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INTRODUCTION

In many situations, the operating environment of an active pulsed system

(radar, communications, or sonar) limits the number of pulses transmitted.

Moreover the pulses transmitted through a medium, reflected, and returned can

be mathematically modeled as received pulses with pulse-to-pulse amplitude

variation (fading). An air traffic control radar in a mountainous region

operating during severe weather might be subject to such limitations. High

frequency radio communication at long ranges (skip distances), when

ionospheric conditions are changing because of normal diurnal processes or

during solar storms, provide a second class of examples. Replacement of these

electromagnetic systems by their acoustic analogues provides the further

instance of a sonar operating among islands or at convergence zone ranges

(underwater skip distances). The signal-to-noise ratio at the system input

could be randomly reduced to a value so low as to preclude acceptable

detection performance from processing each signal pulse independently.

Detection performance of a processing system can be mathematically

characterized by the parameters PV. probability-of-detection, and PFP

probability-of-false-alarm. When several pulses are transmitted in a pulse

train burst, and the returned echoes are processed as a group, we wish to

determine the minimum required input signal-to-noise ratio, as a function of

the number of pulses, K, in the burst, necessary to achieve the preassigned

acceptable level of performance, PDoPF* Similarly, if only a fixed total
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energy is available for transmission, we want to select the "best"

distribution of the available energy into K equal duration pulses to ensure

acceptable system performance. Stated differently, what is the optimal number

of baskets (pulses) for our eggs (energy)?

For our purposes here, a transmitted burst consists of K identical,

nonoverlapping (in time), sinusoidal pulses. The pulse train received is

mathematically modeled as time-delayed, randomly phase-shifted, versions of

the transmitted pulses with random pulse-to-pulse amplitude variations of

known first-order probability density. This received signal is further

corrupted by additive Gaussian white noise. The fading is assumed to be

unnoticeably slow during a pulse, so that the only fades it is necessary to

model are from pulse-to-pulse, which can be correlated to an arbitrary degree.

One possible detection tactic might be to transmit the smallest energy

signal just necessary to achieve the required average detection performance,

and accomplish it with a single pulse. Because of a variety of limitations,

either physical or financial, this tactic may not achieve the desired

performance. Multipulse bursts might work in cases where the available

signal-to-noise ratio is low. Here we consider in what sense this intuition

is correct for one class of correlated fading, and we compare these results

with system performance in a nonfading medium.

In the next section, the characteristics of the transmitted and received

signals, the corrupting additive noise, and the receiver processing are

2
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mathematically modeled. This provides notation and scenario for the analysis

of the hypothesized receiver, depicted in figure 1. The class of power scaling

Matched Envelope Square Threshold

Filters Detectors Fnd Sum Comparison

Figure 1. Receiver Block Diagram

fading variates considered have chi-square densities so, in a sense, the

received envelope amplitude scalings can be thought of as the square roots of

chi-square variates. The possibility that several pulses in a pulse train are

correlated is covered as well. Numerical examples for several combinations of

P and PF. for some representative received scaling probability density

functions and pulse-to-pulse correlations, are presented and discussed.

Two appendices provide mathematical details supporting the main analysis

by deriving the characteristic function and exceedance distribution of the

system output; a third appendix lists computer programs for the computation of

required input signal-to-noise ratios for fading and nonfading received

signals.

$
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PROBLEM DEFINITION

Signal Characteristics

The detection problem of interest is described in this section. A

high-frequency pulse of length L seconds and carrier f Hz is utilized as

the basic signal waveform component:

p(t) - cos(2f ot + eO) for 0 < t < L . (1)

We have Lfo >> 1; that is, each pulse contains many cycles of the carrier.

The actual transmitted signal waveform is

K

A p(t - tk) * (2)

k-l

where A is the transmitted signal peak amplitude, K is the number of pulses,

and (tk are the transmission times which are arbitrary except that

tk+l - tk > L ; i.e., no overlap (3)

The received signal is

K

A 2 rk 5(t - tk - D), (4)

k=l

5
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where frkI are amplitude scalings imposed by propagation and attenuation

through the medium. Bulk delay D is common to all pulses, and 0 denotes a

randomly phase-shifted version of (1) by independent uniformly distributed

phase shifts e k for 1 < k < K.

The average received signal power during a single pulse is

A22 2 cos2(2,fo(t - tk -D) + eo + ek) = A2 r (5)

and the average received signal energy per pulse is then

- A2 r2 L(6)~ 2  L

This is a very important parameter regarding the received signal; it is

independent of pulse number k under the assumption that r k = r , that

is, stationary fading.

Noise Characteristics

There is also assumed present at the receiver input, additive zero-mean

white Gaussian noise n(t) with a double-sided spectrum level Nd watts/Hz, or

equivalently, a single-sided spectrum level No = 2N The total received

waveform is therefore,

K

w(t) = A 2 rk p(t - tk - 0) + n(t) (7)

k=l

6
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Receiver Processina

The bulk delay 0, as well as the time separations [tkj between pulses,

are assumed known at the receiver; otherwise, a search over time delay 0 is

required, in addition to a possible Doppler search, in general. The receiver

consists of K matched filters, one for each of the signal pulses in (4); these

filter outputs are envelope detected and sampled at the appropriate instants

corresponding to the peak signal outputs. Finally, these envelope samples are

squared and summed over the total of K pulses. This sum is then compared with

a threshold for decision about signal presence or absence; see figure 1.

The analytic problem of interest is to determine the probability that the

decision variable above exceeds a threshold. From this quantity, we can

determine the detection and false alarm probabilities as functions of all the

various parameters presented in (1) - (7). Then for specified detection and

false alarm probabilities, the required input signal-to-noise ratio,

E 1/N can be determined numerically.

7/8
Reverse Blank
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ANALYTIC RESULTS

Characteristic Function of Decision Variable

The derivations of the statistics of the decision variable y are

conducted in appendices A and B. Specifically, the characteristic function of

y is given in (A-31) as

f M ij 202) NK(I _ i1 ,02 (8)

where

~2 .1 2 2 -

N L (1 + R) . R = N
n 4 0 T n N '

E averae received sianal enerv per pulse
N 0 single-sided received noise spectral density level ' (9)

and

N - m K e Ke " K (10)

kjL-l

Here, m is a parameter in the first order probability density function of

amplitude scalings {rkj. namely,

Pr(u) = 2 u 2m-exp(-u 2/) for u > 0 (m > 0) (11)
r(m) m

9
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To explain the other parameters in (10), we use the power scaling variable

q a r2 (12)

for the k-th pulse in (4) and (7). From (11), the probability density

function of {q is

p (U) = u M-exp(-u/*) for u > 0 (m > 0) (13)q ~ r(m) am

This is recognized as a chi-squared variate of 2m degrees of freedom; however,

2m need not be an integer. It is readily verified that

Std Dev(a) . M* . 1 (14)
Mean(q)

Thus as m -*oo, the probability density function of power scaling qk narrows

about its mean value, while if m - 0, it develops a large cusp at the

origin and a significant spread about the mean.

The normalized covariance coefficient appearing in (10) is that of the

power scaling variates:

1
Pk = 2 (Ik - q)(q 1 - q) . (15)

Oq

It measures the degree of correlation between the fading imposed on the signal

pulses, i.e.. (rkj in (7).

*This corresponds to a nonfading medium.

10
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The quantity Ke in (10) can be interpreted as an effective number of

Independent scalings in (4) and (7). For example, if pl4 - 0 for k ol,

then Ke = K; while if pU 1 for all kJ , then Ke  1. Both of these

situations agree with physical intuition. No specific time separations {tkl-,

in (4) and (7), need be assumed for (10) to apply; some of the pulses can be

close together, while others can be widely separated, subject of course to

limitation (3). The only way that the statistical dependencies of the power

scalings Iqk enter the characteristic function of y is through the double

summation of covariance coefficients in (10).

However, it must be remarked that the result in (8) is only an

approximation, developed in appendix A. An exact analysis of the

characteristic function of output y is the subject of a future study.

Exceedance Distribution Function of Decision Variable

Three alternative forms for the exceedance distribution function of y,

SY(U) - Prob(y > u) , (16)

are developed in appendix B, namely, (B-9), (B-11), and (B-13), each having

different merits, as discussed there. The one we have used for our numerical

calculations is the last one, and is, in fact, the detection probability when

signal is present:

11
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P a - e -- a I exp(.A) - e (17)
0 (1 + R) n-O

Here

2K (18)

2on

is a normalized threshold, and

j

ej(x) xn/n! (19)

n-0

is the partial exponential [1; 6.5.11]. The other two parameters appearing in

P0D namely, R and N, have already been explained in (9) and (10).

The false alarm probability corresponding to (17) is obtained by setting

R - 0:

PF - exp(-.A) eKI..) (20)

Thus, the performance of the diversity combining processor is governed by the

fundamental pair of equations, (17) and (20). For a specified number of

pulses K and false alarm probability PF' (20) can be solved for threshold.

These values of K andJL are then employed in (17) to evaluate detection

probability P0 for any specified N and E1/N . A program for this

procedure is given in appendix C.

12
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Detection Probability for Nonfading Medium

For comparison purposes, the detection probability for the processor of

figure 1 in the presence of a deterministic, i.e.. nonfading, medium is also

presented. This result is most easily obtained from the conditional

characteristic function for the system output, as presented in (A-13) and

(A-14):

f()( ) =2) exp it (iL) S (21)
Y nl - 112o2 2/J

where

K

S 2 qk. (22)

k-l

is the sum of the power scalings on all K pulses. Since there is no fading,

(21) Is directly the characteristic function of the decision variable.

A more convenient form for (21) is available when we observe from (4) and

(1) that the received signal energy on the k-th pulse is the nonrandom quantity

2 21 1 2Ek = A r L = AL q (23)

Thus, the total received signal energy is, using (22),

K

ET = E = A2L S . (24)T~.- k 2
k=l

13
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Coupled with the expression for o2 given in (9), we obtain for (21), the

characteristic function,

f(c) - e2 -exp E T (25)

in terms of the parameter

ET total received signal enerQv over K pulses

N- single-sided received noise spectral density level (26)
0

The exceedance distribution function corresponding to (25) is available

from [2; (50) and (51)] as

P0 K M Q(212)E ) (27)

where we used (18) and the OM-function defined as

00

QM(ab) = dx x ()M- exp 2 IMl(ax) (28)

b

The false alarm probability corresponding to (27) is obtained by setting

ET = 0, and is identically (20), as it must be, since the background noise

is independent of any signal fading characteristics.

When we plot these latter results for a nonfading medium, and compare

them with the earlier results in (17) for the fading medium of interest, we

replace ET by K -1 . This arbitrary but reasonable assignment is necessary

in order to superpose the two types of results on one plot. However, strictly

speaking, the parameter appearing in the following plots should be

interpreted as ET/(KNo) in the case of no fading.

14
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NUMERICAL RESULTS

The probability density functions (PDF) for five values of the scaling

parameter m in (11) and (13), representing five distinct possible fading

behaviors, are plotted in figure 2. All densities of the class considered

vanish for negative argument. So these behaviors are, for the amplitude

variate:(l) an impulse representing the nonfading case, which is also the

limiting case of the class as m 4o; (2) continuous with continuous derivative

at the origin (m = 2); (3) continuous with discontinuous derivative at the

origin (m = 1, Rayleigh amplitude density); (4) a finite discontinuity at the

origin (m = 1/2, a one-sided or full-wave rectified zero-mean Gaussian

density); and (5) an infinite cusp at the origin (m = 1/4). The amplitude

scaling r, with the probability density function of (11), has second moment

= mo(. (29)

The normalized amplitude scaling

r , (30)

normalized by the root-mean-square (rms) value of the amplitude scaling (not

the standard deviation a r), has probability density function

PPM 2 mm u2m-1 exp(-mu2 ) for u > 0 (31)
.r(m)

For the five values of m (=a*, 2, 1. 1/2, 1/4), the probability density

functions for this rms-normalized amplitude scaling are shown in figure 2A.

15
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The corresponding probability density functions for power scaling q are

chi-squared variates with 2m degrees of freedom, as given in (13). The mean

* of variate q is

q = m{. (32)

The normalized power scalinq

= q/q , (33)

normalized by the mean power, has probability density function

pi mm um-1 exp(-mul for u > 0 (34)
p (u) - ( ) fru>0.(4

r m

The normalized power scaling probability density functions are plotted in

figure 2B for the same five values of m.

For each finite value of m above, and for each of the four combinations

of system performance parameters P= .5 or .9, and PF = IE-6 or 1E-8,

the required minimum system input signal-to-noise ratio (SNR) to achieve this

performance, as a function of the number of pulses K In a pulse train, has

been computed using the computer programs listed in appendix C which implement

the theoretical analysis above. Although this analysis and these programs can

handle general pulse-to-pulse normalized covariance coefficients t *k' the

figures have been computed for the special case of exponential correlation

jk-I IPk i -PI < l (35)

17
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Each of the graphs has two sets of curves: the solid curves are for the

required average received signal energy per pulse (E1 N0) in dB, as a

function of the number of pulses K, and the dotted curves are for the total

average received signal energy ( ET/No0) in dB. For ease of comparison,

each set of curves on each graph includes its nonfading (NF) or m 4 c

4 counterpart. In every case computed, the solid curves show that the energy

per pulse, or input signal-to-noise ratio required for acceptable system

performance, decreases as the number of pulses increases. This matches the

intuitive argument that using more pulses implies we are using more total

energy, so we should be able to maintain the same level of performance with

less energy per pulse. The intuitive conclusion is correct, but scanning the

dotted sets of curves (representing total energy in the pulse train) shows

this intuitive argument is only part of the story. For more-or-less

uncorrelated adjacent pulse fading and for the smaller scaling parameters

(m < 1), the total input signal energy required initially decreases as we

increase the number of pulses in a pulse train. For a large number of pulses,

the total energy will eventually increase with K, but for a small number of

pulses, a short burst may be more efficient. For example, with P D .5,

P F 1E-8, and a one-sided Gaussian amplitude probability density function,

m =1/2, figure 13 shows that the total energy required reaches a minimum of

14.4 dB for p = 0 with 3 pulses per burst; for p = .5, the minimum of 15.2 dB

occurs with 5 pulses. In all cases, the p = .5 curve is closer to the p = 0

curve than to the p = 1 curve, and the high correlation p = 1 curve always

increases. Thus, for moderate values of correlation, we can expect system

* performance to be robust and system performance will be severely degraded only

for highly correlated lading.

18
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As the exponential covariance coefficient p in (35) decreases toward -1,

the performance curves for even K approach those corresponding to the

nonfading case. This is easily seen since the sum of two successive power

scalings in the sum S in (22) and (A-14) then tends to 2 , twice the mean of

q, which is a nonrandom quantity. Equivalently, we can say the random

fluctuations in the power scalings fqj have canceled each other. For K

odd, however, there is always one unpaired random fluctuation, even for p = -1;

this means that for K odd and p - -1, system performance is slightly poorer

than for the nonfading situation. As K increases through odd values, this

discrepancy decreases to insignificance. Even for K = 3, the difference is

small. This has been confirmed analytically and verified by numerical

calculation for values of p very near -1, and for several K; these results

have been omitted from the figures which include only nonnegative values of p.

A separate issue is whether values of p near p = -1 can be realized.

That is, if the first-order probability density function of the nonnegative

power scaling variate q is not symmetric about its mean &, then arbitrarily

large negative values of p are not allowed. For example, for p k to reach

-1, we would need (q - ) = -(q - ) with probability one. However, for

the class of power scalings treated here, this is clearly impossible: large

positive values of q- occur with nonzero probability, for which the

corresponding negative values -(qk -k) occur with probability zero. Thus,

for most probability density functions, and in particular for the class

assumed here, the p = -1 results would represent an unreachable bound to
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system performance. This is an illustration of the fact that the first-order

probability density function and the correlation (or spectrum) of a random

process cannot be independently specified in general. Complete first-order

information imposes some restrictions on allowable second-order statistics.
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SUMMARY

One manner of summarizing the behavior of the amplitude and power scaling

variates (figure 2) Is to observe that as the parameter m decreases from

infinity (the nonfading case), the fading becomes deeper more often. For

small m, the very deep fades occur very often. As m nears zero, the fades are

so deep and occur so often that large arguments of the scaling probability

density functions are rarely observed. Thus, for a given level of

performance, the required input signal-to-noise ratio must increase as m

decreases.

This conclusion is borne out by the P = 9, PF = 1E-6 case

(figures 4, 8, 12, and 16) where, for a single pulse system, K=l, the required

input signal-to-noise ratio increases from 17 dB to 47 dB as m decreases from

2 to .25. Relaxing the probability of detection to P0 = .5 relaxes the

corresponding signal-to-noise ratios to the range from 12 dB to 19 dB. It is

also not surprising that tightening the probability of false alarm to 1E-8

further increases the required signal-to-noise ratio. For m = .25 and

PF= 1E-8, the signal-to-noise ratio requirements are preposterous and the

corresponding figures for P0 = .5 and P = .9, which would have completed

the set, have been omitted.

Although the signal model employed here in (1) and (4) utilizes a common

carrier frequency f0 for all K pulses, the results extend immediately to the

case of arbitrary different carrier frequencies fk for the k-th pulse,
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provided that these various frequencies are known and appropriately used at

the receiver. Also, although the particular signal pulse in (1) is a simple

burst of a sinewave, the current results extend to arbitrary signal waveforms

Pk (t) on each pulse, provided that matched filters are employed in the

receiver, and that each waveform p kt) have identical transmitted energy.
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APPENDIX A

CHARACTERISTIC FUNCTION OF SYSTEM OUTPUT

Matched Filter Output Characterization

In this appendix, we compute the characteristic function of the decision

variable, described in (7) et seq. The in-phase and quadrature outputs of the

k-th matched filter, at the time instant of peak signal output, are

{: = dt[A rk cos(2vf0(t - tk - D) + ek) + n(t
k

* s (2wff(t for I < k < K (A-1)

sin tk- -0)A

where use has been made of (1) and (7), and phase shift e0 has been absorbed

in random phase shift ek with no loss of generality. That is,

Ik = ak + Pk 9 Qk = Bk + Vk I (A-2)

where the signal components are, upon use of the facts that Lf °  1 and

that there is no overlap, as indicated in (3),

= AL r cos e
-k 2 k k

= - AL rk sin ek , (A-3)

and the noise components are

k dt n(t) sis f0(t tk 0)) (A-4)

L

31

-.
ii"=S=% 

%,- . • * %

,!S ps5 '**** . ~. . S



TR 7707

The noise components in (A-4) are Gaussian zero-mean random variables since

n(t) = 0 , n(tl)n(t 2) = Nd 6(t1 - t2 ) (A-5)

There also immediately follows by the use of (A-5),

2 --2- 0 (A-)

'k  k =Nd L eon " k(k .

Furthermore, due to the lack of overlap, as in (3), the random variables

*k,Uk are independent of u,,oj for k o J. Thus, the collection of 2K

random variables in (A-4) are all independent and identically distributed.

Conditional Characteristic Function

The k-th squared envelope sample at the matched filter output is

2 2 2 2
- Yk = Ik + Qk . (&k + uk + (k+ 1D , (A-7)

by reference to (A-l) and (A-2). We will temporarily consider that the signal

components in (A-3) are fixed non-random constants; then the conditional

characteristic function of random variable Yk is, upon use of (A-6),

fk(f) = exp(ihyk) = exp[i9(cak + uk)2 + i1(Bk + Uk) 2] =

= u dv exP exp[il(c k + U)2 +MO + V)2 (A-8)
n2 wn  2 On /

Now let

= p cos o , = p sin o , (A-9)
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to get

- dp~ S . ~ exp ~ 1~+0' + 2pO Cos 0 + Bk sin 0)
0 n-n

S- 2 n  d 2 2 21/2
exp[i;(Q + + if O(1 2p(ak + Bk) P-,

0 an B a n I
2f( 2 1 2

=(1 - ij2W ) -1exp k kJ (A-10)
1 °n

Here we employed (3; 8.411 1 and 6.631 4].

The output of the system is the sum of the squared envelope samples in

(A-7):

K K
Xk= (12 + Q2) (A-11)

k=l k=l

Since all the noise random variables in (A-4) are independent, the conditional

characteristic function of system output random variable y follows from (A-10)

as

r K
f~) (1 - Ma2)Kexp[ 1 + I32) (A-12)-n 2o k k

If we now use (A-3), this can be expressed as

K 1
f c ) ( f ) = (1 - il22 ) - K exp L r2 (A-13)

n. (L 2 kA3

33
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It is important to observe that this conditional characteristic function

depends on the signal amplitude scalings [rk) in (4) and (7) only through

the sum of squares

K K

5= r2 (A-14)

k-l k-

where

2
qk = rk = power scaling of k-th pulse (A-15)

First Order Statistics of Scalings

Let the first order probability density function of amplitude scaling

rk in (4) be

Pr(u) = 2 u2m-1 exp(-u 2/Q) for u > 0 (m > 0) (A-16)r (m) am

where m need not be an integer. (As an example, for m = 1,

P = u exp(-u 2/a) for u > 0 , (A-17)

which corresponds to Rayleigh amplitude fading.)

The corresponding probability density function for power scaling qk in

(A-15) is
rn-i

p q(u) = u exD(-u/a) for u > 0 (m > 0) . (A-18)
4(m) m
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This is recognized as the probability density function of a chi-squared random

variate with 2m degrees of freedom; however, 2m heed not be an integer here.

The general u-th moment of qk is

q r(m + ) (A-19)
k r(m)

and, in particular, we have

q - am, Var(q) = a2m Std Dev() 1A20)

The first order characteristic function of power scaling qk is given by

the Fourier transform of (A-18):

fq() du exp(ifu) Pq (u) = (1 - i,,)-m (A-21)

First Order Characteristic Function of Sum S in Special Cases

If all the power scalings {qk} in sum S in (A-14) were independent,

then the characteristic function of S would be given by

(1 - -inK, (A-22)

as may be seen from (A-21). This situation could come about approximately

when the signal pulses in (2), (4), and (7) are widely separated in time and

subject to uncorrelated (linearly independent) fading.
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On the other hand, if all the power scalings were completely dependent,

then the characteristic function of sum S would be

(1 - 17aK) -M  (A-23)

since S = Kq] in this case; see (A-14) and (A-21). This case corresponds to

close signal pulses and/or very slow fading.

Approximate First Order Characteristic Function of Sum S

The latter two results suggest the following form as an approximation

to the characteristic function of sum S in (A-14) when the power scalings

KI are partially dependent:

-mK
fs(?) ; (1 - i1s) e (A-24)

This latter form of characteristic function has mean mK 3 and variancee

mK e 2 . We will choose the two unknown parameters in (A-24) so that these

two statistics identically equal the corresponding exact values determined

directly from (A-14). Specifically, using (A-20), mean

= K q = K a m , (A-25)

*A similar procedure was employed with great success for a spectral analysis

technique in (4; (38) et seq.].
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and variance

r K 12
Var(S) =(S 2 ) (q,-q

K K
- ~ ~ G ~ =m d~ ~q(A-26)

kj =1 j1

where

OV ~ 2'(q - q) (q2  q) (A-27)
q

is the normalized covariance coefficient of power scalings tij. Combining

these quantities, we find that

KK 
2

Ker K

kJ=1

K = _q K(A-28)
e e

The quantity K ein (A-24) and (A-28) can be interpreted as an effective

number of independent scalings in (A-14). For example, if pk 0 for

k #,t then K e= K; while if pk 1 for all k,.V, then K e 1. Both of

these situations agree with physical intuition. Also, from (A-28), 13 = CL in

the former case, and 13 = caK in the latter case; (A-24) then reduces to (A-22)

and (A-23), respectively, as required.
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No specific time separations {tk), in (4) and (7), need be assumed for

(A-28) to apply. Some of the pulses can be close together, while others can

be widely separated, subject of course to limitation (3). The only way that

the statistical dependencies of the power scalings {qkj in sum S enter the

characteristic function of S is through the double summatlon of covariance

coefficients in (A-28).

Unconditional Characteristic Function of Output y

The first order probability density function corresponding to

characteristic function (A-24) is

uN-i x(u

Ps(U) = u Nex(-u/0) for u > 0 , (A--29)
r(N)

where

N = m Ke (A-30)

None of the parameters, N, m, Ke, need be integer. Also, N can be larger or

smaller than K, the number of signal pulses.

The conditional characteristic function of system output y was given in

(A-13). The unconditional characteristic function of y is obtained by

averaging (A-13) with respect to (A-29):
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00
fy( ) - du 1 - 1exp IU/ 2 -K u]

0 r (N) ON  n20 2(2

- (1 - i2a 2)N - K (1 - 2 )-N (A-31)

where

aT 2 . 2 , " (A-32)

To obtain this last relation, we used (A-6), (A-28), (A-30), (6), and

No a 2Nd , (A-33)

the single-sided noise density level stated just above (7).

Equation (A-31) is a compact simple expression for the characteristic

function of decision variable y. It could be used directly in the efficient

procedures of [5] to get the cumulative and/or exceedance distributions of y.

In the next appendix, we derive analytic expressions for these probabilities.

39/40
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APPENDIX B

EXCEEDANCE DISTRIBUTION OF SYSTEM OUTPUT

The characteristic function of decision variable y is given in (A-31).

In order to find the corresponding exceedance distribution function, we use

the procedure in [6; appendix A]: since we know the characteristic function-

probability density function pair

1 u ~-1ex -ua
1 I + u Iex(-u/a) for u > 0, (3 > 0) , (8-1)

(1 - iya)S r(J) a3

the probability density function corresponding to multiplicative

characteristic function (A-31) is given by convolution

u J-1 exp(-x/a) (u - x)N-1 ex(-(u - x)/b)p y(u) f dx x rJaITr()bNfor u > 0 (8-2)

0 ' (() (' (N) bN

where

3-K- N, a - 2a , b = 2a2 (8-3)nT

We presume N < K for now, in order that J > 0.

Employing [3; 3.383 1 and 8.384 1], (8-2) becomes

K-1
S(u) ex(-u/a) u F N; K; u - for u > 0. (8-4)

ya K-N b N ('(K)' Ilk K; a -b84

Since (A-31) is an analytic function of N, as is its transform (8-4), we can

now analytically continue (8-4) to values of N > K.
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The exceedance distribution function of y is

Prob(y > u) (u) dx p(x) =

b1 N dt e- tK- 1F1(N; K; b t) (8-5)

r(K) (b/a) u/a

Reference to (8-3) and (A-32) yields

(u) dt e-t t K- 1  F(N; K; R t} (B-6)
r'(K) (1 + R) NA

where

" O 'I u (B-7)
N0N 22

0 n

By expanding 1F1 in a power series according to [3; 9.210 1]. integrating

term by term, and using the partial exponential [1; 6.5.11)

j
ej(x) - xn/n! (B-8)

n=0

(8-6) develops into the form

exp(-A) (N)n ) n e (-9)Q Y(u) (I + R)N neK+n( .(

This series for the exceedance distribution function converges for all R, but

rather slowly for large R.
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For signal present, (B-9) gives the detection probability. When signal

is absent, R = 0 from (B-7), and (B-9) reduces to the false alarm probability

PF = exp(-.,t) eKl(A) , (B-10)

which is independent of N (defined in (A-30) and (A-28)).

An alternative form to (B-9) is available if we employ Kummer's

transformation [1; 13.1.27] in (B-6):

y(u) -exp (1 + R)K -N (K N )n (-R)n eK - (B-li)

n=O

If N is an integer and if N > K, this series terminates, and is composed of

all positive terms, which makes it very attractive. However, if either

condition is violated, then (8-li) converges only for R < 1, but diverges for

R > 1. Since this latter case is of practical significance, (B-1l) is then

not too useful for general values of N.

The only convergence factor in (B-9) is the R/(l + R) term. However, we

can create another convergence term by adding and subtracting exp"A) from the

partial exponential, since this is its limit value as n tends to infinity; see

(8-8). By then employing the result that [3; 9.100 and 9.121 1]

" (N) n f R R

+ j = 2F, (N , ; 0 ; +-- R = (I + R) , (B- i )

n=O
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(8-9) becomes

Q(u) l .1 _exD(A.) njO N)n ( R  r en
(1 + R) N - !-- +n (8-13)

This last form was used for all the numerical results obtained here; a program

for this expansion is given in appendix C. If necessary, a more elaborate and

accurate procedure involving only positive summations is developed in

[6; pages A-6 to A-8].

To summarize, the parameters required in detection probability (B-13) are

-.A= . R = E1 K (B-14)

where o i s given by (A-6) and N is given by (A-30) and (A-28). Since A

is simply a scaled version of u, we can equally well keep A as the fundamental

threshold variable in (B-10) and (B-13).
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APPENDIX C

PROGRAM LISTINGS

Two programs are listed here, the first for fading, the second for

no-fading, of the received signal. Inputs required of the user for the fading

case are given in lines 20 - 50:

Pf probability of false alarm

Pd probability of detection

M parameter m in (11) and (13)

Rho j = pIk- l in (10) and (15)

The particular exponential normalized covariance pk, programmed in line 1490

can be easily replaced by other more general cases of interest to the user.

The output of the main program, line 290, is the value in dB of EI/N o

in (9), namely a measure of the required system input signal-to-noise ratio to

achieve the desired false alarm and detection probabilities. The number of

pulses, K, is taken to be 1 to 10 in line 120, but can be easily changed. The

first inverse function subroutine in line 770 solves for the required

threshold for specified PF and K. The second subroutine in line 1130 solves

for the required TI/N 0 for specified PD and N.

A similar explanation holds for the no-fading program listed at the end

of the appendix. Duplicate routines are not listed in full, in order to save

space. The word DOUBLE denotes INTEGER variables in Hewlett Packard BASIC on

the 9000 computer.
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10 1 SNR-FADING
20 P=I.E-6 FALSE ALARM PROBABILITY
:30 Pd=.5 DETECTION PROBABILITY

40 M=I. FADING PARAMETER (SINGLE PULSE)

50 Rho=.5 FADING CORRELATION COEFFIC:IENT
60 A$="1E-6.5,I.,.5" Pf,Pd,MRho
70 Ef=1.E-20 TOLERANCE ON Pf

80 Ed=I.E-15 TOLERANCE ON Pd

90 DIM Elnodb 1:10) REQUIRED INPUT SNR PER PULSE ,DB;,
100 COM DOUBLE K,RERL N,Thr
110 DOUBLE Ks,Ls
120 FOR K=1 TO 10 I NUMBER OF PULSES
1:30 S=O.
140 FOR Ks=1 TO K

150 FOR Ls=1 TO K
I60 55='.-=+FNCovnor n, ': I:fs s LsRho)
170 NE'XT Ls
180 NEX-T Ks
190 K " f =K*. .,S
200 N=M*I:eff
210 Thr i nc=1. THRESHOL D INCREMENT

20 Thrst. art =-LOGFf.-Thr i no: THRESHOLD STARTING 'v'RLIUE

_30 CALL I n,.ers fr,c t on I -P Et" , Thr t artI. , Thr i nc , Thr
240 Elrostart=10. I El."No STARTING VALUE
250 El rii nc =1. El1.'No INCREMENT
260 i:ALL In,',r';func tion2 (Pd,Ed,Elrso t. art ,Elnorinc,Elro
270 Elnodb(K,=I0.*LGT:EIr,o
2:30 NE XT K
290 PRINT Elnodb: *)

300 CREATE DATA A$.4
310 ASSIGN #1 TO AS
320 PRINT #1;Elndt' *,

30 ASSIGN #1 TO *
340 END
350 1

SI0 DEF FNPft: Thr ' FAL'S'E ALRM FROBAB I L I TY
370 COM DOUBLE F
3111:0 DOUBLE V:

390 S = T = E: ::P, :.-Thr
400 FOR =1 TO V-1
410 T=T*Thr .
420 :.='-.+ T
430 NE::T V1
44I RETUF' N -i i - TO YIELI I NLRE':SIGi FUrmLTIO T
450 FNEND

S460 '
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JR 1101

470 DEF FNPd(Elro) FADING DETECTION PROBABILITY
480 COM DOUBLE K,REAL N,Thr
490 Errorul.E-10
500 DOUBLE K1,Ks
510 R=Elno*K/N
520 EtCEXP(Thr)
530 K1=K-1
540 N1=N-1.
550 R1=1.+R
560 O=R.'RI1

4570 E=Te=1.
580 FOR Ks=1 TO KI
590 Te=Te*ThrxKs
600 E=E+Te
610 NEXT Ks
620 S=B=MAX(Et-E,0. I

630 T=1.
640 FOR Ks=1 TO 1000
650 TesTe*Thrx,(K1+ks)
660 B=MAX.B-Te,0.)
670 T=T*Q*(N1+Ks?/Ks
680 Pr=T*B
690 S=StPr
700 IF ABS:.Pr:)<=Error*ABS8.8. THEN 730
1710 NE::T Ks
720 PRINT "11000 TERMS AT: ';K;N;Thr;E1n-o;Prv...*
730 Pd=1.-EXP--Thr-N-LOG(R1)'*S
740 RETURN Pd
.250 FINEND

770 SUB I nversf unct i on 1 (.Des i red, Error, X1., D~e 1 X"

790 ::<=x1+D(e1
790 F1=FNPf(XI.:

:30 IF F'2;=eie THEN 860
:32 0 X1I=:,2
:330 2 +DeI
c340 F1=F2
:50 GOTO 800
:360 IF FL :DE.El-red THEN 920
8370 - 4 X1
:33 XI1=.'::I-Del1
:390 F2=F1

4 900 F1I=FNPf <
Sw910 GOTO 860
A '920

9 30 b2
940 IF F2-fle-zred:Dt'Eh-red-F1 THEN 1010
950 TV1
?60
970 x2=
?80 T=FI
990 1 F1=F2

110I F&2=T
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IR 1101

1010 IF AES'F2-Desired)<Error THEN 1110
1020 IF F2=F1 THEN 1110
1030 T=(X1*(FZ-Desired)-X2*(F1-DtsiredD'/(F2-FI)
1040 T=MAX(T,Xa)
1050 T=MIN(T,Xb)
1060 X1*X2
1070 X2=T
1080 F1SF2
1090 F2=FNPf(X2)
1100 GOTO 1010
1110 SUBEND
1120
1130 SUB Inversflnction2(Desired,Error,X1,De1 ,X2)
1140 X2=uX1'+De1
1150 FIsFNPd(X1.)
1160 F2=FNPd(X2)
1170 IF F2>=Dusired THEN 1220
1180 X1-X2
1190 X2zX2+De1
1200 F1=F2
1210 GOTO 1160
1220 IF Fi<uDesired THEN 1280
1230 Xe2=X 1
1240 X1=XL-Dc1
1250 F2=F1
1260 F1=FNPd(XL'
1270 GOTO 1220
1280 Xa=X1
1290 Xb2
1300 IF F2--Desired<Desired-F1 THEN 1370
1310 T=X1
1320 X1=X2
1330 X2=T
1340 T=F1
1350 F1=F2
1,360 F2=T
1370 IF ADS'F2-Desiredr-'*Error THEN 14707-
1380 IF F2=F1 THEN 1470

1400 T=MAX T, a)v
1410 T=MIN(T ,Xb')
1420 1 = X2
1430 ::2sT
1440 F1=F2
1450 F2=FNPd(.-'X2'
1460 GOTO 1.370
1470 SIJEEND
1480
1490 DEF FNCo:.'r,:rrfj'DOUBLE[ALELPh:
1500 PETURN Pho: ADS' Is-Lz--
1510 FUEND

48 COPY civnii l to DTIC does not
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10 SNR-NO-FADING
20 Pf=I.E-6 I FALSE ALARM PROBABILITY
30 Pd=.5 DETECTION PROBABILITY
40 A5="IE-6,.5" I Pf,Pd
50 Efx1.E-20 TOLERANCE ON Pf
60 EdzI.E-15 I TOLERANCE ON Pd
70 DIM Elnodb.A:10) REQUIRED INPUT SNR PER PULSE :.DB)
80 COM DOUBLE K,REAL Thr2
90 FOR KaI TO 10 N NUMBER OF PULSES
100 Thrinc=l. I THRESHOLD INCREMENT

110 Thrstart=-LOG(Pf)-Thrinc I THRESHOLD STARTING VALUE

120 CALL Inversfuncticnl(-Pf,Ef,Thrstart,Thrinc,Thr)
130 Thr2=SQR(2.*Thr)
140 Elnostart=10. EI'No STARTING VALUE
150 Elnoincl. ElNo INCREMENT
160 CALL Inversfunction2(Pd,EdElnostrt,Enoinc,E1no)
170 Elnodb(K)=10. *LGT(Elno)
180 NEXT K
190 PRINT E1nodb(*)
200 CREATE DATA AS,4
210 ASSIGN *1 TO AS
220 PRINT #1;Elnodb(*)
230 ASSIGN #1 TO *
240 END
250
260 DEF FNPf(Thr) FALSE ALARM PROBABILITY
270 CON DOUBLE K
280 DOUBLE Ks
290 S=T=EXP(-Thr)
:300 FOR Ks=I TO K-I

310 T=T*Thr/KS
320 S=+T
330 NEXT Ks
340 RETURN -S - TO YIELD INCREASING FLNCTIOGIN
350 FNEND
360 1

370 DEF FNPd + E in,.:, NO-FAD IN DETECT I GIN PRAI L IT ,
380 'OM DOUBLE KREAL Thr 2
3910 P ,d F N 0'rr, -* Q P 2. K * E I n T h r 2,
4t i PETURN Pd
410 FNEND
4-"0
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430 DEF FN~rA(DOUBLE M,REAL A,B' 0M(A,B'

440 ErrorlI.E-17,
450 DOUBLE M1,S
460 03=.5*A*A
470 04=.5*B*B
480 Q5=EXPk-.5*'(03+04))
490 06=0705
500 M1=M-1

510 FOR Jul TO Mi

520 07=07*04-mJ
5:30 06=06+07

540 NEXT J
550 m05*06
560 FOR 1=1 TO 1000

570 05=05*03. 4
580 07=07*04/(J+M1)
390 06=06+07
600 09=05*06
610 Om=Om+09
628 IF Q9< =Error*'2r THEN 650
630 NEXT J

640 PRINT 111000 TERMS IN FN~m'*M.A,B'l AT ";M;A;B
650 RETURN Orn
660 FNEND
670

SUBDInversfunctioni 'Desi redl,Error ,X1 ,Del, XZ)

SUB Irnversf UnCTl on2;DehlErr,1Del.X2..
LISTED ABOVE

Cop? okvailablO to D IC does n~ot
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