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To assist in the understanding of corrosion fatigue crack
growth in aqueous environments, an in situ fracture technique for
measuring the kinetics of electrochemical reactions with bare
ﬂ metal surfaces has been developed and evaluated. The experimen-
tal procedure and preliminary results, and the potential of this
technique in advancing the understanding of corrosion fatigue are

described and discussed.
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Abstract

To assist in the understanding of corrosion fatigue crack
growth in aqueous environments, an in situ fracture technique for
measuring the kinetics of electrochemical reactions with bare
metal surfaces has been developed and evaluated. The experimen-
tal procedure and preliminary results, and the potential of this
technique in advancing the understanding of corrosion fatigue are

described and discussed.




Introduction

To advance the understanding of the mechanism of corrosion
fatigue, it is necessary to evaluate the electrochemical pro-
cesses that occur at the crack tip. For this pvrpose, a simu-
lation technique which facilitates the measurement of bare-metal
reaction kinetics under controlled environmental conditions
(namely, electrolyte composition and temperature) has been deve-
loped. In this paper the experimental procedure, preliminary
test results, and a comparison of the reaction data with
corrosion fatigue crack growth response are described and

discussed.

Background
Transient electrochemical reactions that proceed on freshly
exposed metal surfaces at the crack tip are important because
these are believed to control crack growth in high strength

2 Newman3 reviewed the

steels exposed to aqueous environmentsj'
efforts at relating transient anodic processes on bare metal
surfaces to environmentally assisted crack growth. Various
attempts have been made to simulate the crack tip conditions, and
to measure the reaction kinetics by monitoring the current
transients that are induced when, by means of a mechanical
process, bare metal is exposed to the environment. The principal
difficulty has been associated with the creation of this highly

reactive (and hence short-lived) bare su~face in situ and in a

manner that is reproducible.




Becku reviewed the techniques employed prior to 1975 for

creating bare metal surfaces, and separated them into 5 major
groups. They are as follows: (i) forming liquid metal droplets,
(ii) scraping or scratching a surface, (iii) straining a wire,
(vi) shearing a wire, and (v) rapid fracturing of a tensile
specimen. A brief review of the techniques used since 1975 is
given here to provide background for the proposed technique.

Foley and co—worker35_7 developed a continuous-scraping
technique for measuring potential on bare aluminum alloy
surfaces. In their technique, a rotating cylindrical electrode
was scraped in a closed cell by a ceramic cutting tool. The
working electrode surface was isolated from the electrolyte with
Teflon except for the circular area which was exposed by the tool
during the experiments.

A similar technique was described by Lees and Hoar8 for
studying brass in Mattsson solutions. In their experiments, an
annular scratch was made on the surface of a rotating disc
working electrode, in solution, by a diamond stylus. The area of
the scratched surface constituted only a tiny fraction of the
working electrode surface. Furthermore, at any given time, the
proportion of the scratch that remained bare depended on the
nucleation and growth rates of the oxide and on the rotation
speed of the working electrode. This technique was also applied
by Ford et al.9'10 to the study of aluminum and by Burstein and

Daviesz.”’12

to iron. Because the oxide nucleation and growth
rates on these metals are fast, these researchers modified the

technique so that scratches could be generated on the rotating




discs by a brief contact (0.2 to 1.8 ms) with the diamond stylus.
This technique was further employed to study the bare-surface

1u'15, 16 and copper17.

reactions on gold13. silver brass
Newman et al. also used a scratching technique to simulate
the crack-tip reactions associated with intergranular stress
corrosion cracking of sensitized type 304 stainless steel in
18-20
,

sodium thiosulfate solutions and to study the pitting sus-

ceptibility of stainless steels in sulfate/thiosulfate electro-

lyte321.

The alloy specimen was mounted on the base of a small
open cell which contained the electrolyte, and the reference and
counter electrodes, and was scratched manually with a diamond
engraving pencil. The reproducibility of scratch area between
su2cessive experiments had been estimated to be about 15%18. In
one study19, two other techniques were employed to expose bare
metal surfaces. One involved the fracture of hydrogen-charged
multi-notched strips of stainless steel by manually bending them
in the electrolyte. In the other, smooth tensile specimens were
immersed in the electrolyte contained in a small beaker, and
strained in a servo-hydraulic machine under various load or
displacement control. In these investigations18'21, electrolytes
were exposed to air because deoxygenation was found to be un-
necessary.

The straining electrode (metal wire) technique has received
22—26'

attention particularly by researchers in the area of stress

corrosion cracking. Although rapid straining i{s useful for




exposing bare metal surfaces in situ, the amount of area created
may vary depending on the ductility of the surface oxide.u

The authors believe that a successful technique should in-
corporate the following features: Firstly, bare surfaces having
a controlled dimension should be exposed to the environment
instantaneously rather than progressively. Secondly, the bare
surface should be the only portion of the working electrode
surface that is exposed to the electrolyte, so as to preclude
extraneous reactions and the associated exchsnge of current with
adjacent oxidized surfaces. Thirdly, the reaction cell should
be closed so that the electrolyte composition (including oxygen
content) can be controlled, or maintained constant. The in situ
fracture technique described herein was designed with these
considerations in mind. This technique is similar to that
employed by Beck27'28 for studying the stress corrosion cracking
of titanium alloys where epoxy-coated notched specimens were

fractured by a drop-weight method in a closed Teflon cell.

Experimental Procedure

The procedure involved measurement of the equilibration
galvanic current (or charge transfer) between the bare surfaces
produced by in situ fracture of a notched round (5mm notch dia-
meter) tensile specimen and an "oxidized" surface of the same
material in the electrolyte. The specimen was fully isolated
from the electrolyte with lacquer and Teflon heat-shrink tubing,
so that only the fracture surfaces (wWwith a total nominal area of

o.4 cm2 for the two halves) would be exposed. The counter elec-




trodes (cathode) consisted of 4 rods of the same material which
were situated concentrically around the test specimen in a 260 mL
capacity Pirexiglas cell (Figure 1), The counter electrodes were
electrically connected to the specimen through a potentiostat
operated as a zero-impedance ammeter. The cell was sealed with
O0-rings, and the nominal cathode-to-anode surface area ratio was
250:1, A Luggin probe, with its tip placed near to the specimen
notch and leading to a saturated calomel electrode (SCE), was
used to monitor potential.

For each experiment, the counter electrodes were first
abraded with fine emery paper and degreased in an ultrasonic
cleaner, and were then assembled into the corrosion cell. The
sealed system was thoroughly flushed with nitrogen and filled
with deaerated electrolyte at the selected test temperature, and
was allowed to stablize. The electrolyte temperature in the cell
was monitored with a glass thermometer. The counter electrodes
(cathode) were then "cleaned" by cathodically polarizing to -1000
mV (SCE) against an external platinum anode for five minutes,
after which the cell electrolyte, was flushed out with dry nitro-
gen and refilled. Fresh electrolyte was allowed to flow through
the cell at 3 to 5 mL/s. Sufficient time was then given (5-10
mirutes) to permit the system to re-stablize, and to allow the
counter electrodes to reach the free corrosion potential. This
cathodic polarization pretreatment was found to result in a more
reproducible surface condition on the cathode between successive

runs.




Once the system had been stablized and the free corrosion
potential on the counter electrodes had been established, the
specimen was loaded to fracture in a tensile testing machine.
The current transient and the mixed potential following fracture
were monitored and were recorded with the aid of a digital compu-
ter for analysis. Data were acquired at an initial interval of
0.01 s, and at 0.1 to 5 s thereafter.

The measured current transient represents the equilibration
current between the freshly exposed fracture surfaces and the
counter electrodes as the conditions at the fracture surfaces
approach those of the counter electrodes. The mixed potential is
the value between the separate, but electrically connected, sur-
faces and the saturated calomel reference electrode. No IR

compensation was used in these initial experiments.

Results and Discussion
To test this technique, initial experiments were carried out
on a W! steel (composition in wt% : C 0.6-1.4, Mn 0.35 max, Si
0.35 max, Cr 0.20 max) in deaerated 0.6 M NaCl (pH 6.5). Repre-~
sentative current transients* and mixed potentials at 276, 296
and 313 K (3, 23 and 40 C) are shown in Figures 2 and 3. The
current decayed rapidly at first, and then more gradually as

complete equilibration was approached. The time to complete

*Because the area of the fracture surfaces is not precisely
known, the actual current (and charge transfer) between the two
halves of the fractured specimen and the counter electirodes is

reported. Nominal current and charge densities can be readily
obtained by dividing the respective values_ by the nominal frac-
ture surface area (both halves) of 0.4 cm*“. The actual densi-

ties, however, will be lower on account of surface roughness.




equilibration was reduced with increasing temperature. The cur-
rents were reproducible to within ¢ 30% in triplicate experi-
ments. The free corrosion potentials, following the initial
cathodic pretreatment at 276, 296 and 313 K (3, 23 and 40 C) were
-765 + 10, -790 + 10, and -780 + 10 mV SCE respectively. The
measured mixed potentials showed an initial decrease of less than
20 mV and recovered rapidly to the free corrosion potential and
remained sensibly constant.

A rise in temperature clearly would increase the rate of
electrochemical reactions, as well as mass transport by diffu-
sion. Consequently equilibration would be completed in shorter
times. The expected temperature dependence is consistent with
the observed rate of current decay. These transients also suggest
that the reactions of bare steel (or iron) surfaces with the
electrolyte involved more than one step. The initial decay is
tentatively identified with the charge redistribution that is
associated with the evolution of a "double layer". The other
steps represented the various electrochemical reactions involving
iron, which remain to be identified.

The amount of charge transferred during these reactions can
be obtained by numerical integration of the current transients,
and are presented in Figure 4. A comparison can be made between
this charge transfer and corrosion fatigue crack growth data in
accordance with a model proposed by Wei.29 According to this
model, the rate of corrosion fatigue crack growth is controlled
by the kinetics of the electrochemical reactions, and the cycle

dependent component of crack growth rate {s proportional to the
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amount of hydrogen produced by these reactions during each
cycle, and hence to the amount of charge transferred per cycle.
The comparison is made, therefore, by matching the charge trans-
fer versus time data directly against the crack growth rate
versus equivalent time (1/frequency) results as illustrated in
Figure 5. The figure shows good correlation between the charge
transfer data at 296 K (23 C) and the published room-temperature
corrosion fatigue crack growth rate data for two high strength
Steels in deaerated 0.6 M NaCl solution.30'31 The two sets of
data differ by a multiplicative constant, or constant of propor-
tionality, which reflects the unknown surface areas in the two
experiments and the amount of hydrogen required to produce each
unit area of new crack surface.

It is to be noted that because of the large ratio of
cathode-to-anode surface areas (250:1), the mixed potential
during the reactions remained essentially constant and was within
20 mV of the free corrosion potential. Thus similar results can
be expected if the experiment had been carried out under poten-
tiostatic control at the free corrosion potential. It is antici-
pated, therefore, that the test procedure can be readily adapted
for measuring electrochemical reaction kinetics under potentio-
static conditions. Further examinations of this procedure are in
progress.

Although the pH in an occluded cell could be quite alkaline
for a freely corroding steel in 0.6 M NacCl solution32'33, neutral
solutions were used in these initial simulation experiments prin-

cipally for simplicity. Furthermore, because of the pumping




action of the fatigue crack, the crack tip environment may re-
flect that of the bulk electrolyte.

The preliminary evidence, nonetheless, tends to support the
hypothesis for electrochemical reaction control of corrosion
fatigue crack growth, and suggests that this in situ fracture
technique would be effective in providing measurements of the
kinetics of the relevant electrochemical reactions. It is recog-
nized that detailed interpretation of data in terms of the under-
lying reaction mechanisms is still needed, and would require the
use of complementary techniques. Additional tests are also
needed and are planned to investigate the effects of key electro-
chemical variables, and to confirm the correlation between elec-
trochemical reaction kinetics and crack growth response over a

broader range of environmental conditions.

Summary

An in situ fracture technique has been developed for mea-
suring the kinetics of electrochemical reactions with bare sur-
faces. Preliminary measurements have been obtained on a steel in
deaerated 0.6 M NaCl solution under free corrosion. The measured
charge transfer data correlated well with the data on corrosion
fatigue crack growth. This correlation indicates the potential
of this technique in advancing the understanding of corrosion
fatigue in aqueous environments. Additional experiments have
been initiated to investigate the effects of key electrochemical
variables, and to further confirm the correlation between elec-

trochemical reaction kinetics and crack growth response over a




broader range of environmental conditions.
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Figure Captions
Schematic illustration of the electrochemical cell.

Galvanic current transients for W1 steel in deaerated
0.6 M NaCl solution as a function of temperature.

Variation of mixed potentials (measured without IR
compensation) with time at three temperatures.

Amount of charge transferred corresponding to the
galvanie current transients in Figure 2.

Influence of frequency and temperature on fatigue
crack growth for HY130 and X70 steels in deaerated
0.6 M NaCl solution.3%:31 S01id 1ine represents the
charge transfer data at 296 K from Figure A4,




Figure 1:

Figure 2:
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Schematic illustration of the electrochemical cell.
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CORRELATION BETWEEN ELECTROCHEMICAL REACTIONS WITH BARE SURFACES
AND CORROSION FATIGUE CRACK GROWTH IN STEELS

J. P. Thomas, A. Alavi and R. P. Wei
Department of Mechanical Engineering and Mechanics
Lehigh University
Bethlehem, PA 18015 USA

Introduction

To determine the relationship between electrochemical (EC) reactions and
corrosion fatigue (CF) crack growth for steels in aqueous environments, a new
experimental technique has been developed to provide quantitative information on
the kinetics of the EC reactions occurring at a bare (fresh) metal surface [1].
This note describes preliminary evidence that supports a direct connection
between the extent of EC reactions occurring at a bare surface and the CF cracx
growth response. The evidence consists of (i) exploratory data on transient EC
reactions of bare steel surfaces with deaerated 0.6M NaCl solution, as a func-
tion of time and temperature, and (ii) published data on fatigue crack growth
rates of several steels in 0.6M NaCl solution as a function of frequency, and of
HY-130 steel in deaerated acetate buffer solution as a function of frequency and
temperature [2-5].

Background

The correlation between CF crack growth in steels and electrochemical
reactions is examined through comparisons of the frequency dependence of the
fatigue crack growth rates against the extent of EC reactions as a function of
time at . fferent temperatures. The working hypothesis is that crack growthn
enhancement results from embrittlement by hydrogen, supplied from the EC reac-
tions at the crack tip, and that the crack growth response i3 governed by the
rates of these reactions [6]. This hypothesis is based on previous studies
[7,8] and on observed crack growth response [6,9].

The CF crack growth rate data are interpreted in terms of a superposition
model [10], where the cycle dependent component of the measured crack growth
rate, (da/dN)Cr, for different frequencies and temperatures, is given by
Egqn. (1):

(da/dN)cf - (da/dN)e - (da/dN)r - [(da/dN)c - (da/dN)r}® (1

In Eqn. (1), (da/dN), = measured crack growth rate; (da’dN) . = mechanical fa-
tigue crack growth rate; (da/dN)c = "pure" CF crack growth rate; and ¢ = frac-
tional area of c¢crack undergoing "pure" CF, with 0 < ¢ < 1. (To simplify nota-
tions, (da/dN)C i{is used here in place of (da/dN)ér s in [10].) The quantity ¢
can be equated with the extent of reactions of the 'environment with the crack-
tip surfaces (or the fractional surface coverage 8) per load cycle [11]. Both
(da/dN)c and (da/dN)r are essentially independent of th: cyclic load fregquency,
and are only mildly dependent on temperature [11]. The principal effects of
frequency and temperature on CF crack growth are expected to be reflected
through thelr {influences on ¢, or 6.




_2_

The extent of surface reaction per load cycle, 8 and hence ¢, is identified
with the fractional amount of electric charge transferred, (q/qs). by tne reac-
tions of newly formed crack surfaces with the electrolyte at the crack tip. The
amount of hydrogen produced each cycle is assumed to be directly proportional to
the amount of charge transferred (q), which is governed by the reaction time and
by the rates of reactions. Temperature, through its influence on reaction
rates, affects the amount of charge trancferred in a given time. The maximum or
"saturation" level of charge (qs) represents the amount required to compiete the
surface reactions and is expected to be independent of temperature {f the reac-
tion mechanisms remain unchanged.

Based upon the foregoing hypothesis, there should be a direct correlation
between the fractional area of crack undergoing "pure" CF, ¢, (or CF crack
growth rate (da/dN)cf) and the fractional amount of charge transferred, (q/q.).
Tor tne CF data, with positive load ratios, the period of the loading cycle aar
the inverse of cyclic loading frequency, 1/f) is taken to be the equivilent
reaction time [11]. The charge transfer data are obtained independently from a
recently developed experimental technique [1]. Using this technique, the tran-
sient galvanic current between an electrode, fractured in-situ, and 2xidized
electrodes (simulating that occurring between the crack tip and the crack flanx)
is measured as a function of time and temperature. The amount of electric:
charge transferred versus time iIs then obtained by numerfical integration of ta#
current transient and is used for comparisons with the fatigue data.

Results and Discussion

Electrochemical experiments were performed on a W1 (C-Mn) tocl stenrl in
deaerated, 0.6M NaCl solution (pH 6.5), under freely corroding (or open circuit)

conditions, at three temperatures [1]*, Exploratory data from these experiments
are shown in Fig. ' as a plot of (q/qs) versus time at the different tempera-
tures, The charge transfer is normalized with respect to qg to minimize scatter

introduced by small differences in fracture surface area and roughness. With
{ncreases In temperature, the (q/qs) curve {3 seen to translate to the left, or
to shorter times. This shift reflects an increase in the reaction rate with
temperature.

For comparison, CF crack growth data for several steels, tested in 0.£6M
NaZl solutions (pH 6.4-6.8) at ambient temperature with AK values close to
47 MPa/m and low R ratios, are shown in Figs. 2 to U, along with a curve repre-
senting the 296K charge transfer data from Fig. 1. To provide for a prelimlnary
assnasment of the effect of temperature, a comparison between (q/q.,) and crack
growth data of a HY!130 steel in acetate buffer solution (pH N.%) at three
temperatures {s made in Fig. 5. It is recognized that the detailed kinetics and
mechanisms of reactions, however, may be different. The comparisons are made by
vertically shifting the (q/qs) data against the CF data until a good fit is
obtained. The two sets of data are assumed to differ by a multiplicative con-
stant, or constant of proportionality, which reflects the different surface
ar=2as between the two experiments and the exact amount of hydrogen required to
produce a given increment of corrosion fatigue crack growth. For a more direct
comparison, the values of ¢, calculated using (da/dN)C values estimated from
Figs. 2 to 4, and (q/qs) at equivalent times are shown against each other in
Fig. 6.

Figures 2 through 4 and Fig. 6 show a g>od correlation between the CF crack
growth response and charge transfer ratio data particularly at the lower freque-
ncies (longer times). Figure 5 demonstrates the similiarity between the tempe-
rature dependence of the two processes.

* Note: This solution and conditions were chosen for simplicity. It is recog-
nized, however, that the crack-tip chemistry may be different, and the influence
of these variables on the reaction kinetics require further examination,
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TWwO possidle reasons may be offered for the discrepancy in the room temnes-

e data for tne NaCl solution, Firstly, the corrosion fatigu= dzta 4ar-
1ined by subtraoting off a reference rate from the measured rate ‘32«

(1)), Because the rates at the higher frequencies approach the referon-a
s, substantial uncertalinty may be introduced and the discrepancy simp.y
of1en3 the uncertainties introduced by this calculation. Secondly, the gpr:
'35 that is responsible for the enhancement of crack growth at the higher
~equencies may be the chemisorption of water, and the concomitant production of
hydrogen. The chemisorption process may not be electrochemical in nature, ani
wzild not be reflected in the charge transfer measurements.

i

N2vertheless, the correlation is most encouraging and suggest.s
fraitfal avenue for understanding CF of ferrous alloys in aqueous envi
has bean openad,

Summary

The results of this preliminary correlation demonstrate the relationchip
n electrochemical reactions with bare metal surfaces and CF crack growth
2213 in aquenus environments, and is very encouraging. These fincdings
2 further support for the hypothesis of surface/electrochemical r2acticn
”JL, and indicate the effectiveness of the in-situ fracture technigue in
Mg unambiguous measurements of bare-surface reaction kinetics. For quarn-
e ive modeling, efforts will be needed to provide measurements of curraont any
. densities, and to address the issue of actual surface areas of o .
1>nal research is tn progress and will be reported,
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