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INTRODUCTION

In many situations, the operating environment of an active pulsed system
(radar, communications, or sonar) 1imits the number of pulses transmitted.
y Moreover the pulses transmitted through a medium, reflected, and returned can
k) be mathematically modeled as received pulses with pulse-to-pulse amplitude

variation (fading). An air traffic control radar in a mountainous region

;5 operating during severe weather might be subject to such limitations. High

Eﬁ ' frequency radio communication at long ranges (skip distances), when

§‘ jonospheric conditions are changing because of normal diurnal processes or

f* during solar storms, provide a second class of examples. Replacement of these
-$§ electromagnetic systems by their acoustic analogues provides the further

instance of a sonar operating among islands or at convergence zone ranges
i (underwater skip distances). The signal-to-noise ratio at the system input
b could be randomly reduced to a value so low as to preclude acceptable

i, detection performance from processing each signal pulse independently.

:' Detection performance of a processing system can be mathematically

U

!

Q characterized by the parameters PD' probability-of-detection, and PF'

X probability-of-false-alarm. When several pulses are transmitted in a pulse
.; train burst, and the returned echoes are processed as a group, we wish to

&

‘5 determine the minimum required input signal-to-noise ratio, as a function of
= the number of pulses, K, in the burst, necessary to achieve the preassigned
(3

é: acceptable level of performance, PD'PF' Similarly, if only a fixed total
"

X

W

x 0

N}

I‘

-~
-

B X
—

CRSOUOLM R P *) NIV & WERD . by ; AN O00 OO0 )
R T D A A A R I A RO b G St ittt et



.......

=,'s

Q TR 7707

X

By |
" energy is available for transmission, we want to select the "best" |
25 distribution of the available energy into K equal duration pulses to ensure
1%

{ acceptable system performance. Stated differently, what is the optimal number
# of baskets (pulses) for our eggs (energy)?

v e

W

:Q For our purposes here, a transmitted burst consists of K identical,

Wy

:i nonoverlapping (in time), sinusoidal pulses. The pulse train received is

Y mathematically modeled as time-delayed, randomly phase-shifted, versions of
%’ the transmitted pulses with random pulse-to-puise amplitude variations of

K

{5 known first-order probability density. This received signal is further

‘? corrupted by additive Gaussian white noise. The fading is assumed to be

g

: unnoticeably slow during a pulse, so that the only fades it is necessary to

M)

:& model are from pulse-to-pulse, which can be correlated to an arbitrary degree.
i“ One possible detection tactic might be to transmit the smallest energy
P

:é signal just necessary to achieve the required average detection performance,
. and accomplish it with a single pulse. Because of a variety of limitations,
.'l

ﬂ either physical or financial, this tactic may not achieve the desired

by

:5 performance. Multipulse bursts might work in cases where the available

h'

3 signal-to-noise ratio is low. Here we consider in what sense this intuition
&)

"

¥ is correct for one class of correlated fading, and we compare these results
5 with system performance in a nonfading medium.

7

{' In the next section, the characteristics of the transmitted and received
X

s signals, the corrupting additive noise, and the receiver processing are

a"

: :

b

I‘-
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mathematically modeled. This provides notation and scenario for the analysis

of the hypothesized receiver, depicted in figure 1. The class of power scaling

Matched Envelope Square Threshold
——lgnd | —— ]
Filters Detectors And Sum Comparison

Figure 1. Receiver Block Diagram

fading variates considered have chi-square densities so, in a sense, the
received envelope amplitude scalings can be thought of as the square roots of
chi-square variates. The possibility that several pulses in a pulse train are
correlated is covered as well. Numerical examples for several combinations of
PD and PF' for some representative received scaling probability density

functions and pulse-to-pulse correlations, are presented and discussed.

Two appendices provide mathematical details supporting the main analysis
by deriving the characteristic function and exceedance distribution of the
system output; a third appendix 1ists computer programs for the computation of
required input signal-to-noise ratios for fading and nonfading received

signals.
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B PROBLEM DEFINITION

o

i

\I‘ﬁ

g; Signal Characteristics

R

.%. : The detection problem of interest is described in this section. A

»

}; high-frequency pulise of length L seconds and carrier f° Hz is utilized as

k3

0 the basic signal waveform component:

g

o P(t) = cos(2sf t +@,) for0<t<lL. (1)
3

¥

. We have Lfo >> 1; that is, each pulse contains many cycles of the carrier.
M

~gf The actual transmitted signal waveform is

i ]

’ AS pit-t), (2)
" k=1

D)

'

2{ where A is the transmitted signal peak amplitude, K is the number of pulses,
p and {tg} are the transmission times which are arbitrary except that

b

3

A tk+1 - tk > L ; i.e., no overlap . (3)
o

§ The received signal is

D

X

" K

5 AZ rkS(t-tk—D). (4)
N k=1

I

i

K]

*0

; 5
W

Ny hte .'"‘tq.g’ LN '\."&‘.71\“' ¥
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where {?é} are amplitude scalings imposed by propagation and attenuation

’§§} through the medium. Bulk delay D is common to all pulses, and P denotes a
.“
§;¥ randomly phase-shifted version of (1) by independent uniformly distributed
N;( .
?Ee_ phase shifts {bk for 1 < k < K.
DX
ii The average received signal power during a single pulse is
R
2 2 2 . _1,2 2
‘ﬁﬁ A ry €os (2wf°(t tk D) + 8, + ek) 2 A r, (5)
]
?ﬁk and the average received signal energy per pulse is then
o
—_ 1,22
E1 2 A r° L. (6)

This is a very important parameter regarding the received signal; it is
_ﬁ; independent of pulse number k under the assumption that.:f = :il that

3

[}

‘ L,

D is, stationary fading.
[}

1)

148 Noise Characteristics

N There is also assumed present at the receiver input, additive zero-mean
s, white Gaussian noise n(t) with a double-sided spectrum level Nd watts/Hz, or

f&, equivalently, a single-sided spectrum level No = 2Nd. The total received

;54 waveform is therefore,

it K

‘_:i, W(t) = A S r Bt -t - D) +n(t) )
] k=1

SOOI ARSI S ) R w, T ORI T g £ (8 1
PRI Uy Wy 10 T g gt s Ui g i et mt et e mah at st YT IOR N
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Receiver Processing

:: The bulk delay D, as well as the time separations {té} between pulses,

are assumed known at the receiver; otherwise, a search over time delay D is

required, in addition to a possible Doppler search, in general. The receiver

! consists of K matched filters, one for each of the signal pulses in (4); these
filter outputs are envelope detected and sampled at the appropriate instants

‘ corresponding to the peak signal outputs. Finally, these envelope samples are

squared and summed over the total of K pulses. This sum is then compared with

a threshold for decision about signal presence or absence; see figure 1.

The analytic problem of interest is to determine the probability that the
decision variable above exceeds a threshold. From this quantity, we can
‘ determine the detection and false alarm probabilities as functions of all the
various parameters presented in (1) - (7). Then for specified detection and
false alarm probabilities, the required input signal-to-noise ratio,

E;/No. can be determined numerically.

-
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ANALYTIC RESULTS

Characteristic Function of Decision Variable

The derivations of the statistics of the decision variable y are
conducted in appendices A and B. Specifically, the characteristic function of

v is given in (A-31) as

2 N-K 2 -N
f7(f) = (1 - 1§2an) <1 - 15201,) , (8)
where
2.1y 2. 5201 +R) R=55
T34 °T "% ’ NN
El . average received signal energy per pulse (9)
No single-sided received noise spectral density level °’
and

x2
N=mK,, Ke = % —— - (10)

;:EE Pra

k.X2=1

Here, m is a parameter in the first order probability density function of
amplitude scalings {rk}. namely,

2 4™ Vexp(-v/a

- for u>0 (m>0) . (M)
F(m) a

p.(u) =




W -
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To explain the other parameters in (10), we use the power scaling variable
-
q = e (12)

for the k-th pulse in (4) and (7). From (11), the probability density
function of {h;} is

um']ex ~u/a

- m foru>0 {m>0) . (13)
(m) o

nq(u) =

This is recognized as a chi-squared variate of 2m degrees of freedom; however,

2m need not be an integer. It is readily verified that

Std Dev(q) _
Mean(q)

(14)

aila’

.
10
Thus as m »00, the probability density function of power scaling qk narrows

”
about its mean value, while if m > 0, it develops a large cusp at the

origin and a significant spread about the mean.

The normalized covariance coefficient appearing in (10) is that of the

power scaling variates:

‘| - -
Pu = T (qk - Q)(q2 -q) . (15)
(-
q
It measures the degree of correlation between the fading imposed on the signal

pulses, i.e., {rk} in (7).

*This corresponds to a nonfading medium.

10

R R e e e R A R ek e
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A The quantity Ke in (10) can be interpreted as an effective number of

¥ independent scalings in (4) and (7). For example, if pkg =0 for k » £,

§ then K, = K; while if p, = 1 for all k£ , then K, = 1. Both of these

:g situations agree with physical intuition. No specific time separations {tk},

in (4) and (7), need be assumed for (10) to apply; some of the pulses can be
2 close together, while others can be widely separated, subject of course to
' : limitation (3). The only way that the statistical dependencies of the power

scalings {qg} enter the characteristic function of y is through the double

.
¥, summation of covariance coefficients in (10).
]
M
0
\ However, it must be remarked that the result in (8) is only an
B
% approximation, developed in appendix A. An exact analysis of the
M)
b characteristic function of output y is the subject of a future study.
;t
3 Exceedance Distribution Function of Decision Variable
5
3
!
Three alternative forms for the exceedance distribution function of v,
a
jo
‘; OY(U) = Prob(y > u) , (16)
&
;ﬁ are developed in appendix B, namely, (B-9), (8-11), and (B-13), each having
i different merits, as discussed there. The one we have used for our numerical
i calculations is the last one, and is, in fact, the detection probability when
. signal is present:

N

g |

L]
s
L]
R

‘|
‘s

P '\
R MR !!‘~ N ,‘"

P T , LY N I RS S o ) P 1 N \ " 34
AR ?9.‘."'.“0-‘!3; b P ."'" b ..Il 8 e I ":‘ A —.al.."h i;'o e‘.‘iq ¥ "9‘\;‘ W10, ;"""‘?‘.h v‘h %*’a‘:'.»h 'ﬁ.‘

. .
SRS AN




TR 7707

- = (N)n R n
py =1 - SR S 0 (] R R) [expa) - ex-1+n"‘")] : (17
a+RY =
Here
A= (18)
Zan

is a normalized threshold, and

3
= n '
eJ(x) ::E x'/n! (19)
n=0
is the partial exponential [1; 6.5.11]. The other two parameters appearing in

PD' namely, R and N, have already been explained in (9) and (10).

The false alarm probability corresponding to (17) is obtained by setting
R=20:
Pe = exp(-A) e () . (20)

Thus, the performance of the diversity combining processor is governed by the
fundamental pair of equations, (17) and (20). For a specified number of
pulses K and false alarm probability PF' (20) can be solved for threshold.A.

These values of K and A are then employed in (17) to evaluate detection

probability P_ for any specified N and EI/No' A program for this

D
procedure is given in appendix C.

12
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By
Detection Probability for Nonfading Medium

RN
K For comparison purposes, the detection probability for the processor of
4
‘3 figure 1 in the presence of a deterministic, i.e., nonfading, medium is also
1: . presented. This result is most easily obtained from the conditional
f%% characteristic function for the system output, as presented in (A-13) and

" (A-14):
N () ey = (1 - 1sza> exp| —F— “;) s{, (21)
;t Y 1 - 1?20
Q‘g

l?.

- where
o
“:‘. K
; 5= 4 | (22)
i k=1
'Q' is the sum of the power scalings on all K pulses. Since there is no fading,
1y
it‘ (21) is directly the characteristic function of the decision variable.
i
o A more convenient form for (21) is available when we observe from (4) and
Ly
;& (1) that the received signal energy on the k-th pulse is the nonrandom quantity
X
WY,

o Al 21, 1,2
' Ek A e 2 L 2 AL q - (23)
ii Thus, the total received signal energy is, using (22),
v
3 «

k3 l 2
T Ep= > E =3 AlLS. (24)
h k=1
‘l
,I
3
e
e
R

: 13
:

4,

)

W3 ]
RGN {‘ ’l‘,’l“’

R LABNCURNT LY £ ¥R, - R
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Coupled with the expression for aﬁ given in (9), we obtain for (21), the

characteristic function,

(c) 2\
fY (g) = 6 - 1§2cn> exp (25)
in terms of the parameter
EI . total received signal energy over K pulses (26)
No single-sided received noise spectral density level °

The exceedance distribution function corresponding to (25) is available
from [2; (50) and (51)] as

€. \2 h
T
Pp = % (no . (207, (27)

where we used (18) and the Qu-function defined as

o0
2 2
Qy(a.b) = g dx x (f)"" exp(— "—‘z‘—a) Ly (ax) . (28)
b

The false alarm probability corresponding to (27) is obtained by setting
ET = 0, and is identically (20), as it must be, since the background noise
is independent of any signal fading characteristics.

when we plot these latter results for a nonfading medium, and compare
them with the earlier results in (17) for the fading medium of interest, we
replace ET by X E;. This arbitrary but reasonable assignment is necessary
in order to superpose the two types of results on one plot. However, strictly
speaking, the parameter E;/No appearing in the following plots should be

interpreted as ET/(KNo) in the case of no fading.

14
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v NUMERICAL RESULTS

Bl The probability density functions (POF) for five values of the scaling

parameter m in (11) and (13), representing five distinct possible fading

N behaviors, are plotted in figure 2. A1l densities of the class considered
Hat
aﬁl vanish for negative argument. So these behaviors are, for the amplitude
A
ﬂ} ) variate: (1) an impulse representing the nonfading case, which is alsc the
; 1imiting case of the class as m +06; (2) continuous with continuous derivative
‘.‘
XX
§§§ at the origin (m = 2); (3) continuous with discontinuous derivative at the
oL
b
Rﬁ origin (m = 1, Rayleigh amplitude density); (4) a finite discontinuity at the
- origin (m = 1/2, a one-sided or full-wave rectified zero-mean Gaussian
N
5, density); and (5) an infinite cusp at the origin (m = 1/4). The amplitude
‘sg scaling r, with the probability density function of (11), has second moment
+ " .
. —
)
§l )
55‘ The normalized amplitude scaling
BH)
vy —\1/2
i ? - r/ (rz) , (30)
P
i
;ﬁﬁ normalized by the root-mean-square (rms) value of the amplitude scaling (not
. the standard deviation or). has probability density function
‘%5
{ﬁ: 2 o 2! exp(-mgzl
:?: pF(u) = -7[.\("') foru>0. (31)
g: For the five values of m (=, 2, 1, 1/2, 1/4), the probability density
A
ss functions for this rms-normalized amplitude scaling are shown in figure 2A.
a8
.,34
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The corresponding probability density functions for power scaling q are
chi-squared variates with 2m degrees of freedom, as given in (13). The mean

of variate q is

q=m«. . (32)

The normalized power scaling

qd=a/7, (33)

normalized by the mean power, has probability density function

™ ™! exp(-mu

pa(u) = P (m) foru>0. (34)

The normalized power scaling probability density functions are plotted in

figure 2B for the same five values of m.

For each finite value of m above, and for each of the four combinations

of system performance parameters P, = .5 or .9, and P. = 1E-6 or 1E-8,

D F
the required minimum system input signal-to-noise rdatio (SNR) to achieve this
performance, as a function of the number of pulses K in a pulse train, has
been computed using the computer programs listed in appendix C which implement
the theoretical analysis above. Although this analysis and these programs can
handle general pulse-to-pulse normalized covariance coefficients {pkl}, the

figures have been computed for the special case of exponential correlation

R IPUPE (35)

Pip

17
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Each of the graphs has two sets of curves: "the solid curves are for the
required average received signal energy per pulse (E}/No) in dB, as a
function of the number of pulses K, and the dotted curves are for the total
average received signal energy (E}/No) in dB. For ease of comparison,

each set of curves on each graph includes its nonfading (NF) or m » oo
counterpart. 1In every case computed, the solid curves show that the energy
per pulse, or input signal-to-noise ratio required for acceptable system
performance, decreases as the number of pulses increases. This matches the
intuitive arqument that using more pulses implies we are using more total
energy, so we should be able to maintain the same level of performance with
less energy per pulse. The intuitive conclusion is correct, but scanning the
dotted sets of curves (representing total energy in the pulse train) shows
this intuitive argument is only part of the story. For more-or-less
uncorrelated adjacent pulse fading and for the smaller scaling parameters

(m < 1), the total input signal energy required initially decreases as we
increase the number of pulses in a pulse train. For a large number of puises,

the total energy will eventually increase with K, but for a small number of

pulses, a short burst may be more efficient. For example, with PD = .5,

PF = 1€-8, and a one-sided Gaussian amplitude probability density function,
m=1/2, figure 13 shows that the total energy required reaches a minimum of
14.4 d8 for p = 0 with 3 pulses per burst; for o = .5, the minimum of 15.2 dB
occurs with 5 pulses. In all cases, the p = .5 curve is closer to the p =0
curve than to the p = 1 curve, and the high correlation p = 1 curve always
increases. Thus, for moderate values of correlation, we can expect system

performance to be robust and system performance will be severely degraded only

for highly correlated (ading.
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As the exponential covariance coefficient p in (35) decreases toward -1,
the performance curves for even K approach those corresponding to the
nonfading case. This is easily seen since the sum of two successive power
scalings in the sum S in (22) and (A-14) then tends to 2q, twice the mean of
q, which is a nonrandom quantity. Equivalently, we can say the random
fluctuations in the power scalings {qk} have canceled each other. For K
odd, however, there is always one unpaired random fluctuation, even for p = -1;
this means that for K odd and p = -1, system performance is slightly poorer
than for the nonfading situation. As K increases through odd values, this
discrepancy decreases to insignificance. Even for K = 3, the difference is
small. This has been confirmed analytically and verified by numerical
calculation for values of p very near -1, and for several K; these results

have been omitted from the figures which include only nonnegative values of p.

A separate issue is whether values of p near p = -1 can be realized.

That is, if the first-order probability density function of the nonnegative
power scaling variate q is not symmetric about its mean q, then arbitrarily
large negative values of p are not allowed. For example, for Py to reach
-1, we would need (qk -q) = -(qz - G) with probability one. However, for
the class of power scalings treated here, this is clearly impossible: large
positive values of q - G occur with nonzero probability, for which the
corresponding negative values -(qk - G) occur with probability zero. Thus,
for most probability density functions, and in particular for the class

assumed here, the p = -1 results would represent an unreachable bound to

19
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o system performance. This is an illustration of the fact that the first-order
¥y probability density function and the correlation (or spectrum) of a random
 ?* process cannot be independently specified in general. Complete first-order

information imposes some restrictions on allowable second-order statistics.
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SUMMARY

One manner of summarizing the behavior of the amplitude and power scaling
variates (figure 2) is to observe that as the parameter m decreases from
infinity (the nonfading case), the fading becomes deeper more often. For
small m, the very deep fades occur very often. As m nears zero, the fades are
so deep and occur so often that large arguments of the scaling probability
density functions are rarely observed. Thus, for a given level of
performance, the required input signal-to-noise ratio must increase as m

decreases.

This conclusion is borne out by the P = .9, P_ = 1E-6 case

D F

(figures 4, 8, 12, and 16) where, for a single pulse system, K=1, the required
input signal-to-noise ratio increases from 17 dB to 47 dB as m decreases from
2 to .25. Relaxing the probability of detection to PD = .5 relaxes the
corresponding signal-to-noise ratios to the range from 12 d8 to 19 dB. It is
also not surprising that tightening the probability of false alarm to 1E-8
further increases the required signal-to-noise ratio. For m = .25 and

PF = 1E-8, the signal-to-noise ratio requirements are preposterous and the
corresponding figures for PD = .5 and PD = .9, which would have completed

the set, have been omitted.

Although the signal model employed here in (1) and (4) utilizes a common
carrier frequency fo for all K pulses, the results extend immediately to the

case of arbitrary different carrier frequencies fk for the k-th pulse,
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& provided that these various frequencies are known and appropriately used at
waled the receiver. Also, although the particular signal pulse in (1) is a simple
burst of a sinewave, the current results extend to arbitrary signal waveforms
pk(t) on each pulse, provided that matched filters are employed in the

g receiver, and that each waveform pk(t) have identical transmitted energy.
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APPENDIX A
CHARACTERISTIC FUNCTION OF SYSTEM OUTPUT

Matched Filter Qutput Characterization

In this appendix, we compute the characteristic function of the decision
variable, described in (7) et seq. The in-phase and quadrature outputs of the

k-th matched filter, at the time instant of peak signal output, are
I
= dtl?\ "y cos(waO(t - tk -D) + ek) + n(tJ*
Q
kL

* {:‘1’:}(2#0“ -t -0) forlc<ks<K, (A-1)

where use has been made of (1) and (7), and phase shift eo has been absorbed

in random phase shift @ , with no loss of generality. That is,

k

I =a, +u

K K k-Q =3 + v ] (A"Z)

where the signal components are, upon use of the facts that Lfo >> 1 and

that there is no overlap, as indicated in (3),

1
a = 2AL rk cos ek

1
Bk = - 2AL ” sin ek . (A-3)

and the noise components are

')
{"t} S.dt n(t) {S"“}(z F(t-t, -0)) . (A-4)

L
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The noise components in (A-4) are Gaussian zero-mean random variables since

1
] — ——
) n(t) =0, n(t])n(tz) = Nd s(t] - tz) . (A-5)
1
There also immediately follows by the use of {A-5),
:
: 2 1. 2 2 —
) ¥ =Y = Nd L '2‘! o W = 0. (A-6)
Furthermore, due to the lack of overlap, as in (3), the random variables
" wysv) are independent of Hyrvy for k # j. Thus, the collection of 2K
: random variables in (A-4) are all independent and identically distributed.
L]
k.
: Conditional Characteristic Function
1
The k-th squared envelope sample at the matched filter output is
X 22 2 2
- Y = Ik + Qk = (ck + "k) + (Bk + vk) . (A-17)
’ by reference to (A-1) and (A-2). We will temporarily consider that the signal
‘ components in (A-3) are fixed non-random constants; then the conditional
; characteristic function of random variable \ is, uppn use of (A-6),
¢
i F (8) = exp(i8y,) = exp[if(a, + w )2 + i§(B, + v )%] =
) k Yk k Yk k k
4
&,
. 1 2 4 42 : 2 . 2
=‘{y;u dv exp(- -y expl[if(a, + w)” + i8(B, + v)"] . (A-8)
2 2 k k
: 2wo 20
¥
Now let

w=pcos e , v=opsing, {(A-9)
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to get

ad
e 1 o 2, 2 2
F (%) = dpdeﬂ 5 exp |- 2+1}{lk+3k+2p(ak cos 8 + B, sin g) + p°f|=
0 - n

o
2
- exoiscal + 8001 { 0 25 exp[- 25+ 1;,.% Ty(52e(ag + 80)'/%) =
0 n

o Zoﬁ
2 .2
i$(a, + B,)
=1 - ‘iEZc:)-] k '2‘] (A-10)
1 - 1?200

Here we employed [3; 8.411 1 and 6.631 4].

The output of the system is the sum of the squared envelope samples in

(A-7):
K K
=S > aledd . (A-11)
k=1 k=1

Since all the noise random variables in (A-4) are independent, the conditional
characteristic function of system output random variable y follows from (A-10)

as

K
K = 0 - 2y K e |— I > @Zesd)|. (A-12)
Y 1 - 1:2an o

If we now use (A-3), this can be expressed as

K
(c) 2,-K AL

£ = (0 - 4820) ™" exp < )1 (A-13)
Y 1 - ifz z}
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S It is important to observe that this conditional characteristic function ‘
AN depends on the signal amplitude scalings {}g} in (4) and (7) only through

\
the sum of squares

K K

ol

o se> =2 q . (A-14)
Lhey k=1 k=)

where

KY4 q = r: = power scaling of k-th pulse . (A-15)

First Order Statistics of Scalings

N, Let the first order probability density function of amplitude scaling
rk in (4) be
2m-1 2
p(u) = 24 —exelttlel ¢or y >0  (m>0), (A-16)
M'(m) o

-~ -
-

T i g

-
-

where m need not be an integer. (As an example, for m = 1,
) pr(u) =, exp(-u /a) foru>0, (A-17)

which corresponds to Rayleigh amplitude fading.)

& The corresponding probability density function for power scaling a in
(A-15) fis

‘o -

gﬁi b (u) = W™ exp(-u/a)
o q N(m) o

foru>20 (m>20) . (A-18)
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K This is recognized as the probability density function of a chi-squared random
' variate with 2m degrees of freedom; however, 2m need not be an integer here.
R
? The general v-th moment of q, is
o
) _v = a? P‘m + u) _
;; qk a rv(m) ’ (A 19)
3
g and, in particular, we have
o g =am Var(q) = o?m, tdDev(e) 1 (A-20)
g q Y
i
; The first order characteristic function of power scaling a, is given by
[}
the Fourier transform of (A-18):
é fq(g) = 5‘du exp(ifu) pq(u) = (1 - ifc)—m . (A-21)
%
' First Order Characteristic Function of Sum S in Special Cases
i
: If all the power scalings {qg} in sum S in (A-14) were independent,
Y
‘f then the characteristic function of S would be given by
o
X ;
i O - i)™, (A-22)
"
o
15 : as may be seen from (A-21). This situation could come about approximately
W
3{ when the signal pulses in (2), (4), and (7) are widely separated in time and
’ .
b subject to uncorrelated (linearly independent) fading.
\
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On the other hand, if all the power scalings were completely dependent,

then the characteristic function of sum S would be

(1 - igak)™ (A-23)

since S = Kq] in this case; see (A-14) and (A-21). This case corresponds to

close signal pulses and/or very slow fading.

Approximate First Order Characteristic Function of Sum S

The latter two results suggest the following form* as an approximation
to the characteristic function of sum S in (A-14) when the power scalings
fa} are partially dependent:

-mK

fs(®) = (1 - 138) ¢ (A-24)

This latter form of characteristic function has mean mKeB and variance
mKeBZ. We will choose the two unknown parameters in (A-24) so that these
two statistics identically equal the corresponding exact values determined

directly from (A-14). Specifically, using (A-20), mean

S=Kgq=Kam, (A-25)

*A similar procedure was employed with great success for a spectral analysis

technique in (4; (38) et seq.].
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and variance

K
E—— _ 2
var(s) = (s - 92 = | > (g - =
k=1
K K
=2 = py maln > oy (A-26)
k,p=1 k,g=1
where
prg = 73 (9 - (g - @) (A-21)

°q
is the normalized covariance coefficient of power scalings {qé} Combining
these quantities, we find that
I G
X ’
::Ei. Pre

k=1

Ke

@
]
)
’ﬂ"
"
3k
7ﬂ7<

(A-28)

[4 ]
[ )

The quantity Ke in (A-24) and (A-28) can be interpreted as an effective
number of independent scalings in (A-14). For example, if Py = 0 for
k =4, then Ke = Ki while if Py ~ 1 for all k, £, then Ke = ). Both of
these situations agree with physical intuition. Also, from (A-28), B = a in

the former case, and B = aK in the latter case; (A-24) then reduces to (A-22)

and (A-23), respectively, as required.
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No specific time separations {tg}. in (4) and (7), need be assumed for
(A-28) to apply. Some of the pulses can be close together, while others can
be widely separated, subject of course to limitation (3). The only way that
the statistical dependencies of the power scalings {qé} in sum S enter the
characteristic function of S is through the double summation of covariance

coefficients in (A-28).

Unconditional Characteristic Function of Output y

The first order probability density function corresponding to

characteristic function (A-24) is

N-1 .
pg(u) = L—eXRLU/B) g5y 5 g (A-29)

ro e
where
N=mKg . (A-30)

None of the parameters, N, m, Ke’ need be integer. Also, N can be larger or

smaller than K, the number of signal pulses.

The conditional characteristic function of system output y was given in

(A-13). The unconditional characteristic function of y is obtained by
averaging (A-13) with respect to (A-29):
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0
N-‘ . 2
f () = S- dy U—exp(-u/B) (4 _ 1!2‘,'2‘)4( exp ___11_(&) o le
0

SO 1 - 18242 2
- (1 - 12" (1 - r2s5) (A-31)
where .
a$ - 626 + z—‘ %) (A-32)
n (o]

To obtain this last relation, we used (A-6), (A-28), (A-30), (6), and

No = 2N (A-33)

d ’

the single-sided noise density level stated just above (7).

Equation (A-31) is a compact simple expression for the characteristic
function of decision variable y. It could be used directly in the efficient
procedures of [5] to get the cumulative and/or exceedance distributions of v.

In the next appendix, we derive analytic expressions for these probabilities.
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APPENDIX 8

EXCEEDANCE DISTRIBUTION OF SYSTEM OUTPUT

The characteristic function of decision variable y is given in (A-31).
In order to find the corresponding exceedance distribution function, we use
the procedure in [6; appendix A]: since we know the characteristic function-
probability density function pair

I-1
] e L—exp(=u/a) ¢ 50, (F>0), (B-1)

(1 - iga)y ray a¥

the probability density function corresponding to multiplicative

characteristic function (A-31) is given by convolution

u
3 r a’ JOR:

where

2 _ a2
IJ=K-N, a-= Zan, b = 2°T . (B8-3)
We presume N < K for now, in order that J > O.
Employing [3; 3.383 1 and 8.384 1], (B-2) becomes
-y/a) u
p.(u) = exp(-u/a) o 6‘ K; uft - —)) for u > 0. (B-4)
K N b" P(K) 1 l a

Since (A-31) is an analytic function of N, as is its transform (B-4), we can

now analytically continue (B-4) to values of N > K.
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X _ The exceedance distribution function of y is

u;,‘ a0
l"
7 Prob(y > u) = Q_(u) = fdx p(x) =
o Y d Y
¥
" _ - - ‘
N -1 S' dt et X! ]F]<N; K; =2 t) : (8-5)
3 PO (b/a)" 1
u,: ‘
' Reference to (B-3) and (A-32) yields

i; ®
n Q_(u) = ] ; S‘dt et ¢! ]F](N; K; o t) , (8-6)
'\ Y F(K) (1 + R) A
44 where
',
3
R £ «x u
R R = N _N° A= . (8-7)
rat (] 20
b -
N
k_ By expanding 1F] in a power series according to [3; 9.210 1], integrating

R term by term, and using the partial exponential [1; 6.5.1%]
o 3
B ey(x) = S e, (8-8)
4}

i n=0

;E (8-6) develops into the form

' E(-A) (N)

9, (w) = 2 vF) Skt (8-9)

- (1 + R)

R n=0

3

This series for the exceedance distribution function converges for all R, but

rather slowly for large R.
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i)
[N For signal present, (B-9) gives the detection probability. When signal
o is absent, R = 0 from (B-7), and (B-9) reduces to the false alarm probability
Gt
1,
0 Pe = exp(=A) e _,(A) , (8-10)
*
which is independent of N (defined in (A-30) and (A-28)).
A
Iy
@
ﬁ . An alternative form to (B-9) is available if we employ Kummer's
transformation [1; 13.1.27] in (B-6):
0
i« < (K- N)
» = # N ;A'_ -
:: QY(u) exp(3 (1 + R) 2 o (-R) eK—h—n(l T R)' (B 11)
—
4 If N is an integer and if N > K, this series terminates, and is composed of
}, all positive terms, which makes it very attractive. However, if either
LY
condition is violated, then (B-11) converges only for R < 1, but diverges for
g. R > 1. Since this latter case is of practical significance, (B-11) is then
-
[)
i not too useful for general values of N.
i
.O
4: The only convergence factor in (B-9) is the R/(1 + R) term. However, we
M
Q: can create another convergence term by adding and subtracting exp(A) from the
X
' partial exponential, since this is its 1imit value as n tends to infinity; see
f’ (8-8). By then employing the result that [3; 9.100 and 9.121 1)
A
" :
K
! (N) R N
= <. T+R) " (1 +R)" , (B-12)
& n
"
L}
b
.
i
K, 43
B
|}
1|~§
i
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dN (B-9) becomes

ERX] - (N) n
] 0 (u) =1 - ex i—n.—"é 5 R) [exp(./\) - eK_m(..L)] . (8-13)
]

0+ )V o

This last form was used for all the numerical results obtained here; a program
;v“ for this expansion is given in appendix C. If necessary, a more elaborate and
¥ accurate procedure involving only positive summations is developed in

[6; pages A-6 to A-8].

e To summarize, the parameters required in detection probability (B-13) are

. E,
i Aol weglE,
n

Wy where ai js given by (A-6) and N is given by (A-30) and (A-28). Since A
5: is simply a scaled version of u, we can equally well keep.A as the fundamental

threshold variable in (B-10) and (B8-13).

a4
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APPENDIX C
. PROGRAM LISTINGS

Two programs are listed here, the first for fading, the second for
no-fading, of the received signal. Inputs required of the user for the fading

case are given in lines 20 - 50:

Pf probability of false alarm

o o

Pd probability of detection

4...‘ Rt

M parameter m in (11) and (13)
o k-Al
=p

"

Rho

y Py in (10) and (15) .

The particular exponential normalized covariance pk2 programmed in line 1490

can be easily replaced by other more general cases of interest to the user.
B
é The output of the main program, line 290, is the value in dB of E;/No
‘ in (9), namely a measure of the required system input signal-to-noise ratio to
‘s achieve the desired false alarm and detection probabilities. The number of
; pulses, K, is taken to be 1 to 10 in line 120, but can be easily changed. The
! first inverse function subroutine in 1ine 770 solves for the required
% . threshold for specified PF and K. The second subroutine in line 1130 solves
.g ) for the required E}/No for specified Py and N.
4

A similar explanation holds for the no-fading program listed at the end
of the appendix. ODuplicate routines are not listed in full, in order to save
space. The word DOUBLE denotes INTEGER variables in Hewlett Packard BASIC on

i the 9000 computer.
45
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wOs
e
A 19 ' SNR-FADING
- 28 Pf=1.E-& ! FALSE ALARM PROBAEBILITY
S 20 Pd=.9 | DETECTION PROBABILITY
14 4@ M=1, !  FADING PARAMETER (SIHGLE FULSE>
s 59 Rho=.5S | FADING CORRELATION COEFFICIENMT
I{ &0 A$="1E-5,.5,1.,.5" ! Pf,Pd,M,Rho
o 7o Ef=1.E-20 | TOLERANCE ON PFf
ut 39 Ed=1.E-15 ! TOLERRNCE ON Pd
29 DIM Elnodbil:1@s ! REQUIRED IMPUT SHR PER FULZE «DE>
““t 190 COM DOUBLE K,REAL N, Thr
S, 119 DOUBLE Ks,Ls
ok 120 FOR K=1 TO 19 | NUMBER OF FIULZES
139 5=0.
’-‘. 148 FOR kz=1 TO K
E 158 FOR Lz=1 TO K
‘ 152 S=S+FHCovnarmiks, Ls,Rhal
& 17 HEXT Ls
g 130 NEXT Ks
'\'., 139 Ket f=Kek-S
qe 299 H=M*ket§
QY 219 Thrainc=1. I THRESHOLD IHCREMENT
. 9 Thrstart=-LOG Ffi-Thran: | THRESHOLD STARTIHG “ALUE
14 1) CALL Irverzfunctionl -Pf,Ef Thratari,Thrirnc, Thr
fiﬁ 248 Elnostart=19, I E1-Mo STARTING “ALUE
-] 259 Etrainc=1, ! El- Mo IHCREMENT
s 288 CARLL Inusrsfunction2(Pd,Ed,Elnostart Elncinc,Elna:
: e s Elnodbik =18, «LGT Elno?
A 239 HEXT K
299 FRIHT Elrnodbys?
ity CREATE DATA AS$,d
e ASSIGH #1 TO AS
o FRINT #13Elnodb <
o ASSIGN #1 TO #
o K END
3 |
"W L DEF FHFF Thr ' FALZE ALARN FROBREILITY |
.::o. 3 COM DOUELE K |
o 33 DOUELE k= J
X EE S=T=EHF i -Thr ! :
s 496 FOF Kz=1 TO k-1
X 410 T=T+Thr kz J
420 Z=ieT
Yok 130 MEXT k= 1
Lt XY FETURN -5 I = TG YIELD IHCRERSING FUNCTION :
m 450 FHEMD
;'é g 450 ! !
o |
- |
R |
e |
b‘.h |
n..'! |
oAl
b
A
4y
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DEF FHFJCEtnad ! FADING DETECTION FROBABILITY
COM DOUBLE K,REAL N, Thr :
Error=1.E-19 :
DOUBLE K1,Ks

R=Elno#K-HN

Et=EXP{(Thr

Kl=K-1

Mi=N-1.

R1=1,+R

Q=R-R1

E=Te=1.

FOR Ks=1 TO K1

Te=Te*Thr-Kz

E=E+Te

HEXT K=

S=B=MAXC(EL-E, D, »

T=1.

FOR Ksz=1 TOQ 10660

Te=Te*#Thr-(Kil+ks)

B=MAX(BE-Te,d.?

T=T#Q# MNl+Ks o ks

Pr=T+B

Z=S+Pr

IF ABS:Pr3<=Error#ABS(3) THEN 739

MEXT Ks

PRIMT "1000 TERM3 AT: "iKiMN3sThriElrnosPr-3
P3=1.-EXP =Thr-H+LOG(R1»1%5

RETURH Pd

FHNEMD

]

ZUEB InversfunctionliDezired,Error, t,Del, K2
#“2=xK1+Del

Fl=FHPf X1

F2=FMPFf 2>

IF F2:=Dezired THEM SEO

“l=¥2

H2=R2+De

Fl=F2
GO0TO 290
IF F1:=D
“a=El
“1=x1-Del

Fa=F1

FI1=FMNPf 12

GO0TO 360

wa=it

“b=n2

IF Fz-Dezirsdilezired-F1 THEM 1918
T=:1

mr=ng

“2=T

T=F1

Fil=Fz

Fa=T

ezired THEM 929

Copy available to DTIC does not 47
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Wt
Rt 1119
ot ) N
o ABS(F2-Desired <Error THE )
R lodep pEeLPENEs L e Fi-Desiredsss<Fa-F1
1020 Ta(K1#(F2-Desiredr-K2#*/
1332 T=MAX(T, Xa>
1 T=MINCT, Xb)
1050 [
X1=x2
1960 oo
1870 ?f:Fz
1080 F2=FNPFf (X2>
1099 F2 o
«3"'“ 1198 G0TO 183
%§3§ 1119 SUBEND ired,Error,X1,Del, X2
e 1120 ! rsfunction2(Desired,
b 1126 3UB Inve
oy . H2=}1+Del
Rt i:;g F1=FNPA{H1 )
' ‘ =FNPA (X2
1oe TN e THEN 1220
AN 1178 IF F2.
R\ X1=X2
Y 1120 :
i =
n5N 1200 FisF2 .
R 1210 wot 1<=Desired THEN 1239
- 1220 55_;1‘
* 5 1238 :I"&- -Del
X 1240 Al1=X1
e - F2=F1
i 1566 FloFNPACKL
] 1260 0
§¢q 1270 GOTO 122
‘:‘4‘- 1280 Xa=x1 378
Ubh=¥2 ired-F1 THEM 1
1299 A F':—Deii"ed{nei‘r!d
A 1209 IF F2
" 1310 T=X1
3 . 2
‘ - Al1=X2
f" ] 1329 N T
tisy 1330 xzaT
ihd 1340 T-SFQ
B ATH 13%9 FI:T N cor THEN 1473
e 13¢0 ig-ﬁBf:i (F2=Desired?<Error S
:M'° l3|-0 F F2=F1 THEN 14.8 - ‘.-Fl_r|..1-5.ir"5"j::' ::._,,--.:F;—F L
" ’ 1220 I (Ml cF2-Desiredi=K2s:
ey 1390 T=cx1 T o an
19,' 1400 T=Mﬁ%~T,n:f
(&40 - [ R
l:a:" 1410 T-T‘Ig T :
" 1420 ﬁl‘ﬁ
St 1430 H2= )
Hihy Q Fl=F2 -
-“(”' 144 2=FNP G H2
x‘s,"‘;l 14%0 Fz= -
iaqh GOTO 1370
R 1470 SuBEND
?i:,\:l‘ 1470 > .. 2 FERL Fha
i, 1439 ésF FHCaurmorme DIVBLE . Fz,Lz,F |
: lano FETURN Fho ABS kz-Ls
\:0!"; lﬁue END
e 1518 FN ;
o i
’l“.l |
"n'zl !
-'l- [}
- |
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SNR-HO-FADING

Pr=1,.E-6 ) FALSE ALARM PROBABILITY

PI=.5 ! DETECTION FPROBABILITY
A$="1E-5,.5" 1 Pf,Pd

Ef=t{.E~-20 ! TOLERRNCE ON PF

Ed=1.E-~15 ' TOLERANCE OMN Pd

DIM Elnodbil:iRy t REQUIRED INPUT SMR FER FIULSE <DB>
COM DOUBLE K,RERL Thr2

FOR K=1 TO 10 ! NUMBER OF PULSES

Thrinc=1. ! THRESHOLD INCREMENT
Thrztart=-LOGiPFfi=-Thrine | THRESHOLD STARTING YALUE

CALL Inverszfuncticonli~P¢f,Ef, Thrstart ,Thrinc,Thr
Thr2=SQR: 2, %#Thr

Eltrnostart=19, t El-No STARTING YALUE
Elnoinc=1. t  El-No IMCREMENT

CALL Inuverzfunction2iPd,Ed,Elnostart,Elrnoinc,Elno?
Elnodb(K»=19.#LGT{EInoY

NEXT K

PRINT Elnodbi#>

CREATE DATRA AS$,d

RSSIGN #1 TO RS

PRINT #13Elnodbi#>

ASSIGN #1 TO +

END

]

DEF FNPFf Thr ! FALSE ALARM PROBARBILITY
COM DOUBLE kK

DOUBLE K3

S=T=EXP{~Thr>

FOR Kz=1 TO K-~1

T=T«Thr-Ks

s=5+T

HEXT Kz

FRETURH -3 I = 70 YIELD IHCREASING FUMCTION
FHEHD

]

DEF FMFA<Elnc: ' MO-FADIWG DETECTION FROEBRBILITY

coM DOUELE K,REAL Thrg

Fd=FHRm K Z0RYVE, #E<ELlna i, Thrao
FETUREN PJ

FMENWD

!
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50

430
440
450
450
470
480
499
=151%]
510
520
539
549
550
S&9
sTe
S39
59@
500
519
520
530
=49
259
558
&70

S T T TR TR R T - NN .

DEF FNOm{DORELE M,REARL A,B» ! QMCAJEB
Error=1,E-17

DOUBLE M1,J

3=, 9*%A%A

Q4=,5%#B*B

QS=EXP(~,5%(Q3+R42D

RE=R7=QS

Mi=M-1

FOR J=1 TO M1

Q7=R7#Q4.J

RE=RE+07

NEXT J

An=Q3*Q5

FOR J=1 TO 10088

RS=QS*#Q3-J

RA7=Q7 LG T+ML D

QE=Q6+07

RAI=QT*0E

Bm=0m+Q9

IF Q9<sError+*2dm THEMN &%9

HEXT J

FRINT “1000 TERMS IN FHOm<M,AR, B AT “;M;A3E
RETURH @m

FNEND

t

SUR InuverzfunctionliDesired,Error,xl,Del K22
' LISTED RBOYE

SUE Inverzfunction2iDesired,Error,sl,Del, €2
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