FINAL REPORT

LIFE CYCLE COST MODEL FOR
MOBILE ELECTRIC POWER
APPENDIX A

29 AUGUST 1986

Science Applications International Corporation

Approved for public release
Distribution Unlimited
FINAL REPORT
LIFE CYCLE COST MODEL FOR
MOBILE ELECTRIC POWER
APPENDIX A

29 AUGUST 1986

VICTORIA YOUNG
CHRISTOPHER FORD
JOHN STEINBOCK

Prepared for the
Belvoir Research Development and Engineering Center

Under
Contract Number DAAK70-84-D-0053
Task Order Number 0020

"The views, opinions and/or findings contained in this report are those of
the authors and should not be construed as an official Department of the Army
position, policy, or decision unless so designated by other documentation."

SCIENCE APPLICATIONS INTERNATIONAL CORPORATION
Military Operations Analysis Division
1710 Goodridge Drive, T-7-2
McLean, Virginia 22102

DISTRIBUTION STATEMENT A
Approved for public release
Distribution Unlimited
VARIABLE INPUT SHEET

1.011 ENGINEERING

VARIABLES

<table>
<thead>
<tr>
<th>SUBSYSTEM (1)</th>
<th>SUBSYSTEM (2)</th>
<th>SUBSYSTEM (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONTRACT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MANYEARS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MANYEAR $</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAVEL $</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATERIAL $</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MATERIAL TRANS COST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEST EQUIP $</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEST EQUIP TRANS COST</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REDESIGN %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN HOUSE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MANYEARS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MANYEAR $</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TRAVEL $</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTHER</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THROUGHPUT =

EQUATION:

\[\text{Q} = \text{CONTRACT} \times (\text{INITIAL} \times (\text{MANYRS} \times \text{MANYRS$} + \text{TRAVEL}) \times (1 + \text{REDESIGN$}) + (\text{MATERIAL$} + \text{TRANS$}) + (\text{TEST EQUIP$} + \text{TRANS$})) + \text{IN HOUSE} \times (\text{MANYRS} \times \text{MANYRS$} + \text{TRAVEL}) + \text{OTHER} \]

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS: PER BASIC

SOURCE: A-1
VARIABLE INPUT SHEET

1.012 PROD ENG & PLANNING

VARIABLES

<table>
<thead>
<tr>
<th>SUBSYSTEM (1)</th>
<th>SUBSYSTEM (2)</th>
<th>SUBSYSTEM (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>THRUPUT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTRACT:</td>
<td>#DRAWINGS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$PER DRAWING</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MANY YEARS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MANY YEAR $</td>
<td></td>
</tr>
<tr>
<td>IN HOUSE:</td>
<td>#DRAWINGS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$PER DRAWING</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MANY YEARS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MANY YEAR $</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OTHER</td>
<td></td>
</tr>
</tbody>
</table>

YEARSLY % BREAKDOWN

|------|------|------|------|------|------|------|

EQUATION:

\[
\text{THRUPUT} = \text{CONTRACT} \times \#\text{DRAWINGS} \times \$\text{PER DRAWING} + \text{MANY YEARS} \times \$\text{MANY YEAR} + \text{OTHER}
\]

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

1.013 TOOLING

VARIABLES

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRUPT =

CONTRACT:

HOURS =

HOURLY RATE =

MATERIAL $ =

TRANSPORTATION $ =

OTHER =

YEARLY % BREAKDOWN

1986
1987
1988
1989
1990
1991

EQUATION:

=CONTRACT (MATERIAL$ + TRANSP$ + HOURS * HOURLY RATE)
+OTHER

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

1.014 PROTOTYPE MANUFACTURING

VARIABLES

<table>
<thead>
<tr>
<th>SUBSYSTEM (1)</th>
<th>SUBSYSTEM (2)</th>
<th>SUBSYSTEM (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>THRUPUT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MANUFACTURING $</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SPARES (% OF MANUF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>REWORK (% OF MANUF)</td>
<td></td>
<td></td>
</tr>
<tr>
<td># PROTOTYPES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>GFE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTHER</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

YEARLY % BREAKDOWN

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EQUATION:

\[
(\text{MANUF$} + \text{SPARES}$ \times \text{MANUF$} + \text{REWORK}$ \times \text{MANUF$}) \\
\times \#\text{PROTOTYPES} + \text{GFE} + \text{OTHER}
\]

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

- 1.02 DATA

VARIABLES

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRUPUT =

CONTRACT:
 MANYEARS =
 MANYEAR $ =
 TRAVEL $ =
 MATERIAL $ =

IN HOUSE:
 MANYEARS =
 MANYEAR $ =
 TRAVEL $ =
 OTHER =

YEARLY % BREAKDOWN

1986
1987
1988
1989
1990
1991

EQUATION:
= CONTRACT (MANYRS*MANYRS) + (TRAVELS) + MATERIAL$ + IN HOUSE (MANYRS*MANYRS) + (TRAVELS) + OTHER

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

1.03 SYSTEM TEST & EVAL

VARIABLES

<table>
<thead>
<tr>
<th>SUBSYSTEM (1)</th>
<th>SUBSYSTEM (2)</th>
<th>SUBSYSTEM (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>THRUPUT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTRACT:</td>
<td>MECHANICAL</td>
<td></td>
</tr>
<tr>
<td>MANY YEARS</td>
<td>MANY YEARS</td>
<td></td>
</tr>
<tr>
<td>MANY $</td>
<td>MANY $</td>
<td></td>
</tr>
<tr>
<td>MATERIAL $</td>
<td>MATERIAL $</td>
<td></td>
</tr>
<tr>
<td>IN HOUSE:</td>
<td>MECHANICAL</td>
<td></td>
</tr>
<tr>
<td>MANY YEARS</td>
<td>MANY YEARS</td>
<td></td>
</tr>
<tr>
<td>MANY $</td>
<td>MANY $</td>
<td></td>
</tr>
<tr>
<td>TRAVEL $</td>
<td>TRAVEL $</td>
<td></td>
</tr>
<tr>
<td>MATERIAL $</td>
<td>MATERIAL $</td>
<td></td>
</tr>
<tr>
<td>DTI $</td>
<td>DTI $</td>
<td></td>
</tr>
<tr>
<td>DTII $</td>
<td>DTII $</td>
<td></td>
</tr>
<tr>
<td>OTI $</td>
<td>OTI $</td>
<td></td>
</tr>
<tr>
<td>OTII $</td>
<td>OTII $</td>
<td></td>
</tr>
<tr>
<td>OTHER</td>
<td>OTHER</td>
<td></td>
</tr>
</tbody>
</table>

YEARLY % BREAKDOWN:

|------|------|------|------|------|------|------|

EQUATION:

\[
\text{EQUATION:} = \text{CONTRACT (MANYRS*MANYRS)} + \text{MATERIALS} + \\
\text{IN HOUSE (MANYRS*MANYRS)} + \text{(TRAVEL$)} + \text{MATERIALS$} + \\
\text{DTI$} + \text{DTII$} + \text{OTI$} + \text{OTII$} + \text{OTHER}
\]

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

1.04 SYSTEM PROG MGMT

VARIABLES

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRUPUT =

MANYEARS =

MANYEAR $ =

OTHER =

YEARLY % BREAKDOWN:
1986
1987
1988
1989
1990
1991

EQUATION:
= (MANYRS * MANYR$) + OTHER

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

1.05 TRAIN SERVICE & EQ

VARIABLES

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRUPUT =

CONTRACT:

MANYYEARS =
MANYYEAR $ =
TRAVEL $ =

IN HOUSE:

MANYYEARS PREPERATION =
MANYYEAR $ =
MANYYEAR PARTICIPATION =
MANYYEAR $ =
TRAVEL $ =
MATERIAL $ =
OTHER =

YEARLY % BREAKDOWN:
1986
1987
1988
1989
1990
1991

EQUATION:

= CONTRACT (MANYRS * MANYR$) + TRAVEL$ +
 IN HOUSE (MANYRS * MANYR$ FOR PREPARATION) +
 (MANYRS * MANYR$ FOR PARTICIPATION + TRAVEL$) +
 MATERIAL$ + OTHER

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

1.06 FACILITIES

VARIABLES

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRUPUT

YEARLY % BREAKDOWN:
 1986
 1987
 1988
 1989
 1990
 1991

EQUATION:
 1.06 = THRUPUT

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

1.07 OTHER RDT&E DEV

VARIABLES

- SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRUPUT =

YEARLY % BREAKDOWN:
1986
1987
1988
1989
1990
1991

EQUATION:
1.07 = THRUPUT

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

1.011 ENGINEERING (SUNK COSTS)

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRUPUT -

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

1.012 PROD ENG & PLANNING (SUNK COSTS)

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THROUGHPUT =

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

1.013 TOOLING (SUNK COSTS)

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRUPUT =

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

1.014 PROTOTYPE MANUFACTURING (SUNK COSTS)

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRUPUT -

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

1.02 DATA (SUNK COSTS)

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRUPUT -

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

1.03 SYSTEM TEST & EVAL (SUNK COSTS)

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRUPT =

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

1.04 SYSTEM PROG MGMT (SUNK COSTS)

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRUPTU -

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

1.05 TRAIN SERVICE & EQ (SUNK COSTS)

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRUPUT =

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

1.06 FACILITIES (SUNK COSTS)

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRUPUT -

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

1.07 OTHER RDT&E DEV (SUNK COSTS)

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRUPUT =

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
PRODUCTION SCHEDULE INPUT

<table>
<thead>
<tr>
<th>Distribution</th>
<th># of systems</th>
<th>usage rate</th>
<th>B x C</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONUS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Active</td>
<td></td>
<td>0.25</td>
<td>0</td>
</tr>
<tr>
<td>Reserve</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Training</td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Europe</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Korea</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Pacific</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Alaska</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>South</td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Sum</td>
<td></td>
<td>0</td>
<td>Weighted Sum = 0</td>
</tr>
</tbody>
</table>

- **Ready rate** = Max prod. # =
- **MTTR** = Min prod. # =
- **MTBF** = 1 Backorder # =
- **MCTTO**
- **MTBO** = 1 Year 1 prod. =
- **Ann. operating time** = Year 2 prod. =
- **Useful system life** = Year 3 prod. =
- **# of operating years** = Year 4 prod. =
- **Initial prod years** = Year 5 prod. =
- **Total prod years** =
PRODUCTION CALCULATION AND SCHEDULE EXAMPLE

PRODUCTION SCHEDULE CALCULATION

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Repair float</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operational float</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total float</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual wearout number</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total wearout number</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Replacement number</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL Production</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>13</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>17</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

RESULTS OF CALCULATION

Total Production Quantity = 0
Annual Wearout = 0

Spread over production years--

<table>
<thead>
<tr>
<th>YEAR</th>
<th>Cum prod.</th>
<th>Remain prod.</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>12</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>13</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>14</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>16</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>17</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>18</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>19</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>20</td>
<td>0</td>
</tr>
</tbody>
</table>
VARIABLE INPUT SHEET

2.011 INITIAL PROD FACILITY

VARIABLES

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRUPTUT =
MATERIAL $ =
MANYEARS =
MANYEAR $ =
OTHER =

EQUATION:
= MANYEARS * MANYEAR$ + MATERIAL$ + OTHER

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

2.012 PROD BASE SUPPORT

VARIABLES

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRUPUT =

EQUATIONS:

2.012 = THRUPUT

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLES

THRU PUT =

EQUATION:
2.013 = THRU PUT

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

2.014 OTHER NON REC PROD

VARIABLES

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRUPUT =

EQUATION:
2.014 = THRUPUT

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

2.021 MANUFACTURING

VARIABLES

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRUPUT =

FIRST UNIT COST = 1.0 1.0 1.0

QUANTITY PRODUCED =

LEARN CURVE FACTOR = 1.0 1.0 1.0

MATERIAL$ PER UNIT =

OVERHEAD % =

G&A % =

PROFIT % =

GFE =

OTHER =

EQUATION:

= ((FIRST UNIT$ OF LABOR/(1+B)*QUANTITY*QUANTITY^(B))
+ QUANTITY * MATERIAL$ PER UNIT) * OH * G&A * PROFIT
+ GFE + OTHER

(B = LOG10 (LEARNING CURVE FACTOR)/LOG102)

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

2.022 RECURRING ENG

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>SUBSYSTEM (1)</th>
<th>SUBSYSTEM (2)</th>
<th>SUBSYSTEM (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>THRUPUT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTRACT:</td>
<td>MANYEARS</td>
<td>MANYEARS</td>
<td>MANYEARS</td>
</tr>
<tr>
<td>IN HOUSE:</td>
<td>MANYEARS</td>
<td>MANYEARS</td>
<td>OTHER</td>
</tr>
<tr>
<td>COMMON:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EQUATION:

\[
\text{CONTRACT} (\text{MANYEARS} \times \text{MANYEARS}) + \text{IN-HOUSE} (\text{MANYEARS} \times \text{MANYEARS}) + \text{OTHER}
\]

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

2.023 SUSTAINING TOOLING

VARIABLES

<table>
<thead>
<tr>
<th>SUBSYSTEM (1)</th>
<th>SUBSYSTEM (2)</th>
<th>SUBSYSTEM (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>THRUPUT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTRACT:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>INITIAL Tool %</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN HOUSE:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MANY YEARS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MANY YEAR $</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMMON:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTHER</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EQUATION:

- CONTRACT (% INITIAL TOOLING * INITIAL TOOLING)
+ IN-HOUSE (MANY YEARS * MANY YEAR $)
+ OTHER

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

2.024 QUALITY CONTROL

VARIABLES

<table>
<thead>
<tr>
<th>SUBSYSTEM (1)</th>
<th>SUBSYSTEM (2)</th>
<th>SUBSYSTEM (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>THRUPUT =</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTRACT:</td>
<td>MANYEARS =</td>
<td>MANYEAR $ =</td>
</tr>
<tr>
<td>IN HOUSE:</td>
<td>MANYEARS =</td>
<td>MANYEAR $ =</td>
</tr>
<tr>
<td>COMMON:</td>
<td>OTHER =</td>
<td></td>
</tr>
</tbody>
</table>

EQUATION:

- CONTRACT (MANYRS * MANYRS)
+ IN-HOUSE (MANYRS * MANYRS)
+ FAT + OTHER

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

2.03 ENGINEERING CHANGES

VARIABLES

<table>
<thead>
<tr>
<th>SUBSYSTEM (1)</th>
<th>SUBSYSTEM (2)</th>
<th>SUBSYSTEM (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>THRUPUT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTRACT:</td>
<td>% OF MANUFAC</td>
<td></td>
</tr>
<tr>
<td>IN HOUSE:</td>
<td>MANYEARS</td>
<td>MANYEAR $</td>
</tr>
<tr>
<td>COMMON:</td>
<td>OTHER</td>
<td></td>
</tr>
</tbody>
</table>

EQUATION:
= CONTRACT (% OF MANUFACTURING * MANUFACTURING)
+ IN-HOUSE (MANYRS * MANYR $)
+ OTHER

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

2.04 DATA

VARIABLES

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRU PUT =

CONTRACT:

MANY YEARS =

MANY YEAR $ =

IN HOUSE:

MANY YEARS =

MANY YEAR $ =

COMMON:

PAGES =

COST/PAGE =

OTHER =

EQUATIONS:

= CONTRACT (MANYRS * MANYR$)

+ IN-HOUSE (MANYRS * MANYR$)

+ (# PAGES * COST/PAGE) + OTHER

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

2.05 SYSTEM TEST & EVALUATION

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>SUBSYSTEM (1)</th>
<th>SUBSYSTEM (2)</th>
<th>SUBSYSTEM (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>THRUPUT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTRACT:</td>
<td>MANYEARS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MANYEAR $</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRAVEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IN HOUSE:</td>
<td>MANYEARS</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MANYEAR $</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRAVEL</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATERIAL $</td>
<td></td>
<td></td>
</tr>
<tr>
<td>COST TO CONDUCT TEST</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>COMMON:</td>
<td>OTHER</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SPREAD OVER PRODUCTION YEARS

|------|

EQUATION:

\[
\text{EQUATION:} = \text{CONTRACT} (\text{MANYRS} \times \text{MANYR$} + \text{TRAVEL}) + \text{IN-HOUSE} (\text{MANYRS} \times \text{MANYR$} + \text{TRAVEL}) + \text{MATERIAL$} + \text{TEST CONDUCTIONS$} + \text{OTHER}
\]

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

2.06 TRAINING SERVICE & EQUIPMENT

VARIABLES

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRUPUT =

MANYEARS FOR PREP =
MANYEAR $ =
COST OF CLASS =
#CLASSES =
MANYRS FOR CLASS ATT =
MANYYEAR $ =
TRAVEL $ =
MATERIAL $ =
OTHER =

EQUATIONS:
- (MANYRS * MANYRS CLASS PREP)+(CLASS$ * #CLASSES)
+ (MANYR CLASS ATTENDANCE * MANYRS)+MATERIAL$
+ TRAVEL$ + OTHER

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

2.07 INITIAL SPARES

VARIABLES

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRUPT -

% UNIT MANUF -
AAO QUANTITY -
OTHER -

EQUATION:
= AAO QUANTITY * (% UNIT MANUF * UNIT MANUF COST)

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

2.08 OPERATIONAL SITE ACTIVITY

VARIABLES

- SUBSYSTEM (1)
- SUBSYSTEM (2)
- SUBSYSTEM (3)

THRUPUT =

EQUATION:
2.08 = THRUPUT

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
2.09 OTHER PROC FUNDED PRODUCTION

VARIABLES

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRUPUT =

EQUATION:
2.09 = THRUPUT

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
3.01 TEST CONSTRUCTION

VARIABLES

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRUPUT =

YEARLY % BREAKDOWN

1986
1987
1988
1989
1990
1991

EQUATION:
3.01 = THRUPUT

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
3.02 PRODUCTION CONSTRUCTION

VARIABLES

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRUPUT =

YEARLY % BREAKDOWN
1986
1987
1988
1989
1990
1991

EQUATION:
3.02 = THRUPUT

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

3.03 OPER/SITE ACT CONSTRUCTION

VARIABLES

---THRUPUT-SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRUPUT =

YEARLY % BREAKDOWN
1986
1987
1988
1989
1990
1991

EQUATION:
3.03 = THRUPUT

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

3.04 OTHER MCA FUNDED CONSTRUCTION

VARIABLES

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRUPTUT =

YEARLY % BREAKDOWN
1986
1987
1988
1989
1990
1991

EQUATION:
3.04 = THRUPTUT

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
Variable Input Sheet

4.01 System Test & Evaluation

Variables

<table>
<thead>
<tr>
<th>Subsystem (1)</th>
<th>Subsystem (2)</th>
<th>Subsystem (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>THRUPUT</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CONTRACT</td>
<td>MANYEARS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MANYEARS $</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATERIAL $</td>
<td></td>
</tr>
<tr>
<td>IN HOUSE</td>
<td>MANYEARS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MANYEARS $</td>
<td></td>
</tr>
<tr>
<td></td>
<td>TRAVEL $</td>
<td></td>
</tr>
<tr>
<td></td>
<td>MATERIAL $</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DTI $</td>
<td></td>
</tr>
<tr>
<td></td>
<td>DTII $</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OTI $</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OTII $</td>
<td></td>
</tr>
<tr>
<td></td>
<td>OTHER</td>
<td></td>
</tr>
</tbody>
</table>

Yearly % Breakdown

<table>
<thead>
<tr>
<th>Year</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1986</td>
<td></td>
</tr>
<tr>
<td>1987</td>
<td></td>
</tr>
<tr>
<td>1988</td>
<td></td>
</tr>
<tr>
<td>1989</td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td></td>
</tr>
<tr>
<td>1991</td>
<td></td>
</tr>
</tbody>
</table>

Equation:

\[
\text{EQUATION} = \text{CONTRACT} \left(\text{MANYEARS} \times \text{MANYEARS} \right) + \text{MATERIAL} + \text{IN-HOUSE} \left(\text{MANYEARS} \times \text{MANYEARS} \right) + \text{TRAVEL} + \text{MATERIAL} + \text{DTI} + \text{DTII} + \text{OTI} + \text{OTII} + \text{OTHER}
\]

Description of how values were derived:

Assumptions:

Source:
VARIABLE INPUT SHEET

4.02 TRAINING SERVICE & EQUIPMENT

VARIABLES

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRUPTUT =

MANYRS FOR PREP =
MANYEAR $ =
COST OF CLASS =
#CLASSES =
MANYRS FOR ATTENDANCE =
MANYEAR $ =
MATERIAL $ =
TRAVEL $ =
OTHER =

YEARLY % BREAKDOWN:
 1986
 1987
 1988
 1989
 1990
 1991

EQUATION:

= (MANYEAR$ * MANYRS FOR PREP) + (COST OF CLASS
 * #CLASSES) + (MANYEAR$ * MANYRS FOR ATTENDANCE)
+ MATERIAL$ + TRAVEL$ + OTHER

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
Variable Input Sheet

4.03 Transportation

To calculate 2nd dest cost; input #units and cost/unit for each theater.

<table>
<thead>
<tr>
<th>Theater</th>
<th>#Units</th>
<th>Cost/Unit</th>
<th>#Units * Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONUS</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>EUROPE</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>KOREA</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>PACIFIC</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>ALASKA</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td>SOUTH</td>
<td>0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

COST 2nd dest = 0.0

Subsystem (1) Subsystem (2) Subsystem (3)

Throughput

Weight of sys

1st destination cost

systems

SUM 2nd dest cost

Other

Yearly % Breakdown:

- 1986
- 1987
- 1988
- 1989
- 1990
- 1991

Equation:

\[
\text{EQUATION:} = \text{WEIGHT} \times 1.1 \text{ (PACKING FACTOR)} \times (1\text{st DEST COST}) \\
\times \# \text{ SYSTEMS} + \text{WEIGHTED SUM OF 2nd DEST COST} + \text{OTHER}
\]

Description of how values were derived:

Assumptions:

Source:
VARIABLE INPUT SHEET

4.04 INITIAL REPAIR PARTS

VARIABLES

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRUPUT =

%UNIT MAN FOR REP PARTS =
UNIT MANUFAC COST =
AAO QUANTITY =
OTHER =

YEARLY % BREAKDOWN:
1986
1987
1988
1989
1990
1991

EQUATION:
= (%UNIT MAN COST FOR REP PARTS * UNIT MANUFAC COST) * AAO QUANTITY + OTHER

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

- 4.05 SYSTEM SPECIFIC BASE OP SUPPORT

VARIABLES

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRUPUT =

YEARLY % BREAKDOWN:
1986
1987
1988
1989
1990
1991

EQUATION:
4.05 - THRUPUT

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

4.06 OTHER O&M FUND FIELD

VARIABLES

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRU PUT =

YEARLY % BREAKDOWN:

EQUATION:

4.06 = THRU PUT

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
<table>
<thead>
<tr>
<th>MASTER SYS DISTRIBUTION</th>
<th>USAGE RATES</th>
<th># UNITS</th>
<th>BASE PAY & THEATER COST</th>
<th>ATTRITION</th>
<th>OPA</th>
<th>CPA</th>
<th>MPA</th>
<th>ROTATION</th>
<th>PCS & TRANS</th>
<th>QM</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONUS</td>
<td></td>
</tr>
<tr>
<td>TRAINING</td>
<td></td>
</tr>
<tr>
<td>ACTIVE</td>
<td></td>
</tr>
<tr>
<td>RESERVES</td>
<td></td>
</tr>
<tr>
<td>EUROPE</td>
<td></td>
</tr>
<tr>
<td>KOREA</td>
<td></td>
</tr>
<tr>
<td>PACIFIC</td>
<td></td>
</tr>
<tr>
<td>ALASKA</td>
<td></td>
</tr>
<tr>
<td>SOUTH COMMAND</td>
<td></td>
</tr>
<tr>
<td>WEIGHTED SUM</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
COMMON VARIABLES

<table>
<thead>
<tr>
<th>TABLE OF COMMON VARIABLES</th>
<th>MASTER SYS</th>
<th>SUBSYSTEM (1)</th>
<th>SUBSYSTEM (2)</th>
<th>SUBSYSTEM (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEIGHTED # OF UNITS -</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANNUAL OP HRS -</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MAINT MANYRS/SYS -</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>or</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTBF -</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>MTTR -</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>MTBSM -</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>MTTSM -</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTBO -</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>MTTO -</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>ANNL MAINT HRS AVAIL -</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CREW MANYEARS/SYS -</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td># OP YRS -</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UNIT MANUF $ -</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCTTR -</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MCTTO -</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>USEFUL SYS LIFETIME -</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td># UNITS IN TRAINING -</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
VARIABLE INPUT SHEET

5.011 REPL REPAIR PARTS (OM)

VARIABLES

<table>
<thead>
<tr>
<th>SUBSYSTEM (1)</th>
<th>SUBSYSTEM (2)</th>
<th>SUBSYSTEM (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\text{THRU\text{PUT}}) =</td>
<td>(% \text{ UNIT MANUF } $) =</td>
<td>(\text{OTHER}) =</td>
</tr>
</tbody>
</table>

EQUATION:

\[\text{THRU\text{PUT}} = \text{WEIGHTED } \# \text{ UNITS } \times \% \text{ UNIT MANUF } \$ \times \text{UNIT MANUF } \$ \times \# \text{ OPERATING YRS} + \text{OTHER} \]

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

5.012 REPL SPARES (PROC)

VARIABLES

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRUPTUT =

% UNIT MANUF $ =

OTHER =

EQUATION:

= WEIGHTED # UNITS * % UNIT MANUF $
* UNIT MANUF $ * # OPERATING YRS + OTHER

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

5.013 WAR RES REPAIR PARTS (OM)

VARIABLES

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRU PUT =

REP PARTS PER SYSTEM =
AVG REPAIR PART $ =
UNITS IN WAR RES =
OTHER =

EQUATION:
= (# REPAIR PARTS PER SYSTEM * AVG REPAIR PART $) *
 # UNITS IN WAR RES + OTHER

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

5.014 WAR RES SPARES (PROC)

VARIABLES

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRUPT =

SPARES PER SYSTEM =
AVG SPARES $ =
UNITS IN WAR RES =
OTHER =

EQUATION:
= ((# SPARES PER SYSTEM * AVG SPARES $)
* # UNITS IN WAR RES + OTHER

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

5.02 PETR, OIL, & LUBE

VARIABLES

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRUPT =

ANNUAL HRS OR MILES =
RATE OF FUEL CONSUMPTION =
FUEL COST =
LUBE FACTOR =
OTHER =

EQUATION:

= ANNUAL HRS OR MILES * RATE OF FUEL CONSUMPTION
 * FUEL COST * LUBE FACTOR
 * WEIGHTED # UNITS * # OPERATING YRS + OTHER

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

5.031 TRAINING AMMO/MISL

VARIABLES

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRUPUT =
AVG AN CONSP PER SYS =
AVG AMMO COST =
UNITS IN TRAINING =
OTHER =

EQUATION:
= AVG ANNUAL CONSUMPTION PER SYS * AVG AMMO COST
 * # UNITS IN TRAINING * # OPERATING YRS + OTHER

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

5.032 WAR RES AMMO/MISL

VARIABLES

<table>
<thead>
<tr>
<th>SUBSYSTEM (1)</th>
<th>SUBSYSTEM (2)</th>
<th>SUBSYSTEM (3)</th>
</tr>
</thead>
</table>

THRU PUT =

WAR RES CONSUMP =
UNIT AMMO COST =
WAR RES UNITS =
OTHER =

EQUATION:

= WAR RES CONSUMP * UNIT AMMO COST
* # WAR RES UNITS + OTHER

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

5.041 CIVILIAN LABOR

VARIABLES

<table>
<thead>
<tr>
<th>SUBSYSTEM (1)</th>
<th>SUBSYSTEM (2)</th>
<th>SUBSYSTEM (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>THRUPUT</td>
<td>CIV LABOR RATE</td>
<td>OTHER</td>
</tr>
</tbody>
</table>

EQUATION:

\[\text{THRUPUT} = (\text{MTTO} \times \text{CIV LABOR RATE} \times \text{ANNUAL OPERATING HRS} / \text{MTBO}) \times \text{WEIGHTED \# UNITS} \times \text{\# OPERATING YRS} + \text{OTHER} \]

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

5.042 MATERIEL (OM)

VARIABLES

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRUPT =
% UNIT MANUF $ =
OTHER =

EQUATION:
- % UNIT MANUF $ * UNIT MANUF $
 * ((ANNUAL OPERATING HRS / MTBO)
 * WEIGHTED # UNITS * # OPERATING YRS + OTHER

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

5.043 MATERIEL (PROC)

VARIABLES

<table>
<thead>
<tr>
<th>SUBSYSTEM (1)</th>
<th>SUBSYSTEM (2)</th>
<th>SUBSYSTEM (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>THRUPT =</td>
<td></td>
<td></td>
</tr>
<tr>
<td>% UNIT MANUF $=</td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTHER =</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EQUATION:

\[
\% \text{ UNIT MANUF } \times \text{ UNIT MANUF } \times \left(\frac{\text{ANNUAL OPERATING HRS / MTBO}}{} \right) \times \text{WEIGHTED \# UNITS} \times \# \text{OPERATING YRS} + \text{OTHER}
\]

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

5.044 MAINT SUPPORT ACTIV

VARIABLES

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRUPUT -

EQUATION:
5.044 = THRUPUT

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

5.05 FIELD MAINT CIV LAB

<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>SUBSYSTEM (1)</th>
<th>SUBSYSTEM (2)</th>
<th>SUBSYSTEM (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>THRUPUT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIV LABOR RATE$ PER HR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIV LABOR MTTR</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CIV LABOR MTTSM</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MTBF</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>MTBSM</td>
<td>1.0</td>
<td>1.0</td>
<td>1.0</td>
</tr>
<tr>
<td>OTHER</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EQUATION:

\[
= \left(\frac{\text{CIV LABOR MTTR} \times \text{ANNUAL OPERATING HRS}}{\text{MTBF}} \right) + \left(\frac{\text{CIV LABOR MTTSM} \times \text{ANNUAL OPERATING HRS}}{\text{MTBSM}} \right) \times \text{CIV LABOR RATE$ PER HR} \times \text{WEIGHTED # UNITS} \times \text{# OPERATING YRS} + \text{OTHER}
\]

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

5.06 TRANSPORTATION

VARIABLES

<table>
<thead>
<tr>
<th>SUBSYSTEM (1)</th>
<th>SUBSYSTEM (2)</th>
<th>SUBSYSTEM (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>THRUPUT =</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEIGHTED SUM TRANSP $ =</td>
<td>WEIGHT OF SYSTEM =</td>
<td>OTHER =</td>
</tr>
</tbody>
</table>

EQUATION:

- \((\text{WEIGHTED SUM TRANSP} \times \text{WEIGHT OF SYSTEM} \times 2 \times 1.1 \text{ (PF)} \times (\frac{\text{ANNUAL OPERATING HRS}}{\text{MTBO}}) \times \text{WEIGHTED # UNITS} \times \# \text{OPERATING YRS} + \text{OTHER})\)

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>SUBSYSTEM (1)</th>
<th>SUBSYSTEM (2)</th>
<th>SUBSYSTEM (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>THRUPUT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WEIGHT SUM OF REPLACE $</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OTHER</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EQUATION:

\[
\text{EQUATION: } \left(\frac{\text{MTTR} \times \text{ANNUAL OPERATING HRS}}{\text{MTBF}} / \text{ANNUAL MAINT HRS AVAIL} \right) + \left(\frac{\text{MTTSM} \times \text{ANNUAL OPERATING HRS}}{\text{MTBSM}} / \text{ANNUAL MAINT HRS AV} \right) + \left(\frac{\text{CREW MANYRS PER SYS} + \text{MAINT MANYRS PER SYS}}{\text{WEIGHTED SUM OF REPLACE $} \times \text{# OPERATING YRS}} \right)
\]

OTHER

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

5.072 SERVICES

VARIABLES

| SUBSYSTEM (1) | SUBSYSTEM (2) | SUBSYSTEM (3) |

THRUPUT =

WEIGHT SUM OF REPLACE $ =

OTHER =

EQUATION:

= ((MTTR * ANNUAL OPERATING HRS / MTBF / ANNUAL MAINT HRS AVAIL) + (MTTSM * ANNUAL OPERATING HRS / MTBSM / ANNUAL MAINT HRS AV + CREW MANYRS PER SYS + MAINT MANYRS PER SYS) * WEIGHTED SUM OF REPLACE $ * # OPERATING YRS +

OTHER

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

5.081 CREW PAY & ALLOWANCE

VARIABLES

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRUPUT =

WEIGHTED SUM BASE P&A =
OTHER =

EQUATION:
= WEIGHTED SUM BASE P&A
* CREW MANYEARS PER SYS * # OPERATING YRS
+ OTHER

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

5.082 MAINT PAY & ALLOWANCES

VARIABLES

<table>
<thead>
<tr>
<th>SUBSYSTEM (1)</th>
<th>SUBSYSTEM (2)</th>
<th>SUBSYSTEM (3)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

THRUPUT =

WEIGHTED SUM BASE P&A =

OTHER =

EQUATION:

WEIGHTED SUM BASE P&A
* ((MTTR * ANNUAL OPERATING HRS / MTBF
/ ANNUAL MAINT HRS AVAIL) + (MTTSM
* ANNUAL OPERATING HRS / MTBSM / ANNUAL MAINT HRS AV
+ MAINT MANYRS PER SYS) * # OPERATING YRS + OTHER

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

5.083 SYS SPEC SUPT P&A

VARIABLES

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

5.084 TRAINEE/TRAINER P&A

VARIABLES

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRUPTUH =

WEIGHT SUM OF REPLACE $ =

OTHER =

EQUATION:

= ((MTTR * ANNUAL OPERATING HRS / MTBF / ANNUAL MAINT HRS AVAIL) + (MTTSM * ANNUAL OPERATING HRS / MTBSM / ANNUAL MAINT HRS AV + CREW MANYRS PER SYS + MAINT MANYRS PER SYS) * WEIGHTED SUM OF REPLACE $ * # OPERATING YRS +

OTHER

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

5.085 SYS/PROJ MGMT P&A

VARIABLES

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRUPUT =

MANYEARS =

MANYEAR $ =

OTHER =

EQUATION:

= MANYEARS * MANYEAR $ * # OPERATING YRS
+ OTHER

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

5.086 PERM CHG OF STA (PCS)

VARIABLES

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRUPUT =
WEIGHTED SUM OF PCS $ =
OTHER =

EQUATION:
- (((MTTR * ANNUAL OPERATING HRS / MTBF
 / ANNUAL MAINT HRS AVAIL) + (MTTSM
 * ANNUAL OPERATING HRS / MTBSM / ANNUAL MAINT HRS AVG
 + MAINT MANYRS PER SYS + CREW MANYRS PER SYS)
 * WEIGHTED SUM OF PCS $ * # OPERATING YRS + OTHER

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

5.087 OTHER MPA FUND SUST

VARIABLES

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRUPUT =

EQUATION:

5.087 = THRUPUT

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

5.09 SYS/PROJ MGMT (CIV)

VARIABLES

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRU PUT =

EQUATION:
5.09 = THRU PUT

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

5.10 MODIFICATIONS/KITS

VARIABLES

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRUPUT =

EQUATION:
5.10 = THRUPUT

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

5.11 OTHER SUSTAINMENT

VARIABLES

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRUPUT =

EQUATION:
5.11 = THRUPUT

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
5.111 OTHER O&M FUND SUST

VARIABLES

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRUPUT =

WEIGHTED SUM OF QMU $ =

OTHER =

EQUATION:

\[\text{WEIGHTED SUM OF QMU} = \left(\frac{\text{MTTR} \times \text{ANNUAL OPERATING HRS} / \text{MTBF}}{\text{ANNUAL MAINT HRS AVAIL}} + \frac{\text{MTTSM} \times \text{ANNUAL OPERATING HRS} / \text{MTBSM} / \text{ANNUAL MAINT HRS AV}}{\text{CREW MANYRS PER SYS} + \text{MAINT MANYRS PER SYS}} \right) \times \text{WEIGHTED SUM OF QMU} + \text{OTHER} \]

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
VARIABLE INPUT SHEET

5.112 OTHER PROC FUND SUST

VARIABLES

SUBSYSTEM (1) SUBSYSTEM (2) SUBSYSTEM (3)

THRUPUT =

EQUATION:

5.112 = THRUPUT

DESCRIPTION OF HOW VALUES WERE DERIVED:

ASSUMPTIONS:

SOURCE:
END
10-86
DTIC