g2

| AD-A172 4806 DESIGN OF A DATA DICTIONARY EDITOR IN ISTRIBUTED 172 I
SOF;HRRE DEVELOPMENT ENVIRONMENTC(U> Al E INST OF

TECH WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI.. ‘
UNCLASSIFIED J W FOLEY JUN 86 AFIT/GCS/ENG/86J-5 F/6 9/2

“ B
|
i
|
|
l

B -

!
:

o

N
(6]

i

O H2s
ks k2 22
= R
)
s
1.6

I 1l

 ———
——
—
———

Palatalel B el e S B0 5 o5 Matte g Nt o ho MR R AT Rinh el b At e ko Bt

AD-A172 406

e AILE copY

DESIGN OF A DATA DICTIONARY
EDITOR IN A DISTRIBUTED SOFTWARE
DEVELOPMENT ENVIRONMENT
THESIS

Jeffrey W. Foley, B.S.
Captain, USA

AFIT/GCS/ENG/864J-5

Tri: dommeat has bean appoved ,
for prblizrdee e ard G its

¢ diztibution is unlimited. B |

(-

DEPARTMENT OF THE AIR FORCE
AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio

A K i Vol SR ARG AT N AL LA &L e L& o Lt pUCeih St gt gV ot o' § il e of gho i g ,“J!T

)

i

i N 5

a'a l'l‘.') |

PSS A |

le

G

¥

)

"
LA

AFIT/GCS/ENG/86J-5

DESIGN OF A DATA DICTIONARY
EDITOR IN A DISTRIBUTED SOFTWARE
DEVELOPMENT ENVIRONMENT
THESIS

Jeffrey W. Foley, B.S.
Captain, USA

AFIT/GCS/ENG/86J-5

Approved for public release; distribution unlimited

.....

AFIT/GCS/ENG/86J-5
pﬁy

DESIGN OF A DATA DICTIONARY EDITOR IN A
DISTRIBUTED SOFTWARE DEVELOPMENT ENVIRONMENT

THESIS

-y Y VR

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology

Air University

T

In Partial Fulfillment of the
H ‘; Requirements for the Degree of

Master of Science in Computer Systems

Jeffrey W. Foley, B.S.

Captain, USA

June 1936

Approved for public release; distribution unlimited

.
L8,

R f_\f\(\' DAY, s{ .\A{&._\._. DU S IR "yl \u.‘_.'-- o _['.e " 4".{ 2 l‘.r*.i“.-‘-...- .f"k_r.' "t..r. .

1 t

............

FA R
" uﬂnt‘.a\f "!LJ

'~ gt

Preface

’.LI- <

%y
o Data dictionaries enjoy considerable attention in

W software documentation requirements in the AFIT research

environment. Previous research efforts have provided some

-

insight into the requirements of data dictionary systems but
have focused on single computer environments. The purpose
of this study was to expand the data dictionary system to

“y the distributed development environment. The key to this

1, expansion was the design and development of a special data
’, dictionary editor that creates and updates definitions at a
workstation. Definitions are then transfered to and from

the central database as needed for project development.

S

In preparing this thesis I have received considerable

5y

- help and support from others. First, I am very grateful to

o
iﬁi my thesis advisor Dr. Thomas C. Hartrum for his guidance and

A

support thnroughout the entire effort. I also wish to thank

D0
Ll

my committee members, Dr. Gary B. Lamont and MAJ Duard S.
Woffinden, for their valued assistance. Two classmates were
, particularly helpful to me: CAPT Thomas Zuzack in educating
me on the workings of the Z-100 microcomputer, and CAPT
Charles Hamberger for his enhancements of the previous
database interface software. Finally, I wish to thank my
dear wife Beth for her continuous, loving support throughout

our entire graduate school experience.

-, Jeffrey W. Foley

»
5"'{":)

LY S WAL

HLHY

A N)

o o o

T Tt e et ™ e A N R I RTINS
A T G, LN .

‘l
“
.l
-

e e PP U NP
> ol a4 .““

>
', Oy |

N PN M

>

M s s W

.y

& 4

PR

455455

s 4 a a & 4

PR O IR CO AP PR PIPE, S A AN e R NP R AP A R A R R Rl
N S G G S G e A S G I Y (N N R L 1

ad
ﬁ;s Tatle of Contents
Page
Preface ¢ ¢ ¢ v vt e v e e e e e e e e e e ii
List of Figures « « .+ . . e e e e e e vi
Abstract v 0w e e e e e e e e e e e e e e vii
I. Introduction ¢ . o v v e .0 e W 1
Background . . e e e e e e e e e e e 1
Problem Statement e e e e e e e e e e e 2
SCope . v v i i e e e e e e e e e e 3
Assumptions 0 00 0. . 4
General Approach« y
Sequence of Presentation 5
II. keview ol the Literature 6
Data Dictionary Systems 7
Human Interface Issues e e e 10
Distributed Development Env1ronments o e e 5
Problems Associated With Distributed
- Interaction 16
iﬁi Framework for a Distributed Database
Interface O . 00 . 21
SUMMAPLY +© « ¢« + 4 o« & « o o o« o o o« o o o o 25
I’I. Data Dictionary System Requirements 26
Overall System Analysis . . . e e e e 26
Data Dictionary Editor Requlrements e e e e 40
Central Computer Database Interface y2
Database Interface Facilities 42
Security of the Database ¢« . . 43
SUmMmMary . . + « ¢ s 4 e e e e e e e e e e e Ly
¥
iii

» >

35
v b’

NIRRT FIFIRF T TFTRTY

IV. Data Dictionary System Design

Data Dictionary Editor Design

User-Macnine Interface
Screen Display

Data Structures

Windowing Scheme

Data File Input and Output
Editor Commands . .
Keyboard Layout

Error Handling

Communications Interface
Database Interface Design
Summary

V. Implementation and Test

Portability of the Code

generic Editor Implementation Issues
Operation of the Tool

Testing . e .

Summary

VI. Evaluation of the Data Dicticnary Editor

Measuring User Satisfaction
Evaluation of the Data chtlonary Edltor
Conclusions .

VII. Conclusion and Recommendations

Appendix

Appendix
Appendix
Appendix

Appendix

Appendix

Conclusions
Recommendations for Further Study

A:

(@]

Evaluation of an Automated/Interactive
Software Engineering Tool to
Generate Data Dictioconaries

Data Dictionary Editor Users' Guide

Evaluation Questionnaire

Zvaluation Handout

Editor SADT Diagrams

Design Structure Charts for the Editor.

iv

. LI TR S TP - ’ Y . - B
) e A T T e e T e G
. M ;\ '.n" Sante e e e e e e Lt

~

CY

' *

Page

e/
o

Aﬁg- Appendix G: Summary Paper v 4 4 4 e o u . . G-1
Bibliography + ¢« ¢« « « ¢« v 4« v v v v « . . BIB-1
Tita . v o o . e e e e e e e e e e e e e e e e e WJVITA-T
: The following additional thesis volumes are maintained at
the Air Force Institute of Technology, Department of
Electrical and Computer Engineering:
Volume II: Workstation Editor Code and Data Dictionary

Volume III: Database Interface Code

N 1
\ Y
S
‘

‘ | |
- r
L]

4'.'-!'
o
- s
4 v

.
[}
giﬁ; List of Figures .
S oA
Figure Page
[}
1. Framework for a Distributad Database
Interface + ¢ v ¢ v v e e e e e e 22
2. The Distributed Development Environment 27 J
3. Data Dictionary Format for Structure "
Chart - Process« « « « . . . 30 .~
N
4, Data Dictionary Format for Structure .
Chart - Parameter 31
5. Typical Structure Chart 32)
5. Example of Parameter Passing 33
7. Third Normal Form Relations for a Design
Structure Chart Process 36)
5. Third Normal Form Relations for a Design }
Structure Chart Parameter 37 -
% 9. Opening Menu on the Editor 47
10. Menu #2 for Create « v v « v « . . u8 ¥
11. Menu #3 for Create 49 :
12. Sample Screen Display . . . v « « v o v o « . . 53 :
13. Linked Structure Used in the Editer 57 N
14, Screen Zditor "Windowing Scheme" 60
15. Format of Flat File« . . . 65 2
16. Sample Survey Question du .
17. Score Boundaries for Normalized User ;
Satisfaction O . O 66 Y
18. Normalized Values for Overall User
Satisfaction 88 D
l.
19. Mean Scores for Each Factor 89 -
A
~ ,
by

Abstract

~ The project involved the design and implementation of a
data dictionary system in a distributed development
ernvironment. The distributed environment consists of a
central computer that hosts a database management system, a
conglomerate of workstations, and the communications links
between the workstations and central computer.

The emphasis of the research was placed on the design
of 3 user-friendly data dictionary editor that was
implemented on a prototype workstation. Data dictionary
definitions are created and updated at the workstation and
transfered between the workstation and central computer
database.

Background information is provided on data dictionary
systems, aspects of human-computer interfaces, and
distributed environment interface issues. The design and
development of the special editor and the databgse interface P
software are described in detail/]

Evaluation of the special editor was performed by a
subset of the target user group. This evaluation was based
on a tool designed to measure user satisfaction. The tool

is described and the results of the evaluation are provided.

| ZaniPad 3

AR RL il e S Al A AUt S S I AN S ST AR MR R L L5 St ol e Sad Jak bale hat e Rl dot i Rl 2ad - 2ad Nad Wadh Yo An Bia AT a8 gio a8 ale Ak, alhy’al Rt Stk of -2l

LN

N DESIGN OF A DATA DICTLONARY
EDITOR IN 4 DISTRIBUTED SOFTWARE
DEVELOPMENT ENVIRONMENT

I. Introduction

Background

The Department of Electrical and Computer Engineering
at the Air Force Institute of Technology (AFIT) sponsors a
large amount of research in the area of software

development. In conjunction with this research, the

department has established documentation standards that
include data dictionaries to support the requirements,

design, and coding phases of the software lifecycle (37).

Originally these data dictionaries were created and managed

&

by hand. As the dictionaries grew in size, the effective

control and management of their contents became increasingly

difficult (16). Because the characteristics of data

dictionary systems are so similar to those of database

management systems (23:10), the task to automate the data

dictionary system was established.

} Several effcrts at
limited data dictionary
computer under the Unix

Berkeley version of the

system INGRES. Thomas (39) consolidated these efforts to

produce a limited working system,

TR T i i S e T S P L O T R Nt e aTe T T e e e T :‘
L G S L N L L G AN T R O S O S S A T O . A Ry

AFIT led to the development of a
system implemented on a Vax-11/780
operating system, and using the

relational database management

which was later extended

~ . o et e te”

- 3, < d Al i’ - . S s NS W WL, W . HE A A e i i o i - i S TS R i AR I e a i

- w e ¢

AL and improved by Hamberger (10).
There are several deficiencies with the current A
implementation of the software, the most critical being the
lengthy response time experienced while using the system (a b
complete review, by this author, of the current
implementation can be found in Appendix A4). .
Initial performance evaluations of the system indicated
that the lengthy response times could be attributed to three e
factors (16, Appendix A). The first factor, belisved to be
the biggest contributor, was the time required to edit data
dictionary definitions. The time required to interact with
the database management system was the second factor. The
third factor was the time attributed to the system locad, or
. number of users on the computer.
Because data dictionary systems can be so valuable in
documenting software development projects (22) there was a
requirement for such a system to support these research

efforts. .

Problem k
Requirements for a complete data dictionary system for
the software development lifecycle needed to be reviewed and
further developed at AFIT. The existing documentation
requirements and the limited implementation of Thomas' data
dictionary generator provided a starting point. The overall
cbjective of this thesis research was to expand and enhance

the current data dictionary system to support a distributed

PR
-~
'y
vts,

.. P RS s ~‘~‘-" - te te et ‘_.'_'.‘.‘.'.'.‘.'."
AL LA SN AT AT . . . % o .
» Mh@MAL B SO AR S I .-" TN -‘ 'A\‘\.LA- AR RS

4
L]
»
a.a

development environment., Inherent in this objective was the
evaluaticn ¢f the current system and the goal to design and
implement a user-friendly interface on a microcomputer
Wworkstation that would generate data dictionary definiticns
that could be transferred to and from a central database.
Subsequent interface software was alsc required at other
interface locations in this distributed development

environment.

Scope

This research effort was limited to the development of
a data dictionary system for use at AFIT in support of
software development spcnscred by the Department of
Electrical and Computer Engineering. It was implemented on
the Vax-11/730 computer, using the Unix operating system,
with the prototype microcomputer workstation being the
Zenith 2-100 using the MS-DOS operating system.

Interface software was designed and implemented on the
microcomputer workstation for the purpose of editing data
dictionary definitions, and on the main computer for
interfacing with the database. Current availaole
communication software packages were used for the transfer
of text files between the workstation and main computer.
Efforts were made to keep the code as generic as possible,

especially at the microcomputer level, to facilitate the

portability of the software to other workstations.

Assumptions

Thorough discussions on the software lifecycle and the
graphical representations that support various phases of the
lifecycle were not included in this thesis. It is assumed
that the reader has a basic knowledge of these subjects, or
has the resources available from which to obtain the
knowledge.

The relational database management system INGRES is
assumed to operate and perform according to specifications
and would provide all the necessary requirements for a
database.

The current edition of the standards and guidelines
published by the Electrical and Computer Engideering
department (37) are assumed to represent a valid subset of

docurientaticn requirements for software development.

General Approach

Initial research focused on data dictionary systemns:
their purpose, their information content, and their design
considerations. Researching the issues of human-computer
interfaces and distributed development environments
followed. Together, the results of these investigations
provided a foundation from which to analyze and evaluate the
current implementation of the data dictionary system
employed in the AFIT software development research
environment. Based on the results of this evaluation, the

design of upgrades to the system to operate in a distributed

W gt et et e
" e T e e e

!l «

Y.

" e e o e o~
.

PR,

TR,

nAREE | PR

" °r

AP A AR

% T, e tp ey

.
T Y%,

\
N
~
N
~
S
\

T,

i

g
L]

WA ANA

p W A% RSN

PPN O

e

‘;

environment were developed. Upon completion cf the
implementation effort, the new portions of the system were
presented to a subset of the target user group for

evaluation.

Sequence of Presentation

This thesis consists of six sections. A review of
current literature on data dictionary systems,
human-computer interface issues, and distributed development
environments is presented in Chapter II. The data
dictionary system requirements are provided in Chapter III,
with the design of the data dictionary system following in
Chapter IV, Chapter V discusses the implementation and
testing of the software. The results of the evaluation
performed on the software are presented in Chapter VI.

Conclusions and recommendations for further study are

discussed in the final chapter.

ut e e g alat bet e’ Ba Ne' oda Bat ba' Bar Pa° fa fa' B’ fa® Ra " 0" Fh B3 o84 LR JRp - rp oth GO JL SR (BN Sp oVh o0 o080 nv) ot o gtd gt g g b Bb A St Gdh B 0 Sal SR Sul, af Rl Aty £t aa BN

II. Review of the Literature

A firm understanding of a data dictionary's purpose,
its design methodology and its implementation aspects
peculiar to the target environment 1is required. To this end
a search of tne literature was conducted, the results of
which are described in the first section of this chapter.

User-friendly interfaces was alsc a key subject that
pertained to this thesis, particularly the proposed editor
for the woréstation. Consequently, it was imperative to
search the literature for an understanding of how
user-friendly is defined and how user-friendly systems are
designed for applications similar to this thesis. The
second section of this chapter highlights the results of

‘, this search.
Distributed development environments provide a more
diverse and flexible atmosphere for project development but
‘ their design and implementation requires considerable more
‘ time and resources than single computer environments. The
i issues associated with distributed environments required
identification to gain an understanding and appreciation for

the complexities involved, and to determine the reasonable

objectives that could be achieved within the scope of this
thesis. The results of this investigation are discussed in

the third section of this chapter.

"
e
L
o

~)
X5 PEXNXERR | “AAAARN s

P

e % 1%t .‘--._- " o '_'. ‘.I 'I..'J -~ R -..~ J".' '..."‘....o IR Ta T P > .-.;'- S S - .-:_. '-.-'.. RIS '.-.‘._ e et
B 2 A A AT T N X R N A N e Sy ey S AL L R LTSRN, O

70

Sl AN AT S S0 i S AN Rt Al A% Al S0a A% NiNe RSl B ha A Sl SRE. Al Bl

Data Dictionary Systeas

T Data dictionary systems (DDS) nave experienced a
growing degree of usage throughout thne dataprocessing field.
Data is a corporate resource, similar to personnel, money,
and raw materials, that, until the late 1970's, was never
managed like a corporate resource (23:2). Because of its
great tendencies to be erroneous, unavailable, and
out-of-aate, this data resource had to be carefully managed
and controlled. Data dictionary systems provide a facility
that supports this objective (22).

The importance of DDS becomes apparent when it is
realized how theirAinformation is used. Potential users of
the information system must know the names and meanings of
the information to exercise the system effectively.

i} Programmers and system administrators must know the
characteristics of the data to perform their duties
effectively., System designers and modifiers must know the
naming conventions employed and the structure of tne data to
perform their duties effectively (22). The data dictionary
is, then, the central source for this information.

It is an attempt to capture all definitions of data

within an enterprise for the purpose of contrelling how

data is used and created and to improve the
documentation of the total collection of data on which

an enterprise depends (22:1-1).

Data dictionary systems can be considered information

systems in their own right (22:1-2). An information system

essentially consists of four elements:

e
‘e %
.~F_

-

A e Yo, S Pha AL Ty e A N UL SO T T TS Sy S
NG AL AR SO A AN 2O A 2O IS AN

LN

oV

- .‘.J‘.Ar

Pofefe Sl arnra]

o B T a" i)

-

AT)

YNV

o o &

a"'b ¥
WA
i"-’-"

o
™ '\
n'\}

1. A datapase containing the information required oy
the information system.

2. A processing system which interacts with the
database and satisfies tne functional requirements of
the systen.

3. The users of the system, together with all the
procedures explicit and implicit, for the system.

4, The hardware/software environment required to
perform tne above (22:1-3).

In the AFIT environment, the database is stored using
the database management system INGRES, while the processing
system consists of the previous software and the software
generated as a result of this thesis. The users are tne
students at AFIT pursuing a masters degree in computer
engineering or computer systems. The hardware is provided
by AFIT and the software is provided as just stated.

The effectiveness of a DDS depends on the degree of
comnitment by the organization. If implemented and managed
successfully, it will ensure correctness and consistency of
the data and will provide an invaluable asset in managing
changes within the current system. Lefkovitz outlined a
nunber of benefits derived from the use of a DDS:

1. DDS reduces unintentional redundancies in data.

Redundancies waste storage space and create data update

problems. It can also document intentional

redundancies where necessary.

2. Systems development costs and time can be reduced

by ensuring consistency among the data, and eliminating

potential misunderstandings of the data definitions.

3. System maintainability is enhanced through complete

documentation of the system. Communication between the
users and maintenance programmers is improved.

AR, W T P

" ‘."'.I".-."'-" "',.'- «
- h 8, .",..{-','_h.'._l.‘A A W

4, DDS can reduce the impact of changes to the system
by aiding in identifying all locations where changes or
modifications are affected.

5. DDS can establish and enforce standards of
definitions and usages of data.

6. The creation of a database provides an efficient
location to store information and wmake it available to
all necessary personnel. This aids in communicating
concise information and reduces the potential of
semantic misunderstandings.

7. A properly implemented and well-managed DDS

provides a system trusted by all users (22:1-8 thru

1-11).

A DD3 provides a useful tool in supporting the
documentation of a large software system. "Documentation on
large software systems is usually poor, outdated,
incomplete, inaccurate...sometimes nonexistent" (23: 49).
This is generally the case since documentation is
traditionally the last task to be completed. A data
dictionary generator can aid iammensely in providing a
timely, complete, and accurate documentation package for any
system.

Professor Edgar Sibley, of the University of Maryland,
summarizes his strong beliefs on the iaportance of data
dictionary system:

1. Anyone who designs and iamplements an information

system, whether it is data based or not, should use a

dictionary system...Human memory is not enough.

2. It is essentially impossible to exert management

control over the design, implementation, and use of

large information systems without some automated means.

Dictionary systems are the best available commercial

aid to these important phases of the system lifecycle
(22).

s B ANNEEE | an a s s v o = AR B A A A & 8. o GEEEEES aa o a2 a a4 s g . b g e "

lal

i:, e
R
AP L ._'

h{h.‘ﬂ’.‘*‘-j.' llﬁ; A_’Q_.A L\).;‘A..‘L

For a data dictionary system tc de useful it must be
easy to use. Information must be easy to input and extract
from tne system in a usable form. This requires an
effectively designed interface between the user and the
computer, more commonly known as tne human-computer

interface.

Human-Computer Interfaces

Human-computer interfaces have been the subject of
considerable research. Twenty-five years ago computer
Systems were designed for the technician. Today, such is
not the case. According to James Martin:

..man must become the prime focus of system design.

Tne computer is there to serve him, to obtain

information for him, and to help him do his job. The

ease with which he communicates with it will deteraine

the extent to which he uses it (27:3).

How effectively an individual can use a coaputer is
based on how that individual was trained to use it and how
effectively the computer was designed to work with the
individual. These characteristics must be balanced, in a
sense, to provide a good working environment. For example,
an individual with little or no experience with computers
must depend on a well designed interface for the system to
provide a useful service. This is further exemplified by
Department of tne Army sponsored research (10:2-2) which
resulted in the following observations:

1. If people do not like the system it will not work.

2. Personnel with negative attitudes commit more

10

. >

YIS

1

b s Y,

LA A

R LY.

*e d
=,

"“-\. A

01"'

o

et

) YRS

AR

..
‘. "

a

s "0 3 W e _°
LXAAMS

182

P

o2

.
v " e
.

T VI VI R U I W VW N\ N VUV RS TRV E

errors and take longer to learn a system than those

e, Wwith neutral or positive attitudes.

Qﬁ* The concept of "user-friendly" denotes a variety of
nmeanings depending on the source. The American Heritage
Dictionary defines friendly as "...not antagonistic”
(38:527). Crenshaw states that friendly environments
reinforce the fundamental human needs psychologists long ago
identified. These include:

: 1. Need to have our expectations met.
2. Need for clear information.
3. Need to succeed.
4, Need for a right to fail (without extreme
repercussion).
5. Need for individuality (6:530).
The "ease-of-use" concept is often discussed with

‘; user-friendliness and provides a more measurable aspect of
interfaces (13, 24). "Ease-of-use refers to the physical
and mental workload necessary to first learn and then use an
interface™ (24:246). Lindquist discusses usability of an
interface in terms of efficiency where the number of
keystrokes, commands, and time can be used for evaluation.
Ease-of-use has also been defined as the time required to
reach a designated level of efficiency, errors per unit time

(or number of operations), and the user's attitude toward
the system (10:2-3).
User-friendly systems have been characterized by an
almost infinite number of other qualities, such as providing
\‘5’: 11

T T N T TP I A N R e I L P S S
R 2 R P P P A A N U UL P L U PR T S L A R A

.

"l

- %

{ MR ol ol e <

- I g

(g™

a e

Te s a4 2 %

ORI

- P A I I S e te AR
RS G LR OSSO " N O, G S R R S L LT OO

‘-'a‘\

graceful recovery from errors, displaying colorful and
stimulating screens of information, reducing
user-defensiveness, anticipating the user's perceptions,
xeeping the user motivated, and providing on-line help
facilities (10, 13, 27). Despite the elusive definitions
that these terms have, they still provide helpful guidance
to interface designers. Designing an interface that meets
these objectives is not easy, and, in fact, some claim has
yet to be done (6, 13). "Friendliness must be actively
sought, planned for, and designed in. Even when it is
actively sougnht thnere 1s no guarantee that it will be found"

(6:327).

In his master's thesis Interactive Environment for a

Computer-Aided Design System (44) CPT D. S. Woffinden

analyzed the criteria, by a variety of authors, for a
user-friendly interface. He found that the majority of
design guidelines were similar in many respects, yet each
set of criteria alone fell short of providing complete
guidance for the design of an entire interactive system for
computer aided design applications (44:17-13). Designing
user-friendly interface software is not an exact s2ience as
speed and efficiency tradeoffs abound with any design
consideration. By understanding Woffinden's principles the
designer will be better prepared to produce the pest product
for the application. An applicable subset of Woffinden's

design principles (those that impact upon data dictionary

‘‘‘‘‘‘

Tw e T L

| - -
a8

PRy FX]

"n Il "- _"l.' '.'

%

*\‘l.l"‘i.l

LR R

2Pl

»
“ s @

'
-~
“
4
o

S
ot
»

e
s

systems) are identified celow and include brief descriptions
of each where appropriate.

1. Determine the Purpose of the System. The

purpose of the system must be known to fully understand what

the system 1is expected to do.

2. Xnow the User. The target user group may have

a dramatic impact on how the system is designed. Their
level of knowledge on computers and their desires c¢f tne
system will dictate many aspects of the design.

3. 1Identify Resources. The resources (primarily

hardware and software) available for the research must be
kKnown to identify the capabilities and limitations of the

targeted envircnment.

4, Human Factors. Human factors are divided into

two categories: physical and psychological. Those aspects
of the physical environment, such as the working conditions,
that can and cannot be changed must be known so that the
interface could be designed accordingly. Psychological
factors also will affect the design. Five keys areas in the
psychological category are:

a. Keep the user motivated -- do not frustrate or bore
him.

b. Break the lengthy input process into parts to
permit the user to achieve "psychological closure."
This provides positive feedback to the user through a
feeling of accomplishment and success (27:324-06).

c. Minimize the memorization required by the user.

d. Provide visually pleasing displays on the screen.
This includes minimizing the scrolling and other

13

‘‘‘‘‘‘‘‘‘‘‘‘

gl

rag

IR

J’)}.'.'),

-

55

B

distracting movements of text, the nignlighting of
instructions to the user, and the making a2ffective use
of margins and white space.

e. Keep response time to a minimum. Display status
messages to kKeep the user constantly informed of what
is happening inside the machine.

5. Design for Evolution. The system must be

designed with the ability to accommodate future changes.

r4

0. Optimize Training and Accommodate Levels of

Experieance. All users must be able to perform meaningful
Wwork without assistance. Whether users' manuals or on-line
nelp facilities are provided is based on the circumstances
surrounding tne systenmn.

7. Use Menus vs Text Entry. Use menus rather

than requiring the user to enter text information when a
limited set of options exist for input. This method is
faster, more efficient, eliminates potential input errors,
and reduces memorization.

§. Be Consistent. Be consistent in the design of
the interface. Use the same procedures for entering input,
the same formats for displaying information on the screen,
and the same commands for exiting, saving, and traversing
tarough the various levels ¢f the structure.

9. Anticipate Errors. Anticipate and provide a

means for correcting errors where possible. Embed tne
syntax of the language in the system, transparent to the
user, Errors in the text should be correctable on the spot.

Jsers should be given the opportunity to review their input

14

»

e e s .
e e A A T e e L
. .

St R U A A A A 0 S D I S i e i e e A

and make corrections prior to processing tns information.
The system desizgn must protect the user from both himself
and the system. When errors occur, succinct error messages
are essential,

There are basically three categories of human-computer
dialcgue (1:547-40). Thne first catagory is where the user
requests ianformation from the macnine baseda on the data
stored in the machine. TIhe primary communication of
information 1s from the computer to the user. The Juery
language used with data bases is a common example.

The second category is where the user selects an option
from a fixed set provided by the computer. Communication of

information flows equally in both directions between the

user and computer. Menu structures are sxamples of this

category. i
The third category is where the user responds to

requests by the computer. Information flows primarily from 3

the user to the computer. Form-filling is an example of
this. Each type of dialogue provides a method of
communication ,uited for specific situations, but not all
situations. Most interfaces will contain a combination of

these types of dialogues.

Distributed Development Environments

This section focuses on the significant proolems and
issues that must be addressed in the design of an interface

in a distributed development environment. The ternm

15

oK% %N

o

i

- >,

A v‘ ”* ".{.{.'

F 3
LSRR R

interface, in tnis context, refers to more tnhan tne
aser-computer Interface. 1t alsc includes tne nardware iac
software interfaces between groups of workstations (or
nodes), between the workstations and the central system, and
between the workstation terminal equipment and the
communications equipment.

An overview of the major provblem areas and design
considerations of the system interfaces is necessary to gain
an understanding of the complexity of the design problem.
Jnderstanding the key issues is essential for progress even

though they may not all be solvable (32:385).

Problems Associated witn Distributed Interaction.

Database Semantics. Knowing something about now

the information is stored inside the database can be
beneficial to the user. Users often have a need to find
certain information in tne database but do not know exactly
where to look (42:382). 3Some method of data directory
management will usually assist in solving this problem. A
facility to "browse through" the database may be available,
but it may aiso te a very time consuming process if the
Jatabase is large. Data dictionaries provide some of the
insight into how information is stored within the database
and should be available to all users. However, it is
difficult for data dictionaries to provide information on
tne relationships between data. These relationshipns, and

other semantic knowledge of tne database, could help the

users osvercome tals commoa prodlem.

Alternatives in Presentation of Information. The

requirement exists to present different types of information
in different forms (5, 3, 36, 42). Text is not the only
available type of information stored in databases.

Drawings, photographs, sound, and other grapnic
representations have a place in the workstation environment
and must oe supported as the application demands. The
alternatives available to present information depend on the
nardware and software capabilities of the workstation, now
the information is stored in the database, and the costs
associated with the transmission of the information.

One long term objective in the AFIT data dictionary
cystem environment is to be able to present data dictionary
information in text format or in graphic form, sucn as
structure charts or SADT diagrams. Ideally, the information
would be stored in the database in the most efficient
manner, extracted and placed in the most efficient structure
for transmission purposes, and transmitted to the
workstation by the most efficient and economical means
available. The interface at the workstation should be able
to present that information in whatever form the user
requests.

Cost. Cost is a difficult itew to control in the

distributed databtase environment. Cost is commonly measured

in actual transmission ccsts (dollars), time, or space, or a

“aAur i pd et gt it B, palafi Tt i AR Skl Sl Nl 2t e A T D N S AN A A A The § A i SRe LT DA A A0 5 P tahi iy s RV R Rl Ml iy DhaCh) 28

s
N comdbination of the tnree (42:382). How and wnere the
)
;; é;ﬁ information is stored in the database has a major impact on
-~ the cost associated with the system. The capabilities and
‘3 limitations of the hardware witnhin the system can affect
3 cost dramatically. The software used to access the data
. (including the storage structures used, how the query
E processing is distributed) can affect the cost dramatically
53 as well. The determination of transmission paths is also an
. important variable in the overall cost equation. Designing
f a system to analyze and evaluate these criteria is a
g difficult and very conmplex task.
:? How information is temporarily stored as it is
:ﬁ retrieved from the database is an important design
ZI consideration. The format of the file, such as binary or
.; ij?, ASCII, may impact the transmission capaoility. What file
E} ’ structure 1s most efficient in terms of space and
; transmission time is also important. The actual size of the
. file will affect transmission.
; Some applications for workstations require all
é information pertaining tc a particular project be
; immediately available at the workstation. This enabdbles tae
-, designer to work on the project as an entire entity, rather
§ than piecemeal. In view of this environment, it would be
N desirable to transmit all definitions of data items (whether
N required for modifications or not) pertaining to a
}: particular project to the workstation. The most economical
[
. \:;;::_ 18

neans to transfer files over the transmission path should ope

enmployed. With respect to project devalopment, exactly now
nucn of the project data is required at the workstation
should be determin2d by the user.

The decision process in determining optimum storage
structures and the means of transmission is logically based
on three criteria. These criteria include the database
itself, the hardware capapilities and limitations of thne
equipment involved, and the existiag software. FEacn of
tnese itens contribuge greatly to the complexity of the cost
problenmn.

Generally, the system itself would analyze the overall
cost of alternatives and make a decision. If, nowsver, the
system had the option to query the user for assistance in
making such decisions, then the user must pe qualified to
provide such guidance. This introduces an additional
requirement that users be qualified to input guidance to the
systen.

Supporting Software Tools. A variety of tools are

used in conjunction with database management systems
(42:362). Report generation, statistic collection, or any

otner tailored query are all possible "tools" that could be

3 v e,
* et L

used to obtain or manipulate the data in the database.

There are basically three capabilities tnat must be

)

provided to adequately support any desired tool (4c2).

First, the interface must provide tne user access to the

19

tools that are available for use. 3econd, the tool nust
support the specific data desired by the user and must
control the execution of the otner supporting tools, if
required, to properly access the data. In a distributed
database environment, different tools will reside at
different noaes within the network. These tools must
communicate with each other when circumstances arise that
require combinations of tools to perform database actions.
Tnird, the system must know the semantics of the database
and tools to provide correct facilities for presenting the
data in its proper form.

Because the tools and Ehe data can be stored at a
variety of locations, thne distributed database environment
adds to the complexity of the interface design. Decisions
nave to be made by the system as to the best method of
procuring the required information for the user. Where
system decisions are not possible or practical, the
alternatives must be provided to the user for guidance.

Particular tools that are required in the DDS are those
that check for consistency within the database. MNot all the
data pertaining to a particular project is provided by a
single user. Project definitions will obtain data
indirectly from other sources., The database itself must be
searched to provide some of this critical data. There is a
requirement for tne instantiation of the tool that provides

tnis service after updates have been made to the database.

20

....... .t
.

'.‘.‘.*-.-. - a™AY ta
SRR LRSS AT K CL O

- et A A
AT CLE TR O

e LTe e yTe e
a e
at .

-

where these tools are stored and now they are executed is of
critical importance.

In environnments where all information pertaining to a
particular project is at the workstation, some facility
should be available to process all modifications (direct and
indirect) to the aata, at the workstation, prior to
transfering the information back to the database. 1If data
definitions in a data dictionary system are deleted as the
result of the update process, the database should recognize
the deletions upon the updating of the database from the

temporary file.

Framework for a Distributed Database Interface.

Although the scope of this thesis limits the invastigation
to only a workstation interfacing with a single central data
base, there are clear applications for distributed database
environnents.Wilson proposed a conceptual framework for tne
distributed database interface (42:382-3). Five categories
of knowledge provide the foundation for this framework:
database schema knowledge, database semantic knowledge,
generic and individual user model knowledge, comaunication
knowledge, and equipment knowledge. FEach of these knowledge
pases are important to the designer. &ach provides
capabilities and limitations that will impact the design of
the system and must be considered. Althougn endowing an
interface with an abundance of knowledge from all five

categories is not possible yet, providing some from all

21

'.q'.‘.' AP e I T et .."_ MR
. . 'y -

~p v W =

categories and more from those particularly relevant to the

~ 4 Wl

interface, is a genuine goal. Figure 1 shows a graphical

[
K
&

.

representation of this framework, and an explanation of esac

2 body of %nowledge follows.
1
'y
.
: GENERIC AND
‘ -
2 INDIVIDUAL
. DATABASE USER MODELS
SCHEMA
N KNOWLEDGE
; USER
. INTERFACE
& DISTRIBUTED COMMUNICATION
B DBMS KNOULEDGE

DATABASE
SEMANTIC
KNOULEDGE

EQUIPRMENT
o
KNOWLEDGE
! DATABASE
!
L4
J L——/
o
4
X
4
X Figure 1. Framework for a Distributed Database
Interface (42:332).
)
e
LA
: yjtﬁ 22 -
1
)
)
[]

L P AP T St T .- ..' A e
'-"' N "'ﬁ D NS _L\-l:-"i‘ :'_.'_A\ \ " " \A.‘ \.‘h‘.&‘:\‘\’:vf\ \)"\- \ “a¥a" \"\.."

Database Schema {nowledge. The schema knowledge

is the logical structure of the 2ntire database (42:332).
The system uust know how and where the data is stored within
the distributed network of nodes. The version of the
database stored at each node is important information. The
type database management systems employed at the various
nodes is important. The query languages suppcrting the
local database must be known. The methods of concurrent
update operations to data must be known. Database scnemna
knowledge 1s used in the formulation of queries tc the
database. Where users directly formulate their own queries

this knowledge is used as an error checking mechanism. This

2 g "y

knowledge can also be used for translating natural language

representations of queries into the required datatase

TR

management system query language.

¢ ¥

Semantic Database Knowledge. This knowledge is

¥ °B %

similar to data dictionary knowledge, but is more extensive
in scope. 1t includes knowledge about now the iaformation
is stored in the database, the limitation on information
that is stored, and, most importantly, tne relationships
among tne different fields of data in the database,
Increasing the inteiligence of the system through semantic
modeling of the database design and definition is a much

needed capability to improve database usability (3:1).

23

Generic and Specific User Model Knowledge. 1In any

distributed environment there will be different categories
of users (42, 44)., Tne general categories of users will be:
1) infrequent or novice users who having sporadic and
limited direct access requirements of the data (for example,
managers, decision makers); 2) casual users who use the
database frequently, but only in limited ways; 3)
experienced users who are the regular and frequent users of
the database; and 4) programmer users who manage and extend
the database (known as Data Administrators, DA, or Database
Administrators, DBA). Capturing the knowledge of the target
user group will lead to more user-friendly environments
(5:18). Generic models include those items tnat all
interfaces should provide, such as preferred modes of
interaction for classes of users. Specific user models are
tailored to the needs and requirements unique to certain

users.

Communication fnowledge. Communication knowledge

contains information on the costs necessary to acquire data
from cther nodes within the network (4¢). A primary
objective of most interfaces is to keep the structure of the
distributed system transparent to the user, but at times it
is necessary to provide this information directly to the
user. Alternatives availaple to transfer data between
nodes, with their associated costs, is known and should to

provided to the user where required. Costs associated with

24

transforming data into varicus forms should 31lso ce known
and made available to the user as necessary.

Equipment Knowledge. The equipment availatle at

any site will affect the design of the interface. Tne
functional capabilities of the devices will dictate, among
other things, the alternatives available for information
representation. The user interface nmust know whetner
graphics or color, for example, can be supported at a
particular node. The interface should be designed to take
advantage of all the capabilities currently available at any

node, with the ability to accommodate future upgzrades.

sunaary

The purpose of this literature search was to uncover
infermation found in the current literature that pertains to
data dictionary systems, human-computer interfaces, and
distributed development environments. Establishing a
foundation of understanding tne fundamental concepts in each
these areas was necessary before the requirements for a data
dictionary system in the AFIT envircanment could be
establisned. The information in this chapter providea that

foundation.

25

0. o "'. . A,"-\;:"q."-h' B n-'--"‘-"‘--"-"}"‘- S y o,
LA TR R CL L A R P R O SRR

.
A N e - _e_-_t_tlt

i
G

i

g e 4

Dt]

of

e

ITI. Data Dictionary System Requirenents

The conteats of this chapter present the requirements
of the data dictionary system within the distributed
software developnent environment. The chapter is dividea
into tnree sections. The first section devoted to tne
analysis of the overall system, the second section devoted
to the requirements of the data dictionary editor, and tne
final section devoted to the requirements of the interface

to the database.

Jverall System Analysis

The distributed software development environment at
AFIT is shown in Figure 2. 1t consists of a contingent of
workstations, a central computer, and the communications
links between the computers. The workstations include a
variety of types from personal computers at students' homes
to the sophisticated Sun workstations in the computer
laboratories. The central computer is a Vax-11/730 thnat can
operate under the Unix or VMS operating systems. The
database management system INGRES is available with botn
operating systems (different versions for each) and is to be
used for the storage of data dictionary data. The
workstation links to the central computer are through a
Gandalf switch. This Gandalf switch also provides a dialup
capability for the home computers to communicate with the

central computer.

SO S A T

YRR NS,

>
o’y :
l.':l\ 9
»
o
sun ”
VORKSTATION &
-«
g
2-100
VORKSTATION *]
! ;
2-100 J
WORKSTATION vax-11,780
UNIX =
Locat GANDALF '
> ¢
TERAINAL SUITCH A
r
LocaL — N
TERMINAL 2
INGRES .
" DATAPASE
HOME
VORKSTATION ~
-
N
l DIAL-UP N
A
HONE .
VORKSTATION .
Figure 2. Distributed Development Environment.
5 s ¢
The oojective of a distributed development eunvironment A
is to provide the facilities for users to perform the R
¢
. . . . L. . . Ay
ma jority of their research at individual workstations in tne pY
.
7 27 -
:
- w,
v

Y

Vet w® w ‘-‘...‘ T ‘q" -q- S .-' Tat e ‘\‘: T
AR S LRy ST R IR N THCLRNRY

comfort and convenience of thaeir local work areas or home.
;5q§ Using workstaticns for the majority of information
processing substancially reduces the student's reliance on
the availability of the central computer central processor
unit {(ecpu) and consequently provides favorabls conditions

for improving efficiency of student research.

- -
T

The target user group consists of graduate students at

AFIT pursuing a curriculum in electrical or computer
engineering. All users will have some experience witn
computers and will be familiar with the requirements
document for data dictionary information. Users will be
familiar witn the Unix Vax-11/730 (SSC) computer and will
most likely have some experience with the use of
microcomputers.

‘Eb Software development documentaticn standards at AFIT

" follow the software lifecycle phases consisting of the

requirements analysis phase, the preliminary and detailed
design phases, and the implementation phase. Graphical
representations often used to support the documentation
requirements include Structured Analysis Design Technique
(SADT) diagrams (3ADT is a registered trademark of SofTec)
for the requirements analysis phase, and 3tructure Charts

(SC) and Data Flow Diagrams for the desizn phase. Data

dictionaries often accompany these representations in
A addition to accompaning tne actual code (37).

A The distributed envircnment is required to support tne

et e e et T A e e e e e R e T e e e e e et e ra T T
T ."‘ a ‘ --‘\ ... LR L T .'-... el \ N, .\v.\.- -_-\. \-_'- e -'_‘- oy u'\-'..v','-' .

TN
.‘* .-n

A NI

TN TR LY ST e .
~ IANY
-). L AR I

R
RS
B o

capapility to generatas and update data dictionary

;? definitions at the workstation and transmit these

Y Y

definitions between the workstation and the central

»!

database. New definitions created at tne workstaticn are

transmitted to the central computer for storage in the
database. Existing definitions requiring updates are
- retrieved from the database and transmitted to the
workstation for updating. Inherent in this requirement is
the need for a user-friendly designed editor on tne

workstation, a communications interface that provides the

.

P
.

. transmission capability between computers, and the

L

corresponding interface on the central coamputer that can

> load and retrieve definitions to and from the database.

3 The contents of data dictionary definitions for the
& i;; pnases of the lifecycle stated above are detailed in the

a - Department of Electrical and Computer Engineering Software
2 Development Documentation Guidelines and Standards (37).

2 Sample definitions are snown in Figures 3 and 4 for a

- structure chart process and parameter in the design phnase.
i This represents tne data that should be represented in tne
R database and is often referred to as operational data (7:7).
:

;

Paa !

LA PN
« e
4’
) _)

N

G S S S T R G O S O RN
i v . " 0 » i N . 2 9 hd

PRNAME: Process Message
PROJECT: NETOS-ISO
NUMBER: 4.0.1
DESCRIPTION: Process a NETOS message.
INPUT DATA: nmsgptr
INPUT FLAGS: none
OUTPUT DATA: none
OUTPUT FLAGS: error2
ALIASES: PROC_MSG
CALLING PROCESSES: Process Messages and Data
PROCESSES CALLED: Decompose Message
Process Network 4 Messages
Determine Channel Number
Build Queue Buffer for Qty =
Put Buffer in Queue
Level 4 Cleanup
ALGORITHM:
Decompose message.
If network message
Process Network 4 Messages
else
Determine channel number
Build queue buffer
Put buffer in gqueue
Cleanup Level 4.

REFERENCE: PROCESS SPOOLER MESSAGE
REFERENCE TYPE: SADT

REFERENCE: Smith's Algorithm, p. 23-24
REFERENCE TYPE: text

VERSION: 1.1

VERSION CHANGES: Added module "Level 4 Cleanup”

DATE: 11/25/85

AUTHOR: J. W. Foley

1

03

ure 3. Data Dictionary Format for Structure

Chart-Process (37:27)

The use of structure charts in the design phase i3 one

area that has received considerable attention for research

at AFIT.

Attenpts to automate the storage of iaformation

S)

v

TR o e,

ML

LR

[l Sl b et i *RALTat find N Wagofe g Wty RAECAA N S A L iy Sl i e g Rt e S aied it Aol Shih 1k 2t s ¥ ATl Ay A IS A% 4 gve A
. R . P T AL et S o R A TR T LV LTLVELTRY

PANAME: nmess_parts
PROJECT: NETOS-ISO
DESCRIPTION: Decompose parameters,
DATA TYPE: Composite
MIN VALUE: none
MAX VALUE: none
RANGE: none
VALUES: none
PART OF: none
COMPOSED OF: SRC
DST
SPN
DPN
USE
QTY
Buffer
ALIAS: Message Parts
WHERE USED: Passed from Decompose Message to Val Parts
COMMENT: Part of earlier design
REFERENCES: SADT - MSG_PARTS
REFERENCE TYPE: SADT
VERSION: 1.2
DATE: 11/05/85
AUTHOR: J. W. Foley
VERSION COMMENT: USE added to allow network msgs.

CALLING PROCESS: Process Message
PROCESS CALLED: Decompose Message(parts_list)
DIRECTION: up
I/0 PARAMETER NAME: parts_list

~

Figure 4., Data Dictionary Format for Structure
Chart-Parameter (37:29-30).

directly from structure chart into the database manazgement

System identified certain problems that required additional

WA S Y]

-
Badh

constraints to be placed on the design methodology (1v). A

T ——r—y
i s
i

typical structure chart is shown in Figure 5. It presents a

PR

graphical representation of information to help designers

A M amre

Visualize and understand the relationshins between processes

ind parameters (106).

B e -

N
.
9
[N
—

.
-
DA
“
5
e ar e
o - -) L o . T
I.I' . - N A - - e At CIA TR TR R h - - v . - l A * :) "
ol T e T e e T et e e Tt e e e T T e e e Tt e
. - D e 4ty Lt e - 3 o " - . 0 oAt T T 0, MRS {. N - * -~ A = N - . X . i : ; -
- - B e T M WLV S A Sy SR I A L RS S TP
P - — - %

TEAM 3 DATEs 10-10-8S READER
NETOS-IS0O REV: DATE

PROCESS
NESSAGE
4.0.1

\ N
NSG-PARTS / FULL BuFFER \ oowe \

DONE

INCOMPLETE
DUFFER

DECOMPOSE PROCESS PUT BUFFER

NETVORK 4 IN QUELE
Ressace PMESSAGES

4.9.1.1 4.9.1.2 4.9.1.5

PROCESS MESSAGE (LAYER 4)

Figure 5. Typical Structure Chart (37).

A particular problem that involved the passing of
parameters between processes is shown in Figure 0. As shown
in a conventional structure chart in Figure 6 (a), two

separate processes call a common process "sort2",

SRR LS LSRN TR

.
“
AN 3
Ry
DETERMINE SORT-SALARY K
1Y
PARENT .
a.1 1.4 by
PARENT saLt ‘4
AGE1 CHILD sal2 2
ncsa\\\\\‘ ‘\\\\\ ’/,/”)' LOu-sAL ,
HI-SAL l
SORT2
‘ 2.1.2
. CONVENTIONAL STRUCTURE CHART N
|)
! Py
‘ DETERMINE - |SORT-SALARY .
PARENT A
2.1 3.4 a
‘ N
“ S
| ~
B. PASSED PARAMETERS AND 1,0 PARAMETERS R
Ffigure ©. Example of Parameter Passing (37). 2
| ‘
|
Each calling process passes to "sort2" two different -
parameters. The values returned from "sort2" are similar in i
N
3 : 33 "
R .
B A A N SN R s

that they boctn represent numerical values, but their

”".

e

meanings are different -- "determine parent" expects a

o v v v F e w.

"parent" and "child" returned, while "sort-salary" expects a

"lcw_sal" and "hi_sal" to be returned. The ambiguity in the -
returned values from "sort2" led to the anomoly condition f
that automated tools could not properly handls (16). Figure

6 (b) shows how tne modified structure chart appears, :
adhering to the new parameter constraints. As research N
continues additional modifications to the conventional

design tools should be incorporated as necessary. These

we

seemingly small details of information are important and

must be captured and provided for in the data dictionary
systemn.,
A second category of information that needs to be E

‘3 considered is support data, that data which directly

supports the requirements of the Data Administrator (7, 22). -
{ To manage the database the DA has requirements over and
above those of the user. The data dictionary system must be
aole to maintain an audit trail for the DA to monitor the

contents of the database. The 0OA must also keep an accurate

AR LI

list of all personnel autnorized to use the system, along

with their privileges (read and/or write) and passwords.

Tne DA must also have the capability to send messages to all

£

users of the system when necessary. Although this data is
important, it was estimated that this requirement was beyond X
::._::. 34 N
- - ~

]
]
)
]
]
»
)
l
‘ the scope of this thesis. 1t is included in this chapter
|
|
|
D
l
|
\

." "'4"' RS

.,..\1',

'\\"M“"S\\k ‘&“&‘L"q" : }lu

IS Sl S Bl el Tl A B R AR R RN S R AR A R R A L B gL 8 A RPNl ot gt ol ghl Pl P g DVE ok Rl L 0 R SR N

for iafcrmation purposes only to provide tne reader witn a
N better understanding of tne requirements of a complete data
dictionary systen.

Tne database design to support the operational data
requirements of design phase ¢of the lifecycle was
fundamentally determined prior to this thesis investigation.
The chronology of events that led to the current design is
summarized below. The original third normal form relations
Wwere designed as a result of one thesis effort (39) and
numerous other classrcom projects. Thnis original set was
subsequently modified, based on user experience with the
system, which resulted in the removal of three items from
process relations. Global variable information was deleted
since the use of global variables is traditionally

‘Ei discouraged and the fields were seldom used in the design
phase. Hardware 1/0 and File I/0 were also removed
primarily because they were much more implementation
dependent and seldom used in the design phase. Other ninor
modifications to field names and sizes were made to arrive
at the set of the third normal form relations curreatly
implemented in the datapbase and shown in Figures 7 and 8.
Direct mapping techniques were employed to confirm that all
data items within the data dictionary definitions were

satisfactorily supported by the database snown above.

PO L Y ot N T e et '--"- T e e A o e A ‘... ISR _"' V.t <
v ; mm h}i }A:.tl.’ _.A'u.:f NN L‘}). P -.A‘:‘ o .."A"L'}A-:l'} l.':. " AR _n'.\ PRI T I TR Tt i

[/

“gia g k : F 3 ¥ AR Bt Byt e b) Sty b s ste R e SR e gN g bl LA S

. P RS A TR N LR B i - R T e o - - -

s g 2 A S

- e e g il

»
A,
Y Y
V!
process:
*project cl2 - Project nanme
*prname c25 - Process name
number c20 - Process number
prdesc:
*project cl2
*prname c25
*line i2 - Description line number
description c60 - Description text
pralg:
*project cl2
*prname c25
*line i2 -~ Algorithm line number
algorithm c60 -~ Algorithm text
processio:
*project cl2
*prname c25
*paname c25 - Name of i/o parameter
direction c4 - Input "in"/output "out"
ptype c4 - "gata" or "flag"
prcall:
*project cl2
*prcalling c25 - Calling process name
*prcalled c25 - Process called name
prreference:
*project cl2
2. *prname c25
ﬁ *reference c60 - Reference description
reftype c25 - Reference type
pralias:
*project cl2
*prname c25
*aliasname c25 - Name of alias for prname
comment c60 - Why alias is needed
prhistory:
*project clz2
*prnanme c25
*version cl0 - Version number of this entry
date c¢8 - Date of this entry
author ¢20 - Author of this entry
comment c60 - Changes from last version
Figure 7. Third Normal Form Relations for a
Design Structure Chart Process.
36
“ e
" \
\f}:
0 oty

"l.ﬂ-‘.‘..l... .'.’-“ﬂ.\ ‘*\’.’Q...-."~‘.. .\ .- .l-‘q. ‘

ot
DA Y

?“A‘W"K“"L‘“-.‘V‘- A RN YA St & b Al A YA A S ati At sty ity K A AR REIC A SR At 1 e it i S it g Lt s it g AR S &

parapeter:
*project cl2 - Project name
*paname c25 - Parameter name
datatype c25 - Language independent data type
low cl5 - Lowest value allowed, if any
high cl5 - Highest value allowed, if any
span c60 - Range of allowed values, if any
padesc:
" *project cl2
*paname c25
*line i2
description c60 - Parameter description
pavalueset:
*project cl2
*paname c25
*value clS5 - An allowable value for paname
pahierarchy:
*project cl2
*hipaname c25 - Name of composite parameter
*lopaname c25 - Name of component parameter
paref:
*project cl2
*paname c25
*reference c60 - Reference description
reftype c25 - Reference type
paalias:
*project cl2
*paname c25
*aliasnanme c25 - Name of alias for paname
comment c60 - Why this alias is needed
whereused c25 - Process name where found
4 pahistory:
*project cl2
*paname c25
*version clo
s date c8
author c20
! comment ¢c60 - Changes from last version
papassed:
*project cl2
r *paname c25
P *prcalling c25 - Calling process name
1 *prcalled c25 - Called process name
direction c4 - Direction "up" or "down"
iopanane c25 - Name of i/o parameter

Figure 6. Third Jdormal Form Relations for a
Design Structure Chart Parameter.

et et e te T ",
LN I I O S AR Sl YA

There is a requirement to provide the communiczations

al
. ljb interface petwsen the workstation and the central computer.
YA
Ideally, this interface should be designed as an integral
5 part of the "system" and activated within the environment of
) the workstation editor or interface software on the central
comnputer. However, it was anticipated that tnis portion of
the system would not be a high priority because of the
existing file transfer programs available within the
academic laboratories or commercially available to the
. students.
<
. The user should have the capability to perforum add,
update, print, and view operations on the database from any
o+
y location in the distributed environment (39). Users also
Cd
j have a requirement for additional operations (or queries) on
K]
‘i the database, for example:
Q 1.) Determine all processes that call a particular
. process.
) 2.) Deteruine all processes that use a particular
‘ parameter or aliases of the parameter.
5 3.) Determine all parameters associated with a
» particular project.
. 4.) Determine all I/0 parameters of a particular
process.
; 5.) Determine all aliases for a particular parameter.
B ©.) Determine all processes associated with a
y particular author,
7.) Determine all authcrs associated with a particular
~ project.
.
>
~ The word "determine" could te interpreted as "display" on
)
'.-q':n. 38
.. -‘
I
»
o
v
¢
L
E
J.-_._. R . e e et P e . R . - . . .- e e T LT . e R T TR - e
3 S D A R S L T A S G G L LU R e o

the screen, "send" to a line printer or file, or "place" in

p R a standard report. The operations listed above use tne
R

terzinology for the design phase, but the operations shoulad
»
. be interpreted as requirements for all phases of tne
A
v, lifecycle.

A data administrator should have access to all the user
k operations, plus some additional operations peculiar to
i supervisory responsibilities. It is understood that the DA
i nas direct access to the database where the users do not,
. and, subsequently, can use the data definition language to
- extract any data item desired. A complete data dictionary
system would provide software to facilitate the DA's efforts
. in managing the database. This software would assist the DA
in
‘E; "...degi@ing the information content of the database,
...deciding the storage structures and access
strategies, ...defining authorization checks and
validation procedures, ...defining a strategy for

backup and recovery, ...[and] monitoring performance
and responding to changes in requirements" (7:25-29).

DA

It would be desirable to have some facility that would

automate the generation of data dictionary entries given a

MEAENENENGOR

file containing structure charts or modules of code. Data

entities could then be entered into tne dictionary database

N
> without requiring the user to input it separately through
N the use of a special editor. There 1s a potential for
[
increased efficiency, but not witnout cost. First, the
-
: amount of information extracted from the files may be
i limited and, therefore, may necessitate a substantial user
-~
e
. 39
»
4
o
Cd
4

.
.

'A‘u.' Y ‘-'-.'.’- - ‘-"-." -.'--
'. X u { ". .-. 1‘. Q. .i ‘J“ - Q. -. - *

K} .

session with the database. Second, possibilities exist that

K

X
8

undesirable inconsistencies will develop that could result ;
in serious damage to the database. Third, recognition of '
redundancies (planned and unplanned) and wmultiple uses of E
c
entities are, at best, difficqlt by mechanical means. Thesse :
redundancies and uses of entities will enter the database 5
and may seriously decrement the effectiveness of the DDS
system (22:2-13). This altesrnative is mentioned nere for

information purposes only pecause of its potential for use

gl

-

.
)

in data dictionary systems. It will not be addressed again

[PR
)

within this thesis report.

rr
-

b

Data Dictionary Editor Requirements

The data dictionary editor was required to run on the

. workstation. It was required to be a user-friendly designed -

.'D editor that would allow the user to input all necessary data
dictionary definition information as specified in the

department guidelines. The purpose of the special editor

"."‘|'|‘l“l. A. M

was to provide the user with an efficient means of creating 2

and modifying data dictionary definitions. 3ADT diagrams

located in Appendix D outline the general requirements of

P S A S A I

the data dictionary editor as stated here.

The editor must be designed for evolution. The :
aocunentation standards, published by the Electrical and
Computer Engineering department, are reviewed and updated
periodically. 3ome department and research advisors require

various other forms of documentation. Other environmental

- 40

AN

T Y e et T S T AT R AT -
4 " "."'ﬁ':..g'f‘ O o i ?‘: vf,\. N OUTS

A

'.-:1..;4’.: RO R)

conditions may dictate other cnanges in tne systeu.

The editor must be designed to anticipate, prevent,
identify, and correct errors. In addition to the items
outlined in Chapter II, peculiarities of INGRES, such as
unrecognizable cnaracters, nust be guarded against. when
errors in processing information to the database occur, a
transaction log of some kind would neslp identify what
information was processed correctly, what failed to get
processed and, irf possible, the reasons for the errors.

Some method of "pretesting" tne file for correct format and
nonblank xey fields would also be useful.

A major requirement of the editor is that it oe
generic. This means that the editor software is not to be
designed to support only a single phase of the lifecycle.

It should be designed in such a fashion that it would
provide the same editing facilities for any of the phases of
the software lifecycle.

The editor is to be designed to be portable to other
workstations with tne minimum of modifications. tHardware 1
dependent functions are to be separated from the main
portion of the code to the extent possible to permit easy

substitution modules for otner machines. Only the standard

il i n.

24 row by 30 column size screen is to be used and only one

color is to be used.

The ocutput of the editor was required to be in a

format that can be read and understood by the interface

41

'.r C e s Sy . -, e e, - .',.'_.._...
oy &.MZ&&W o s -‘;-L.c-“;.;_‘ua;}; A e e T R R A

e sy

T T

s2ftwirz running on the ceatral computer. Likewise, the
aditor was required to read and understand the format of thne

cutput generated by the central computer.

Central Computer Database Interface

The iaterface software on the central computer is
raquired to translate the definitions generated by tne
workstation editor and load these definitions into the
database. Definitions needing updates are required to bDe
retrieved from the database and sent to the workstation in a
format that could be read and understood by the editor.
Ideally, these operations should be accessible from any
location within the distributed environment.

Database Interface Facilities. 0On-line processing

facilities provide the user with immediate access to the
database and should be provided (22). Interaction with the
database 1s accomplished while the user is using the system.
This method is generally used when only a short period of

time is needed to perform the task at hand, or a small

pas

amount of information is needed quickly. Examples would

e

include a user who needs to make a simple modification to an

A,

existing data dictionary entry, or a user wno needs to

3

verify a certain piece of data exists within the aatabase.

Ll

Batch processing facilities should be provided since
interaction with databases can be a time consuming and
frustrating experience for a user (22). Batcn facilities

permit new data dictionary entries to be submitted to the

42

Py fean s v - . Cindi e =ittt it A) i B Ll e’ Ao Yl T Y W_‘_‘V\W\v‘,v‘
AR MG A b N SR AR A R DR UL AR A RIS iab s dad Tl AT

bl
"y

A7

W
s

a3tacis2 tarosugh a batcen of 4ata already prepared in a fixed

54 % A

&,

-,

43 crmat acceptanle by tne systew. 7The advantage of such 3

facility is that large amounts of information can be entered

L

intc the dictionary database without the user's presence

A

requiredi at the terainal.

SARS

Security of the Database. Protection of any data

dictionary system from unauthorized access is important for

two primary reasons. First, the dictionary daatabase

LN S N
T el

b

contains, by its very nature, a complete description of the

LS
o

LR

organization's processing system, information that usually

s % e e
l.l

i

is not desired for public exposure. Second, and more

«
sy 7,

2
L

important for the AFIT environment, is that tne dictionary
s database must be a trusted and reliable source of
information. Accidental or intentional tampering with the

= ‘ji' data will degrade its reliability and render the system less

useful (22:2-20).

I.A.“l.
et

The purpose of the data dictionary system, tne

ll’

environment in which the system 13 implemented, and a host

‘l
L

of other factors will affect now security measures will be

A
. e

employed. Generally, security systems should distinguish

[l
aTa v

%

between the reading, creating, modifying, and deleting of
data. The DA 1is usually tasked with manazing the security
issues (22:2-20,21).

In the AFIT academic environment, intentional tampering
oo with the database i3 not a major concern. This does not,

. however, eliminate the requirement for security measures.

43

)

Security measures snould include the followingz:

Sunimary

data dictionary system tnat supports tne davelopment of
software in the AFIT distributed development environment.
The most important requirement in this environment was
capability of the workstation to effectively communicate
information to the central couiputer database and vice-versa.
Generic and portability requirements were two important
izsues that had to be considered throughout the design stage
of the editor to facilitate the growth potential of that
portion of tne system. The contents of following chapter
will focus on the design of the distributed data dicticnary

system based on the requirements estavlished nere.

WIS

o

0

1.) Access to the dictionary database shoull be
restricted to only those persons Wwho nave a validated
requirement.

2.) CUperations on the data that include destructive
action (i.e. delete, modify) must be carefully managed
to preclude any intentional or unintentional damags to
the database.

i
|

3.) ©Direct access to the database via Ingres should ve
restricted to the DA. Users snould access tne data
only through the provided tools.

4.) A responcsiole owner (programmer or team) snould bde

defined for all data. Only the owner can modify the
data.

This chapter described the requirements for a complete

4y

. L -~ - - P W e L . - - RN
- o’ ~

e N T LR ~ - RSO LSRN

~ . ‘.._0'.".".". Ca R N AP AT . .
IR T T R T ot S T O I I P IS D

b
‘-
Y,
s

b
)
[
Ny

I
.

r -
“TTEE Y

LA s

N A

A A A

TEET

v v -
4

IV. Data Dictionary 3System Design

The requirements identified in Chapter III established
the foundation for the actual design of the data daictionary
system. The data dictionary system consists of three
separate but integrated components. The first coaponent is
the special editor designed for tne workstation. The second
component is the communicaticns element bpetween tae
workstation and the central computer. The tnird component
is the interface to the database that exists on the central
computer. The design and development of these three

components are addressed separately in this chapter.

Data Dictionary Editor Design

PRI YR PRI

The Zenith Z2-100 microcomputer was chosen as tne
prototype workstation for the implementation of the data
dictionary editor. This computer was chosen for two prinary
reasons. First, it supported the standard l1o-bit cperating
system in use today by microcomputers (MS-D0S). 3econd,
There are a large number of Z-100 coaputers availaole for
student use in tne academic areas.

The "C" programming language was the language of cnoice

for this editor. This was because the Berkeley version of

sindeteche et o ek oo SIS odond el

the database management system INGRES, used on the
mainframe, only supports "C" in accessing the database

througn its embedded query language. Siace the software on

4o

e e 3% R N b Tat el el Uy L

the nainframe was going to be implemented in "C", it was
.yQ3 logical (although not required) to use "C" in the

workstation software as well. Anotner important

ol)

consideration was the fact that "C" was supported by thne

) ma jority of the other coaputers available for student use in
the labs. This facilitates the portabtility of tne code to
these other conmputers.

A set of design structure charts for the data

i 2 Rt

dictionary editor are located in Appendix E. r

User-Machine Interface.

- Dialogue. The user-machine interface dialogue

consists of a screen-oriented combination of menu-selection

and foram-filling displays. Menu-selection is used in the

\ . initial stages of the tool while form-filling dominates the
i;;’ editing session of the tool.

Generally, menu-selection is the preferred method of

- obtaining user input when only a small, limited number of

options exist for the user to choose (1, 10, 27). The

initial stages in the execution of the editor tool require

, the user to identify whether a Create or Update session is

desired (see Figure 9). In the event of a Create, the
lifecycle 'phase' and 'category' must be identified (sample
menus for creating a definition in the design phase are
showa in Figures 10 and 11). If an Update session is
desired, the user is prompted for the name of the file to

o update.
R WA ‘ HES

Y e N Y T T T T T LT e e e e e T P T s i T T TN P N
'.'.‘.’-(’-'. S ‘-'.’-'.".1 “° N '-."-J. YRt "\-.‘ - < ‘. J" J*‘J‘ - 4" A ‘-{ . “\.’ T4 S maly N y

s s a" &

R S 2 P AR S P T S T s A i) e . - DOCL 2 Pl a) o A gl S A i T W N TFEICITITC IO

[

PLACE CURSOR IN BOX, PRESS <RETURND

C 13 CREATE NEW DEFINITION

C 1 UPDATE EXISTING DEFINITION

L 3 EXIT PROGRAM

rigure 9. Opening Menu on the Editor.

Choosing these menu selections, rather than requiring
the user to type entries at the keyboard, provides a nmore
efficient system requiring a minimum amount of training

necessary to use. Menu-selection reduces the memorization

47

ZRASRAT At Suia AR b RAuClia) b Sla ot R Wbt BN a8 S A TRLS TS T YN YV UNENE TN Yy T XX AT TR bt Bavot B by Al oW g gh LI A R Rt

| CREATE__J[ﬁ "

PLACE CURSOR IN BOX, PRESS (RETURN>

C 1 REGUIREMENTS ANALYSIS PHASE
C 3 DESIGN PHASE
C 1 CODE PHASE

) C 1 EXIT TO PREVIOUS MENU

Figure 10. Menu #2 for Create.

required by the user, reduces the potential for
typographical errors, and reduces the number of required

keystrokes (1, 10). It is expected that users of this tool

23

U3

A
a
h)

S N S A V0 VL RN \“.',.'_\. ST ...- o . ,,'.‘_ -'_--.... "‘- .-v . ~'.‘ I S
2o WHRAGCY '.‘1'&‘;‘;‘..)‘:\1\\' Com'ah' St o PSP PRI L PGS S S et S X

AR D St et e "RAA AN S AR N & St

7T oaes maad Rad —— v A Aod v‘vT
Lt A A b & A0 A At ek s SN & Mdc g K a2 BRI a0k A ol o AR i i) i Sl SR Sliann e, Ze i Saanch ui Ant S k Yt T

CREATE “ DESIGN

PLACE CURSOR IN BOX, PRESS <RETURN>

L 1 STRUCTURE CHART -~ PROCESS

€ 1 STRUCTURE CHART -- PARAMETER

C 3 EXIT TO PREVIOUS MENU

Figure 11. Menu #3 for Create.

will include those who use it occasionally (for classroom
purposes only) and those who will use it frequently (for
thesis research).

Menu-driven control of a program is sometimes

4y

Late . N L w e %
. . P S .. . % .
. -t ~

- -~
T R P A . el . e T e T e . B R T TL AU TSR S [SCSPE
ERPR T PP G P TP TR € O AR Kot A ARy N R A TR R ARSI & (R U AT G S WP S W

- _..'_'.‘_.. '.-.‘ -“'lv
s i e i b

criticized for being too slow for experienced users (1J).
B Because a maximum of three and a minimum of twWwo menus can be
presented to the user, the experienced user should not
suffer from potential frustration or boredom with tne toocl.
Other input devices were considered, such as a mouse or

light pen, but were eliminated due to reduced tool

portability and limited usefulness in predcminantly text
editing environments.

The form—f;lling method was chosen as the primary
méthod for display and input in the editing portion cf tine
tool. Predefined, formatted structures, called templates,
are used as the basic form. There are three main reascns
for this choice. First, the nature of the data aictionary
definition lent itself very well to a blank form-filling

'ii operation, since a variety of fields exist for each
) definition. There are limitations on some of the entries -
for tnese fields, mostly related to the length of the input,
but tne vast majority of fizslds contained no limitations or
restrictions on the information entered or format upon which i
it is entered.

Second, the form-filling method presented the
information on the screen in a manner that closely resemoled
the format required by the department. Being familiar with
the display of information, along with the syntax and
semantics of the required input, reduces the initial shock

and possible apprehension of the system users mignt

A L e e ,"' Al PR B ".h T e St *.'.‘\ - '-‘--."h.".vu‘.. = '.‘-’-. ".- .-. ORI S e .‘--‘ '.\
L SRS \-.-_ W .. O ICTRE R -_ LRI \.. AR, -“-. N et \" " -\' LT N T -“c_\\ \% LI ~ et At .. .

r'."".‘“.“.‘*'.' E AU Ui S e diat e Reh eSSt $00 000 el it Rt Bt b Rafl i fat BR B A B0 D 8 0t Bl et i i) Bt o)

otherwise experience.
. Third, form-filling provided a "highly disciplined mode
of modification that guaranteed the structural integrity Lof
the data dictionary definition]"™ (40:102). Because movement
of the cursor into unauthorized areas is prohibited,
novement between fields is easily accomplished and input
error cnecking capability is enhanced.
One alternative availavle for obtaining textural input
was tne existing implementation of the system where entries

are made line-~by-line as the system prompts the user with

various data fields. Hodification to any single item within
a definiﬁion requires the review of the entire definition.
This was the method employed in previous versions of the
tool and was considered unsatisfactory. Line-by-line
editing of a definition was determined to be too slow, too
clumsy, and too inefficient to warrant its use.

Another alternative for inputting textural iaformation
was simply using an existing text editor to create
definitions from scratcin cr update definitions inside a
readable flat file. This alternative holds some merit in

that it would eliminate the requirement for a special

editor, but not without significant cost. The database
management system INGRES 1is sensitive to precise
characteristies of input data, such as upper case letters
versus lower case letters, semi-colons versus colons, blank

spaces versus commas or hypnens, and hidden coamands such as

~

s N
L]

L
E
i
;
:
ol
i
:

7

r\"‘ AR A A A A% R B b M el tat Sl GO BE BL A A Akl 0L B G aii ot o ' i " A gita ol Catacaien T

controcl codes or escape codes (11, 12). Attempts to
communicate with INGRES in the wrong syntax would fail or
possibly cause bad data to be stored in the database. A
problam of even greater concern is one where a portion of
the data definition is successfully loaded into tne database
wnen a syntax or format error causes the remainder of the
data definition to fail to get loaded. The database is left
with an incomplete definition, leading to an inconsistent
and unreliable database.

The cost of overcoming these types of interface
procblems could be substantial. The interface software must
be able to carefully analyze every line of text within the
file for every possible syntax, grammatical, and format
error. This includes identifying misspelled field
identifiers, handling out-of-order sequences of fi=lds,
input that exceeds field lengths, and so on. There is no
question that this type of interface software would provide
a valuable service, but its design and development would

require considerable time.

Screen Display. The actual display of information

on the screen plays an important role in the design of
user-friendly interfaces (1, 10, 13, 27). The screen
display shown in Figure 12 was designed for this tool. All
menus are displayed consistently throughout the tool with
regard to their location on the screen, appearance, and

method of choice selection.

Y-y "e Y,

.

e & &8 o °
.

PRI

AR

.
-
-
o
L)
x
.
-
-
.

Rl i A

BENU 81 CHOICE " REMU 82 CHOICE AENU 83 CHOICE

FILENANE

USER WORK AREA

Figure 12. Sample Screen Display.

The top line of inforuwation provides the user with the

location within the hierarchical structure of tne prograasm,

and remains on the screen throughout the use of the tool.

The results of each menu selection are provided in tais line

as the user traverses through the tcol.

eliminates the requirement for the user to memorize tais

information,

The remainder of the screen displays tne menus.

General editing takes place in this area as well,

This facility

in

TN A

o
he

\
Lo
l‘)

the edit session, the screen is divided into two parts, the
left one-fourtih of the screen and the right three-fourths of
the screen. The left portion is reserved for field names
only (title), while tne right portion of the screen is
reserved for user input (data).

While editing a file, the cursor is restricted from
moving into the left portion of the screen. All input areas
are highlighted in reverse video, clearly indicating the
maximum length of eacn entry. The restrictions on the
movement of the cursor (outside of any reverse video block)
reduce the potential for error. These restrictions are
designed to permit the user to concentrate on what
information goes into each block ratner than the mechanics
involved in getting to the proper location on the screen.

An alternative in presenting thz information on the
screen would include the elimination of the top line that
contains important information for the user. Tanis would
enhance the editing capabilities by permitting scrolling the
text off the top of the screen as required, versus the
repainting the screen that is employed with the presence of
the window. The decision was made to keep the line of
information because of its projected value to tne user and
éccept the degraded mode of scrolling.

The information displayed on the screen is exactly what
is stored in the data file. Tahis system is commonly Xncwn

as "what you see is what you get."™ This provides immediate

IR LRI

AR

PRI~

- RS

feedback to the user that the tool is doing useful work.

This contrioutes to providing the user with the

‘L/

?’#c

psychological closure that is important in the design of any
user-friendly system (27).

One issue that might generate some concern is the
screen becoming cluttered with textural information. This
is a distinct possibility if some of the multiple line
entries in a definition contain a large number of lines of
text. The degree of distraction or confusion this might
cause the user is expected to be minimal since the text on
the screen will be similar to any text file with which most
users will be familiar. Blank lines are used to separate

each field, which will alleviate some of the potential for

oy ST LTy IRV T KA S CEEINT ST 2T T SN Y FF ST XTI

clutter.

Data Structures. One primary data structure is

employed in the editing phase. This particular structure
represents a single line of data in tne buffer (and on the
screen) and contains additional fields that define the type
of information in that line. The term "buffer" refers to
the entire data dictionary definition in memory (it was
established during the design of the editor that only one
data dictionary definition would, initially, reside in

nemory at any one time). The contents of the buffer are

linked. together in a doubly-linked circular list. Linked
b lists are used extensively in editors because they so

effectively support insertions, deletions, allocation and

N 55

e i 4

TEWLYR T

S T e P AT AP R R - T e e e A e e T T e Ty RO N W R S A TS Ly et Lt T e et ey
P A R "f' I TR T A N i A e I A A T N I S T

I, LYo S Tadn)

5

RN

-

ARE)

"' ." .o [o

.
O e T T
L

JLRPL D

AR
Ay

s
.

.(g({{-

L4
g0
.

-

[M

3

vA

deallocation of resources (20:173). The doubly-linked
structure permits easy traversiang forward and backward
through the puffer. The circular list concept provides
immediate access to the front and rear of the linked list.
The data structures that were linked were actual

'structures' in the C programming language, similar to
'records' in Pascal or Ada. E£ach structure defines one
conplate line of information that appears on the screen (see

™

Fizure 13).

The first and last items in the structure are pointérs
and provide the forward and backward links in the linked
list.

The Title field stores the title of the type of
information found in the next field called Data. The
character string contains a maximum of 20 characters.
Zxamples of entries in the Title field are "WAMg:",
"PROJECT:™, and "VERSION:". Three additional keywords, or
symbols, are used to identify related information. The
keyword "blank" represents a empty structurs and is used to
provide blank lines on the screen that separate entries.

The keyword "(cont)" is used to identify tne first line of a
multiple line, multiple entry item that has been inserted
into the linked list. The symbol "¥*%*" js used to identify
the second, third, or fourth line of a similar entry. The
printable information in this field appears on the screen in

the area labeled "RESTRICTED AREA"™.

;.

LA AAAA RS RS R A At SRS LU AR A Rl kst Dt R 28 ot gt Dol S et Sa® at Jia” Jhate S, bet

A
-"J
\-l'

:

@ PREVIOUS

TITLE
DATA
LENGTH
MULTLINE
MULTENTRY

NEXT @

@ PREVIOUS

|

0 @ @ <«

-2
‘Il) 8 PREVIOUS

NEXT @

"y
=

(3]
[
"3
(D

15. ULinked Structure Used in the kBditor

The data field contains the input from the user, its
length determined by tne integer field length. The maximum

length of the field is 60 characters, restricted by tne size

—
.
-‘.'-'_'4 37
P
- . e a_ L e it e e e Tt AR L e ey v e e e e e R R
'.-"'u '-.',"’.\‘.‘ TR S) ".~:‘r o r '.4"“1- e R "y EACREAERS "..'.“‘. AR . . .‘... {_\I,:’. WA A

.
\J

PERRRR [

g a

-

R

. e v, .
OSSN

-

1

i ST

.o
Va¥eZad s

-y
a s

e

RS I-‘l

N ‘r,v v‘_-

w v v .

{

' '(‘.'.‘ ‘s 5 'n' ’

“ %8 A

[N
), Shy.J

N

.

FTNLY
ALY

'...‘~. "."-. » Cn) -N‘". -' 4"\- -, K
‘L{MLQ,;::A} Y :“.;u-d.l,‘.a.a;l' ‘A.a u‘:.'.' 'i'¢ .‘._.'.n.‘ ‘M' W o) " -“J}Ju‘ .n\' ‘ *_-'."')hz_.._-

of the video screen. The informaticn in tnis fiz=ld appears ’
in reverse video on the screen in the area labelled "USER
WORK AREA".

The fields 'multline' and 'wmultentry' together provide
important information as to the type of entry permitted in

:

the particular structure. There are three types of entries E
available for any data dictionary definition. The first is :
<

3 single line entry. A value of 'Q0' in the 'multline' field

indicates this type of entry. The second is a 3ingle line
with multiple entries permitted. A value of '0' in the
"multline' field and '"1' in the 'multentry' field indicate
this type of entry. The third is a multiple line witn
multiple entries permitted. Values greater than '0' in both
fields indicate this type of entry. The 'multline' field
contains the number of the line witn respect to the total
aumber of lines (for example, a 1, 2, or 3 in a 3-line
entry). Tne 'multentry' field contains the total numbter of
lines per entry (either 2, 3, or 4 in the current

implementation). Therefore a structure containing the

values 'multline' = 2, 'multentry' = 4 indicates that tne
data field in the structure contains the second of four
lines of information for a particular entry. These fields
are used during thé edit phase to control line insertion and
deletion. They are also used in preparing the data for
dewnloading into tne database.

As the tool reads a template (if CREATE) or an actual

58

R R ,‘_. o e

{

Jefianition (1if UPDATE) from a file, structures ars
dynamnizally allocated space in memory and iaserted iatc the
puffer in tne form of a linked list. This enabdles tne tool
to makz efficient use of memory. Line insertion operations,
within the editor, cause space to be dynawmically allocatea
for new structures whicn are inserted into the proper
location in the linked list. Line dzletion operations cause
the reverse set of actions to occur. Line insertions and
deletions clearly demonstrate the advantages of using linked

data structurss for editing environments.

dindowing Scneme. The elements of tne visual display

discussed in this section focus on how ilaformation g2ts to
tire screen. 1t snould ve apparent that no data dictionary
definition is going to fit on the screen in its entirety, or
2ven come close. A system had to be developed that would
control what portion (or window) of the definition ouffer
Wwould pe displayed on the screen and aow windows of
information could be moved on and off the screen. This i3 a
basic resquirement of screen-oriented editors.

The system designed and implemented in tnis tool
involves a "windowing scheme" (see #igure 14).

3loval pointers ars defined to k=ep track of tne top of
tne ouffer (topbuffer), tne vottom of the ouffer
(potbuffer), tne top of the window (topwindow), and the

bottom of the Jindow (botwindow). Topouffer points to the

e T T T T L TR e T e N Y T Y R U L N Y Y T T Y N Y N N Y T N W N T T X T N PR R T WIS LY T Y e

:
¥
¥
< e
3o
"o
&
A
- TOPBUFFER
7 O——
)
NAME [
PROJECT !
) TOPVINDOOV NUMBER t
N o |~ DESCRIPTION : i
N ! xs : i
. ! 1
S e ' |
: INPUT DATA : =
o { INPUT FLAG : |
¥ ! OUTPUT DATA : H
, |
o | OUTPUT FLAG 1
. i
N | aLlases & '
X ! CommENT '
> \ CALLING PROCESSES 1
| PROCESSES CALLED 1
{ BOTVINOOV i (CONT) '
d L o
X . (CONT) '
J °
) -
& o
- °
" DATE :
. AUTHOR '
. BOTBUFFER
i o -
- Figure 14. Screen Editor "windowing Scneme".
N
. very first structure in the linkasd list, while botbuffer
. points to the very last structure in the linked list. These
£ 60
e
.
'
",
T T I S I Ry St I N e T A A S P S A S C e e e e T
. (I'¢'I ".'- NG A ""‘.* WKLY et S e e S e . i ataratala AR A

/ l. " l. .. '.

o

a o a
L AJAIA

A

vaN

tWo pointers generally do not move once initially
established, unless the structure to which either points to
can be added onto or deleted. The topwindow and botwindow
pcinters, on the other hand, move about the bufrer
frequently always remaining 21 items apart (the size of
available screen space for this editor is 21 lines).
Initially, when entering the editor, the topwindow is set to
topbuffer and the top 21 items in the buffer are displayed.
As the user attenpts to move the cursor down off the oottom
of the screen, the topwindow and botwindow pointers arsz
adjusted accordingly and the new window is presented on the
screen, The window pointers will change frequently during
an average editing session with the obvious restrictions cf
the topwindow pointer never "passing" the topbuffer pointer
and likewise with the botwindow and botbuffer pointers.

Altnough the concept of using window pointers is
simple, 1t was tricky to implement at times. Thne
difficulties resulted from two objectives of designing a
user-friendly system: 1) to minimize the redrawing of the
screen (take advantage of screen memory operations), and 2)
provide for dynamic insertion and deletion of lines of text.
The first objective was negotiable to some extent, but the
second objective was clearly not negotiable.

Screen memory operations permit the screen to appear to
move instantaneously up one line when a line is deleted.

The opposite occurs when lines are inserted. The lines of

o1

Y Y Y W L T o I L TP LA T e e RTINS TRATRLNST N RV LR T TR T T TR T TELWT T 1T 1T 1T T T 3T T T T e Tt 4 Tl T T L T LT

data are inserted and deleted in screen memory only and
actions must take place to ensure tne buffer under goes tne
same changes. Also, every time a line is inserted or d
deleted the window pointers have to te changed accordingly.
Checks have to be made to ensure window pointers do not
exceed their boundaries. Additional lines have to be ﬂ
printed to the pbottom of the screen during deletions.
fultiline entries, where inserts and deletes affect groups
of lines, complicated the matter further. '
Three additicnal global variables (two integer and one
pointar) were required for the implementation of the screen
editor. The integer variables are 'curx' and 'cury', the ’
current x and y coordinates of the location of the cursor,
The additional pointer is called 'current' and always points
to the structure in memory that corresponds to the line of r
text on the screen where the cursor is located. The

management and control of these variables is crucial in the :

storing of data in its proper location in memory. The
values of 'curx' and 'cury' change every time the cursor
moves horizontally or vertically, respectively, on the
screen. The structure pointed to by the pointer 'current'
changes every time the cursor moves vertically.

The same complications arise in the management and
control of these three variables as discussed earlier with
the window management. The system must be constantly aware

of these variables and their values to provide a working

62

-
d
¥
‘
o
%
[l
!

2
-
L

editing environment.

'he justification for nmaking these seven variables
global lies primarily in the fact that azany modules must
have access to them and possess the ability to change their
values. They could be declared as local variables, but,
that would necessitate tnh passing of lengthy parameter
lists between modules. The inherent danger in using zlobal
variables is that their values can be changed by virtually
any module. <Careful consideration was used in determining
which modules only needed access to the values of these
variables and wnich modules needed the capability to alter
their values.

The effective control and implementation of these seven
global variables was the kKey to the successful

implementation of the screen oriented editor.

Data File Input and Qutput. Ideally, the method for

nandling data files used by the tcool is to nide tne
implementation details from the user completely. The user
would be required to know only the names of the processes or
parameters, with all file 1/0 being based on this
information.

The current implementation requires tne user to define
filenames and keep track of them as necessary. Upon
ccnpletion of creating a new data dictionary definition the
user 1s prompted for a filename to store the definition.

Safeguards are employed to ensure accidental overwriting of

 dakala' " et bac i AN L0 SR G B il 05 Jig it oW afe golh ot Mot R Al g "‘l!‘

had Ydh AR AR Ste (e B0 Ala Sl AR Bia hte ARa St

otner files does not occur. When updating an existing
definition the user is prompted for the name of the file to
update. After updating the definition the user is offered a
choice of: 1) overwrite the current file; 2) make a
backup copy of the current file before saving the new
definition under the same name; or 3) define a new filenane
for the definition. The only option that requires the user
to enter a filename is when defining a new name. The othaer
options proceed automatically wnen the response ey is
pressed.

Although not ideal, this method of file handling does
provide a working system that appears clean and simple to
the user, yat is flexible and powerful enough to provide
nmost desirable alternatives for the user.

The format of the flat files generated by the
workstation editor and the database interface software is
shown below in Figure 15.

The first six lines provide important information about
the definition contained in the file. Line 1 contains a
varification code that identifies the file as one compatitle
wita the data dictionary software. Lines 2 and 3 contain
the phase of the software lifecycle and the category within
that pnase. Line 4 is the status line and provides the
status of the definition. It will have a value of ¢ if the
definition is uncnanged, a 1 if tne definition was changed,

and a 2 if the definition is to be deleted froin

b4

.
h Ly -
RO 1 -- #d It
RO 2 -- DESI 3N
3 -- PARAMETER
4 - 1 _
N 5 == Mon 5 May 36 13:25 nrs
. b -- Mon 5 May 86 13:32 ars
: Title -- NAME :
0, Data -- mess_parts
Length -- 25
Multline -- 0
> Multentry -- 0
N Title -- blank
>, Data --
\ Lengtn -- "0
- Multline -- 0
. Multentry -- 0
", Title -- PROJECT
N Data -- NETOS-ISC
¥,
‘ 0
o}
o]
N rigure 15. Format of Flat Files
i_! the database. This status enhances the comnunication
; between the workstation and mainframe, and eliminates the
:: need for reloading a definition into the datavase if no
i changes were ever made by the user. The next two lines
z contain data relating to the time required to edit a
: definition. The values are obtained from system calls to
tne MS-DOS operating system. These values are stored in the
‘: database and are used to analyze the times required to edit
s a definition.
f’ .
The remainder of the file contains the actual
)f definition of the data item. The information is storea in
: groups of 5 lines that correspond directly to the storage
AT .
N RN 0>

KRS LSS CER SO D

L A

structure used in the actual code, as described in the darta

structures section earlier in this chapter. The names of

the fislds are "Title", "Data", "Length", "Multline", and
"Multentry".
gditor Commands. The commands available to a user

while using the editor clearly have a major impact on the
usefulness of the tool. M"Concern for numan engineering
dominates the design™ (19:163). The ainimum set of commands
that will provide a working system include "insert”
characters, "delete" characters, and "save" the text at the
completion of the edit session. Although these comzands
provide a working system, more commands were required to
increase productivity and enhance the user-friendliness of
the systen.

The capability of moving the cursor freely to any
portion of the input area is important. Tne user aust have
this capability to view or modify any portion of the file at
any time during the session. Cursor nmovements by character,
line, or screen-at-a-time were considered essential for the
editor to be of valuable use.

The files to be edited contain three categories of data
items. The first category is single line entries. The
other two categories provide for multiple line entries
within their respective data fizlds., racilities were
provided to accommodate the requirement of creating

additional lines as appropriate for these fields.

66

e SN

R DRI

O IO I TP P S P TN A o » .~".~.'. . L
R AR A PO N A A A A P AT A

\
i

S N

koo oo

on tae design of tne editor" (19:153). Editors must be asle
to nandle incorrect commands gracefully. Handling includes
the detection and correction of errors, wnere possible,
grror nhandling is provided at the lowest possible level in
the code.

Illegal strings of characters for filenames and dates
are ildentified upon their entry. Facilities are provided to
pernit the user to reenter the correct information. Errors
in reading from and writing to files cause error messages to
pe displayed on the screen with specific information as to
the error, if known. Facilities are provided, when
appropriate, to allow the user to Péenter a filename.

Wnile inside the actual editor, illegal characters from
tne keyboard are suppressed at the time the key is pressed.
Illegal characters include escape and control codes not used
oy tne editor and also characters tnat are not accepted by
the database management system INGRES (namely square
brackets "[" and "]"). In most cases the bell sounds to
indicate an illegal character.

Other errors that are checked by the tool are those
that relate to thne definition requirements and not the
actual codes from the keyboard. An example of this type of
error is verifying that key fields (required by the datatase
system) are non-empty. The checking is performed when thne
"exit" command is requested. Blank key field errors must be

corrected before the buffer is written to a file.

(L LY
R Sy N ¥ R

4 a b b]

>

IR RS
. -
2

p g W ¥
',

i

e
e

.
.

¥
P
N
’\
&
E
h
(
P‘J

L)
[N

3ystem errors, particularly in the area of dynamic

allocation of memory, are 31lso checked for and nandled at
the lowest possible level. If an error occurs in dynamic
memory allocation during the initial reading of a teuplate
or data file, any memory that was allocated is freed, an
error message is displayed on the screen, and the system
returns tne user to the top level menu. Workstations with
126X, or aore, of memory snould not experience problems due
to memory limitations, and therefore memory allocation
errors may te a sign of some other, possibly acre severe,
problem with the system.

The form-filling construct of the editor itself
prevented a number of otherwise common errors from
occurring, for example entering characters in the wrong
location or typing characters beyond the lengtn of the
field. 1Input fields were clearly identified and cursor
movement is limited to only input areas. This was one of
the major reasons that the form-filling format was the

method of choice for this editor.

Communications Interface

The communications interface between computers is an
important issue in the discussion of distributed systems of
any kind. Because there exists software that provides for
the transfer of text tiles between computers, this coaponent
of the data dictionary system was not assessed further in

this thesis.

DR i A L P P T T Pl R A Sl T R St B Sl S Rl S Nl Tk Vil S AR B B i el Gk el Al] el Al Ak Al Ad Y
“ret. P . - L A A . o T T AT SR TR .

Datapase Interface Design

B The "C" programming language was the language of choice
for the implementation of the datavass interface software,.
This was due, as stated previously, to the fact that the
Serkley version of the database management system INGRES
(that runs under Unix) only supports the "C" prcgramming
h language in accessing the database through its eanbedded
‘ query languaze EQUEL. Database query languages provide
users with the ability to retrieve information from the
database. Often datavpase queries, in the query language,
can be embedded in other software programs to enhance the
user friendliness and efficiency of database management.
"C" was the only progra@ming language available for this
facility.
‘Ef‘ The interface software currently only supports the
‘ design phase database (for structure charts). As the other
databases are designed, the interface software required to
- support them should be straight forward, ovased on tais code
S nrepared for this thesis.
S The database interface software was designed to
translate a text file containing a data dictionary
g definition, gzenerated by the workstation editor, into the
: database and vice-versa. The text file is first read into
memory where it is placed into structures, also known as
records in rascal or Ada programming languages. Frowm memory

the definition is placed systematically into the proper

70

- __IAA . -‘ m '....“4\ \.-) .\ \A ."l .‘h .‘A \'.‘-’ .':‘,. \)‘ ':‘-',\',‘

relations in the database through the use of tne databass A
embedded query language. During the reverse process,

definitions are retrieved from the database, placed into

structures in nemory, and subsequently written out to a

file.

The format of the text file generated by the iaterface
software is exactly like the format of the file generated by
the editor. Tnis facilitates tne use of the filss in both
locations and eliminztes the need for additional traaslator
software.

The operning menu prompts the user for nis desired use l
cf the tool. The options availaole are Load a definition
into the database, Retrieve a definition from the database,
Delete a definition from the database (must access the
password), or Exit the tool. Depending on the user's
cnoice, the names of the process (or parameter) and the
filename are requested. System messages are frequently
placed on the screen to keep the user informed as processing
takes place inside the database. At the completion of the ;
action the user is informed of the same and control is

returned to the top level menu. The top level menu is the

only location where users can exit the tool other than 4
avorting the program.

Currently the tool provides operations on single files -

Y T e

(data dictionary definitions) only. Also, at the time of

publication of this thesis, the user is not provided the

—_————

71

facility to perform the operations in the bacxkzground and

therefore tne user must remain with the program during the

uploading or downloading operations.

Sunmary

The highlights of the design and development processes
of the data dictionary system were presented in this
chanter, Wwhat follows in Chapter V are discussions on soxe
of the key implementaticns issues and the testing processes

used in this project.

2Tt a e e a ata

N "

. ol

“ataal

V. Ianplementation and Test

There are tnree areas that merit discussion tnat relate
specifically to the implementation of tne software. The
pertability of the editor and the generic iamplementation are
the first two areas discussed. A brief description of how
the system operates is the third area. The last section in
this chapter focuses on tne testing phase of the software

lifecycle and how testing was performed for this system.

Portability of tne Code

Every effort was made to use standard C-language syntax
and library functions to ennance the workstation editor's
portability between environments. System calls to MS=DOS
were kept to a minimum (uwo eacn) to reduce the dependency
of the software to that operating system. Modifications to
tne code, with respect to thesz two areas, should be minimal
when transporting it to other machines.

The hardware dependent software is contained in =
separate library of code. This library is linked with the
remainder of the code tvo produce the working editor rfor tne
Z-100 microcomputer. The primary functions found in the
library are those that address screen umemory operations.
l'hese functions are dependent upon a 24 row X 30 column
video display and the distinct codes sent from the Keyboard

and to the screen that are unique to the Z-100. The Z-100

73

S AaC A R e B e B Gk YRS b S Y A VA "l el ik YR Yl " A G
had Yt WS A] A .

St .

is especially well equipped in providing easy access to

:53' these operations. The functions must pe analyzed to

N
determine necessary modificaticns for other macnines. The
code was modularized to the extent possible to enable
modifications to be made with minimum difficulty.
Preprocessor define statements were employed to the extent
possible to peruit easy access to the codes that drive the
editor cperations. 4 confizuration file of this nature is
required for any destination machine for which the tool is
targeted.

The "C" scoftware written for the mainframe computer

(under Unix) contains no specific calls to the Unix
operating system. The embedded queries to the database are
vpasic queries in that they follow specific examples in thne

'ii documentation. Although recompilation of the code will be

necessary, the database interface software should interface
with the version of INGRZS running under the VM3 operating
systen with minimum modifications.

Some costs were associated with the =fforts to keep the
code pcrtable to other computers. Designing tne code for a
24 line by 480 column screen eliminated thne option to employ
the 25th line available on tne Z-100 screen. This line
could nave peen activated and used to present thne
information currently shown at tne top of the screea. This
line is not affccted by line insertion and delztion or any

otner scrolling operations. Recause tnis line was not

74

N v N e . e e e e e e T e At T e e
£ » \ » A A A ’ a 4

e

PR e)

s % s s e v .

> e oA s ox s e .

P e s = s

o - —

availaole, redrawing the screen was necessary when attsmpts
were made to nove the cursor beyond the top or bottom of tne
screen. Jther coding methods may have resolved portions of
this problem but they would have required significant time
to implement. Paging commands that scrolled up and down 16
lines in the buffer and quick movements to the top and
pottom of tne buffer were provided to nminimize tne need
redrawing the screen. OQOtner niceties such as color and
convenience of the keypad were not not considered since
these two items are not provided for on many types

computers,

Generic Editor Implementation Issues

The configuration of the tuffer structure used in the

editor code provides a facility to handle a variety of data

dictionary definitions. Any number of different templates

can be created and used with tnis editor with the pasic
restrictions being the length of the title and data fi=slds.
The original code was developed using the data
dictionary definitions associated witn the design phase,
structure cnarts in particular. After the initial
integration of the editor software with the mainframe
software was completed, templates for the code phase data
dictionary delfinitions were generated. The stubs for the
code phase in the original code were replaced by calls to
modules that loaded these new templates when requested. All

eaitor commands were successful in editing these definitions

s':s"‘\.)
oy

Te e T et T e

,..‘..... KX

e Al * e “Sn S0 At AN N R Aa R Y DML S Ay) &

with one exception. The definition of a moauls contained a
multiline entry as the last line in the buffer which was ot
previously required for the design phase definitions. Jdinor
nodifications to the "delete line™ module were necessary to
handle this additional requirement. Tne definition of a
variable required no modifications. The definition of this
structure was the single most ¢ritical element in the design

of a generic editor.

Jperation of tne Tool

A orief overview of the operation of the system is
presented below. A complete users' manual is located in

Appendix D for the interested reader.

oy

e workstation editor is activated by the user

¥

entering the name of the program at the MS-DOS systea
proapt. The date 1s requested, wnicn remains in memory for
tne duration of the session. The initial menu presented to
the user regquests the user's purpose for using tne tool: 1) |
CREATE a new definition, 2) UPDATE an existing definition,
or 3) EXIT the program. Tnis is the only location wnhere
the user can exit the program (other than rebooting the
system). 3tandard interrupts sucn as 'CTRL C' are not

recognized by tne systemn.

dendadecode. i ARG e B od

If CREATE is chosen, the user nust identify the phase

-~

of the softwarz lifecycle (Requirements, Design, or Code) at
tne next menu. The third, and final, menu presented to the

user requests the user to identify thne category of data

SIS - . -. .--.‘)
TR TS S

ey

dictionary definition (for example, Process or Parameter in
the Design phase). After this decision is made tne system
reads in the appropriate buffer template from a date file
and places the empty template on the screen ready to accept
editing commands from the user.

If UPDATE 1is chosen, the user is requested to enter tne
filename of the data dictionary definition to update. If
the filename is found the file i3 loaded into memory and tne
user is placed into the editor with the definition visible
on the screen. 1If the file is not found the user is
notified of the error and control is returned to the main
menu.,

At tnhe top of the screen there are four locations where
the result of menu choices and the current filename, 1if an
UPDATE operation w-»s chosen, appear to keep the user
informea of hnis current status at all times.

The user signals the end to the editing phase of thne
session by executing an EXIT or QUIT command. Once the
specifics of this operation are complsted, control returns
to the top level menu. .

The definition files created or updated by the editor
are then traansferred to the central computer by the {ermit
communicaticns program or any other program available to tae
user. TIhe databaszs interface softwarzs is activated oy

entering the name of the program. Menus prompt tne user for

the dezcired activity - upload a definition to the datapase,

SN
-ﬁ\k\
-_.

retrieve a definition from the database, or delete a
definition fror _he database (requires a password). Tne
system either reads a definition file designated by the user
or writes a definition out to a file designated by the user.
files are transfered back to the workstation in a manner
similar to the method used to get them to the central

computer,

Testing

The testing process of large computar programs
incorporates, on the average, 30-50% of the effort (4:7).
This large percentage indicates that the testing of software
is an important part of software development and the time
allotted for it should not be underestimated.

Testing is generally defined as "the process of

executing a program (or portion of a program) with the
intention, or goal, of finding errors® (30:172-173).
Testing is often confused with depbugging, which is zenerally
defined as determianing the cause of the error and correcting
it. They are closely related as the ocutput from tne testing
process provides the input for the decugzing process.

Testing of tne software should occur throughout tne
dezvelopment process. The earlier testing takes place the
oetter, since errors found in the late stages of the process
nave proven to de mors costly than those found earlier (33).
1lne catzsgories of testing differ, depending on the location

in tne developaent process. The following paragraphs

76

PRI

describe tne different categories and now each was

{aﬁg incorpcrated in tne developament process of thne data
dictionary editor and associated software.
Inaividual module testing took place whenever possible.
Small test programs were frequently generated to test
unfamiliar aspects of the C-language, as well as verifying
the correctness of algorithms employed for various
functions. Once a module was sufficiently tested to be free
of errors it was tagged as ready for incorporation into the
E& next phase of testing.
%E Integration testing followed modular testing as modules
b became available. Once the aminimum set of modules for a
r functional =aditor were ready, the modules weres integrated
g: and tested as a system. After the basic foundation of tae
(;% editor was tested, enhancements to the editcr, in areas sucnh

as screen displays and editing commands, were individually
tested (when possible) and integrated into the editor one at
a time. The editor software was again tested with the
ennancement installed.

This procedure proved to be a very efficient method for

building a working system from an established, working

foundation. EZach module was integrated into the editor wit

Lot o s er

tne confidence tnat all existing software was correct.

Althougn it did occur, it was not common to find errors in

the existing code that were previously overlooxed.
p

)

Regression testing involved the retesting of the

i adl AONEL

software after an error was found and correctea. How much
rstesting was required depended primarily on how mucn code
was affected. As errors were found in the later testing
phases, regression testing was required to identify
additional errors that resulted from the effects of the
updated software.

Topdown testing focused on the control program, the
data flow, and the control flow of the software. Test stubs
were used frequeatly to verify correct flow of control
between modules. This testing method was enmployed in
conjunction with integration testing.

Once the editor code was complete, acceptance testing
of the system was performed. The results of this testing
pnase are included in the following chapter on Evaluation.

In retrospect, it was clear that the systematic
approacn to building a system on a sound foundation, one
block at a time, enabled the tool to be developed smocthly
and efficiently with a high degree of confidence in its
performance. At only one point, in the latter part of tne
code pnase, was there any significant debugging delay. That
delay occurrad during some integration testing of the editor
software., It would be hard to predict how much longer it
would have taken to produce the same quality of software nad

the above procedures not been followed.

30

"
. Sumnary
)
) ﬁg% This chaoter presented the significant racters that
]
resulted from the implementaticn of the code. Testing was
: discussed to the extent tnat it was applied during tne
4 . . . A : . .
9 implementation pnase. Validation testing was not performed
&
to the extent of employing a separate group of people to
execute the program with the intent of finding errors.
o
o Evaluation of the workstation editor was conducted by a
group of 24 persons, nowevar tnis evaluation focused on the
.
ja, . - . N
s user-rriendliness and usefulness of the program as apposed
N to validating it. The following chapter summarizes this
£Y
evaluation by a subset of the target user group.
o
>
; i
N
-
"
2
d =
r:,‘
d .
o
Z

R |

e

L e

>4

.

LY

»

'-..'-.’ 1Y " te V"--) .'-‘ '-.7‘-‘- :'-.-_\‘. ;'--.‘-"-' ‘.‘-:'---‘.' .‘.‘-'.‘A‘- -
O A P I NI I I ST 3 T AT SO RIS VI S

vI. Evaluation of the Data Dictionary Zdaitor

It is .aportant to provide systems that are
user-friendly and perform a useful service to increase the
productivity of information systems (3:530). The subject of
measuring user satisfaction will be discussed in this
chapter witn particular attention being paid to the
packground and justification for the tool chosen for thnis
evaluation. Tnsz data dictionary editor for the Z-100 was
evaluated by one faculty mempoer and 22 graduate students
currently enrolled in the computer engineering or computer
systems prograwm at AFIT. The results of this evaluation

will also be presented.

Measuring User Satisfaction

Measuring a user's satisfaction with any degree of

statistical proof of validity has proven difficult. Bailey

and Pearson (1983) nserformed esxtensive researcn on the

subject of measuring user satisfaction with information

systems (3). The results of their research indicated that

many such evaluations had been performed but none nhad

established any standard of measure for which to analyze the i
evaluation results (3:530-1). Questionnaires used asked for
numerical responses to questions without providin; a place
fer the user to Justify thneir response. There was little

evidence as to why specific items or factors were chosen for

52 ;

e e e e e e e e e e e e S -
l. -- -~ .. - .' e " L - Q' Q. - - . ..t -' ..' e T e v LT -“
P B R I S e A T S TP I P P e A A S

the various questionnaires. In addition, tnere were
discrepanciec as to researchers' opinions on factor
importance in measuring user satisfacticn. As discussed by
Bailey and Pearson, these problems clearly showed a need to
establish
a definition of satisfaction which contains a complete
and valid set of factors and an instrument which
measures not only the user's reaction to each factor
but why the respondent reacted as he did (3:531).

A formula for defining user satisfaction as "the sum of

the user's weighted reactions to a set of factors" (3:531),
n

Si =g; Rij Wy
was developed by Bailey and Pearson. In it, R is the
reaction to factor j by individual i, and W 1s the
importance of factor j to individual i. This equation
suggests that one's opinion of satisfaction is the sum of
nis or her positive and negative reactions to a particular
set of factors.

Bailey and Pearson conducted extensive tests in an
attempt to identify all factors that people considered
important in measuring satisfaction. They reviewed
twenty-two studies to arrive at an initial list, and tested
its completeness and accuracy by coasulting data processing
professionals and middle manager users in 8 different
organizations. Critical incident analysis techniques were
used for these tests. A list containing thirty-nine factors
ranging from flexibility to vender support resulted.

To measure a user's perceptions of these factors,

33

. - - e e

I o LS

X % 4 e

&y % %9 "y 2W

Error Aecovery. The extent and ease with waich
the systea allowed you to recover from user induced
earrors.

unforgiving | _ 1 1\ __{ i__ ' {1 __i forgiving
incomplete {_ {1 i __i__i__i_ i complete
complex i_ i_ i_i__1_i__i__| simple
slow {__i_ __1__i__i__i__i fast
unsatisfactory 1} i 1 1 __1__|_ | satisfactory

To me tinis factor is
uniaportant {__ 1 1 1 1 1 1 | important

Conmnments

Figure 16. Sample Survey Question

Bailey and Pearson used the semantic differential technique
(3:333). Four bipolar adjective pairs ranging from negative
to positive feelings were identified for =ach factor.
Additional scales were included to test the internal
consistency and validity of the four pairs, and to obtain a
value for the weights users assigned to each factor. A
seven-interval secale was adogted to measure the user's
satisfaction with each pair. Figure 16 shows a sauple
questicn (or factor) that was takea from the actual
questionnaire.

Numerical values were assigned to each of tne seven

84

at

.

A

LS

e s VW
'3

A e Y T

v v

" s WX
P -'-';" >

b

AR S
I

14 %

rroe,r
1,4 Y

L4
“‘

v .
o, v

T T PR W

T

T

u. 5‘(
e

ot

intervals ranging from -3 to +3. The impcrtance scale was
assigned values from 0.10 to 1.00 in increments of 0.15.
The higher the value the more important the factor. The

overall satisfaction was measured by

S;=§§ %$ é;ILLk
where W = the weight assignea to factor j by user i, and I =
the numeric response of user i to adjective pair k of factor
J.

The results of this equation can be deceiving if a user
rates half of the factors very high and very important while
rating the remainder neutral and very unimportant. The
numerical result would be approximately one-half of the
total possible (60 out of 117) indicating a moderate degree
of satisfaction when in fact the user was extremely
satisfied. Normalizing the scores and filtering factors
whose top four adjectives pairs were all rated at O
eliminated tnis problem.

Extensive reliability and validity tests were conducted
by Bailey and Pearson on their measurement tool (3:535-537).
"Reliability is defined as the absence of measurement error"
(3:537). The reliability coefficients calculated for each
factor were found to be very high (average of .93, minimum
of .75). The authors concluded that their questionnaire was
reliable,

Three categories of validity tests were performed to

determine if the questionnaire measured what it was designed

55

AR

PR A

- Normalized Score Translation 3
AN
Sl ;
Ny +1.00 maximally satisfied
+0.67 quite satisfied
+0.33 slightly satisfied y
0.0 neither satisfied or dissatisfied
-0.33 slightly dissatisfied
-0.67 quite dissatisfied i
-1.00 maximally dissatisfied ,
Figure 17. Score Boundaries for Normalized User

Satisfaction (3:535).

to measure. These types of tests coansidered were content
validity, predictive validity, and construct validity.

Content validity implies that all aspects of the
attribute being measured are considered by tne
instrument... Predictive validity implies that the
) instrument is ccnsistent and agrees with otner
‘ij independent measures... Construct validity implies
s that the measurement instrument performs as
expected relative to the construct of the
attribute being measured" (3:535-06).

F

k e e % S

The results of their tests indicated that their instrument
was valid.

As a result of their extensive investigation and :
analysis, Bailey and Pearson concluded that they have an
effective instrument for measuring average lavels of user
satistaction. The normalized scores for each user provide
this data. A aormalized score ranges from =-1.00 to +1.00

with the translation of scores snown in Figure 17.

T4
N'
3 2
8o
RS L T S O T T T LT T T L - . RS NSRS . e
RGNy "‘--"'.'.'." AT i A AT TN AT e L e P N R O e R R
o a » ,

Zvaluation of the Data Dicticnary Editor

4 graduate level software enzgineering class contaiaing
students studying computer systems or computer engineering
were targeted for the evaluation., Althcugh they were not
knowledgable 1n database management systems and were
currently learning about the software development lifecycle

and data dictionaries, it was determined tnat they would

PP, T W W WA e T e e W

still provide valuable feedback 1n an evaluation of the

human-interface, or user-friendliness, aspects of the data

dictionary editor.

The class was pbriefed by the author on the overall data
dictionary system and the editor's place within the systea.
Each student was provided with a copy of tne questionnaire,
a users' manual for the editor (Appendix B), and a set of

instructions outlining the steps necessary to execute the

A s MRS 7 .. e’ A’ MRS ¢t aa"a MR L

tool and obtain a hard copy of the data definition file
(Appendix D). Two Z-100 computers were set aside in one of
the school labs for their use.

Many factors identified by Bailey and Pearson did not

RN EIEVE i N

apply to the evaluation of the data dictionary editor and

s - A

were not included in it evaluation. Examples of tnese were
vendcr support and management factors. Mallary, in a
previous thesis effort (25), added several factors to the

list tnat provided greater eamphasis on the human-computer

interface aspect of scftware tools. The list was extendea

by one nmore factor,

for this evaluation, that covered tne

Y i A AN - AN A A A NAALAAL LA A Dl 2tac S b i AR a b aAe bl e A

DR AN SN SRS R S P S B R B e

i ﬁ}h User lumber vormalized 3Score
| “,.“'.

i 19 0.977
\ 4 0.514
. 18 0.704
X 5 0.680
. 2 0.662
) 7 0.660
13 0.602
* 17 0.593
.) 0.593
: y 0.586
. 11 0.577
: 3 0.546
9 0.520
15 0.517
) 21 0.493
: 1 0.4785
- 23 0.466
: 12 0.430
22 0.395
16 0.382
10 C.351
14 0.210
20 0140
ij mean for all users = 0.53%

- Figure 18. Normalized Values Overall 3atisfaction
. by User

arza of error prevention. The complete survey used in the
evaluation of the data dictionary editor is included in

Appendix C.

g The complaeted surveys were returned one week after they
were issued. The average time to complete the evaluation

Ll

. was 37 minutes. The results wers analyzed with the

", norm..lized scores for each user shown in Figure 13.

ob

LS e w L . . -_"‘_\. : NN

LR S _‘_.L_A-._";_..L_.-M‘.A-XLALL S e T Tt AJ:..AML\AA._&._(JMAA..A-\-A~A A~

AD-A172 406 DESIGN OF A DATR DICTIONARY EDITOR IN A DISTRIBUTED 2/2
SOFTHARE DEVELOPMENT ENVIRONMENTCU) RIR FORCE INST OF
TECH WRIGHT-PATTERSON AFB OH SCHOOL OF E|

UNCLASSIFIED J W FOLEY JUN 86 RFIT/GCS/ENG/86J-5 "Fre 972 NL

SEEE

EEEFEEETTS

14

L

125

10

I
I
[

-~ - -t e e
A/ PET. SO YRR vy e T, WELLPRRE. ~

Qﬁ; The user number represents an arditrary number used for
accounting purposes only. These results indicate tnat the
users were satisfied witn the editor. The mean scores for
eacnh of the 11 factors and the mean overall satisfaction
from question #12 in the survey are shown in Figure 19 (max
score is +3.0, min score is -3.0). The mean score for each
factor was obtained by first averaging the score of the
first four adjective pairs for each user, then averaging

these scores for all users.

Factor Number Mean Score

R 1A EE: (Y ARSaaRe. VLA R R oS &

S e .
.

R
-

—_
2 OWooO~_NO0UVTEWwN -

—_ 3 A N\) e e N
W~ o=Ww ooV U o —
S EWOWN = a~UNWw

12

Figure 19. Mean Scores for Each Factor.

Question § received the nighest score which indicates

that the users were pleased with the ease-of-learning aspect
of the editor. E&rror prevention and recovery (questions 3
and 4) received the lowest scores. TIwo bugs were discovered

during the evaluation which directly affected tnese marks.

The single aspect of the editor most cften complained

about (13 users) was the redrawing of the screen when tne

cursor attempted to move beyoad the top or bottcm on the
screen. "The redrawing of the screen was totally annoyiag
to me" was one user comment. This reaction was anticipated.
The objective to keep the editor generic eliminated the use
of the 25th line associated with tne Z-100 screen. This

[line is not affected by scrolling operations and could nave
‘ been used for the information window thnat currently is at

the top of the scrzen. It is interesting to note that only

P S R R)

one user specifically commented on the usefulness of the
information window, although 3 other users made favorable
comments about the display of information on the screen.

Seven users commented favorably on the ease-of-learning

" Sl G WU W AN

‘Ei aspect of the editor, which reinforces tne results of that
E factor shown in the previous figure (number 8). "I sat down
b and immediately wrote my data definition -- very easy to

use" was one user's perspective.

Five users complained about the lack of an

s I}

insert/delete character command in the editor. daving to

retype the entire line of text for a single character change

was a bother to tnei.

o e il

Five favorable comments were made about the compactness
and usefulness of the on-line help screen, "You seen to nave
enough help not to get in my way but to be useful". One

user added 2 recommendation to provide a help screen for tae

S0

Taa e o 8 4

c'..-'\-'-.‘- -
-

STttt e Ta) gt Tt et et e T Tt A e T e T e Tt e e T A e
4, I:‘—'."-’ '..'-\..‘f'.,.'f"¢1."‘- W I A ‘.‘.-).("'"*\ A N N " AR “5-\-"$-.'

.
Y B A A SSEEEEL _a e -

initial wmenu as well.

Thrze users recognized an immediate need for the editor
to support otner related classroom and thesis work and
expressed a desire to use it.

A variety of other comments were made that are worthy
of meuntion despite only being addressed by one or two users.
One user recognized a limited usefulness of the editor since
it only handles single files rather than multiple files and
records. One user, who had some experience with previous
versions of the data dictionary interface, indicated that
tnis editor was a vast improvement over the old system. One
user complained that a directory listing was aot availabple
from inside the program. Two users desired more explicit
error messages be displayed ratner than just the computer
beeping when an illegal character or command was entered.
One user was not sure what this editor did that a word
processing program could not do. One user commented
favorably on the ability to move freely about the ouffer to

enter the definition.

Conclusions

The overall normalized measured satisfaction mean of
0.5335 generated by the formula presented, coupled with the
user assessed satisfaction mean of 1.91 from question #12,
and tne fact that there were no negative mean scores for any
single factor indicate that the data dicticnary editor was

well received by the users. Enhancements are certainly in

91

PR
e n 0
@ & &0 T

Al N

»

We'a"s v » s

avevs 8 &N e e ¥ TV Vet

-Vala

),

ST ITN B O e L Y o O S L R A O L S R L PR e e {0

order to make the enviroanment better, particularly in
Qﬁ; reducing the redrawing of the screen.
.ﬁ*'

It is important to ewphasize the point that this
evaluation was limited to the editor only, and not to the
overall system. In this respect the actual usefulness of

the editor, as it pertains to the entire system, could not

be measured.

VII. Conclusions and Recommendations

Conclusions

A data dictionary system was researched and designed
specifically to support the AFIT distributed software
development environment. The system was broken down into
three separate but related subsystems, namely tne
workstation, the communications links between computers, and
the central computer.

A special data dictionary editor was designed and
implemented on a prototype microcomputer workstation.' It
was designed under the constraints of being generic and
pertable to other workstations. The generic objective was
achieved, as the editor demonstrated its ability to handle
code phase definitions after uesign phase definitions were
used for the original implementation and testing of the
software. The portability of the software to other
workstations was not tested.

Twenty-three users evaluated the user-friendliness of
the editor aad were satisfied with its inplementation. This
level of satisfaction was based on a normalized mean score
of 0.533 on a scale of =1.0 td +1.0 where the higher tne
score the nmore satisfied the user was with the systemn.
Although the previously designed interface to the data
dictionary was not evaluated by the same standards, the new

interface is beliecved to be a major improvement based on the

93

O : SN G O G, ", San et
S R o LS XS »
' L'.L' \‘-L“L -;' a® L'v RLADAGA T AN SACPT it R iy

- -

T e T T EEE YT T . T e sy RN TS AT K YN N T Y YV T L, T T T T Y B

Kl R et datdd et Al S dinh Bhali ran o dat dat Bat et g8 2of Bl i aadte Siadin gly dte gl gt, Sbo Rl db a0 'Rl al sl AL LR Bt G L Lt Gl L) S Lt s L Sh Ba Pl Aol

anhanced features, such as screen oriented editing and error
checking. &diting time should be reduced with increased
accuracy. Data definitions teamplates for particular
projects can be created by the user to provide an even nore
efficient system.

Comparisons of systen response time cannot be based
solely on the editing times. Total response time for the
distributed data dictionary system includes the time
required to transfer files between computers. This requires
additionaly resources (communications links, communications
software) and tiwme that the earlier versions of tne system
did not. How the overall systems compare in terms of
overall response time will not be known until such
evaluations take place.

The communication links of the system Qere not
addressed in detail in this thesis. This was because
communication software was already available for use and did
provide all the requirements for this first implementation
of the system.

The database interface software was designed and
implemented on the Vax-11/780 computer under the Unix
cperating system. The Berkeley version of the INGRES
database management system was the nost database for the
data dictionary definitions.

A great appreciation was zained four the concept of

user-friendliness, particularly its wide variety of

94

PR nE afa o

l.‘-‘. L.

RIS RUREL LY, 05 R SRR, SRRt (oGt ORI 23 LR T S R RN

LRJCIENY PP rLn

definitions. What 1is user-friendly to one person i3 not
necessarily the case for others. Making design decisions to
accommodate anticipated desires for the best environment w~as
based on research conducted and presented in the literature
review chapter. The additional constraints placed on the
system, as a result of the goals of a generic and portable
system, proved toc be costly as brought out by the evaluation

of the editor.

A great appreciation for the design and development of
large (reslative to personal experiences) software
development projects was achieved. The software lifecycle
demonstrated its validity wmcre than sver before.

Muen was learned about the workings of the Z-100
microcomputer and the MS-DOS operating system.
Specifically, controlling the keyboard and manipulating
screen memory of the Z-100 was enlightining.

A great appreciation was gained for the efforts
required to write an effective screen crieated editor.
Experiencing the power of linked lists, understanding
editiang environments and now fast editing code grows were

all educational.

n.‘ P SICL S E Se T

R R R, S, GG 0%, SH RGN Oy

b
!

decommendations for Further Study

[4

Inhancing and expanding the editing eavironment on the

vy

- ‘~‘
(x3

/

workstation are needed. Improving the rough areas, as noted

a ¢

in the evaluation, and implementing additional commands

would be beneficial. Expanding the capavilities of the

~n_ 9 _¢ & &

(B A

editor to handle multiple files is necessary. Porting the

v

'y

3

editor code to other workstations is desirable, including

the more sopnisticated wcrkstations in tne laps (for

.
-
R’
-
.

_exampls, the Sun workstation) and the IBM compatible family
of computers since such a large number of potential users
own these types of machianes.

Enhancing the database interface software is needed.
| The interface needs to be enhanced by providing batch and
‘ background processing. Expanding the interface code to
" handle the other phases of the software development
lifecycle is also required.
The comnunication interface between the worxkstations

and the central couputer needs to ve integrated into the

S

system more effectively. A totally integrated system is

o B Ay Y

desiratle, and correspondingly more complicated to design.

‘2
Y

A significant area of the data dictionary system that

nas not been addressed to any depth 1s the database

Py

administration environment. Tne ability to effectively

e

control and manage the databass is often discussed (as in

Y n"‘

this thesis) tut has not, to date, veen implemented for this

or previous versions of the data dictionary system. Tinis

ALY

A % % 9

.’ {

oo 96

<oplic needs attention aad will provide a zreat service to
the system once it's implemented.

The data dictionary system desizned in this thesis
needs to be evaluated, in its entirety, by users whc employ
its services over an extended period of time. Only through
this evaluation will the effectiveness and tne usefulness of

the design be measured.

97

A ii
N Appendix A
\...:' =

FEALLEAAS
v

Svaluation of an Automated/Interactive Software

J . . .

’ gngineering Tool to Generate Data Dictionaries

o

d

A s . . . N

| This appendix contains a summary and evaluation of tne
r. original tool designed to automate the generation of data

dictionaries. The comments reflected here are based

primarily on the author's personal experience with tae

system. The original software was implemented by Thomas
(39) and later modified and improved by Hamberger (16).

This evaluation took place wnile some of the modifications

were veing implemented and, hence, may not reflect all of
the latest updates to the systemn.

The System Description section describes the objectives
of the tool, the environment the tool was designed to
function in, and identifies the target user group of the
tool. The Documentation section identifies all availabple

documentation for the tool. The Human-Coniputer Interface

section contains the results of the evaluation performed cn
the tool. The Conclusion contains a summary of the

prevalent strengths and weaknesses of the systea,

System Description

The objective of tnis software tool was to assist
program designers gensrate data dictionaries in support of

other software devalopment documentation efforts.

The tool ran on tne Vax-11/730 under UNIX witn tne

- -
"

2rkeley version of the INGRES relatiocnal dataoase '

«

managenent systen. It was written in the C programmning
language with the INGARZ3 embedded query 1language EQUEL.

The tocol was designed to support multiple phases of tne
software lifecycle including SADT's, Data Flow Diagrams, -
Structure Charts, and actual code. Specific requirements

for the system were taxken from the Software Devalopment

Guidelines and Standards (37) pudblished by the AFIT S5chool

of Engineering's Department of Zlectrical and Computer
Engineering. N
Tne target user group was sStudents at AFIT pursuiang a

masters degree in some area of computer systeas or -

a0
LR

engineering. The tool obtained information from the user

e

primarily through direct input Ifrom the keyboara with a

5 op
»

small set of data obtained tarough analysis of the existing

database. -
o,
Specific abilities tne tool claimed to perform include: .
“»
Y
functions Lteas Categories ﬂ
* Tnput % Action SADT
* Retrieve * Data Structure Chart
Delete * Code
¥ Modify

Only those items marked with an asterisk have peasn fully

implementced and were available for =valuation.

b

L)
)
-+

|
Do

- -
an

v -t R R Ce e Y
O SNl
WS R S Y, O R SN

| EAhadtid B tad MR A R b A Eahhbich Rk ol It AA S 4l B A\ AN RA SALR A Sl ahal alalad tad tad ol Sl Sl Aol Vol AR AL AuNh e B AW PR o 0 ol Sl aR- git ol) et sl et di e

Docuitentation

AV Tnis tool was originally conceived as a class project
by a3 grcup of graduate students, and later modified and
expanded as part of a masters degree thesis effort at AFIT
(39). 1In that respect, the only written documentation for
the tocl was the thesis itself. Althougn the thesis did
include information on the genesis of the design, the
relations in INGi&S originally created, and other
information generally included in thesis reports, ao user
nanual of any kind was ever written.

Ihe systew was advertised as a straight forward
"question and answer/fill in the blank" tool. The
information requested by the system generally followed the

standards and guidelines published by the Electrical and

‘.’ Computer Engineering department and the user was expected to

be familiar with these guidelines prior to executing tne

toecl. V¢ on-line help was available.

The source code for the entire project was available

(approximately 15C pages). tach moaule of code nad a module

header of which there existed no entries. Comments within

the code 1itself were almost nonexistant.

Juman-Computer Interface

*

numan-computer interface was the primary target for

T
ine

evaluation. A host of attrioutes =2xist tnat are used to

characterize a "friendly, effective, efficiznt"

human-computer interface. This tool's =valuation was based

A

)

£

L Mg

N

.
w3
L]

on the attrioutes described below.

Response Tinle. HResponse time 1s generally defined oy

how long it takses tne computer to react to user input (10,
27).

The original implementation of the data dictiocaary tool
ran interactively with INGRES. After a small amount of
information was input by the user, processing by the user
stopped and processing information into INGRES commenced.
Only after the prccessing of information to INGRES had
completed did control return to the user for further input.

Interfacing with INGRES was a time consuming process by
itself. Coupled with a user-loaded system, INGRE3S interface
processing time increased dramatically. The result was tnat

. the user spent the majority of the time at the terminal
waiting for the computer to process information into INGRES.
The user got bored, frustrated, and wasted a significant
amount of valuable time. Typical time requirements for each
interaction with INGRES, in a heavily loaded system, were on
the order of minutes.

A recent modification to the tool consolidated all
interaction witnh INGRES to the beginning or end of the
editing session. This improvement reduced tne numerous
frustrating delays at the terminal but the time required to
interface with the database did not change.

An additional option the user had, as a result of a

recent modification, was the ability to update multiple

.........................

AN
T,

‘ xn_'..

existing definitions. The system retrieved from tne data
base as many definitions as the user requested. The time it
took to retrieve tnem 1s directly proportional to tne number
of definitions, but, all of the interaction witn INGRES was
performed at one time. Once the definitions were retrieved,
the tool allows modifications to be made. Only after all
the modifications have been made to all requested
definitions did the tool interface witn the database agsain
to delete the 0ld dafinitions and restore the new
definitigns. -

Regardless of the time of the interfacing with the
database, there remained the requirement for tne user to
wait for the processing. This slow response time was the

most significant drawback to the system.

Methods of Input. There are a variety of methods
employed by software systems to generate input from the user
(1, 10). Tne manner in which this tool obtained information
from the user was a combination of menu selection and text
entry.

The manner in which text entries were made was far from
stimulating., It consisted of a routine of typiang in single
entries or lengtny phrases at the bottom left coraer of the
screen. carlier versions of the tool had entries scroll off
the top of the screen as new iaforuation was entsred at the
cottom. HRecent modifications reguired one ianput itea per

screen wWwitn tnat item disappearing as a new reguest for

‘A

-,

IR RIS

PR AR AR,

CA A

£ 8 s 8 8.9

input was presented.

Jnce tne user reached the tnird or fourta input screen
there was no information provided as to wnich project or
moduls name was being entered. Zxperience showed tnat most
students who used the system sat at the terminal only when
tney were prepared to input several definitions into the
database. Since data dictionary definitions usually include
10 = 30 lines of information, users sometimes forgot which
item they were entering into the database. Only aqQuring
certain requests for input did the current implementation
provide information as to what project and module name was

peing entered.

Psychological Closure. Breaking lengthy input

processes into parts provides the user with positive
feedback tnrough a feeling of accomplishment and success.
Tnis is what James Martin (27) refers to as psychological
closure. The overall lengthy delays in respoanse time
seriocusly detracted from the user's ability to achieve
psychological closure.

Generally, lengthy textural descriptions were entered
early in the input process. This required the user to spend
a large amount of time inputting large textural descriptions
before he or she was certain that tne information typed
actually entered the system. This pronibited tne user fron

achieving that critical initial confidence in the system.

Another problem that detracted from the user's ability

~ *

- .
WY

= .

- mgm g

0
Y3
'l

7

'l
A

v %
-
b}

to acnisve psycnological closure is that the iaforuation
requested by tne system was not necessarily what the user
expected. This topic i3 addressed in more detail in the
next section. -

One significant improvement, in tne latest version of
the tool, provided messages on tne screen indicating exactly
what the computer was doing when information was being sent
to and from the database. Tnhnis provided the user with
important feedback and reduced the users' anxieties that

frequently accoupany eupty visual displays.

Expectations From the Tool on Information Requested.

The information requested by the program differed slightly
in format and terminology from the the published guidelines.
Doubt was created in the user's mind when attempting to
interpret queries from the program correctly. Doubt was
also manifested when required data was ommitted from the set
of queries when, unbeknownst to the user, tnis data was
extracted directly from the database. This exexzplifies the
importance of keeping the user informed. On=-line help
facilities or messages would assist in reducing some of

these provlens.

Error Checking and Recovery. &rror checking facilities

are quite useful and reduce many potential problems when
users are expected to type large amounts of iaput from the

keyboard. If the errors can be identified and corrected

=8
[}
~3

-

e T el

e

.
s o A& _0 4 °

OO

-.,,I.\ l...l.l".'

)

pefore other dependencies are ouilt upon tnem, then the
system will perform witn more rzliablility and efriciency.

Zxperience has snown that certain syabols on standard
keyboards are not accepted by INGRES (for example, square
brackets “[]'). When these symbols are entered, INGRES
returned an error to tne screen and the user was left in
doubt as to exactly what information '"made it" to the
database, if any at all. T[nese types of errors were not
screened for by the tcol.

vWhen inputing textural type information, tne screen
indicated with "guides" the maximum length of the input
before a RETURN was required. When the user typed beyond
tnese "guides" a variety of things happened, none of which
Wwere desirable, and most of which were unrecoverable. An
analysis of the original code indicated that no error
checking capabilities were included for this particular
problem.

Ancther type of entry considered to be an error was a
blank entry entered for a Xkey field (for database purposes).
The system readily accepted blank entries which could lead
to problems when storing the information in, or attempting
to retrieve it from, the database.

A variety of wrong keys were pressed at the various
menu displays. Tne tool correctly handled all standard
characters and strings of characters that were entered, in

tnat a message was displayed to the screen and another

A -

co

-

0y

27

»

opportunity to enter a correct alternative was made
avallable. Escape and control characters, however, causad
the system to do strange tnings -- all of which were

undesirable.

Visual Display of Information. The quality of

presentation of information can have a substantial impact of
the acceptance of the tool by users and can arouse an
interest in its function. Any human-machine interface has
an inherent objective of beinZ easy to use and stimulating
to the user. If the user does not enjoy using the tool, he
or she will avoid using it (10).

Qverall, the visual display used by this tool was
unappealing. The ineffective use of the entire screen,
margins and white space, and cursor positioning seriously
detracted from the friendliness of the system. For exaaple,
a significant anncyance was the entering of information,
line-by-line, always beginning at the lower left corner of
the screen, with the entire screen scrolling up as each new

line was entered.

Favorable Aspects of the Ianterface. The items observed

that were effectively implemented, as determined by this

author, are listed below.

1. The interface did follow consistency
guidelines for most of thes input routines. The
user quickly adapted to the methods used to input

data and became comfortable in anticipating system
prompts.

- hJ e T
SRR .._-“.1. 1-\.- &

-~ e

& AR ol o4 B P S " F RS B A B A g L i S LAt v g "o

2 o m

Ta e e " m v
SO

2. After a complete definition was entered tne
user had tne option to review and modify the entry

SIN prior to storing the information in INGRES. Tiais
¢ QQ} was a major improvement froi earlier versions of

the tool wWnere once the data item was typed on the
, keyboard there was ao way to modify that
- information.

o
2 3. Although response times were long (as a

function of the system, INGRES, and otner items)
the latest version of the tool provided what
comfort it could by printing messages to the
screen to keep the user informed as to the status
of the processing.

[0 7 20 A

4., Error checking at the Menu selections was
implemented and effective in protecting the user
- from making unforgiving mistakes.

- Recommendations for Iumproving the Interface. Tne major

areas recommended for improvement include the following.

¥ 1. The single biggest provlem with the system was
w the long response times. This time must be reduced
1. for the tool to be of any use.

2. It is necessary to keep tne user informed on
what data dictionary item is being input into the
dictionary. The project name and tne module or
variable name should appear on every screen once
they are entered. They should appear in the same
place and highlighted in some way so as to be
easily recognized.

O Y NS

3. Methods of error checking, and possibly
correcting, should be incorporated to reduce tne
potential for error. This includes, at a minimun,
scanning for entries that INGRES does not accept,
blank entries for key items, and accidently typing
peyond guides.

S SSEN

4. The visual display of information needs to pe
redesigned to provide a more active and
stimulating environment for the user. "Blank formn
£filling" should be considered for inputting groups
of single word entries.

ol A R]

: 5. To achieve a faster psychological closure in
g users, a short set of information should be
requested by the tool early in tne session with

)

o A - 10

»
-
[
"
P

' 7
“..'.-_' .

» -y
P

£a2 lengtny algorithas and text descriptions
coming later. This will zive the user a guicker
feeliag ¢t confidence in the systeu.

-
g
. l"
~.l
?

5. A delete option is offered to the user when it

may not be desiraole. CZasual users snould,

Zenerally, not have permission to remove

: definitions from the database =-- only modify them

-y as needed. Removal requests should be directed to

" the database administrator, or instructor as
appropriate.

e’

,

Pl
A

Conclusions

.",.‘ﬁ

System Strengtns. 3asically the tool performed one of

.
L R

its main objectives successfully -- that objective peing to

e
4 ‘e

support the code pnhase of the software lifecycle.

B oo s

The system was advertised as a straight

forward/fill-~in-the-blank tool with no need for any

. documentation as to how tc execute the program. This claimn

ey

(‘U neld true for tne most part, in that mocst students nad

Vele
AR
.

WV
ERIARO

little trouble properly executing and using the tool.

System Weaknesses. The majority of the systea's

oojectives were not achieved. The system performed too

slowly aad was too cumbersome to use to ve of any great

lc’.."ff

value to students. The other major objectives of the tool,

v

that 1includes supporting the other pnases of the software

e,

. 2,

lifecycle, have not been successfully implemcnted. It

o

should be noted that once an effective interface is desizned
for one phase and tne time delays are substantiallv reduced,
then implementing tne other pghases of tne lifecycle are

47 straightforward.

o e

R IR gt gd 3

-

Tt T AT e . e . o

", NI IO N ".."-'..""..'12". “ - RPN ..‘-'.‘.. AR R -(-.---,-.'_.‘-)\ _‘-._'u .". -‘-.‘- Y \~ LA ~\‘ R
WIS ,‘.ah.a".n."i'.p.).a:‘l'.&.a:,a..a':.c.._:..h.‘..;_“:.\‘_;_ A A S A R L R R S SRR A AT OO

TR

L. T e

R R BRE Sa

T v v v

I e AT r e T T e e e e e
[S A A P I i e R I A AT o

The genesis c¢f tnis project, it appeared. led to soue
Of the major difficulties in its implementation. A nunver
of students were involved in the original design, witn a
later tnesis effort dedicated to "patchning tnings" to a
workadple state., In all fairness to the orizinal design, a
aumber of very valuable lessons were learned in the analysis
cf the proclems resulting from its implementation that would
never nave been learned otnerwise. For instance, trying to
store all information about every data item or action was
found to be a very complex and difficult task. Tne
complexity is especially prevalent when attempting to
mainta.n rslationships between items.

Tne time required for a user to enter information into
the database needs to reduced. This time factor includes
time required to enter user information to the system and
time requirz2qa to iaterface with the database.

Large time delays occurred in entering information wnen
the computer is loaded witn users. During normal duty hours
the Vax-11/780 computer usually felt this load. OJne
alternative to overcome this problem is to distribute the
processing of information over multiple machines. For
instance, the user could enter data dictionary entries on a
personal coisputer (PC) or a workstation and down load the
results of the input to the Vax when it is convenient for
the user. Hult.ple entries can be made on the workstation

and the overall time saved would be siznificant with user

e e 5

T AT G

«

'-‘"-J-’ff ,reL

LR AE)

A0S

T

LACA A

2 re P IS Load

LA LIAILIY

ls I‘

DO

[N

N\ '. PIACA R

-,
FOPar RN QRS

-

.y,
LR IR

»
o
»

anxiesty sand frustration levels being substantially reduced.

hal)

ne czecond tiwe factor centers on how tns iafermation
is storea in tne actual database. There are three types of
internal storage structures that INGRES suppcrcts: heap,
indexed sequential access method (isam), and hash (10).
Generally, neap structures are tne least efficient of the
taree, which just nappens to be the type structure used in
tne database supporting this tool. 1In heap structures
duplicate tuples are not r=2moved and nothing is know: about
the location of tne tuples. As a result, retrieval times
ar> directly proportional to t.e size of tne relation. The
otner two types of storage structures are more sophisticated
and produce more efficient results when queried. These
alternative metnods nced to be tested and evaluated to
determine if access times can be reduced.

Closely associated with storage structures used in the
database are the methods used to manipulate, or query, that
data. Specifically, the two more sopnisticated storage
structures support more complex relational algetra. 1In the
current implementation of tne code very simple relational
algetra is used to retrieve information from the catabase.
As the storage structures are modified, so siould the

relational algebra used to access the data.

Fo N

o s 8 b 2 SIS I

S D N U g s

e e A,

e
R)

.

Dagky

< AR i o ite pie Ao Roaid fy Lyt ah Aa b ot Atac ity she ot Ale Al AArahe oR At e J0a -

Appendix

jw

User's Manual for the 23ta Dictionary Zditor

on the Zenitn Z-100

Starting the Editor Prograum

1. Turn the power to the computer on (switch on left
rear of macnine).

2. At the MS-DOS system prompt enter "ddedit" and
press RETURN.

3. The editor title slide will appear or. the screen
and you will be asked to enter the current date. You aust
enter a valid date before you will pe permitted to continue.
After entering the date your will pegin your magical mystary
tour through the land of the data dictionary!!

4. Menus will follow on the next several slides. The
first menu provides the options of CREATing or UPDATing a3
data dictionary definition. 1If a data definition file is
stored on a disk then updating this definition is possible.
To create a data definition from scratcn CREATZ 1is the
proper choice. Traversing between levels of menus (up and
down) 1is provided.

a.) CREATE. Should the create option be selected
the user will be provided with two follow-on menus, the
first asking what phase of the software lifecycle is

desired, and the second askinz what category ot definition

within that phase (either an action or data item). The

N AP I B W WY .
K - - " -y» L] LYo -
ORI LA TN

ij

tnree pnases on tae zenu ars the 2equirements Analysis pnase
(3ADT diagrams), Design pnase (IJcructure Charts), or cCode
pnase. As the selections from the menu are made they appear
on tne top line ~f the screen tc kKeep the user informed of
prior choices. 0Once the catezory 1s selected, the template
for the selected category of definition is aisplayed and thne
user can begin to edit the definition.

b.) UPDATE.

s

houla tne update option be
selected, the user Wwill oe querizad for the name of tne file
to upaate. If the file is found and if it 1s in the correct
format for tne editor it will be loaaed and displayed on the
screen prepared for the user to edit as desired. If the
file is not found or is in the wWwrong format for the editor,
or sone otner problem prsvents it from being read by the
orogram, the user will be notified and control will be

raturned to the top level menu.

tditing Data Definitions

Actual editing a data definition 1s a form filling
exercise that requires the user to type data in the
designated locations. The editor commands available are
descrived below and listed in Figure B-1. This same list of
commands is available on-line by pressing the HELP key while
in tne actual editor.

Text I[nput. Characters are placed in the aefinition at
the cursor position as they are pressed on the keyboard.

Il1legal characters are signaled by a "beep" from the

o
|
o

machine, no action—takes place c¢cn ‘the Tne text
it appears on tane screen is exactly what ~4ill oe 3tored
the definition file.

cursor Movements. The cursor can be moved by pressing

the 4 arrow keys, RETURN, or BACK SPACE. Scrolling the text
up or down 16 lines is prcvided by pressing appropriate
control characters or function keys. Movement to the top
and bottom of the definition is also providea. the cursor
is restricted from moving into unauthorized areas (areas in
normal video).

Insert and Delete Lines. The editor provides the

facility to insert and delete lines for those attributes of
a data definition indicated as having multiple lines or

entries in the Software Development Documentation Guidelines

and 3tandards. “"Descriptions" of processes or parameters
’

for examtple, can contain an unlimited number of lines of
t2xt. Additional lines c¢an be iaserted by pressing tne IAdS
LINZ key (unsnifted). The DEL LIUE xey (snifted) will
delete the line the cursor is on 1if 1t wWwas created by tne
insert coamand (the basic layout of tne definition template
cannot be altered).

Some entries in a data dictionary definition contain a

group of lines (2, 3, or 4) such as tne "reference" or

"alias" group in the definition of a desizgn parameter. This
"group" 1is considered one entry. An additional "group" can

pe inserted by placing the cursor on tne dbottom .aost line of

“Ae froup and pressing the IAS LINE ey (unsniftea). A

(@)

cmplate grcup of lines Wwill de inserted immediately below
the cursor positica. TInese groups can be deleted by placing
the cursor at the top nmcst line of the group and pressiag
the DEL LINE key (snifted).

Exiting the tditor. £XITing the editor session

signifies a desire to save the definition to a file.

QUITing the editor session siznifies a desire to not save
tne definition. Botn commands are available by pressiag tne
appropriate control or function keys (see Figure B-1). If
the SAVE command 1s chosen you will be presented a menu with
5 options as to how you desire to save the file. These
three options include overwriting the existing file,
creating a dackup copy of the existing file and saving tne
new veréion under the original name, and definiag a new file
name for the definition. The QUIT command will return you
to the top level menu inside the tool. (*¥* Jote: Database
requirements dictate that 2ll definitions must have a
non-enpty entry for the PROJECT and NAME fields. You will

NOT be permitted to save a file if either of tnese entries

in your definitions are empty).

5 - 4

. ¢

l‘. .\ b‘“

Ty
..........

Key Control Key Action
FO or °f exits editor -- with save
F1 or | quits editor -- no save
F3 or “t moves cursor to top of buffer
F4 or “b moves cursor to bottom of buffer
F6 or “c pages screen down 16 lines
F7T or “r pages screen up 16 lines
HOME moves cursor to top left corner
of screen
(arrow keys) moves cursor 1 position in
direction of arrow.
BACK SPACE moves cursor 1 position left
RETURN moves cursor to next available
input field
INS LINE inserts line (or group of lines)
below cursor
(multiple lines only)
DEL LINE deletes line (or group of lines)
at cursor
(multiple lines only)
HELP presents this screen
Figure B-1. Available Editor Commands.

AR A AR

APy P NS T, ek,

1

N2

LR

YL ANRAY

Pl Rt St

Fa % e 2 0

Tha A ALAT

Appendix C

zvaluation Questionnaire

Evaluation of the Human-Computer Interface
of the Data Dictionary Systen

The following questionnaire is designed to provide
feedback on the human-computer interface of the Data
Dictionary system developed for the design phase of tae
software lifecycle. Through your responses, 1 hope to
measure your degree of satisfaction with the system, withn
primary smphasis on the "user-friendliness" of the
numan-computer interface on the microcomputer workstation.

The questionnaire consists of a list of 12 factors. I
nope to obtain your reactions and attitudes based on your
response to six possible adjective pairs used to descrioe
2ach factor. fach adjective pair nas a seven interval
range where you are indicate your feelings. Responses
placed in the center of the range will indicate that you
have no strong feelings one way or the other, or that you
cannot effectively evaluate the given factoer,

I would appreciate any specific comments that you
would care to make about any of the factors or the system in
g2iteral.

Start Tine

1. 3System Feedback or Content of the Information Displayed.
The extent to which the system kept you informed about what
was going on in the program.

insufficient |__1__1__i__i__i__i__1 sufficient
unclear | _{__i1_{_i1__i__i__i clear
useless |__{_ i_ 1__i__i_i_ 1 useful
bad | _1_ 1 _{___1__i__ 1 good
unsatisfactory | _ i_ i_ i__i__1__i__i satisfactory

unimportant | 1 i\ 1 i _i__i important

Comments:

PraV 0 e s 8 8

N0 A
Y
oSy
2. Comaunication. The
tool.
complex |
weak |
bad !
useless |
unsatisfactory |

| | i] i f i
| | 1 | | | |

— | —— — — ——— — ———

— — —— | —— c— —

| | i | | |]
| [} | | | 1 1

1 |]] | 1 |
{ { { i i i f

To me this factor is

unimportant |

Comments:

3. Error Prevention.
“n system prevented user

&

bad |
insufficient |
incomplete |
low |

unsatisfactory

metnods used to communicate witn

simple
powerful
good
useful

satisfactory

important

Your perception of how well the

induced errors.

To me this factor is

unimportant |

Comments:

)

good
sufficient
complete
high

satisfactory

important

Te

the

at

O POWWS

4, EZrror Recovery. The extent and ease with which the
¢ system allowed you to recover from user induced errors.

untorgiving 1 _ 1 1 1 1t 1

W incomplete {1 __1____i __{__ i__i__}
2 complex {__ 1 & __ i __ i __i__i_ i
[o
- slow |1 i__ 0V 4 _ 44
b unsatisfactory |__ 1 __ i i 1 1 __i_ i
o To me this factor is
» unimportant {_ i _ i 1t 1 1 |
~
‘-‘ -
- Comments:
N
L)
)
_'{
"y
. 5. Documentation. Your overall perception
RN usefulness of documentation.
< useless |__ {_ i__i__4__1__i
3 incomplete | _ 1 __ i __ 1t _ 1 i
."'] 1
J hazy _ __ 1\ _i____i_1
A insufficient | _ 1 1 __ 1 1 _ 1 1
b
- unsatisfactory | _i__ 1 _ 1 i i i 1

To me this factor is

unimportant | _ 1 i _ 1 1 _ 1 _i_ i

R Comments:
\
q
)
,:.
",
“
.z
A
v ’
’
'.
- c -3
o

¥

P PR R L P AT TR S I AL S N SN S LR N I N LI I
o g' % \'.-‘f._ 5‘. o Q.-‘fa . .."\". CA R - ."’.'1 -.' \"."..c. -'(- teie Vg At
» » L 5 A - | s

forgiving
complete
simple
fast

satisfactory

important

as to the

useful
complete
clear
sufficient

satisfactory

important

)
.*s“‘

p

provided by the system based on

displzased | i f 1

low | i 1 1

y uncertain | H] 1

pessimistic |V I | |

unsatisfactory | | | |

To me this factor is

unimportant | | |- |

. Comments:

‘.. 7. Confidence in the System.
‘ij certainty about the services pr

&

low : | 1 1

weak | t 1 1

uncertain | H | i

bad I 1 1

unsatisfactory | I | I

Comnents:

(@]
1

b. Expectations. Your perception as to the services

your expectations.

pleased
nizh
definite
optimistic

satisfactory

important

Your feelings of assurance or
ovided by the system.

high
strong
definite
good

satisfactory

important

-—

S g o A AT AR Ao SUME T ST A Il i @ A0 i Sl Sed Aade At il Sl Al oeiofe Sl St S ol il A i e Al S Lk Yl L *n S i afia w

3. Ease of Learning. Ease with which you were adble to
learn how to use tne system to generate data dictionary

definitions.

difficult |_ i_ i 1_ 1 _ 1 __i_

confusing | i] i i i | (

coamplex | i ' d i I | i

slow | | | | | I I |

unsatisfactory {_ {1 1 i 1 i i
To me this factor is
unimportant | 1 1 1 1 4

—_— e e e e

Comments:

easy
clear
simple
fast

satisfactory

important

9. Display of Inforamation. The manner in which both
program coantrol and data diectionary information was

displayed on the screen.

confusing I I] i f i i

cluttered | 1 1 1 1 1 i

incomplete | I i | i I g g

complex | | 1 1 1 1 1

unsatisfactory | _ 1 __ 1 1 __ 1 _ 1 _ 1 1
To me this factor is
unimportant | i _ 1 __ 4 1 1 1 4

Comments:

\..

'.t’l'.n'f?- S

Y

clear

well defined
complete
simple

satisfactory

important

SN G TR S

‘ -\ .‘ R X
A&.J.‘J”-A‘M.\ Y \ w m‘M‘\‘L‘x&A\A‘\i\;\.& .\:Q_s':-.'c, ARG

NN
.c'

ey

e

7

.

L)

N

s

A]

10. Feeling of Control. Your ability to direct or control
the activities performed by data dictionary editor. A
r
low | __i_i__i_i_i_i__i high

insufficient |__i_ i__i__1__i__1__| sufficient \

vague {__1____i__i__i__i__i precise "

Wweak i__i_ __i__i__i___i__I strong 5

unsatisfactory {__i__i__i__i__1__i__| satisfactory "

To me this factor is -
unimportant |__ i__i_ i_i__1_ 1 | important v
Commmants: N

3
11. Relevancy or System Usefulness. Your perception of now o
useful the system is as an aid to a software developer. .
useless i _ i__i__i__1__i__i__ 1 useful :

inadequate i__i__1_i_ 1 __1__i__ i adequate <

hazy | _i_ i__i__i__i__1_ 1 clear o

insufficient {__i__{__ 1 _1_1_1_ | sufficient N

~

uasatisfactory i_ i__i_ i__i__1__i__\ satisfactory o

To me this factor is

unimportant i__ i__i_ 1 _i__1__i__ i important -
Comments: b

C -6 5

5]

S0
’

- “ L el P S Y T -
. e e e PR AP .,
- R -

.' \' ." --. ., .' e AP u-' L . . - . \ L ' . .' ~-' . - "o
et Tat e R R IR a™ e " h e Lt 0% oa O
L. PR PR S L, 2 A S R S A R Ay

.
P

12. 2Jverall Cvaluation of tne System. Your overall
satisfaction with the system.

B

unsatisfied { | | 1 1 1 | | satisfied

I O

Comments on the QJverall Systea:

PRt

ﬁ) Finish Time :

Total Time Required for Evaluation =

Thanks for your help!

TP SN N NP SR S O R N N E L R T N LI
e N T e e T O e e

»

X Arpendix D

Data Dictionary Editcr Evaluation Handout

1. You have been asked to evaluate the software interface

(PP ol N N

developed for the Data Dictionary System on the Zenith Z-100
microcomputer. Your feelings, perceptions, and comments are

solicited on the survey form provided with this handout.

2. You will be provided with 2 computers (room 242), all

necessary software (already on the machine), a set of sample

B

data to input into the system (ref. Software Developument

“wa

Documentation Guidelines and Stanaards, pp. 26-31), a brief

user's manual on how to execute the program, and a survey

RN

form containing 12 items to evaluate.

3. It is not necessary that you understand all of the

LA

specifics of what the input data means. Your evaluation
should be based solely on the human interface aspects of the
tool. ;
4. Sequence of Steps to Follow: ?
a.) Begin your evaluation by CREATing (entering) the "
data dictionary definition provide for you. €£nter the i
information EXACTLY as indicated. Press the HELP key to see E
all available editing commands.
b.) Save tne complete definition to a file using the ;
SAVE facility that the tocl provides. k
% :

: - T ~ - he - < L .~ Py e
¢.) UPCATE this definition making any changes ycu
? o desire.
by Y
d.) Execute all options available in the preliaminary set
of menus (phases other than the design phase will te stubs).
A\
2 Exit the tool and verify that your files were saved as
. expected. Reenter the tool as necessary to complete you
“~
) evaluation.
-
: e.) Exit tne tool when you feel that you hnave
] satisfactorily evaluated the interface.
.:.
a 5. Based on your experiences with the tool, enter your
o
: responses on the survey. Please answer all questions to the
s best of your ability. The results of the survey are
N analyzed statistically and numerous blank responses may
&Y
i i“ reduce the accuracy of the evaluation.
k 6. Make 2 printout of one of your files that you created or
< updated and turn it in with your survey. The format of file
- will be analyzed and WILL NOT be in a form readabdle by you.
e
»
3
b
TR
~ ﬂ.'_\"
N D -2
>
-‘ ‘
T S s L Y T T e e R e e A e

VI RT A T el

. {f&} Appendix E

editor SADT Diagrams

This appendix contains the SADT diagrams for tne data
dictionary editor. A node index is included for the set of

diagrams and a text description accompaniss each diagram

S .‘_.(‘...-._.'_l-.' Ve .

NS N AN TN N A R Y. T Y R A

2

AR A > ¥ [t Rt e S Sl e I AR I il b s O AL At e At A A i A A N IS A A AR Y R SR A S R A gl A i i g &

Node Iadex

C1 Data Dictionary Editor
C 0 Provide Data Dictionary Editor -
1 Perform System Configuration
C3 2 Provide Editor
2.1 Initialize Editor
2.2 Provide Menu
ch 2.3 Creats Wew Definition
2.3.1 Determine Pnase
2.3.2 Determine Category
2.3.3 Load Edit Template .
C5 2.4 {Jpdate Cld Definition :
2.4.1 Determine File to Update
2.4.2 Load File Into Buffer
2.4.3 Determine Phase
2.4.4 Determine Category
2.5 Exit Systen
N 2.6 Process zrrors
(¥ ch 2.7 Edit Definition
2.7.1 Get Keyboard Input
2.7.2 Evaluats ESC Ccdes
c.7.35 Convert ESC Codes to CTRAL
Codes
2.7.4 Perform Command
.
L -2

e A L

Cata Cictionary Lditor

Apstract: Tanis diagram shows tihe overall requirement of tne
Jdata dictionary editor.

J Provide Data Dictionary Editor uses the system and
envircnmental inputs to determine the required
charzcteristic files to configure the system software.
Systen/Environmental inputs include the type of computer and
terminal peing used for the system. The editor is
configured and data Jdictionary definitions are prcduced.

(43}
1
w

7 %y Te e s

.
VR

PR 2 N g

s I I I A]

¢
o

R)

12 ¥0LIO03 AYYNOILOIOQ Viv0o
* H3EWNN $3UIL * 300N

:

4 0
: NOILINI43Q 401143 SINNI

* ANUNOILOIQ Ylvud _
AYYNOILIIO0 V1vQ 301N0¥d INFWNOYSIANI / W3ILSAS 2

-

A

ai1va 'ASY 401103 Qa ¢ 1231 Odd N
¥30v 3y 98-8-t +31vd A3704 °C LH0HLNY

P S ¥ ...r

qn.w»\ ' i. A} .f\!

" .,-.-. IS NN .----Jli\l ‘..-4.....-.:'--.\..-.-h.dn e’ ARNIEIYY -ll.'d.-a -

0 Provide Data Dictionary kditor

Abstract: Provide Data Dictionary Editor uses the system
and environmental inputs to determine tne required
characteristic files to configure the system software.
Systean/Envirconmental inputs include the type of computer and
terminal being used for the system. The editor is
configured and data dictionary definitions are produced.

1 Perform 3ystem Configuration configures the software
to operate based on the hardware descriptions provided.

2 Provide Editor accepts the the coafigured system and
provides an editing environment to produce data dictionary
definitions.

83}
|
U

. r e o 5 = -

AR A

I I

5
D

i AT

b L

PSR

) 401103 AYVNOILIJIOA viva 30IAONd 0
SYIBWNN *INUIL * 300N

HOTLINIJ3d ¥01103 v
e — - -.
A¥YNOILDIQ 301n0¥d [
wlvd

NOJLWINDT INOD SLNdNT i
Aq
W3LSAS QIWNDIINOD W3LSAS uWH0IH3d ININNOBIANI/HILSAS Yo

31va YA 404103 0Q *123r0¥d
430V 3y 98-8-€ *31v0 A3704 °r *YOHLINY)

ARBDEEE SRR A=Ay FAPRNNGEE |IE

g VLY o N 1A o dte a0e A% A% 5% AN B'a B YA e AN 00 A N A e A A AN A A N Y A A B Al el Bl A Il B/ i B ol S Rt et B
“
A

%

P ELLLS,

ST A,

/ '.- "-‘ .

A

W S T

t s 5 a s

)
.

-
.
.

%

oyt

2z Provid=s Editor

Abstract: Provide Editor accepts the tne configured system
and provides an editing enviroanment to produce data
dictionary definitions.

2.1 Initialize Editor draws the initial screeans and
obtains basic administrative information from the user (sucn
as the date).

2.2 Provide Menu presents the opening menu and optains
the user's desires for the systea.

2.3 Create Hew Definition obtains, from the user, the
information required to determine the correct data
definition template to load into the buffer.

2.4 Update 01ld Definition loads the existing file, as
designated by the user, into tne buffer.

Q

2.5 Exit System enavles the user to exit tne system.

2.6 Process Errors performs the necessary actions to
correct errors, if possible, and provide error information
to the user as required. The errors that reach this level
are errors that cannot be handled at lower levels.

2.7 Edit Definition provides the editing environment
for tne user to edit the information inside the buffer.

¢) N0
1103 30IA0¥d e
1 ¥38WNN ‘311 * 300N
52
W3LSAS LIX3
MOILINIS3G ﬁ 1IX3
AdUNOLLD1A
91ud NI4
-3 d13H =
"‘I', 'o
NOILINIS3G [NOILINIA3Q
41143 610 31vdan
-
SNLYLS ANV
¥344n4 319ddn
ee l———— N 13K
€2 NN3W Nisd
NOLINIJ3Q 3010084 - 3DI0HD ¥3ISN
N3N 319330
32 319347 $5300n5 12
S308d3 801143 TP EREED
¥0483 1143 -
$5330x4d 321WILINI JHuNGaTH
qO¥&3 LINI
3iva tA3Y 304103 Qa * 133 0ud
§30Y3y 98-8-¢ '31vQ A3704 *F LH0HINY
0% .
LEE
&
- L SR B 2 WAL AW “r w.l. - e " a2 .\..-. i...- ‘.v)-..;-u. ..-.--\-.... ...i, Tt e v, .»¢

> % -V

oy
’

-
(A
o

-

-'..-.'..

‘-'. “

<o

-N- -l

-
b

h f*fyf.

—w

[e A Ar ad TRy

O W

2.3 Create dew Definition

Aostract: Create New Definition obtains, from the user,
the information required to determine the correct data
definition template to load into tne buffer.

2.3.1 Determine Phase ootains the pnase of the
softwars lifecycle from the user,

2.3.2 Determine Category Obtains the category of
definition, within the particular phase identified
previously, from the user (such as process or parameter for
the design phase structure chart).

2.3.3 Load Zdit Templates loads the proper definition
template into the buffer.

10

<]

+ NOI €2
JINI430 A3N v
, *HIAWNN d EAELE 3111 ¢ 300N
: cece
4334n8 A le— 53113 3vaN3L
2t e
: - ANOD3LYY
. AB093LY) INIWA3LIQ
. 3I5YHd
’ TE?
o 35YNd
” 3SYHd 3INIWE3Ld
‘ 319340
) 3iva "A3Y ¥01103 Qa * 1337 0¥d
¥30v3Yy 98-8-€ 131v0 A3N04 °F S HOHLNY
“ LA < -
o -.." PELL !h “‘vn‘ . u™ ’, u.~-.......-.“ YV .-.- VY " ‘ .-..-.-.J.l - , -..-..- ...I..- 3 [-\S-.\\\-..,-‘-.%.. ..;\-‘ .

XX LS

"
-

[AV]

.4 Update Jld Definition

Abstract: dpdate 0ld Definition loads the existing file,
as designated by the user, into the buffer.

2.4.1 Determine File to Update obtains the name of the
file from the user.

2.4.2 Load File into Buffer loads the file designated
by the user into the buffer.

2.4.3 Determine Phase obtains the phase of the
software lifecycle from the buffer after the definition is
loaded.

2.4.4 Determine Category obtains tne category of the
definition, within the pnase of the lifecycle, from the
ouffer after the definition is loaded.

G NOILINI430d a0 3iLvadn e
* H3BWON '3 UIL « 300N
)
DU A¥093LY)D
AY0I3LYD 3INIuA3L3a
¥343nd
tre
-— 3SYHd
350hd INIwY3LIa
Ui
- ¥344N8 OLNI
4334n8 3114 avol
52
WONIL A Ilvadn ol
3114 3INIWE3LIQ
ﬁ 3ivddn
J1vg sAIY ¥01I03 4G *133rQad
¥30v3y 98-8-€ '3iva A3N04 °f YH0OHLINY

OGN
-
"t\ -'-

~

»

12

~ e
Pat)

A

i

ASIRN

A

r

g
'
i
L

LN

L%

DA A

Pty
s ae

.

2.7 &wdit Definition

Abstract: ndit Definition prcvides the editing environment
for the user to edit tns information inside the buffer.

2.7.1 Get Keyboard Iaput reads the keyboard for input
by the user. Valid characters zre distinguisned from E£SC4PE
code and each are sent to different places for processing.

2.7.2 Evaluate ESC Codes analyzes ESCAPZ codes as they
are entered at the xeyboard. Valid codes are processed
wnile invalia codes are flagged returning control pack to
the keyboard for next input.

2.7.3 Convert ESC Codes to CTRL Codes converts valii
)

z3CAPE codes to CONTROL codes. CONTROL codes can be
rpresented by single ascii codes wherse ESCAPE codes require
more than one ascii code.

2.7T.4 Perform Command performs thne command as lefined
by the characters or codes received. Examples of commanis
would include display the character pressed at the k=2v"2ar:,
insert/delete lines of text, page the screen up or S.wn.

%]
1

13

U B . I .-
RSO -_-'_-...._.

POV TR
RO T S P O

90 NOILINIS30 1103 A
* 438WNN "3INNIL ' 300N
¥ONNI - €
NOILINIJ3G QG - 2
SNiYLS AQv3d -~ 1
£ 314 413
| 2P} |
g +— ANYWWOD
g
¢ WH0 343d
EL@
3005 19 53009 1¥49 OL
Y19 153005 253 1u3nN0g
3309 Q1lun 2'ere
aWd L1x3N $3009 953 o
¥03 AQY3d 319N9Nn3
3009 OI79nNI
¥YHD QI7wn
N4
ﬂ...lum “n—wz
— Lhdul
3005 253 890843 13D jo—u
l-EFEUL
31vQ0] 401103 A0 123 0¥d
¥30v3y 98-8-€ '34ivQ A3TW04 *f LA0HINY

S A S~ e on g™ A Mt B0 ar it 4 KV BRI B gt At AnAl gl h o A gt oAU adhar s i o)
L -~ . P T R - oot D U

R .
e Appenaix £

Design Structure Charts for tne cZditor

This appendix contains the Design 3tructure Charts ror

tne data dictionary editor.

.
.

A0
'..

LS
s &)

]
]

T N R N e e
}}ﬂmIMlh I-A }\h l\[- -l‘}n"}l}l :.-A'_ oaat .\\ Lt .\.' 1’:-‘: . -’_ :‘.‘,'.‘_‘.'_‘.{ NSt ‘_s"‘_-{

e o a s # V] a7 s 0 d L S it [. AL - LA DIl M M NP

[]
¥0LI03 ANVNOILIIO viva NOILVLISHHOA 0
1 ¥IEWNN '34IL * 300N
2 1
ERCZLEIT)
¥35N 30IN0¥d W3LSAS 334N INOD
NOILWANDI INOD WILSAS N
]
NOLLYHNDIINOD WIL5AS b
°
d401103 ANYNOILOIQ
Yiud NOILYLSNNOM
3iva A3 801103 QQ 0 123 Oxd
y30av 3y 98 ¥dv € '3ivd A3704 °F 1 30HINY
.\‘.”cr 4 _snnll- .
.\....i.-..\ . G ' .ﬁfMl

¥
4

a

-

.\
N

-

P
o)

- -®
AR
. W Ve 3

"")i‘

™

ol

)

o

35

.‘;.;_.4 o

LIPS
-

@ o

.

AR

-

.

~"

W3L1SAS J¥NOIANOD |
S H3IGWNN '31IL * 300N

- ¢ 1°1
SIILSINILIVNUHI SOILSTY¥ILIYYUYHY
Qd¥v08A3x 3NI33Q TUNIWE3L 3INT I3Q

NOILINII3Q
TUNIWN3L

NOILINI43Q
qyv0gdA3N

W3LSAS J¥NDIINOID

31vQ 'A3Y ¥01I03 00 *123roud
¥30v3I¥ |98 ¥dY € t131va A3104 'F ¥OHIAV

= oy Ty Ky - I [l i) i e,] I'd - SO NN Ll oot ! . % a_ v e
3IV4H3LINI ¥3ISN 30IA0Nd e
1 438WNN 31Tt * 300N
£°2 22 12
531134 AN3S $3114 1143 53114 3In1303y
3114 Q31103 3114
N4
3714 Q31103
2
300 393 LNI
¥3sn 3QIn0xd
31va sA3Y 301103 Q0 1337 0¥d
¥30v3y 98 ¥dv £ '31v0 A3704 °f H0HINY

‘v w

402

s LS

Ll

314 1103 e‘'e
s YIEWNN $37411 » 300N
€2 e FIELE) T
$39YSS 3N 399553
¥0¥¥3 AYIdSIA MN3W 301n0¥d 3W0913M AV1dSIA
NOILINI42a ad
3100
22
3114 1103
3ivad ‘AN 301103 44 € 1337 Qud
y¥30Y3N 968 ¥dY € s33vQ A3704 °r YYHOHINY

4
s
s

-t

NN3IW 30IA0¥d eee
' ¥IBWNN '3NIL * 300N
s@ee vaae teee T
NOILINI 430 NOILINI430 N33u95 A8019341Q
Q¢ 3.vaan Q0 319380 d13H AYIdSIQ 3011044
yrerete NOILINI3Q 4g brerete
YH004d 11X3 N33YoS
z JyYaNYLS AYIdSIG
NOILINI43d ag
222
NN3u 301n0¥d
diva 'AY ¥01I03 0a * 133 0dd
¥30v3y 98 ¥dv € *31vQa A3704 °r LHOHINY
e -
- - & Ay e . RS PRI g W . "o v v _4f v v v~ 3) AR

e LT
el gt ot

e
-
)

A%) .
ol

-*,

“ Y

RO A

elaainscosien aiedch Sl it ol vl R ok il

NOILINIZ30 00 3ivadn 5 2°2°¢
1 43GWNN s 3111 * 300N
E-va22 v geae R 1°6°2°2°2
NOILINI 430 ¥34409 OLNI AY093LYD 3ISYHd JWUNIIL S
ag 11403 3114 Quo1 AINTWNILIA INIWY3IL3d INIWN3LYG
NI Jw
A¥0D34Y)
NOILINT33G Qd 834404 1/// et uoNIL4
3ISYHd
\\\\- 3WeNIL S
:///////1 314
¥344ng
5222
NOILINI J3Q
aa 3ivgdn
31v0 ‘AN ¥01103 og *433r0yd

§30v3y 98 ¥dv 6 131v0

A3704 °C *HOH1NY

NOILINI430 00 1103 S'kretete
" ¥3BHNN $3UIL * 300N
£°S°p*2°2°2 2°'s'y¥-2°2*e 1°s°v°2°2°2
ANYWWOD ANYWOD N33425 0L
WN0483d 835N 139 ¥4344N8 AYI4SIA

ANYLWOD

PIR R

% SDENNNA

d344N4
S°¢v°2°'2'¢
NOILINI 430
aq L1a3
j
J
3iva *A3Y ¥01103 Q@ *123r0ud
¥30v3y | 98 ydv 6 *31v0 A304 *f sNOMINY
I
D
NI LI PARAPINS | RPIPINA rff}fheJ

.*p o ..-.-,-..-..o......

TR
h]
L]

qc\.f-

F

a2 -t-d;'\n.u‘. MRS

<.
T~
v
b
3' 00 Appendix G
¥ W APPERCLX 2
. Summary Paper
o
»
[)
Introduction
t The Department of Electrical and Computer Engineering
‘v'
«E at the Air Force Institute of Technology (AFIT) sponsors a
~
= large amount of research in the area of software
,H development. In conjunction with this research, the
’!
;E department has established documentation standards that
'y ‘
h- include data dictionaries to support the requirements,
& design, and coding phases of the software lifecycle (37).
\1
«§ Originally these data dictionaries were created and managed
B €§§ by hand. As the dictionaries grew in size, the effective
o~ control and management of their contents became increasingly
3
N difficult (16). Several efforts at AFIT led to the
i
development of a limited data dictionary system implemented
>
:; on a Vax-11/780 computer under the Unix operating system,
-
&
% and using the Berkeley version of the relational database
Yo
i management system INGRES.
{: The overall objective of this research was to expand
. and enhance the current data dictionary system to support a
.. !
B distributed development environment. The distributed
o environment is required to support the capability to
. generate and update data dictionary definitions at the
- workstation and transmit these definitions tetween the
SR
. o
\0
‘5 G -1
LY
< AR A S A WA \.-\.. 8,

4 AN
. f:f,‘.
LA J
.t
.
2
L)
1
..
o
C4
J
i’ i b}
-
A
T LS
. S
.
(4 'Jl.'q' O':.

SUN
WYORKSTATION

2-100
VORKSTATION

!

Z-109
WORKSTATION

LOCAL
TERNINAL

GANDALF

|

LoCAL
TERMINAL

SUITCH

HOME
WYORKSTATION

l

HOME
YORKSTATION

DIAL-UP

Vax-11/780
UNIX

Figure G-1.

Distributed Development Environment.

L}
)
)
L)
NN

9% N
;.":\'

-

«'a 8 2P

A b,AY,

{hdFhall

'1 - “.n

...... d ™ M ble gl gl giot oty ol g alatal tal s A R L AL ob ind tad S0 &

central computer.

The target user group consists of graduate students at
AFIT pursuing a curriculum ian electrical or computer
engineering. All users will have some experience with
computers and will be familiar with the requirzments
document for data dictionary information. Users will be
familiar with the Unix Vax-11/780 (SSC) computer and w~ill
most likely have some experience with the use of
microcomputers.

Software development documentation standards at AFIT
follow the software lifecycle phases consisting of the
requirements analysis phase, the preliminary and detailed
design phases, and the implementation phase. Graphical
representations often used to support the documentation
requirements include Structured Analysis Design Technique
(SADT) diagrams (SADT is a registered trademark of SofTec)
for the requirements analysis phase, and Structure Charts
(SC) and Data Flow Diagrams for the design phase. Data
dictionaries often accompany these representations in
addition to accompaning the actual code (36). The contents
of data dictionary definitions for the phases of the
lifecycle stated above are detailed in the Department of

Electrical and Computer Engineering Software Development

Documentation Guidelines and Standards (37). Sample

definitions are shown in Figures G-2 and G-3 for a structure

chart process and parameter in the design phase. This is the

(®]
1
=

.......

"..

/ . 4-".--)-) X 4'." .&, ,. I ENC AL I N T w e e .~...:,;.~ " \.-;n ",r_:(_;‘-'.- T _. et e e e e e .:. .

Aal Sl Gl SR Gad St Sl Sl Sl '—'_'*(1

e saaa"a
(P
L 4
.
4

X PRNAME :
p PROJECT:

Process Message
NETOS-ISO
4.0.1

) NUMBER:
: DESCRIPTION:
INPUT DATA:

INPUT FLAGS:
OUTPUT DATA:
OUTPUT FLAGS:

Process a NETOS message.
msgptr

none

none

error2

ALIASES:

PROC_MSG

CALLING PROCESSES:

Process Messages and Data

PROCESSES CALLED: Decompose Message
Process Network 4 Messages
Determine Channel Number
Build Queue Buffer for Qty = 1
e Put Buffer in Queue
0 Level 4 Cleanup
ALGORITHM:
Decompose message.
If network message
. Process Network 4 Messages
else
Determine channel number
Build queue buffer
Put buffer in queue
Cleanup Level 4.

Hevs 0 8 X = *

REFERENCE: PROCESS SPOOLER MESSAGE
REFERENCE TYPE: SADT

VERSION:

DATE:
- AUTHOR:

J.

e REFERENCE: Smith'
‘_’ REFERENCE TYPE:

1.1

VERSION CHANGES:
11/25/85
W. Foley

s Algorithm,
text

p. 23-24

Added module "Level 4 Cleanup"

2 et Fala

Figure G-=2.

Data Dictionary Format for Structure

Chart-Process

-«

(37:27).

J.‘.’.u.‘. ,-;-_:_1_;_1]'_1»'.

M S5 B A b B D S A M R S s i

PANAME: nmess_parts
PROJECT: NETOS-ISO
DESCRIPTION: Decompose parameters.
DATA TYPE: Conmposite
MIN VALUE: none
MAX VALUE: none
RANGE: none
VALUES: none
PART OF: none
COMPOSED OF: SRC
DST
SPN
DPN
USE
QTY
Buf fer
ALIAS: Message Parts
WHERE USED: Passed from Decompose Message to Val Parts
COMMENT: Part of earlier design
REFERENCES: SADT - MSG_PARTS
REFERENCE TYPE: SADT
VERSION: 1.2
DATE: 11/05/85
AUTHOR: J. W. Foley
VERSION COMMENT: USE added to allow network msgs.

2 CALLING PROCESS: Process Message
PROCESS CALLED: Decompose Message(parts_list)
DIRECTION: up
I/0 PARAMETER NAME: parts_list

rigure G-3. Data Dictionary Format for Structure
Chart-Parameter (37:29-30).

data that is represented in the relational database. The
third normal form relations shown in Figures G-4 and G=5

were designed to support the operational data requirements

of the design phase of the lifecycle.

SR ot M At D ii ot of 8 ot ab et i et b it e i dhtodaii Bt JrAChe Sl A B A TYLYY v
e TSN . T < ; . CadaiiRatd g L AR AN A A 20 A0 ot AL S A0 A AINCHA R A D Rt 230 WAL AR Sl 2Ry |

\

|
|

process:
*project cl2 - Project name
*prname c25 - Process name
number ¢20 - Process number
prdesc:
*project cl2
*prname c25
*line i2 - Description line number
description c60 - Description text
pralg:
*project cl2
*prname c25
*line i2 - Algorithm line number
algorithm c60 - Algorithm text
processio: . .
*project cl2
*prname c25
*panamne c25 - Name of i/o parameter
direction c4 - Input "in"/output "out”
ptype c4 - "data” or "flag”
prcall:
*project cl2
*prcalling ¢25 - Calling process name
*prcalled c25 - Process called name
prreference:
*project cl2
*prname c25
*reference c60 - Reference description
reftype c25 - Reference type
pralias:
*project cl2
*prname c25
*aliasname c25 - Name of alias for prname
comment c60 - Why alias is needed
prhistory:
*project cl2
*prname c25
*version cl0 - Version number of this entry
date c8 - Date of this entry
author c20 - Author of this entry
comnent c60 - Changes from last version

Figure G-4. Third Normal Form Relations for 2a
Design Structure Chart Process.

G -7
i
|
|
. {
P CTER (R N PP T S S T AN, CAAY PRSI "'L'ﬁ_h\. nﬁ;l;_:._ siatan ._1':qu'(‘ ._(.f.'j‘ f.J

- W

Wy

-y v & ¥

il e ANE Bk

ARy Trw W w W VSTV

- WY -

v
25N
%t
i)

parameter:
*project
*paname
datatype
low
high
span

padesc:
*project
*paname
*line
description

pavalueset:
*project
*panane
*value

pahierarchy:
*project
*hipaname
*lopaname

paref:
*project
*pananme
*reference
reftype

paalias:
*project
*paname
*raliasname
comment
whereused

pahistory:
*project
*paname
*version
date
author
comment

papassed:
*project
*paname
*prcalling
*prcalled
direction
iopaname

clz2
c25
c25
clS
cls
c60

cl2
c25
i2

c60

clz2
c25
cls

cl2
c25
c25

cl2
c25
c60
c25

clz2
c2s
c25
c60
c25

cl2
c25
clo

c20
c60

cl2
c25
c25
c25
c4

c25

Project name

Parameter name

Language independent data type
Lowest value allowed, if any
Highest value allowed, if any
Range of allowed values, if any

Parameter description

An allowable value for paname

Name of composite parameter
Name of component parameter

Reference description
Reference type

Name of alias for paname
Why this alias is needed
Process name where found

Changes from last version

Calling process name
Called process name
Direction "up"” or "down"
Name of i/0 parameter

G-5>. Tnird Normal Form Relations for a

Design Structure Chart Parameter.

System Design

Data Dicticnary Editor Design. The Zenith Z-10C

micrccomputer was chosen as the prototype workstation for

N the implementation of the data dictionary editor for two

Mz Y Y 1 A R

reasons. First, it supported the standard 16-0it operating
; system in use today by amicrocomputers (MS-DOS). Second,
there are a large number of Z-100 computers available for
student use in the academic areas.

The "C" programming language was the language chosen
for tnis editor. This was because the Berkeley version of
the database management system INGRES, used on the .
mainframe, only supports "C" in accessing the database
through its embedded query language, and the fact that "C"
was supported by the majority of the other computers K
‘i! available in the labs, facilitating the portability of the b

code. ;

User-Machine Interface. The user-machiae

interface dialogue consists of a screen-criented combination A
: of menu-sslection and form-filling displays. Menu-selection N
i3 used in the initial stages of the tool while form-filling .

dominates the editing session of the tool. The initial

Stagzes in the execution of the editor require the user to

S R P P

identify his (or her) desires of the tool. The initial menu
is snown in Figure G-6. Definitions can be created from
scratch or updated from an existing file.

The form-filling method was chosen as the primary

P AR

"-
o
‘e

% e N
.

A
e _ .

> t}*-l
S

]

PLACE CURSOR IN BOX, PRESS (RETURN>

C J CREATE NEW DEFINITION

C 31 UPDATE EXISTING DEFINITION

C 1 EXIT PROGRAM

Figure G-6. Opening Menu on the Editcer.

method for display and input in the editing portion of tne
tool. Predefined, foraatted structures, called templates,
are used as tne basic form. There were three reasons for
this choice. First, the nature of the data dictionary
definition lent itself very well to a blank form=-filling
operation, since a variety of fields exist for each

definition. 3econd, the form-filling method presentead the

10

o
1

RENU 81 CHOICE ﬂ NEMU 32 CHOICE MENU 83 CHOICE FILEMAME
USER WORK AREA
AREA
i
i
fFigure G-7. Sample Screen Display.

the edit session, the screen is divided into two parts, the
left one-fourth of thne screen and the right three-fourths of
the screen. The left portion is reserved for field names
only (title), while the right portion of the screen is
reserved for user input (data). While editing a file, the

cursor 1s restricted from moving intc the left portion of

X B 5 v A

g
> o

RBAAL S

. AA e 0 8

information on the screen in a manner that closely resembled
the format required by the department. Third, form-filling
provided a "nighly disciplined mode of modificaticn that
guaranteed the structural integrity [of the data dictionary
definitionj" (40:102). Because movement of the cursor into
unauthorized areas is prohibited, movement between fields is
easily accomplished and input error checking capability is
ennanced.

The actual display of information on the screen plays
an important role in the design of user-friendly interfaces
(1, 10, 18, 27). The screen display shown in Figure G-7 was
designed for this tool. All menus are displayed
consistently throughout the tool with regard to their
location on the screen, appearance, and method of choice
selection.

The top line of information provides the user with the
location within the nierarchical structure of the progran,
and remains on the screen throughout the use of the tool.
The results of each menu selection are provided in this line
as the user traverses through the tool. This facility
eliminates the requirement for the user to memorize tnis
information.

The remainder of the screen displays the menus.

General editing taxes place in tnis area as well. While in

tne screen. All input areas are nignhlighted in reverse
video, clearly indicating tne maximum length of =ach entry.
The restricticns on the movement of the cursor (outside of
any reverse video block) reduce the potential for error.
These restrictions are designed tc permit the user to
concentrate on what information goes into each block rather
than the mechanics involved in getting to the prcper
location on the screen,

The information displayed on the screen is exactly what
is stored in the data file. This system is commonly known
15 "what you see is what you get." This provides immediate
feedback to the user that the tool is doing useful work.
This contributes to providing the user with the
psychological closure that is important in the design of any
user-friendly system (27).

It should be apparent that no data dictionary
definition is going to fit on the screen in its entirety. A

system had to be developed that would control what portion

(or window) of the definition buffer would be displayed on

the screen and how windows of information could be moved on
and off the screen. This is a basic requirement of
screen~oriented editors.

The system designed and implemented in this tool
involves a "windowing scheme" (see Figure G-3). Global
pointers are defined to keep track of the top of the buffer

(topbuffer), the bottom of the buffer (botbuffer), the top

. - - a - - - - - - - - ‘- - - | - - - N - - - - N - - - - - - P W - N - ™ -
")
-
o
Cl
Ll
. -
. ‘.Q‘ “‘
. ol .
Se
L, TOPBUFFER
.8 O
. NAME :
) PROJECT ;
N TOPVINDOV NUMBER .
N I i DESCRIPTION : !
! 3 ' {
. . | 3 : !
- | INPUT DATA ' !
o INPUT FLAG : !
N OUTPUT DATA : '
-) oUTRUT FLAG : !
ALIASES & : H
* COMMENT ' !
& CALLING PROCESSES :
2 PROCESSES CALLED 1 !
19] NTUIWOV (CONT) N :
\] . Fe > [-
g i" (CONT) '
B i °
. o
{l
. °
1 DATE 1
. AUTHOR 1
v
2 BOTBUFFER
X L >

Figure G-8. 3creen Editor "Windowing Scheme".

- ..--“."‘.‘ ...‘.‘_"‘_‘, -'.“ f '--.' Lo R I .'..". '.‘-" Telat .‘;.“.
PR AT S S Y Y Y A S A U TR TR TR 2 N A a i R T Y N

I

-»

- -

[ICAACENEA

a2 e a % 0

LR

-::’

.
.
o
3
s

O‘. .‘.

of the window (tcpwindow), and the bottom of the window
(nbotwindow). Topbuffer points to the very first structure
in the linked list, while potbuffer points to the very last
structure in the linked list. These two pointers generally
do not move once initially established, unless the structure
to which either points to can be added onto or deleted. The
topwindow and botwindow pointers, on the other nand, move
about the buffer frequently always remaining 21 items apart
(the size of available screen space for this editor 1s 21
lines). 1Initially, when entering the editor, the topwindow
is set to topbuffer and the top 21 items in the buffer are
displayed. As the user attempts to move the cursor down off
the bottom of the screen, the topwindow and botwindow
pointers are adjusted accordingly and the new window is
presented on the screen. The window pointers will change
frequently during an average editing session with thne
obvicus restrictions of the topwindow pointer never
"nassing" the topbuffer pointer and likewise with the
botwindow and botbuffer pointers.

Ideally, the method for handling data files used by the
tool is to hide the implementation details from the user
completely. The user would be required to know only thne
names of the processes or parameters, with all file 1/0
peing based on this information. The current implementation
requires the user to define filenames and keep track of them

as nacessary. Several stanaard options were provided for

Bk,

1

[

[

i
:
:
’
:

R

~

‘.\.

£33

3

L5
LR d

"N
sy

storing files, for example overwriting the existing file, c¢r
creating a backup version of the old file. Although not
ideal, this method of file handling does provide a working
system that appears clean and simple to use, yet is flexiole
and powerful enough to provide most desiraole alternatives
for the user.

The commands available to a user while using the editor
clearly have a major impact on the usefulness of the tocl.
"Concern for human engineering dominates the design"
(19:163). The minimum set of commands that will provide a
working system include "insert" characters, "delete"
characters, and "save" the text at the completion of the
edit session,

The capability of moving the cursor freely to any
portion of the input area is important. The user aust have
this capability to view or modify any portion of tne file at
any time during the session. Cursor nmovements by character,
line, or screen-at-a-time were considered essential for tne
editor to be of valuable use,.

Line insertion and deletion were required to support
the various entries that contained multiple lines of data.

Standard termination commands are included to provide
for quitting the editing session (without saving the file)
and exiting the session (saving the file).

On-line help facilities were considered essential to

give users immediate access to all available editor

(&}
]

—

o

UGS R A R R R Il Ty Sa i s P I e e o i S e S R S S I R T PR LY Sy e YT TN
AL Lo (- "\’4"*’ Coflar oo Lo e T T T o N T PO A LSS S RV L r S TS S SO Y

o

-

-

Pl et

s a 8 a » K

2

p) '.')

D
»
»

commands.

Error handling is provided at the lowest possible level
in the code. Illegal strings of characters for filenames and
dates are identified upon their entry. Illegal characters
from the keyboard are suppressed at the time the key is
pressed. Other errors that are checked by the tool are
those that relate to the definition requirements and not the
actual codes from the keyboard, for example verifying that
key fields (required by the database system) are non-enmpty.

The form-filling construct of the editor itself
prevented a number of otherwise common errors from
occurring, for example entering characters in the wrong
location'or typing characters beyond the length of the
field., Input fields were clearly identified and cursor
movement is limited to only input areas. This was one of
the major reasons that the form-filling format was the

method of choice for thnis editor.

Database Interface Design. The interface software

currently supports the design phase database (for structure
charts). As the other databases are designed, extension of
the interface software to support them should be
straightforward.

The database interface software was designed to
translate a text file containing a data dictionary
definition, generated by the workstation editor, into the

database and vice-versa. Currently, the database interface

''''''''''

‘20
o

oS

Y

software provides operations on single files (data

dictionary definitions) only.

Implementation Issues

Some costs were associated with thne efforts to keep the
code portable to other computers. Designing the code for a
24 line by 30 column screen eliminated the option to employ
the 25tn line available on the Z-100 teraminal. This line
is not affected by line insertion and delation or any other
scerolling operations. Because this line was deemed not
available, redrawing the screen was necessary when attempts
were made to move the cursor beyond the top or bottom of the
screen. Paging commands that scrolled up and down 16 lines
in the buffer and gquick movements to the top and bottom of
the buffer were prcvided to minimize the need for redrawing
the screen,

The configuration of the buffer structure used in the
editor code provides a facility to handle a variety of data
dictionary definitions. Any number of different templates
can be created and used with this editor with a minimum
number of restrictions. This was demonstrated as templates
for the code phase definitions were integrated into the
system after‘the original code was completed using the

design phase templates only.

Measuring User Satisfaction

Measuring a user's satisfaction with any degree of

......

l_l:t.M

T vy v

LAAPPAI

Pt 'l‘l_-‘

r e
A

v e

Ll
[

F OO s

LA

| ol S AR A S S SR R e A I e N N A FV\WWY‘WF‘W‘W

statistical proof of validity has proven difficult. Bailey
e and Pearscn (1983) performed extensive research on the
subject of measuring user satisfaction with information
systems (2). A formula for defining user satisfaction as
"the sum of the user's weighted reactions to a set of

factors" (3:531),

n
was developed by Bailey and rcarson. In it, R is the
reaction to factor j vy individual i, and W is the

importance of factor j to individual i. This equation

suggests that one's opinion of satisfaction is the sum of
his or her positive and negative reactions to a particular
set of factors.

. To measure a user's perceptions of these factors,

i‘, Bailey and Pearson used the semantic differential technique
(3:533). Four bipolar adjective pairs ranging from negative
to positive feelings were identified for each factor.
Additional scales were included to test the internal
consistency and validity of the four pairs, and to obtain a
value for the weights users assizned to each factcr. A
seven-interval scale was adopted to measure the user's
satisfaction with each pair. Figure G~9 shows a sanmple

question (or factor) that was taken from the actual

questionnaire.

l..)

(%]
'

19

'I

errors.
unforgiving
incomplete
complex

slow

unsatisfactory

unimportant

Error Recovery.

The extent and ease
the system allowed you to recover from user iaduced

To me this factor is

— — —— — — — ——

with wnich

forgiving
complete
simple
fast

satisfactory

impertant

Comments:

Figure G-9. Sample Survey Question,

Numerical values were assigned to each of the seven
intervals ranging from -3 to +3. Thne importance scale was
assigned values from 0.10 to 1.00 in increments of 0.15.
The higher the value the more important the factor. The

overall satisfaction was measured by
39 4

Wi
5;_ = Z]T_” Z IL,J',K
A Lid]
where W = the weight assigned Lo (actor j by user i, and I =
tne numeric response of user i to adjective pair k of factor
J.
The results of this equation can be deceiving if a user

rates half of the factors very high and very important while

rating the remainder neutral and very unimportant. The

TARARTI,

XA

Y

.
D

v’ e
u. "1

e Ve 4 8 W e

> a

oy

Voar e

numerical result would be approximately one-nalf of t :
total possible indicating a moderate degree of satisfaction
when in fact the user was extremely satisfied. Normalizing
the scores and filtering factors whose top four adjectives
pairs were all rated at 0 eliminated tnis problem. A
normalized score ranges from -1.00 to +1.00 with the
translation of scores shown in Figure G-10,.

Many factors identified by Bailey and Pearson did not
apply to the evaluation of the data dictionary editor and
were not included in it evaluation. &Zxamples of tnese were
vendor support and management factors. Mallary, in a
previous tnesis effort (25), added several factors to the
list that provided greater emphasis on the human-computer
interface aspect of software tools. The list was extended
by one more factor, for this evaluation, that covered the

area of error prevention.

Evaluation of the Data Dictionary Editor

A graduate level software engineering class containing
students studying computer systems or computer engineering
were targeted for the evaluation. Although they were not
knowledgable in database management systems and were
currently learning about the software development lifecycle

and data dictionaries, it was determined that they would

G - 21
YL LR N RO (S R OANCE RS TIL (8 ¥ PRI Oy YA AN " AT O P AL A
ATl b N AT A AT AN N, X, (O AR

TN .
A Wormalized 3core Translation -
+1.00 maximally satisfied L,

+0.07 quite satisfied .

+0.33 slightly satisfied R

0.0 neither satisfied or dissatisfied]

-0.33 slightly dissatisfied c

-0.67 quite dissatisfied K

-1.00 maximally dissatisfied '

Figure G-10. Score Boundaries for Hormalized User
Satisfaction (3:535).

still provide valuable feedback in an evaluation of the -
numan-interface, or user-friendliness, aspects of the data
dictionary editor. 3
- The class was briefed by the author on the overall data
i; dictionary system and the editor's place within the system.
Each student was provided with a copy of the questionnaire,

2 users' manual for the editor and a sec of instructions

ok o N o

cutlining the steps necessary to execute the tocl and obtain >

a hard copy of the data definition file. Two 2-100

AT

ccmputers were set aside in one of the school labs for thneir

use.

The completed . ’eys wWere returned one week after they

were issued. The average time to complete the evaluation
was 37 minutes. The results were analyzed with the

normalized scores for each user shown below in Figure 3-11, R

(] e e - K - L » .- L.™ A J - Y » LI e Y ..- ..‘h..-" sy -
.IIO.L\ \f".)' Lyt (\'*4‘(‘.'&' YO “u

£ LE LS A O LG A LRt e ar LA A il L UGG o el e aR LRt S S I SRR AR R IC R ar A e ot SREC R gl SR aAll U G AR S R dra i AL
"
~
R User iumber Normalized Score -3
'\'_\" .
19 0.977 !
8 C.314 N,
18 0.704 ”
5 0.600 .
2 0.662 ’

7 0.660
13 0.602 ’
17 0.593 A
o 0.593 5
4 0.586)
1 0.577 .

3 0.546

9 0.520

15 0.517
21 0.493 3
1 0.478 N
23 0.466 -
12 0.430 vy

22 0.395
16 0.3382 .
10 0.351 . .
14 0.210 -
20 0.140 :
", mean for all users = 0.538 2
Figure G-11., Normalized Values Overall Satisfaction X
by User. %
~-
-

The overall normalized measured satisfaction mean of
0.533 generated by the formula presented, coupled with the .
user assessed satisfaction mean of 1.91 from question #12 -
(not shown), and the fact that there were no negative mean f
scores for any single factor indicate that the data ;
dictionary editor was well received by the users. Probdlems _
with the editor were brought out, however, in the comments. :
"
dver half of the users commented on their frustration at the .
AT .
e

RN G - 23 N,
N
Wl
U
\
Lon i L j\ﬂ{fhjfvhﬁfvﬁﬂfﬁﬁff¢E*F¢H*Z93NﬂyeiSA?¢3$?&iﬂ{€?£¢?bﬁﬁF;&Eﬂk$&i"ﬁe&i'

A TR,

TNV R ORI TR URLYLT S
\ .

)

editor's need to redraw the screen upon attempis to move the
I‘S}’
d cursor beyond the top or bottom of the screen. &nhancements
: are certainly in order to make the environment better,

particularly in correcting this deficiency.

P

7

Conclusions

A data dictionary system was designed to support the

AFIT distributed software development environment. The

T Tl Ol T A N

system was broken down into three separate but related
subsystems; the workstation, the comuunications links
between computers, and the central computer.

A special data dictionary editor was designed and
implemented on a prototype microcomputer workstation. It
was designed under the constraints of being generic and
S i’ portable to other workstations. The generic objective was
: - achleved, as the editor demonstrated its ability to handle
code phase definitions after design phase definitions were
used for the original implementation and testing of the
: software.

Twenty-three users evaluated tne user-friendliness of
the editor and were satisfied witn its implementation. This
level of satisfaction was based on a normalized mean score
of 0G.533 on a scale of -1.0 to +1.0 where the nigher the
score the more satisfied the user was with the system. The
neWw interface is believed to be a major improvement based on

the enhanced features, such as screen oriented editing and

2P

error checking. Editing time should be reduced with

24

<
|

e 4

‘.’s;.:.'_
LI

APLA N

')A

-' " '..

"‘
’ | S

DL ISR

Y R e A

PrEL/

Tne communication links of the system were not

35522 in detail, because communication software was

(.

ilreaay available for use and did provide all the
requirsments for this first implementation of the systen.
I'ne database interface software was designed and
impleamented on the Vax-11/730 coamputer under the Unix
operating system. The Berkeley version of the INGRES
database management system was the host database for thne

data dictionary definitions.

B S T R VNt
ROVR RS ERVILIERAS, SR L G ARy PEEVE LIRS v S Je I S A A

W W e oW

A

Qb; Bibliography

1. Allen, Craig M. and William A. Ahroon. "Data Entry
Displays," IEEE Phoenix Conference on Computers
and Communication. G&47-551, 1983.

2. Aztec C User's Manual. Manx Software Systems. Inc.,
Schrewsbury, NJ (1984).

3. Bailey, J. E. and Sammy W. Pearson. "Development of a
Tool for Measuring and Analyzing Computer User Satis-
faction, " Management Science, 29: 530-544 (May 1983).

4, Boehm, Barry. "The High Cost of Software," Practical

Strategies for Developing Large Software Systems. Ed.
Ellis Horowitz, Reading, Mass: Addison-Wesley, 1975.

5. Choy, David M., Roger J. Bamford, and Frank C. Tung,
"A Database Management System for Office Systems and
Advanced Workstations," ACM SIGOA Newsletter, 5: 17-18
(Fall 1984).

6. Crenshaw, Jack W. "Towards a 'Friendly' Environment,"
IEEE Phoenix Conference on Computers and Communication
.. 527'5;31 ;830
i 7. Date, C. J., An Introduction to Database Systems.

(Third Edition) Massachusetts: Addison-Wesley
Publishing Company, 1932.

8., e y C. J. "Database Usability," Proceedings of
Annual Meeting - ACM SIGMOD, 13: 1 (May 1333).

9. Davis, Richard M. Thesis Projects in Science and
Engineering, St. Martins: New York, 1980.

10. Department of the Army. Human Engineering Guidelines
for Management Information Systems. Alexandria,
Virginia: HQ US Army Material Development and
Readiness Command, 9 June 1983,

11. Epstein, Robert. "Creating and Maintaining a Database
Using INGRES," Memorandum No. ERL M77-71, Electronics
Research Latoratory, College of Engineering, University
of California, Berkeley (December 1977).

12, ~==-=- . "A Tutorial On INGRES," Memorancum No. ERL
M77-25, Electronics Research Laboratory, College of
Engineering, University of California, Berkeley
(December 1977).

-

)

‘'
‘-

L
P

BIB - 1

P22 008

.
)

e
)

MM MPLIMEN S

‘a9

14.

17.

18.

‘Di 19.

20.

21.

no
N

3

.
"-

:-Cj'_r«;: 13.

Frankosky, Richard J. "3Software Interrface Ease of Use:
Metrics and Methods," IEEE Pnoenix Conference on
Computers and Communicaticn. 534-537. IEEE Press,

New York, T1983"

Hansen, Wilfred J. "User Engineering Principles for
Interactive Systems", Interactive Programming
Environments, edited by David R. Barstow et al.,
New York: McGraw-Hill, p. 217-231, 1984,

dartrum, Thomas C. Professor of Electrical)
Engineering. Lecture materials distributed in MA 7.46,
Advanced Database Management Systems. School of
Engineering, Air Force Institute of Technology,
Wwright-Patterson AFB, Ohio, 1985.

Hartrum, Thomas C. and Charles W. Hamberger, Jr,
"Development of a Distributed Data Dictionary Systen
for Software Development," IEEE NAECON (May 1985).

Heathkit Manual for the Video Display Terminal Modsl
H-29. Heatn Company, 1983.

Heckel, Paul. The Elements of Friendly Software
Design, Warner Books: New York, 1934.

Kernighan, Brian W. and P. J. Plauger. Software Tcols
Addison-Wesley: Reading, MA, 1976.

Kernighan, Brian W. and Dennis M. Ritchie. The C

Programming Language. Prentice-Hall: Englewood

Cliffs, WNJ, 1978.

Kockhan, Stephen G. Programming in C. Hayden:
Hasbrouck Heights, NJ, 1963.

Lefkovitz, Henry C. Data Dictionary Systems,
Forward by Edgar H. 3ibley. Wellisley: Q.E.D.
Information Sciences Inc., 1980.

Leong-Hong, Belkis W. and Bernard K Plagman. Data
Dictionary/Directory Systems Administration,
Implementation, and Usage. New York: John Wiley &
Sons, 19d82.

Lindquist, Timothy E. "The Application of Software
Metrics to tne Human-Computer Interface," IEER
Computer Conference-Fall. 239-244 (19383).

BIB - 2

. A I A Sva -

-
s
o
AV}

Ui

. Mallary, Thomas C. Design of the Human-Computer

- Interface for a Computer Aided Design Tool for thne
Normalization of Relations. MS Thesis. School of
Engineering, Air Force Institute of Technology (AU),
Wright~-Patterson AFB, OH, December 1985.

- .

26. Marcellus, Daniel H. Systems Programming for Small .
Computers. Prentice-Hall: Englewood Cliffs, NJ,
179814,

27. Martin, James. Design of Man-Computer Dialogues.
Englewood Cliffs: Prentice-hall, 19753. -3

W W w e,

23, Mc3ilton, Henry and Rachel Morgan. Introducing tne
Unix System. #cGraw-dill: New York, 1903.

29. Moore, Paul A. Extension of the Software Development
Workbench to Include Microcomputer Worxstations. ™S
Thesis. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB, OH, December
1984,

LT

30. Myers, Glenford J. Software Reliability Principles
and Practice. New York: Wiley, 19760. \

I
geL 1. Ream, Edward K. "A Portable Screen-Oriented gditor,"
ii Dr. Dobbs Journal, Number 63: 18-26 (January 1532).

32. Rissl-nd, Eawin L. "Ingredients of Intelligent User N
Interfaces," International Journal of Man-Machine
Studies, 21: ~377-388 (October 1934).

33. Shooman, Martin L. Scftware Engineering. New York:
MeGraw-Hill, 1383.

34. Sisson, Norwood, et al. "Design HMethodology for Menu
Structures," IEEE Phoenix Conference on Computers
and Communicaticn. 557-560 (13383). .

35. Smith, F. J. and C. Estall. "Information Retrieval
from an Intelligent Terminal," IEEE Phoenix Conference
on Computers and Communication. 206-210 (1985). .

Smith, John M. "Integrated Management of Multiple .
Information Types," International Journal of Man-
Machine Studies, 21: L03-406 (October 198%).

W
(@)

37. Software Development Documentation Guidelines and
Standards (Draft #3). Air rorce Institute Of
Technology Department of Engineering, Wright-
Patterson AFB, OH, (March 1986).

-
4
“
o
P
"

BIB - 3

P,

E
E’:

m&;iﬁ:@;;*.1'“',-,".--’.\'.}";\"'

B A A T A T T e T s T N N e N T W Y N W W Y W, iV w vV rw w e vy

o

B

hRS

(V%)
o0

39.

4o.

42,

43.

4y,

The American tHeritage Dictionary of the Engzlish
Language. Ed. William Morris, Boston: American
Heritage Publishing Co & Houghton Mifflin, 1973.

Thomas, Charles W. An Automated/Interactive Software
Engineering tool to Generate Data Dictiornaries. MS
Thesis. School of Engineering, Air Force Institute of
Technology (AU), Wright-Patterson AFB, OH, December
1984,

Tietelvaum, Tim and Thomas Reps, "The Cornell Program
Synthesizer: A Syntax-Directed Programming
Eavironment", in Interactive Programming Environments
Ed. David R. Barstow et al, New York: McGraw-Hill,
97-116, 1984.

Ullman, Jeffrey D. Principles of Database Systems.
Rockville, MD: Computer Science Press, 19562.

Wilson, Gerald A. "Smart User Interfaces for the
Distributed Information Environment," IEEE
EASCON-83. 377-385 (1983).

wood, John, et. al. INGRES Version 6.3 Reference
Manual. (2 April 1G687).

Woffinden, Duard S. Interactive Environment for a
Computer-Aided Design System. MS Thesis, Naval
Postgraduate School, Monterey, CA, 1984,

Zenith Data Systems Corporation. Technical Hanual-
Hardware Z-100 Series Computers. Saint Joseph, MI,
1383.

Zenith Data Systems Corporation. Z-100 Series User's
Manual. Saint Joseph, MI, 1982.

Al bt b A Ty

VITA

Captain Jeffrey W. Foley was born on 30 Decenmoer 1955
in Cincinnati, Ohio. He graduated from Mariemont Hign
3cnool in 1974. ie receivea an appointment to tae United
States Military Academy in 1974 and graduated in 1975 witn
an academic area of concentration in Civil Enginesring. He
was commissioned a 3econd Lisutenant in tne Signal Corps.

Captain Foley's military schooling includes the Signal
Officer's Basic and Advanced Courses, Communicatioas -
Tlectronic Statf Officer's Course, and the Teleprocessing
Operations Officer Course. His assignments include the 50tn
3ignal Battalion (AbnC), Ft. Bragg, NC, as a platoon leader
and staff officer, and as a staff officer in the US Forces,
Korea, Assistant Cnief of Staff J-0. He served as Company
Commander of A Company 304th Signal Battalion prior to nis
assignment at the School of ingineering, Air Force Institute

of Technology in January of 1985.

Permanent address: 3800 Ashworth Dr.

Cincinnati, Onio, 45203

VITA - 1

P, SRR

AdAArCAN s e AN

»

y - d AL

neg

L LI 2

aA AN Ny

a's’s v @ 2 D

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

woan REPORT SECURITY CLASSIFICATION
Unclassified

1b. RESTRICTIVE MARKINGS

¥ SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

Approved for public release;
Distribution unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S)

AFIT/GCS/EE/86J-5

5. MONITORING ORGANIZATION REPORT NUMBER(S)

bb. OFFICE SYMBOL
(1f applicable)

6s. NAME OF PERFORMING ORGANIZATION

7s. NAME OF MONITORING ORGANIZATION

School of Engineering AFIT/ENG
6c. ADDRESS (City, State and ZIP Code) 7b. ADDRESS (City, State and ZIP Code)
Wright-Patterson AFB, OH 45433

8b. OFFICE SYMBOL
(1f applicabdle)

8s. NAME OF FUNDING/SPONSORING
ORGANIZATION

8. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

8c. ADDRESS (City. State and ZIP Code)

10. SOURCE OF FUNDING NOS.

PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. NO.
11. TITLE (Include Security Classification)
See Item 19
12. PERSONAL AUTHOR(S)
=x. Jeffrey W. Foley, B.S., Captain, US Army
5. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Yr., Mo., Day) 15. PAGE COUNT
MS Thesis FROM TO 1986, June 184
16. SUPPLEMENTARY NOTATION
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SuB. GR. Data Dictionary, Databases, Editors,
09 02 Huaman-Computer Interface

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

11. TITLE:

DESIGN OF A DATA DICTIONARY EDITOR IN A

DISTRIBUTED SOFTWARE DEVELOPMENT ENVIRONMENT

Thesis Chairman: DnDr.

Thomas C. Hartrum

Apfloved ftor pumic relecss: 1AW AFR 190-
! N’E. Rb&vcn 35"'1
an for Resesich ang Pr
: {
Air Force Institute o Techr:;le:!’on;%ﬂopm.n'
Wtigthatleuon AF8 oy (Jig.iy

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT

~crassiFieo/unuimitep B same as rev. O oTic users O

&
DAL

21. ABSTRACT SECURITY CLASSIFICATION

Unclassified

22s. NAME OF RESPONSIBLE INDIVIDUAL

Dr. Thomas C. Hartrum

22b TELEPHONE NUMBER o
tInclude Arca Code)

(513) 255-3576

22c OFFICE SYMBOL

AFIT/FNG

OD FORM 1473, 83 APR

E——————

EDITION OF Y JAN 73 1S OBSOLETE

SECURITY CLASSIFICATION OF THIS PAGE

e a N

SECURITY CLASSIFICATION OF THIS PAGE

The project involved the design and implementation of a data
dictionary system in a distributed development environment. The
distributed environment consists of a central computer that hosts a
database management system, a conglomerate of workstations, and the
communications links between the workstations and central computer.

The emphasis of the research was placed on the design of a
user-friendly data dictionary editor that was implemented on a
prototype workstation. Data dictionary definitions are created and
updated at the workstation and transfered between the workstation
and central camputer database.

Background information is provided on data dictionary systems,
aspects of human-computer interfaces, and distributed environment
interface issues. The design afd development of the special editor
and the database interface software are described in detail.

Evaluation of the special editor was performed by a subset
of the target user group. This evaluation was based on a tool
designed to measure user satisfaction. The tool is described and
the results of the evaluation provided.

J

SECURITY CLASSIFICATION OF THIS PAGE

RO L R SO ,\.'_.- Sy h ‘} ‘} u‘_&.\ AT AT :‘

iy v

SN

-

POTT| I

