"The S_2 + S_0 Laser Photoexcitation Spectrum and Excited State Dynamics of Jet-Cooled Acetophenone" - The S_2 + S_0 photoexcitation spectrum of jet-cooled acetophenone is presented. The observed homogeneously broadened linewidths indicate S_2 lifetimes ≤ 0.26 fs while the measured emission lifetimes range from 540 ± 30 ns for S_0 excitation to 130 ± 50 ns for S_2 excitation. The dynamics revealed by the spectrum are discussed in terms of the known photochemical and photophysical rates of the excited states of acetophenone. Arguments are presented which identify the emitting state as a known dissociative triplet state of acetophenone.
"THE S₂ ← S₀ LASER PHOTOEXCITATION SPECTRUM AND
EXCITED STATE DYNAMICS OF JET-COOLED ACETOPHENONE"

by

J.A. Warren and E.R. Bernstein

Prepared for Publication
in the
Journal of Chemical Physics

Department of Chemistry
Colorado State University
Fort Collins, Colorado 80523

May 1986

Reproduction in whole or in part is permitted for
any purpose of the United States Government.

This document has been approved for public release
and sale; its distribution is unlimited.
I. Introduction.

The application of laser induced fluorescence spectroscopy to the study of the dynamics of the excited states of molecules isolated in supersonic molecular jets has been extensive. The technique has facilitated, for example, determination of the rates of internal conversion and of intramolecular vibrational redistribution in the excited singlet states of a number of species. For aromatic ketones, however, the technique has generally failed because of the low fluorescence quantum yields associated with these molecules. The presence of low lying triplet \(n^* \) and \(\pi^* \) states results in very fast intersystem crossing rates arising from the enhanced spin orbit coupling between states of different orbital character.

The recent development of sensitized phosphorescence spectroscopy in supersonic jet studies by Ito, et al. has provided spectroscopic data concerning the first excited singlet states of acetophenone and other aromatic ketones, but has provided little information as to their dynamics. Determination of excited state dynamics is further complicated by the propensity for these species to photodissociate. As a result, the application of sensitized phosphorescence spectroscopy will, in general, be limited to photoexcitation in the vicinity of the \(S_1 \) origin for a given molecule for which photodissociation yields should be tolerably low.

We report in this discussion the \(S_2 + S_0 \) photoexcitation spectrum of jet cooled acetophenone and discuss the dynamics revealed by the spectrum. The appearance of the spectrum is surprising since, as is the case for many aromatic ketones, acetophenone \(S_2 \) excitation is known to result in fast intersystem crossing to the triplet manifold followed by photochemical dissociation with near unit quantum efficiency. Thus, one expects to observe no intensity by standard fluorescence excitation techniques. The observed spectrum, however, appears not in spite of these processes, but as a result of them; at least as
a result of the large intersystem crossing yield from S_2 and a small but not vanishing phosphorescence yield. The results imply that the observed emission arises from the dissociative triplet state of acetophenone which is populated by the decay of the prepared S_2 state. The dynamics of both the prepared S_2 levels and the emitting (and dissociating) triplet levels are discussed.

II. Experimental Procedure.

The molecular jet apparatus and the scheme for obtaining photoexcitation spectra have been described in detail elsewhere. The nozzle used in this study is a Quanta-Ray PSV-2 pulsed supersonic valve with a 0.5 mm diameter orifice. Thermally equilibrated vapor pressures from liquid acetophenone at temperatures up to 80°C are obtained by placing the sample in a glass vessel inside the heated valve head assembly. Most of the data recorded are taken at sample temperatures of 50-60$^\circ$C, at which temperature the vapor pressure of acetophenone is ~2 torr. Backing pressures of 20 to 50 psig He are employed. Acetophenone, which is purchased from Fisher (Certified Grade), is used without purification.

Photoexcitation spectra normalized to the laser intensity are obtained by gating a boxcar averager with a 50 ns aperture delayed 30-50 ns after the laser pulse. In this manner, contributions from scattered laser light and from fluorescent impurities in the sample are reduced. Reported lifetimes are obtained from decay curves recorded with a transient digitizer (Tektronix 7912 AD). 3200 laser shots are averaged for each measurement.

III. Results and Discussion.

A portion of the photoexcitation spectrum of acetophenone in the vicinity of the S_2 origin is shown in figure 1(a). The intensity of the weak spectrum increases monotonically with sample temperature from 15-80$^\circ$C and remains unchanged with helium pressures of from 1-8 atm, indicating that the spectrum involves no contributions from hot bands or van der Waals clusters.
Aside from the 0^0 feature at 35402 cm$^{-1}$ several other features in the spectrum are readily associated with vibronic transitions of acetophenone. The band appearing 193 cm$^{-1}$ above the origin band is assigned to the fundamental of the in-plane acetyl-ring bending mode. The vibrational frequency of this mode in the ground state11 is 225 cm$^{-1}$ and has been reported as 198 cm$^{-1}$ in S_3. Similarly, the 344 cm$^{-1}$ feature in fig. 1(a) is the $6a_1^1$ transition (benzene numbering) with S_0 11 and S_3 5 frequencies of 369 and 341 cm$^{-1}$, respectively. This transition, involving primarily in-plane ring deformation motion, appears often in the lowest $\pi\pi^*$ spectra of substituted benzenes.

Scanning to higher energies from -600 cm$^{-1}$ above the 0^0 band, little discernable structure is observed in the spectrum until the region of 1000 cm$^{-1}$ above the 0^0 transition. In this region (figure 1(b)), three bands appear in the spectrum. The intensity of the strongest 966 cm$^{-1}$ feature is about 20% of that of the 0^0. This band is most likely assigned to the 12^1_o transition (999 cm$^{-1}$ in S_0 11) in analogy with spectra of other simply substituted benzenes.

Beyond -1100 cm$^{-1}$, the intensity and structure of the S_2 photoexcitation spectrum rapidly decrease with no observable intensity >1300 cm$^{-1}$ above the S_2 origin.

The similarities of the S_2 photoexcitation spectrum of acetophenone with the gas phase absorption spectrum in this region are strong. The latter spectrum8 indicates an origin transition near -35450 cm$^{-1}$ with a strong progression-forming vibronic feature -1000 cm$^{-1}$ to the blue. Little intensity is observed in either spectrum in lower energy vibronic bands. Clearly, the photoexcitation spectrum revealed by fig. 1 is readily generated from the reported vapor phase absorption spectrum of acetophenone with the use of an emission quantum yield function which rapidly decreases with increasing
excitation energy. This is confirmed by the emission lifetimes which are measured for excitation of several vibronic features in the spectrum (fig. 1). Emission lifetimes fall roughly linearly with increasing excitation energy commencing with the 0^0 feature which has a lifetime of 540 ± 30 ns. The lifetime measured at 12^1 excitation is 130 ± 50 ns. Since the emission quantum yields will vary proportionally with the emission lifetimes, we note that the 12^1 emission quantum yield is approximately one fourth that of the origin level.

The most striking aspect of the S_2 photoexcitation spectrum of acetophenone, aside from the fact that we observe it at all, is the magnitude of the observed linewidths. In fig. 2, we show an expanded view of the 0^0 photoexcitation band normalized to the laser intensity. The measured linewidth (FWHM) of the band is γ = 20.5 cm⁻¹ and is independent of helium pressure (i.e., the degree of rotational cooling and the presence of clusters). Furthermore, the lineshape is clearly Lorentzian (see fig. 2), indicating that the source of the linewidth is natural lifetime broadening of the S_2 origin. This lifetime, τ = 1/(2πγc) is 260 fs. The bands shown in fig. 1(b) are broader than the 0^0 band, indicating S_2 vibronic level lifetimes which are still shorter.

Since the natural lifetimes of the S_2 levels which are initially prepared in the photoexcitation process are six orders of magnitude shorter than the measured lifetimes of the resulting emission, the emitting state is evidently not S_2. Apparently, excitation of S_2 levels is followed by rapid (k = 3.85 x 10^{12} sec⁻¹) decay to isoenergetic levels in the emitting state which have much longer lifetimes than the originally excited S_2 levels. The magnitude of the decay rate from S_2 would imply that preparation of the emitting state occurs with near unit quantum efficiency from all levels of S_2. The relative emission lifetimes (and quantum yields) observed are then deter-
mined by the lifetimes of the levels thus populated in the emitting state.

Perhaps the most likely candidate for the emitting state is S_1; in this case, emission would originate with higher vibronic levels of the S_1 manifold. Under this assumption, emission should also be expected by direct excitation of S_1 near the origin region ($3650-3700 \text{ Å}$) and the absorption Franck-Condon maximum region ($3100-3400 \text{ Å}$): no emission has been observed in either of these regions. Ito et al.4 have similarly failed to observe S_1 emission by fluorescence excitation. Indeed, under no conditions of phase, medium, and temperature has fluorescence ever been reported for S_1 excitation. Intersystem crossing12 and internal conversion into the S_0 vibrational manifold13 appear to be the only channels operative for S_1 decay. The emitting state following S_2 excitation is, therefore, probably not S_1.

The elimination of S_1 as the emitting state is further supported by the intensity of the S_2 photoexcitation spectrum. The absorption spectrum of acetophenone vapor8 indicates an oscillator strength for the $S_1 + S_0$ system of -1×10^{-3}. The radiative lifetime of S_1, $\tau_{\text{rad}}^{S_1}$, is therefore roughly 2 µs. If S_2 origin excitation results in S_1 emission with the measured ~540 ns lifetime, then the quantum yield for the emission is thus ~0.3: a number in stark contrast to the observed emission intensity quoted above. The observed S_2 emission quantum yield for $S_2 0^0_0$ excitation is estimated to be in the range 10^{-3} to 10^{-4}. That is, the intensity of the S_2 spectrum is much too weak to involve solely S_1 emission.

This discrepancy is conceivably a result of complexation of acetophenone in the jet (resulting in lower than expected emission yields) or of a less than unit efficiency in the internal conversion from S_2 to S_1; however, fluorescence with a 540 ns lifetime originating ~8100 cm$^{-1}$ into the S_1 manifold seems highly unlikely in view of the fast nonradiative decay rates known to occur at the S_1 origin.
In the absence of any other accessible singlet states, one is forced to conclude, with trepidation, that the emitting state is a triplet state of acetophenone. The dominant decay channel from S_2 is, then, intersystem crossing with $k_{ISC} = 3.85 \times 10^{12} \text{ sec}^{-1}$ from the S_2 origin. The measured emission lifetimes are those of levels in the triplet manifold. We note that if the emitting state is T_1, which has a known $\tau_T = 1.2 \text{ ms}$, emission following $S_2 O_0^0$ excitation with a 540 nanosec lifetime would reflect an emission quantum yield of $\sim 5 \times 10^{-4}$ which is within our estimated yield. The absence of observed phosphorescence from S_1 excitation is likely the result of a lower intersystem crossing yield arising from the known faster internal conversion rate $S_1 + S_0$ relative to $S_2 + S_0$.

Although the emission from S_2 excitation is too weak to obtain a dispersed emission spectrum, the bulk of the emission is centered in the region near 4000 Å: this represents a substantial Stokes shift. The phosphorescence of acetophenone (including vibrationally excited triplet levels) is centered in this region as well. The observed lifetimes of the emitting triplet state can be correlated with the rates of photodissociation previously measured for acetophenone. Excitation into the S_2 state of acetophenone results in photodissociation, presumably from a dissociative triplet state, with a near unit quantum efficiency in the room temperature vapor at low pressure. Values for the lifetime of the dissociative state of from 20 ns to 380 ns are inferred from the measured dissociation rates. Such lifetimes are entirely consistent with our observed emission lifetimes following S_2 excitation in the jet. Furthermore, the results of Rennert and Steel and of Hirata and Lim indicate that the rate of dissociation following $S_2 O_0^0$ excitation is 4-5 times faster than that following $S_2 O_0^0$ excitation.

Again, this is consistent with our observed emission lifetimes. Therefore, the emission reported herein following S_2 excitation probably originates from the
dissociative triplet state of acetophenone; the observed emission lifetimes probably reflect the rate of dissociation from that state.

Since the endothermicity for the lowest energy dissociation process is 80.7 kcal/mole (or \(-28200 \text{ cm}^{-1}\)), excitation into the \(S_2\) origin of acetophenone \((-35400 \text{ cm}^{-1}\)) leaves only \(-7200 \text{ cm}^{-1}\) for excitation of the dissociation products. The observed emission from \(S_2\) excitation is centered at \(-4000 \text{ \AA} \) \((-25,000 \text{ cm}^{-1}\)), and clearly must not arise from excitation of the photofragments.

ACKNOWLEDGEMENT

We wish to thank Professor D.W. Pratt for showing us some of his \(S_1 + S_0\) data for acetophenone and for useful discussion of the behavior of acetophenone.
REFERENCES

FIGURE CAPTIONS

Figure 1
$S_2 + S_0$ Photoexcitation Spectrum of Acetophenone. The spectra are normalized to the laser intensity. Intensity scales in (a) and (b) are different. In (b), the 12^1_o band is shown truncated at -85% of its true peak intensity which is -20% of the 0^0_o intensity. Vibronic band positions are indicated relative to the 35402 cm$^{-1}$ 0^0_o transition. Assignments are given in the figure for some of the features and selected lifetimes are shown in parentheses (in ns). The reported lifetimes are measured in emission by single vibronic level excitation of the vibronic bands indicated. Several weak features appear in the spectrum with narrow (2-3 cm$^{-1}$) linewidths and are assigned to impurities in the sample.

Figure 2
Expanded View of the Acetophenone $S_2 0^0_o$ Band observed in Photoexcitation. The spectrum is normalized to the laser intensity and displayed relative to the center-line wavenumber of 35402 cm$^{-1}$. The open circles in the lower left portion of the band are fit to a Lorentzian lineshape with $\Gamma = 20.5$ cm$^{-1}$.
WAVENUMBER (cm⁻¹)
<table>
<thead>
<tr>
<th>Office of Naval Research</th>
<th>2</th>
<th>Dr. David Young</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Attn: Code 413</td>
<td></td>
<td>Code 334</td>
<td></td>
</tr>
<tr>
<td>800 N. Quincy Street</td>
<td></td>
<td>NORDA</td>
<td></td>
</tr>
<tr>
<td>Arlington, Virginia 22217</td>
<td></td>
<td>NSTL, Mississippi 39529</td>
<td></td>
</tr>
<tr>
<td>Dr. Bernard Douda</td>
<td>1</td>
<td>Naval Weapons Center</td>
<td>1</td>
</tr>
<tr>
<td>Naval Weapons Support Center</td>
<td></td>
<td>Attn: Dr. A. B. Amster</td>
<td></td>
</tr>
<tr>
<td>Code 5042</td>
<td></td>
<td>Chemistry Division</td>
<td></td>
</tr>
<tr>
<td>Crane, Indiana 47522</td>
<td></td>
<td>China Lake, California</td>
<td>93555</td>
</tr>
<tr>
<td>Commander, Naval Air Systems</td>
<td>1</td>
<td>Scientific Advisor</td>
<td>1</td>
</tr>
<tr>
<td>Command</td>
<td></td>
<td>Commandant of the Marine Corps</td>
<td></td>
</tr>
<tr>
<td>Attn: Code 310C (H. Rosenwasser)</td>
<td></td>
<td>Code RD-1</td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20360</td>
<td></td>
<td>Washington, D.C. 20380</td>
<td></td>
</tr>
<tr>
<td>Naval Civil Engineering Laboratory</td>
<td>1</td>
<td>U.S. Army Research Office</td>
<td>1</td>
</tr>
<tr>
<td>Attn: Dr. R. W. Drisko</td>
<td></td>
<td>Attn: CRD-AA-IP</td>
<td></td>
</tr>
<tr>
<td>Port Hueneme, California 93401</td>
<td></td>
<td>P.O. Box 12211</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Research Triangle Park, NC 27709</td>
<td></td>
</tr>
<tr>
<td>Defense Technical Information Center</td>
<td>12</td>
<td>Mr. John Boyle</td>
<td>1</td>
</tr>
<tr>
<td>Building 5, Cameron Station</td>
<td></td>
<td>Materials Branch</td>
<td></td>
</tr>
<tr>
<td>Alexandria, Virginia 22314</td>
<td></td>
<td>Naval Ship Engineering Center</td>
<td></td>
</tr>
<tr>
<td>DTNSRDC</td>
<td>1</td>
<td>Philadelphia, Pennsylvania 19112</td>
<td></td>
</tr>
<tr>
<td>Attn: Dr. G. Bosmajian</td>
<td></td>
<td>Naval Ocean Systems Center</td>
<td>1</td>
</tr>
<tr>
<td>Applied Chemistry Division</td>
<td></td>
<td>Attn: Dr. S. Yamamoto</td>
<td></td>
</tr>
<tr>
<td>Annapolis, Maryland 21401</td>
<td></td>
<td>Marine Sciences Division</td>
<td></td>
</tr>
<tr>
<td>Dr. William Tolles</td>
<td>1</td>
<td>San Diego, California 91232</td>
<td></td>
</tr>
<tr>
<td>Superintendent</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chemistry Division, Code 6100</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Naval Research Laboratory</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Washington, D.C. 20375</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
ABSTRACTS DISTRIBUTION LIST, 051A

Dr. M. A. El-Sayed
Department of Chemistry
University of California
Los Angeles, California 90024

Dr. E. R. Bernstein
Department of Chemistry
Colorado State University
Fort Collins, Colorado 80521

Dr. J. R. MacDonald
Chemistry Division
Naval Research Laboratory
Code 6110
Washington, D.C. 20375

Dr. G. B. Schuster
Chemistry Department
University of Illinois
Urbana, Illinois 61801

Dr. W. M. Jackson
Department of Chemistry
Howard University
Washington, D.C. 20059

Dr. M. S. Wrighton
Department of Chemistry
Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Dr. A. Paul Schaap
Department of Chemistry
Wayne State University
Detroit, Michigan 49207

Dr. Gary Bjorklund
IBM
5600 Cottle Road
San Jose, California 95143

Dr. G. A. Crosby
Chemistry Department
Washington State University
Pullman, Washington 99164

Dr. W. E. Moerner
I.B.M. Corporation
5600 Cottle Road
San Jose, California 95193

Dr. Theodore Pavlopoulos
NOSC
Code 5132
San Diego, California 91232

Dr. D. M. Burland
IBM
San Jose Research Center
5600 Cottle Road
San Jose, California 95143

Dr. John Cooper
Code 6170
Naval Research Laboratory
Washington, D.C. 20375

Dr. George E. Walrafen
Department of Chemistry
Howard University
Washington, D.C. 20059

Dr. Joe Brandelik
AFWAL/AADO-1
Wright Patterson AFB
Fairborn, Ohio 45433

Dr. Carmen Cortiz
Consejo Superior de Investigaciones Cientificas
Serrano 117
Madrid 6, SPAIN

Dr. John J. Wright
Physics Department
University of New Hampshire
Durham, New Hampshire 03824

Dr. Kent R. Wilson
Chemistry Department
University of California
La Jolla, California 92093
END
DTIC
10-86