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ABSTRACT

In this paper, we consider one aspect of the PMC system level fault
model, the properties of the implied faulty sets. For t-diagnosable
systems that have at most 1 faulty units, we present lower bounds on the
cardinal ity of the maximal {mplied faulty sets. When t ¢ 2, we show
that the cardinality of the maximal Implied faulty sets is greater than
t. In the case 1 > 2 we have two results:

(1) the cardinality of the maximal implied faulty sets associated with
the faulty units is greater than or equal to t -~ k + |, where k s the
smallest integer such that « ¢ 6k + 2, and

(11) the cardinality of the maximal implied faulty sets of all the units
fs greater than or equal to v - k + |, where now k is the smallest
integer such that <« ¢ 7k + 2.

Finally, we show that these bounds are greatest lower bounds and In the
conclusion indicate how these results may be used in diagnosis algo-

rithms.
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1. INTRODUCTION

~ The PMC system level fault model [PRE61]~;onslsts of a set of units
U= (ul.uz.....un] capable of testing one another and a set of ordered
pelrslffﬁi;bj) | ug tests uj)'aescribing the organization of the tests.
The mode! is defined by the fault-test relationship which specifies the
test outcome/;l';\ln terms of the status of both the unit u¥ applying
the test and the unit uj'be!ng tested. If u; is nonfaulty, then
a"j =0 {f uj is nonfaulty and ‘l.j =1 if uj is faulty, and if uy is
faulty, the test outcome ‘1.3 = 0 or 1|, independent of the status of uj.
A collection of all test outcomes is called a syndrome. The model can
be represented by the directed graph ¢ = (U,E), In which the vertices in
U are the units and the edges in E are the tests between units. The
test outcomes are the edge labels of the graph, and thus G has both 0-
edges and 1-edges. The model has been studied extensively and among
topics that have been addressed are conditions for t-diagnosabliity
([PRE67]. [HAK74]. [ALL75], [CHWSB1], [KENS4]) and algorithms for system

dtagnosls ([KAM75), [MEY78), [MAD77]), [MEY81}, [DAH84], [DAHB5]). In

~ this paper we consider only system dlagnosis, and more specifically

those propgrtles of implied faulty sets that may be used for system
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diagnosis. - - g S UL j A
Glven a syndrome, the diagnosis problem consists of fdentifying the

set of faulty units Ps and the set of nonfaulty units Gg. A system is
t-dlagnosable If and only If all faulty units can be identified from the
syndrome whenever the system has at most t faulty units [PRE67]. For a

glven syndrome, a partition (G,F) Is consistent with the syndrome if
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every test among units in G has a 0 outcome and every test from a unit
in G to a unit In F has a | outcome. Diagnosis of a r-diagnosable sys-
tem with at most t faulty units requires ifdent{fying the unfque con-

sistent partition (Gs.rs) such that lrsl < x.

Diagnosis algorithms use the concepts of implied nonfaulty and
implied faulty sets either directly [MEY79], [MEYB1], (DAHB5], or
indirectly to transform the diagnosis problem into a graph support prob-
lem [MAD77]), [DAHB4]. We recall that for a gtven syndrome, the imp!lled
nonfaulty set G(ul) for the unit u; is the set of all units that are
implied nonfaulty (f u, is assumed to be nonfaulty and the implied
faulty set L(ul) is the set of all units that are implied faulty if ug
{s assumed to be nonfaulty [KAM75]. Thus, |f we define a 0-path in the

graph G as a path In which every edge 1s a 0-edge, we see that

Glug) = (ug) U
[uj | there is a O-path from u; to uj] '
and

L(ul) = {uj ! there exists up in G(ui). u. in G(uj)

q

and efther ap'q =1 or aq,p = | or both) .

It is clear that {f L(uj) n G(ui) 4 ¢, then the unit u, is faulty. Many
diagnosis algorithms take advantage of this fact by declaring such units
faulty and concentrating on the problem of dlagnosing the resulting
reduced system. Oirect algorithms are less complex than graph support
algorithms, but the needed properties of implied sets are known only for

restricted classes of testing structures. For example, if & system is
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t-diagnosable and has at most t faulty units, the algorithm in [MEYS8!])
fdentifies the set of faulty units {f there exists at least one faulty
unit u, such that either L(ul) N G(ul) *+ ¢ or lL(uI)l 2t + 1. Only <~
diagnosable systems in which no two units test each other are known to
have this property [(MEY83]. The structural constraints associated with

self-implicating systems [DAHB8S5) are even stronger.

In this paper we do not impose structural constraints on the test
organization, and we analyze the properties of the implied faulty sets
that may be used in direct dlagnosis algorithms only under the assump-
tions that the system is t-diagnosable and that the number of faulty
units is not greater than t. The main thrust of our effort is directed
at obtaining lower bounds on the cardinality of the maximal implied
faulty sets associated with not only the units in F,, but also the units
in Gs. When t ¢ 2, a direct approach is possible and the cardinality of
the maximal implied faulty sets is greater than t. This result {s
presented in Section I1. When t > 2, we need the concept of a critical
subset in order to pursue our investigation. A subset X of S is a crit-
ica) subset of S If and only If there are no 0-edges from S - X into X.
Critical subsets and partitions of critical subsets play a major role iIn
the analysis of Implied faulty sets when t > 2, and thelr properties are
discussed in Section 111. The set Fs of faulty units is a critical sub-
set of S, and under the sppropriate assumptions, its partition consists
of elither one or two blocks. That fact s used in Section IV to obtain
the greatest lower bound on the cardinality of the maximal sets L(ul)

assocliated with the units in Fs. that is at least one unit uy in Fs
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exists such that lL(uj)l ? 1-k+1, where k is the smallest integer such
that « ¢ 6k+2. When 1 > 2, the unit with the maximal implied faulty set
may not be faulty, and thus we must consider not only the units in Fs,
but also the nonfaulty units. This analysis is presented in Section V.
In that case, we note that, under the appropriate assumptions, we may
have one, two or three blocks in the partition of F,. The analysis is
more complex than when we restrict ourselves to only faulty units, but
we are again able to obtain the greatest lower bound on the cardinality
of the maximal L(ul). that is at least one unit u; in § exists such that
lL(uI)l 3 t1-k+l, where k is the smallest integer such that t ¢ 7k+2.
Finally, In Section VI, we indicate briefly how the paper’s results may

be used in decoding algorithms.
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11. IMPLIED FAULTY SETS: « ¢ 2

Theorem 1: 1f S Is t-dlagnosable, If | ¢ Irsl ¢ t, and if t ¢ 2, at

least one unit ul fn Fs exists such that lL(ul)l 3t + 1.

Proof: Suppose that S is i-diagnosable, t ¢ 2, and Fs = (uj). The
faulty unit uj is tested by a minimum of t nonfaulty units. Every unit
that tests uj implies it faulty, hence is in L(uj). If uy is tested by
more than t other units, then lL(uj)l » t + 1. Suppose that uy is
tested by exactly t other units, and let Z = {uj} U (uy | uy tests uj}.

Since § s t-dlagnosable and 12! = © + 1 ¢ 2t for t » |, Z must be
tested by at least

v - [(x+1)/2) + 1 = [(x+1)/2]

other units In S - Z. All units In S - Z are nonfaulty, so every unit
in § - Z that tests Z belongs to L(uj), and therefore

lL(uj)l > v+ [(x+1)/2) 3 1+ ) for v 3 1.

Suppose now that 5 Is t-dlagnosable, t = 2, and Fs = ("j'"k" If

elither uj or up is tested by more than t nonfaulty units then either
IL(uj)l » v+ 1or IL(u )l 3 v + 1 or both. Suppose that each of
("j'"k} is tested by at most 1 nonfaulty units. Let X be the set of
units In § - Fs that test either uj or uy. At least 1 nonfaulty units
test either one or both of the units in Fgy hence IXI 3 2. If IXI = 2,
then 1X1 + lrsl = 4 = 2t and at least t - {2tv/2]1 + 1| = | unit in

5 - (Fs U X) must test the units in X U Fg. Let Y be the set of units

insg - (XV Fs) that test the units in X U FS' then




1X8 + 1Yl 3 3 = v + 1. Al} units In Y are nonfaulty, thus
(XUY)C (L(uj) 1] L(uk)). This implies that either

lL(uj) N(XUY 3 2o0r 1L(ug) N (XU Y)I 3 2 or both.

Now consider the tests between the faulty units uj and uy. If uy
tests uk and ‘j.k = 0 then L(uk) c L(uj)..(x vY) € L(uj). and
lL(uj)l 3 v+ 1., Similarly, if u, tests uj and 'k.j = 0 then
(XVUY C L(uk) and IL(uk)l P v+ L. If uy tests uy, and a k= lor if
“k tests "j and 'k,j = 1 then uj is in L(uk) and u, is in L(uj). In

this case IL(u)) 3 1 + lL(uj) N(XUY and

3
IL(uk)l 31+ IL(uk) N (XUY)I, thus either lL(uj)l 3 t+ !lor

lL(uk)l 3 1 + 1 or both.

1f there are no tests between uj and up then both uy and u, are
tested by exactly t nonfaulty units. Let {“p'“q} be the nonfaulty units
that test uj. thus {up.uq] < L(uj). Since § is t-diagnosable, at least

t other units test the pair (uj.up}. Only one unit, Uge is known to

test this pair. 1f a nonfaulty unit other than uq tests either uj or

up. then this unit also belongs to L(uj) and lL(uj)l P+ 1. If u

tests up and ‘k.p = 0, then u, is in L(uj) and lL(uj)l 3 1+ 1. There-

fore, uk must test u_ and ak.p = 1. A similar situation occurs for the

|
pair [uj,uq). therefore, Uy tests uq. ak.q =1, and {up.uq} c L(uk).
The set Z = (uj.uk.up.uq} has cardinality 12} = 4 = 2t, so 2 must be
tested by at least one nonfaulty unit in S - Z. Any nonfaulty unit that
tests a unit In Z beiongs to efther L(uj) or L(“k) or both, thus either

lL(uj)l 2 t+1or lL(uk)l # v+ 1 or both. ©O




. Theorem 1 shows that for t~dlagnosable systems in which
1 ¢ Irsl ¢t € 2 at least one faulty unit uy exists such that

IL(UI)I ? t+ 1. The next result shows that for the implied faulty sets

associated with faulty units this lower bound is actually the greatest

lower bound.

Lemma 1l: To the integers t = | and t = 2 correspond at least one t-
diagnosable system S that has t faulty units and one syndrome such that:

(1) L(ui) n G(ui) = ¢ for every unit uy in S,

(11) lL(uI)l = t + | for every faulty unit u;. and '

(11) IL(u )1 = ¢ for every nonfaulty unit u;.

Proof: The examples in this proof are from the class of 06.1 1-
dfagnosable systems [PRE67]. Fligure | shows a l-dliagnosable Dl,l system
consisting of three units: unit ul is faulty and units u, and uj are
nonfaulty. For the given syndrome the impl{ed nonfauity sets are

G(u.) = {ul}. G(uz) = (uz.ua}. and G(u3) = {ua}. The implied nonfaulty
sets are L(ul) = {uy,uz}, L(uy) = (u;}, and L(ug) = (u;}. The system is
1-dfagnosable, it has | faulty unit, it has a syndrome such that

L(UI) N Glug) = ¢ for al) units u,, tL(u;)l = 2 for the faulty unit u,,

and lL(uI)I = | for the nonfaulty units u, and ug.

Figure 2 shows a 2-dlagnosable D system that has five units.

1,2
The units (ul'“Z} are faulty and the units {u3.u4.u5} are nonfaulty.

For the given syndrome the implied nonfaulty sets are G(ul) = ("l'"z}'

G(uz) = (uz)' G(ua) = {u3o04ou5)' G(UA) = (u4.u5), and G(us) = ["5}'

. The implfed faulty sets are L(uf) = (ug.u4qsug), { = 1 and 2, and
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L(ul) = {u,.uzl » 1 =3, 4 and 5. The system is 2-diagnosable, it has 2
faulty units, it has a syndrome such that L(ul) N G(ul) = ¢ for all
units ul. lL(ui)l = 3 for the two faulty units, and lL(ui)l = 2 for the

three nonfaulty units.

In both examples the t-diagnhosable system has t faulty units and a
syndrome such that L(ui) n G(ui) = ¢ for all units Uje lL(uI)l =1+ 1
for all of the faulty units, and IL(u1)| = 1 for all of the nonfaulty

units., o

Theorem | gives a lower bound on the cardinality of the maximal
fmplied faulty set associated with the faulty units. It is clear that

IL(uI)I ¢ 1 whenever the unit uy in nonfaulty, and therefore when t ¢ 2,

the consideration of nonfaulty units does not resuit in an improvement

of the lower bound on the cardinality of L(ui).

Theorem 2: 1f S {s t1-diagnosable, 1f 1 ¢ IFSI ¢ 1, and if © € 2, at

least one unit "1 in § exists such that lL(ui)l 3t o+ 1.
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: 111. CRITICAL SUBSETS

J A subset X of S is a critical subset of S |f and only {f there are

no 0-edges from S - X Into X or equivalently:

Definition 1: A subset X of S is a critical subset of § If and only {f

G(ul) NX=¢ for all units uy; in 5 - X.

Critical subsets play a major role in the investigation of the pro-

perties of the PMC system levei fault model because the set of faulty

units F_, is always a critical subset of §. Thus to be a critical subset

S
of S Is a necessary condition for a8 subset X to be the set of faulty

units, but that condition is not sufficient. Note that Definition |

e fmplies that the empty set ¢ and the set S itself are both critical sub-
: sets of S.

.Y

[

"

> If 5§ 1s t-diagnosable the next result gives a lower bound on the

‘

cardinality of the maximal implied faulty set for units In critical sub-

sets.

4 A

Lemma 2: If S is 1-diagnosable and {f X Is a8 non-empty critical subset

i
_ill S

of S, then IL(u,)! 3 v - [IX1/2] + | for at least one unit u, in X.

Proof: The set X {s a critical subset of S and therefore there are no

Y. 9.7, 7,

O-edges from S - X to X. Let u, be a unit in X such that

] iL(u)l > lL(uj)l for all uy in X and let X' be the subset of X that
1
consists of all the units uj for which u, is in G(uj). The set X' con-
tains u, and all units that imply u, nonfaulty, and consequently
) IX'0 ¢ 1X1, there are no 0-edges from S - X’ to X', and L(u,) ¢ L(“j)
]
L]
L]
A
/.
’,
'-
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for all uj in X'. By definition, however, IL(u,)) 3 lL(uj)l for all uy
fn X’, thus L(uj) = L(u,) for all uy in X*'. Every edge from S - X' to

X’ is a l-edge, therefore every unit in § - X’ that tests X’ belongs to
L(u,). S is t-diagnosable, so at least v - [§X'1/2] + | units inS - X'

test the units In X°. Therefore,

IL(u,)8 > © - [IX°0/2] + 1 » « - [1X1/2] + 1

for at least one unit u, inX. ©

We know that Fs is a critical set. If in addition S is -
diagnosable, has at most t faulty units, and there exists a faulty unit

that implies every unit in F_ nonfaulty, then efther this unit implies

S
itself faulty, or the cardinality of the impllied faulty set of this unit

fs bounded from below by t + 1 or both.

Lemma 3: If S {s 1~-diagnosabie, If | ¢ lFsl ¢ t, and if a unit u, in Fg
exists such that G(u,) N Fg = Fg, then either G(u,) A L(u,) % ¢ or

1L(u, )l 3 « + 1.

Proof: Suppose that S is t-diagnosable, 1 ¢ lFsl ¢ t, there exists a
unit u, in Fs such that G(u,) A Fs = Fs. and G(u,) N L(u,) = ¢. Al

edges among units in (G(u,) N Fs) are 0-edges, all edges from
(G(u,) N Fs) to L(u,) are l-edges, and all units in the sets L(u,) and

N(u,) = s - (L(u,) U G(u,)) are nonfaulty.

There are no tests from unfts in N(u,) to units in either
(6(u,) N Fg) or L(u,), nor are there any tests from units in

(G(u,) N Gg) to units in either (G(u,) N Fg) or L(u,). There are also




. - l3 -
: no tests from G(u,) to N(u,). Thus, the partition
| (6,,F)) = ((6(u,) U N(uy), Llu,)) ;

fs a consistent partition of S (see Figure 3). If lFll = IL(uy)l ¢ <,
then S has two consistent partitions, (Gg,Fg) and (G.F|), such that
IFcl ¢ 1 and IF;1 ¢ 1, and hence S can not be t-diagnosable. Thus, if §
is t-diagnosable, 1f | ¢ IFcl ¢ ¢, and if there exists a unit u. in Fg
such that (G(u,) N Fs) = Fg» then either L(u,) N G(u,) * ¢ or

.L(u'). 31+ 1. ©

Let X be a critical subset of S. By definition u; s in G(uy), and
thus (f u, is in X, it is»ln G(ul) N X and c(u‘) nx ;s non-empty. If
u, is not in X, then we know that G(uj) A X is empty. We may then con-
. clude that a unit u, ifs in a critical set X if and only if

G(ul) N X % ¢. That characteristic property of critical subsets is used
by the following algorithm to generate partitions of the critical sub- ,

sets of S.

Algorithe 1: Let X be 8 critical subset of S.

Step 1: Let { = 1 and let X = ¢.

Step 2: Find & unit u,, in X - X such that 16(us,) N (X - D) ?
16(uy) N (X - %)) for ail units uy in X - X, and let

Xi = G(ui,) n(x - i)- '

Step 3: Let £ = R U X,.

.

N "'.'.'-f A TR »,-,'
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Step 4: If X - £ = ¢, stop; otherwise let { = { + | and go to Step 2.

If X is a critical subset of S5, If {Xl,xz.....xp] is a partition
of X generated by Algorithm 1, and if for each { in (1,2,...,p}, we let

X1 = Xgo then:

1
(1) x1 > xj and there are no 0O-edges from xt to xj whenever i < 7,
(1) G(ul*) n xi = XI for all 1 in {1,2,...4P)»

(111) L(uj) C L(ul,) for all uj in XI. and

(iv) the last block xp is a critical subset of S.

To each block xl of a partition generated by Algorithm 1, let us

associate a subset X, that contains u,, and all units that imply u,

1
nonfaulty, that is

it = {uge} U {uy | uge 13 in Glug)) .

Thus, If ul, is implied faulty, all units in il are implied faulty, and
If 3> 1, there are no 0-edges from X, to il. otherwise u,, would be in

G(uj*).

If 5 is t-diagnosable and if X is a critical subset of S, Lemma

iy g

2 gives a lower bound for the maximal L(ui). uy in X. If at most <

units in S are faulty and lL(ul)l is bounded from above, then any parti-

- v e e i

tion of a critical subset generated by Algorithm | has the following

properties;

Lemma 4: If S Is t-diagnosable, 1f 1 € IFgl € v, If X is a critical sub- ,
set of 5, If (xi.xz.....xp} is 8 partition of X generated by Algorithm

1, If lL(ul)l € t - k for all units uy in §, where k ¢ [8X1/2) - |, and

CACNUAT S F S VPR W% LI S R [Ty AP ® Ay e SRR, - o
.'— Ba TP RPN I W XX AN R PTG
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: if 7 ts the unique integer satisfying J(2k+1) ¢ IX) < (J+1)(2k+1), then

IX,0 > 2k + 1 for all 1 in {1,2,...,p}, IX} 3 p(2k + 1), and p € 3.

Proof: Suppose that S is t-dlagnosable, IF 1 ¢ ¢, X is a critical subset
of S, and lL(ui)l ¢ v - k for all units u; in S, where k € [IX1/2] ~ 1,

Let {xl.xz.....xp} be a partition of X generated by Algorithm 1. There

are no 0O-edges from S - 21 to i: for { in (1,2,...,p}. Lemma 2 implies

that there exists at least one unit u, in ¥, such that

LUt > ¢ - [;1/2] + 1, where ;1 = lill. But IL(ug)t ¢ ¢ - k for all

P
I 12,1 and
1=1

lxil 3 ;1 for all i in (1,2,...,P) we may conclude that 1Xl 3 p(2k + 1).

uy fn X, thus ;1 ? 2k + 1, and from the fact that 1X1 =

We have shown that (J+1)(2k+1) > 1X! 3 p(2k+)), therefore j+! > p and

J*»p. O

.'I
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IV. IMPLIED FAULTY SETS OF FAULTY UNITS: ¢ > 2

The set of faulty units, Fg, is a critical subset and as & result
of our assumptions on t and the maximal 1L(u )1, we will see that
Algorithm | generates a partition of Fs consisting of one or two blocks.
Lemma 3 deals with the case of a single block and Lemma 5 below handies
the two block case. Using these two results, Theorem 3 presents a lower
bound on the maximal fmplfed faulty sets assoclated with the faulty

units. Lemma 6 then shows that this bound is a greatest lower bound.

Lemma 5: If S {s t-diagnosable, if | ¢ IFSI €t {ft1)>2, and if
Algorithm | generates a two block partition (x‘.xz) of Fg, at least one
unit ui in Fs exists such that either L(ui) N G(ui) % ¢ or

lL(ui)l 3 1~-k+ 1, where k is the smallest integer such that

v € 6k + 2,

Proof: Suppose that the following assumptions are satisfied:

(Hl1) s 1s 1-diagnosable,

(H2) « > 2,

(H3) 1 < lFsl € <,

(H4) L(ni) n G(ul) = ¢ for all u; in S, and

(H5) lL(ul)l ¢ 1t - k for all u, in F,y where k is the smallest integer
such that « ¢ 6k + 2.

(H6) Algorithm | generates a partition (xl.xz} of Fg.

The partition of Fs consists of two blocks, hence Lemma 4 implies that
iIF_1 » 2(2k + 1), and thus (H1) through (HS5) can be true only when

S
t 3 lFsl 3 4k + 2.

I
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There exist units Uy and Uow in xl and !2. respectively, such that
G(u',) nx, =X, and G(u,,) N X, =X,. Thus, L(uy) € L(u,,) for all u,

in X‘ and L(ui) Y L(uz,) for all u; in X,. Now let

A = (L(ug,) N Liuy)) 0 Gg,

B, = (L(u,,) N Gg) - A,

82 = (L(uz*) n GS) - A,

and let 1Al = a, and IBII = bl for i in (1,2).
The set § - Z contains only nonfautty units, and since
AU Bl 1] 82 = (L(ul,) U L(uz,)) n Gs

there are no tests from S - Z to 2. Thus Z f(tself must be -

diagnosable, therefore
Izt = xl + Xy + a4+ bl + bz 3 2t + 1
and since X+ X ¢ t and both Z and § are t-diagnosable, we see that
a+ bl + bz 3t + 1. (1)

Let "l = L‘"Z*) n Xl and let Nz = L("l*) n Xz. also let Wy = lwll

and W, = lwzl. If Upe is not implied faulty by Ugys then "l = "2 = ¢

if Uy, Is in L(uy,), then il €W CX and iz C Wy € Xy, where f‘
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contains Uy and all units in Xi that imply Ujw nonfaulty, { in (1,2).

System Z s shown in figure 4. We see that L(ul,) =AU Bl 7] "2

and L(uz,) =AUB, UW,. Assumption (HS5) implies:

2 1
lL(ul,)l =a+b +w, ¢t-k (2)
IL(uy )l =2+ b, +w €1 -k, (3)
and thus
a+ bl + bz ¢ 2t - 2k - (a + W, ¢+ wz) . (4)

The units in (X2 ) Bz) are tested only by the units in (AU N,;), so
(H1) implies that

X, + bz + 2(a + "l) 3 2¢v + 1 . (5)
Substituting Eq. (3) into Eq. (5) we get
a+w 31+ k+ ) - Xo9 (6)
and substituting Eq. (6) into Eq. (4) produces

We know that x2 < xl. xl + x2 € v, t € 6k + 2, and therefore

X, ¢ |v/2]) ¢ 3k + |. Note that W, 3 0, thus Eq. (7) becomes
a+ bl +by €1 (8)

which contradicts Eq. (1).
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- The assumptions (H1), (H2), (H3), (H4), (HS5), and (H6) lead to a
contradiction, and we may conclude that {f S is t-dlagnosable, If

1 < IFSI ¢ t, if v > 2, and if Algorithm | generates a two block

partition of Fs. at least one unit u, exists in Fs such that either
L(“I) n G(ut) $# ¢ or lL(ui)l 3 1T-Kk+ 1, where k is the smallest

Intgger such that « ¢ 6k + 2. ©
This result s used in the proof of the following theorem.

Theorem 3: If S |s t-dlagnosable, If | ¢ lFsl ¢, and if v > 2, at
least one unit ul in Fs exists such that either L(uI) n G(ul) % ¢ or
IL(ul)l 3 1-k+ 1], where k is the smallest integer such that

« € 6k + 2.

: Proof: Suppose the system S satisfles the following assumptions:
(H1) s 1s x-diagnosable,
(H2) > 2,
(H3) 1 ¢ IF N ¢ 1,
(H4) L(ul) n G(ul) = ¢ for all u, in S, and
(H5) lL(uI)l ¢ t - k for all uy in Fs. where k is the smallest integer
such that « ¢ 6k + 2.
Let {xl.xz.....xp} be a partition of the critical subset Fs generated by

Algorithm |. Lemma 4 implies that lrsl 3 p(2k + 1), where p is the

number of blocks in the partition. Since lFsl € 1 ¢ 6k + 2, this
implies that p € 3 - (1/(2k+1)). Both k and p are positive integers,
thus 1| ¢ p ¢ 2, and we may conclude that any partition of Fs generated

by Algorithm | has at most two blocks.

|
‘
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1f the partition of rs consists of a single block, then there
exists a unit Uyw in Fg such that G(“l" n rs = rs. Lemma 3 implies
that either L(ul,) N Glu,,) ¢ ¢ or 1L(u; )0 3 v + 1, contradicting
either assumption (H4) or assumption (HS). If the partition of Fg
consists of two blocks, then Lemme S implies that assumptions (H1),
(H2), (H3), (H4), and (HS) lead to a contradiction.
We conclude that If S is t-diagnosable, if | ¢ IFo) ¢ ¢, and if ¢ > 2,
at least one unit u, exists in Fs such that either L(ui) n G("I) * ¢ or
lL(ui)l 2 t-k+ 1, where k is the smallest integer such that

t¢6k+ 2. O

Theorems | and 3 show that the set of values of t may be
partitioned into intervals of length 6, except for the first interval
that is of length 2. For t-dlagnosable systems in which both
1 < Irsl ¢ t and L(ui) n G(ui) = ¢ for all u, in §, Theorem | implies
that if v ¢ 2, at least one faulty unit u; exists such that
lL(uI)l 3 t+ 1, and Theorem 3 implies that if ¢ ¢ 8, at least one
faulty unit u; exists such that IL(u )l 3 v, if v ¢ 14, at least one
faulty unit u‘ exists such that lL(ui)l 3 t -1, and so forth. The next
result shows that for v > 2 the lower bound given in Theorem 3 is
actually the greatest lower bound on the cardinality of the maximal

L(“I) associated with the faulty units.

Lemma 6: To every integer t > 2 corresponds at least one t-diagnosable
system S that has 1 faulty units and one syndrome such that:

(1) L‘“I) N G(ui) = ¢ for every unit u, in 5,

(i) lL(u!)l =t -k <+ | for every faulty unit Uygs where k is the
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smallest integer such that t ¢ 6k + 2, and

(111) lL(ui)l = 1 for at least one nonfaulty unit ug.

Proof: Choose a value of 1, 1 > 2, and find the smallest integer k such
that « € 6k + 2. Construct a system § that has the partition
(A.al.az.a3.xl.x2.x3} as shown in Figure 5. The cardinality of each
block is as follows: 1A} = = - 3k + |1, IBII = k, for i in (1,2,3),

IX,0 = v - 4k + 2, and 1X50 = IX38 = 2k - 1. Each block in the

partition ts nonempty and S has cardinality 2« + 1I.

The tests among units In the systems are organized in the following
manner. The units within each block are completely connected. That {s,
every unit In xl tests every other unit in xl' every unit in 82 tests
every other unit In B,, and so forth. The edges between blocks shown in
Figure 5 indicate that every unit in the block at the tall of the edge
tests every unit in the block at the head of the edge. For example,
every unit in Xl tests every unit in By and vice versa, every unit in A

tests every unit in Bz. and so forth,

To show that S Is t-diagnosable we use the approach of Sullivan
(SULB4]. We solve n network fiow problems, where n is the number of
units in the system, to find the maximum 1 for which § |s t-diagnosable.
For each unit u, in S construct a flow graph G! = (V',E') where
Vi =0V (s)) and E* = E U ((s),uy)luy in U}). In Gy the vertex s, is
the source and the vertex U; is the sink. Each vertex, excluding the

source and the sink, has capacity |, each edge in E € E’ has Infinite

capacity, and each edge (’l'"J) in (E' - E) has capacity 1/2. Since the

- e

By Sy - B Sy -
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system {s symmetric we need to solve only seven network flow problems,
one for each block. We omit the detalls of solving the network flow
problems and claim that for each of the networks the maximum flow Is

(t + 1/2), and thus § is t-diagnosable ([SUL8B4], Theorem 4.1).
The set of nonfaulty units (s ¢
Gg=AUB UB,UB,,

the set of faulty units is

F, = X‘ U XZ U X

s 37

and IFSI = (v -4k + 2) + 2(2k - 1) = 1. Figure 5 shows a syndrome

consistent with the set of faulty units. For this syndrome the P
- following table 1ists the impllied nonfaulty set, the implied faulty set,

and the cardinality of the implied faulty set for each unit In S.

u, in Gluy) L(uy) 1L(uy)l

X, X, AUB, U B, t-k+ 1 *
X, X, AUB UB, t-k+ | g
X, X3 A U B, U B, t-k+ 1 ’

AU B, UB, U By X, UX, U Xy t

B, B, X, ux, T -2k + | i
B, B, X, U Xy 4 - 2
B, B, X, U X, T -2k + 1

The system S s 1-diagnosable for v > 2, 1t has t faulty units, and
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it has a syndrome such that

(1) L(ul) n G(ui) = ¢ for all u, in S,

(11) lL(uI)l =1 -k + 1 for each faulty unit ug, where k is the
smallest integer such that <« ¢ 6k + 2, and

(111) IL(ui)I = 1 for each nonfaulty unit in Aand A # ¢. ©

Lemma 6 shows that the lower bound given in Theorem 3 is the
greatest lower bound. It also shows that the unit with the maximal
implied faulty set may be nonfaulty. In the next section we improve the
lower bound on the cardinality of the maximal L(uI) by considering not
only the Implied faulty sets associated with the faulty units, but also

the implied faulty sets associated with the nonfaulty units.

- Ple r.n.t F {\('uf'-(sf ¢ gy > *l - .'t .'- ..l~1 -~ ‘l ; ., : - .'q.'v\-\' ..q 5‘ »,!
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V. IMPLIED FAULTY SETS OF ALL UNITS: « > 2

As a result of the assumptions made in the previous section we saw
that for the set of faulty units, FS' Algorithm 1 generated a partition
of at most two blocks. In this section we modify the assumptions on «
and k, consequently Algorithm | generates a partition of Fs of at most
three blocks. Lemma 3 provides the proof when Fo has one block. Lemmas
7 and 8 below will prove the cases when Fg has two and three blocks,
respectively. As these proofs are lengthy, they have been placed f{n the
appendix. Theorem 4 uses these three results to prove a lower bound on
the maximal lL(uI)l of all units. Finally, Lemma 6 and a new result,

Lemma 9, show that this bound is a greatest lower bound.

Lemma 7: 1f S is t-dlagnosable, If 1 ¢ lrs| ¢<t, iIft1>2, and if
Algorithm | generates a two block partition {xl.xz} of Fg, at least one
unit u, in S exists such that either L(ui) n G(ui) % ¢ or

IL(uI)l 3 1-Kk+ 1, where k is the smallest integer such that

T ¢ Tk + 2.

Leama 8: If S is t-diagnosable, 1f v > 2, if | ¢ IFSI ¢ 1, and if

Algorithm | generates a three block partition {xl.xz.x3} of rs. at least

one unit ui in S exists such that either L(ul) n G(ui) + ¢ or

lL(ul)l ? 1t -k + 1, where k is the smallest integer such that

Tt ¢ 7Tk + 2.

The following theorem extends Theorem 3 by considering the implied

faulty sets of both faulty and nonfaulty units.




Theorem 4: If S I8 t-diagnosable, (f | ¢ IFSI ¢ 1, and if © > 2, at
least one unit In S exists such that efther L(ui) n G(ul) * ¢ or
lL(ui)l 1 -k + 1, where k is the smallest integer such that

© ¢ 7k + 2.

Proof: Suppose the system S satisfies the following assumptions:
(H1) s is x-diagnosable,

(H2) * > 2,

(H3) 1 ¢ IFsl £ T,

(H4) L(u;) N Gluy)

¢ for all uy in S, and
(HS) lL(ui)l ¢ v - k for all u; in S, where k is the smallest integer

such that « ¢ 7k + 2.

The set of faulty units, Fs. is a critical subset of S. Algorithm
. ) 1 generates a partition {xl.xz.....xp} of Fg. Lemma 4 and (H5) imply

that lrsl 3 p(2k + |), where p is the number of blocks in the partition.

In this case IFsl ¢ v ¢ 7k +2, thus p ¢ 4 - (k+2)/(2k+1), and the fact

that k 2 | implies that | ¢ p ¢ 3.

IfFp=1, that Is, {f the partition of Fs has one block, then there
exists a unit . fn Fg such that G(ul*) n Fg = Fs. Lemma 3 implies
that either L(ul*) n G("l*) % ¢ or lL(u|,)l 3 1+ 1, contradicting
either (H4) or (H5). If the partition of Fs has two blocks, then Lemma
7 tmplies that assumptions (H1), (H2), (H3), (H4), and (HS) lead to a
contradiction. Simitarly, if the partition of Fs has three blocks, then

Lemma 8 implies that the five assumptions lead to a contradiction.

Therefore, we may conclude that f S 1s t-diagnosable, If < > 2,

...............
............................
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and 1f | ¢ IFSI ¢ t, at least one unit in S exists such that either
L(ul) n G(ui) * ¢ or lL(ul)l 3 1t -k + 1, where k is the smallest

integer such that « € 7k + 2. ©

Theorems 2 and 4 show that the set of values of t may be
partitioned into intervals of length 7, except for the first interval of
length 2. Thus, for a t-dlagnosable system in which 1 ¢ lrsl ¢ 1 and
L(u‘) n G(ui) = ¢ for all u, in S, Theorem 2 implies that if v ¢ 2, at
least one unit u, exists such that lL(ui)l 3 1+ 1, and Theorem 4
implfes that if v ¢ 9, at least one unit u, exists such that
lL(uI)l ? 1, if v ¢ 16, at least one unit u, exists such that

IL(uI)l 3 1 -1, and so forth.

Lemma 6 shows that for 3 € ¢t ¢ 8 the lower bound on the cardinality
of the maximai impiied fauity set given in Theorem 3 {s the greatest

lower bound. The next lemma proves a simflar resuit for t > 8.

Lemma 9: To every integer t > 8 corresponds at least one t-diagnosable
system S that has 1 faulty units and one syndrome such that:

(1) L(uI) n G(ui) = ¢ for every u; in S,

(ii) lL(uI)l € 1t~k + 1 for every u; in S, where k is the smallest

integer such that « ¢ 7k + 2,
(i11) IL(uI)l =1~k + | for at least one faulty unit Uje and

(1v) IL(ui)l =1~k + 1 for at least one nonfaulty unit u;.

Proof: Choose a8 value of t, 1t > 8, and let k be the smallest integer

such that 1 ¢ 7k + 2. Construct a system S that has the partition

(Al.Az.nl.nz.x‘,xz.x3.x4) as shown in Figure 6. The cardinality of each

Ca®
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block is as foltlows: lAll = |t/2) -k + 1, IAZI = [t/21 - k,

lBll = IBZI = Kk, lxll = [v/2] -k + |, lle = |v/2) -k + 1, and

Ixal = lx4l =k - 1. The definitions of 1 and k imply that each block
In the partition s nonempty, except X, = X, = ¢ when k = |, and S has

cardinality 2« + 1.

The tests are organized in the following manner: the units within
each block are completely connected, that s, every unit In X, tests
every other unit In X‘. every unit in 82 tests every other unit in 32'
and so forth; the edges shown in Figure 6 indicate that every unit in
the block at the tall of the edge tests every unit (n the block at the
head of the edge, for example, every unit In xl tests every unit in 8

and vice versa, every unit in xz tests every unit in 14. and so forth.

As in the proof of Lemma 5 we use Sullfvan’s approach {SUL84] to
show that S Is t-diagnosable. This system s also symmetric, so we solve
eight network flow problems, one for each block. Once again (omitting
some of the detalls) each network has a maximum flow of (t + 1/2), thus

S Is t-dlagnosable.
In the system S the set of nonfaulty units is
Gs = Al v) Az u Bl U Bz
and the set of faulty units Is
FS = X‘ V) xz ) X3 UX, .

Note that lFsl = ¢, Figure 6 shows a syndrome consistent with the set
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of faulty units.

For the given syndrome the following table 1ists the implied
nonfaulty set, the implied faulty set, and the cardinality of the

fmplled faulty set for each unit in §.

u, in G(uy) L(u,) ACTL
Xl Xl ) 13 u X4 Al u Az U Bl 1t-k+1
Xz Xz u X3 u 14 Al u ‘2 U 82 1t -k +1
13 13 ‘l 1t/2] ~ k + 1
X, X, A, [v/2] - k
Al Al V) Bl U 82 X‘ U XZ v X3 t -k +1
AZ Az U Bl ) 82 Xl U Xz v 14 Tt -k +1
B, B, L [t/2] - k + 1
Bz BZ Xz lw/2] -k + 1

S is t-diagnosable, t > 8, It has t faulty units, and it has a syndrome
such that

(1) L(ui) n G(ui) = ¢ for all u, in S,

() lL(u,)l ¢ v -k+ 1 for each unit u; in S, where k is the smallest
integer such that t ¢ 7k + 2,

(111) lL(ul)l =t -k + | for at least one faulty unit u,, and

(tv) lL(ui)l =1 -k + | for at least one nonfaulty unit u;. ©
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VI. CONCLUSION

We have presented results concerning the properties of the implied
faulty sets in the PMC system level fault model. Unlike previous work
on implted faulty set properties, we made no assumptions on the
structural properties of a system, only that the system was -
diagnosable and had at most t faulty units. The results are not only
interesting In themselves, but also because of their implifcations in the

diagnosis process.

Given a t-dlagnosable system S and the implied faulty and nonfaulty
sets for each unit, we can identify the set
Fo = {"1 H L(u,) n G(ui) % ¢). If S has at most t faulty units, then
lrol ¢ 1. In this case, removing from S the units in Fg and all tests
fnvolving these units produces a reduced system (S - Fo) that is
(t - lFol)-diagnosable. The results of this paper outline the
properties of the maximal implfed faulty sets in the reduced system
(§ = Fg). If (v - IFgl) € 2, then the units with the maximal 1L(u4)t
are faulty. If 3 ¢ (v - IFOI) ¢ 9, then there exists at least one unit
ul such that lL(uI)l » 1. IfFf lL(uI)l > 1, then uy is obviously faulty.
1€ ui is nonfaulty and IL(uI)I = 1, then L(uI) = Fg and every edge in
s - (L(ui) u G(u;)) is a O-edge. On the other hand, if u; is faulty and
lL(ul)l = ¢, then there must be at least one l-edge in edge in
s - (L("l) U G(ut)) because S s t-diagnosable. Thus, for 1 ¢ 9, which
covers many reasonable applications of this model, the resuits of this
peper allow us to develop direct diagnosis algorithms and avoid the

added complexity of transforming the diagnosis problem Into a graph
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APPENDIX

Proof of Lemma 7: Assume that the system S satisfies the following
assumptions:

(H1) S s t-diagnosable,

(H2) « > 2,

(H3) 1| ¢ IFgl ¢ v,

(H4) L(u,) U G(ul) = ¢ for all u; in s,

(H5) lL(ul)l ¢ tv - k for atl u, in S, where k is the smallest integer
such that « ¢ 7k + 2, and

(H6) Algorithm | generates a partition {xl.xz} of Fg.

If t € 6k + 2, Lemma 2 shows that there exists at least one faulty

unit "I such that lL(uI)l 3 t-k+ 1. Thus, we consider the case

t 3 6k + 3.

Beginning with the discussion of ((L(ul,) N L(uy,)) N Gg)y this
proof follows the proof of Theorem 3 exactly. In the interest of
brevity we do not restate this material and rejoin the proof at Eq. (7),

that is

We know that X, +x, ¢ 1, X, < Xgo and © ¢ 7k + 2, thus x, ¢ |v/2) and
X, ¢ 3k + 1 + |k/2]. Recall that if u,, is in L(up,) then N, * ¢ and
X, C W, CX,. If so, then Lemma 4 and (H5) imply that

W, ? |izl > 2k + 1 and thus, X, - W, € k + |k/2). Substituting this

last inequality into Eq. (7) produces r
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a+ bl + bz ¢ v-(k+ [k/2] + 1) <2+ 1 (9)

which contradicts €q. (1). Therefore, if (Hl) through (H6) are

satisfied, then "l = "2 = ¢ and there are no l-edges between Xl and xz.

We now consider the nonfaulty units in the system. Recall that

A= (L(ul,) N L(uy,)) N Gg and 1Al = a. Since W, = ¢, Eq. (6) becomes

arv+k+1l-x (10)
thus

a3 [v/2) +k + 1 (11)

and A % ¢. There are no tests from (Gs - A) to A, otherwise these units
would also belong to A. Assumption (H4) implies that there are no 0-
edges from Fs to A, and thus, A is a critical subset of S. Applying
Algorithm | to A produces a partition {AI,AZ..... Aq). 1 ¢<q ¢ a. Lemma
4 and (H5) imply that & » q(2k + 1), where q s the number of blocks iIn
the partition of A. To determine an upper bound on the cardinality of

A, combine Eqs. (1) and (4) to get « + | € 2¢v - 2k - &, and thus
a¢t-2k-1¢€5k+1 (12)

since t € 7k + 2. The partition of A contains at most

q ¢ 3 - (k#1)/(2k+1) blocks, both g and k are integers, and we may

conclude that the partition of A consists of one or two blocks. We will
prove that in both cases the assumptions (H1) through (H6) lead to a

contradiction.

We first consider the case in which A has a two block partition

AT AE I I e oty 2 Sl 8y
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(A;+4;). The one block case A = (A} will follow from this one. If A
has a partition of two blocks, then there exists a unit Uy in ‘l and a
unit u,2 in AZ such that G(u‘,) NA =4 and G(uy,) n Ay = Ay, Thus
L(ul) € L(u,,) for all u; in A, and L(uy) € L(u,,) for all u; in A,.
(For the rest of this proof we denote cardinality of any subset of S
using lower case notation, i.e. IAll = a..) The blocks ‘l and ‘2 have
the following properties: a, 14 a, 2, ¢ La/2), and 8 32k + 1 for { =1

and { = 2.

Returning now to the units In xz. we combine Eqs. (12) and (6) to
get t -2k + 132 x+Kk+ 1 ~ Xy and thus

X, 3 3k + 2. (13)

Since X, < X, and X, < |t/2), we see that 6k + 4 ¢ IFSI ¢ t. Therefore,
if lFsl ¢ 6k + 30or if 1+ ¢ 6k + 3 assumptions (Hl) through (H6) can not

hoid.

We are interested in the subsets L("al) 1] xz and L(uaz) n XZ. Let
iz = X, - (L(uy,) N L(uy,)). For { in (1,2) let X,, be a subset of iz
such that xZI n L(u.‘) = ¢ and let 321 be the units in B, implied faulty
by at least one unit In xZI' The units in (x21 U 821) are tested at

most by the units in Xz - Xz‘ and A - A‘. Assumption (H)) implies that
x21 + b21 + Z(x2 - X34 + a - aj) 3 2t + ) (14)
We substitute b21 < b2 and sz ¢ 2{t/2) ¢ « into Eq. (14) to get

bz + 28+ 13 2t + Zai + Xy 4 | (15)

A, A i
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and we substitute Eq. (3), 2&1 3 2(2k + 1), and Xyq ? 0 into Eq. (15) to

get t -k + a3 T+ 4k + 3, that s
a3 S + 3 (16)

which contradicts Eq. (12). Therefore, XZI = ¢ for I in (1,2} which

implies that iz = ¢ and thus X, € (L(u,,) N L(u,,)).

Now we turn our attention to the units in xl that are implied
faulty by the units In A. Let X = X, - (L(u,,) N L(u,,)). Suppose
there exists a subset x° of il such that X, n L(uj) = ¢ for all uy in A,
We use the implied nonfaulty set G(UZ*) to partition X . Let

X

al Since there are no tests from

= xa n G(uz,) and let xoz = X° - X
any unit in Bl to any unit in G(uz,) n xl. the units in xal are tested

at most by the units in (xl - xal’ u x2' Assumption (Hl) implies that

X

ol + Z(xl - X5 * xz) 32t + 1 . (17

Substituting X, + X ¢ 1 into Eq. (17) we obtain 2t - X, ? 2t + 1.
This can not be true, thus Xul = ¢ and xaz = Xc.

Let Ba be the units in Bl implied faulty by at least one unit in
Xa. The units in x° U Ba are tested at most by the units xl - xc. thus

assumption (Ht) implies that
X, + b° + Z(x| - xc) 3P 2t + 1 . (18)

Note that ba 14 b' and by ¢ t© - k - & from Eq. (3). Substituting this,

plus le ¢ 2t ~ 2x2 into Eq. (18) we get
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t-k-a+ 2 - xa 32t + 1 ¢+ sz

and therefore
T3 a+ sz + k+1+ X, (19)
Now substituting Eq. (10) into Eq. (19) we get
t)t+2k+2+x2+xa (20)

which can not be true. Thus, if assumptions (H!) through (H6) hold then

Ry € (Llugg) U Llugy)).

Partition ﬁl into four blocks, {X; +X;2+X;3:X;,4) such that
(1) (xll U xlz) < L("al) and (Xln U xlz) N L(uaz) = ¢
(11) (X,3 U X, ) € L(u,,) and (X;3 U X, ) 0 L(uy,) = ¢,
(111) (xll u ‘13) 1] G(UZ*) = ¢, and

Therefore, il = X)) + X, + X;3 + X;,. The above definitions, plus the
fact that Xz c (L("al) n L(uaz)). imply that
'L(ual)' ¥ x4+ Xy~ (X3 + X,) and IL(u )0 3 x; + Xy = (X + Xx5).

Since lL(uI)I ¢ 1 - k for all uy in S observe that

xl3 EIVE X, + X, + k- (21)
and

xll + X45 3 X; + Xy +k-1. (22)

We now show that if all the assumptions are satisfied, then

x|l = Xl3 = ¢, Let Bll be the units in Bl implied faulty by at least
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one unit In xll and let Bl3 be the units in B, implied faulty by at

least one unit in 113. There are no tests from X, to either X, or X3.

The units In xll 1) Bll are tested at most by the units in Xl - il

and Al' thus (Hl) implies that

From Eqs. (21) and (22) we see that x,, - zil € 3t - 3(x; + X, + k).
Substituting this, plus bll £ bl and Zal = 23 - Za2 into €q. (23) and we

get

(bl + 2a - 232) + 2xl + 31 - 3(xI + x, + k) 22t + 1

and therefore
bl +2a+ 3} X, + sz + 2a2 + 3k +1. (24)

Substituting Eqs. (2) and (12) into the left hand side of Eq. (24),

substituting x. + 3x2 3 4x2 3 4(3k + 2) and Za2 3 2(2k + 1) into the

1
right hand side of Eq. (24) we obtaln

t-k+(t-2k-1) +13 19% + 11 (25)

which reduces to 3« 3 22k + 12, that 18, « 3 7k + 4 + (k/3). This

contradicts assumption (H5), thus xll = ¢.

The units In X, 5 U B,, are tested at most by the units in X, - il

and AZ' thus (Hl) implies that

X;3*+ by + 20x, - X + ;) 3 2t + 1. (26)
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From Eqs. (21) and (22) we see that x , - 2§1 €3t - 3(x; + x5 + k).
Substituting this, plus b13 4 bl and Zaz ¢ a into Eq. (26) we get

bl +a+ Zx‘ + 3t - 3(xl + Xy + k) 3 2t + 1
and

bl ta+ v+ 3x2 + 3k +1 . (27)

Substituting Eq. (2) into the left hand side of Eq. (27) and

substituting X, + 3x2 3 4x2 3 4(3k + 2) into the right hand side of Eq.
(27) we obtaln

(t-k) + 13 15% +9 (28)

which reduces to 2t 3 16k + 9, and « 3 8k + (9/2). This contradicts

assumption (HS), thus xl3 = ¢.

As a result of the partitioning algorithm, lL(uZ*) N Fgl ¢ ]
lL(ul,) N Fsl = Xy. We know that lL(uz,) ] Fsl } Xy + X1 + Xy 40 thus, i
xl - X4 ? Xy + X5 b Xp. This implies that

'L(ual)' X + X5 - X143 2%, Substituting X, 3 3k + 2and 7Tk + 2 3 «

into this last inequaltty produces lL(ual)' » 6k + 43> t - k + 2, which
contradicts (H5). Therefore, if Algorithm | generates a two block
partition of A, assumptions (H1), (H2), (HM3), (H4), (HS), and (H6) lead

to a contradiction.

Now consider the case Iin which Algorithm | generates a one block

partition of A. In this case there exists a unit Ug in A such that

G(u,;) NA=Aand L(uy) € L(uyy) for all uy in A. Let '
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iz = !2 - L(u‘l). From the previous case we see that {f (Hl) through
(H6) are satisfied, then X, = ¢ and X, € L(u, ). Suppose now that there
exists a subset il of X, such that il = X, - L(u,,). Once again the
previous case indicates that if the six assumptions hold, then 21 = ¢.
Thus, lL(uaI" > x, + x, 36k + 431 -k + 2, which contradicts (H5).
Therefore, if Algorithm 1 generates a one block partition of A, the
assumptions (H1), (H2), (H3), (H4), (H5), and (H6) can not hold

simultaneously.

We have shown that in all cases the assumptions (H1) through (H6)
lead to a contradiction. Therefore, {f S {s t-diagnosable, if v > 2, If
1 ¢ lFsl ¢ x, and {f Algorithm | generates a two block partition (xl.le
of Fs. then there exists at least one unit u; in$§ such that either
L(ui) n G(ui) = ¢ or lL(uI)l 3 1t-k+ 1, where k is the smallest

integer such that « ¢ 7k + 2. ©

Proof of Lemma 8: Suppose the system S satisfies the following
assumptions:

(H1) § is t-diagnosable,

(H2) <« > 2,

(H3) 1 ¢ lFsl ¢ 1,

(H4) L(ul) n G(ui) = ¢ for all u, in S, and

(H5) lL(ui)l ¢t - k for all u, in S, where k is the smallest integer
such that t ¢ 7k + 2.

(H6) Algorithm | generates a three block partition {xl.xz.xa} of rs.

Once again we denote all subsets of S using upper case letters and the

T P
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cardinal jties of these subsets using lower case letters.

If x < 6k + 2, Lemma | Implies that there exists at least one
faulty unit u, such that lL(ul)l 3t -k+ 1, and thus we consider the
case 6k + 3 < v ¢ 7Tk + 2. The partition {xl.xz.xa} of Fg has the
properties X, + X5 + Xg ¢ tand x, 3 Xy ¥ Xg. Lemma 4 and assumption

(HS) imply that Xy 32k +1 for { in (1,2,3), thus lFsl » 6k + 3 and

2k + 1 ¢ Xy € (v/3) (29)
2k +1 ¢ X, ¢ l(t-xa)/ZJ ¢ (v - 2k -1)/2 (30)

There exists a unit u;, fn X; such that G(u;,) N X, = X,, & unit
uy, 10 X, such that G(u,,) N X, = X5, and a unit uy, in X3 such that
G(ua,) n Xy = X3. Therefore, L(uj) C L(uyy,) for all uy in X,y 1 In
{1,2,3). We partition the nonfaulty units using the implied faulty sets

L(ul*)' L(UZ*)' and L(Ua')o Let

A = (L(u,,) N L(uyy) 0 L(uge)) N Gg ,
B, = (L(up,) N L(uy,)) N (Gg - A)
Bz = (L(uz,) n L(ua,)) n (Gs - A) ,
By = (L(uge) N L(uyy)) N (Gg - A) ,
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C‘ = L(u‘*) N (Gs - (AU B)) ,

C, = L(uy,) N (G5 - (AU B)) ,

Cy = L(ug,) N (Gg - (AU B)) .

3
C = Cl v CZ v 03.
and finally, let

2= Fs vuauvsuc.

The set § - Z contains only nonfaulty units, and as in the proof of
Theorem 3, there are no tests from S - Z to Z. Thus, Z (tself must be

t-diagnosable, 2z 3 21 + |, and

a+b+cirt+ 1 (32)

since xl + X, + X5 < .

We now consider L(u") n Fs for i in (1,2,3). Assumption (H4)
states that L(ut) n G(ui) = ¢ for all uy in S, so there are no |-edges
between units {n a block xi. There may, however, be l-edges between
units in different blocks of Fs. Define the sets "1' i1in (1,2,3,4,5,6)},
as follows: Wy = L(u,) NX, Wy = L(u,) N Xy, Wy = L(u,,) n X

"4 = L(IIZ') n xay "5 = L(03*) ﬂ Xl. and "6 = L(uaﬁ) n Xz. L.t

6 6
W= UN, ond let 1N =wa= I w,. For 1,9 in (1,2,3), If use is in
1= ! =y 1 o

Llug,) then uy, s in Liug,), ij C Liug,)s and X, C Liugy). I Wy ¢ 4,

-
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Lemma 4 and (HS) imply that Wy 3 2k + 1.

By assumption (H5) lL(uI)l ¢ t - k for all u; in S, thus

lL(ul*)' = g ¢+ b‘ + b3 + c1 + wl + wz €t -k ' (33)
lL(uz,)l =a+b +by+cytWgtw, -k, (34)

Combining Eqs. (33), (34), and (35) we get
3a+2b+tc+w¢€3v-3k. (36)
Since S {s t-diagnosable, we can combine Eqs. (32) and Eq. (36) to get
a+b€¢2t-(a+w+3k+1). (37)

To get an upper bound for (a + b + c), we need an upper bound for
c. Let xlc be those units in xl implied faulty by the units in €Ci- The
units In LI C, are tested only by the units in A, B, B3, ¥, and W,.
Thus, assumption (Hl) implies that

x‘c +cy+ 2(a + b1 + b3 +w o+ wz) 32t + | . (38)

Substituting Eq. (33) and Xic ¢ x; into Eq. (38) we get

xl + c| + 2(t -k - cl) 3 2« + 1 and

Using & similar approach we can show that
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X, -2k -1 Cpe (40)
and
X3 - 2k - 13 €3 » (41)
and thus
c ¢ X, + X+ X3 = (6k + 3) ¢ k - 1 (42)

since X+ X5 + Xy ¢t €7k + 2. Combining Eqs. (37) and (42) we get
a+b+ct2v-(a+w+2k+2). (43)

Oepending on the syndrome any of the following statements may be

true:

{(§1) Uy is In L(uz,) and Uy is in Luge) »
(s2) Us Is In L(ug,) and Uge I8 In L(u,) o

(s3) u,, is in L(ugy,) and uy, is in L(uy,) .

If at least two of {(S1),(S2),(S3))} are true then at least four of

(wl,wz.wa.u4.w5.w6) are nonempty and w > 4(2k + 1) 3 1 + k + 2. In this

case Eq. (43) becomes
a+b+rct2t-(a+tv+3%k+4) C1-(a+3k+4), (44)

which contradicts Eq. (32). Thus, if § is t-diagnosable at most one of
{(s1),(82),(83)) is true.

We now show that 1f at most one of ((51),(52),(83)} s true then

A+ ¢. Suppose not, then the units in al are tested only by faulty

=gy i , N ; C, —..n‘»'«~<:‘ ~ - ®
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units. Any test from X, to B, that has a | outcome implies that
L(us,) n 'l ¢ ¢ and any such test with a 0 outcome implies that both Upw
and Uy are in L(u3s). So there are no tests from X3 to B; and B is

tested only by the units in xl U X,. Assumption (Hl1) implies that
bl + 2(xl + xz) 32t + 1. (45)
Substitute Z(xl + xz) € 2t - 2x3 into Eq. (45) we get
bl > 2xy + 1. (46)
Using similar reasoning we can show that
bz » le + 1 (47)
and
b3 3 sz + 1. {48)

Both Bl and By are in L(uyy) so we can combine Eqs. (46) and (48)
with Eq. (33) to get

t-k?b‘+b3)2x2+2x3+2. (‘9)

Note that Eqs. (29) and (30) Imply tﬁat sz + 2x3 3 4(2k + 1), thus Eq.
(49) becomes t 3 9k + 6, which contradicts assumption (H5). Thus, if
A = ¢, either Bl = ¢ or By = 4. We can also show that Eqs. (34), (46),
and (47) imply that either Bl = ¢or B, = ¢ and Eqs. (35), (47), and
(48) imply that either Bz = ¢ or By = ¢. Therefore, if A = ¢ at most

e NN LN A A A DR L LAt T
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For 1 in (1,2,3), recall that X, is the subset of X, containing Uge
and all units that are implied faulty if Uye is implied faulty. If
82 $é¢and B

= 83 = ¢, the units in X u Cl are tested at most by the

1 |
units Iin "l U "2' In this case (Hl) implies that

il $e 20w + W) 22U (50)

Substituting x, ¢ x, and Eq. (33) into Eq. (50) we get

1
xl + (t -k) + w, + w, 32t + 1 or

xl + Wy + "2 P v+ k+1 . (51)

At most one of ((S1),(S2),(S3)} is true, so at most one of (wl.wz} is

nonempty. Therefore, "l + W, ¢ max {wl.wz) < X, and £q. (51) becomes
t+k+1 ¢ xl + X €t - X3 (52)

which (s obviously a contradiction. Stimilar contradictions arise when
either Bl * ¢ or 33 # ¢. We conclude that if assumptions (Hl), (H2),
(H3), (H4), (H5) and (H6) are satisfied and at most one of

((s1),(82),(S3)} Is true, then A # ¢.

Since A = ((L(u,,) N L(uy,) N L(uy,)) N Gg), we see that

(X, UX, Uy cL(uy for all uy In A, Lewma 4 and assumption (H5)

2
imply that |i1| > 2k + 1 for { in {1,2,3). Therefore,

lL(uj)l 26k+332t-k+ 1 for all uj in A, which contradicts (H5).

Thus, in all cases the assumptions (Hl) through (H6) 1ead to a
contradiction. Therefore, If S is t-diagnosable, 1f <« > 2, If

1 ¢ lrsl ¢ 1, and if Algorithm | generates a three block partition
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{xl,xz.xa) of Fs. at least one unit u, in S exists such that either

L(ut) n G(ul) $ ¢ or lL(uI)l >t -k+ 1, where k is the smal lest

integer such that « € 7k + 2, ©

I .
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Figure 1: A l-diagnosable system (Lemma 1)
Figure 2: A 2-diagnosable system (Lemma 1)
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A consistent partition (Lemma 3)
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Figure 5: A T -diagnosable system (Lemma 6)
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