fulfill its obligation to find solutions to nuclear fallout and exposure problems for both the military and civilian sectors.
SECTION 5

LIST OF REFERENCES


# DISTRIBUTION LIST

## DEPARTMENT OF DEFENSE

**ARmed Forces Radiobiology Rsch Inst**  
**ATTN:** DIRECTOR

**ASST Secy of Defense Public Affairs**  
**ATTN:** PAO

**Assistant to the Secretary of Defense**  
**ATTN:** EXECUTIVE ASSISTANT

**Defense Intelligence Agency**  
**ATTN:** RTS-2B

**Defense Nuclear Agency**  
5 CYS  
**ATTN:** GC  
**ATTN:** PAO  
**ATTN:** STBE  
**ATTN:** STRP  
25 CYS  
**ATTN:** STTI-CA

**Defense Technical Information Center**  
12 CYS  
**ATTN:** DD

**Field Command DNA Det 2**  
**ATTN:** GC

**Field Command Defense Nuclear Agency**  
**ATTN:** FCTXE

**Interservice Nuclear Weapons School**  
**ATTN:** TTV 3416TH TTSO

## DEPARTMENT OF THE NAVY

**James Carson Breckinridge Lib**  
**ATTN:** LIBRARY DIV

**Marine Corps History & Museums**  
2 CYS  
**ATTN:** CODE HDH-2

**Merchant Marine Academy**  
**ATTN:** DIR OF LIBRARIES

**Naval Aviation History**  
**ATTN:** LIBRARY

**Naval Electronics Engrg Actv, Pacific**  
**ATTN:** CODE 250 D OBRYHIM

**Naval Historical Center**  
**ATTN:** OPERATIONAL ARCHIVES BR

**Naval Hospital Corps School**  
**ATTN:** LIBRARY

**Naval Medical Command**  
**ATTN:** ASST FOR MED SURGERY

**Naval OceanoGraphic Office**  
**ATTN:** CODE 025 HISTORIAN

**Naval School**  
**ATTN:** XXXXX

**Naval Surface Weapons Center**  
**ATTN:** LIBRARY

**Naval Weapons Center**  
**ATTN:** CODE 343 FKA6A2 TECH SVCS

**Naval Dept Library**  
**ATTN:** XXXXX

**Office of the Judge Adv Gen**  
**ATTN:** CODE 64.3

**U S Merchant Marine Academy**  
**ATTN:** XXXXX

**US Naval Air Station Lib**  
**ATTN:** LIBRARY
<table>
<thead>
<tr>
<th>OTHER GOVERNMENT (CONTINUED)</th>
<th>UTAH, UNIVERSITY OF</th>
</tr>
</thead>
<tbody>
<tr>
<td>VETERANS ADMINISTRATION-RO</td>
<td>ATTN: A S PASCHOA</td>
</tr>
<tr>
<td>ATTN: DIRECTOR</td>
<td>ATTN: C L BUCKWELL</td>
</tr>
<tr>
<td></td>
<td>ATTN: F H WILLIAMS</td>
</tr>
<tr>
<td></td>
<td>ATTN: F W BRUENGER</td>
</tr>
<tr>
<td></td>
<td>ATTN: H FAIN</td>
</tr>
<tr>
<td></td>
<td>ATTN: J M SMITH</td>
</tr>
<tr>
<td></td>
<td>ATTN: R S BURDETT</td>
</tr>
<tr>
<td></td>
<td>DIRECTOR ATTN:</td>
</tr>
<tr>
<td></td>
<td>F H WILLIAMS</td>
</tr>
<tr>
<td></td>
<td>ATTN: F W BRUENGER</td>
</tr>
<tr>
<td></td>
<td>ATTN: J M SMITH</td>
</tr>
<tr>
<td></td>
<td>ATTN: R S BURDETT</td>
</tr>
<tr>
<td></td>
<td>DIRECTOR ATTN:</td>
</tr>
<tr>
<td></td>
<td>F H WILLIAMS</td>
</tr>
<tr>
<td></td>
<td>ATTN: F W BRUENGER</td>
</tr>
<tr>
<td></td>
<td>ATTN: J M SMITH</td>
</tr>
<tr>
<td></td>
<td>ATTN: R S BURDETT</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIRECTORY OF OTHER</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADAMS STATE COLLEGE</td>
</tr>
<tr>
<td>ATTN: GOVT PUB LIB</td>
</tr>
<tr>
<td>AKRON PUBLIC LIBRARY</td>
</tr>
<tr>
<td>ATTN: GOVT PUB LIB</td>
</tr>
<tr>
<td>ALABAMA, UNIVERSITY OF</td>
</tr>
<tr>
<td>ATTN: REF DEPT/DOCS</td>
</tr>
<tr>
<td>ALASKA, UNIVERSITY OF</td>
</tr>
<tr>
<td>ATTN: DIRECTOR OF LIBRARIES</td>
</tr>
<tr>
<td>ALASKA, UNIVERSITY OF</td>
</tr>
<tr>
<td>ATTN: GOVT PUB LIBRARIAN</td>
</tr>
<tr>
<td>ALBANY PUBLIC LIBRARY</td>
</tr>
<tr>
<td>ATTN: LIBRARIAN</td>
</tr>
<tr>
<td>ALEXANDER CITY STATE JR COLLEGE</td>
</tr>
<tr>
<td>ATTN: LIBRARIAN</td>
</tr>
<tr>
<td>ALLEGHENY COLLEGE</td>
</tr>
<tr>
<td>ATTN: GOVT DOC DEPT</td>
</tr>
<tr>
<td>ALLEN COUNTY PUBLIC LIBRARY</td>
</tr>
<tr>
<td>ATTN: LIBRARIAN</td>
</tr>
<tr>
<td>ALTOONA AREA PUBLIC LIBRARY</td>
</tr>
<tr>
<td>ATTN: LIBRARIAN</td>
</tr>
<tr>
<td>ANAHEIM PUBLIC LIBRARY</td>
</tr>
<tr>
<td>ATTN: LIBRARIAN</td>
</tr>
<tr>
<td>ANDREWS LIBRARY</td>
</tr>
<tr>
<td>ATTN: GOVERNMENT DOCUMENTS</td>
</tr>
<tr>
<td>ANGELO STATE UNIVERSITY LIBRARY</td>
</tr>
<tr>
<td>ATTN: LIBRARIAN</td>
</tr>
<tr>
<td>ANGELO IACOBONI PUB LIB</td>
</tr>
<tr>
<td>ATTN: LIBRARIAN</td>
</tr>
<tr>
<td>ANOKA COUNTY LIBRARY</td>
</tr>
<tr>
<td>ATTN: LIBRARIAN</td>
</tr>
<tr>
<td>APPALACHIAN STATE UNIVERSITY</td>
</tr>
<tr>
<td>ATTN: LIBRARY DOCUMENTS</td>
</tr>
<tr>
<td>ARIZONA STATE UNIVERSITY LIBRARY</td>
</tr>
<tr>
<td>ATTN: LIBRARIAN</td>
</tr>
</tbody>
</table>
DIRECTORY OF OTHER (CONTINUED)

ARIZONA, UNIVERSITY OF
ATTN: GOV DOC DEPT C BOWER

ARKANSAS COLLEGE LIBRARY
ATTN: LIBRARY

ARKANSAS LIBRARY COMM
ATTN: LIBRARY

ARKANSAS STATE UNIVERSITY
ATTN: LIBRARY

ARKANSAS, UNIVERSITY OF
ATTN: GOVERNMENT DOCUMENTS DIV

ARTHUR HOPKINS LIBRARY
ATTN: LIBRARIAN

ATLANTA PUBLIC LIBRARY
ATTN: IVAN ALLEN DEPT

ATLANTA UNIVERSITY CENTER
ATTN: LIBRARIAN

AUBURN UNIV AT MONTGOMERY LIB (REGIONAL)
ATTN: LIBRARIAN

B DAVIS SCHWARTZ MEM LIB
ATTN: GOVT DOC DEPT

BANGOR PUBLIC LIBRARY
ATTN: LIBRARIAN

BATES COLLEGE LIBRARY
ATTN: LIBRARIAN

BAYLOR UNIVERSITY LIBRARY
ATTN: DOCS DEPT

BELOIT COLLEGE LIBRARIES
ATTN: SERIALS DOCS DEPT

BEMIDJI STATE COLLEGE
ATTN: LIBRARY

BENJAMIN F FEINBERG LIBRARY
ATTN: GOVERNMENT DOCUMENTS

BIERCE LIBRARY
ATTN: GOVERNMENT DOCUMENTS

BOSTON PUBLIC LIBRARY (REGIONAL DEP)
ATTN: DOCUMENTS DEPARTMENT

BOWDOIN COLLEGE
ATTN: LIBRARIAN

BOWLING GREEN STATE UNIV
ATTN: LIB GOVT DOCS SERVICES

BRADLEY UNIVERSITY
ATTN: GOVT PUBLICATION LIBRARIAN

BRANDEIS UNIVERSITY LIB
ATTN: DOCUMENTS SECTION

BROOKHAVEN NATIONAL LABORATORY
ATTN: TECHNICAL LIBRARY

BROOKLYN COLLEGE
ATTN: DOCUMENTS DIVISION

BROWARD COUNTY MAIN LIBRARY
ATTN: GOVERNMENT DOCUMENTS

BROWN UNIVERSITY
ATTN: LIBRARIAN

BUCKNELL UNIVERSITY
ATTN: REFERENCE DEPT

BUFFALO & ERIE CO PUB LIB
ATTN: LIBRARIAN

BURLINGTON LIBRARY
ATTN: LIBRARIAN

CALIFORNIA AT FRESNO STATE UNIV LIB
ATTN: LIBRARY

CALIFORNIA AT SAN DIEGO UNIVERSITY
ATTN: DOCUMENTS DEPARTMENT

CALIFORNIA AT STANISLAVS ST CLG LIB
ATTN: LIBRARY

CALIFORNIA ST POLYTECHNIC UNIV LIB
ATTN: LIBRARIAN

CALIFORNIA ST UNIV AT NORTH RIDGE
ATTN: GOV DOC

CALIFORNIA STATE LIBRARY (REGIONAL)
ATTN: LIBRARIAN

CALIFORNIA STATE UNIV AT LONG BEACH
ATTN: LIBRARY-GOVT PUBS

CALIFORNIA STATE UNIVERSITY
ATTN: LIBRARIAN

CALIFORNIA STATE UNIVERSITY
ATTN: LIBRARIAN

CALIFORNIA UNIV LIBRARY
ATTN: GOVT PUBLICATIONS DEPT

CALIFORNIA UNIV LIBRARY
ATTN: LIBRARIAN

33
<table>
<thead>
<tr>
<th>Library Name</th>
<th>ATTN:</th>
<th>Department</th>
</tr>
</thead>
<tbody>
<tr>
<td>California University Library</td>
<td>GOVT DOCUMENTS DEPT</td>
<td></td>
</tr>
<tr>
<td>California University Library</td>
<td>DOCUMENTS SEC</td>
<td></td>
</tr>
<tr>
<td>California, University</td>
<td>GOVT DOCUMENTS DEPT</td>
<td></td>
</tr>
<tr>
<td>Calvin College Library</td>
<td>LIBRARIAN</td>
<td></td>
</tr>
<tr>
<td>Calvin T Ryan Library</td>
<td>GOVT DOCUMENTS DEPT</td>
<td></td>
</tr>
<tr>
<td>Carleton College Library</td>
<td>LIBRARIAN</td>
<td></td>
</tr>
<tr>
<td>Carnegie Library of Pittsburgh</td>
<td>LIBRARIAN</td>
<td></td>
</tr>
<tr>
<td>Carnegie Mellon University</td>
<td>DIR OF LIBRARIES</td>
<td></td>
</tr>
<tr>
<td>Carson Regional Library</td>
<td>GOVT PUBLICATIONS UNIT</td>
<td></td>
</tr>
<tr>
<td>Case Western Reserve University</td>
<td>LIBRARIAN</td>
<td></td>
</tr>
<tr>
<td>Central Florida Univ</td>
<td>LIBRARY DOCS DEPT</td>
<td></td>
</tr>
<tr>
<td>Central Michigan University</td>
<td>LIB DOCUMENTS SECTION</td>
<td></td>
</tr>
<tr>
<td>Central Missouri State Univ</td>
<td>GOVERNMENT DOCUMENTS</td>
<td></td>
</tr>
<tr>
<td>Central State University</td>
<td>LIBRARY DOCUMENTS DEPT</td>
<td></td>
</tr>
<tr>
<td>Central Washington University</td>
<td>LIBRARY DOCS SECTION</td>
<td></td>
</tr>
<tr>
<td>Central Wyoming College Library</td>
<td>LIBRARIAN</td>
<td></td>
</tr>
<tr>
<td>Charleston County Library</td>
<td>LIBRARIAN</td>
<td></td>
</tr>
<tr>
<td>Charlotte &amp; Mecklenburg County Pub Lib</td>
<td>E CORRELL</td>
<td></td>
</tr>
<tr>
<td>Chattanooga Hamilton Co</td>
<td>LIBRARIAN</td>
<td></td>
</tr>
<tr>
<td>Chicago Public Library</td>
<td>GOVTS PUBLICATIONS DEPT</td>
<td></td>
</tr>
<tr>
<td>Chicago State University of</td>
<td>LIBRARIAN</td>
<td></td>
</tr>
<tr>
<td>Chicago University Library</td>
<td>DIRECTOR OF LIBRARIES</td>
<td></td>
</tr>
<tr>
<td>Chicago University Library</td>
<td>DOCUMENTS PROCESSING</td>
<td></td>
</tr>
<tr>
<td>Cincinnati University Library</td>
<td>LIBRARIAN</td>
<td></td>
</tr>
<tr>
<td>Claremont Colleges Libs</td>
<td>DOC COLLECTION</td>
<td></td>
</tr>
<tr>
<td>Clemson University</td>
<td>DIRECTOR OF LIBRARIES</td>
<td></td>
</tr>
<tr>
<td>Cleveland Public Library</td>
<td>DOCUMENTS COLLECTION</td>
<td></td>
</tr>
<tr>
<td>Cleveland State Univ Lib</td>
<td>LIBRARIAN</td>
<td></td>
</tr>
<tr>
<td>Colorado Library</td>
<td>DOCUMENTS DIVISION</td>
<td></td>
</tr>
<tr>
<td>Colgate Univ Library</td>
<td>REFERENCE LIBRARY</td>
<td></td>
</tr>
<tr>
<td>Colorado State Univ Libs</td>
<td>LIBRARIAN</td>
<td></td>
</tr>
<tr>
<td>Colorado, University Libraries</td>
<td>DIRECTOR OF LIBRARIES</td>
<td></td>
</tr>
<tr>
<td>Columbia University Library</td>
<td>DOCS SERVICE CENTER</td>
<td></td>
</tr>
<tr>
<td>Columbus &amp; Franklin Cty Public Lib</td>
<td>GEN REK DIV</td>
<td></td>
</tr>
<tr>
<td>Compton Library</td>
<td>LIBRARIAN</td>
<td></td>
</tr>
<tr>
<td>Connecticut State Library (Regional)</td>
<td>LIBRARIAN</td>
<td></td>
</tr>
<tr>
<td>Connecticut University of</td>
<td>GOVT OF CONNECTICUT</td>
<td></td>
</tr>
<tr>
<td>Connecticut, University</td>
<td>DIRECTOR OF LIBRARIES</td>
<td></td>
</tr>
<tr>
<td>Cornell University Lib</td>
<td>LIBRARIAN</td>
<td></td>
</tr>
<tr>
<td>Corpus Christi State University Lib</td>
<td>LIBRARIAN</td>
<td></td>
</tr>
<tr>
<td>CSIA Library</td>
<td>LIBRARIAN</td>
<td></td>
</tr>
</tbody>
</table>
DIRECTORY OF OTHER (CONTINUED)

CULVER CITY LIBRARY
ATTN:  LIBRARIAN

CURRY COLLEGE LIBRARY
ATTN:  LIBRARIAN

DALLAS COUNTY PUBLIC LIBRARY
ATTN:  LIBRARIAN

DALLAS PUBLIC LIBRARY
ATTN:  LIBRARIAN

DALTON JR COLLEGE LIBRARY
ATTN:  LIBRARIAN

DARTMOUTH COLLEGE
ATTN:  LIBRARIAN

DAVENPORT PUBLIC LIBRARY
ATTN:  LIBRARIAN

DAVIDSON COLLEGE
ATTN:  LIBRARIAN

DAYTON & MONTGOMERY CITY PUB LIB
ATTN:  LIBRARIAN

DAYTON UNIVERSITY OF
ATTN:  LIBRARIAN

DECATUR PUBLIC LIBRARY
ATTN:  LIBRARIAN

DEKALB COMM COLL SO CPUS
ATTN:  LIBRARIAN

DELAWARE PAUW UNIVERSITY
ATTN:  LIBRARIAN

DELAWARE UNIVERSITY OF
ATTN:  LIBRARIAN

DELTA COLLEGE LIBRARY
ATTN:  LIBRARIAN

DELTA STATE UNIVERSITY
ATTN:  LIBRARIAN

DENISON UNIV LIBRARY
ATTN:  LIBRARIAN

DENVER PUBLIC LIBRARY (REGIONAL)
ATTN:  DOCUMENTS DIV

DEPT OF LIB & ARCHIVES (REGIONAL)
ATTN:  LIBRARIAN

DETROIT PUBLIC LIBRARY
ATTN:  LIBRARIAN

DICKINSON STATE COLLEGE
ATTN:  LIBRARIAN

DRAKE MEMORIAL LEARNING RESOURCE CTR
ATTN:  LIBRARIAN

DRAKE UNIVERSITY
ATTN:  COWLES LIBRARY

DREW UNIVERSITY
ATTN:  LIBRARIAN

DUKE UNIVERSITY
ATTN:  PUBLIC DOCS DEPT

DULUTH PUBLIC LIBRARY
ATTN:  DOCUMENTS SECTION

EARLHAM COLLEGE
ATTN:  GOVT DOC DEPT

EAST CAROLINA UNIVERSITY
ATTN:  LIBRARY DOCS DEPT

EAST CENTRAL UNIVERSITY
ATTN:  LIBRARIAN

EAST ISLIP PUBLIC LIBRARY
ATTN:  LIBRARIAN

EAST ORANGE PUBLIC LIB
ATTN:  LIBRARIAN

EAST TENNESSEE STATE UNIV SHERROD LIB
ATTN:  DOCUMENTS DEPT

EAST TEXAS STATE UNIVERSITY
ATTN:  LIBRARY

EASTERN BRANCH
ATTN:  LIBRARIAN

EASTERN ILLINOIS UNIVERSITY
ATTN:  LIBRARIAN

EASTERN KENTUCKY UNIVERSITY
ATTN:  LIBRARIAN

EASTERN MICHIGAN UNIVERSITY LIB
ATTN:  DOCUMENTS LIBN

EASTERN MONTANA COLLEGE LIBRARY
ATTN:  DOCUMENTS DEPARTMENT

EASTERN NEW MEXICO UNIV
ATTN:  LIBRARIAN

35
<table>
<thead>
<tr>
<th>Library Name</th>
<th>Address</th>
<th>Contact Person</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eastern Oregon College Library</td>
<td>ATTN: Librarian</td>
<td></td>
</tr>
<tr>
<td>Eastern Washington Univ</td>
<td>ATTN: Librarian</td>
<td></td>
</tr>
<tr>
<td>El Paso Public Library</td>
<td>ATTN: Docs &amp; Geneology Dept</td>
<td></td>
</tr>
<tr>
<td>Elko County Library</td>
<td>ATTN: Librarian</td>
<td></td>
</tr>
<tr>
<td>Elon College Library</td>
<td>ATTN: Librarian</td>
<td></td>
</tr>
<tr>
<td>Enoch Pratt Free Library</td>
<td>ATTN: Documents Office</td>
<td></td>
</tr>
<tr>
<td>Enory University</td>
<td>ATTN: Librarian</td>
<td></td>
</tr>
<tr>
<td>Evansville &amp; Vanderburgh County Pub Lib</td>
<td>ATTN: Librarian</td>
<td></td>
</tr>
<tr>
<td>Everett Public Library</td>
<td>ATTN: Librarian</td>
<td></td>
</tr>
<tr>
<td>Fairleigh Dickinson Univ</td>
<td>ATTN: Depository Dept</td>
<td></td>
</tr>
<tr>
<td>Florida A &amp; M Univ</td>
<td>ATTN: Librarian</td>
<td></td>
</tr>
<tr>
<td>Florida Atlantic Univ Lib</td>
<td>ATTN: Div of Public Documents</td>
<td></td>
</tr>
<tr>
<td>Florida Institute of Tech Lib</td>
<td>ATTN: Fed Documents Dept</td>
<td></td>
</tr>
<tr>
<td>Florida Int'l Univ Library</td>
<td>ATTN: DLCS Section</td>
<td></td>
</tr>
<tr>
<td>Florida State Library</td>
<td>ATTN: Documents Section</td>
<td></td>
</tr>
<tr>
<td>Florida State University</td>
<td>ATTN: Documents Department</td>
<td></td>
</tr>
<tr>
<td>Fond du Lac Public Lib</td>
<td>ATTN: Librarian</td>
<td></td>
</tr>
<tr>
<td>Fort Hays State University</td>
<td>ATTN: Librarian</td>
<td></td>
</tr>
<tr>
<td>Fort Worth Public Library</td>
<td>ATTN: Librarian</td>
<td></td>
</tr>
<tr>
<td>Free Pub Lib of Elizabeth</td>
<td>ATTN: Librarian</td>
<td></td>
</tr>
<tr>
<td>Free Public Library</td>
<td>ATTN: Librarian</td>
<td></td>
</tr>
<tr>
<td>Freeport Public Library</td>
<td>ATTN: Librarian</td>
<td></td>
</tr>
<tr>
<td>Fresno County Free Library</td>
<td>ATTN: Librarian</td>
<td></td>
</tr>
<tr>
<td>Gadsden Public Library</td>
<td>ATTN: Librarian</td>
<td></td>
</tr>
<tr>
<td>Garden Public Library</td>
<td>ATTN: Librarian</td>
<td></td>
</tr>
<tr>
<td>Gardner Webb Clge</td>
<td>ATTN: Documents Librn</td>
<td></td>
</tr>
<tr>
<td>Gary Public Library</td>
<td>ATTN: Librarian</td>
<td></td>
</tr>
<tr>
<td>Georgetown Univ Library</td>
<td>ATTN: Govt Docs Room</td>
<td></td>
</tr>
<tr>
<td>Georgia Inst of Tech</td>
<td>ATTN: Librarian</td>
<td></td>
</tr>
<tr>
<td>Georgia Southern College</td>
<td>ATTN: Librarian</td>
<td></td>
</tr>
<tr>
<td>Georgia Southwestern College</td>
<td>ATTN: Dir of Libraries</td>
<td></td>
</tr>
<tr>
<td>Georgia State Univ Lib</td>
<td>ATTN: Librarian</td>
<td></td>
</tr>
<tr>
<td>Georgia, University of</td>
<td>ATTN: Dir of Libraries Regional</td>
<td></td>
</tr>
<tr>
<td>Glassboro State College</td>
<td>ATTN: Librarian</td>
<td></td>
</tr>
<tr>
<td>Gleeson Library</td>
<td>ATTN: Librarian</td>
<td></td>
</tr>
<tr>
<td>Government Publications Library:</td>
<td>ATTN: Librarian</td>
<td></td>
</tr>
<tr>
<td>Graceland College</td>
<td>ATTN: Librarian</td>
<td></td>
</tr>
<tr>
<td>Grand Forks Public City-County Library</td>
<td>ATTN: Librarian</td>
<td></td>
</tr>
<tr>
<td>Grand Rapids Public Library</td>
<td>ATTN: Director of Libraries</td>
<td></td>
</tr>
</tbody>
</table>
DIRECTORY OF OTHER (CONTINUED)

GREENVILLE COUNTY LIBRARY
ATTN: LIBRARIAN

GUAM RFK MEMORIAL UNIVERSITY LIB
ATTN: FED DEPOSITORY COLLECTION

GUAM, UNIVERSITY OF
ATTN: LIBRARIAN

GUSTAVUS ADOLPHUS COLLEGE
ATTN: LIBRARY

HARDIN-SIMMONS UNIVERSITY LIBRARY
ATTN: LIBRARIAN

HARTFORD PUBLIC LIBRARY
ATTN: LIBRARIAN

HARVARD COLLEGE LIBRARY
ATTN: DIRECTOR OF LIBRARIES

HAWAII LIBRARY UNIV OF
ATTN: GOVT DOCS COLLECTION

HAWAII STATE LIBRARY
ATTN: FED DOCUMENTS UNIT

HAWAII, UNIVERSITY AT MONOA
ATTN: DIR OF LIBRARIES REGIONAL

HAYDON BURNS LIBRARY
ATTN: LIBRARIAN

HENRY FORD COMM COLLEGE LIB
ATTN: LIBRARIAN

HERBERT H LEHMAN COLLEGE
ATTN: LIBRARY DOCUMENTS DIV

HOFSTRA UNIV LIBRARY
ATTN: DOCUMENTS DEPT

HOLLINS COLLEGE
ATTN: LIBRARIAN

HOOVER INSTITUTION
ATTN: J BINGHAM

HOPKINSVILLE COMM COLL
ATTN: LIBRARIAN

HOUSTON LIBRARIES UNIVERSITY OF
ATTN: DOCUMENTS DIV

HOUSTON PUBLIC LIBRARY
ATTN: LIBRARIAN

HOYT PUBLIC LIBRARY
ATTN: LIBRARIAN

HUMBOLDT STATE COLLEGE LIBRARY
ATTN: DOCUMENTS DEPARTMENT

HUNTINGTON PARK LIBRARY
ATTN: LIBRARIAN

HUTCHINSON PUBLIC LIBRARY
ATTN: XXXX

IDAHO PUBLIC LIB & INFO CENTER
ATTN: LIBRARIAN

IDAHO STATE LIBRARY
ATTN: LIBRARIAN

IDAHO STATE UNIVERSITY LIBRARY
ATTN: DOCUMENTS DEPARTMENT

IDAHO, UNIVERSITY OF
ATTN: DIR OF LIBRARIES REGIONAL
ATTN: DOCUMENTS SECT

ILLINOIS LIBRARY UNIVERSITY OF
ATTN: DOCUMENTS SECTION

ILLINOIS STATE LIBRARY (REGIONAL)
ATTN: GOVT DOCUMENTS BRANCH

ILLINOIS UNIV AT URBANA CHAMPAIGN
ATTN: P WATSON DOCS LIBRARY

ILLINOIS VALLEY COMM COLL
ATTN: LIBRARY

INDIANA STATE LIBRARY (REGIONAL)
ATTN: SERIAL SECTION

INDIANA STATE UNIVERSITY
ATTN: DOCUMENTS LIBRARIES

INDIANA UNIVERSITY LIBRARY
ATTN: DOCUMENTS DEPARTMENT

INDIANAPOLIS MARION CYT PUB LIBRARY
ATTN: SOCIAL SCIENCE DIV

IOWA STATE UNIVERSITY LIBRARY
ATTN: GOVT DOCUMENTS DEPT

IOWA UNIVERSITY LIBRARY
ATTN: GOVT DOCUMENTS DEPT

IRWIN LIBRARY
ATTN: LIBRARIAN

ISAAC DELCHDO COLLEGE
ATTN: LIBRARIAN

JAMES MADISON UNIVERSITY
ATTN: LIBRARIAN
<table>
<thead>
<tr>
<th>Library Name</th>
<th>Address Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>JEFFERSON COUNTY PUBLIC LIB</td>
<td>ATTN: LIBRARIAN</td>
</tr>
<tr>
<td>JERSEY CITY STATE COLLEGE</td>
<td>ATTN: LIBRARIAN</td>
</tr>
<tr>
<td>JOHN HOPKINS UNIVERSITY</td>
<td>ATTN: DOCUMENTS LIBRARY</td>
</tr>
<tr>
<td>JOHN J WRIGHT LIBRARY</td>
<td>ATTN: LIBRARIAN</td>
</tr>
<tr>
<td>JOHNSON FREE PUBLIC LIB</td>
<td>ATTN: LIBRARIAN</td>
</tr>
<tr>
<td>KAHULUI LIBRARY</td>
<td>ATTN: LIBRARIAN</td>
</tr>
<tr>
<td>KALAMAZOO PUBLIC LIBRARY</td>
<td>ATTN: LIBRARIAN</td>
</tr>
<tr>
<td>KANSAS CITY PUBLIC LIBRARY</td>
<td>ATTN: DOCUMENTS DIV</td>
</tr>
<tr>
<td>KANSAS STATE LIBRARY</td>
<td>ATTN: LIBRARIAN</td>
</tr>
<tr>
<td>KANSAS STATE UNIV LIBRARY</td>
<td>ATTN: DOCUMENTS DEPT</td>
</tr>
<tr>
<td>KANSAS, UNIVERSITY OF</td>
<td>ATTN: DIR OF LIBRARIES REGIONAL</td>
</tr>
<tr>
<td>KENT STATE UNIVERSITY LIBRARY</td>
<td>ATTN: DOCUMENTS DIV</td>
</tr>
<tr>
<td>KENTUCKY DEPT OF LIBRARY &amp; ARCHIVES</td>
<td>ATTN: DOCUMENTS SECTION</td>
</tr>
<tr>
<td>KENTUCKY, UNIVERSITY OF</td>
<td>ATTN: DIR OF LIBRARIES REGIONAL</td>
</tr>
<tr>
<td>KENYON COLLEGE LIBRARY</td>
<td>ATTN: LIBRARIAN</td>
</tr>
<tr>
<td>LAKE FOREST COLLEGE</td>
<td>ATTN: LIBRARIAN</td>
</tr>
<tr>
<td>LAKE SUMTER COMM COLL LIB</td>
<td>ATTN: LIBRARIAN</td>
</tr>
<tr>
<td>LAKELAND PUBLIC LIBRARY</td>
<td>ATTN: LIBRARIAN</td>
</tr>
<tr>
<td>LANCASTER REGIONAL LIBRARY</td>
<td>ATTN: LIBRARIAN</td>
</tr>
<tr>
<td>LAWRENCE UNIVERSITY</td>
<td>ATTN: DOCUMENTS DEPT</td>
</tr>
<tr>
<td>LEE LIBRARY</td>
<td>ATTN: DOCS &amp; MAP SECTION</td>
</tr>
<tr>
<td>LIBRARY &amp; STATUTORY DISTRIBUTION &amp;</td>
<td>2 CYS ATTN: LIBRARIAN</td>
</tr>
<tr>
<td>SVC</td>
<td></td>
</tr>
<tr>
<td>LITTLE ROCK PUBLIC LIBRARY</td>
<td>ATTN: LIBRARIAN</td>
</tr>
<tr>
<td>LONG BEACH PUB LIBRARY</td>
<td>ATTN: LIBRARIAN</td>
</tr>
<tr>
<td>LOS ANGELES PUBLIC LIBRARY</td>
<td>ATTN: SERIALS DIV U S DOCS</td>
</tr>
<tr>
<td>LOUISIANA STATE UNIVERSITY</td>
<td>ATTN: DIR OF LIBRARIES REGIONAL</td>
</tr>
<tr>
<td>LOUISVILLE FREE PUB LIB</td>
<td>ATTN: LIBRARIAN</td>
</tr>
<tr>
<td>LOUISVILLE UNIV LIBRARY</td>
<td>ATTN: LIBRARIAN</td>
</tr>
<tr>
<td>LYNDON B JOHNSON SCH OF PUB AFFAIRS</td>
<td>ATTN: LIBRARIAN</td>
</tr>
<tr>
<td>MAINE MARITIME ACADEMY</td>
<td>ATTN: LIBRARIAN</td>
</tr>
<tr>
<td>MAINE UNIVERSITY AT ORENO</td>
<td>ATTN: GOVT DOC DEPT</td>
</tr>
<tr>
<td>MAINE UNIVERSITY, OF</td>
<td>ATTN: LIBRARIAN</td>
</tr>
<tr>
<td>MANCHESTER CITY LIBRARY</td>
<td>ATTN: LIBRARIAN</td>
</tr>
<tr>
<td>MANKATO STATE COLLEGE</td>
<td>ATTN: GOVT PUBLICATIONS</td>
</tr>
<tr>
<td>MANTOR LIBRARY</td>
<td>ATTN: DIR OF LIBRARIES</td>
</tr>
<tr>
<td>MARATHON COUNTY PUBLIC LIBRARY</td>
<td>ATTN: LIBRARIAN</td>
</tr>
<tr>
<td>MARSHALL BROOKS LIBRARY</td>
<td>ATTN: LIBRARIAN</td>
</tr>
<tr>
<td>MARYLAND UNIVERSITY OF</td>
<td>ATTN: MCKELDIN LIBR DOCS DIV</td>
</tr>
<tr>
<td>MARYLAND UNIVERSITY OF</td>
<td>ATTN: LIBRARIAN</td>
</tr>
<tr>
<td>MASSACHUSETTS UNIV OF</td>
<td>ATTN: GOVT DOCS COLLEGE</td>
</tr>
</tbody>
</table>
DIRECTORY OF OTHER (CONTINUED)

MCNEESE STATE UNIV
ATTN: LIBRARIAN

MEMPHIS SHELBY COUNTY PUB LIB & INFO CTR
ATTN: LIBRARIAN

MEMPHIS STATE UNIVERSITY
ATTN: LIBRARIAN

MERCER UNIVERSITY
ATTN: LIBRARIAN

MESA COUNTY PUBLIC LIBRARY
ATTN: LIBRARIAN

MIAMI LIBRARY UNIVERSITY OF
ATTN: GOVT PUBLICATIONS

MIAMI PUBLIC LIBRARY
ATTN: DOCS DIVISION

MIAMI UNIV LIBRARY
ATTN: DOCS DEPT

MICHEL ORRADRE LIBRARY
ATTN: DOCS DIV

MICHIGAN STATE UNIVERSITY LIBRARY
ATTN: LIBRARIAN

MICHIGAN STATE UNIVERSITY LIBRARY
ATTN: LIBRARIAN

MICHIGAN TECH UNIVERSITY
ATTN: LIBRARY DOCS DEPT

MICHIGAN UNIVERSITY OF
ATTN: ACQ SEC DOCUMENTS UNIT

MIDDLEBURY COLLEGE LIBRARY
ATTN: LIBRARIAN

MILLERSVILLE STATE COLL
ATTN: LIBRARIAN

MILNE LIBRARY
ATTN: DOCS LIBRN

MILWAUKEE PUBL LIBR
ATTN: LIBRARIAN

MINNEAPOLIS PUBLIC LIB
ATTN: GOVERNMENT DOCUMENTS

MINNESOTA DIV OF EMERGENCY SVCS
ATTN: LIBRARIAN

MINOT STATE COLLEGE
ATTN: LIBRARIAN

MISSISSIPPI STATE UNIVERSITY
ATTN: LIBRARIAN

MISSISSIPPI, UNIVERSITY OF
ATTN: DIRECTOR OF LIBRARIES

MISSOURI UNIV AT KANSAS CITY GEN
ATTN: LIBRARIAN

MISSOURI, UNIVERSITY LIBRARY
ATTN: GOVERNMENT DOCUMENTS

MIT LIBRARIES
ATTN: LIBRARIAN

MOBILE PUBLIC LIBRARY
ATTN: GOVTMNTL INFO DIV

MOFFETT LIBRARY
ATTN: LIBRARIAN

MONTANA STATE LIBRARY
ATTN: LIBRARIAN

MONTANA STATE UNIVERSITY LIB
ATTN: LIBRARIAN

MONTANA, UNIVERSITY OF
ATTN: DOCUMENTS DIV REGIONAL

MORHEAD STATE COLLEGE
ATTN: LIBRARY

MT PROSPECT PUBLIC LIB
ATTN: LIBRARIAN

MURRAY STATE UNIV LIB
ATTN: LIBRARY

NASSAU LIBRARY SYSTEM
ATTN: LIBRARIAN

NATRONA COUNTY PUBLIC LIBRARY
ATTN: LIBRARIAN

NEBRASKA LIBRARY COMM
ATTN: LIBRARIAN

NEBRASKA OMAHA UNIV OF
ATTN: LIBRARIAN

NEBRASKA UNIVERSITY LIB
ATTN: ACQUISITIONS DEPT

NEBRASKA WESTERN COLLEGE LIBRARY
ATTN: LIBRARIAN
DIRECTORY OF OTHER (CONTINUED)

NEBRASKA, UNIVERSITY
ATTN: DIR OF LIBRARIES REGIONAL

NEVADA LIBRARY UNIV OF
ATTN: GOVERNMENTS PUBL DEPT

NEVADA, UNIVERSITY AT LAS VEGAS
ATTN: DIRECTOR OF LIBRARIES

NEW HAMPSHIRE UNIVERSITY LIB
ATTN: LIBRARIAN

NEW HANOVER COUNTY PUBLIC LIBRARY
ATTN: LIBRARIAN

NEW MEXICO STATE LIBRARY
ATTN: LIBRARIAN

NEW MEXICO STATE UNIVERSITY
ATTN: LIBR DOCUMENTS DIV

NEW MEXICO, UNIVERSITY OF
ATTN: DIR OF LIBRARIES REGIONAL

NEW ORLEANS LIBRARY UNIVERSITY
ATTN: GOVT DOCUMENTS DIV

NEW ORLEANS PUBLIC LIB
ATTN: LIBRARIAN

NEW YORK PUBLIC LIBRARY
ATTN: LIBRARIAN

NEW YORK STATE LIBRARY
ATTN: DOCS CONT CULTURAL ED CTR

NEW YORK STATE UNIV AT STONY BROOK
ATTN: MAIN LIB DOCS SECTION

NEW YORK STATE UNIV COL AT CORTLAND
ATTN: LIBRARIAN

NEW YORK STATE UNIV OF
ATTN: LIBRARY DOCS SEC

NEW YORK STATE UNIV OF
ATTN: LIBRARIAN

NEW YORK STATE UNIVERSITY
ATTN: DOCUMENTS CENTER

NEW YORK STATE UNIVERSITY OF
ATTN: DOCUMENTS DEPT

NEW YORK UNIVERSITY LIBRARY
ATTN: DOCUMENTS DEPT

NEWARK FREE LIBRARY
ATTN: LIBRARIAN

NEWARK PUBLIC LIBRARY
ATTN: LIBRARIAN

NIAGARA FALLS PUB LIB
ATTN: LIBRARIAN

NICHOLLS STATE UNIV LIBRARY
ATTN: DOCS DIV

NIEVES M FLORES MEMORIAL LIB
ATTN: LIBRARIAN

NORFOLK PUBLIC LIBRARY
ATTN: R PARKER

NORTH CAROLINA AGRI & TECH STATE UNIV
ATTN: LIBRARIAN

NORTH CAROLINA AT CHARLOTTE UNIV OF
ATTN: ATKINS LIB DOCS DEPT

NORTH CAROLINA AT GREENSBORO UNIV LIB
ATTN: LIBRARIAN

NORTH CAROLINA CEN UNIVERSITY
ATTN: LIBRARIAN

NORTH CAROLINA STATE UNIVERSITY
ATTN: LIBRARIAN

NORTH CAROLINA UNIV AT WILMINGTON
ATTN: LIBRARIAN

NORTH CAROLINA, UNIVERSITY
ATTN: BA SS DIVISION DOCS

NORTH DAKOTA STATE UNIVERSITY LIB
ATTN: DOCS LIBRARIAN

NORTH DAKOTA UNIVERSITY OF
ATTN: LIBRARIAN

NORTH GEORGIA COLLEGE
ATTN: LIBRARIAN

NORTH TEXAS STATE UNIV LIBRARY
ATTN: LIBRARIAN

NORTHEAST MO STATE UNIVERSITY
ATTN: LIBRARIAN

NORTHEASTERN ILLINOIS UNIVERSITY
ATTN: LIBRARY

NORTHEASTERN OKLAHOMA STATE UNIV
ATTN: LIBRARIAN

NORTHEASTERN UNIVERSITY
ATTN: DODGE LIBRARY
DIRECTORY OF OTHER (CONTINUED)

NORTHERN ARIZONA UNIVERSITY LIB
ATTN: GOVT DOCUMENTS DEPT

NORTHERN IOWA UNIVERSITY
ATTN: LIBRARIAN

NORTHERN MICHIGAN UNIV
ATTN: DOCUMENTS

NORTHERN ILLINOIS UNIVERSITY
ATTN: LIBRARIAN

NORTHERN MONTANA COLLEGE LIBRARY
ATTN: LIBRARIAN

NORTHWESTERN MICHIGAN COLLEGE
ATTN: LIBRARIAN

NORTHWESTERN STATE UNIV
ATTN: LIBRARIAN

NORTHWESTERN STATE UNIV LIBRARY
ATTN: LIBRARIAN

NORTHERN IOWA UNIVERSITY
ATTN: LIBRARY

OMAHA PUB LIB CLARK BRANCH
ATTN: LIBRARIAN

OREGON STATE LIBRARY
ATTN: LIBRARIAN

OREGON, UNIVERSITY OF
ATTN: DOCUMENTS SECTION

OUACHITA BAPTIST UNIVERSITY
ATTN: LIBRARIAN

PAN AMERICAN UNIVERSITY LIBRARY
ATTN: LIBRARIAN

PASSAIC PUBLIC LIBRARY
ATTN: LIBRARIAN

PAUL KLAPPERT LIBRARY
ATTN: DOCUMENTS DEPT

PENNSYLVANIA STATE LIBRARY
ATTN: GOVT PUBS SECTION

PENNSYLVANIA STATE UNIVERSITY
ATTN: LIBRARY DOCUMENT SEC

PENNSYLVANIA, UNIVERSITY OF
ATTN: DIRECTOR OF LIBRARIES

PENROSE LIBRARY
ATTN: PENROSE LIBRARY

PEORIA PUBLIC LIBRARY
ATTN: BUS SCI & TECH DEPT

PHILADELPHIA FREE LIB OF
ATTN: GOVT PUBS DEPT

PHILIPSBURG FREE PUBLIC
ATTN: LIBRARY

PHOENIX PUBLIC LIBRARY
ATTN: GOVT DOC DEPT

PITTSBURG UNIVERSITY OF
ATTN: DOCS OFFICE G 8

PLAINFIELD PUBLIC LIBRARY
ATTN: GOVT DOC DEPT

OKLAHOMA UNIVERSITY LIBRARY
ATTN: GOVT DOC COLLECTION

OLD DOMINION UNIVERSITY
ATTN: DOC DEPT UNIV LIBRARY

OLIVET COLLEGE LIBRARY
ATTN: LIBRARIAN

PLAINFIELD PUBLIC LIBRARY
ATTN: GOVT DOC DEPT
DIRECTORY OF OTHER (CONTINUED)

POPULAR CREEK PUBLIC LIB DISTRICT
ATTN: XXXX

PORTLAND LIBRARY ASSOC OF
ATTN: GOVT DOC DEPT

PORTLAND PUBLIC LIBRARY
ATTN: GOVT DOC DEPT

PORTLAND STATE UNIV LIB
ATTN: GOVT DOC DEPT

PRESCOTT MEMORIAL LIB
ATTN: GOVT DOC DEPT

PRINCETON UNIVERSITY LIBRARY
ATTN: DOCUMENTS DIVISION

PROVIDENCE COLLEGE
ATTN: PHYSICS DEPT

PROVIDENCE PUBLIC LIBRARY
ATTN: GOVT DOC DEPT

PUBLIC LIB CINCINNATI & HAMILTON COUNTY
ATTN: LIBRARIAN

PUBLIC LIBRARY OF NASHVILLE
ATTN: XXXX

PUERTO RICO UNIVERSITY OF
ATTN: DOC & MAPS ROOM

PURDUE UNIVERSITY LIBRARY
ATTN: GOVT DOC DEPT

QUINEBAUG VALLEY COMMUNITY COL
ATTN: GOVT DOC DEPT

RALPH BROWN DRAUGHON LIB
ATTN: MICROFORMS & DOCS DEPT

RAPID CITY PUBLIC LIBRARY
ATTN: LIBRARIAN

READING PUBLIC LIBRARY
ATTN: LIBRARIAN

REED COLLEGE LIBRARY
ATTN: GOVT DOC DEPT

REESE LIBRARY
ATTN: GOVT DOC DEPT

RHODE ISLAND LIBRARY UNIVERSITY OF
ATTN: GOVT PUBS OFFICE

RHODE ISLAND, UNIVERSITY OF
ATTN: DIRECTOR OF LIBRARIES

RICE UNIVERSITY
ATTN: DIRECTOR OF LIBRARIES

RICHARD W NORTON MEM LIB
ATTN: GOVT DOC DEPT

RICHLAND COUNTY PUB LIB
ATTN: GOVT DOC DEPT

RICHMOND, UNIVERSITY OF
ATTN: LIBRARY

RIVERSIDE PUBLIC LIBRARY
ATTN: GOVT DOC DEPT

ROCHESTER UNIV OF LIB
ATTN: DOCUMENTS SECTION

RUTGERS CAMDEN LIBRARY UNIV
ATTN: GOVT DOC DEPT

RUTGERS THE STATE UNIVERSITY
ATTN: XXXX

RUTGERS UNIVERSITY
ATTN: GOV DOCUMENTS DEPT.

RUTGERS UNIVERSITY LAW LIBRARY
ATTN: FED DOCUMENTS DEPT

SALEM COLLEGE LIBRARY
ATTN: GOVT DOC DEPT

SAMFORD UNIVERSITY
ATTN: GOVT DOC DEPT

SAN ANTONIO PUBLIC LIBRARY
ATTN: BUS SCIENCE & TECH DEPT

SAN DIEGO COUNTY LIBRARY
ATTN: C JONES ACQUISITIONS

SAN DIEGO PUBLIC LIBRARY
ATTN: GOVT DOC DEPT

SAN DIEGO STATE UNIV LIB
ATTN: GOVT PUBS DEPT

SAN FRANCISCO PUBLIC LIBRARY
ATTN: GOVT DOCUMENTS DEPT

SAN FRANCISCO STATE COLLEGE
ATTN: GOVT PUBS COLLECTION

SAN JOSE STATE COLLEGE LIBRARY
ATTN: DOCUMENTS DEPT

SAN LUIS OBISPO CITY COUNTY LIBRARY
ATTN: GOVT DOC DEPT

SAVANNAH PUB & EFFINGHAM LIBTY REG LIB
ATTN: GOVT DOC DEPT
DIRECTORY OF OTHER (CONTINUED)

SCOTTSTULL PUBLIC LIBRARY
ATTN: LIBRARIAN

SCRANTON PUBLIC LIBRARY
ATTN: LIBRARIAN

SEATTLE PUBLIC LIBRARY
ATTN: REF DOCUMENTS ASST

SELBY PUBLIC LIBRARY
ATTN: GOVT DOC DEPT

SHAWNEE LIBRARY SYSTEM
ATTN: GOVT DOC DEPT

SHREVE MEMORIAL LIBRARY
ATTN: GOVT DOC DEPT

SILAS BRONSON PUBLIC LIBRARY
ATTN: LIBRARIAN

SIMON SCHWOB MEM LIB
ATTN: LIBRARIAN

SIOUX CITY PUBLIC LIBRARY
ATTN: LIBRARIAN

SKIDMORE COLLEGE
ATTN: GOVT DOC DEPT

SLIPPERY ROCK STATE COLLEGE LIBRARY
ATTN: GOVT DOC DEPT

SOUTH CAROLINA STATE LIBRARY
ATTN: GOVT DOC DEPT

SOUTH CAROLINA UNIVERSITY OF
ATTN: XXXXX

SOUTH CAROLINA, UNIVERSITY OF
ATTN: GOVS DOCUMENTS

SOUTH DAKOTA SCH OF MINES & TECH LIB
ATTN: GOVT DOC DEPT

SOUTH DAKOTA STATE LIBRARY
ATTN: FED DOCS DEPT

SOUTH DAKOTA, UNIVERSITY OF
ATTN: DOCS LIBRARIAN

SOUTH FLORIDA UNIVERSITY LIBRARY
ATTN: GOVT DOC DEPT

SOUTHDALE HENNEPIN AREA LIBRARY
ATTN: GOVT DOCUMENTS

SOUTHEAST MISSOURI STATE UNIVERSITY
ATTN: GOVT DOC DEPT

SOUTHEASTERN MASSACHUSETTS UNIV LIB
ATTN: DOCUMENTS SEC

SOUTHERN ALABAMA, UNIVERSITY OF
ATTN: LIBRARIAN

SOUTHERN CALIFORNIA UNIV LIBRARY
ATTN: DOCS DEPARTMENT

SOUTHERN CONNECTICUT STATE COLLEGE
ATTN: LIBRARY

SOUTHERN ILLINOIS UNIVERSITY
ATTN: GOVT DOC DEPT

SOUTHERN ILLINOIS UNIVERSITY
ATTN: DOCUMENTS CTR

SOUTHERN METHODIST UNIVERSITY
ATTN: XXXXX

SOUTHERN MISSISSIPPI UNIV OF
ATTN: LIBRARY

SOUTHERN OREGON COLLEGE
ATTN: LIBRARY

SOUTHERN UNIV IN NEW ORLEANS LIBRARY
ATTN: GOVT DOC DEPT

SOUTHERN UTAH STATE COLLEGE LIBRARY
ATTN: DOCUMENTS DEPARTMENT

SOUTHWEST MISSOURI STATE COLLEGE
ATTN: LIBRARY

SOUTHWESTERN UNIV OF
ATTN: GOVT DOC DEPT

SOUTHWESTERN UNIVERSITY
ATTN: GOVT DOC DEPT

SPOKANE PUBLIC LIBRARY
ATTN: REFERENCE DEPT

SPRINGFIELD CITY LIBRARY
ATTN: DOCUMENTS SECTION

ST BONAVENTURE UNIVERSITY
ATTN: GOVT DOC DEPT

ST JOSEPH PUBLIC LIBRARY
ATTN: GOVT DOC DEPT

ST LAWRENCE UNIVERSITY
ATTN: GOVT DOC DEPT
<table>
<thead>
<tr>
<th>Library Name</th>
<th>Contact Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>St Louis Public Library</td>
<td>Attn: Govt Doc Dept</td>
</tr>
<tr>
<td>St Paul Public Library</td>
<td>Attn: Govt Doc Dept</td>
</tr>
<tr>
<td>Stanford University Library</td>
<td>Attn: Govt Doc Dept</td>
</tr>
<tr>
<td>State Historical Soc Lib</td>
<td>Attn: Docs Serials Section</td>
</tr>
<tr>
<td>State Lib of Mass</td>
<td>Attn: Librarian</td>
</tr>
<tr>
<td>State Library of Ohio</td>
<td>Attn: Librarian</td>
</tr>
<tr>
<td>State Univ of New York</td>
<td>Attn: Govt Doc Dept</td>
</tr>
<tr>
<td>Stetson Univ</td>
<td>Attn: Govt Doc Dept</td>
</tr>
<tr>
<td>Steubenville University of Ohio</td>
<td>Attn: Govt Doc Dept</td>
</tr>
<tr>
<td>Stockton &amp; San Joaquin Public Lib</td>
<td>Attn: Govt Doc Dept</td>
</tr>
<tr>
<td>Stockton State College Library</td>
<td>Attn: Govt Doc Dept</td>
</tr>
<tr>
<td>Superior Public Library</td>
<td>Attn: Govt Doc Dept</td>
</tr>
<tr>
<td>Swarthmore College Lib</td>
<td>Attn: Reference Dept</td>
</tr>
<tr>
<td>Syracuse University Library</td>
<td>Attn: Documents Div</td>
</tr>
<tr>
<td>Tacoma Public Library</td>
<td>Attn: Librarian</td>
</tr>
<tr>
<td>Tampa, Hillsborough County Public Lib</td>
<td>Attn: Govt Doc Dept</td>
</tr>
<tr>
<td>Temple University</td>
<td>Attn: Govt Doc Dept</td>
</tr>
<tr>
<td>Tennessee Technological University</td>
<td>Attn: Govt Doc Dept</td>
</tr>
<tr>
<td>Terteling Library</td>
<td>Attn: Govt Doc Dept</td>
</tr>
<tr>
<td>Texas A &amp; M University Library</td>
<td>Attn: Govt Doc Dept</td>
</tr>
<tr>
<td>Texas at Arlington University of</td>
<td>Attn: Library Documents</td>
</tr>
<tr>
<td>Texas at San Antonio Univ</td>
<td>Attn: Library</td>
</tr>
<tr>
<td>Texas Christian Univ</td>
<td>Attn: Govt Doc Dept</td>
</tr>
<tr>
<td>Texas State Library</td>
<td>Attn: Us Documents Section</td>
</tr>
<tr>
<td>Texas Tech University Library</td>
<td>Attn: Govt Documents Dept</td>
</tr>
<tr>
<td>Texas Univ at Austin</td>
<td>Attn: Documents Coll</td>
</tr>
<tr>
<td>Texas University at El Paso</td>
<td>Attn: Documents and Maps Lib</td>
</tr>
<tr>
<td>Toledo Library Univ Of</td>
<td>Attn: Govt Doc Dept</td>
</tr>
<tr>
<td>Toledo Public Library</td>
<td>Attn: Social Science Dept</td>
</tr>
<tr>
<td>Torrance Civic Center Library</td>
<td>Attn: XXXXX</td>
</tr>
<tr>
<td>Traverse City Public Library</td>
<td>Attn: XXXXX</td>
</tr>
<tr>
<td>Trenton Free Public Library</td>
<td>Attn: XXXXX</td>
</tr>
<tr>
<td>Trinity College Library</td>
<td>Attn: XXXXX</td>
</tr>
<tr>
<td>Trinity University Library</td>
<td>Attn: Docs Collection</td>
</tr>
<tr>
<td>Tufts University Library</td>
<td>Attn: Documents Dept</td>
</tr>
<tr>
<td>Tulane University</td>
<td>Attn: Documents Dept</td>
</tr>
<tr>
<td>Tulsa University, Of</td>
<td>Attn: Librarian</td>
</tr>
<tr>
<td>UCLA Research Library</td>
<td>Attn: Pub Affairs SVC/US Docs</td>
</tr>
<tr>
<td>Uniformed Svcs Univ of the Hlth Sci</td>
<td>Attn: LRC Library</td>
</tr>
<tr>
<td>University Libraries</td>
<td>Attn: Director of Libraries</td>
</tr>
</tbody>
</table>
DIRECTORY OF OTHER (CONTINUED)

UPPER IOWA COLLEGE
ATTN: DOCUMENTS COLLECTION

UTAH STATE UNIVERSITY
ATTN: LIBRARIAN

UTAH, UNIVERSITY OF
ATTN: SPECIAL COLLECTIONS

UTAH, UNIVERSITY OF
ATTN: DEPT OF PHARMACOLOGY
ATTN: DIRECTOR OF LIBRARIES

VALENCIA LIBRARY
ATTN: XXXXX

VANDERBILT UNIVERSITY LIBRARY
ATTN: GOVT DOCUMENTS SECTION

VERMONT, UNIVERSITY OF
ATTN: DIRECTOR OF LIBRARIES

VIRGINIA COMMONWEALTH UNIV
ATTN: GOVT DOC DEPT

VIRGINIA MILITARY INSTITUTE
ATTN: GOVT DOC DEPT

VIRGINIA POLYTECHNIC INST LIB
ATTN: DOCS DEPT

VIRGINIA STATE LIBRARY
ATTN: SERIALS SECTION

VIRGINIA, UNIVERSITY OF
ATTN: PUBLIC DOCUMENTS

VOLUSIA COUNTY PUBLIC LIBRARIES
ATTN: GOVT DOC DEPT

WAGNER COLLEGE
ATTN: LIBRARIAN

WASHINGTON STATE LIBRARY
ATTN: DOCUMENTS SECTION

WASHINGTON STATE UNIV
ATTN: LIB DOCS SECTION

WASHINGTON UNIVERSITY LIBRARIES F.M. 25
ATTN: DIRECTOR OF LIBRARIES

WASHINGTON UNIVERSITY OF
ATTN: DOCUMENTS DIV

WAYNE STATE UNIV LIBRARY
ATTN: GOVT DOC DEPT

WAYNE STATE UNIVERSITY LAW LIBRARY
ATTN: DOCUMENTS DEPT

WEBER STATE COLLEGE LIBRARY
ATTN: GOVT DOC DEPT

WESLEYAN UNIVERSITY
ATTN: DOCUMENTS LIBRARIAN

WEST CHESTER STATE COLL
ATTN: DOCUMENTS DEPT

WEST COVINA LIBRARY
ATTN: GOVT DOC DEPT

WEST FLORIDA, UNIVERSITY OF
ATTN: GOVT DOC DEPT

WEST HILLS COMMUNITY COLL
ATTN: LIBRARY

WEST TEXAS STATE UNIVERSITY
ATTN: LIBRARY

WEST VIRGINIA COLL OF GRAD STUDIES LIB
ATTN: GOVT DOC DEPT

WEST VIRGINIA, UNIVERSITY OF
ATTN: DIR LIBRARIES REGIONAL

WESTERLY PUBLIC LIBRARY
ATTN: GOVT DOC DEPT

WESTERN CAROLINA UNIVERSITY
ATTN: GOVT DOC DEPT

WESTERN ILLINOIS UNIVERSITY LIB
ATTN: XXXXX

WESTERN WASHINGTON UNIV
ATTN: GOVT DOC DEPT

WESTERN WYOMING COMMUNITY COLLEGE LIB
ATTN: XXXXX

WESTMORELAND CTY COMM COLL
ATTN: LEARNING RESOURCE CTR

WHITMAN COLLEGE
ATTN: GOVT DOC DEPT

WICHITA STATE UNIV LIBRARY
ATTN: GOVT DOC DEPT

WILLIAM & MARY COLLEGE
ATTN: DOCS DEPT

WILLIAM ALLEN WHITE LIBR
ATTN: GOVT DOCUMENTS DIV

WILLIAM COLLEGE LIBRARY
ATTN: XXXXX
DIRECTORY OF OTHER (CONTINUED)

WILLIAMANTIC PUBLIC LIBRARY
ATTN: GOVT DOC DEPT

WINTHROP COLLEGE
ATTN: DOCUMENTS DEPT

WISCONSIN AT WHITewater UNIVERSITY
ATTN: GOVT DOC LIBRARY

WISCONSIN MILWAUKEE UNIVERSITY
ATTN: XXXXX

WISCONSIN OSHKOSH UNIVERSITY
ATTN: GOVT DOC DEPT

WISCONSIN PLATTEVILLE UNIVERSITY
ATTN: GOVT DOC DEPT

WISCONSIN UNIV AT STEVENS POINT
ATTN: DOCs SECTION

WISCONSIN UNIVERSITY OF
ATTN: GOVT PUBS DEPT

WISCONSIN, UNIVERSITY OF
ATTN: ACQUISITIONS DEPT

WORCESTER PUBLIC LIBRARY
ATTN: LIBRARIAN

WRIGHT STATE UNIV LIBRARY
ATTN: GOVTS DOCUMENTS DEPT

WYOMING STATE LIBRARY
ATTN: GOVT DOC DEPT

WYOMING UNIVERSITY OF
ATTN: DOCS DIV

YALE UNIVERSITY
ATTN: DIRECTOR OF LIBRARIES

YESHIVA UNIVERSITY
ATTN: GOVT DOC DEPT

YUMA CITY COUNTY LIBRARY
ATTN: GOVT DOC DEPT